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Introduction
Gliomas, the most common type of  malignant primary brain tumors, are usually detected late, when 
patients exhibit severe neurological symptoms such as seizures (1). Although treatment with surgical resec-
tion and concomitant radiochemotherapy have improved patient survival, prognosis for glioma patients is 
still poor. Patients suffering from the most common and most aggressive subtype — glioblastoma — have a 
median survival time of  only 15 months (2). Since treatment options are limited, earlier detection of  high-
risk individuals could improve prognosis and affect patient survival (3).

Previous studies have shown that gliomagenesis starts several years before clinical symptoms 
appear (4, 5). Genetic aberrations causing glioblastoma tumorigenesis have been estimated to occur 
up to 7 years before diagnosis (4). Furthermore, a set of  15 metabolites in blood was associated with 
glioma progression up to 8 years before diagnosis (5), and a set of  9 metabolites were associated with 

Genetic and metabolic changes in tissue and blood are reported to occur several years before 
glioma diagnosis. Since gliomas are currently detected late, a liquid biopsy for early detection 
could affect the quality of life and prognosis of patients. Here, we present a nested case-control 
study of 550 prediagnostic glioma cases and 550 healthy controls from the Northern Sweden 
Health and Disease study (NSHDS) and the European Prospective Investigation into Cancer 
and Nutrition (EPIC) study. We identified 93 significantly altered metabolites related to glioma 
development up to 8 years before diagnosis. Out of these metabolites, a panel of 20 selected 
metabolites showed strong disease correlation and a consistent progression pattern toward 
diagnosis in both the NSHDS and EPIC cohorts, and they separated future cases from controls 
independently of biological sex. The blood metabolite panel also successfully separated both 
lower-grade glioma and glioblastoma cases from controls, up to 8 years before diagnosis in 
patients within the NSHDS cohort and up to 2 years before diagnosis in EPIC. Pathway enrichment 
analysis detected metabolites related to the TCA cycle, Warburg effect, gluconeogenesis, and 
cysteine, pyruvate, and tyrosine metabolism as the most affected.
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higher glioblastoma risk even earlier (6). In both studies, the sets of  metabolites indicated an imbal-
anced redox homeostasis (5, 6). In addition, it is well documented that elevated levels of  the mito-
chondrial tricarboxylic acid (TCA) cycle metabolites fumarate, succinate, and D-2-hydroxyglutarate 
promote tumorigenesis (7).

In this study, we analyzed a large set of  prediagnostic plasma samples from 2 independent cohorts, 
the Northern Sweden Health and Disease study (NSHDS) (8) and the European Prospective Investi-
gation into Cancer and Nutrition (EPIC) study (9), from 18 study centers. The samples were collected 
0.2–25 years before glioma diagnosis and were analyzed together with matched controls by global metab-
olomics analyses for discovery and validation of  metabolic changes related to glioma development.

Results
Data overview. Study overview and description of  study participants in the discovery (NSHDS) and 
validation (EPIC) cohorts are presented in Figure 1, A and B, and Tables 1 and 2. For case-control 
pairing, we employed stringent matching based on sex, BMI, age, time in freezer, fasting status, and 
study center. To obtain an overview of  all 1,100 analyzed plasma samples from the global mass spec-
trometry–based (MS-based) metabolomics analyses, we first performed a Uniform Manifold Approx-
imation and Projection (UMAP) for Dimension Reduction analysis (Figure 2, A and B). We included 
all metabolic features that were in common for both NSHDS and EPIC — in total, 802 metabolites (see 
Supplemental Methods for detailed information on data collection and curation; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.171225DS1). UMAP plots of  all 
samples, both future glioma cases (n = 550) and matched healthy controls (n = 550) from EPIC and 
NSHDS are shown as independent observations in Figure 2A and as dependent case-control pairs in 
Figure 2B. As anticipated, we observe cohort- and country-specific clusters when analyzing all cas-
es and controls independently (Figure 2A), indicating systematic differences between and within the 
cohorts. This difference between cohorts and sampling countries was expected since samples were from 
multiple sampling centers with varying sampling routines and population differences. The study was 
therefore designed to reduce the impact of  preanalytical differences by utilizing the differences in rela-
tive metabolite concentration between tightly matched case-control pairs. The UMAP plot constructed 
from an effect matrix of  calculated metabolite concentration differences between matched case-control 
pairs (n = 550 pairs) shows that the overlap of  samples from the cohorts greatly improves and that less 
cohort-specific clusters are observed (Figure 2B). This analysis shows the benefit of  stringent matching 
of  case-control pairs within the same cohorts, as a processing step before data analysis, to increase sen-
sitivity for true biomarker detection and decrease both variation and false discoveries originating from 
preanalytical differences and covariates.

