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Abstract. Kubernetes default configurations do not always provide optimal se-
curity and performance for all clusters and IoT edge devices deployed, making
them vulnerable to security breaches and information leakage if misconfigured.
Misconfiguration leads to a compromised system that disrupts the workload, al-
lows access to system resources, and degrades the system’s performance. To pro-
vide optimal security for deployed clusters and IoT edge devices, the system
should detect misconfigurations to secure and optimize its performance. We con-
sider that configurations are hidden, as they are some sort of secret key or access
token for an external service. We aim to link the clusters and IoT edge devices’
undesirable observed performance to their hidden configurations by providing a
multi-pronged self-adaptive controller to monitor and detect misconfigurations
in such settings. Furthermore, the controller implements standardized enforce-
ment policies, demonstrating the controls required for regulatory compliance and
providing users with appropriate access to the system resources. The aim of this
paper is to introduce the controller mechanism by providing its main processes.
Initial evaluations are done to assess the reliability and performance of the con-
troller under different misconfiguration scenarios.

Keywords: Misconfiguration · Monitor · Detection · RBAC · IoTs Edge Devices
· Clusters · Markov Processes

1 Introduction
Misconfiguration is unsecured default configurations or incorrect configuration(s)
within the parameters of the system components (i.e., system clusters, IoT edge
devices) that violate a configuration policy and may lead to vulnerabilities that
affect the system’s workload and performance at different system levels. At the edge
level, a misconfigured edge device opens the potential for security breaches. For
instance, if an edge device runs with default privileges or the same privileges as the
application, vulnerabilities in any system’s component can be accidental (e.g., remote
SSH open) or intentional (e.g., backdoor in component). At the application level, a
misconfigured container (e.g., network port open) allows an attacker to exploit the
Docker API port that escalates the attack to other containers and hosts. At the cluster
level, misconfigurations in core Kubernetes components (e.g., API server, Kubelet,
Kube-proxy) lead to the compromise of complete clusters, severely impacting system
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performance. To optimize a system’s performance, system resources (e.g., CPU,
memory) should be maximized for a workload; however, knowing the right limits to
set for smooth application performance with different resource settings can be tricky.
Large cloud service providers (e.g., Google, Microsoft, Amazon, Netflix) experienced
misconfigurations that resulted in a vulnerable system [11], [25]. The management of
configurations has been explored in the literature [4], [3], [8], however, the complexity
of misconfigurations arose from a large number of configuration parameters, their
correlations, and dependencies makes the reasoning about the misconfigurations
difficult.

This paper extends the work in [20], [21] by proposing more details about a self-
adaptive controller that detects misconfigurations of edge devices and clusters. The pro-
posed controller is based on Hierarchical Hidden Markov Models (HHMMs), which we
chose to (1) map the observed failure in metrics variations (e.g., CPU, Network, Mem-
ory, Workflow, Response Time) to the hidden misconfigurations in edge devices and
system clusters. (2) Track the path of misconfiguration to show its impact on perfor-
mance and workload. Furthermore, the controller extension implements standardized
enforcement policies, demonstrating the controls required for regulatory compliance,
and providing users with appropriate access to the system resources by extending the
HHMMs to restrict access to our system and prevent security policy violations. The
objective of this paper is to introduce the controller in terms of its architecture and pro-
cessing activities, focusing on performance and reliability concerns. The remainder of
this paper is organized as follows. Section II presents the research challenges. Section
III discusses a use-case. Section IV introduces the self-adaptive controller phases. Sec-
tion V evaluates the controller. Sections VI and VII conclude the article and present the
future direction of the work.

2 Research Challenges

Managing the misconfiguration of Kubernetes clusters and edge devices offers several
challenges, such as: Workload Misconfiguration: containers have built-in configu-
ration settings to determine the amount of CPU and memory resources they use (via
resource requests and limits). These settings in essence override some auto-scaling ca-
pabilities of the underlying platform and can lead to under-provision of the workloads,
which causes performance issues, or over-provision, which can lead to dramatic inef-
ficiency and cost overruns. For example, a container may run with more security per-
missions than required and escalate its own privileges, e.g., root-level access, which
consumes considerable resources to fix and cause system downtime. A single workload
may require significant configuration to ensure a more secure and scalable applica-
tion [18], [26], [23].

