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In this work, we consider a mathematical model of the water treatment pro-
cess and determine the effective characteristics of this model. At the microscopic
length scale, we describe our model in terms of a lattice random walk in a
high-contrast periodic medium with absorption. Applying then the upscaling
procedure, we obtain the macroscopic model for total mass evolution. We dis-
cuss both the dynamic and the stationary regimes and show how the efficiency
of the purification process depends on the characteristics of the macroscopic
model.

KEYWORDS

absorption, correctors, high-contrast periodic media, random walk, upscaling

MSC CLASSIFICATION

35B27, 35B40, 47D07, 60J28

1 INTRODUCTION

The problem of water purification has great practical importance and gives rise to many interesting mathematical ques-
tions. Mathematical modeling of water treatment has become increasingly popular in recent years; see, for example,
previous studies [1–3]. In the present work, we deal with mathematical models for the treatment of wastewater in biofilm
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reactors and in filters filled with granules which are made of nano-porous super-hydrophilic materials. We use here a
combination of a probabilistic approach and a homogenization technique for modeling the purification process.

To clarify the motivation of the model, we shortly describe one of the biofilters used in industrial water purification
process. A biofilm reactor is a tank of cylindrical shape which is about 1 m high and of diameter about 20 cm. It is packed
with parallelepipeds consisting of thin pressed polymer fibers. A typical volume of such a parallelepiped is 15–20 cm3,
and the fibers are small rods whose length is about 1 cm. Each such a rod is covered with a thin biologically active biofilm,
these biofilms being filled with bacteria for which impurities within water are a nutrition. Water is supplied to the upper
cross section of the device and then trickles down drop by drop along the rods so that the biofilms covering the rods are
getting wet. The material of biofilms is designed in such a way that its diffusion coefficient is much smaller then that
in the surrounding fluid domain. The polluted water penetrates the biofilms and the impurities are consumed by the
bacteria. The intensity of this process depends on the concentration of both the bacteria and the impurities at the biofilms
boundary. The averaged speed of water also influences the said intensity. The biofilter is efficient if the said averaged
speed is sufficiently small. Altogether, there are several millions of such rods in the device, they are called basic elements
of the biofilter. We would like to construct an adequate model of the mentioned above consumption process for one rod
and then to model the whole process of water purification. Our goal is to evaluate the drop in the water pollution level.
Several models of this type have been considered in a number of works, in particular in Oliinyk and Airapetyan [4] and
Bobyleva and Shamaev [5].

In Bobyleva and Shamaev [5], the consumption of impurities in one basic element is described by a system of differential
equations including a diffusion equation in 3D cylindrical domain and a transport equation at the rod border. This problem
does not have an analytic solution. So it is natural to simulate its solution numerically. To this end in Bobyleva and
Shamaev [5], the whole cylindrical tank is divided into horizontal layers, and the drop of the impurity concentration at
each layer is calculated numerically. Also, in Bobyleva and Shamaev [5], the asymptotic analysis of the system is performed
provided a small thickness of the rods.

Let us move on to another model of water treatment. One of the most common pollutants of the wastewater is petrol
and oils impurities, and the water purification from oil and petrol products refer to the highly important environmental
problems. One of the modern methods of water purification is described in Kuligin et al. [6]. It is the filtering method
using granules made of innovative nano-porous super-hydrophilic materials. For the practical implementation, a design
of the classical pressure filter for granulated filter bed was chosen. The system is represented by a vertical cylindrical filter
with a distribution system below and above. The filter is filled with granulated bed of the grade 0.7–1.7 mm, preliminary
impregnated with water. The filter has a height of 1.5 m and an average pore diameter of 6.5 nm. The diffusion coefficient
in the granules is much smaller than that in the surrounding solute.

In the present work, we suggest a mathematical model based on a probabilistic interpretation of the water purification
process described in Kuligin et al. [6]. It is assumed that the movement of the impurities at the microscale is described
in terms of a Markov process. Namely, the impurities can enter the porous granules with a positive probability and then
either be absorbed there or leave.

Also, it is assumed that the basic purification elements are located periodically. We then divide each periodicity cell
into a finite number of cubes, introduce the lattice formed by the centers of these cubes, and perform the corresponding
discretization of the Markov process. For the obtained random walk, we define the transition probabilities between the
sites of the same cell or neighboring cells. This yields the description of the model at the microscopic level.

Our goal is to provide the macroscopic description of this process based on upscaling procedure. It will be shown that
the coefficients involved in the macroscopic model, that is, the effective characteristics of the water purification process,
can be expressed through the characteristics of the model at the microscopic scale by means of solving a system of linear
algebraic equations.

The main characteristics of the quality of a water filter is the rate of decay of impurities concentration depending on
the distance to the upper cross section of the filter. In this work, we provide some examples of calculating this rate.

The advantage of the model proposed in this work is its flexibility, it can be easily adapted to any geometry of
absorbing films. This model can be used for better understanding complex treatment systems and for optimizing
the parameters of water purification devices in accordance with the restrictions on the device productivity and the
purification quality.

Various phenomena in media with a high-contrast microstructure have been widely studied by the specialists in applied
sciences, and then, since the 1990s, high-contrast homogenization problems have been attracting the attention of math-
ematicians. Homogenization problems for partial differential equations describing high-contrast periodic media have
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been intensively investigated in the existing mathematical literature. In the pioneer work [7], a parabolic equation with
high-contrast periodic coefficients has been considered. It was shown that the effective equation contains a nonlocal
in time term which represents the memory effect. In the literature on porous media, these models are usually called
double porosity models. Later on in Allaire [8], with the help of two-scale convergence techniques, it was proved that
the solutions of the original parabolic equations two-scale converge to a function which depends both on slow and
fast variables.

2 MATHEMATICAL MODEL AND METHODS

In this section, we discuss mathematical models of water treatment process and the methods of studying these models.
We assume in what follows that the diffusion of impurities is approximated by discrete processes in a high-contrast envi-
ronment. The presence of high-contrast characteristics is natural in the considered models. Indeed, as was mentioned in
Section 1, the diffusion in biofilms or hydrophilic granules is much smaller than that in the surrounding fluid domain.
Also, the ratio between the size of the granules and the size of the whole filter is a small parameter, it is denoted by 𝜀.
We then assume that the ratio between diffusion coefficients in the granules and in the surrounding fluid is of order 𝜀2.
Since water trickles through a porous medium in the filter, its velocity is rather small. Our next assumption is that, at the
microscopic length scale, this velocity is of order 𝜀.

The asymptotic (large time) analysis of the corresponding difference equations is based on homogenization and approx-
imation techniques of double porosity type discrete models. Notice that, after rescaling, at the macroscopic length scale,
the velocity and the diffusion in the fluid domain are of the same order, and due to smallness of the diffusion in the
granules, the time that a diffusive particle spends in a granule is comparable with the observation time.

We introduce a discrete time random walk X̂ (𝜀)(n) on Z
d, d ≥ 1 in a periodic high-contrast medium that models the

discretized process of water purification at the microscopic length scale; see Section 3. This random walk approximates
the diffusion of impurities in a filtering device and inherits appropriate parameters of the diffusion.

In the next section, the non-perturbed transition matrix in the fluid part is denoted by P0, it does not depend on 𝜀. This
matrix is then perturbed by a non-symmetric matrix 𝜀D which represents a small convection term. A small diffusion in
the granules is represented by a matrix 𝜀2V . We assume that D and V do not depend on 𝜀 and emphasize that for each
𝜀 > 0, the matrix P0 + 𝜀D + 𝜀2V is a transition matrix for the random walk X̂ (𝜀)(n).