Metabolites that indicate early glioma development. We used multivariate statistical analysis by means 
of  Orthogonal Projections to Latent Structures – Effect Projection (OPLS-EP) to make use of  the effect 
matrix obtained from matched case-control pairs and to discover metabolites related to glioma develop-
ment. Since previous studies indicate that gliomagenesis starts up to 8 years before diagnosis (4, 5), we 
initially focused our analysis on case-control pairs sampled up to 8 years before diagnosis in NSHDS (n 
= 130 pairs). From the generated OPLS-EP model (CV-ANOVA; P = 0.005, R2Y = 0.46, Q2 = 0.08), 93 
metabolites with known identity were found to reach statistical significance (Figure 2C and Supplemen-
tal Table 1). Of  the 93 significantly altered metabolites (hereafter referred to as significant metabolies) 
found in NSHDS, 87 metabolites were also detected in samples from EPIC. However, in EPIC samples, 
only 1 of  the 87 metabolites, fumarate, reached statistical significance (P = 0.02) when focusing on sam-
ples collected up to 8 years to diagnosis, while cystine was borderline significant (P = 0.06). It should 
be noted that plasma samples from EPIC were collected using sodium citrate as anticoagulant, which 
has been reported to induce matrix effects and quench metabolite signals (10, 11). Also, most of  the 
EPIC samples were collected from nonfasting individuals, whereas most of  the NSHDS samples were 
from fasting individuals (Figure 1B, Table 1, and Table 2), which could impact metabolite levels (12). 
However, our earlier study shows that the difference in levels of  glioma-associated metabolites between 
cases and controls increases toward diagnosis (5). Therefore, we analyzed the metabolite levels toward 
diagnosis for the 87 of  93 significant metabolites that could be detected in EPIC, in order to examine if  
the glioma associated metabolites would be similarly altered closer to diagnosis. This analysis shows that 
20 of  87 metabolites displayed the same direction toward diagnosis, with a mean difference of  > 10%  
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closer to diagnosis (within 2 years and/or 1 year to diagnosis), in NSHDS and EPIC (Figure 3 and 
Table 3). For most metabolites, the levels were higher in cases compared with controls, with the highest 
levels closest to diagnosis (Figure 3), except the levels of  tyramine O-sulfate, PE (P-16:0/18:2) and PE 
(P-18:0/18:2), which were lower in cases. These had even more reduced levels closer to diagnosis (Figure 
3), indicating a reversed molecular function. All significant metabolites for samples collected more than 
8 years to diagnosis are listed in Supplemental Table 2.

To validate our findings of  elevated lactate levels (Table 3 and Figure 3), we used the liquid chroma-
tography–tandem MS–based (LC-MS/MS–based) Biocrates MxP500 quant platform for targeted identi-
fication and quantification of  lactate levels in 354 NSHDS samples. Quantified μM levels of  lactate were 
compared with the relative amounts from the Metabolon platform (Supplemental Figure 1, A and B). 
The methods showed strong correlation (R2 = 0.84), with elevated lactate levels in cases within 8 years to 
diagnosis and even higher levels closer to diagnosis (Supplemental Figure 1B). Lactate levels in samples 
that were not measured quantitatively were predicted using linear regression (Supplemental Figure 1C). 
The quantitative targeted measurements of  lactate, including predicted levels, showed the same level of  
significance in case-control pairs within 8 years to diagnosis as seen for the untargeted measurement 
(Puntargeted = 0.0004, Ptargeted = 0.0004).

Figure 1. Study overview. (A) Overview of study design and workflow. Illustrations were created with BioRender.com. (B) Overview of cohort characteristics 
for NSHDS and EPIC samples.
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Predicting glioma development. To assess if  the panel of  20 selected metabolites with consistent progres-
sion pattern toward diagnosis in both NSHDS and EPIC could predict glioma development, we first gener-
ated an OPLS-EP model using the metabolites and the 130 case-control pairs in NSHDS sampled within 8 
years to diagnosis. The predictive ability of  the model was assessed by predicting the samples from NSHDS, 
used to generate the model, and samples from EPIC that were not used to generate the model. The results 
were evaluated with ROC analyses (Figure 4). Within 8 years to diagnosis, the panel of  20 metabolites 
predicted case-control pairs in NSHDS well, with an AUC of  0.853 and P = 3.1 × 10–12 (Figure 4A) where-
as case-control pairs in EPIC showed a poor prediction with an AUC of  0.507 and P = 0.88 (Figure 4B). 
However, prediction limited to case-control pairs within 2 years to diagnosis in EPIC displayed an AUC of  
0.806 with a significant P value of  0.005 (Figure 4D). Similar results were observed for case-control pairs 
within 2 years to diagnosis in NSHDS (AUC = 0.816, P = 0.004) (Figure 4C).

