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Abstract: The suspension system is of paramount importance in any automobile. Thanks to the
suspension system, every journey benefits from pleasant rides, stable driving and precise handling.
However, the suspension system is prone to faults that can significantly impact the driving quality
of the vehicle. This makes it essential to find and diagnose any faults in the suspension system and
rectify them immediately. Numerous techniques have been used to identify and diagnose suspension
faults, each with drawbacks. This paper’s proposed suspension fault detection system aims to detect
these faults using deep transfer learning techniques instead of the time-consuming and expensive
conventional methods. This paper used pre-trained networks such as Alex Net, ResNet-50, Google
Net and VGG16 to identify the faults using radar plots of the vibration signals generated by the
suspension system in eight cases. The vibration data were acquired using an accelerometer and data
acquisition system placed on a test rig for eight different test conditions (seven faulty, one good). The
deep learning model with the highest accuracy in identifying and detecting faults among the four
models was chosen and adopted to find defects. The results state that VGG16 produced the highest
classification accuracy of 96.70%.

Keywords: fault diagnosis; suspension system; deep learning; data acquisition system; radar plot;
pre-trained networks; image classification

1. Introduction

Cars account for most vehicles on the roads nowadays, with the tally increasing daily.
Nowadays, cars are expected to have top-notch performance and handling characteristics
due to rapid advancements in the automotive field. Furthermore, the provision for en-
hanced comfort is considered the manufacturer’s responsibility to be implemented without
compromising reliability. Driver and passenger comfort rely heavily on the suspension
system due to its shock-absorbing feature. Suspension dampens any force inflicted on the
tires and the vehicle due to road irregularities and ensures that the vehicle stays unharmed.
Despite this, the major function of the suspension system is to manage the vehicle’s han-
dling characteristics by maximizing the friction between the tires and the road and ensuring
that the vehicle can be steered easily and quickly with a high degree of stability. However,
regular use of the vehicle results in vehicle parts’ wear and tear, and the suspension system
is not immune to this. Hence, the suspension system must be designed so that these types
of failures do not impact the performance characteristics of the system. Recent advance-
ments in suspension system technologies have found a way to improve the reliability and
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performance of the suspension system as a whole [1]. However, such systems come at a
high cost due to the system’s complexity. This is reason enough for most manufacturers of
vehicles to stick with the standard and low-cost alternatives that are unreliable and wear
resistant. The suspension system contains many essential components that must work
in tandem to achieve perfection. Among the integral parts, the ball joints and strut are
prone to wear and tear due to fluctuating loads under varying conditions for a prolonged
period of operation. These faults must be identified and rectified at the earliest so that the
damage does not fester and cause other components to fail. Failed components can end up
causing a lot of harm, making the vehicle highly unsafe for road travel. An exemplary fault
diagnosis system would alert the vehicle driver, who would act upon it and nip the issue
in the bud [2]. Fault diagnosis can be achieved in numerous ways. The currently available
suspension fault detection systems use mathematical and machine learning models.

The most common mathematical and machine learning models researchers use for the
fault detection [3] of suspension systems are presented in Table 1 as follows.

Table 1. Models suggested in the literature for the fault diagnosis of the suspension system.

Model Type Name of the Model Working Principle Reference

Mathematical

Parameter Estimation

This model employs ordinary differential equations to find
multiple parameters that portray variations when a fault is

detected. These parameters are then compared to the
optimal set, and the error is found

[4,5]

Parity equations with
input/output models

This model employs the transfer function to find the output
and polynomial error between the model and output [6,7]

Machine Learning

Naive Bayes
This model uses a machine learning algorithm for

classification using the Bayes theorem. This classifier
assumes strong independence between the features

[8]

kNN KNN does not rely on any specific assumptions, earning its
reputation as a non-parametric algorithm [9]

J48 This algorithm results from improving and implementing
the C4.5 algorithm [10]

SVM SVM is another famous ML algorithm that forms a
hyperplane to classify data [11]

Random Forest
The random forest algorithm employs multiple decision
trees on subsets of the given data to improve the model’s

and the dataset’s predictive accuracy
[12]

MLP MLP or Multilayer Perceptron is a model which uses the
back propagations algorithm to classify data [13]