Resource-Limit: misconfigurations of Kubernetes workloads often involve ineffi-
cient provisioning of compute resources, leading to an over-sized bill for cloud comput-
ing. To maximize CPU efficiency and memory utilization for a workload, teams need
to set resource limits and requests. But knowing the right limits to set for smooth appli-
cation performance can be tricky [2], [13], [10].

Dependency between System Components: while many tools are available for
configuration scanning, there are some challenges ahead of them: (a) some configura-
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tion processes are done manually, which could lead to a risk of user error [19], [22],
[27] (b) Configuration dependencies between different system components are passed
manually as configuration parameters, which could lead to a complex set of CI/CD
pipelines that is difficult to maintain [12], [7], [6].

Shared-Configurations: A configuration can be used by multiple applications
that are themselves managed by different teams. While a configuration’s name
(key) stays the same across environments, a configuration’s value varies across
environments, which makes configuration changes hard to test, as changing a shared
configuration requires coordination across teams, coordinated testing, and coordinated
deployment [19], [12], [13], [29].

Configuration Change Late Check: While some configuration parameters may
be checked when used in specific tasks at startup time, other parameters may not be
checked or used. These parameters might have errors that wouldn’t be detected until
they showed up later (e.g., error handling). Before deploying, the configuration param-
eters must be validated to optimize system performance, which is a time-consuming
task, and failing to validate a change could lead to undesirable downtime.

3 The System Under Observation - A Healthcare Use-case
Our system comprises hierarchical components with different configurations, resources,
and policies. Components include gateways, sensors, services (e.g., monitor heart rate),
edge devices, clusters, nodes, containers, and system users (e.g., healthcare partici-
pants), including their roles and access control to manage and control sensors and actu-
ators attached to the system, as shown in Figure 1.

At the edge layer, misconfiguration (e.g., lack of authentication and authoriza-
tion [15]) could affect device monitoring and allow an attacker to inject or modify
data to reprogram the device. At the fog layer, misconfiguration at the cluster level
(e.g., vulnerable product version [14], [16], no parameter validation [17]) could allow
an attacker to gain root-level access to the host and exploit system processes. At the
cloud layer, misconfiguration, such as enabling anonymous access to blob containers
in cloud storage, might result in the leakage of sensitive information. In such settings,
participants linked to the system may experience anomalous behavior or threats that
stress the system and its performance. Hence, we differentiated between the types
of observation concerning misconfiguration and performance degradation: error that
refer to a misconfigured system component, which is unknown and hidden from the
participants and could lead to threats such as distributed denial of service attacks
that target the configuration of the component to impact the trust established between
the IoT devices and the system. Error and its consequences of threats can lead to
anomalous or faulty behavior anomaly/fault, which is hidden from the participants
(i.e., overload and abnormal flow of information characterizing stealthy threat strategies
conditioned on the system model and the control policy). Such settings are observed
by the occurrence of an observed failure (e.g., saturated resources) emitted from the
settings of hidden components.

4 Self-Adaptive Controller
This section presented the main phases of the controller. The controller adopted the
Monitor, Analysis, Plan, Execute, and Knowledge (MAPE-K) architecture for self-
adaptive systems and consists of (1) Monitoring that collects performance data; (2)
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Fig. 1. The Hierarchical Interaction between System Components, Participants, and The Access
Control

Detection and Identification that analyzes detected misconfigurations and vulnerabil-
ities in edge device(s) and container-based cluster and identifies its type. To control
access from edge devices to system components, we extended HHMM to manage con-
straints in role-based access control. Models are implemented at the gateway to collect
and transmit measurements from the edge device to the fog.

4.1 Phase 1: System Components Monitor

We checked the normality of the workload of the components under observation using
the Spearman rank correlation coefficient to estimate the dissociation between the ob-
servations emitted (failures) and the amount of flow (hidden workload). To achieve that,
we wrote an algorithm that is used as a general threshold to highlight the occurrence
of faults in managed components (for more details, see [21]). The controller checked
the configuration settings against the benchmarks of Azure Security, CIS Docker, and
Kubernetes to detect any mismatch between the settings and the requirements of secure
deployment in components.