The blood metabolome is dynamic and affected by many exogenous and biological factors, highlight-
ing the need to minimize confounding variation by study design. Since metabolic differences between 
males and females are obvious in blood samples, we wanted to assess our strategy and the predictive abili-
ty of  the 20-metabolite panel on females and males separately. Also, here the panel predicted both female 
and male case-control pairs in NSHDS well, with AUC values for females of  0.870 and P = 3.4 × 10–9  
(Figure 5A) and AUC values for males of  0.818 and P = 2.1 × 10–4 (Figure 5D). Prediction limited to 
case-control pairs within 2 years to diagnosis in NSHDS and EPIC also displayed solid AUC values for 
both females and males (Figure 5, B–F), with the best prediction of  males in EPIC within 2 years of  
diagnosis (AUC = 0.964, P = 6.1 × 10–4). To further assess the predictive ability of  the panel on different 
glioma subtypes, ROC analyses were performed on glioblastoma and all other gliomas (nonglioblasto-
ma) separately. Case-control pairs within 8 and 2 years to diagnosis from NSHDS and within 2 years 
from EPIC were predicted (Figure 6). The panel performed well and gave slightly better predictions for 

Table 1. Demographics for NSHDS cohort participants

NSHDS All years
>8 years to 
diagnosis

<8 years to 
diagnosis

<2 years to 
diagnosis

Cases Controls Cases Controls Cases Controls Cases Controls
Subjects, n 263 263 133 133 130 130 28 28
Sex, n (%)

Male 103 (39.2) 103 (39.2) 58 (43.6) 58 (43.6) 45 (34.6) 45 (34.6) 10 (35.7) 10 (35.7)
Female 160 (60.8) 160 (60.8) 75 (56.4) 75 (56.4) 85 (65.4) 85 (65.4) 18 (64.3) 18 (64.3)

Age at diagnosis (years), mean (range) 62.5  
(32.5–80.0) n/a 66.8  

(41.5–80.0) n/a 58.2  
(32.5–77.3) n/a 54.6  

(32.5–67.6) n/a

Age at sample collection (years),  
mean (range)

53.7  
(28.6–73.6)

53.7  
(27.8–73.0)

53.2  
(29.4–68.8)

53.2  
(30.1–68.5)

54.2  
(28.6–73.6)

54.2  
(27.8–73.0)

53.4  
(30.5–66.4)

53.3  
(30.4–66.6)

Time to diagnosis (years), mean (range) 8.8  
(0.15–25.1) n/a 13.6  

(8.02–25.1) n/a 3.9  
(0.15–7.98) n/a 1.2  

(0.15–1.97) n/a

Sampling date (year), median (range) 1998  
(1986–2014)

1998  
(1986–2014)

1996  
(1986–2008)

1996  
(1986–2008)

1999  
(1988–2014)

1999  
(1988–2014)

2001  
(1991–2014)

2001  
(1991–2014)

Time in freezer (years), mean (range) 21.4  
(5.8–33.3)

21.5  
(5.9–33.2)

23.4  
(11.7–33.3)

23.4  
(11.9–33.2)

19.5  
(5.8–31.3)

19.5  
(5.9–31.3)

18.0  
(5.9–28.2)

18.0 
(5.9–28.2)

BMI (kg/m2), mean (range) 25.8  
(18.3–39.8)

25.4  
(18.1–35.0)

26.0  
(18.8–37.3)

25.5  
(18.7–33.5)

25.7 
(18.3–39.8)

25.3  
(18.1–35.0)

25.7  
(18.3–35.1)

25.9  
(18.1–31.9)

Fasting status, n
0–4 h 74 75 32 30 42 45 13 13
4–8 h 27 26 16 18 11 8 2 2
>8 h 162 162 85 85 77 77 13 13

Glioma subtype, n
Glioblastoma: 9440/3 184 n/a 105 n/a 79 n/a 15 n/a
Gliosarcoma: 9442/3 1 n/a 0 n/a 1 n/a 0 n/a
Astrocytoma: 9400/3, 9401/3 46 n/a 19 n/a 27 n/a 7 n/a
Oligodendroglioma: 9450/3, 9451/3 24 n/a 8 n/a 16 n/a 4 n/a
Glioma NOS: 9380/3 8 n/a 1 n/a 7 n/a 2 n/a

All participants, subgrouped according to time to diagnosis.



5

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(19):e171225  https://doi.org/10.1172/jci.insight.171225

glioblastoma, with AUCs of  0.851 and 0.813 in NSHDS within 8 and 2 years, respectively, and an AUC 
of  0.890 in EPIC within 2 years to diagnosis (Figure 6, A–C). Predictions of  nonglioblastoma were also 
good, with AUCs of  0.832 and 0.785 in NSHDS within 8 and 2 years, respectively, and an AUC of  0.702 
in EPIC within 2 years to diagnosis (Figure 6, D–F). However, the predictions of  nonglioblastoma with-
in 2 years in NSHDS and EPIC did not reach statistical significance, likely due to small sample sizes.