The absorption process at the filter is modeled by partial absorption of a random walker at the so-called astral sites. To
describe the absorption process, we modify the random walk by adding the absorbing state {⋆}. Thus, our model at the
microscopic level is the random walk with absorption.

Next, we study the large time behavior of this process by applying the upscaling procedure; see Section 4. Recalling that
the transition probabilities of the random walk at the microscopic level depend on a small positive parameter 𝜀, we make
a proper diffusive scaling of the random walk that also includes absorption and study the limit behavior of the rescaled
process 𝜀(t), as 𝜀 → 0. It turns out that there is a nice and useful description of the limit process as a two-component
continuous time Markov process 𝔛(t) = ((t), k(t)). Its first component (t) evolves in the space R

d ∪ {⋆}, while the
second component is a jump Markov process k(t) with a finite number of states.

The second coordinate k(t) of the process specifies the position of the random walk in the period. The process k(t)
does not depend on (t); the intensities 𝜆(k) and transition probabilities 𝜇k𝑗 , k ≠ 𝑗, k, 𝑗 = 0, 1, … ,M, of its jumps are
expressed in terms of the transition probabilities of the original random walk. When k(t) = 0, the first component (t)
evolves along the trajectories of a diffusion process in R

d, but when k(t) ≠ 0, then the first component remains still until
the second component of the process takes again the value equal to 0. Thus, the trajectories of (t) coincide with the
trajectories of a diffusion process in R

d on those time intervals where k(t) = 0. As long as k(t) ≠ 0, then (t) does not
move, and only the second component of the process evolves, that is, figuratively speaking, the process lives during this
period in the “astral” space A = {x1, … , xM}. It follows from the above description of the upscaling process that the
memory effect appears if we take the projection of this process onto the zero component corresponding to k(t) = 0.

In Section 5, we provide an example of the macroscopic (effective) model, both in dynamic and stationary regimes.
Appendix A deals with auxiliary periodic problems for the correctors. Here, we prove two key technical statements and
derive the formulae for the effective characteristics of the macroscopic model. In Appendix B, we calculate the effective
matrix and the effective drift for one example and show the relation between the models at the microscale and macroscale.

The mathematical background of the present work has been partly developed in Piatnitski and Zhizhina [9], where we
studied a symmetric random walk in a high-contrast medium and constructed the limit process on the extended state
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PIATNITSKI ET AL.

space. In the present work, we supplement the symmetric random walk with an additional drift and absorption, which
leads to a significant modification of our previous scheme. A crucial step in our approach is constructing several periodic
correctors which are introduced as solutions of auxiliary difference elliptic equations on the period.

3 MICROSCALE DESCRIPTION: HIGH- CONTRAST DISCRETE MODELS

In this section, we provide a detailed description of the random walk that models the discrete approximation of the purifi-
cation process on the microscopic length scale. Given a probability space (Ω, ,P), we consider a family of random walks
X̂ (𝜀)(n) in Z

d, d ≥ 1 with transition probabilities that depend on a small parameter 𝜀, 0 < 𝜀 ≤ 𝜀0. We denote by p(𝜀)(x, 𝑦)
the transition probabilities p(𝜀)(x, 𝑦) = Pr(𝜀)(x → 𝑦), (x, 𝑦) ∈ Z

d × Z
d of the random walk X̂ (𝜀)(n):∑

𝑦∈Zd

p(𝜀)(x, 𝑦) = 1 ∀x ∈ Z
d. (1)

Denote the transition matrix of the random walk by P(𝜀) = {p(𝜀)(x, 𝑦), x, 𝑦 ∈ Z
d}. We assume that for each 𝜀, the random

walk satisfies the following properties:

– Periodicity. The functions p(𝜀)(x, x + 𝜉) are periodic in x with a period Y for all 𝜉 ∈ Z
d, and Y is being independent

of 𝜀. In what follows, we identify the period Y with the corresponding d-dimensional discrete torus Td.
– Finite range of interactions. There exists c > 0 that does not depend on 𝜀 such that

p(𝜀)(x, x + 𝜉) = 0, if |𝜉| > c. (2)

– Irreducibility. The random walk is irreducible in Z
d.

We suppose that the transition matrix P(𝜀) is a small perturbation of a fixed transition matrix P0 = {p0(x, 𝑦)} that
corresponds to a symmetric random walk, that is,

p0(x, 𝑦) = p0(𝑦, x), (x, 𝑦) ∈ Z
d × Z

d,
∑
𝑦∈Zd

p0(x, 𝑦) = 1 ∀x ∈ Z
d. (3)

We say that 𝑦 ∼ x, x, 𝑦 ∈ Z
d, if p0(x, 𝑦) ≠ 0. Let Λx be a finite set of 𝜉 ∈ Z

d such that x + 𝜉 ∼ x. In what follows, we use
the notation

p0(x, 𝑦) = p0(x, x + 𝜉) = p𝜉(x)

for all x, 𝑦 ∈ Z
d such that x ∼ 𝑦 and 𝑦 = x + 𝜉.

(4)

Thus, the normalization condition can be rewritten as∑
𝜉∈Λx

p𝜉(x) = 1.

The transition matrix P(𝜀) has the following form:

P(𝜀) =∶ P0 + 𝜀D + 𝜀2 V . (5)

The transition probabilities p(𝜀)(x, 𝑦) describe the so-called high-contrast periodic structure of the environment. As was
explained in Section 2, the matrix P0 characterizes the diffusive part of the impurities motion outside of granules, the
matrix 𝜀D corresponds to the small convection in the motion outside of granules, and the matrix 𝜀2V describes the small
diffusion inside the granules and the flux of impurities into and out of the granules.

In order to characterize the matrices P0, D = {d(x, 𝑦)} and V = {v(x, 𝑦)}, we divide the periodicity cell into two sets

T
d = A ∪ B; A, B ≠ ∅, A ∩ B = ∅, (6)

and assume that B ⊂ T
d is a connected set such that its periodic extension denoted B♯ is unbounded and connected. Here,

the connectedness is understood in terms of the transition matrix P0. Two points x′, x′′ ∈ Z
d are called connected if there
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PIATNITSKI ET AL.

exists a path x1, … , xL in Z
d such that x1 = x′, xL = x′′ and p0(x𝑗 , x𝑗+1) > 0 for all 𝑗 = 1, … ,L − 1. As a consequence, we

get that
P0 is irreducible on B♯. (7)

We also denote by A♯ the periodic extension of A. Then, Zd = A♯ ∪ B♯.
In addition to the above-formulated conditions on P(𝜀) and the general assumptions (3) and (7), the following conditions

on the matrices P0, D and V are imposed:

- p0(x, x) = 1, if x ∈ A♯;
- p0(x, 𝑦) = 0, if x, 𝑦 ∈ A♯, x ≠ 𝑦;
- p0(x, 𝑦) = 0, if x ∈ B♯, 𝑦 ∈ A♯;
- d(x, 𝑦) = 0, if at least one of x or 𝑦 ∈ A♯;
- v(x, 𝑦) = 0, if x, 𝑦 ∈ B♯, x ≠ 𝑦;
- the elements of matrices D and V satisfy the relation∑

𝑦∈Zd

d(x, 𝑦) = 0,
∑
𝑦∈Zd

v(x, 𝑦) = 0 ∀x ∈ Z
d. (8)

- there exists a constant c > 0 such that

p0(x, 𝑦) = d(x, 𝑦) = v(x, 𝑦) = 0, if |x − 𝑦| ⩾ c.

It is worth noting that the relation (8) is a direct consequence of the fact that both P(𝜀) and P0 are the transition matrices
of the corresponding random walks. From the periodicity of D and V it also follows that

dmax ∶= max
x,𝑦∈Zd

|d(x, 𝑦)| < ∞, vmax ∶= max
x,𝑦∈Zd

|v(x, 𝑦)| <∞.

