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Abstract: The aim of the present study was to analyze the effects of cocoa flavanols and red berry
anthocyanins on cardiovascular biomarkers, such as homocysteine, angiotensin-converting enzyme
(ACE), nitric oxide (NO), flow-mediated vasodilation (FMD), blood pressure and lipid profile. Ad-
ditionally, we aimed to ascertain their possible interactions with microbiota related metabolites,
such as secondary bile acids (SBA), short-chain fatty acids (SCFA) and trimethylamine N-oxide
(TMAO). A randomized, parallel-group study, single-blind for the research team, was performed
on 60 healthy volunteers between the ages of 45 and 85, who consumed 2.5 g/day of cocoa powder
(9.59 mg/day of total flavanols), 5 g/day of a red berry mixture (13.9 mg/day of total anthocyanins)
or 7.5 g/day of a combination of both for 12 weeks. The group that had consumed cocoa showed a
significant reduction in TMAO (p = 0.03) and uric acid (p = 0.01) levels in serum, accompanied by
an increase in FMD values (p = 0.03) and total polyphenols. corrected by creatinine (p = 0.03) after
the intervention. These latter values negatively correlated with the TMAO concentration (R = −0.57,
p = 0.02). Additionally, we observed an increase in carbohydrate fermentation in the groups that
had consumed cocoa (p = 0.04) and red berries (p = 0.04) between the beginning and the end of the
intervention. This increase in carbohydrate fermentation was correlated with lower levels of TC/HDL
ratio (p = 0.01), systolic (p = 0.01) and diastolic blood pressure (p = 0.01). In conclusion, our study
showed a positive modulation of microbiota metabolism after a regular intake of cocoa flavanols
and red berry anthocyanins that led to an improvement in cardiovascular function, especially in the
group that consumed cocoa.
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1. Introduction

The last decades have seen a demographic shift in age groups, with a marked increase
in the population’s average age [1,2]. The cardiovascular system is one of the most com-
monly affected by this process, as ageing is associated with an increased risk of developing
hypertension, atherosclerosis and myocardial infarction [3]. After cancer, cardiovascular
diseases (CVD) represent the second leading cause of death worldwide, with the majority
of these being reported in people over the age of 60 [4]. During ageing, dysfunction of the
vascular endothelium occurs, along with increased arterial thickening and stiffness [5]. On
the other hand, age brings about a reduction in endothelial nitric oxide synthase (eNOS)
activity responsible for synthesizing nitric oxide (NO), a critical vasodilator that regulates
vascular tone and inhibits vascular inflammation [3,5]. This increase in both mortality and
morbidity caused by CVD has made it necessary to search for new strategies to reduce the
prevalence of these diseases and lessen the harmful effects of ageing. Dietary polyphenols
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have been shown to be effective in combatting the effects of ageing, especially in preventing
the decline of cognitive function [6,7] and the development of CVD [8,9]. Polyphenols are a
large group of secondary metabolites in plants exhibiting a multitude of beneficial attributes
for the organism. However, the most important factor to consider for the present work
is their anti-aging properties on the vascular system and their regulatory effect on major
inflammatory and ROS-dependent signaling pathways associated with senescence [9].

Flavanols, a type of polyphenol belonging to the group of flavonoids, have been
shown to be particularly promising compounds in preventing cardiovascular age-related
dysfunctions [10]. Epidemiological studies on flavanol-rich foods, such as tea [11], ap-
ples [12], red wine [13] and chocolate [14], have observed positive trends in the association
between a high consumption of these foods and reduced CVD risk. This association has
also been shown in people who had previously suffered a cardiovascular event [15]. In
fact, a meta-analysis conducted by Lin et al. (2016) found that cocoa flavanol intake in
adults significantly improved various cardiovascular biomarkers, such as fasting insulin,
insulin resistance, triglycerides (TG), HDL-C, c-reactive protein (CRP) and VCAM-1 [16].
In a similar way, the meta-analysis of Arab et al. (2009) showed that tea consumption (three
cups versus lees than one cup per day) produced a reduction in the risk of suffering a
hard attack by 21% [17]. In the light of this evidence, the European Food Safety Authority
(EFSA) stated, in a 2012 health claim, that 200 mg cocoa flavanols per day might help in
maintaining a normal blood flow and endothelium-dependent vasodilation [18].

Other flavonoids that have shown beneficial effects on cardiovascular health are antho-
cyanins, red to blue compounds that are present in various fruits and vegetables, including
red fruits [19]. Several clinical studies have found a positive association between antho-
cyanin intake and cardiovascular biomarkers. For example, a randomized, double-blind
trial carried out on 150 subjects aged 40–65 with hypercholesterolemia, showed that the
consumption of a purified anthocyanin mixture (320 mg/day) significantly reduced serum
levels of VCAM-1, LDL-C, CRP and plasma IL-1β, while increasing serum levels of HDL-C,
compared with the placebo [20]. Another randomized trial on 146 hypercholesterolemic
subjects aged 40–65 also found a reduction in platelet chemokines in plasma after the
consumption of 320 mg of purified anthocyanins, compared with the placebo. [21]. In
previous work from our group, it was shown that anthocyanins and their metabolites
can inhibit monocyte chemoattractant protein 1 (MCP-1) secretion [22,23] and endothelial
adhesion molecules, VCAM-1 and ICAM-1 [22]. Moreover, a meta-analysis conducted by
Angelo et al. (2018) found that the intake of berries reduced total cholesterol (TC), LDL-C,
TG and blood pressure, while increasing the level of HDL-C, suggesting a beneficial effect
on the control of CVD risk factors [24].

Additionally, polyphenols could influence cardiovascular health positively due to
their effect on gut microbiota. Changes in microbiota composition and metabolism are
associated with numerous diseases, including CVD [25]. For instance, trimethylamine
N-oxide (TMAO) is a gut microbiota-dependent metabolite formed following ingestion of
choline-rich foods and whose circulating levels have been associated with CVD risk in large
scale clinical studies [26]. Another pathway in which microbiota could modulate a host
metabolism is through the production of secondary bile acids (SBA) and short-chain fatty
acids (SCFA). Many of these SBAs and SCFAs act as hormone-like molecules following gut
absorption, interacting with a variety of host receptors involved in inflammation, # and lipid
and glucose metabolism [25]. Perturbations in the dynamic between diet, gut microbiota
and SBA/SCFA may increase CVD risk. Haeusler et al. (2013) showed that increased
levels of 12α-hydroxylated bile acids, cholic acid, deoxycholic acid and their conjugated
forms in plasma were associated with higher insulin, proinsulin, glucose, glucagon and
TG and lower HDL-C levels in plasma [27]. On the other hand, SFCAs lowered blood
pressure in mice via endothelial G protein-coupled receptor 41 [28]. Consumption of
both flavanols [29] and anthocyanins [30] has been shown to regulate gut microbiota
composition in a positive way; for instance, the ingestion of cocoa has been associated with
an increase in Lactobacillus and Bifidobacterium abundance and a reduction in species from
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the Clostridium genus [31]. These changes are associated with a decrease in concentrations
of CRP and inflammation, thus lowering the cardiovascular risk [29].

Given the increase in CVD in the elderly population and the need to find new ways to
prevent this, the aim of this research was to study the activity of red fruit anthocyanins and
cocoa flavanols on cardiovascular biomarkers, including FMD, blood pressure, lipid and
glycemic profile and angiotensin-converting enzyme (ACE). Furthermore, our aim was to
examine whether anthocyanins and flavanols alone or in combination correlated with an
improvement in these CVD biomarkers and with the gut microbiota metabolism measured
as TMAO, SCFA and BA serum levels.

2. Materials and Methods
2.1. Study Design and Ethical Considerations

This was a randomized, single-blind, parallel-group study lasting 12 weeks. The vol-
unteers were assigned to three groups (referred to as diets throughout the study) according
to the consumed product: group 1 consumed 5 g/day of a mixture of red berries (RB);
group 2 consumed 2.5 g/day of a polyphenol-rich cocoa powder (C) and group 3 consumed
7.5 g/day of a mixture of cocoa and red berries (RB+C). The product was kindly prepared
and supplied by Salengei® (Barcelona, Spain).