Due to coherent results of  the detection of  glioma development within 2 years to diagnosis in 
NSHDS and EPIC, we calculated the significance for metabolites within 2 years to diagnosis in 
case-control pairs from both cohorts. Seventeen of  the 93 significant metabolites within 8 years to diag-
nosis were still significant within 2 years to diagnosis in NSHDS (Supplemental Figure 2A and Supple-
mental Table 3), whereas 3 were found significant within 2 years to diagnosis in EPIC (Supplemental 
Figure 2B and Supplemental Table 4).

Altered metabolic pathways. We performed a metabolite enrichment analysis to put the panel of  20 
metabolites in common and the 93 significant metabolites discovered in NSHDS into biological con-
text. For the 93 significant metabolites, the most significant overrepresented metabolic pathways were 

Table 2. Demographics for EPIC cohort participants

EPIC All years
>8 years to 
diagnosis

<8 years to 
diagnosis

<2 years to 
diagnosis

Cases Controls Cases Controls Cases Controls Cases Controls
Subjects, n 287 287 148 148 139 139 28 28
Sex, n (%)

Male 129 (44.9) 129 (44.9) 63 (42.6) 63 (42.6) 66 (47.5) 66 (47.5) 15 (53.6) 15 (53.6)
Female 158 (55.1) 158 (55.1) 85 (57.4) 85 (57.4) 73 (52.5) 73 (52.5) 13 (46.4) 13 (46.4)

Country
Italy 57 57 33 33 24 24 5 5
Spain 71 71 48 48 23 23 3 3
United Kingdom 52 52 28 28 24 24 4 4
The Netherlands 41 41 19 19 22 22 7 7
Germany 56 56 18 18 38 38 7 7
Norway 10 10 2 2 8 8 2 2

Age at diagnosis (years), mean (range) 62.5  
(26.8–85.0) n/a 66.1  

(41.1–85.0) n/a 58.9  
(26.8–80.6) n/a 54.2  

(33.3–70.8) n/a

Age at sample collection (years),  
mean (range)

54.4  
(24.3–74.6)

54.4  
(23.5–73.8)

54.2  
(33.0–71.4)

54.2  
(32.8–71.0)

54.7  
(24.3–74.6)

54.6  
(23.5–73.8)

53.0  
(32.7–70.4)

53.0  
(32.5–69.9)

Time to diagnosis (years), mean (range) 8.1  
(0.22–18.6) n/a 11.8  

(8.1–18.6) n/a 4.3  
(0.22–7.95) n/a 1.2  

(0.22–1.96) n/a

Sampling date (year), median (range) 1995  
(1992–2002)

1995  
(1992–2002)

1995  
(1992–2001)

1995  
(1992–2001)

1995  
(1993–2002)

1995  
(1993–2002)

1995  
(1994–2001)

1995  
(1993–2001)

Time in freezer (years), mean (range) 24.2  
(17.7–27.1)

24.2  
(17.8–27.2)

24.7  
(18.1–27.1)

24.7  
(18.2–27.2)

23.8  
(17.7–26.8)

23.8  
(17.8–26.9)

23.8  
(18.3–26.0)

23.8  
(18.3–26.1)

Fasting status, n
0–3 h 145 149 67 69 78 80 16 17
3–6 h 38 37 19 18 19 19 5 5
>6 h 95 95 57 57 38 38 6 6
 Unknown 9 6 5 4 4 2 1 0

Glioma subtype, n
Glioblastoma: 9440/3 170 n/a 100 n/a 70 n/a 10 n/a
Giant cell glioblastoma: 9441/3 2 n/a 1 n/a 1 n/a 0 n/a
Gliosarcoma: 9442/3 5 n/a 3 n/a 2 n/a 1 n/a
Astrocytoma: 9400/3, 9401/3,  
9411/3, 9420/3 63 n/a 25 n/a 38 n/a 11 n/a

Oligodendroglioma: 9450/3, 9451/3 20 n/a 10 n/a 10 n/a 4 n/a
Glioma NOS: 9380/3 26 n/a 9 n/a 17 n/a 2 n/a
Gliomatosis cerebri: 9381/3 1 n/a 0 n/a 1 n/a 0 n/a

All participants, subgrouped according to time to diagnosis.
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the TCA cycle (P = 0.002) and the Warburg effect (P = 0.01) (Figure 7A). Other significantly overrep-
resented pathways (P < 0.05) were pyruvate and cysteine metabolism, gluconeogenesis, and tyrosine 
metabolism. For the 20-metabolite panel, with consistent metabolite level differences in NSHDS and in 
EPIC closer to diagnosis, the Warburg effect (P = 0.02), pyruvate metabolism (P = 0.03), and the TCA 
cycle (P = 0.07) were still the most overrepresented pathways (Figure 7B). The metabolites within the 
significant pathways are however tightly connected. The significant metabolites and pathways, together 
with neighboring pathway of  amino acid metabolism, are presented in Table 4 and Figure 7C. In this 
analysis, the levels of  all significant metabolites within the presented pathways were higher in cases 
compared with controls. In addition, the levels were even higher toward diagnosis for all metabolites 
(Supplemental Figure 3).