Summarizing all above conditions, we conclude that the non-zero transition probabilities defined by (5) have the following
structure:

- p(𝜀)(x, 𝑦) = p0(x, 𝑦) + O(𝜀), when x, 𝑦 ∈ B♯ (rapid movement);
- p(𝜀)(x, x) = 1 + O(𝜀2), when x ∈ A♯ (slow movement);
- p(𝜀)(x, 𝑦) ≍ 𝜀2, when x, 𝑦 ∈ A♯, x ≠ 𝑦 (slow movement);
- p(𝜀)(x, 𝑦) ≍ 𝜀2, when x ∈ B♯, 𝑦 ∈ A♯ (rare exchange between A♯ and B♯).

Here and later on, the symbol ≍ indicates that the ratio between the right- and left-hand sides admits positive lower
and upper bounds. The above choice of the transition probabilities reflects a slow drift (of the order 𝜀) given by matrix D
in the fast component, and also a significant slowdown (of the order 𝜀2) of the random walk inside the slow component.

Further, we add to the above random walk an absorption process consistent with the structure of the periodic environ-
ment, assuming that the absorption occurs only inside the inclusions A♯. For the description of the complete process, we
will denote by S = Z

d ∪ {⋆} the state space of the new process, where {⋆} is the absorption state. Then, the transition
matrix of the complete process with absorption has the following form:

Q(𝜀) = P(𝜀) + 𝜀2W =
(

P0 + 𝜀D + 𝜀2V
)
+ 𝜀2W , (9)

where Q(𝜀)(⋆,⋆) = 1, W(x, ⋆) = m > 0 and W(x, x) = −m for all x ∈ A♯, otherwise W(x, 𝑦) = 0.
Let l∞0 (Zd) be the Banach space of bounded functions on Z

d vanishing at infinity with the norm ||𝑓 || = supx∈Zd |𝑓 (x)|.
Similarly, we consider the Banach space of bounded functions on S: l∞0 (S) = l∞0 (Zd)⊕ R.

We note that random walks with symmetric transition probabilities of the form

P(𝜀) = P0 + 𝜀2V (10)

have been studied in Piatnitski and Zhizhina [9]. In the present work, we supplement the model with drift and absorption.
Our goal is to derive the effective evolution equation under the diffusive scaling.
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4 UPSCALING

4.1 Rescaled process
In what follows, we study the scaling limit of the random walk on S with transition matrix Q(𝜀) and use 𝜀 as the scaling
factor. Denote 𝜀Zd = {z ∶ z

𝜀
∈ Z

d}, then 𝜀Zd = 𝜀A♯∪𝜀B♯, and let 𝜀S = 𝜀Zd ∪{⋆}. In what follows, the symbols x and 𝑦 are
used for the variables on Z

d (fast variables), while the symbols z and w for the variables on 𝜀Zd (slow variables). Notice
that the state {⋆} does not change under the scaling.

We introduce now the rescaled process. Denote by T𝜀 the transition operator associated with the transition matrix (9):

T𝜀𝑓 (z) =
∑

w∈𝜀S
𝔮𝜀(z,w)𝑓 (w) =

∑
w∈𝜀Zd

𝔮𝜀(z,w)𝑓 (w) + 𝔮𝜀(z, ⋆)𝑓 (⋆), 𝑓 ∈ l∞0 (𝜀S), z ∈ 𝜀S, (11)

where
𝔮𝜀(z,w) = Q(𝜀)

( z
𝜀
,

w
𝜀

)
,

z
𝜀
,

w
𝜀
∈ S,

and Q(𝜀)(·, ·) are elements of the matrix Q(𝜀); see (9). Namely,

𝔮𝜀(z,w) = p(𝜀)
( z
𝜀
,

w
𝜀

)
− 𝜀2m1{z=w}1{z∈𝜀A♯}, if z,w ∈ 𝜀Zd,

where the elements of the matrix P(𝜀) were defined in (9); 𝔮𝜀(z, ⋆) = 𝜀2m, if z ∈ 𝜀A♯; 𝔮𝜀(z, ⋆) = 0, if z ∈ 𝜀B♯, 𝔮𝜀(⋆, z) = 0
for all z ∈ 𝜀Zd, and 𝔮𝜀(⋆,⋆) = 1 .Then, the operator

L𝜀 = 1
𝜀2 (T𝜀 − I) (12)

is the difference generator of the rescaled process 𝜀(t) on 𝜀S = 𝜀Zd ∪ {⋆} with transition operator T𝜀. The rescaled
process has two components:

𝜀(t) = {X̂𝜀(t), ŝ(t)}, (13)

where X̂𝜀(t) = 𝜀X̂ (𝜀)
([

t
𝜀2

])
is the rescaled random walk on 𝜀Zd and the latter component ŝ(t) lives on {⋆}.

The goal of the paper is to describe the limit behavior of the rescaled process 𝜀(t), as 𝜀 → 0, to construct the limit
process, and to find the explicit expressions for all effective characteristics of the limit process.

4.2 Extended random walk
Homogenization of non-stationary processes in high-contrast environments often results in the effective equations with
nonlocal in time terms representing the memory effect. As was shown in Piatnitski and Zhizhina [9], the limit process
for a random walk in a high-contrast environment remains Markov if we equip the original random walk with additional
component(s) and consider the obtained random walk in the extended state space.

In this subsection, we describe the constructions of an extended random walk introduced in Piatnitski and Zhizhina
[9]. We equip the random walk X̂𝜀(t) (the first component in 13) with an additional component(s) in the same way as
it has been done in Piatnitski and Zhizhina [9]. Assume that the set A defined in (6) contains M ∈ N sites of Td: A =
{x1, … , xM}. For each k = 1, … ,M we denote by {xk}♯ the periodic extension of the point xk ∈ A, then

𝜀Zd = 𝜀B♯ ∪ 𝜀A♯ = 𝜀B♯ ∪ 𝜀{x1}♯ ∪ … ∪ 𝜀{xM}♯. (14)

We assign to each z ∈ 𝜀Zd the index k(z) ∈ {0, 1, … ,M} depending on the component in decomposition (14) to which
z belongs:

k(z) =
{

0, if z ∈ 𝜀B♯;
𝑗, if z ∈ 𝜀{x𝑗}♯, 𝑗 = 1, … ,M.

(15)

With this construction in hand, we introduce the metric space

E𝜀 =
{
(z, k(z)), z ∈ 𝜀Zd, k(z) ∈ {0, 1, … ,M}

}
, E𝜀 ⊂ 𝜀Zd × {0, 1, … ,M}, (16)
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PIATNITSKI ET AL.

with a metric that coincides with the metric in 𝜀Zd for the first component of (z, k(z)) ∈ E𝜀.
The index k(⋆) = ⋆ is assigned to the state z = {⋆}. Thus, the extended version of the absorption state is {⋆,⋆}, but

for simplicity, we will keep the notation {⋆}. Denote SE𝜀 = E𝜀 ∪ {⋆}, and in what follows instead of 𝜀(t), we consider
the extended process

𝔛𝜀(t) = {𝜀(t), k(t)}, k(t) ∈ {0, 1, … ,M, ⋆}.