Of the 144 volunteers that were approached, only 60 were included in the study after
giving their written consent. They were randomly assigned to one of the three diets, as pre-
sented in the flow diagram of the intervention study (Figure 1). Only one subject withdrew
from the study for personal or health reasons, and 59 completed it successfully. Volunteers
came to the Human Nutrition Unit at ICTAN-CSIC on three different days for sample and
data collection. The first visit corresponded with the personal interview to check eligibility.
The second visit was considered the baseline or start of the study, and the third visit was the
end of the 12-week intervention. On each visit, a 20 mL blood sample, early morning urine,
weight, height and waist circumference (anthropometric measurements), blood pressure
and 24-h diet records were collected. At the beginning of the intervention, and after revising
the rules of the study to all volunteers, they were provided with the product to be con-
sumed. In every case, volunteers were contacted by telephone to check compliance every
two weeks, in order to resolve any queries and encourage completion of the study. From
the three-day dietary collections (which included two mid-weekdays and one weekend
day), we also recorded the frequency of consumption of the main sources of anthocyanins,
flavanols, caffeine and theobromine in order to calculate the total daily intake. The purpose
of this was to check that the daily intake of cocoa powder represented approximately 75 mg
of theobromine and 3 mg of caffeine. We considered it important to monitor the dietary
consumption of methylxanthines, theobromine and caffeine, for two reasons. One is that
some studies have associated high blood pressure with caffeine consumption in certain
individuals with a genetic predisposition or a lower-metabolizing rate for caffeine. The
second is that there is a scientific controversy as to weather theobromine or flavanols in
cocoa are responsible its cardiovascular protective effect.

All personal data (biological samples and neuropsychological tests) were processed in
accordance with the Organic Law 3/2018, of 6 December, on the Protection of Personal Data
(https://www.boe.es/eli/es/lo/2018/12/05/3 (accessed on 5 July 2019)), using codes to
ensure confidentiality and guarantee anonymity from the moment of recruitment. The
study was approved by the Bioethics Committee of the Spanish National Research Council
(CSIC), the Ethics Committee for Clinical Research of the Hospital Universitario Puerta
de Hierro-Majadahonda (Madrid, Spain) (Acta no 01.07) and the Hospital Universitario
12 de Octubre (Madrid, Spain) (Acta no17/117). All subjects gave their written, informed
consent after receiving oral and written information about the study. ClinicalTrials.gov
trial registration—NCT04348162. The clinical trial was conducted in accordance with
the principles of good clinical practice (Royal Decree 1090/2015 of 4 December) and the
Declaration of Helsinki (http://www.wma.net/es/30publications/10policies/b3/index.
html (accessed on 17 August 2017)).

https://www.boe.es/eli/es/lo/2018/12/05/3
ClinicalTrials.gov
http://www.wma.net/es/30publications/10policies/b3/index.html
http://www.wma.net/es/30publications/10policies/b3/index.html
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2.2. Subjects

Volunteer were recruited by the research team in the area of Madrid, through posters
and online dissemination through Universidad Complutense de Madrid (UCM), CSIC
channels and social networks. We selected aging adults 45 to 85 years old, either men or
postmenopausal women (considering one year with amenorrhea) as potential candidates.
Participation in the study was voluntary. Exclusion criteria were body mass index (BMI)
lower than 20 or higher than 30, more than five cigarettes per day smoked, familial hy-
percholesterolemia (serum triglycerides > 250 mg/dL or cardiovascular risk index total
cholesterol/HDL-C > 6), chronic diseases (diabetes, liver, kidney, etc.), anticoagulants,
unavailability to resume intake of supplements containing polyphenols, phytosterols, vi-
tamins or minerals during the study, or antibiotic prescription in the last three months.
Product aversion and a score below 28 on the Folstein Mini-mental state examination
(MMSE), above 6 on the Functional Activities Questionnaire (FAQ) and below 10 on the
Beck depression scale were also considered as exclusion criteria. Once included in the study,
the volunteers were randomized to consume one of the three diets using the Microsoft®

Excel 2016 program and using as key criteria age, BMI and gender, before the first visit. In
every case, participants in the study were asked to maintain the same lifestyle and diet as
before the intervention.

2.3. Characterization of Cocoa and Red Berry Powders

The characterization of the dietary products has been described in a previous publi-
cation of our group [32,33]. In short, the semi-defatted cocoa powder, kindly supplied by
Salengei® (Barcelona, Spain), as were the rest of the products, was from organic farming
and of high polyphenol content. It was sugar-, sweetener- and emulsifier-free and contained
7899 mg of total polyphenols, 668 mg of theobromine and 275 mg of caffeine per 100 g cocoa
powder. The cocoa powder consumed by the volunteer provided a daily intake of 197.5 mg
total polyphenols. Additionally, the cocoa powder contained 383.6 mg of total flavanols per
100 g, which provided a daily intake of 9.6 mg flavanols, including 4.7 mg epicatechin. The
second product was a red berry mixture made of a combination of pure dried redcurrants
(33.3%), blackcurrants (33.3%), raspberries (16.7%) and blueberries (16.7%). The determina-
tion of total polyphenols and anthocyanins showed that the red berry mixture contained
2079 mg of total polyphenols and 277.7 mg of total anthocyanins in 100 g of the product,
which provided a daily intake of 104 mg total polyphenols and 13.9 mg total anthocyanins,
including 4.8 mg delphinidin-3-O-rutinoside and 3.5 mg cyanidin-3-O-rutinoside. There
was no trace of other substances that could adulterate the final product. Further information



Nutrients 2023, 15, 2299 5 of 22

about energy value and nutrient composition is provided in the supplementary material
(Tables S1 and S2). In both products, the method of use was to dissolve one tablespoon per
day in water, vegetable milk, juice, yoghurt or cereals with the main meal. The tablespoon
was provided for each product and the size and the best way to obtain the exact dose was
explained to each volunteer before the start of the intervention.

2.4. Determination of the ACE Activity

The analysis was performed using a modified Friedland and Silverstein fluorometric
assay [34]. Starting from a commercial stock of 0.1 U of porcine ACE powder, serial
dilutions of between 5 U/L and 50 U/L were made for the standard curve in the phosphate
buffered saline (PBS) solution with the pH adjusted to 8.3. We used the tripeptide Hippuryl-
Histidine-Leucine as a substrate for the enzyme, dissolving it in PBS using a sonicator to
obtain a final concentration of 2.3 mM. We added 120 µL of the tripeptide solution to 30 µL
of each diluted sample to start the reaction, incubating it for 20 min at 37 ◦C. Next, 150 µL
of 3 M NaOH was added to stop the reaction. Then, 100 µL of 0.2% orthophthalaldehyde
in methanol was added and incubated in the dark for 10 min at 37 ◦C. Finally, we added
150 µL of 3 M HCl to each sample and centrifuged at 2000× g for 2 min at 4 ◦C. The
samples were analyzed in a Biotek Synergy HT Microplate Reader, employing an excitation
wavelength of 360 nm and a readout of 500 nm.

2.5. Quantification of Nitric Oxide in Plasma

The quantification of nitric oxide in plasma samples was made following the method
of Giustarini et al. (2004) [35] with modifications. A dilution of sodium nitrite in ultrapure
water was used for the standard curve, with concentrations between 1.5 µM and 75 µM.
First, 5 µL of N-ethylmaleimide was added to 100 µL of plasma or the control, followed by
the addition of 400 µL of 62.5% ethanol solution. After shaking, we introduced 500 µL of
modified Griess reagent to each of the samples and incubated the solution in the dark for
30 min. To deproteinize the mixture, 200 µL of cold TCA was added to a final concentration
of 3% m/v. Next, the sample was centrifuged at 10,000× g for two minutes, and the
supernatant was collected in a 96-well flat-bottom plate (200 µL per well, in triplicate).
The color change was quantified on the plate of a Biotek Synergy HT Microplate Reader,
reading at 540 nm.

2.6. Measurement of Flow-Mediated Dilatation (FMD)

FMD measurement was performed with a Toshiba Aplio 500 platinum ultrasound
machine in the left humeral artery, between 5 and 10 cm above the elbow. The volunteer
was placed in a supine position, and had to fast and abstain from smoking for at least eight
hours. To induce ischemia, a cuff was placed distal to the measurement site for five minutes,
exerting a pressure at least 50 mmHg higher than the systolic pressure. Measurements were
taken of baseline arterial diameter and peak arterial diameter after reactive hyperemia. The
diameters were measured from the interface between the blood and the beginning of the
intima-media boundary of the vascular wall at the end of diastole. FMV was calculated as
the percentage change between the two diameters [36]. This procedure was performed by
professionally trained health personnel at Hospital 12 de Octubre Madrid.