Finally, we examined the plasma levels of  2-hydroxyglutarate as several endogenously expressed 
TCA cycle –related metabolites were found to be significantly altered. Plasma levels of  2-hydroxyglu-
tarate, the oncometabolite produced by a mutation in isocitrate dehydrogenase, showed elevated levels 
closer to diagnosis in both NSHDS and EPIC samples (Supplemental Figure 4) but did not reach sta-
tistical significance. As isocitrate dehydrogenase mutation is uncommon in glioblastoma, we examined 
glioblastoma and nonglioblastoma cases separately (Supplemental Figure 4 and Supplemental Methods). 
Here, the plasma levels of  2-hydroxyglutarate followed the same trend as observed for all glioma com-
bined, except for nonglioblastoma in EPIC samples that showed reduced levels toward diagnosis.

Figure 2. Data overview. (A and B) UMAP plots of plasma samples from NSHDS and EPIC. (A) Cases and controls (n = 1,100) colored by cohort (left) and 
sampling country (right). (B) Matched case-control pairs (n = 550) colored by cohort (left) and sampling country (right). SWE, Sweden; ITA, Italy; ESP, 
Spain; GBR, United Kingdom; NLD, Netherlands; DEU, Germany; NOR, Norway. (C) Volcano plot of detected molecular features in NSHDS within 8 years 
to diagnosis (n = 130 case-control pairs), with effect sizes and significance levels for each of the 1,061 molecular features as log-ratios. Significance was 
calculated by multivariate significance (2-sided, P valuew plotted) (28). Sig, Significant molecular features; nonsig, nonsignificant molecular features.
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Discussion
In this study, we found 93 metabolites in NSHDS with significantly different plasma levels within 8 
years of  glioma diagnosis compared with healthy controls. In addition, 20 of  these metabolites displayed 
consistent metabolite-level differences closer to diagnosis in samples from the NSHDS cohort and the 
multicenter EPIC cohort, with a mean difference of  > 10% between cases and controls. This panel of  20 
metabolites showed good ability to separate future glioma cases from matched controls within 8 years 
to diagnosis in NSHDS and within 2 years to diagnosis in EPIC, independently of  biological sex or 
glioma subtype. Our results are in line with previous studies that have detected metabolic alterations in 
prediagnostic plasma samples up to 8 years before glioma diagnosis (5) and longitudinal whole-genome 
profiling of  gliomas showing that mutated founder cells with common genetic aberrations emerge up to 
7 years before diagnosis (4). Metabolites in our panel have previously been linked to tumor metabolism, 
which in our view strengthens their validity. Our metabolite enrichment analysis particularly highlighted 
metabolites linked to the TCA cycle pathway and the Warburg effect as the most affected. Elevated plas-
ma levels of  fumarate and cystine were particularly robust in prediagnostic cases from both NSHDS and 
EPIC within 8 years to diagnosis.

The TCA cycle was found significantly overrepresented in the enrichment analyses. Elevated lev-
els of  TCA cycle–related metabolites, fumarate, succinate, and D-2-hydroxyglutarate, have previously 
been linked to oncometabolite-driven tumorigenesis (7). TCA cycle–related metabolites play a central 
role in the Warburg effect. The Warburg effect, observed in glioma cells and other cancers, is charac-
terized by metabolic reprogramming causing an increased rate of  glycolysis and production of  lactate 
under aerobic conditions with functioning mitochondria (13, 14). Accumulated lactate is released from 
the cell and acidifies the tumor microenvironment, favoring tumor progression. Here, we report signifi-
cantly elevated levels of  lactate in prediagnostic glioma cases within 8 years to diagnosis. In addition, 
we found significantly elevated levels of  N-lactoyl valine, N-lactoyl leucine, and N-lactoyl phenylala-
nine within 8 years to diagnosis. N-lactoyl amino acid production is catalyzed by reverse proteolysis 
of  lactate and amino acids by carnosine dipeptidase 2 (15). N-lactoyl amino acids are poorly studied, 
and their role in glioma development and cancer is unknown. Interestingly, 7 of  the 20 metabolites in 
our panel (lactate, fumarate, malate, hypoxanthine, N-lactoyl valine, N-lactoyl leucine, and N-lactoyl 
phenylalanine) are some of  the most elevated metabolites in blood during physical activity (16, 17). 
Moreover, exercise-induced N-lactoyl phenylalanine has recently been hypothesized to function as a 
molecular signal to regulate energy balance (17). Hypothetically, the shared set of  metabolites related 
to glioma development and physical activity may be linked to inflammatory mediators, since elevated 
levels of  inflammatory cytokines have also been reported in prediagnostic glioma blood (18). Elevated 
levels of  lactate and hypoxanthine have also been reported in blood of  people with immune-mediated 
inflammatory disease (19). These metabolites may reflect a state of  increased energy demand and 
energy turnover caused by inflammation.

