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A B S T R A C T   

Accurately estimating annual average daily traffic (AADT) on minor roads is essential for assessing traffic-related 
air pollution (TRAP) exposure, particularly in areas where most people live. Our study assessed the direct and 
indirect external validity of three methods used to estimate AADT on minor roads in Melbourne, Australia. 

We estimated the minor road AADT using a fixed-value approach (assuming 600 vehicles/day) and linear and 
negative binomial (NB) models. The models were generated using road type, road importance index, AADT and 
distance of the nearest major road, population density, workplace density, and weighted road density. External 
measurements of traffic counts, as well as black carbon (BC) and ultrafine particles (UFP), were conducted at 201 
sites for direct and indirect validation, respectively. Statistical tests included Akaike information criterion (AIC) 
to compare models’ performance, the concordance correlation coefficient (CCC) for direct validation, and 
Spearman’s correlation coefficient for indirect validation. Results show that 88.5% of the roads in Melbourne are 
minor, yet only 18.9% have AADT. The performance assessment of minor road models indicated comparable 
performance for both models (AIC of 1,023,686 vs. 1,058,502). In the direct validation with external traffic 
measurements, there was no difference between the three methods for overall minor roads. However, for minor 
roads within residential areas, CCC (95% confidence interval [CI]) values were − 0.001 (− 0.17; 0.18), 0.47 (0.32; 
0.60), and 0.29 (0.18; 0.39) for the fixed-value approach, the linear model, and the NB model, respectively. In 
the indirect validation, we found differences only on UFP where the Spearman’s correlation (95% CI) for both 
models and fixed-value approach were 0.50 (0.37; 0.62) and 0.34 (0.19; 0.48), respectively. In conclusion, our 
linear model outperformed the fixed-value approach when compared against traffic and TRAP measurements. 
The methodology followed in this study is relevant to locations with incomplete minor road AADT data.   

1. Introduction 

Urban air pollution poses a significant public health concern 
worldwide (Cohen et al., 2017). Recent studies reveal that adverse 

health effects persist even at low levels of air pollution (Strak et al., 
2021). Traffic is a major contributor to urban air pollution (Künzli et al., 
2000). Black carbon (BC) and ultrafine particles (UFP) are strong in-
dicators of traffic-related air pollution (TRAP) and can exhibit 
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substantial variations over small geographic areas, penetrate deep into 
the respiratory system and even enter the bloodstream (Saha et al., 
2019; Van den Hove et al., 2020; van Nunen et al., 2017). Geographical 
information has been instrumental in advancing our understanding of 
the health effects of air pollution (Shen et al., 2022; de Hoogh et al., 
2018; Eeftens et al., 2012). However, a significant challenge in accu-
rately predicting the difference between low levels of air pollution is the 
lack of traffic volume data on local roads (hereon called minor roads). 
Minor roads, along which most urban populations live (e.g. London with 
90%), (Morley and Gulliver, 2016; Aldred and Verlinghieri, 2020) 
contribute significantly to human air pollution exposure, yet their traffic 
volume is largely unknown (Apronti et al., 2016; Fu et al., 2017). 
Improving our understanding of minor road traffic volume is crucial to 
enhancing the accuracy of air pollution exposure assessments to 
improve public health outcomes. 

Five papers were identified from the revised literature regarding 
traffic volume on minor roads (Table 1), all of which focused on AADT 
modelling (Morley and Gulliver, 2016; Apronti et al., 2016; Fu et al., 
2017; Zhong and Hanson, 2009; Jung et al., 2017). These studies 
exhibited variations in their geographic settings, encompassing rural, 
urban, or a combination of both settings. They also differed in the 
number of measurement points assessed (ranging from 42 to 4462). 
Additionally, previous studies employed diverse modelling approaches, 
validation protocols, and performance assessment techniques. Among 
these five articles focusing on AADT modelling, two did not conduct 
dedicated analyses for secondary roads (Fu et al., 2017; Jung et al., 
2017). Among the remaining three, two conducted only very limited 
external validations, involving just ten measurements on secondary 
roads or were conducted in highly rural environments, where 60% of the 
roads were unpaved (Apronti et al., 2016; Zhong and Hanson, 2009). 
Notably, none of these studies quantified the impact of modelling AADTs 
for secondary roads on their correlation with traffic-related air 
pollutants. 