2.7. Determination of Trimethylamine Oxide Levels in Serum

The analysis of trimethylamine oxide levels was carried out using a modified method
by Li et al. (2009) [37] adapted to human serum samples. First, we added 0.4 mL of 7.5%
trichloroacetic acid (TCA) to 0.5 mL serum samples and put it in centrifugation for 15 min
at 6000 rpm and a temperature of 4 ◦C. After the first centrifugation, we collected the
supernatant and added 0.3 mL of 5% TCA. Then, we applied a second centrifugation
for 15 min under the same conditions and collected the supernatant. This process was
repeated a third time, leaving the samples in centrifugation for 15 min but in this case
at 13,000 rpm and a temperature of 4 ◦C. The supernatant of the three extractions was
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collected and pooled to be analyzed by ion exchange chromatography with a conductivity
detector, a mobile phase of 4 mM meta-sulfonic acid, a metrosep C6 column and a flow rate
of 1 mL/min. A standard curve with trimethylamine oxide as the external standard was
previously analyzed at a concentration range between 6.4 to 51.2 µM.

2.8. Determination of Plasmatic Levels of Short-Chain Fatty Acids and Bile Acids

The extraction of the SCFAs was performed using a modified method by Folch et al.
(1957) [38]. First, we added 300 µL of 0.5% phosphoric acid to 400 µL of plasma. Next,
we added 100 µL of 4-methyl valeric acid as the internal standard and centrifuged for
15 min at 12,000 rpm and a temperature of 4 ◦C to facilitate protein precipitation. After
centrifugation, we extracted 750 µL of supernatant which was mixed with 200 µL butanol
and vortexed for 30 s (×3). The supernatants were then placed in a vial with an insert
for gas chromatography with a flame ion detector (GC-FID) analysis according to the
protocol proposed by Zhao et al. (2007) [39]. The separation was carried out using a 100%
polyethylene glycol column, helium as carrier gas and a constant flow rate of 1.5 mL/min
associated. In addition to calculating the different SCFAs and the sum of all of them, we
calculated the fermentation indexes. These indices were: fermentation index A (FIA), which
refers to the fermentation of carbohydrates and is calculated as the difference of acetic acid
minus propionic and butyric acid divided by total SCFA value, and fermentation index
B (FIB), which refers to the fermentation of proteins and is obtained from the sum of the
concentration of iso-butyric and isovaleric acid [40].

For the extraction of the BA in human plasma samples, we conducted a method set
up by our group. We started by adding 300 µL of H2O: ACN 1:1 and 15 µL of CDCA-d4
as the internal standard (10 µg/mL of CDCA-d4 in H2O: MeOH 1:1) to 200 µL of plasma,
then these samples were vortexed at 1300 rpm for 30 s and left at room temperature for
10 min. After this time, the samples were shaken again in the vortex and centrifuged for
5 min at 1300 rpm and a temperature of 4 ◦C (×2). Next, the supernatant was collected
and evaporated under nitrogen atmosphere. The dry extract was reconstituted with 100 µL
of H2O: MeOH 1:1, vortexed and centrifuged for five minutes at 1000 rpm and 4 ◦C. This
last supernatant was analyzed and BA quantified by HPLC-QQQ-MS, employing as the
standard curve a commercial standard of human BA which included Lithocholic acid
(LCA), Chenodeoxycholic acid (CDCA), Deoxycholic acid (DCA), Glyco-deoxycholic acid
(GDCA), Glycolic acid (GCA), Tauro-deoxycholic acid (TDCA), Taurocholic acid (TCA),
Hyo-deoxycholic acid (HDCA), Urso-deoxycholic acid (UDCA), Cholic acid (CA) and
Hyo-cholic acid (HC) at concentrations between 5 to 0.001 µg/mL. The separation was
carried out using a Kinetex XB-C18 100A (Phenomenex Spain, Madrid) as column and
a Phenomenex UHPLC C18 as precolumn, ammonium acetate 2 mM in H2O and ACN:
MeOH (1:1) as mobile phases and a constant flow rate of 1 mL/min at a temperature of
50 ◦C.

2.9. Determination of Other Biochemical Parameters

Total serum protein was determined by the Bradford method using bovine serum
albumin (BSA) as the external standard. The serum samples were diluted 200-fold before
analysis. The absorbance was measured at 595 nm on a Biotek Synergy HT Microplate
Reader (Agilent, Santa Clara, CA, USA). The determination of total polyphenols and
creatinine in urine has been described in a previous publication of our group [7], performing
a standard curve with commercial gallic acid from 300 to 4.7 µg/mL in ultrapure water.
To normalize the data obtained for the polyphenols, we determined the concentrations of
urine creatinine by a colorimetric reaction. Urine samples were diluted 20-fold and 10 µL
pipetted into a 96-well, flat-bottom plate. Next, 200 µL 0.1% picric acid and 15 µL of NaOH
were added. After a 15-min incubation, the plate was read at an absorbance of 500 nm by
using a Biotek Synergy HT Microplate Reader.
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2.10. Statistical Analysis

Statistical analysis was performed with IBM SPSS version 28 software (SPSS, Inc.,
Chicago, IL, USA, 2020). Data were expressed as mean ± standard error (M ± SE). The level
of significance was set at p < 0.05. Boxplot analysis was carried out to detect outliers and
to determine the dispersion and symmetry of the data. The normality of distribution and
homogeneity of variance were evaluated using the Kolmogorov-Smirnov and Levene tests,
respectively. A Kruskal-Wallis test was applied when comparing means of the three diets
at baseline and at the end of the 12-week intervention, and a Wilcoxon test to compare the
results between baseline and after intervention 12 weeks in each diet. Bivariate correlations
were performed, segmented by sex, to test the association between the concentrations of BA,
SCFR and total polyphenols with the different metabolic and cardiovascular biomarkers.
Scatter plots were constructed to graphically represent the relationship between paired
variables. Additionally, the Benjamini-Hochberg procedure was used to correct for the false
discovery rate (FDR). Due to the large number of correlation models run for this analysis,
we selected an FDR of 10%.

3. Results
3.1. Baseline Population Characteristics

The characteristics of our population have been defined in our previous study [7].
Further information about population characteristics is provided in the supplementary
material (Table S3). In short, no significant differences between groups at baseline was
found in age, sex, height, or percentage of smokers. Only 20% of our study population
were considered to be chronic smokers.

3.2. Cardiovascular Parameters

The p-values obtained from the comparison between diets at the baseline is provided
in the supplementary material (Table S5). We found no significant difference between
the groups at baseline in each of the parameters analyzed. Additionally, we found no
significant differences between groups at the end of the intervention in the concentrations
of total serum protein, NO, homocysteine, TMAO and ACE activity corrected by total
protein (Table 1). Between visits, we only observed a statistically significant increase for
FMD values, in the cocoa powder group (p = 0.03) and a decrease in TMAO levels after the
12-week intervention in the C group (p = 0.03) (Figures 2 and 3). We did not find any other
significant change in any of the analyzed parameters between baseline and 12-weeks for
any of the diets.

Table 1. Total protein, ACE, NO, homocysteine and TMAO levels in serum in each group and by visit.

RB C RB+C p-Value
**Baseline 12 w p-Value * Baseline 12 w p-Value * Baseline 12 w p-Value *

Total protein
(mg/mL) 84.88 ± 31.13 86.59 ± 36.06 0.52 94.69 ± 30.13 95.63 ± 31.98 0.97 87.51 ± 29.5 84.61 ± 35.57 0.30 0.49

ACE/total
protein 0.74 ± 0.52 0.78 ± 0.39 0.69 0.90 ± 0.48 0.82 ± 0.37 0.43 0.80 ± 0.56 0.87 ± 0.47 0.23 0.91

NO (µM) 27.91 ± 17.58 27.04 ± 13.86 0.50 22.42 ± 12.26 26.21 ± 17.54 0.28 32.57 ± 17.26 36.44 ± 24.16 0.29 0.40
Homocysteine
(mg/dL) 15.20 ± 3.15 15.16 ± 4.11 0.79 14.11 ± 3.68 14.49 ± 4.06 0.79 15.91 ± 3.42 15.62 ± 3.58 0.66 0.46

TMAO (µM) 9.71 ± 2.26 9.34 ± 2.45 0.52 10.10 ± 3.09 8.72 ± 2.58 0.03 9.97 ± 2.29 10.34 ± 1.91 0.41 0.14
FMD (%) 7.9 ± 5.12 9.14 ± 5.10 b 0.95 9.47 ± 3.2 14.78 ± 0.89 a 0.03 8.89 ± 4.14 10.41 ± 3.75 a,b 0.24 0.04

* Significance within groups, ** significance between groups end of the intervention; a, b, significant differences
between groups; data expressed as mean ± standard deviation (SD); significant difference at p-value < 0.05.
Angiotensin-converting enzyme (ACE), Nitric oxide (NO), trimethylamine N-oxide (TMAO), Flow-mediated
dilation (FMD).
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On the other hand, FMD values were significantly different between the C and RB
groups at the end of the intervention, with higher values observed in the C group. The
results from the blood pressure and heart rate analysis are provided in the supplementary
material (Table S4). Significant increases in heart rate values were observed in the RB
(p > 0.00) and C (p = 0.01) group after the intervention.