In our analysis, products of  the tyrosine metabolism were also found significant, with higher levels 
of  homovanillate and S-adenosylhomocysteine and lower levels of  tyramine O-sulfate in prediagnostic 
glioma cases. In the brain, tyrosine is the starting material for synthesis of  catecholamines (20). Homo-
vanillate is the end product of  dopamine catabolism and is elevated in urine of  patients with catechol-
amine-secreting tumors such as neuroblastoma (21). Altered tyrosine metabolism has previously also 
been found to be related to glioma development, where elevated plasma levels of  4-hydroxyphenylacetic 
acid were detected in prediagnostic glioma cases (5).

Our findings are also consistent with previous reports of  imbalanced redox homeostasis for prediag-
nostic glioma cases, highlighting elevated levels of  metabolites such as cystine, cysteine, eryhtritol, eryth-
ronate, and hypoxanthine (5, 6). However, a complete overlap and replication of  significant metabolites 
between current and previous studies are not to be expected, as the analyses were performed on different 
analytical platforms with different metabolite coverages.

Figure 3. Metabolite levels for case-control pairs toward diagnosis. Box plots with average (dot) and median (line) fold change in case-control pairs for 
NSHDS (blue) and EPIC (orange) samples, subgrouped according to time to diagnosis (>8 years: NSHDS, n = 133, and EPIC, n = 148; <8 years: NSHDS, n = 
130, and EPIC, n = 139; <2 years: NSHDS, n = 28, and EPIC, n = 28; <1 year: NSHDS, n = 9, and EPIC, n = 11). Dashed horizontal lines display a 10% difference. 
The y axis is nonlinearly transformed. All metabolite identifications were validated using synthetic standards, except putative identifications denoted * 
(confident identification without standard) or ** (putative identification without standard).
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As stated, NSHDS and EPIC samples were collected using different blood anticoagulants and the 
majority of  the participants have different fasting status between the cohorts, which — together with the 
multicenter structure of  EPIC — introduced variation unrelated to the research question and compli-
cated the validation of  discovered metabolites in NSHDS. However, these differences also imply some 
degree of  robustness to our findings, as they were consistent in 2 largely diverse cohorts.

Our results show that glioma development is detectable in blood up to 2 years before diagnosis 
and even up to 8 years before diagnosis in a homogenous sample population such as NSHDS. Other 
disease studies have shown that blood tests have the potential to detect neurological disorders, such as 
Parkinson’s and Alzheimer’s disease, in their early stages (22, 23). Clinically, a blood test for glioma 
diagnostics could be used for early detection in patients with nonspecific symptoms or to discriminate 
unclear lesions at brain imaging. The panel of  20 metabolites presented here shows potential to serve 
as a diagnostic tool, and future studies should target these metabolites in a clinical setting, in patients 
with nonspecific symptoms and those with other cancer types, to evaluate their specificity toward gli-
oma. Furthermore, the altered plasma metabolite levels are not proven here to be the result of  glioma 
cancer cells, since the altered metabolite levels can equally be a result of  cells in the microenviron-
ment or just an altered metabolism throughout the body as a consequence of  disease progression. 
We recently showed that WHO-classified subtypes of  glioma tumors have different metabolic pheno-
types that reach beyond isocitrate dehydrogenase (IDH) mutation status (24). A question that remains 
to be answered is whether blood-based metabolomics can differentiate various molecular subtypes. 

Table 3. List of 20 significant metabolites discovered in NSHDS with the same progression pattern toward diagnosis in the EPIC 
validation cohort

Metabolites P value
Mean % 

difference HMDB ID Subpathway Super pathway
Higher in cases

Lactate 0.0004 14 HMDB0000190 Glycolysis, gluconeogenesis, and pyruvate 
metabolism Carbohydrate

Acetylcarnitine (C2) 0.0016 9 HMDB0000201 Fatty acid metabolism  
(acyl carnitine, short chain) Lipid

Hypoxanthine 0.0017 16 HMDB0000157 Purine metabolism,  
(hypo)xanthine/inosine containing Nucleotide

Malate 0.0028 8 HMDB0000156 TCA cycle Energy
Fumarate 0.0054 9 HMDB0000134 TCA cycle Energy
Bilirubin degradation 
product, C17H18N2O4 (1)A 0.0062 16 Partially characterized molecules Partially characterized 

molecules
3-Aminoisobutyrate 0.0069 16 HMDB0002166 Pyrimidine metabolism, thymine containing Nucleotide
Homovanillate (HVA) 0.014 12 HMDB0000118 Tyrosine metabolism Amino acid
3-Methyladipate 0.015 20 HMDB0000555 Fatty acid, dicarboxylate Lipid
Bilirubin (Z,Z) 0.016 13 HMDB0000054 Hemoglobin and porphyrin metabolism Cofactors and vitamins
Isobutyrylcarnitine (C4) 0.019 17 HMDB0000736 Leucine, isoleucine, and valine metabolism Amino acid
N-lactoyl phenylalanine 0.026 6 HMDB0062175 Phenylalanine metabolism Amino acid