4.2 Phase 2: Access Control Policy Management

We controlled the information flow from/to the system by managing the interaction of
participants with the system. Each participant has allowed actions and roles to access
nodes and services of the system (see Figure 1). We identified a list of the roles and
actions of the participants, which has a set of access variables for each participant, such
as the roles, actions, access to the API, the authorizations they have, the permissions,
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the boundaries of the permissions, and the conditions. The permission limit defines the
maximum permissions granted to participants and roles using an enumeration-type ac-
tion with two values (true and false). If the permission action is true, then the permission
is allowed; otherwise, it is rejected. Moreover, we assumed that if no information flow
policy is specified in the domain, the inbound and outbound flow will be set if the policy
has any outbound rules. The policies in the observed system do not conflict as they are
addictive. We extended our HHMM model with a set of controlling labels made up of
tags, each of which stands for a specific integrity issue (private data) and outlines the
information flow allowed. We define a role-based access space and a set of policies for
each participant to allow specific participants access to specific system services. The
access control policies are specified in the form of YAML format by writing a script
that defines a template for generating YAML definitions based on the external policies.
The script iterates over each policy, fills in the template with policy details, and accu-
mulates the generated YAML. The script writes the accumulated YAML to an output
file that is applied to the Kubernetes cluster and ensures that the translated policies are
properly enforced.

System Component and Participants Role we specified a set of labels made up
of tags to represent certain integrity (private data) and secrecy issues (sanitized data) to
manage system components and access of participants from medical devices. Tags out-
line information flows by regulating the sensitive flow of information, such as patient
personal information and related medical reports/outcomes. Tags correlate objects, such
as patient and data items, with the secrecy and integrity flow constraints required to for-
mulate a policy. Each tag is decomposed into a pair ⟨c,s⟩ of concern and a specifier.
For example, the pair ⟨medical,Patient432⟩ symbolizes Patient432’s health informa-
tion. We defined all data records of a particular type without listing all potential tags,
as shown in Figure 2. Each tag has one or more subtag connections defined for any
concern and specifier. For example, a tag T0 = ⟨c,s⟩ is a subtag of tags T{1,0} = ⟨c,∗⟩
and T{1,1} = ⟨∗,s⟩, which are in turn subtags of the tag T2 = ⟨∗,∗⟩ as shown in Figure 3.
In addition to the tags, every participant has an access variable Λ that expresses (1) the
access role AR: read R, write W , update U or combination of them (see Figure 2), (2) ac-
cess status AS successful Approval or Fail, (3) device id DID (see Figure 4), (4) device
type DTY , (5) component label Cabel (i.e., node label), (6) component type Comty ei-
ther (node, container, or services), (7) component id ComID to access node, container
or service, (8) user id UserID, and (9) data access type DAT either PatientMedical-
Info, ReportAnalysis, PrescribedTests, MedicalPrescription, and/or LabResults. The
state space is a set of Λ = {AR,AS,DID,DTY,Cabel,ComID,UserID,DAT}. To define
the maximum permissions granted to participants, a set of access boundaries is defined
based on conditions and actions. The access boundaries take effect only if all conditions
are satisfied. The access boundaries are accompanied by an enumeration type that takes
true or false as a value to permit or reject access to the system. For each component and
participant, we specify access control permissions as follows.

Access Control Permission for each type of component Comty, each partic-
ipant Participant{p} Doctor, Patient, GP, DigCen, or Pharmacy has two label
constraints (secrecy and integrity). The secrecy label restricts the read operation (i.e.,
incoming data flow), for example, Sec(Participant{Patient}) = {DAT,UserID}. The
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Fig. 2. Role-Based Access Control

Fig. 3. Tag and Sub-Tags Relations Fig. 4. Information Flow Access Constraints

integrity label constrains the write operation (i.e., outgoing data flow), for example,
Int(Participant{Patient}) = {Approval,DID,DTY}. The status of these two labels
specifies the security context of accessing a specific component by a specific partici-
pant. For example, Patient and PatientMedicalIn f o tags with the type of data accessed
′DAT ′ are presented in the hospital process to obtain patient data Sec(Participant{p})
according to (1).

∀p ∈ Participant p ∃!(Sec(Participant p)∧ Int(Participant p)),

where (Sec() and Int()) ⊃ Λ,∃!(DID∧DTY ) ForEvery Patient,∧
⇐⇒ DID ⊂ Comty

(1)

To ensure integrity consistency between groups, our system only accepts
data from authorized medical devices based on the confirmation of approval
of a patient and gives access to a specific node Int(Participant{Patient}) =



Analyzing Misconfigurations of Kubernetes Clusters and IoT Edge Devices 7

{Approval,HeartMon24329,N21} as shown in Figure 4, and according to the rule in
(2).