3.3. Metabolic Parameters

As with the cardiovascular parameters, we did not find any significant differences
between groups at the start of the study in each of the parameters analyzed (Table S5).
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Table 2 shows the results from the analysis of lipid metabolism biomarkers, glucose, iron
and CPR levels in serum at baseline and at the end of the intervention. There were no
significant differences between any of the groups at the endpoint and between visits for
any of the parameters.

Table 2. Glucose, iron, C-reactive protein and lipid metabolism biomarkers in serum in each group
and by visit.

RB C RB+C p-Value
**Baseline 12 w p-Value * Baseline 12 w p-Value * Baseline 12 w p-Value *

Glucose
(mg/dL) 88.89 ± 14.17 87.89 ± 15.50 0.94 80.79 ± 11.46 80.37 ± 13.1 0.89 83.5 ± 12.39 81.11 ± 13.65 0.34 0.22

Iron (mg/dL) 95.05 ± 28.10 89.55 ± 22.52 0.54 102.37 ± 27.10 100.53 ± 29.46 0.64 91.94 ± 33.74 90.28 ± 33.29 0.78 0.20
TC (mg/dL) 198.88 ± 36.72 208.12 ± 28.17 0.07 197.65 ± 23.23 202.55 ± 32.10 0.27 207.88 ± 28.07 209.94 ± 28.81 0.92 0.76
TG (mg/dL) 103.5 ± 51.48 107.5 ± 48.20 0.82 109.44 ± 42.55 103.22 ± 38.87 0.46 108.18 ± 52.14 121.0.6 ± 49.69 0.38 0.56

HDL-C
(mg/dL) 62.45 ± 15.85 65.0 ± 12.65 0.21 59.50 ± 14.60 60.60 ± 16.41 0.28 62.61 ± 14.08 65.22 ± 14.91 0.72 0.67

TC/ HDL 3.46 ± 0.95 3.47 ± 0.84 0.86 3.53 ± 0.94 3.51 ± 0.79 0.71 3.54 ± 0.88 3.47 ± 0.75 0.41 0.96
CRP (mg/mL) 0.16 ± 0.20 0.17 ± 0.22 0.75 0.22 ± 0.25 0.15 ± 0.15 0.30 0.11 ± 0.13 0.15 ± 0.14 0.75 0.80

* Significance within groups, ** significance between groups at the end of the intervention; data expressed as
mean ± standard deviation (SD); significant difference at p-value < 0.05. Total cholesterol (TC), triglycerides (TG),
C-reactive protein (CRP).

As it can be seen in Table 3, there was a significant reduction in the concentration of crea-
tinine (p = 0.03) and uric acids (p = 0.01) levels in the C group after the 12-week intervention.

Table 3. Creatinine and uric acids levels in serum in each group and by visit.

RB C RB+C
p-Value **

Baseline 12 w p-Value * Baseline 12 w p-Value * Baseline 12 w p-Value *

Creatinine (mg/dL) 0.68 ± 0.12 0.71 ± 0.13 0.17 0.74 ± 0.15 0.7 ± 0.13 0.03 0.7 ± 0.13 0.69 ± 0.12 0.53 0.91
Uric acid (mg/dL) 4.72 ± 1.01 4.7 ± 1.04 0.43 4.91 ± 0.82 4.53 ± 0.77 0.01 4.43 ± 1.16 4.14 ± 0.94 0.05 0.08

* Significance within groups, ** significance between groups at the end of the intervention; data expressed as
mean ± standard deviation (SD); significant difference at p-value < 0.05.

3.4. Polyphenol Levels Corrected by Creatinine

Table 4 depicts the statistical results of the creatinine-corrected polyphenol levels.
There were significant differences between the C and RB+C groups (p = 0.04) at the end of
the 12-week intervention, with the group that had consumed the cocoa product exhibiting
the largest increase in polyphenol levels in comparison with the groups that had consumed
the mixture of red berries and cocoa. When examining the differences within the groups,
we observed a significant increase in polyphenol plasma levels in the C group (p = 0.03),
while the in the case of the RB group the increase in total polyphenols remained close to
significance (p = 0.06).

Table 4. Polyphenol levels corrected by creatinine in each group and by visit.

RB C RB+C p-Value
**Baseline 12 w p-Value * Baseline 12 w p-Value * Baseline 12 w p-Value *

polyphenol/
creatinine
(mg/mL)

120.16 ± 55.53 151.9 ± 62.30 a,b 0.06 158.78 ± 60.49 199.7 ± 86.65 a 0.03 119.57 ± 40.65 130.96 ± 64.74 b 0.08 0.04

* Significance within groups, ** significance between groups at the end of the intervention; a, b, significant differ-
ences between groups; data expressed as mean ± standard deviation (SD); significant difference at p-value < 0.05.

3.5. Analysis of Bile Acids

Table 5 shows the mean and standard deviation for the 10 principal BAs found in the
serum samples: CDCA, DCA, GDCA, GCA, TDCA, TCA, Glycokeno-deoxycholic acid
(GCDCA), Glycourso-deoxycholic acid (GUDCA), Tauroquene-deoxycholic acid (TCDCA)
and Glyco-lithocholic acid (GLCA), as well as the sum of the primary bile acids, secondary
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bile acids and bile acid profile totals for each of the volunteers at baseline and at the
end of the 12-week intervention. No significant differences were observed at baseline
between the groups (Table S5), so we can confirm that all groups commenced the study
with similar levels. After the 12-week intervention, we found significant differences only
in the case of CDCA between the RB and C groups, with the group that had consumed
the red berry mixture exhibiting the largest increase in CDCA concentrations in blood. As
for the significant differences within the groups, we only found statistically significant
differences in DCA in the RB group, where concentrations of this BA increased after the
intervention with the red berry mixture, and a nearly significant difference in CDCA also
in the RB group, with an appreciable increase after the intervention.

Table 5. Bile acids and sum of primary, secondary and total bile acids concentrations in ng/mL by
each group and by visit.

RB C RB+C p-Value
**Baseline 12 w p-Value * Baseline 12 w p-Value * Baseline 12 w p-Value *

CDCA 83.11 ± 68.06 220.81± 219.66 a 0.08 97.58 ± 85.64 66.41 ± 82.74 b 0.19 79.62 ± 124.37 108.24 ± 91.76 a,b 0.17 0.03
DCA 116.74 ± 79.98 249.98 ± 193.48 0.03 172.88 ± 95.94 121.47 ± 75.16 0.16 125.86 ± 120.74 157.54 ± 124.72 0.40 0.11

GDCA 184.78 ± 178.87 260.22 ± 231.51 0.19 230.21 ± 186.72 153.71 ± 156.95 0.17 162.77 ± 135.01 171.93 ± 106.43 0.63 0.15
GCA 60.09 ± 37.95 71.05 ± 56.67 0.94 57.05 ± 40.78 61.16 ± 57.69 0.89 66.84 ± 63.81 87.97 ± 58.74 0.28 0.26

TDCA 28.89 ± 25.41 29.12 ± 19.51 0.74 25.69 ± 16.1 25.82 ± 24.64 0.65 17.02 ± 9.59 16.73 ± 10.78 1.00 0.27
TCA 16.29 ± 12.8 19.73 ± 14.05 0.55 13.64 ± 7.22 15.15 ± 7.12 0.72 10.09 ± 2.91 13.90 ± 6.72 0.22 0.74