Field of suspension system fault detection has gained vast amounts of traction over the
past few years. Zhu et al. examined the use of mathematical models to construct three fault
detection filters for three different finite frequency domains [14]. Similarly, Azadi & Soltani
proposed a wavelet transform method to detect faults in suspension systems [15]. In 2002
Börner et al. proposed a fault detection system with parameter estimation and the parity
equations method using a microcontroller [16]. While these studies have demonstrated
the effectiveness of mathematical and machine learning models, there are also certain
limitations. Mathematical models have proven highly complicated and sensitive to model
parameters. Similarly, the demanding selection and feature extraction processes contribute
to the complexity of building effective machine-learning models. These steps, although
distinct, add intricacy to the model development process, especially as the complexity of
features increases. On the other hand, deep learning models and networks learn without
performing feature extraction. Deep learning models work by creating complex neural
networks capable of learning and identifying patterns over large numbers of data. These
networks consist of layers of interconnected nodes, each performing a specific computation
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on the input it receives. The resulting output produced by each layer acts as the feed for
the upcoming layer, gradually enabling the network to learn more complex representations
and features of the data. Throughout the training process, the model adjusts the connection
weights between all nodes to minimize the dissimilarity between the predicted feed and the
proper feed of the data. This process is repeated many times with different data samples,
allowing the model to learn all the intricacies of the patterns and the relationships between
the input and output. Once the model is trained, predictions on new and unseen data can
be performed with a significant level of precision in a relatively low time which depends on
the exact model chosen. The use of deep learning models in fault diagnosis is a relatively
new concept and has been in the incubation period for a considerable time (Figure 1).
Only a few researchers have found use for deep learning models for fault detection. Liu &
Gryllias discussed using ML and DL models to detect faults in rolling element bearings [17].
Vasan et al. discussed another application of DL and harnessed its power to monitor tire
pressure and detect punctures in vehicles [18]. Similarly, faults in automobile dry clutches
were diagnosed and detected by Chakrapani & Sugumaran with the help of a transfer
learning-based DL model [19]. Some more studies on applying DL models in machines are
presented in Table 2.
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The fault detection and diagnosis of rotating machines such as the gearbox and roller
bearings were performed by Tang et al. in 2020 with intelligent DL models [20]. DL models
for fault detection do not end here; deep learning models along with SVM were used for
fault detection in automobile hydraulic brake systems by Jegadeeshwaran & Sugumaran in
2015 [21]. Railway bogies bearing faults were diagnosed by Ding et al., with the ultimate
power of lightweight multiscale convolutional neural networks (CNNs) [22]. Deep learning
models have also found use in fault detection in concrete in the past few years by Tanyildizi
et al. The authors devised a method to gauge the properties of concrete containing silica
fumes exposed to extremely high temperatures using DL models [23]. Similarly, Ai et al.
used convolutional neural networks to identify substantial structural damage [24]. Deep
learning models have recently also found use in the medical industry. Fraz et al. suggested
using DL models to perform multiscale segmentation on the exudates present in retinal
images using context clues with the assistance of ensemble classification [25]. Mo et al.
explored the application of cascaded deep residual networks for detecting diabetic macular
edema in retinal images [26]. Deep learning models have also found use in detecting
epileptic and neonatal seizures, as discussed by AH et al. and Nogay & Adeli [27,28].
Welding defect detection was also performed by Y. Zhang et al. and Z. Zhang et al. [29,30].
CNNs have become the preferred method in different domains. They have found use
and are being widely used for fault diagnosis, image and video segmentation, object
recognition and medical diagnosis tasks in contemporary applications due to their ability
to automatically learn hierarchical features from raw input data, their scalability to handle
large datasets and complex tasks and their superior performance compared to conventional
machine learning approaches in various computer vision and image processing tasks.
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Additionally, CNNs offer translation invariance, regularization techniques, spatial and
temporal learning capabilities and the ability to leverage transfer learning, making them an
effective tool for various applications in various domains.

Table 2. Other implementations of deep learning in fault detection in mechanical systems.

Reference Deep Learning Techniques Used Mechanical System

[31] Optimized deep belief network
Rolling Bearing[32] Deep convolution neural network

[33] Ensemble learning method
[34] Stacked auto encoder Gearbox
[35] Transfer learning Spark ignition engine
[36] Stacked denoising auto encoder Centrifugal Pumps
[37] Deep belief network Induction Motor
[38] Artificial neural networks Wind Turbines

The proposed method in this paper consists of three stages: data acquisition and
collection, signal processing with image generation and decision making (classification).
The first stage involves collecting data from accelerometers for every condition to obtain the
required signals for fault diagnosis. In the second stage, the collected data are conditioned
and transformed into a helpful form, i.e., radar plots that various deep learning models
can analyze. In the final stage, a deep transfer learning model classifies the transformed
signals (radar plots) and decides based on the classification results. Deep learning models
have gained significant traction in fault diagnosis due to them having the power to classify
images with high accuracy rates while overcoming some of the limitations of traditional
machine learning models. Despite their potential, deep learning models require significant
computational power to train and run. However, recent advancements have made deep
learning more accessible to researchers and practitioners. Transfer learning is an emerging
technique (based on deep learning) that enables the usage of pre-trained learned weights
with particular domain knowledge to be transferred and applied in a different domain.
Transfer learning can be effective in scenarios with a low volume of data, a lack of sufficient
domain knowledge, minimal computational resources and complexity in building models
from scratch. In the present study, transfer learning has been leveraged to classify radar plot
pictures of eight different suspension conditions including one good and seven faulty cases.
The seven faulty cases included tie rod ball joint worn off (TRBJ), strut worn off (STWO),
lower arm bush worn off (LABW), low pressure in the wheel (LWP), strut external damage
(STED), lower arm ball joint worn off (LABJ) and strut mount fault (STMF). Four popular
deep learning networks were used in this study, namely VGG16, ResNet-50, AlexNet
and GoogLeNet, to classify the images generated from the second stage of the proposed
method. It is worth emphasizing that the accuracy achieved by DL models such as VGG16,
ResNet-50, AlexNet and GoogLeNet can be significantly affected by various parameters
which are referred to as “hyperparameters” which include batch size, epoch, solver and
training test split ratio. The term “batch size” refers to the number of samples used in
each training process. The epoch refers to the repeated usage of a specific quantity of
the dataset to train the model. Finally, the split ratio determines the proportion of the
dataset used for training and testing the model. Optimizing these hyperparameters is
challenging and time-consuming, and their optimal values vary depending on the dataset
and the model architecture. However, it is of the utmost importance to carefully tune these
hyperparameters to ensure that the best possible classification accuracy of the deep learning
models is achieved.