Our case study was developed in Melbourne, Australia using BC, 
UFP, and traffic count measurements (201 test sites). Melbourne is 
characterised by an extensive urban sprawl, contrasting with other cities 
with compact urban designs. We conducted a comprehensive approach 
to modelling AADT that considers multiple socio-economic and physical 
attributes that influence AADT variability and BC/UFP levels. The 
models used open-data sources to be easily reproduced in other 
geographical locations. The aims were: 1) to compare existing meth-
odologies for modelling minor road AADT primarily using open source 
and reproducible datasets; 2) to validate externally and directly AADT 
estimates with real-world traffic count measurements, and indirectly 
with BC, and UFP; and 3) to quantify the added value of modelling AADT 
compared to the traditional fixed-value approach. By addressing these 
aims, our study bridges a crucial gap in air pollution exposure model-
ling, signifying a novel and valuable advancement in the field globally. 

2. Methodology 

2.1. Study design 

Using the city of Melbourne as an Australian case study, referred to 
as Melbourne hereon, we generated AADT models for minor roads. We 
compared the modelled estimates of minor road AADT against real- 
world measurements of BC and UFP levels and traffic counts collected 
at 201 sites in Melbourne as detailed in subsection 2.4.2. 

2.2. Study area 

Melbourne is located in south-eastern Australia, has a temperate 
oceanic climate (Clarke et al., 2019), is 2705.4 km2 in size (refer to 
Appendix B) with a population of 4.60 million in 2021 (4.20 million in 
2016) (ABS, 2016a; ABS, 2021). Melbourne’s road network infrastruc-
ture has a total length of 24,227 km. In 2019, the road network carried 

Table 1 
Comparison of previous approaches to model minor road AADT.  

Author Zhong and Hanson Apronti et al. Morley and Gulliver Jung et al. Fu et al. 

Year 2009 2016 2016 2017 2017 
Study Area York County and 

Beresford CCS in New 
Brunswick, Canada 

Wyoming (23 
counties), USA 

UK Incheon City, South 
Korea 

Dublin, Ireland 

Sampled points 42 measurement points 476 measurement 
points (372 points 
modelling) 

4462 measurement points 
(minor roads) 

296 unit sections* 96 measurement points 

Study setting Urban/Rural Rural Urban/Rural Urban Urban 
Road type of 

interest 
Low-class roads/low- 
volume roads (local roads) 

Low volume roads 
(<400 AADT) 

Secondary, tertiary, residential 
and unclassified roads (OSM 
road network) 

Express ways, urban 
express ways, major and 
minor arterials 

Low-class roads/low-volume 
roads (local, secondary, tertiary, 
and residential roads) 

Modelling 
approach 

Travel Demand Model Linear and logistic 
regression 

Poisson regression Regression Kriging Log-linear regression, ordinary 
least squares regression, and 
Artificial Neural Network 

Dependent 
variable 

Traffic volume AADT AADT VKT and AADT AADT 

Modelling 
performance 

NA R2 = 0.64 
Pearson corr = 0.69 
RMSE = 73.4% 

UK: 73.6% variance explained R2 = 0.60 Pearson corr =
0.83–0.93 
MAPE = 28.58% 

Validation External validation 
Traffic count points: 
Highway = 12 
Collector = 18 
Local = 12 

External validation 
9 counties (104 points) 

External validation 
161 sites 

Internal validation 
108 ATR locations and 
292 SPTC locations 

NA 

Performance of 
external 
validation 

Average error: 
Highway = 9% 
Collector = 44% 
Local = 174% 

Scatter plot and 
Pearson correlation =
0.68, 0.61 

Major road: Spearman’s rho =
0.78; R2 = 0.53; 
RMSE = 5767 
Minor roads: Spearman’s rho 
= 0.84; R2 = 0.72; RMSE =
2774 

Average error = 39.05% 
MAE = 8272.21 
MAPE = 39.05 

NA 

AADT = Annual average daily traffic volume; CCS = Census consolidated subdivision; OSM = OpenStreetMap; VKT = vehicle kilometres travelled; R2 = Correlation 
coefficient; RMSE = Root means squared error; MAE = Mean average error; MAPE = Mean absolute percentage error; ATR = Automatic traffic recorders; SPTC = Short 
periodic traffic counts; * Basic unit for analysis over target road; NA = Not Applicable; corr = correlation. 