GCDCA 295.89 ± 197.57 489.93 ± 388.54 0.06 410.84 ± 241.78 328.83 ± 243.8 0.42 347.41 ± 277.51 327.60 ± 227.09 0.89 0.20
GUDCA 26.04 ± 15.27 39.40 ± 33.44 0.29 45.46 ± 36.73 29.76 ± 19.87 0.29 32.63 ± 27.15 29.04 ± 17.48 0.67 0.74
TCDCA 52.50 ± 40.96 72.13 ± 69.25 0.65 40.69 ± 31.65 54.75 ± 44.07 0.54 28.40 ± 16.55 29.93 ± 17.84 0.82 0.16
GLCA 37.28 ± 39.4 39.34 ± 44.52 0.71 26.93 ± 16.55 24.31 ± 21.42 0.35 33.07 ± 28.68 24.54 ± 17.13 1.00 0.34

Total BA 979.13 ± 463.5 979.67 ± 472.94 0.74 1313.95 ± 466.84 1079.89 ± 505.95 0.38 953.84 ± 650.29 1045.18 ± 476.36 0.46 0.83
Primary 521.27 ± 242.13 791.44 ± 602.53 0.32 655.36 ± 297.03 591.30 ± 318.21 0.85 512.03 ± 362.07 618.76 ± 295.03 0.21 0.87
Secondary 400.66 ± 254.56 411.46 ± 230.52 0.68 569.47 ± 209.81 430.77 ± 241.53 0.36 422.52 ± 278.55 418.03 ± 215.11 0.82 0.98

* Significance within groups, ** significance between groups at the end of the intervention, a, b, significant differ-
ences between groups; data expressed as mean ± standard deviation (SD); significant difference at p-value < 0.05.
Chenodeoxycholic acid (CDCA), Deoxycholic acid (DCA), Glyco-deoxycholic acid (GDCA), Glycolic acid (GCA),
Tauro-deoxycholic acid (TDCA), Taurocholic acid (TCA), Glycokeno-deoxycholic acid (GCDCA), Glycourso-
deoxycholic acid (GUDCA), Tauroquene-deoxycholic acid (TCDCA), Glyco-lithocholic acid (GLCA).

3.6. Analysis of Short-Chain Fatty Acids

Table 6 shows the means and standard deviations of the SCFAs analyzed by GC-FID
normalized to the serum protein levels obtained in the same sample: acetic (ACE), propionic
(PRO), iso-butyric (ISOB), butyric (BUT), isovaleric (ISOV), valeric (VAL), caproic (CAP)
and heptanoic acids (HEP), as well as the sum of all of them and the FIA and FIB. As with
the BA analysis, we did not find any significant differences at baseline between the groups
(Table S5), so we assumed that the three groups started the study with similar levels.

Table 6. Short chain fatty acids concentrations, sum and fermentation index in ng/mL by each group
and by visit.

RB C RB+C
p-Value **

Baseline 12 w p-Value * Baseline 12 w p-Value * Baseline 12 w p-Value *

ACE 0.40 ± 0.13 0.52 ± 0.1 0.06 0.43 ± 0.12 0.52 ± 0.19 0.12 0.41 ± 0.17 0.53 ± 0.24 0.14 0.78
PRO 0.02 ± 0.01 0.03 ± 0.01 0.28 0.03 ± 0.01 0.03 ± 0.01 0.60 0.03 ± 0.01 0.03 ± 0.01 0.27 0.38
ISOB 0.01 ± 0.00 0.01 ± 0.00 0.09 0.01 ± 0.00 0.01 ± 0.00 0.45 0.01 ± 0.00 0.01 ± 0.00 0.24 0.85
BUT 0.03 ± 0.01 0.03 ± 0.01 0.71 0.03 ± 0.01 0.03 ± 0.01 0.06 0.03 ± 0.01 0.03 ± 0.01 0.97 0.39
ISOV 0.01 ± 0.00 0.01 ± 0.00 a,b 0.42 0.01 ± 0.00 0.01 ± 0.00 a 0.41 0.01 ± 0.00 0.01 ± 0.00 b 0.34 0.00
VAL 0.002 ± 0.008 0.001 ± 0.001 0.21 0.002 ± 0.007 0.002 ± 0.001 0.48 0.002 ± 0.001 0.002 ± 0.001 1.00 0.53
CAP 0.01 ± 0.00 0.01 ± 0.00 a 0.13 0.01 ± 0.00 0.01 ± 0.00 a,b 0.62 0.01 ± 0.00 0.01 ± 0.00 b 0.44 0.03
HEP 0.01 ± 0.00 0.00 ± 0.00 0.32 0.01 ± 0.00 0.01 ± 0.00 0.37 0.01 ± 0.00 0.00 ± 0.00 0.66 0.48

Total SCFA 0.48 ± 0.15 0.61 ± 0.11 0.06 0.52 ± 0.13 0.60 ± 0.21 0.16 0.48 ± 0.18 0.60 ± 0.25 0.22 0.79
FIA 0.01 ± 0.00 0.01 ± 0.00 0.04 0.01 ± 0.00 0.01 ± 0.00 0.04 0.01 ± 0.00 0.01 ± 0.00 0.33 0.38
FIB 0.01 ± 0.00 0.01 ± 0.00 0.46 0.02 ± 0.00 0.02 ± 0.00 0.86 0.01 ± 0.00 0.01 ± 0.00 1.00 0.85

* Significance within groups, ** significance between groups at the end of the intervention, a, b significant differ-
ences between groups, data expressed as mean ± standard deviation (SD); significant difference at p-value < 0.05.
Acetic (ACE), propionic (PRO), iso-butyric (ISOB), butyric (BUT), isovaleric (ISOV), valeric (VAL), caproic (CAP),
heptanoic (HEP), fermentation index A (FIA), fermentation index B (FIAB).
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We only observed statistically significant changes between groups at the end of the
intervention for ISOV, with a significantly higher concentration in group C compared with
group RB+C, and for CAP, with a significantly higher concentration in group RB compared
with group RB+C. There was a slight increase in all SCFAs after the intervention with
the food products, except in the case of BUT in the C and RB+C groups. However, there
was only a significant increase in FIA ratio in the RB and C groups (p = 0.04 and p = 0.04,
respectively) (Figure 4), with a nearly significant increase in ACE and total SCFAs in the
group that had consumed red berry anthocyanins (p = 0.06 and p = 0.06, respectively).
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3.7. Correlations between Polyphenol Levels, Bile Acids, Short-Chain Fatty Acids and
Cardiovascular Biomarkers

Tables 7–9 show the main results obtained after analyzing the correlations between
the different biochemical parameters related to cardiovascular health, SCFA and BA con-
centrations with polyphenol levels corrected by creatinine at the end of the intervention
and divided by sex. Only a negative correlation between polyphenol levels and TMAO
concentrations (p = 0.02) was found, resulting in high polyphenol levels being associated
with lower TMAO levels.

Additionally, we analyzed the correlations between concentrations of SCFA and bio-
chemical parameters of cardiovascular health. In men, we found positive correlations
between TMAO and HEP concentrations (R = 0.61, p = 0.04), and between FMD values
and CAP (R = 0.72, p = 0.045) concentrations, with a negative correlation found between
NO and CAP (R = −0.54, p = 0.046). In women, we found positive correlations between
ACE/total protein and VAL concentrations (R = 0.47, p = 0.01); ISOV and TC (R = −0.42,
p = 0.03) and HDL (R = −0.49, p = 0.00); iron concentrations and FIA (R = 0.46, p = 0.01);
and between FMD values and ISOV concentrations (R = 0.77, p = 0.02), with negative corre-
lations found between FIA and TC/HDL (R = −0.49, p = 0.01), SBP (R = −0.45, p = 0.01)
and DBP (R = −0.48, p = 0.01), and between FIB and SBP (R = −0.39, p = 0.04) and DBP
(R = −0.39, p = 0.04).
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Table 7. Sex-segmented bivariate correlations between biochemical parameters and polyphenol levels
corrected by creatinine.