We denote the space of bounded functions on SE𝜀 by (SE𝜀 ) and construct the transition operator T𝜀 of the process 𝔛𝜀(t)
on SE𝜀 using the same transition probabilities as in operator (11):

(T𝜀𝑓 )(z, k(z)) =
∑

w∈𝜀S
𝔮𝜀(z,w)𝑓 (w, k(w))

=
∑

w∈𝜀Zd

𝔮𝜀(z,w)𝑓 (w, k(w)) + 𝔮𝜀(z, ⋆)𝑓 (⋆), (17)

(T𝜀𝑓 )(⋆) = 𝑓 (⋆), 𝑓 ∈ (SE𝜀 ).
Then, T𝜀 is a contraction on (SE𝜀 ):

||T𝜀𝑓 ||(SE𝜀 ) ≤ sup
(z,k(z))∈SE𝜀

|𝑓 (z, k(z))|, 𝑓 ∈ (SE𝜀 ).

Remark 1. Since the point (z, k(z)) ∈ E𝜀 is uniquely defined by its first coordinate z ∈ 𝜀Zd, then we can use z ∈ 𝜀Zd as
a coordinate in E𝜀 (considering E𝜀 as a graph of the mapping k ∶ 𝜀Zd → {0, 1, … ,M}). In particular, for the transition
probabilities of the random walk on E𝜀, we keep the same notations 𝔮𝜀(z,w) as in (11).

4.3 Limit process
In this subsection, we construct a limit process, which is a Markov process completely determined by its generator. We
denote E = R

d × {0, 1, … ,M}, and C0(E) stands for the Banach space of continuous functions vanishing at infinity.
Together with E, we consider SE = E ∪ {⋆} and denote C0(SE) = C0(E) ⊕ R. Then, F ∈ C0(SE) can be represented as
F = (F(z, k),F(⋆)), where

F(z, k) = {𝑓k(z) ∈ C0(Rd), k = 0, 1, … ,M}, F(⋆) ∈ R,

and the norm in C0(SE) is equal to ||F||C0(SE) = max
{||F(z, k)||C0(E), |F(⋆)|} ,

where ||F||C0(E) = max
k=0,1,… ,M

||𝑓k||C0(R
d).

Consider the operator

LF(z, k) = (Θ · ∇∇𝑓0(z) + b · ∇𝑓0(z)) 1{k=0} + LAF(z, k), LF(⋆) = 0, (18)

where 1{k=0} is the indicator function, Θ is a positive definite matrix defined in (A16), b is a vector of the effective drift
defined also below by (A15), and the symbol · stands for the inner product in R

d or, in the case of matrices, in R
d2

; in
particular, Θ · ∇∇𝑓0 = Tr(Θ∇∇𝑓0). Both Θ and b are the effective characteristics of the limiting process. The operator LA
is a generator of a Markov jump process

LAF(z, k) =
M∑
𝑗=0
𝑗≠k

𝛼k𝑗(𝑓𝑗(z) − 𝑓k(z)) + m (F(⋆) − 𝑓k(z)) 1{k≠0}, (19)

with
𝛼0𝑗 =

1|B| ∑x∈B

∑
𝑦∈{x𝑗}♯

v(x, 𝑦), 𝛼𝑗0 =
∑
x∈B♯

v(x𝑗 , x), 𝑗 = 1, … ,M,

𝛼k𝑗 =
∑

𝑦∈{x𝑗}♯
v(xk, 𝑦), 𝑗, k = 1, … ,M, 𝑗 ≠ k.

(20)
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PIATNITSKI ET AL.

Notice that the parameters 𝛼𝑗k, 𝑗, k = 0, 1, … ,M, are non-negative and define intensities of the limit Markov jump
process on the period Y .

The operator L is defined on the core
𝔇 = 𝔇E ⊕ R ⊂ C0(SE), (21)

where
𝔇E = {(𝑓0, 𝑓1, … , 𝑓M), 𝑓0 ∈ C∞

0 (Rd), 𝑓𝑗 ∈ C0(Rd), 𝑗 = 1, … ,M} (22)
is a dense set in C0(E). One can check that the operator L on C0(SE) satisfies the positive maximum principle, that is,
if F ∈ 𝔇 and maxE∪{⋆}F(z, k) = F(z0, k0), then LF(z0, k0) ≤ 0. Since LA is a bounded operator in C0(SE), the operator
𝜆 − L is invertible for sufficiently large 𝜆. Then, by the Hille–Yosida theorem, the closure of L is a generator of a strongly
continuous, positive, contraction semigroup T(t) on C0(SE).

Let us describe the limit process 𝔛(t) generated by the operator L. It is a two-component continuous time Markov
process 𝔛(t) = {(t), k(t)}, where the first component (t) lives in R

d ∪ {⋆}, the second component is a continuous
time jump Markov process k(t) on the state space K = {0, 1, 2, … ,M, ⋆}. The process k(t) does not depend on the other
components; its transition rates 𝛼i𝑗 are expressed in terms of the transition probabilities of the original random walk;
see (20). The probability of jump between any two states i, 𝑗 ∈ {0, 1, 2, … ,M}, i ≠ 𝑗, is equal to 𝛼i𝑗 . The absorbing state
{⋆} is reachable only from the “astral” states {1, 2, … ,M} with the same intensity m. Thus, the matrix corresponding to
the generator LA has the following form:

⎛⎜⎜⎜⎜⎜⎝

−
∑M
𝑗=1 𝛼0𝑗 𝛼01 … 𝛼0M 0
𝛼10 −

∑M
𝑗=0,𝑗≠1 𝛼1𝑗 − m … 𝛼1M m

⋮ ⋮ ⋱ ⋮ ⋮
𝛼M0 𝛼M1 … −

∑M−1
𝑗=0 𝛼M𝑗 − m m

0 0 … 0 0

⎞⎟⎟⎟⎟⎟⎠
. (23)

When k(t) = 0, the first component(t) evolves along the trajectories of a diffusion process inR
d with the corresponding

effective characteristics, while when k(t) ≠ 0, the first component(t) remains still until k(t) takes again the value 0. Thus,
the trajectories of (t) coincide with the trajectories of a diffusion process in R

d on those time intervals where k(t) = 0.
As long as k(t) ≠ 0, the first component (t) does not move, and only the second component k(t) of the process evolves.
Additionally, the process k(t) can jump from the astral states {1, … ,M} to the absorbing state {⋆} with intensity m, and
upon reaching this state, the process never leaves it.

4.4 Main result: The convergence of semigroups
In this subsection, we formulate the main result of this work on convergence (upscaling) to the limit process constructed
in the previous subsection.

Let l∞0 (E𝜀) be a Banach space of functions on E𝜀 vanishing as |z| → ∞ with the norm

||𝑓 ||l∞0 (E𝜀) = sup
(z,k(z))∈E𝜀

|𝑓 (z, k(z))| = sup
z∈𝜀Zd

|𝑓 (z, k(z))|, (24)

and denote l∞0 (SE𝜀) = l∞0 (E𝜀)⊕ R. For every F ∈ C0(SE), we define the function 𝜋𝜀F ∈ l∞0 (SE𝜀) as follows:

(𝜋𝜀F)(z, k(z)) =
⎧⎪⎨⎪⎩
𝑓0(z), if z ∈ 𝜀B♯, k(z) = 0;
𝑓1(z), if z ∈ 𝜀{z1}♯, k(z) = 1;
…
𝑓M(z), if z ∈ 𝜀{zM}♯, k(z) = M,

(25)

and 𝜋𝜀F(⋆) = F(⋆). Then, 𝜋𝜀 defines a bounded linear transformation 𝜋𝜀 ∶ C0(SE) → l∞0 (SE𝜀).

Theorem 1. Let T(t) be a strongly continuous, positive, contraction semigroup on C0(SE) with generator L defined
by (18)–(19) and T𝜀 be the linear operator on l∞0 (SE𝜀) defined by (17).