M. Alvarado-Molina et al.                                                                                                                                                                                                                    



Environmental Pollution 338 (2023) 122657

3

approximately 15.3 million daily trips, of which 11 million (72%) were 
private vehicle trips. (VicGov, 2020). 

2.3. Measurements and databases 

2.3.1. Predictors for minor road AADT regression models 
We used existing information on Melbourne’s road traffic volume, 

road network and its characteristics, and sociodemographic character-
istics of neighbourhoods (or areas) to model minor road AADT (see 
Appendix B). 

We characterised each minor road according to seven attributes: 
road type, place of work density, population density, distance to the 
nearest major road and its AADT, road importance index, and weighted 
road density. 

AADT for Melbourne roads was obtained from Veitch Lister Con-
sulting’s 2018 Zenith model (Veitch Lister Consulting, 2020). The Zenith 
database provided information for all major roads and 18.2% of minor 
roads. The road network and its characteristics, such as road type or the 
presence of tunnels and bridges along a road, were downloaded from 
OpenStreetMap (OSM) for 2018–2020. The ‘road type’ corresponded to 
the OSM road classification. For our models, we used seven out of the 14 
OSM road types: motorway, trunk, primary, secondary, tertiary, resi-
dential and unclassified (Fig. 1). All road links were aggregated to their 
corresponding main road type to simplify the final model (i.e., second-
ary links were categorised as secondary road type). Following a road 
equivalence provided by the UK Department of Transport (Dft), we 
grouped the motorways, trunks, and primary roads as ‘major roads’, and 
secondary, tertiary, residential, and unclassified roads as ‘minor roads’. 
(Morley and Gulliver, 2016). 

The AADT was assigned to Melbourne’s OSM road network using 
stepwise sausage buffers of 1.5 m, 5 m, 15 m, and 30 m along the road 
network. With this procedure, road AADT was assigned to roads within 
each buffer size (considering the road’s geometry and type), starting at 
1.5 m. If the road was successfully assigned an AADT, it was removed 
from the road network. The process was repeated with the remaining 
roads progressively with all buffer sizes until we reached the 30 m 
buffer. Then, we converted the OSM data into a routable network using 
osm2po software (osm2po-core, Pinneberg, Schleswig-Holstein) 

(Moeller). 
Sociodemographic characteristics, such as population and workplace 

densities, were obtained from the Australian Bureau of Statistics (ABS) 
2016 Census of Population and Housing data. We used the statistical 
area 1 (SA1) boundaries which generally correspond to areas with 
200–800 persons and an average of 400 persons. (ABS, 2016b) The roads 
were assigned the density of the SA1 they were located in or the average 
of all SA1s they crossed if they traversed more than one SA1. 

In addition, we calculated a road importance index within the 
network and the surrounding road density weighted by road type, as 
described below and elsewhere (Morley and Gulliver, 2016; Rose et al., 
2009). The road importance index is defined as the total number of times 
a road is traversed when connecting all road segments within an area of 
interest, divided by the total number of road segments that form that 
area. For this purpose, we used the road routing algorithm V.2.2 from 
PostGIS V.3 (Open Geospatial Consortium, Wayland, MA). (Mikiewicz 
et al., 2017; pgRouting; OGC). 

The surrounding road density was weighted by road type to obtain 
the weighted road density (WRD), as named by the authors (Rose et al., 
2009). This method ranks the roads within a 50 m radius with values 
from ‘1’ to ‘3’, according to their road type, and multiplies the length of 
the roads by that value. Finally, the sum is divided by the area. We used 
the ranking ‘3’ for primary roads, highways, and trunk roads, ‘2’ for 
secondary and tertiary roads, and ‘1’ for unclassified and residential 
roads (Rose et al., 2009). 