Polyphenols Levels

Men Women
R p-Value R p-Value

ACE/total protein 0.34 0.27 0.12 0.50
NO (µM) −0.36 0.19 −0.17 0.32
Homocysteine (mg/dL) −0.04 0.88 −0.11 0.52
TMAO (µM) −0.36 0.23 −0.57 0.00
Systolic pressure (mmHg) 0.19 0.51 0.18 0.29
Diastolic pressure (mmHg) 0.37 0.17 0.26 0.11
Heart rate (bpm) 0.32 0.25 −0.16 0.93
FMD (%) 0.14 0.75 −0.12 0.69
Glucose (mg/dL) −0.06 0.85 0.10 0.56
Iron (mg/dL) −0.09 0.75 0.2 0.24
TC (mg/dL) −0.22 0.45 0.19 0.29
TG (mg/dL) −0.15 0.61 −0.25 0.15
HDL-C (mg/dL) −0.21 0.46 0.29 0.07
TC/ HDL −0.00 0.99 −0.16 0.35
CRP (mg/mL) 0.35 0.22 −0.01 0.95
Creatinine (mg/dL) 0.14 0.62 −0.28 0.09
Uric acid (mg/dL) 0.1 0.73 0.07 0.68

Significant difference at p-value < 0.05. Angiotensin-converting enzyme (ACE), Nitric oxide (NO), trimethy-
lamine N-oxide (TMAO), flow-mediated dilation (FMD), Total cholesterol (TC), triglycerides (TG), C-reactive
protein (CPR).

Table 8. Sex-segmented bivariate correlations between short chain fatty acids concentrations in
ng/mL and polyphenol levels corrected by creatinine.

Polyphenols Levels

Men Women
R p-Value R p-Value

ACE 0.36 0.25 0.19 0.93
PRO −0.04 0.90 −0.05 0.79
ISOB −0.09 0.77 −0.16 0.44
BUT 0.55 0.05 −0.20 0.31
ISOV −0.10 0.75 0.08 0.68
VAL 0.178 0.56 0.09 0.65
CAP 0.36 0.23 0.18 0.37
HEP 0.11 0.73 0.08 0.68

Total SCFA 0.38 0.22 0.00 0.99
FIA 0.01 0.98 0.07 0.72
FIB −0.16 0.63 −0.07 0.74

Significant difference at p-value < 0.05. Acetic (ACE), propionic (PRO), iso-butyric (ISOB), butyric (BUT), isovaleric
(ISOV), valeric (VAL), caproic (CAP), heptanoic (HEP), fermentation index A (FIA), fermentation index B (FIB).

The correlations between BA and biochemical parameters of cardiovascular health
were also analyzed. In this case, we found positive correlations in men between glucose
concentrations and CDCA (R = 0.61, p = 0.04), DCA (R = 0.36, p = 0.045) and GDCA (R = 0.69,
p = 0.03); between creatinine concentrations and DCA (R = 0.57, p = 0.03); TG and GDCA
(R = 0.61, p = 0.03), TCA (R = 0.76, p = 0.01), TCDCA (R = 0.68, p = 0.02) and GLCA (R = 0.6,
p = 0.04); SBP and total BA (R = 0.76, p = 0.03) and secondary BA (R = 0.69, p = 0.04); DBP
and secondary BA (R = 0.741, p = 0.022); and between HR and secondary BA (R = 0.73,
p = 0.03); with a negative correlation between iron concentrations in serum and TCDCA
(R = −0.57, p = 0.04). In women, we found positive correlations between TC and TCDCA
(R = 0.43, p = 0.02), with negative correlations between DBP and GDCA (R = −0.43, p = 0.01),
primary (R = −0.45, p = 0.04) and secondary BA (R = −0.56, p = 0.04). These findings were
consistently significant after Benjamini-Hochberg correction.



Nutrients 2023, 15, 2299 13 of 22

Table 9. Sex-segmented bivariate correlations between bile acids concentrations in ng/mL and
polyphenol levels corrected by creatinine.

Polyphenols Levels

Men Women
R p-Value R p-Value

CDCA 0.062 0.85 −0.289 0.12
DCA 0.215 0.48 −0.161 0.38

GDCA −0.119 0.71 −0.281 0.11
GCA −0.179 0.58 −0.319 0.08

TDCA 0.541 0.17 0.057 0.77
TCA −0.054 0.88 0.047 0.82

GCDCA −0.197 0.54 −0.056 0.76
GUDCA −0.356 0.26 −0.228 0.24
TCDCA −0.166 0.61 0.19 0.32
GLCA −0.267 0.40 −0.7 0.72

Total BA 0.126 0.79 −0.068 0.81
Primary −0.214 0.58 −0.153 0.52

Secondary 0.39 0.34 −0.267 0.27
Significant difference at p-value < 0.05. Chenodeoxycholic acid (CDCA), Deoxycholic acid (DCA), Glyco-
deoxycholic acid (GDCA), Glycolic acid (GCA), Tauro-deoxycholic acid (TDCA), Taurocholic acid (TCA),
Glycokeno-deoxycholic acid (GCDCA), Glycourso-deoxycholic acid (GUDCA), Tauroquene-deoxycholic acid
(TCDCA), Glyco-lithocholic acid (GLCA).

4. Discussion

Scientific evidence suggests that both flavanols [11–18] and anthocyanins [19–24]
have cardioprotective properties. Flavonoids in general present important antioxidant
and chelating properties, inactivating ROS and preventing the oxidation of LDL and
reducing inflammation of the blood vessel wall by the inhibition of the influx of leucocytes.
Flavonoids also decrease the activity of enzymes related to increased ROS production and
oxidative damage, such as xanthine oxidase and NADPH oxidase, and inflammation, such
as 15-lipoxygenase and COX-2, leading to a reduction in the synthesis of pro-inflammatory
molecules [41]. Beyond their antioxidant and anti-inflammatory effects, flavonoids also
protect the cardiovascular system by regulating other metabolic pathways. Flavonoids
have been shown to suppress the activity of the 3-hydroxy-3-methylglutaryl-coen-zyme
A reductase (HMG-CoA), an enzyme that plays a key role in the synthesis of cholesterol
and whose inhibition leads to lower intracellular cholesterol and increased expression of
LDL receptors. Moreover, flavonoids exhibit some anti-obesity properties, improving the
lipid profile and decreasing insulin resistance [16,20]. Regarding vascular integrity, some
flavonoids have been shown to help seal and reinforce blood vessel walls by enhancing
collagen synthesis [41]. Bearing in mind the predicted increase in the elderly population in
the coming decades and the high prevalence of cardiovascular disease in this population,
it is urgent to find new strategies to combat these pathologies. Therefore, this work was
aimed at assessing the positive and anti-ageing effects on cardiovascular health of chronic
consumption of cocoa flavanols, red berry anthocyanins or a combination of both for
12 weeks. No statistically significant differences were shown between groups regarding
BMI, gender, age, height and percentage of smokers, in our study population, confirming
that the randomization was carried out correctly. Furthermore, we did not observe any
significant differences at the start of the intervention between the three parallel groups in
any of the different cardiovascular and metabolic biomarkers, total polyphenol, and BA
and SCFA concentrations.

In vitro and in vivo studies using both flavanols [42–44] and anthocyanins [45,46]
have shown that these phenolic compounds could inhibit ACE activity by competing with
the substrate for the active site. Some clinical trials have also shown an ACE inhibitory
activity after the consumption of flavanols or anthocyanins [45,47]. With these results in
mind, we expected that the ingestion of a combination of cocoa flavanols and red berry
anthocyanins could enhance this inhibitory effect, and thus be a more effective treatment
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against hypertension or other cardiovascular diseases. However, at the end of the 12-week
intervention, we did not find an improvement in ACE activity corrected by total protein
with any of the different food products and with only a slight decrease in the C group.
These results could be due to the low dose of flavanols (9.59 mg/day) and anthocyanins
(13.9 mg/day) given to the volunteers. The dose might have been insufficient to reach the
concentrations necessary to produce a significant effect on ACE activity, as the in vitro study
conducted by Actis-Goretta et al. on rat kidney tissue stated that the inhibition of ACE
activity was dependent on the flavanol content of chocolate, as high-procyanidin chocolate
(2.22 mM of flavanols) statistically reduced the ACE activity more significantly than low-
procyanidin chocolate (1.1 mM of flavanols) [42]. For example, in an acute clinical trial
conducted by Persson et al. (2011) on 16 healthy subjects, a significant inhibition of ACE
activity was observed three hours after the intake of 75 g of dark chocolate (72% cocoa) [44].
In the case of anthocyanins, a double-blind, controlled randomized clinical study on
78 newly diagnosed but untreated mild to moderate hypertensive subjects conducted by
Nwachukwu et al. (2015) observed a significant decreased in ACE activity compared with
the placebo after the ingestion for four weeks of 150 mg/kg/day of an aqueous extract of
Hibiscus sabdariffa rich in anthocyanins [47].