E1 → E2, i f Sec(E1)≾ Sec(E2)∧ Int(E2)≾ Int(E1) (2)

A decision rule Ω= {AccessGranted,Per f ormManagement} is added to allow cer-
tain actions in the access role (read, write, or update information) and to provide system-
wide enforcement of the information flow policy, as shown in Figure 2. The decision
rule represented a generated probability distribution µTins(Comty) from a type of com-
ponent Comty, which is labeled Cabel, with specific actions at a time instant Tins as
shown in (3).

ω =

 AccessGranted,Per f ormManagement I f
Comty ∈ {AR,AS,DID,DTY,ComID,UserID,DAT}

AccessDenied, Otherwise
(3)

Addition of New Edge Device to adapt the controller to accept new data from a new
device, we introduced entities E with actions and events. Each entity has participants
and sensors that interact with system nodes through mobile applications/interfaces and
medical devices. Here, E1 (e.g., patient’s device) has access to entity E2 (e.g., specific
node ’N21’) with any preorder relationship ≾. For example, E2 can read data from
entity E1 only if the secrecy of E1 is preorder (i.e., subset) of the secrecy of E2, while
entity E1 can write to entity E2 only if the integrity of E2 is preorder of the integrity
of E1. Entities are registered in a domain with credentials to be validated upon the
authorized participant’s request.

Domain Management we define a domain as a named grouping structure with
a particular function. The domain represents an organizational system cluster (s) with
participants associated with devices. Each domain maintains its policies to control inter-
actions with entities E and other domains. The domain indicates that if either of its poli-
cies returns Ω = AccessGranted, then the information flow is granted for specific enti-
ties E with an annotation of the sequence, denoted X . To map the domain of participants
to the components of the system without requiring them to store these mappings and to
manage the workload of the system under observation, each component with a compo-
nent label Cabel is registered in a domain. Depending on the policy, entities might per-
form actions in other domains for which they are not registered. Thus, to allow domains
controlling the circumstances in which data is released and in which information can
be accessed, we considered that entities could communicate with the system through
a combination of the following three identifiers: (a) other nodes that are allowed (ex-
ception: a node cannot block access to itself), (b) namespaces that are allowed, and (c)
IP blocks (exception: traffic to and from the node where a running container is always
allowed, regardless of the IP address of the node). Hence, for each entity, we computed
the most probable extended annotation considering (Len,SN) at time tim. We defined
Len as the length of the graph sequence and SN as the number of states of the HHMM.
We constructed a directed cyclic graph in which every path has a start vertex device
id DID and an end vertex component id ComID corresponding to an annotation of the
sequence X of that path (e.g., path1 : DID1 >Cl1 > N21; path2 : DID2 >Cl1 > N22;
path3 : DID1 >Cl1 > N23). On the contrary, for every annotation of X , there is a path
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with specific properties. For example, Xi=1 = {path1, tim,Ω,Participant{p},Λ}. We
considered that the only allowed connections in the graph are those from the containers
and nodes in our domains under some containers and policies, which do not conflict, as
they are addictive. Hence, for a connection from a source node to a destination node,
both the inbound and outbound flow policy on the source node and the destination node
must allow the connection. If either side does not allow the connection, the connec-
tion will be rejected. If no information flow policy is specified in the domain, then by
default, the inbound flow will always be set, and the outbound flow will be set if the pol-
icy has any outbound rules. Each information flow policy permits participants to access
the system’s components in a Namespace. Each policy includes a type list PolicyType,
which may include inbound, outbound, or both in a namespace. The PolicyType indi-
cates whether the given policy applies to the inbound flow to one or more selected nodes
(s), the outbound flow from one or more selected nodes (s), or both. If no PolicyType
are specified in a Namespace, then by default, inbound and outbound will be set if the
policy has any outbound rules, and all inbound and outbound flows are not allowed to
and from nodes in the Namespace. Participants access the system according to a re-
quest that includes the username, the requested action, and the object affected by the
action. The request is authorized if the existing policy for a Namespace declares that
the participants have permission to complete the requested action (write, read, update,
or combination of them).

Our intention is not to prescribe action sequences for participants. Instead, we pro-
vide mechanisms to control the system’s access actively, according to the flow of infor-
mation from the participants, through adaptation and conditional access to the system
components. Once access to the system is secured, the controller moves on to the next
phase.

4.3 Phase 3: Misconfiguration Detection

We use HHMM [5] to model the hierarchical structure of our system and map the hid-
den misconfiguration settings from the observer to the performance metric. We choose
HHMM because every component, along with its dependence on configuration settings,
can be represented as a set of hierarchically interlinked HMMs, as shown in Figure 5.