2.3.2. Validation study 
We directly validated our AADT estimates by measuring traffic 

counts and used BC and UFP particle concentration measurements for 
indirect validation. These real-world measurements were conducted as 
part of a short-term “mobile monitoring campaign” (MMC) from July 
2019 to February 2020 in Melbourne, following the procedures of the 
EXPOsOMICS project (van Nunen et al., 2017). The measured data, was 
not part of the dataset used to generate the minor road models. 

Briefly, the MMC simultaneously measured BC (MicroAethalometer 
AE51, AethLabs, San Francisco, CA, USA) and UFP (DiSCmini V2.0, 
Testo, Lenzkirch, Germany) for 30 min, and traffic counts for 15 min at 
201 fixed monitoring sites. We followed a stratified random sampling 

Fig. 1. Melbourne’s distribution of roads per OpenStreetMap (OSM) type.  

M. Alvarado-Molina et al.                                                                                                                                                                                                                    



Environmental Pollution 338 (2023) 122657

4

procedure by selecting monitoring sites according to their land use (see 
Appendix D), traffic volume, built environment, and dwelling and 
restaurant density. Most of the sites (84%) were >15 m from major 
roads. Two visits per season over three seasons (i.e., winter (July–August 
2019), spring (October–November 2019) and summer (December 
2019–February 2020)) were completed for each site producing a 
comprehensive database of traffic counts, BC and UFP. We took the 
measurements on working days between 9:00–17:00. 

Traffic count data were manually collected with a counter over 15- 
min intervals at the nearest road (either minor or major). All data 
were transformed to AADT using the following conversion (Patrick, 
2019): 

AADT= traffic count × 4 × 12 × NTF 

The constants in the equation transform 15-min measurements into 
hourly data ( × 4), and then into 12-h periods ( × 12). The night-time 
factor (NTF) in the equation is assigned a value of 1.27 or 1.47 (mid- 
point within a range of values) depending on whether the road has low 
or high levels of traffic, respectively (low AADT ~ 201–750 vehicles/ 
day, and high AADT >2000 vehicles/day for each road lane). (Patrick, 
2019). 

We collected 1-min BC and 1-s UFP raw data following the procedure 
described in van Nunen et al. (2017). BC measurements did not require 
correcting the loading effect of the filter as it was exchanged before 
reaching an attenuation of 80 (filter overloading at 125). For UFP, we 
considered all particle concentrations ≤500 pt/cm3 and treated all 
particle concentration values that differed ten times or more from the 
previous and next measurements as artifacts. Analyses were performed 
using datasets with 30-min average values per site. 

2.4. Statistical analysis 

2.4.1. Generating minor road AADT models 
Linear, Poisson and negative binomial (NB) regressions were used to 

generate minor road AADT models. The latter two regression models 
were used to accommodate the positively skewed distribution of AADT. 
In addition, generalized additive models (GAM) were used to identify 
possible nonlinear relationships between continuous variables and the 
AADT. We used the likelihood ratio test (LRT) and Variance Inflation 
Factor (VIF) to find the optimal combination of predictors (within each 
type of regression) and their transformations (e.g., the natural logarithm 
of a predictor), while seeking not to overfit the data. For this purpose, we 
used the package ‘mgcv’ from R V.3.6.2 (R Foundation for Statistical 
Computing, Vienna, Austria). (R Core Team, 2019). 

The appropriateness of the various regression models (linear, Pois-
son, NB) was determined by comparing the models’ goodness-of-fit 
measures – namely, the Akaike information criterion (AIC) and 
Bayesian information criterion (BIC), where lower values indicate a 
better fitting model (Appendix E). The AADT models were fitted using 
the same combination of predictors, including road type, natural loga-
rithms of the road importance index, AADT and distance to the nearest 
major road, population density, workplace density, and WRD. In addi-
tion, the selected models were evaluated by comparing their estimated 
median AADT values for minor roads (secondary, tertiary, unclassified 
and residential) to the measured median AADT values for the same roads 
(Appendix F). 

2.4.2. Validation study 
To assess the validity and added value of AADT modelling, the 

modelled AADT was compared to a traditional approach where minor 
roads with unknown AADT are assigned a fixed value of 600 vehicles/ 
day (Morley and Gulliver, 2016). The fixed-value and modelled esti-
mates were compared against measured AADT, BC, and UFP. 