Homocysteine levels remained unchanged after the intervention with the different
food products. To the best of our knowledge, very few clinical trials have examined the
effects of flavanols and anthocyanins on homocysteine levels, without showing significant
changes. A noteworthy study is that carried out by Grassi et al. (2008) on 19 subjects
with hypertension and impaired glucose tolerance [48]. In this randomized, cross-over
clinical trial, the consumption of 100 g/d of flavanol-rich dark chocolate (1008 mg/d of total
phenols) for 15 days decreased insulin resistance, SBP, DBP and serum levels of TC and
LDL-C, and increased insulin sensitivity, β-cell function and FMD levels compared with a
flavanol-free white chocolate. However, the levels of homocysteine remained unchanged
after the intervention with the two chocolates [49], in agreement with the results obtained
in our work using a lower dose of flavanols over a longer intervention period and in a
healthy population. In relation to anthocyanins and their effects on homocysteine levels, a
randomized clinical trial carried out by Duthie et al. (2006) on 20 healthy female volunteers,
the supplementation with 750 mL/day of cranberry juice (850 mg/day of total phenols)
failed to significantly reduce serum levels of this metabolite after two weeks [49]. These
data suggest that neither anthocyanins nor flavanols affected homocysteine metabolism
and that the doses implemented were not enough to reach the concentrations necessary to
produce a significant effect.

In addition, NO showed no significant changes with any of the different food products,
with only a slight increase in the C and RB+C groups after the intervention. There is some
scientific evidence in humans that supports the increase of NO levels in serum after acute
consumption of cocoa flavanols in healthy subjects [50–52]. However, there is some con-
flicting data in this regard, as the study of Persson et al. (2011) did not observe significant
changes in NO concentrations in serum after the consumption of 75 g of dark chocolate [44].
Long-term studies have also shown no significant changes in NO concentrations after the
consumption of flavanol-rich foods [52,53]. In a recent randomized clinical trial conducted
by Hollands et al. (2018), 42 healthy subjects were given a single dose of an apple flavanol
extract (70 mg monomeric flavanols), a double dose of this extract (140 mg monomeric
flavanols), an apple procyanidins extract (6.5 mg monomeric flavanols), or placebo capsules
once daily for four weeks, after which the concentrations of NO did not exhibit significant
changes compared with the placebo [53]. In the case of anthocyanins, we found more
contradictions, as in vivo studies with rats have shown attenuate endothelial dysfunction
through an increase in NO synthesis [54]. However, clinical trials with anthocyanin-rich
foods have failed to show an increase in NO concentrations in blood, especially in sub-
jects with an increased risk of CVD. For example, in a randomized, open label, two-arm,
cross-over clinical trial carried out by Hollands et al. (2018) on 41 overweight subjects, the
administration of 500 mL/day of blood orange juice, providing 50 mg of anthocyanins per
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day, for 28 days did not show an improvement in cardiovascular biomarkers, including
NO, TC, HDL-C, LDL-C, TG, glucose, CRP, aortic SBP and DBP or carotid-femoral and
brachial-ankle pulse compared with a standard orange juice without anthocyanins [55].
Another noteworthy study is the randomized, double-blind and parallel clinical trial con-
ducted by Curtis et al. (2019) on 115 subjects with metabolic syndrome who consumed
150 g or 75 g of fresh blueberries rich in anthocyanins (364 mg and 182 mg of anthocyanin,
respectively), or a placebo for six months. After the intervention, they observed an im-
provement in endothelial function, FMD, systemic arterial stiffness and an increase in cyclic
guanosine monophosphate with the ingestion of 150 g fresh blueberries, compared with
the placebo. However, insulin resistance, pulse wave velocity, blood pressure and NO
remained unchanged after the three interventions [56]. Knowing that other flavonoids,
such as hesperidin, have exhibited some stimulating effects on NO synthesis in vitro with
an improvement in endothelial function [41], this suggested that both anthocyanins and
flavanols could improve endothelial function by increasing underlying NO bioactivity
and maintaining healthy concentrations of NO in blood. This theory is reinforced by the
conclusions reached in the work of Curtis et al., as increasing circulating levels of cyclic
guanosine monophosphate reflect the activity of soluble guanylate cyclase in vascular
smooth muscle, which is stimulated by endothelial NO [56].

TMAO is a well-known gut microbiota-dependent metabolite with pro-atherogenic ef-
fects, enhancing the development of atherosclerosis in animal models and is associated with
increased CVD risk in humans [26]. As a product of the gastrointestinal tract metabolism
of dietary nutrients, such as choline, changes in the dietary pattern could influence TMAO
production, and thus reduce blood vessel damage and CVD risk. Scientific evidence in this
subject also shows that some bioactive compounds present in diet, such as dietary fiber
and resveratrol, reduce TMAO levels and atherosclerotic plaque formation induced by
TMAO [57]. In our work, we observed a significant reduction in TMAO levels in blood after
the 12-week intervention with 2.5 g/day of cocoa product, which constitutes an intake of
9.59 mg/day of flavanols. In vivo studies with mice have demonstrated that food sources
of catechin, such as oolong tea and citrus peel, reduce hepatic FMO3 expression, and thus
reduce TMAO levels [58]. As far as we know, this is the first study that demonstrates that
long-term intake of flavanol-rich cocoa significantly reduces TMAO levels in humans. In a
short-term crossover clinical trial carried out by Angieletta et al. (2018) on 20 obese adults,
the supplementation with 28 g of cocoa powder (30 mg/day of flavanols) and 1.2 g of green
tea for five days did not cause significant changes in TMAO levels and TMA precursors
(choline, carnitine and betaine) [59]. This difference in results could be due to the difference
in intervention time (12 weeks vs. 5 days). In this sense, our hypothesis was that cocoa
flavanols reduce TMAO production through gut microbiota modulation, and therefore five
days could be too short to produce significant changes in gut microbiota metabolism. This
decrease in TMAO levels after the intervention with cocoa powder seems reasonable if
we consider that it was the treatment exhibiting the largest increase in polyphenol levels
corrected by creatinine at the end of the intervention. Additionally, we found a significant
negative correlation in women between TMAO blood levels and polyphenol levels cor-
rected by creatinine, and such higher polyphenol levels were associated with lower levels
of TMAO at the end of the intervention. The lack of statistical signification in men could
be due to the difference between the number of male and female volunteers (17 vs. 42,
respectively), but also to sex-related differences in polyphenol metabolism and distribution,
as a study in rats found that female rats showed twice the amount of flavanol metabolites
in plasma than male rats [60].

Along with the study of metabolites related to cardiovascular health, we also per-
formed an analysis of vascular function by FMD and blood pressure values. FMD values at
the start of the intervention were between 8 and 9% and are considered healthy for this
population group, as values over 6.5% protect against CVD [61]. After the intervention, we
observed an increase in FMD values only in the C group. This increase could be associated
with the significant reduction in TMAO and the increase in polyphenol levels. However,
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we did not find a correlation between FMD values and these two parameters at the end of
the intervention. This increase in FMD values occurred without significant changes in NO
concentration and ACE activity, although we could observe a slight increase in NO with
coco powder. These results are consistent with the current scientific evidence, as it has been
observed that flavanol intake can prevent endothelium dysfunction and help maintain
healthy blood pressure levels [16–18,48,62]. For example, when hypertensive volunteers
consumed 100 g/d of flavanol-rich dark chocolate (1008 mg/d of total phenols) for 15
days, FMD values and insulin sensitivity increased, and SBP, DBP, TC and LDL-C levels
decreased compared with a flavanol-free white chocolate [48]. Similar results were obtained
in healthy volunteers, in a randomized, controlled, double-masked, parallel-group clinical
trial conducted by Heiss et al. (2015) on 22 young (<35 years) and 20 elderly (50–80 years)
males. The intake of a high flavanol cocoa extract (450 mg of flavanols) twice a day for
two weeks significantly improved FMD values and decreased DBP in both population
groups and decreased SBP only in the elderly volunteers [62]. Anthocyanins have also been
proven to be effective against endothelium dysfunction [20,21,24,55,56,63]. However, the
red berry mixture and the combination of both produced no changes in FMD values. As
stated above, our results could be influenced by the low dose of flavanols and anthocyanins
that might not be high enough to reach clinical significance. Consumption of 364 mg of
anthocyanin from fresh blueberries has been proven to statistically increase FMD, HDL-C
and Apolipoprotein A1 values in patients with metabolic syndrome, but not SBP and
DBP [56]. In healthy subjects, a randomized, double-blind, placebo-controlled clinical trial
conducted by Novotny et al. (2015) demonstrated that the consumption of 240 mL of a
low-calorie cranberry juice (173 mg total phenols) twice a day for eight weeks significantly
reduced DBP, TG, CRP and fasting plasma glucose, but not SBP [63].