Cysteine 0.027 5 HMDB0000574 Methionine, cysteine,  
SAM and taurine metabolism Amino acid

N-lactoyl leucine 0.03 8 HMDB0062176 Leucine, isoleucine, and valine metabolism Amino acid

N-acetyltaurine 0.041 9 HMDB0240253 Methionine, cysteine,  
sam and taurine metabolism Amino acid

Bilirubin (E,Z or Z,E)B 0.042 11 HMDB0000488 Hemoglobin and porphyrin metabolism Cofactors and vitamins
N-lactoyl valine 0.043 7 HMDB0062181 Leucine, isoleucine, and valine metabolism Amino acid

Lower in cases
PE (P-16:0/18:2)B 0.0019 –13 HMDB0011343 Plasmalogen Lipid
Tyramine O-sulfate 0.0083 –23 HMDB0006409 Tyrosine metabolism Amino acid
PE (P-18:0/18:2)B 0.0095 –12 HMDB0011376 Plasmalogen Lipid

P values and mean percentage difference were calculated from case-control pairs within 8 years to diagnosis in NSHDS (n = 130). Significance levels were 
calculated by multivariate significance using loadings w and p (2-sided, P value w presented) (5, 28). Footnotes A and B denote metabolites with putative 
identifications; Aputative identification without standard, Bconfident identification without standard.
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Although we anticipate that our findings will greatly help elucidate the mechanism of  gliomagenesis 
and to find therapeutic targets, affected metabolic and biochemical pathways are still to be fully char-
acterized before clinical applications can be developed.

Methods
Study population and nested case-control design. We conducted a nested case-control study within 2 popu-
lation-based prospective cohorts, NSHDS and EPIC. Detailed information about the cohorts is given 
in Supplemental Methods. Incident glioma cases in NSHDS (International Classification of  Diseas-
es-7 [ICD-7], topography: 193, histology: 475–476) and EPIC (ICD-O-2, topography: C71, histology: 
93800–94800) were identified via cancer registries or through active follow up. Each case was randomly 
paired with a matching control that, at the time of  diagnosis of  the index case, was alive and free of  
cancer (except nonmelanoma skin cancer). Matching was based on sex, BMI, age (± 6 months), fasting 
status, time of  sampling (± 3 months in NSHDS and ± 1 month in EPIC), and study center. In total, 
1,102 blood samples were included: 528 EDTA-plasma samples (264 prediagnostic glioma case samples 
and 264 control samples) from NSHDS and 574 sodium citrate plasma samples (287 prediagnostic gli-
oma cases and 287 controls) from EPIC. The EPIC samples were from Spain, Italy, United Kingdom, 
the Netherlands, Germany, and Norway. Additional information regarding the blood samples is given 
in Supplemental Methods. In this study, we used samples from the single-center NSHDS cohort for 
discovery and the multicenter EPIC cohort for validation.

Metabolomics analyses. Metabolite analysis and data curation are described in detail in Supplemen-
tal Methods. We designed a constrained randomized run order (25) — i.e., each case-control pair was 
run directly adjacent to each other in randomized order. All samples were analyzed using the Metab-
olon Inc. global metabolomics platform, consisting of  4 untargeted ultra high–performance LC–MS/
MS (UHPLC-MS/MS) methods.

Figure 4. ROC analysis using a panel of 20 metabolites. (A–D) Glioma case-control pairs sampled less than 8 
years before diagnosis in NSHDS (A) and EPIC (B), and less than 2 years before diagnosis in NSHDS (C) and EPIC 
(D). Wilcoxon signed-rank test (2-sided) was used to calculate the significance of the ROC curves. n = number of 
pairs available for each analysis.
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For targeted quantitative measurements of  lactate, we used the LC-MS/MS–based Biocrates 
MxP500 quant platform and analyzed 354 NSHDS samples. This analysis is described in detail in 
Supplemental Methods.

Statistics. We analyzed matched case-control pairs as dependent samples throughout the study. 
For this purpose, an effect matrix with differences of  relative concentrations for each metabolite of  a 
case and its matched control was constructed. All statistical tests were 2 sided, except for the 1-sided 
hypergeometric test used in the metabolite enrichment analysis (Figure 7, A and B, and Table 4). P < 
0.05 was considered significant for all tests.