Technical contributions of the study

• The overall experimental process carried out in the experimental study is presented in
Figure 2. Vibration signals acquired using a piezoelectric accelerometer were converted
into radar plots and pre-processed to be compatible with transfer learning networks
considered in the study.
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• Post processing of the radar plots, pre-trained network performance was assessed for
variations in hyperparameters such as solver, mini-batch-size, train-to-test ratio and
initial learning rate.

• The best performing network with optimal hyperparameters accurately classifying
eight suspension conditions was determined.

• The results obtained were then compared with various cutting-edge techniques to
portray the superiority of the proposed methodology.

Novelty of the study

• The paper introduces a novel experimental method using radar plots to visualize
vibration data, offering a simpler alternative to complex techniques such as FFT,
Hilbert Huang transform and empirical mode decomposition.

• The study utilizes transfer learning with four pre-trained networks (VGG16, ResNet-
50, AlexNet, and GoogLeNet) to classify radar plots representing eight suspension
conditions.

• The radar plots are used to classify various suspension cases, including worn tie rod
ball joint (TRBJ), strut wear (STWO), lower arm bush wear (LABW), low pressure in
the wheel (LWP), strut external damage (STED), worn lower arm ball joint (LABJ) and
strut mount faults (STMF).

• Hyperparameter variations were explored to optimize the performance of the pre-
trained networks within the same dataset, resulting in the highest achievable classifi-
cation accuracy for each network.

• The proposed approach enables the generation of reliable radar plots for accurate
analysis of suspension system faults.

2. Features of the Experimental System

This section will deal with the setup features, the method for data acquisition and the
procedure for fault detection in suspension systems.
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2.1. Experimental Setup

The experimental setup presented in Figure 3 comprises several essential components:
a robust frame, a high-performance motor, a sturdy wheel, a durable driveshaft, an idle
roller equipped with an efficient loading system and a McPherson suspension system. The
suspension system comprises a shock absorber, an arm, a linkage rod and a wheel hub. A
thoughtfully designed and carefully constructed experimental setup, resembling a model
representing a quarter of a car, was ingeniously utilized to assess the performance of the
suspension system. At the same time, the wheel moves along a smooth and evenly leveled
surface at a constant velocity of 70 km/h. The constant speed of the wheel was achieved by
placing it on two well-designed supporting rollers equipped with high-quality bearings
that allow free rotation with minimal resistance. The motor with impressive power (in
terms of rotational force) is harnessed using a sophisticated belt drive system coupled with
reliable constant velocity joints to minimize the transmission of unwanted vibration to
the system, thereby ensuring accurate and reliable testing results. In addition, the acting
load on the suspension system is meticulously controlled via a highly advanced hydraulic
system. The hydraulic system design facilitates the effortless height adjustment of the
high-speed rollers, offering precise control over the load exerted on the suspension system.
This thoughtfully crafted design ensures the suspension system is exposed to the exact and
accurate force required to achieve the desired testing results.
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2.2. Data Acquisition Method

Data acquisition involves collecting digital measurements of residual signals, such as
vibration, temperature and sound, from a mechanical system’s real-time operating condi-
tion for analysis and visualization. The current study used a piezo-electric accelerometer
(NI-PCB 352C03) with 10.26 mV/g sensitivity to acquire all the vibration signals for accurate
system fault diagnosis. The accelerometer was mounted on the suspension system control
arm using an adhesive technique. The accelerometer output signal was used as the input
to the NI9234 Data acquisition system via a Universal Serial Bus (USB) chassis, and the
NI LabVIEW software supported the data collection process. During the acquisition and
storage of data, a few parameters and their values were considered. They are a sampling
frequency of 25 kHz, a sample length of 10,000 steps and 100 instances for each class. The
baseline load condition, “No Load” at 0 psi, indicates that the suspension system was in
a state where the wheel was merely in contact with the roller. At the same time, power
was transmitted to the wheel produced by the motor through the belt drive without the
application of external force.
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2.3. Experimental Procedure

In the current study, the vibration readings from the suspension system were taken
for eight cases and collected under no load conditions. A dataset of 100 signal samples
was collected, each containing 10,000 data points via the accelerometer sensor. This process
was repeated for all eight cases under study. These signals were then processed using
Excel macros implemented with Visual Basic to generate radar plot images. The images
were then locally saved and resized to meet the requirements of the pre-trained networks
being used in the study. The resizing was done using a MATLAB algorithm, resulting in
images with sizes of either 224 × 224 or 227 × 227 dimensions. The resized images were
utilized as input data for training and classification purposes. By leveraging the power of
the pre-trained networks, the study aimed to analyze and classify various fault conditions
present in the suspension system. The images served as valuable visual representations
of the underlying vibration patterns allowing the pre-trained networks to learn and make
informed predictions. This experiment applies signal processing techniques, Excel macros
and MATLAB algorithms to preprocess and transform raw vibration data into a format
suitable for the pre-trained networks. The study aimed to enhance the understanding and
classification accuracy of the suspension system fault condition by training these networks
on the resized images. An overview of the discussed faults in this study is provided below,
along with the pictorial representation (Figure 4).
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• Strut mount fault: The suspension system exhibits a fault in the strut mounting in
which the connection and positioning of the strut mount are found to be defective.