Scatter plots of estimated AADT values (from the models or fixed- 
value approach) vs. measured AADT, BC and UFP values were used to 
assess and compare the performance of the AADT models and the fixed- 

value approach. The agreement between estimated and measured AADT 
values was assessed using the concordance correlation coefficient (CCC), 
normalized mean bias factor (B’NMBF) and normalized mean absolute 
error factor (E’NMAEF) (see descriptions in Table 2). The associations 
between AADT estimates and BC and UFP measurements were assessed 
using Spearman’s correlation coefficient (rho - ‘ρ’). We assessed the 
model performance using three validation (sub) sets: major and minor 
roads, minor roads, and residential areas. Residential areas were defined 
as the sum of the high density residential and low density residential 
areas according to the 2018 Melbourne Planning Scheme (Department 
of Transport and Planning, 2018). Table 2 summarises each perfor-
mance statistic/method, the target value and the datasets used for the 
validation analysis (mathematical formulas in Appendix G). 

3. Results 

3.1. Available AADT in Melbourne, Australia 

Table 3 shows Melbourne’s road network attributes, including the 
number of road segments, the proportion of segments with traffic count 
data, and the median and inter-quartile range (IQR) of AADT by road 
type. In 2018, 88.5% of roads constituting Melbourne’s network were 
classified as minor, and most of them where residential (60.7%). Traffic 
data was available for only 28.2% of all the road network (i.e., 91,326 
roads segments), from which 18.9% were minor roads. Residential roads 
had a median AADT of 1900 vehicles/day, being higher than the value 
used in the fixed-value approach when modelling AADT (600 vehicles/ 
day). (Morley and Gulliver, 2016). 

3.2. Generating minor road AADT models for Melbourne 

The goodness-of-fit statistics for the linear and NB models are pre-
sented in Appendix A. The Poisson model was excluded from the anal-
ysis because of the overdispersion of the data with a dispersion 
parameter greater than ‘1’ (2744.38). The NB model had better (i.e., 

Table 2 
Performance statistics/methods used to evaluate the minor road AADT models.  

Method Target Value Description Validation 
Dataset 

Coefficient of determination 
(R2) 1 Determines the proportion of 

variance of the dependent 
variable explained by the 
independent variable. 

Traffic 
counts, BC, 
UFP 

Spearman’s correlation coefficient (rho) 
(ρ) 1 Nonparametric measure of the 

strength and direction of the 
correlation between variables. 

Traffic 
counts, BC, 
UFP 

Concordance correlation coefficient with confidence intervals 
[CCC 

(CI)] 
±1 Absolute agreement statistic 

which evaluates the consistency 
and bias of the measurements 
with confidence intervals. 

Traffic counts 

Normalized mean bias factor 
(B’NMBF) 0 Indicates over/underestimation 

of estimated values. 
Traffic counts 

Normalized mean absolute error factor 
(E’NMAEF) 0 Represents the ratio of the mean 

absolute gross error and the mean 
observed value for the case of 
overestimation or the mean 
modelled value for the case of 
underestimation. 

Traffic counts 

Visual assessment 
Scatter 

Plot 
Compact cloud 

along 45◦

diagonal 

Shows the agreement between 
estimated and observed values. 

Traffic counts 

AADT = Annual average daily traffic; BC = Black carbon; UFP = Ultrafine 
particles; Performance statistics mathematical formulas in Appendix G. 
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lower) AIC and BIC values than the linear model. However, the linear 
model had more deviance explained and had a median for residential 
roads closer to those previously reported (i.e., 710 vehicles/day) 
(Morley and Gulliver, 2016). Due to the similar performance of the 
linear and NB models, we used both for the validation analysis. 

3.3. Validation study 

In the validation study, we compared the AADT estimates from the 
linear and NB models and the fixed-value approach against independent 
measures of AADT, BC and UFP levels. Table 4 and Fig. 2 show the 
agreement between the estimated and measured AADT by three (sub) 
sets of the road network: all roads, minor roads, and minor roads within 
residential areas. Across all AADT estimation methods, the CCC 
decreased as the variability of the measured values decreased, while the 
B’NMBF and the E’NMAEF, in general, increased. The CCC decrease was 
greater for the fixed-value approach than for the linear or the NB models 
(Table 4). The increase in the B’NMBF was greater for the NB model than 
for the linear model or for the fixed-value approach (Table 4). 