To get an overview of  the samples, we performed Principal Component Analysis (PCA) (26) on 
case-control pairs from NSHDS and EPIC separately. One extreme outlier sample pair was observed in 
the PCA of  NSHDS that indicated an abnormal plasma concentration difference within the pair, and 

Figure 5. ROC analysis using a panel of 20 metabolites for females and males. (A and B) NSHDS female case-control pairs 
sampled less than 8 years (A) or less than 2 years (B) before diagnosis. (C) EPIC female case-control pairs sampled less than 
2 years before diagnosis. (D and E) NSHDS male case-control pairs sampled less than 8 years (D) or less than 2 years (E) 
before diagnosis. (F) EPIC male case-control pairs sampled less than 2 years before diagnosis. Wilcoxon signed-rank test 
(2-sided) was used to calculate the significance of the ROC curves. n = number of pairs available for each analysis.
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it was excluded from further data analysis, resulting in a final number of  550 cases and 550 controls. 
Furthermore, to get an overview of  samples from both cohorts simultaneously, UMAP analysis was per-
formed. UMAP plots were constructed for all samples, as individual observations, and for sample pairs 
using the effect matrix with calculated differences of  matched case-control pairs.

To discover metabolites indicating glioma development, we performed multivariate modeling using 
OPLS-EP (25) with the effect matrix of  case-control pairs from NSHDS and the curated metabolomics 
data of  1,061 molecular features (Supplemental Methods). Significance of  the OPLS-EP model was cal-
culated using CV-ANOVA (2 sided) (27). Only metabolites in NSHDS that were multivariate significant 
(2-sidedmultivariate significance test) (5, 28) were selected for validation in EPIC. For validation, the 
difference between cases and controls in metabolite levels toward diagnosis of  the significant metabolites 
were examined in both NSHDS and EPIC. Metabolites that displayed the same direction toward diag-
nosis, with a mean difference of  > 10% closer to diagnosis (within 2 years and/or 1 year to diagnosis), 

Figure 6. ROC analysis using a panel of 20 metabolites on glioma subtypes. (A and B) NSHDS glioblastoma 
case-control pairs sampled less than 8 years (A) or less than 2 years (B) before diagnosis. (C) EPIC glioblastoma 
case-control pairs sampled less than 2 years before diagnosis. (D and E) NSHDS nonglioblastoma case-control pairs 
sampled less than 8 years (D) or less than 2 years (E) before diagnosis. (F) EPIC nonglioblastoma case-control pairs 
sampled less than 2 years before diagnosis. Wilcoxon signed-rank test (2-sided) was used to calculate the significance 
of the ROC curves. n = number of pairs available for each analysis.
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were identified and examined on their ability to detect glioma development. The results were evaluated 
with ROC analyses. We calculated the AUC and the significance of  the ROC curves using the Wilcoxon 
signed-rank test (2 sided). To assess if  predictions were deviating depending on biological sex or glioma 
subtype, ROC analyses were done for females and males separately and for all glioma, glioblastoma, and 
nonglioblastoma separately (Supplemental Methods).

To put metabolites into biological context and to find altered metabolic pathways, we performed 
metabolite enrichment analysis using Metaboanalyst 5.0 (www.metaboanalyst.ca). For this analysis, we 
included metabolites within the curated NSHDS data set — in total, 736 identified metabolites — with 
known HMDB ID that were coherent with the Metaboanalyst database as a reference library. A hyper-
geometric test was used to calculate significance (1 sided).

Figure 7. Overview of significant metabolic pathways. (A and B) Pathway enrichment analysis using the 93 metabolites significant within 8 years to 
diagnosis in NSHDS (A) and the panel of 20 metabolites in common for NSHDS and EPIC (B). A hypergeometric test was used to calculate significance 
(1 sided). (C) Detected metabolites present in the TCA cycle; the Warburg effect; gluconeogenesis; pyruvate, cysteine, and tyrosine metabolism; and 
neighboring amino acid metabolism. Box plots with average (dot) and median (line) log2 fold change are presented from case-control pairs within 8 
years to diagnosis from NSHDS (n = 130). Dashed horizontal lines display a 10% difference. Significant metabolites, calculated by multivariate signifi-
cance (2-sided), are denoted as *P < 0.05. Undetected pathway metabolites are included with name without box plot.
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Study approval. The IRB of  the IARC and the local ethics committees at each study center approved 
the study. All participants provided written informed consent. All samples were pseudonymized and 
included in the study in accordance with the ethical standards of  the Declaration of  Helsinki. This proj-
ect was approved by the ethical review board at Umeå University (Dnr 2017-295-31M).

Data availability. Data values associated with the manuscript and supplemental material shown in 
graphs are presented in the Supporting Data Values. The complete data sets generated for these analyses 
will be shared upon request to the corresponding authors. Data access requires ethical approval, as exist-
ing informed consent will not permit personal data to be shared publicly. Requests will be reviewed by 
representatives of  the NSHDS/EPIC steering committee.
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Lactate, Malate, 
Pyruvate 

α-Ketoglutarate, 
Lactate, Pyruvate 

α-Ketoglutarate, 
Fumarate, 

Homovanillate, 
S-adenosylhomo-

cysteine
Number of 
metabolites 
detected for 
each pathway 

10 14 7 7 7 13

P value 0.002 0.01 0.03 0.03 0.03 0.04

Hypergeometric test was used to calculate significance (1 sided).
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