Then, for every F ∈ C0(SE), ||T[
t
𝜀2

]
𝜀 𝜋𝜀F − 𝜋𝜀T(t)F||l∞0 (SE𝜀 ) → 0 for all t ≥ 0, (26)

as 𝜀 → 0.
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PIATNITSKI ET AL.

Proof. The proof of (26) relies on the approximation techniques from Ethier and Kurtz [10] used for the proof of con-
vergence of semigroups. According to results of Ethier and Kurtz [10, Theorem 6.5, Ch.1], the semigroup convergence
stated in (26) is equivalent to the statement which is the subject of the next lemma.

Lemma 1. For every F ∈ 𝔇, where 𝔇 was defined by (21), there exists F𝜀 ∈ l∞0 (SE𝜀) such that

||F𝜀 − 𝜋𝜀F||l∞0 (SE𝜀 ) → 0, (27)

and ||L𝜀F𝜀 − 𝜋𝜀LF||l∞0 (SE𝜀 ) → 0 as 𝜀 → 0. (28)

Proof. For every F = ((𝑓0, 𝑓1, … , 𝑓M),F(⋆)) ∈ 𝔇 with (𝑓0, 𝑓1, … , 𝑓M) ∈ 𝔇E, we should construct a function F𝜀 for
which the convergence in (27)–(28) holds. To this end, we denote

𝑓𝜀0 (z) = 𝑓0(z) + 𝜀∇𝑓0(z) · h
( z
𝜀

)
+ 𝜀2∇∇𝑓0(z) · g

( z
𝜀

)
+ 𝜀2

M∑
𝑗=1

q𝑗
( z
𝜀

)
(𝑓0(z) − 𝑓𝑗(z))

and take F𝜀 ∈ l∞0 (SE𝜀 ) of the following form:

F𝜀(z, k(z)) =

⎧⎪⎪⎨⎪⎪⎩
𝑓𝜀0 (z), if z ∈ 𝜀B♯, k(z) = 0,

𝑓1(z), if z ∈ 𝜀{x1}♯, k(z) = 1,
… …
𝑓M(z), if z ∈ 𝜀{xM}♯, k(z) = M,

(29)

and F𝜀(⋆) = F(⋆). Here, h(𝑦), g(𝑦), q𝑗(𝑦), 𝑗 = 1, … ,M, are periodic bounded functions that will be defined below.
The boundedness together with (29) immediately imply that

||F𝜀 − 𝜋𝜀F||l∞0 (SE𝜀 ) = sup
z∈𝜀Zd

|F𝜀(z, k(z)) − 𝜋𝜀F(z, k(z))| → 0,

as 𝜀 → 0. Thus, convergence (27) holds.
Next, we prove the second convergence stated in (28). Since (L𝜀F𝜀)(⋆) = (LF)(⋆) = 0, it suffices to show that

||L𝜀F𝜀 − 𝜋𝜀LF||l∞0 (SE𝜀 ) = sup
z∈𝜀Zd

|L𝜀F𝜀(z, k(z)) − 𝜋𝜀LF(z, k(z))| → 0. (30)

In the proof of (30), we use the same arguments as in the paper [9]. According to (17) and (9), the operator L𝜀 can
be written as

L𝜀 =
1
𝜀2 (P

0
𝜀 + 𝜀D𝜀 + 𝜀2V𝜀 + 𝜀2W𝜀 − I) = L0

𝜀 + V𝜀 + W𝜀,

with
L0
𝜀 =

1
𝜀2 (P

0
𝜀 + 𝜀D𝜀 − I), (31)

where for z ∈ 𝜀Zd,

P0
𝜀F(z, k(z)) =

∑
w∈𝜀Zd

p0

( z
𝜀
,

w
𝜀

)
F(w, k(w)), D𝜀F(z, k(z)) =

∑
w∈𝜀Zd

d
( z
𝜀
,

w
𝜀

)
F(w, k(w)),

and
V𝜀F(z, k(z)) =

∑
w∈𝜀Zd

v
( z
𝜀
,

w
𝜀

)
F(w, k(w)), W𝜀F(z, k(z)) = w

( z
𝜀
,

z
𝜀

)
F(z, k(z)) + w

( z
𝜀
, ⋆

)
F(⋆).

We consider next separately the cases when z ∈ 𝜀B♯, and z ∈ 𝜀A♯. Since the second component in E𝜀 is a function of
the first one, in the remaining part of the proof for brevity, write F𝜀(z) instead of F𝜀(z, k(z)).
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PIATNITSKI ET AL.

Let z ∈ 𝜀B♯. The first component (k(z) = 0) of F𝜀 in (29) can be written as a sum

F𝜀(z) = FP
𝜀 (z) + FQ

𝜀 (z), z ∈ 𝜀B♯, (32)

where
FP
𝜀 (z) = 𝑓0(z) + 𝜀∇𝑓0(z) · h

( z
𝜀

)
+ 𝜀2∇∇𝑓0(z) · g

( z
𝜀

)
, (33)

FQ
𝜀 (z) = 𝜀2

M∑
𝑗=1

q𝑗
( z
𝜀

)
(𝑓0(z) − 𝑓𝑗(z)). (34)

Since W𝜀F𝜀(z) = 0, if z ∈ 𝜀B♯, then

L𝜀F𝜀 = (L0
𝜀 + V𝜀)F𝜀 = L0

𝜀(FP
𝜀 + FQ

𝜀 ) + V𝜀F𝜀 = L0
𝜀FP

𝜀 + L0
𝜀FQ

𝜀 + V𝜀F𝜀. (35)

In order to estimate

sup
z∈𝜀B♯

|L𝜀F𝜀(z) − 𝜋𝜀LF(z)| = sup
z∈𝜀B♯

|L0
𝜀FP

𝜀 (z) + L0
𝜀FQ

𝜀 (z) + V𝜀F𝜀(z) − 𝜋𝜀LF(z)|, (36)

we use the following two propositions.

Proposition 1. There exist bounded periodic functions h(𝑦) = {hi(𝑦)}d
i=1 and g(𝑦) = {gim(𝑦)}d

i,m=1 (correctors), and a
positive definite matrix Θ > 0, and a vector b such that L0

𝜀FP
𝜀 → Θ · ∇∇𝑓0 + b · ∇𝑓0, that is,

sup
z∈𝜀B♯

|L0
𝜀FP

𝜀 (z) − Θ · ∇∇𝑓0(z) − b · ∇𝑓0(z)| → 0, as 𝜀 → 0, (37)

where FP
𝜀 is defined in (33).

The proof of this proposition is based on the corrector techniques, it is given in Appendix A.

Proposition 2. There exist bounded periodic functions q𝑗(x), 𝑗 = 1, … ,M, on B♯ such that

sup
z∈𝜀B♯

||||||(L0
𝜀FQ

𝜀 + V𝜀F𝜀)(z) −
M∑
𝑗=1

𝛼0𝑗(𝑓𝑗(z) − 𝑓0(z))
|||||| → 0 as 𝜀 → 0, (38)

where 𝛼0𝑗 > 0 are constants defined in (20) and FQ
𝜀 is introduced in (34).

The proof of Proposition 2 is the same as that in Piatnitski and Zhizhina [9]. We provide it in Appendix A for
presentation completeness.

Since
𝜋𝜀LF(z) = (Θ · ∇∇𝑓0(z) + b · ∇𝑓0(z)) 1{k=0} + (LAF)(z, 0), z ∈ 𝜀B♯, (39)

where

(LAF)(z, 0) =
M∑
𝑗=1

𝛼0𝑗(𝑓𝑗(z) − 𝑓0(z)),

then Propositions 1 and 2 together with (36) and (39) yield

sup
z∈𝜀B♯

|L𝜀F𝜀(z) − 𝜋𝜀LF(z)| → 0 as 𝜀 → 0. (40)

Next, we consider the case when z ∈ 𝜀A♯ and prove that

sup
z∈𝜀A♯

|L𝜀F𝜀(z) − 𝜋𝜀LF(z)| → 0 as 𝜀 → 0. (41)
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PIATNITSKI ET AL.