The difference between the B’NMBF and the E’NMAEF (0.16–0.37) in 
the linear and NB models (all [sub]sets), indicates the over- 
compensation of values above and below the mean due to over-
estimates compensating underestimates (Gustafson and Yu, 2012). 
Similar B’NMBF and E’NMAEF values were observed for the linear model 
and NB models when using all roads, with the minor road (sub)set 
models having higher absolute differences than the linear model. 
However, the largest differences were observed when modelling with 
fixed values, showing absolute differences between 0.23 and 1.01. 

Table 5, Figs. 3 and 4 show the associations of estimated AADT with 

measured BC and UFP concentrations for the three AADT estimation 
methods used in this study. The BC minor roads linear model yielded the 
strongest correlation (linear ρ = 0.54, NB ρ = 0.52, and fixed-value ρ =
0.46), and the UFP linear and NB models yielded the same correlation 
(linear ρ = 0.50, NB ρ = 0.50, and fixed-value ρ = 0.34). The relation-
ships of AADT with BC and UFP for minor roads within residential areas 
were not statistically significant. However, the linear model had the 
highest ρ estimates (BC ρ = 0.18 and UFP ρ = 0.22). 

4. Discussion 

We have shown that minor road AADT modelling increases the 
estimation accuracy of AADT compared to the commonly used fixed- 
value approach. Our AADT estimates showed better agreement with 
measured AADT. We also had stronger correlations with BC and UFP 
when using the linear and NB models than the fixed-value approach. 
While the linear and NB models showed comparable performance for the 
overall road network, the linear model showed lower B’NMBF and 
E’NMAEF on all road (sub)sets. All (sub)set models showed lower B’NMBF 
than their respective E’NMAEF indicating over-compensation of the esti-
mates. Lower compensation observed in the linear and NB models be-
tween over and under-predicted values indicates smoother AADT 
changes in the road network, which is an expected traffic flow behaviour 
in urban areas (Morley and Gulliver, 2016). On the contrary, fixed 
values produce abrupt changes of AADT in the network, which is less 
desirable when modelling TRAP as it is not representative of real-world 
conditions. 

Our models overestimated AADT due to minor road traffic data being 
underrepresented and mainly having AADT on minor roads with values 
higher than the previously reported median AADT. We found that only 
18.9% of minor roads within Melbourne’s road network had AADT. 
Nevertheless, other geo-referenced databases necessary for AADT 
modelling, e.g., administrative areas, urban/rural areas and workplace 
statistics, had the required detail and depth of information. 

Compared to previous studies, including Morley and Gulliver’s 
(2016) study, which had the largest traffic count sample, the present 
study had access to significantly more AADT values on secondary roads 
(54,237 vs. 4462 points in Morley and Gulliver (2016)) (Morley and 
Gulliver, 2016). The predictors (i.e., variables entered in the models of 
AADT) and their effects on AADT were very similar to other studies on 
this topic, suggesting that traffic determinants are independent of a 
city’s culture or local driving behaviour (Morley and Gulliver, 2016; 
Apronti et al., 2016; Fu et al., 2017). However, in contrast to the study 
by Apronti et al. (2016) in Wyoming, we found no differences by road 
surface, possibly because approximately 98.8% of the urban roads in 
Victoria are paved (Apronti et al., 2016; Greaves, 2021). Unlike Zhong 
and Hanson’s (2009) study, our AADT estimates did not consider des-
tinations of interest because appropriate data were not available and this 
would have possibly limited the importance of this variable in the 
models (Zhong and Hanson, 2009). Unlike Morley and Gulliver (2016), 
we could not apply the Poisson model to estimate minor road AADT 
because AADT data were over dispersed. To our knowledge, Morley and 
Gulliver’s (2016) study and our study are the only ones that examined a 
representative set of minor roads. 