• Lower arm bush worn off: The bushing responsible for absorbing shocks and vibra-
tions in the A-arm (also known as the control arm) has worn off. This can result in
increased noise, reduced stability, and compromised handling of the suspension system.

• The lower arm ball joint worn off: The fault occurs when the lower A-arm ball joint
wears off. It can cause excessive play in the suspension, leading to abnormal tire wear,
poor steering response and potential loss of control.

• Tie rod ball joint worn off: This refers to when the joint connecting the steering rack
to the steering knuckle wears off. It can result in unstable steering, vibration and
difficulty maintaining proper wheel alignment.

• Low pressure in the wheel: This refers to a situation where the tire pressure in one
or more wheels is significantly lower than the recommended level. Insufficient tire
pressure can lead to reduced handling, decreased stability, increased tire wear and
decreased fuel efficiency.
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• Strut external damage: This refers to the condition wherein external damage to a strut,
such as bends, dents or leaks, can compromise its structural integrity and affect the
suspension’s ability to absorb shocks and maintain stability.

• Strut worn off: This refers to the condition when a strut becomes worn off which
can result in increased bouncing, reduced stability, longer stopping distances and an
overall compromised ride quality.

3. Experimental Preprocessing and Analysis of Pre-Trained Networks

The primary objective of the present study was to preprocess and analyze radar plots
showcasing accelerometer-acquired vibration signals generated in eight distinct suspension
system conditions on a test bench.

These radar plots were resized and preprocessed into batches of either 224 × 224 pixels
or 227 × 227 pixels. The transfer learning approach utilized the pre-trained networks
trained on the ImageNet dataset. This approach allowed the models to learn from a
large and diverse dataset, improving performance in handling the specific task. To adapt
the pre-trained networks to handle the user-customizable dataset, to accommodate this
particular user-customizable dataset, supplementary layers were incorporated to replace
the existing output layers, aligning with the specific number of user-defined classes. The
experimental preprocessing and analysis of the pre-trained networks included four different
models: AlexNet, ResNet 50, VGG16 and GoogleNet. The comparative analysis of these
four pre-trained networks, offering insights into their unique features and architectural
designs, is presented in Table 3. This analysis provided valuable information on each
model’s strengths and weaknesses. AlexNet, the first network to achieve a top-5 error
rate below 20%, is a relatively shallow network with only eight layers and uses smaller
filters than the later models, making it faster. ResNet 50, on the other hand, is a much
deeper network, with 50 layers, making it more complex with higher accuracy. VGG16
is a deeper network consisting of 16 layers and employing a combination of smaller
filters to improve accuracy. Lastly, GoogleNet employs a unique architecture of inception
modules that reduces the number of parameters required for training, making it efficient
and computationally inexpensive.

Table 3. Characteristics of pre-trained networks used in this study.

Network Number of Layers Key Features Input Size Training Time

AlexNet
8 layers (5 convolutional, 3

fully connected)

-Introduced the concept of deep learning for image
classification

227 × 227 Medium
-Utilized rectified linear units (ReLU) for
non-linearity
-Used dropout regularization
-Implemented local response normalization

GoogleNet 22 layers (27 including
auxiliary classifiers)

-Introduced the concept of inception modules

224 × 224 High

-Utilized 1 × 1 convolutions to reduce the
computational cost
-Used global average pooling for dimensionality
reduction
-Employed multiple auxiliary classifiers for training

VGG16
16 layers (13 convolutional,

3 fully connected)

-Utilized small 3 × 3 convolutional filters throughout

224 × 224 High
-Maintained a simple and uniform architecture
-Achieved impressive performance on various image
classification tasks
-Increased depth with multiple convolutional layers
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Table 3. Cont.

Network Number of Layers Key Features Input Size Training Time

ResNet50
50 layers (49 convolutional,

1 fully connected)

-Introduced residual connections to address
vanishing gradient problem

224 × 224 High-Utilized skip connections to pass activations forward
-Enabled training of intense neural networks
-Introduced the concept of residual blocks

Formation of Dataset and Preprocessing

The current study utilized a dataset of images containing radar plots generated using
signals in the time domain. The recorded vibration signals from the accelerometer were
obtained and stored for the various conditions. These stored signals were reiterated using
Microsoft Excel enabled with Visual Basics Macro to plot the radar images. 800 plots were
generated, with each of the eight classes containing exactly 100 images. These images
were processed further by resizing them to pixels according to the four chosen pre-trained
networks. Figure 5 represents the various radar plot representations of the suspension
conditions. Radar plots were adopted in the study due to ease of visualization, compactness,
quick interpretability and multivariate comparison. These conditions included one standard
and seven fault conditions, each represented by a unique set of radar plots. The generated
plots were critical for analyzing the vibration data and provided valuable insights into
the nature and severity of the different fault conditions. These insights could then be
used to develop practical diagnostic and prognostic tools to enhance the performance and
reliability of the suspension system.
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Figure 5. Radar plot samples depicting all eight conditions of the suspension system (a) good
(b) lower arm ball joint worn off (c) strut mount fault (d) strut worn off (e) tie rod ball joint worn off
(f) strut external damage (g) low pressure in the wheel (h) lower arm bush worn off.