Let z ∈ 𝜀{xk}♯ ⊂ 𝜀A♯. From (29), (31), and continuity of the functions 𝑓k, it follows that

(L𝜀F𝜀)(z) = (L0
𝜀 + V𝜀 + W𝜀)F𝜀(z) = V𝜀F𝜀(z) + W𝜀F𝜀(z) =

=
∑M

𝑗=1
𝑗≠k

∑
𝑦∈{x𝑗}♯

v(xk, 𝑦)(𝑓𝑗(z) − 𝑓k(z))

+
∑

x∈B♯
v(xk, x)(𝑓0(z) − 𝑓k(z)) + m(F(∗) − 𝑓k(z)) + o(1),

(42)

as 𝜀 → 0. Here, we have used the fact that 𝑓k(z′) = 𝑓k(z) + o(1) as |z − z′| → 0. Recall that x, 𝑦 ∈ Y are variables on
the periodicity cell, and v(xk, x𝑗) are the elements of the matrix V . On the other hand, according (19) and (25) 𝜋𝜀LF(z)
for z ∈ 𝜀{xk}♯ has the following form:

𝜋𝜀LF(z) =
M∑
𝑗=0
𝑗≠k

𝛼k𝑗(𝑓𝑗(z) − 𝑓k(z)) + m(F(∗) − 𝑓k(z)), k = 1, … ,M, (43)

where the constants 𝛼k0, 𝛼k𝑗 are given by (20). Thus, relations (42) and (43) imply (41).
Finally, (30) is a consequence of (40) and (41), and Lemma 1 is proved. □

It remains to recall that (26) is a straightforward consequence of the above approximation theorem. This completes
the proof of Theorem 1. □

5 DYNAMICS OF POLLUTION: STATIONARY REGIME

In this section, we consider an example of the limit dynamics in the case when the astral set A contains one point. We
also derive an equation on the first component 𝜌0(x, t) describing a visible dynamics of the pollution density.

Denote by
𝜌(x, t) = (𝜌0(x, t), 𝜌1(x, t), 𝜌2(t))

the three-component density of pollution, where 𝜌0(x, t) is the density outside of micro-granules, 𝜌1(x, t) is the density
inside of micro-granules, and 𝜌2(t) is the density of pollution accumulated (or absorbed) as a result of cleaning by time t.
The conservation principle reads

∫ (𝜌0(x, t) + 𝜌1(x, t))dx + 𝜌2(t) ≡ const ∀t.

The corresponding model at microscopic scale is a one-point astral model with absorption. Then, for the limit dynamics,
we obtain the following evolution equations for 𝜌(x, t):

𝜕t𝜌 = L∗𝜌,

or {
𝜕t𝜌0 = Θ · ∇∇𝜌0 − b · ∇𝜌0 − 𝜆0𝜌0 + 𝜆1𝜌1,
𝜕t𝜌1 = − (𝜆1 + m) 𝜌1 + 𝜆0𝜌0,
𝜕t𝜌2 = m ∫ 𝜌1(x, t)dx,

(44)

with initial data 𝜌(x, 0) = (𝜋0(x), 𝜋1(x), 𝜋2). Here, Θ, b are the effective diffusion matrix and the effective drift depending
on the geometry of the microscale model, and 𝜆0 > 0, 𝜆1 > 0 are the rates of exchanging between inside and outside
regions: 𝜆0 is the intensity of the water flows into cleaning inclusions, while 𝜆1 is the intensity of flows from inclusions.
Since the set A consists of only one point, we have 𝜆0 = 𝛼01 and 𝜆1 = 𝛼10. All the coefficients in (44) are the parameters
of the limit model. In Appendices A and B, we will show how the effective parameters Θ and b can be found from the
microscale model.

The solution of the second equation in (44) has the form

𝜌1(x, t) = e−𝜆mt𝜋1(x) + 𝜆0

t

∫
0

e−𝜆m(t−s)𝜌0(x, s)ds,
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PIATNITSKI ET AL.

𝜆m = 𝜆1 + m = 𝛼10 + m.

After substitution of 𝜌1(x, t) into the first equation in (44), we obtain the following evolution equation on 𝜌0:

𝜕t𝜌0 = Θ · ∇∇𝜌0 − b · ∇𝜌0 − 𝜆0𝜌0 + 𝜆0𝜆1

t

∫
0

e−𝜆m(t−s)𝜌0(x, s)ds + 𝜆1e−𝜆mt𝜋1(x), (45)

with 𝜌0(x, 0) = 𝜋0(x).
Let us consider the stationary problem L∗𝜌 = 0 for the macroscopic model in Π = T

d−1 × R+. The equation on 𝜌0(x)
takes the form

Θ · ∇∇𝜌0(x) − b · ∇𝜌0(x) − 𝜆0𝜌0(x) +
𝜆0𝜆1

𝜆1 + m
𝜌0(x) =

= Θ · ∇∇𝜌0(x) − b · ∇𝜌0(x) − 𝜆0
m

𝜆1 + m
𝜌0(x) = 0,

(46)

with a boundary conditions
𝜌0(x|xd=0) = 𝜑(x), 𝜌0(x|xd=∞) = 0, (47)

where xd is the direction of the drift. Here, 𝜑(x) ≥ 0 is the profile of the initial concentration on the upper cross section.
Assuming that the initial profile𝜑 is a constant function, one can reduce the dimension in problem (46)–(47) and obtain

a one-dimensional stationary problem that reads{
𝜃𝜌′′0 − b𝜌′0 − 𝜘𝜌0 = 0, 𝜘 = 𝜆0

m
𝜆1+m

,

𝜌0(0) = 1, 𝜌0(+∞) = 0.
(48)

Thus, the rate of the purification process is equal to Rpur = 1
2𝜃

(√
b2 + 4𝜃𝜘 − b

)
, and for sufficiently small 𝜃, we get

Rpur ≈ 𝜘
b

.

Remark 2. If the astral set A contains more than one point, that is, |A| = M > 1, then the kernel K(t − s) in (45) is a
linear combination of exponents e−𝜘𝑗 (t−s) with 𝜘𝑗 > 0, 𝑗 = 1, … ,M.

6 CONCLUSIONS

The present work deals with mathematical models of wastewater purification process in nano-porous filters. We propose
a multi-scale model of a water treatment device whose basic purification elements are located periodically. Assuming that
the discretization procedure applies at the microscopic length scale, we describe the diffusion of impurities as a lattice
random walk in a high-contrast periodic medium with absorption. We define this random walk in terms of the transition
probabilities.

The main goal of our study is to obtain the effective characteristics of the water purification process, that is, the coeffi-
cients of the corresponding macroscopic model. To this end, we use the upscaling procedure and show that the effective
characteristics can be expressed in terms of the microscopic characteristics of the model and several auxiliary functions
being solutions of auxiliary systems of linear algebraic equations. These functions are the so-called correctors, and the
size of these systems only depends on the number of points in the period.

Since the diffusion of impurities differs essentially inside and outside of the micro-granules, we investigate the limit
dynamics of a three-component random walk, the last component represents the absorbed impurities. We then show how
the memory term appears in the evolution equation for the first component of this system and derive the corresponding
effective parameters.

The methods of investigation of the proposed mathematical model rely on a combination of probabilistic approaches
with homogenization and approximation techniques.