SBP, DBP, TC, TG, HDL-C, TC/HDL, glucose, CRP and iron remained unchanged
with all the food products and around the values established as healthy by the medical
community. Remarkably, the creatinine and uric acid concentrations significantly decreased
in the C group after the intervention. These results are coherent with previous studies with
Camellia sinensis flavanols, which have a proven uric acid lowering effect through the
modulation of both xanthine oxidase and urate excretion [64]. Unexpectedly, we observed
an increase in HR at the end of the intervention in the RB and C groups. Methylxanthines,
such as theobromine present in chocolate, have been described in the literature to increase
HR in healthy subjects [65]. However, we did not find any study in the literature that had
observed an increase in HR after a supplementation with anthocyanins. Given that HR can
be easily altered by external factors, that the values after the intervention remained in the
normal, healthy range and that no other cardiovascular parameters showed any significant
changes, we did not consider this increase clinically relevant.

Both SBAs and SCFAs are products of the microbiota metabolism [25], and therefore
changes in its composition and function may produce changes in the concentrations of
these biliary acids. Flavanols [29] and anthocyanins [30] have been shown to modify gut
microbiota composition and possibly to be associated with changes in SCFA and SBA
concentrations in blood. In our trial, DCA concentrations significantly increased after the
12-week intervention with the red berry product. DCA is a bile acid derived from cholic
acid by microbiota transformation and studies suggest that it is associated with numerous
detrimental effects, such as inflammation, immune dysregulation, dyslipidemia, decreased
insulin sensitivity and vascular calcification. A recent prospective observational cohort
study on 3147 subjects with chronic renal insufficiency found that high levels of DCA in
serum were associated with a higher risk of end-stage kidney disease and all-cause mortality
but not with atherosclerosis and heart failure [66]. We also observed a positive correlation
between DCA and glucose and creatinine concentrations, thus indicating that DCA could
affect the body metabolism in a negative way. In fact, most of the correlations found
between bile acids and cardiovascular parameters show a negative effect of increasing
concentrations of these metabolites on cardiovascular health, as previously described [32].
To our knowledge, this is the first study on humans that has tried to find an association
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between the regular intake of food products rich in flavanols and/or anthocyanins and
changes in BA and SCFA serum concentrations. However, in vivo studies with mice
observed that the intake of flavonoid-rich foods, such as cranberries [67] and Pu-erh
tea [68], promoted fecal excretion of cholic acid and DCA and reduced the serum amount of
these two BAs by targeting the regulation of intestinal microorganisms. The lack of results
in our work could be due to external factors, such as dietary habits, age, as DCA tend to
be increased in older individuals [67], or sex, as it has been shown that, in mice, aging
increases hepatic and colonic DCA, especially in males [69]. In the case of the SCFAs, we
observed that at the end of the intervention, all metabolites, except BUT in the C and RB+G
groups, tended to increase. However, we only found a significant increase in the FIA after
the intervention with the red berry anthocyanins and the cocoa flavanols. This indicates
an increase in carbohydrate fermentation, and therefore a higher synthesis of SCFAs by
the gut microbiota, thus explaining the observed increase in SCFAs with the two food
products. SCFAs are a crucial compound in the interaction between the gut microbiota and
host metabolism by regulating a vast variety of biological processes, such as adipogenesis,
energy metabolism, appetite control, intestinal cellular homeostasis, gut motility, glucose
metabolism, inflammation, and central and sympathetic nervous system function. One
way in which SCFAs could improve cardiovascular health is by protecting against obesity
by increasing energy expenditure, anorexic hormone production and improving appetite
regulation [70]. Studies that examine the direct actions of SCFAs on the cardiovascular
system are scarce, but a recent study found that a high abundance of butyrate-producing
bacteria, such as Lachnospiraceae, Ruminococcaceae and Acidaminococcaceae families,
is associated with lower blood pressure in pregnant women with obesity [71]. In fact, we
found a negative correlation in women between the FIA value and DBP and TC/HDL ratio,
thus indicating that high levels of carbohydrate fermentation are associated with lower
blood pressure levels and a better lipid profile, reinforcing the statement that SCFAs protect
against CVD.

One of the main objectives of the present trial was to evaluate the efficiency of a mixture
of red berry anthocyanins and cocoa flavanols in enhancing the positive effects of these two
polyphenol groups on the cardiovascular system. In a previous paper by our team [7], we
demonstrated that the regular intake of red berries, cocoa and a mixture of both improved
executive functions. We detected a reduction in the time needed to start and finish the
Tower of London test in all groups, but the decrease in time to finish the neurocognitive task
was more pronounced in the intervention with the RB+C group. Furthermore, the RB+C
group showed an improvement in the Verbal Learning Test Spain-Complutense (TAVEC)
and in perceptual speed, accuracy and speed in processing punctuation in total. These
improvements were independent of changes in the concentrations of the brain-derived
neurotrophic factor (BDNF) and nerve growth factor receptor (NGF-R). Considering the
results obtained in the present work, the improvement in executive function could be
explained by the enhancement in cardiovascular function after a regular intake of red berry
anthocyanins and cocoa flavanols, as it has been previously described that one of the ways
that polyphenols maintain a healthy cognitive function is by increasing cerebral blood
flow [72]. However, neither of the cardiovascular biomarkers studied showed a statistically
significant change after the regular intake of the mixture food product. An explanation
for this lack of effect may be an unknown antagonistic interaction between red berry
anthocyanins and cocoa flavanols, as it has been observed in vitro that dimeric structures
containing both anthocyanins and flavanols can cross the intestinal barrier but with lower
efficiency than the isolated compounds [73]. Furthermore, it is important to take into
account that SCFAs have their own neuroprotective properties and could prevent cognitive
impairment, as they can cross the blood–brain barrier via monocarboxylate transporters
and improve neuronal homeostasis and function. They have been shown to act at this
level by promoting neurogenesis, increasing the concentrations of neurotrophic factors and
serotonin synthesis, reducing neuroinflammation by affecting glial cell morphology and
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function and maintaining the integrity of the blood–brain barrier by increasing expression
of tight junction proteins [74].

Therefore, our study showed that both red berry anthocyanins and cocoa flavanols
could modulate the gut microbiota metabolism in a positive way, and as a result have a
protective effect on cardiovascular health in healthy adults. The intervention with cocoa
flavanols showed better results, significantly lowering the levels of TMAO and uric acid
and increasing FMD values. Additionally, we found a negative correlation between TMAO
concentrations and polyphenol levels in blood, showing that individuals in whom higher
concentrations of polyphenols were found after the intervention presented lower levels
of TMAO. However, it should be noted that our study had some important limitations,
including that the number of subjects was slightly low considering that it was a parallel
study and that there was no control group included. This lack of control group was due
to the difficulty in finding a food product that could serve as a placebo for cocoa and
red berries. It is also important to mention that we did not perform a direct analysis of
the microbiome but an analysis of the metabolites derived from the gut microbiota as
markers of possible changes in its composition. Future works might consider expanding
the intervention time in order to clarify the effects of both compounds on SCFAs, SBAs and
other cardiovascular parameters, such as ACE activity and NO concentrations. Moreover,
an in-depth study of gut microbiota regulation is needed. In this sense, further studies
should be carried out to better understand how the regular intake of anthocyanins and
flavanols modulate the gut microbiota composition.

5. Conclusions

Regular intake of cocoa flavanols improves cardiovascular health by reducing TMAO
and uric acid levels and increasing FMD values, additionally showing a direct association
with polyphenol levels in serum. Concentrations of TMAO negatively correlated with
polyphenol levels at the end of the intervention. Both cocoa flavanols and red berry
anthocyanins improve gut microbiota metabolism by increasing carbohydrate fermentation,
and therefore increase the synthesis of SCFAs. This increase in microbiota fermentation
correlated negatively with SBP, DBP and TC/HDL ratio. A slight increase in SCFAs was
observed with the three products at the end of the intervention but without arriving at
statistical significance. Overall, increasing polyphenol rich foods in the diet might constitute
a good strategy to prevent or postpone the cardiovascular morbidity associated with ageing.
Further placebo controlled studies are needed to better understand the mechanisms implied
in the potential cardiovascular protective and prebiotic effects of cocoa flavanols and red
berry anthocyanins.
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