Generally, radar plots are polygon-shaped in nature and represent data in a circular
rather than linear form. The advantages of using radar plots over vibration plots is that
radar plots converge the total information in a compact region. In contrast, horizontal
vibration plots have information that occurs only in particular regions. Radar plots enhance
the pattern learning capability of deep learning models over vibration plots. The original
manuscript’s diagrams depict the images fed into the pre-trained models. The reason
for doing so is to eradicate or biasing in classification due to the presence of external
information such as axis details. The distance from the origin to each point in the plot
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represents the amplitude of the vibration signal while the axis ends represent the sample
length, as shown in Figure 6.
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4. Results and Discussion

The primary focus of this section is to comprehensively evaluate and compare the per-
formance of the four selected pre-trained networks, namely VGG16, GoogleNet, AlexNet,
and ResNet-50, aiming to conduct a thorough analysis for the fault detection of suspension
systems. Various experimental settings were investigated to achieve this goal, including
different train test data split ratios, solver algorithms, learning rates and batch sizes. The
experiments were conducted by leveraging MATLAB R2022a software along with the nec-
essary toolboxes, namely computer vision, transfer learning and deep learning. To provide
a thorough account of the empirical observations, an extensive investigation of the efficacy
of all four pre-trained networks under different experimental conditions was carried out.
Specifically, the network accuracy varied with changes in the train to test split data ratio,
solver, initial learning rate and batch size. A comparative analysis was conducted based
on each network’s training time and model size under different experimental settings.
The findings suggest that the choice of pretrained network and the experimental settings
significantly affect fault detection performance in suspension systems. Among the four
pre-trained networks, VGG-16 generally achieved peak precision, followed by GoogLeNet,
ResNet-50 and AlexNet. However, the efficacy of each network varied depending on the
experimental settings, with some networks performing better under certain conditions.
A detailed description of all of the observations is presented in the sections below. The
performance metric considered in the study for comparative purposes is test accuracy,
which has been named classification accuracy in the following tables.

4.1. Impact of Train Test Ratio

In deep learning, training a neural network involves dividing the input data into
two sets, the training and the testing data set. The training data set is used to update
the biases of the neural network, while the testing data set is employed to evaluate the
accuracy of the trained model. In the context of pre-trained networks, the same process
is followed. The pre-trained network is first fine-tuned on the training dataset and then
evaluated on the testing dataset. The train test data split ratio is the ratio in which the
input/feed data are divided within these two sets. To identify the optimum train to test
ratio for a particular pre-trained network, it is essential to experiment with different ratios
and additional hyperparameters such as learning rate, solver method and batch size.
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This study tested three differeg-testing data ratios for the four pretrained networks by
keeping the remaining hyperparameters constant (batch size value of 10, solve algorithm
as SGDM and a learning rate of 0.0001). The performance of each of the four pre-trained
networks varies with a change in the train–train ratio, as shown in Table 4. For instance,
AlexNet produced an accuracy of 90.60% at a train–test ratio of 0.80:0.20. VGG16 and
GoogleNet produced 94.20% and 87.90% classification accuracy for 0.70:0.30 train-testing
ratio. The ResNet-50 pretrained network achieved a maximum accuracy of 86.20% for
the train to test ratio of 0.80:0.20. Therefore, the overall classification accuracies of the
four networks at different split ratios were calculated as 88.83%, 92.56%, 88.80% and 85.60%,
with the maximum overall accuracy being exhibited by VGG16.

Table 4. Accuracy of pretrained networks at various split ratios.

Pretrained
Model

Classification Accuracy for Different Split Ratio (%) Mean Accuracy
(%)0.70:0.30 0.75:0.25 0.80:0.20