Our AADT models showed better external validity than the models 
presented in previous studies. We obtained comparable AADT estimate 
errors and achieved stronger correlations with air pollutants (Morley 
and Gulliver, 2016; Apronti et al., 2016; Fu et al., 2017; Zhong and 
Hanson, 2009; Jung et al., 2017). This is the first study to quantify the 
added value and improvement in the strength of associations of esti-
mated AADT in residential areas with BC and UFP concentrations 
compared to the fixed-value approach. 

4.1. Strengths and limitations 

This is the first time this AADT modelling approach has been 

Table 3 
Descriptive statistics for major and minor roads in Zenith (2018) database and 
OSM road type classifications.  

OSM Road 
type 

Number of road 
segments (%)* 

Road segments 
with AADT (%)** 

AADT Median (IQR) 
(Vehicles/day) 

All 323,722 (100) 91,326 (28.2) 8700 (15,200) 
Major roads 37,089 (11.5) 37,089 (100.0) 18,900 (13,600) 

Trunk 11,256 (3.5) 11,256 (100.0) 22,725 (12,200) 
Primary 20,299 (6.3) 20,299 (100.0) 16,850 (11,050) 
Minor roads 286,633 (88.5) 54,237 (18.9) 4300 (7300) 
Secondary 20,177 (6.2) 11,673 (57.9) 12,000 (11,100) 
Tertiary 50,749 (15.7) 23,813 (46.9) 4800 (6400) 
Unclassified 19,077 (5.9) 1282 (6.7) 1900 (3300) 
Residential 196,630 (60.7) 17,469 (8.9) 1900 (3100) 

* Percentage of the total number of road segments; ** Percentage of the total of 
road segments with AADT; Zenith = Annual average daily traffic (AADT) 
dataset; OSM = OpenStreetMap; IQR = Interquartile range. 

Table 4 
Agreement between estimated and measured AADT values by method of 
estimation.  

Statistic Linear NB Fixed-value  

All roads, n = 194 (51% of the AADT values were estimated) 
CCC (95% CI) 0.97 (0.97–0.98) 0.97 (0.96–0.98) 0.97 (0.96–0.98) 
BNMBF 0.06 0.11 0.01 
ENMAEF 0.23 0.27 0.24  

Minor roads, n = 137 (72% of the AADT values were estimated) 
CCC (95% CI) 0.90 (0.87–0.93) 0.88 (0.84–0.91) 0.85 (0.79–0.89) 
BNMBF 0.13 0.37 − 0.17 
ENMAEF 0.50 0.68 0.62  

Residential area, n = 70 (91% of the AADT values were estimated) 
CCC (95% CI) 0.47 (0.32–0.60) 0.29 (0.18–0.39) − 0.001 (− 0.17–0.18) 
BNMBF 1.08 2.47 0.06 
ENMAEF 1.42 2.68 1.07 

AADT = Annual average daily traffic; CCC (CI) = Concordance correlation co-
efficient with confidence intervals; B’NMBF = Normalized mean bias factor; 
E’NMAEF = Normalized mean absolute error factor; n = number of sites; NB =
Negative binomial. 
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Fig. 2. Scatter plot of estimated vs. measured annual average daily traffic (AADT); NB = Negative binomial.  
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undertaken in a sprawling metropolis in Australia (see Appendix A). The 
strengths of our study lie in the comprehensive evaluation of two 
different statistical regression methods compared with the traditional 

fixed-value approach, including the assessment of associations between 
estimated and measured AADT, and measured air pollution. Further-
more, the models were evaluated for both systematic and random errors, 
enabling correction of the estimates for systematic error prior to 
implementation. 

In terms of generalizability, we acknowledge that the specific char-
acteristics of the study area (i.e., extensive urban sprawl) and data 
availability could limit the applicability of our findings to different 
settings. Nevertheless, the overarching principles and methodologies we 
outline, have the potential for adaptation and implementation in regions 
also lacking data for minor roads. In addition, the models primarily used 
open-data sources to ensure reproducibility in other geographical 
locations. 