We also consider the stationary regime and show how the efficiency of the purification process depends on the charac-
teristics of the macroscopic model. The main parameter of the quality of water purification is the exponent that specifies
the rate of decay of impurities concentration as the distance to the upper cross section of the filter grows. We provide some
examples of calculating such an exponent.
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PIATNITSKI ET AL.

The advantage of the proposed model is a possibility to adapt it to more complex geometries of absorbing films. The
model considered in this work can be used for better understanding complex treatment systems and for optimizing the
parameters of water purification devices in accordance with the restrictions on the device productivity and the purification
quality.
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APPENDIX A: PROOFS OF THE PROPOSITIONS

Proof of Proposition 2. Taking into account the continuity of functions 𝑓𝑗 and the fact that |w − z| ≤ c𝜀 due to the
finite range of interaction, we have

(L0
𝜀FQ

𝜀 + V𝜀F𝜀)(z) =
M∑
𝑗=1

(
(P0
𝜀 − I)q𝑗

( z
𝜀

))
(𝑓0(z) − 𝑓𝑗(z))

+
M∑
𝑗=1

∑
w∈𝜀{x𝑗}♯

v𝜀(z,w)(𝑓𝑗(z) − 𝑓0(z)) + o(1),
(A1)
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PIATNITSKI ET AL.

where o(1) tends to 0 as 𝜀 → 0. From (38) and (A1), we deduce that the functions q𝑗
(

z
𝜀

)
, z ∈ 𝜀B♯, and constants 𝛼0𝑗

should satisfy the following system of equations:

(
(P0
𝜀 − I)q𝑗

( z
𝜀

))
(𝑓0(z) − 𝑓𝑗(z)) +

∑
w∈𝜀{x𝑗}♯

v𝜀(z,w)(𝑓𝑗(z) − 𝑓0(z))

= 𝛼0𝑗(𝑓𝑗(z) − 𝑓0(z)), 𝑗 = 1, … ,M.

Then, for every 𝑗 = 1, … ,M, the function q𝑗
(

z
𝜀

)
is a solution of the equation

(P0
𝜀 − I)q𝑗

( z
𝜀

)
=

∑
w∈𝜀{x𝑗}♯

v𝜀(z,w) − 𝛼0𝑗1𝜀B, z ∈ 𝜀B♯, (A2)

which is equivalent to the following equation:

(P0 − I)q𝑗(x) =
∑

𝑦∈{x𝑗}♯
v(x, 𝑦) − 𝛼0𝑗1B, x ∈ B♯, (A3)

where 1𝜀B and 1B are the characteristic functions of the sets 𝜀B♯ and B♯, respectively, and q𝑗(x) is Y -periodic. According
to the Fredholm alternative equation (A3) has a unique up to an additive constant solution if

⎛⎜⎜⎝
∑

𝑦∈{x𝑗}♯
v(x, 𝑦) − 𝛼0𝑗1B

⎞⎟⎟⎠ ⟂ Ker(P0 − I)∗ with Ker(P0 − I)∗ = 1B;

the last relation here follows from the irreducibility of P0 on B♯. Therefore, there are uniquely defined constants 𝛼0𝑗
given by formula (20), such that Equation (A3) has a unique up to an additive constant bounded periodic solution
q𝑗(x), x ∈ B♯. Proposition 2 is proved.

Proof of Proposition 1. Using (33), we get for all z ∈ 𝜀B♯:

L0
𝜀FP

𝜀 (z) =
1
𝜀2 (T

0
𝜀 − I)

(
𝑓0(z) + 𝜀∇𝑓0(z) · h

( z
𝜀

))
+ (T0

𝜀 − I)
(
∇∇𝑓0(z) · g

( z
𝜀

))
+ 1
𝜀

D𝜀

(
𝑓0(z) + 𝜀∇𝑓0(z) · h

( z
𝜀

))
+ O(𝜀).

(A4)

Then, the vector function h
(

z
𝜀

)
can be found from the relation

1
𝜀2 (T

0
𝜀 − I)

(
𝑓0(z) + 𝜀∇𝑓0(z) · h

( z
𝜀

))
= O(1). (A5)

Letting

p𝜉(x) = p0(x, x + 𝜉), d𝜉(x) = d(x, x + 𝜉), x, x + 𝜉 ∈ B♯, (A6)

we represent T0
𝜀𝑓 (z) as follows:

(T0
𝜀𝑓 )(z) =

∑
𝜉

p𝜉
( z
𝜀

)
𝑓 (z + 𝜀𝜉), z ∈ 𝜀B♯. (A7)
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PIATNITSKI ET AL.

Due to (A7) and condition (2), the left-hand side of (A5) is well-defined and takes the form:

1
𝜀2

∑
𝜉

p𝜉
( z
𝜀

)
(𝑓0(z + 𝜀𝜉) − 𝑓0(z))

+ 1
𝜀

∑
𝜉

p𝜉
( z
𝜀

)(
∇𝑓0(z + 𝜀𝜉) · h

( z
𝜀
+ 𝜉

)
− ∇𝑓0(z) · h

( z
𝜀

))
= 1
𝜀

∑
𝜉

p𝜉
( z
𝜀

)
∇𝑓0(z) · 𝜉 +

1
𝜀

∑
𝜉

p𝜉
( z
𝜀

)
∇𝑓0(z) ·

(
h
( z
𝜀
+ 𝜉

)
− h

( z
𝜀

))
+ O(1)

= 1
𝜀
∇𝑓0(z) ·

(∑
𝜉

p𝜉
( z
𝜀

)(
𝜉 + (h

( z
𝜀
+ 𝜉

)
− h

( z
𝜀

)))
+ O(1).

(A8)

Thus, the periodic vector function h(x) should satisfy the equation

(P0 − I) (l(x) + h(x)) = 0, x ∈ B♯, (A9)

where l(x) = x is the linear function. The solvability condition for Equation (A9) reads

((P0 − I)l,Ker(P0 − I)∗) = ((P0 − I)l, 1B) =
∑
x∈B

∑
𝜉

p𝜉(x)𝜉 = 0.

Since p𝜉(x) = p−𝜉(x+𝜉), this condition is fulfilled, which implies the existence of the unique, up to an additive constant,
periodic solution h(x) of Equation (A9).

We follow the similar reasoning in order to derive an equation for the periodic matrix function g(x), x ∈ B♯. We will
also obtain below the expressions for the effective matrix Θ and the drift b.

Collecting in (A4) the terms of the order O(1), using relation (A9) on the function h(x) and relation (8) on the matrix
D, we obtain:

1
𝜀2

∑
𝜉

p𝜉
( z
𝜀

)
(𝑓0(z + 𝜀𝜉) − 𝑓0(z))

+ 1
𝜀

∑
𝜉

p𝜉
( z
𝜀

)(
∇𝑓0(z + 𝜀𝜉) · h

( z
𝜀
+ 𝜉

)
− ∇𝑓0(z) · h

( z
𝜀

))
+
∑
𝜉

p𝜉
( z
𝜀

)(
∇∇𝑓0(z + 𝜀𝜉) · g

( z
𝜀
+ 𝜉

)
− ∇∇𝑓0(z) · g

( z
𝜀

))
+ 1
𝜀

∑
𝜉

d𝜉
( z
𝜀

)
𝑓0(z + 𝜀𝜉) +

∑
𝜉

d𝜉
( z
𝜀

)
∇𝑓0(z + 𝜀𝜉) · h

( z
𝜀
+ 𝜉

)
= 1
𝜀
∇𝑓0(z) ·

(∑
𝜉

p𝜉
( z
𝜀

)(
𝜉 + (h

( z
𝜀
+ 𝜉

)
− h

( z
𝜀

)))