VGG-16 94.20 93.50 90.00 92.56
GoogLeNet 87.90 86.00 92.50 88.80

AlexNet 90.40 85.50 90.60 88.83
ResNet-50 84.60 86.00 86.20 85.60

4.2. Impact of Solvers

Deep learning is an ever-evolving field, and researchers are constantly seeking ways to
improve the performance of DL models. One standard way to achieve this is by leveraging
solvers, also known as optimizers. Solvers are various algorithms that minimize the value
of training loss to improve the efficacy characteristics of the model during the process of
training. In this study, three leading solvers were adopted to evaluate the performance of
each of the four pre-trained networks. These are root mean square propagation (RMSprop),
adaptive moment estimation (ADAM) and stochastic gradient descent (SGDM). The present
study found that the optimum train–test split ratios for each of the pre-trained networks
were as follows: for AlexNet, a split ratio of 0.80:0.20; for VGG16, a split ratio of 0.70:0.30; for
GoogLeNet, a split ratio of 0.80:0.20; and for ResNet-50, a split ratio of 0.80:0.20. These ratios
were found to yield higher classification accuracies for each respective model. However,
it is essential to note that the choice of solvers can also influence the effectiveness of the
pre-trained networks. As shown in Table 5, peak precision/accuracy was obtained by the
GoogLeNet network with the RMSprop solver, achieving a massively high accuracy of
96.30% and an overall classification accuracy of 93.96%. In contrast, VGG16 had the lowest
accuracy of 55.40% with the ADAM solver, which gave the lowest accuracy when compared
with the accuracy obtained after the adoption of the SGDM solver (94.20%) as well as the
RMSprop solver (67.90%). As a result, VGG-16 had the lowest overall classification accuracy
of 72.50%, indicating that it was the worst performing network, with the lowest average
accuracy percent considering all three solvers.

Table 5. Accuracy of pre-trained networks for different optimizers (solvers).

Pretrained
Model

Classification Accuracy for Different Solvers (%) Mean Accuracy
(%)SGDM ADAM RMSPROP

VGG-16 94.20 55.40 67.90 72.50
GoogLeNet 92.50 93.10 96.30 93.96

AlexNet 90.60 82.50 89.40 87.50
ResNet-50 86.20 90.00 93.80 90.00
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4.3. Impact of Batch Size

The choice of batch size during a deep neural network training significantly impacts
its training dynamics and overall performance. Generally, larger batch sizes can speed
up the training process by processing more samples per iteration. In comparison, smaller
batch sizes can yield more accurate gradients and better generalization to unseen data.
However, the optimal batch size can vary massively depending on the architecture and
dataset. This study investigated the impact of batch size on the classification accuracy of
four pre-trained neural network architectures (AlexNet, VGG-16, GoogLeNet and ResNet-
50) using five different batch sizes of 8, 10, 16, 24 and 32 (Table 6). The experiment
was conducted with the optimum hyperparameters identified in the previous section,
including the optimizer and train–test ratio. The results showed that the optimal batch
size varied depending on the architecture used. For the AlexNet architecture, a batch
size of 16 resulted in the highest classification accuracy, while for VGG-16, GoogLeNet,
and ResNet-50 architecture, 10 resulted in the highest classification accuracy. Specifically,
ResNet-50 achieved the highest overall accuracy of 90.14%, with a maximum classification
accuracy of 93.80% for the batch size of 10. The reason for these different optimal batch sizes
can be attributed to the architecture and complexity of the neural network. For example,
AlexNet has a relatively simple architecture compared to the other three networks and
may benefit from larger batch sizes to speed up training. On the other hand, VGG-16,
GoogLeNet and ResNet-50 have more complex architectures with deeper layers and may
require smaller batch sizes to avoid overfitting and achieve better generalization. The
choice of batch size also affects the memory usage of the neural network during training.
Larger batch sizes require more memory to store the intermediate activations and gradients,
which may become a limitation for GPUs with limited memory. On the other hand, smaller
batch sizes may result in slower training due to the overhead of data transfer between the
GPU and CPU.

Table 6. Accuracy of pre-trained networks for the 5 different batch sizes.

Pretrained
Model

Classification Accuracy at Different Batch Sizes (%) Mean
Accuracy

(%)8 10 16 24 32

VGG16 89.60 94.20 91.70 92.90 79.60 89.60
GoogLeNet 90.00 96.30 94.40 90.00 69.40 88.02

AlexNet 90.00 90.60 91.90 85.60 90.60 89.74
ResNet-50 91.90 93.80 91.90 90.00 83.10 90.14

4.4. Impact of Learning Rate

Choosing the appropriate initial learning rate is critical in achieving optimal model
performance during training. For each update in the model weights, monitoring and
supervising the changes in the model based on a predictable error is essential. However,
choosing the ideal learning rate is not straightforward. It requires balancing the need for
faster computation time and reducing the risk of high errors affecting the model’s accuracy.
In this experiment, the researchers evaluated the impact of different initial learning rates of
0.0001, 0.0003 and 0.001 on the classification effectiveness of each network, keeping other
hyperparameters constant for each network. The four pretrained networks performed
differently based on the learning rate used, as shown in Table 7. The results show that the
GoogLeNet network achieved the highest classification accuracy at an impressive 96.30%
for a learning rate of 0.0001 but still ended up with the lowest overall accuracy of 78.76%
in this comparison. This result is attributed to the fact that a lower learning rate helped
to minimize the error value while keeping the computation time within reasonable limits.
However, the optimal learning rate may vary depending on the choice of hyperparameters
such as the optimizer algorithm and train to test ratio. For instance, the AlexNet network
performed best with an SGDM solver and a 0.80:0.20 train to test ratio, while the VGG-16
network performed best with an SGDM solver and a 0.70:0.30 train to test ratio. On the
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other hand, the ResNet-50 and GoogLeNet networks performed best with an RMSprop
solver and a 0.80:0.20 train to test ratio. Therefore, selecting an appropriate learning rate
requires a balance between faster computation time and reducing the risk of high errors
affecting the model’s accuracy. The results obtained from this experiment indicate that
different networks may require different hyperparameters to achieve optimal performance
during training. These findings underscore the importance of selecting appropriate solvers
in achieving optimal performance in deep learning models. For instance, if VGG-16 were
to be used in a classification task, it would be advisable to use the SGDM solver to obtain
the highest possible classification accuracy. On the other hand, the RMSprop solver may be
a better choice for other models, but it is important to note that this conclusion may vary
according to the specific model in use and the task at hand.