The traffic data used to generate the models had a low percentage of 
residential roads with available AADT (8.9%) and, as a result, they 
overestimated AADT relative to what was expected. These two factors 
limited the representativeness of these roads for residential areas and 
reduced the accuracy of the models. Future studies should include 
alternative modelling data in their design to address this issue, such as 
satellite imagery or stratified random surveys of traffic counters. In 

Table 5 
Associations of estimated AADT with BC and UFP concentrations by method of 
AADT estimation (values represent Spearman’s correlation coefficients and their 
95% CIs).  

Parameter Linear NB Fixed-value  

All roads, n = 194 (50% of the AADT values were estimated) 
BC 0.64§ (0.55; 0.61) 0.62§ (0.53; 0.70) 0.61§ (0.51; 0.69) 
UFP 0.59§ (0.49; 0.68) 0.58§ (0.48; 0.67) 0.53§ (0.42; 0.62)  

Minor roads, n = 143 (74% of the AADT values were estimated) 
BC 0.54§ (0.41; 0.64) 0.52§ (0.39; 0.62) 0.46§ (0.32; 0.58) 
UFP 0.50§ (0.37; 0.62) 0.50§ (0.37; 0.62) 0.34§ (0.19; 0.48)  

Residential area, n = 70 (91% of the AADT values were estimated) 
BC 0.18 (− 0.06; 0.40) 0.12 (− 0.11; 0.35) 0.17 (− 0.07; 0.39) 
UFP 0.22+ (− 0.02; 0.43) 0.20 (− 0.04; 0.42) 0.07 (− 0.16; 0.34) 

AADT = Annual average daily traffic; BC = Black carbon; UFP = Ultrafine 
particles; n = number of sites; CIs = Confidence intervals; Statistical significance 
codes (p): <0.001 ‘§’ <0.001 ‘**’ <0.01’&’ <0.05’+’. 

Fig. 3. Scatter plots of estimated annual average daily traffic (AADT) vs. measured black carbon (BC) concentrations; NB = Negative binomial; Reg = regression.  
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addition, although we followed a validated methodology, the traffic 
count data collected for the external validation analyses were still sub-
ject to a degree of random measurement error due to inter- and intra-day 
variations in traffic volume or unobserved factors in the built and social 
environment. Consequently, the association between measured and 
estimated AADT may have been underestimated. 

This study showed that our minor road AADT model could better 
identify differences in traffic and BC and UFP concentrations on resi-
dential roads compared to the traditional fixed-value approach. After 
correcting for systematic errors, the AADT estimates could be integrated 
with existing traffic count data to study TRAP exposure. Thus, the pro-
posed methodology, being a modelled estimation, is likely to be mainly 
affected by the Berkson type error rather than the classical error. The 
Berkson type error is due to using the group mean exposure (e.g. road 
types, land use) instead of individual values (Nieuwenhuijsen, 2015). 
However, the Berkson-type error causes little or no bias in the measured 
effects, thus allowing us to quantify the actual effects of the AADT. In 
addition, by disaggregating residential traffic levels relative to the 
fixed-value approach, the methodology also provided increased preci-
sion and statistical power. Both elements are particularly relevant for 

studying the health effects resulting from traffic emissions in residential 
areas. 

5. Conclusions 

Minor road AADT, especially on residential roads, needs to be more 
accurate and representative when used to model road networks. Accu-
racy and representativeness are important to improve for the assessment 
of potential population health effects. The models used have proven 
valid in estimating minor roads’ AADT for Melbourne and quantified the 
added value of modelling AADT compared to the traditional fixed-value 
approach. Furthermore, they increased the estimation accuracy and 
statistical power to study the effects of the AADT in residential areas, 
which are particularly relevant in the absence of health exposure 
thresholds for BC and UFP air pollution. In addition, we found that the 
current traffic data for Melbourne covered only 28.2% of the road 
network and a very low percentage of minor roads (18.9%) and resi-
dential roads (8.9%). Future studies should consider this limitation, as 
residential AADT needs to be more representative to improve the ac-
curacy of the estimates. Finally, our linear model outperformed the 

Fig. 4. Scatter plot of estimated annual average daily traffic (AADT) vs. measured ultrafine particle (UFP) concentrations; NB = Negative binomial; Reg = regression.  
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fixed-value approach when compared against traffic and TRAP mea-
surements. The methodology followed in our study is relevant to loca-
tions with incomplete minor road AADT data. 
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