+ ∇∇𝑓0(z) ·

(∑
𝜉

p𝜉
( z
𝜀

)(1
2
𝜉 ⊗ 𝜉 + 𝜉 ⊗ h

( z
𝜀
+ 𝜉

)
+
(

g
( z
𝜀
+ 𝜉

)
− g

( z
𝜀

))))

+ ∇𝑓0(z) ·

(∑
𝜉

d𝜉
( z
𝜀

)(
𝜉 + h

( z
𝜀
+ 𝜉

)))
+ O(𝜀) (A10)

= ∇∇𝑓0(z) ·

(∑
𝜉

p𝜉
( z
𝜀

)(1
2
𝜉 ⊗ 𝜉 + 𝜉 ⊗ h

( z
𝜀
+ 𝜉

))
+ (P0 − I)g

( z
𝜀

))

+ ∇𝑓0(z) ·

(∑
𝜉

d𝜉
( z
𝜀

)(
𝜉 + h

( z
𝜀
+ 𝜉

)))
+ O(𝜀). (A10)

Here, 𝜉 ⊗ 𝜂 is a matrix with elements 𝜉i𝜂𝑗, i, 𝑗 = 1, … , d.
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PIATNITSKI ET AL.

Denote by Φ and 𝔟 the following periodic matrix and vector functions:

Φ(𝑦) = 1
2
∑
𝜉∈Λ𝑦

p𝜉(𝑦)𝜉 ⊗ 𝜉 +
∑
𝜉∈Λ𝑦

p𝜉(𝑦)𝜉 ⊗ h(𝑦 + 𝜉), (A11)

𝔟(𝑦) =
∑
𝜉∈Λ𝑦

d𝜉(𝑦)(𝜉 + h(𝑦 + 𝜉)) =
∑
𝜉∈Λ𝑦

d(𝑦, 𝑦 + 𝜉)(𝜉 + h(𝑦 + 𝜉)), 𝑦 ∈ B. (A12)

Clearly, both the functions Φ and 𝔟 depend on h. In order to ensure the convergence in (37), we should find a
constant matrix Θ, a periodic matrix function g(𝑦) and a constant vector b such that

(𝔟(𝑦) − b, 1B) =
∑
𝑦∈B

∑
𝜉

d(𝑦, 𝑦 + 𝜉)(𝜉 + h(𝑦 + 𝜉)) − b |B| = 0. (A13)

and, for any k, m, 1 ⩽ k,m ⩽ d,
Φkm(𝑦) + (P0 − I)gkm(𝑦) = Θkm. (A14)

The former equation yields
b = 1|B| ∑

𝑦∈B

∑
𝜉

d(𝑦, 𝑦 + 𝜉)(𝜉 + h(𝑦 + 𝜉)). (A15)

The solvability condition for (A14) reads

(−Φkm + Θkm, Ker(P0 − I)∗) = (−Φkm + Θkm, 1B) = 0.

Thus, Θ is uniquely defined as follows:

Θkm = 1|B| ∑
𝑦∈B

Φkm(𝑦), where Φ(𝑦) =
∑
𝜉

p𝜉(𝑦)𝜉 ⊗
(1

2
𝜉 + h(𝑦 + 𝜉)

)
, (A16)

and g(𝑦) is a solution of Equation (A14) which is uniquely defined, up to a constant matrix. As was proved in Piatnitski
and Zhizhina [9], the symmetric part of the matrix Θ defined by (A16) is positive definite, that is, Θ𝜂 · 𝜂 > 0 for all
𝜂 ≠ 0.

This completes the proof of Proposition 1.

APPENDIX B: ONE EXAMPLE WITH CALCULATION OF EFFECTIVE PARAMETERS

In this section, we consider an example of a high-contrast discrete problem for which we calculate the effective charac-
teristics Θ and b. These characteristics are then used in order to write down the upscaled equations and to describe the
stationary regime; see Equations (46) and (48).

Let the periodicity cell Y be a square 3×3 of the two-dimensional lattice Z2, and assume that A is the one-point subset of
Y located at the center of Y , B = Y∖A. Let us enumerate the elements of B in accordance with their position on the cell Y :

We define the symmetric matrix P0|B♯ = {p0(x, 𝑦), x, 𝑦 ∈ B♯} describing the flow outside of cleaning elements as follows:

- p0(x, x ± e1) = p0(x, x ± e2) = 1
4
, if x ∈ {s1, s3, s6, s8};

- p0(x, x ± e1) = 1
4
, p0(x, x + e2) = 1

2
, if x = {s2};

- p0(x, x ± e2) = 1
4
, p0(x, x − e1) = 1

2
, if x = {s4};

- p0(x, x ± e2) = 1
4
, p0(x, x + e1) = 1

2
, if x = {s5};

- p0(x, x ± e1) = 1
4
, p0(x, x − e2) = 1

2
, if x = {s7}.

Other elements of the matrix P0|B♯ are equal to 0.
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PIATNITSKI ET AL.

Next, we introduce the matrix D, which determines a small (of the order 𝜀) drift. The elements of this matrix D =
{d(x, 𝑦)}, x, 𝑦 ∈ B♯ are defined by

d(x, x ± e2) = ∓K, if x ∈ {s1, s3, s4, s5, s6, s8}, and d(x, 𝑦) = 0, otherwise. (B1)

Observe that relation (8) for D is fulfilled. These two matrices completely define our model at the microscopic length
scale on the component B♯.

In order to compute the matrix Θ and the vector b, we apply formulae (A16) and (A15), respectively. Since both Θ and
b depend on h, it only remains to find the vector function h(x) = {h(x), x ∈ B}. This function is called the corrector, it is
defined by Equation (A9). Recall that h(x) is a periodic vector function that is fully defined by its values on the set B:

h = {h(s1) ∈ Z
2, h(s2) ∈ Z

2, … , h(s8) ∈ Z
2}, B = {s1, … , s8}. (B2)

We explain now how to find this vector function (h1(x), h2(x)). It is worth noticing that (A9) is a system of uncou-
pled equations, and we can solve it for each coordinate h1 and h2 separately. In order to determine the function h1 =
{h1(s1), h1(s2), … , h1(s8)} being the first coordinate of the vector function h on B, we substitute (x1, 0) for l1(x) in (A9) and
rewrite (A9) in the following way:

(P0 − I)h1(x) = −(P0 − I)l1(x) = −
∑
𝜉

p𝜉(x)𝜉1 =∶ 𝜓1(x), x ∈ B♯, (B3)

where 𝜉 = (𝜉1, 𝜉2). Observe that 𝜓1(x) is periodic on Z
2. It can be represented as follows:

Thus, h1 = (P0 − I)−1𝜓1, and solving this system of linear equation, we obtain the following representation for h1(x):

Similarly, letting l2(x) = (0, x2), we deduce that the function h2(x) is a solution to the equation

h2 = (P0 − I)−1𝜓2, where 𝜓2(x) = −(P0 − I)l2(x) = −
∑
𝜉

p𝜉(x)𝜉2,

with 𝜓2 given by

This yields the following representation for h2(x):
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PIATNITSKI ET AL.

Combining formula (A15) with (B1) and (B4)–(B5), one recovers the components of the vector b:

b = 1|B| ∑x∈B

∑
𝜉=±e2

d(x, x + 𝜉)(𝜉 + h(x + 𝜉)) = 1
8
(0,−12K) =

(
0,−3

2
K
)
,

where K is introduced in (B1).
Finally, the 2 × 2 matrix Θ can be calculated by the formula in (A16). Exploiting this formula and taking into

account (B4)–(B5), we have Θ = 9
44

I, where I is the unit 2 × 2 matrix.
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