Table 7. Accuracy of pre-trained networks for different initial learning rates.

Pretrained
Model

Classification Accuracy for Different Learning Rates (%) Mean Accuracy
(%)0.0001 0.0003 0.001

VGG-16 94.20 86.70 80.80 87.23
GoogLeNet 96.30 90.00 50.00 78.76

AlexNet 91.90 92.50 88.10 90.83

ResNet-50 93.80 83.80 81.20 86.26

4.5. Impact of Number of Epochs

The effect of epoch on CNNs is a crucial aspect to consider when training a model. The
number of epochs determines how often the entire training dataset is run through the net-
work during training. It plays a significant role in the convergence and overall performance
of the model. To investigate the impact of different epoch values on the performance of a
CNN, researchers trained multiple CNN architectures with varying epoch values and eval-
uated their classification performance. The other hyperparameters, such as learning rate,
batch size and optimizer, were kept constant across all networks. The experiment revealed
that the number of epochs directly influences the model’s accuracy. It was observed that as
the number of epochs increased, the models initially showed improvements in accuracy;
however, after reaching a certain point, they started to overfit the training data. Overfitting
occurs when the model becomes too specialized in the training data and gives poor accuracy
on new unseen data. The results indicated that an optimal number of epochs exists for each
CNN architecture. Insufficient epochs may result in underfitting, where the model fails to
effectively capture intricate patterns in the data. Conversely, excessive epochs can lead to
overfitting, causing the model to “memorize” the data rather than “learn” generalizable
features. Striking the right balance is crucial to ensure the model can grasp the underlying
patterns in the data while avoiding excessive memorization. The researchers found that,
as given in Table 8, VGG-16 architecture achieved the highest classification accuracy of
98.30% with 60 epochs, while GoogLeNet reached 96.30% accuracy with 10 epochs. The
ResNet-50 architecture performed best with 40 epochs, achieving an accuracy of 96.20%.
These results highlight the importance of selecting an appropriate number of epochs for
each CNN architecture to achieve optimal performance. It is worth noting that the optimal
number of epochs varies massively depending on the dataset and the sophistication level
of the task. Therefore, it is crucial to experiment and fine-tune this hyperparameter for
specific applications. The regular monitoring of the model’s performance on validation
data can help determine the point at which the model starts to overfit, allowing for early
stopping to prevent performance degradation.
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Table 8. Accuracy of pre-trained networks for different numbers of epochs.

Pretrained
Model

Classification Accuracy for Different Numbers of Epochs (%) Mean Accuracy
(%)10 20 30 40 50 60 70 80 90 100

VGG-16 94.20 95.00 96.70 95.00 96.70 98.30 97.90 97.10 97.20 95.80 96.39

GoogLeNet 96.30 95.60 95.30 69.40 95.00 94.38 94.30 92.50 90.60 91.60 91.49

AlexNet 92.50 88.80 93.80 92.50 95.00 94.40 94.20 93.10 92.20 90.00 92.65

ResNet-50 93.80 91.90 91.20 96.20 95.10 95.60 86.90 94.30 86.20 84.40 91.67

4.6. Comparative Examination of Trained Models

The current section delves into the effectiveness of pretrained networks and the selec-
tion of optimal hyperparameters that contribute to maximum classification accuracy. In this
experimental research, the authors have prescribed the optimal hyperparameter settings,
which have improved the overall effectiveness of pretrained models, in Table 9. Moreover,
the performance/efficacy of pretrained networks with all the optimum hyperparameters is
compared in Table 10. Analyzing the table reveals that VGG16 exhibits the highest accuracy
when utilizing the observed optimal hyperparameters. Therefore, it is advised that VGG-16
be incorporated for fault detection in suspension systems, considering its superior classifi-
cation accuracy. Figure 7 illustrates the training progress of VGG-16. The training curve
demonstrates practical training as it reaches a plateau after the sixth epoch, indicating suc-
cessful updates to the model weights. The reduction in data losses throughout the network
training process further suggests the attainment of optimal hyperparameter choices.

Table 9. Optimal hyperparameters for all four of the pretrained models.

Pretrained
Model

Optimal Hyperparameter Configuration

Split Ratio Solver Batch Size Learning Rate Epochs

VGG-16 0.70:0.30 SGDM 10 0.0001 60

GoogLeNet 0.80:0.20 RMSprop 10 0.0001 10

AlexNet 0.80:0.20 SGDM 16 0.0003 50

ResNet-50 0.80:0.20 RMSprop 10 0.0001 40
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Table 10. Comparative analysis of the performance among diverse pre-trained networks with their
optimal hyperparameters.

Pretrained Model Maximum Classification Accuracy Achieved
(%)

VGG-16 98.30

GoogLeNet 96.30

AlexNet 95.00

ResNet-50 96.20

To further evaluate the performance of the VG16 architecture deployed in suspension
system fault detection, Figure 8 presents a confusion matrix that visually illustrates the clas-
sification results obtained by the pre-trained network. This matrix offers an intuitive way
to evaluate the network’s performance. By examining the diagonal elements, representing
correctly classified instances, it becomes apparent that the network effectively transferred
learning from the adopted network and minimized data loss during the learning process.
Moreover, the absence of misclassified instances further confirms this observation. The
confusion matrix is shown in Figure 8 and demonstrates that the architecture of VGG16
achieved a very high classification accuracy of 98.30%. Only four of the eight classes
showed misclassifications. It is worth noting that these misclassifications may have been
influenced by factors such as signal quality degradation, noise interference and similar-
ities between acquired signals. Table 10 summarizes the optimized pretrained models’
performances, indicating that VGG16 outperformed the others. Considering its excellent
performance, VGG16 is recommended as the most suitable and reliable pretrained DL
network for malfunction detection in suspension systems.
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4.7. Comparison with Other State of the Art Techniques

Multiple cutting-edge techniques were contrasted to prove the viability and dominance
of the method proposed in this study over the other techniques for fault detection in
suspension systems. Table 11 presents the final performance of other existing techniques
(as well as of the proposed method). From Table 11, one can conclude that the method
proposed in this study is superior due to its higher classification accuracy.
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Table 11. Comparative analysis of accuracy between proposed method and state of the art techniques.

Reference Technique Used Total Number
of Conditions Types of Plots/Signals Accuracy (%)

[39] Bayes Net Machine learning classifier 8 Vibrational Signals 88.40

[40]
Random Forest 8 Vibration Signals 95.88

J48 Algorithm 94.00

[41] Deep Semi Supervised method 2 Multi Sensor data 85.00

[42]

KNN

3 Acceleration Signals

71.90

Naïve Bayes 78.10

Ensemble 81.30

Linear SVM 84.40

Proposed Method 8 Vibration signals with
radar plots 98.30

1. Bayes Net Classifier:

- Balaji et al. [39] utilized the Bayes net classifier to detect faults in suspension
systems.

- Vibrational signals from a test bench were collected and used for classification.
- The system was successfully classified into eight different conditions based on

these signals.

2. Random Forest and J48 Algorithm:

- Balaji et al. [40] employed the Random Forest and J48 algorithms for fault classifi-
cation and detection in suspension systems.

- The focus was on vibration signals, and the study investigated the system under
eight distinct conditions.

3. Deep Semi-Supervised Feature Extraction:

- Peng et al. [41] proposed a deep semi-supervised feature extraction method for
fault detection in rail suspension systems.

- This approach leveraged data from multiple sensors and was particularly effective
when only one data class was available.

- The study considered the system under two distinct conditions.

4. KNN (K-Nearest Neighbors), Naïve Bayes, Ensemble Methods, Linear SVM (Support
Vector Machine):

- Ankrah et al. [42] investigated the application of KNN, Naïve Bayes, ensemble
methods, and linear SVM for fault detection in railway suspensions.

- Acceleration signals were used for classification, and the system was classified
into three different classes.

By examining the performance and capabilities of these techniques, in conjunction
with the insights provided in Table 11, we can conclude that the proposed method is
superior to other cutting-edge methods for fault detection in suspension systems.

5. Conclusions

This study aimed to investigate the effectiveness of transfer learning in the task of
suspension system fault detection using four pretrained DL networks: GoogLeNet, VGG16,
AlexNet and ResNet-50. The study focused on classifying seven primary suspension fault
conditions (strut mount fault, A-arm bush worn off, lower A-arm ball joint worn off, tie rod
ball joint worn off, low pressure in the wheel, strut external damage, strut worn off) and one
normal reference state, based on analyzing vibration radar graphs. The trained networks
used CNN layers to execute feature extraction, feature selection and classification in a
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unified manner, resulting in an end-to-end ML method. According to the study’s findings,
transfer learning combined with ease of experimentation might be a viable solution for
suspension system monitoring and the detection of defects. Statistical analysis showed
that VGG16 produced the highest accuracy of 98.30%, followed by GoogLeNet, which
yielded 96.30% accuracy, while AlexNet and ResNet-50 yielded an accuracy of 95.00% and
96.20%, respectively. VGG16 was chosen as the most optimally performing network and
is recommended for performing suspension system fault detection economically. This
entire procedure of fault detection in the suspension system with this method is speedy.
This makes the model extremely viable to perform the task of fault detection. In terms
of future scope, the proposed fault diagnosis system has the potential to be extended
to handle multiple faults by integrating the superposition of sensors and accounting for
varying speed conditions. Additionally, conducting real-time tests on the proposed method
during vehicle operations, particularly for diagnosing suspension system faults using
cruise control on a test track under constant load conditions, would yield valuable insights.
Certain limitations do exist: the developed model works effectively for the acquired data;
the acquisition or simulation of faults require expertise; data acquisition coupled with
computational resources is a prime challenge. Finally, the study’s findings have important
implications for developing modular and user-friendly defect diagnosis systems that might
be implemented into commercially available vehicles for real-time detection.
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