The components of our system under observation have a hierarchical structure. The
system consists of one or more clusters Cl (root state) that are composed of a set of
nodes N (internal states) that host containers C (substates) with one or more deployed
services S (production state) as a component of the application. Each component emits
observations, which are emissions of failures from a component resource. Each compo-
nent has configuration settings. The node assigns requests to its containers, communi-
cating at the same node or externally. A service could be deployed in several containers
simultaneously, and a container is defined as a group of one or more containers that
constitute one service. The system has more than one cluster Cl j=1 and has internal
states N j=2

i , which represent our virtual machines (nodes) with horizontal i and verti-
cal j. Each node has a substate C j+1

i that represents our containers (e.g., C3
1 at vertical

level 3 and horizontal level 1). Each container has deployed services S j+2
i that emit

Observations Space OSn, which reflects a sequence of workload fluctuations for CPU,
Memory, Network, and Response time. The fluctuation is associated with the saturation
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Fig. 5. Misconfiguration Detection in Multi-Clusters System(s) Using HHMM

of observed computing resources to be either H: High, L: sLow, or N: Normal, more
details in [21]. This fluctuation is associated with a probability that reflects the state
transition status from AF (Abnormal Flow) to NL (Normal Flow) at a failure rate ℜ,
which indicates the number of failures emitted from our Cluster Space (ClS) over a
period of time. ClS consists of a set of Ns, containers C, and services S. The edge di-
rection indicates the information flow and the dependency between states. For example,
N2

1 = {C3
1 ,C

3
2}, N2

2 , N2
3 = {C3

3 ,C
3
4}, C3

1 = {S4
1}, C3

2 = {S4
2}, C3

3 = {S4
3}, C3

4 = {S4
4}.

For each participant in a specific domain with Xi = {pathi, tim,Ω,Participant p,Λ}
where Ω = {Access Granted}, our system calls its nodes to enter their containers and
services N2

1 = {C3
1 ,C

3
2},N2

2 , N2
3 = {C3

3 ,C
3
4}, C3

4 = {S4
1,S

4
2,S

4
3,S

4
4}. Here, each service

emits observations and transits to its final state S4
eCid to end the transition for the ser-

vices and to return the control to its calling parent C3
2 , as shown in (4) and (5). The same

process is followed, however, to make a horizontal transition to C3
2 to obtain the obser-

vations at the container level. Once the horizontal transition is completed, the transition
goes to the end state C3

eNid to make a vertical transition to the state N2
1 . Once all transi-

tions are achieved under this node, the control returns to N2
3 , as shown in Figure 5. The

model is trained by calculating the probabilities of the parameters to obtain a hierarchy
of abnormal flow path AFseq = {Cl,N2

2 ,N
2
3 ,C

3
3 ,S

4
3}, which is affected by the misconfig-

ured component (N2
2 ) and might cause a threat, as shown in (6). Here, we recursively

calculate ℑ, which is ψ for a time set (t̄ = ψ(t, t + k,S j
i ,S

j−1)), where ψ is a state list,
which is the index of the most probable production state to be activated by S j−1 before
activating S j

i . t̄ is the time when S j
i was activated by S j−1. The δ is the likelihood that

the most probable state sequence generates (Ot , · · · ,O(t+k)) by recursive activation. τ

is the transition time at which S j
i was called by S j−1. Once all recursive transitions are

returned to Clw, we get the most probable hierarchies starting from Clw the production
states in the T period by scanning the state list ψ, the likelihood of states δ and the
transition time τ. The same previous steps are taken for each cluster where w refers to
the cluster number w = {1,2, · · · ,m}. We correlated each state with time to know its
activation time, its activated substates, and the time at which the control returns to the
calling state to have more information about the occurrence time and dependency of the
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misconfiguration. In the end, a sequence of anomalous hierarchical states is obtained.
We compared the detected hierarchies with the observed ones to detect the misconfig-
ured state and its impact on the flow of information. The detected path with the lowest
probabilities will be considered the vulnerable path with misconfigured states and ab-
normal flow. For example, the observed failure LNetwork is associated with a vulnerable
abnormal flow path AFseq = {Cl,N2

2 ,N
2
3 ,C

3
3 ,S

4
3} that is affected by N2

2 .

ϒS = max
(1≤r≤S j

i )

{
δ(t̄, t + k,S j

r ,S
j
i )a

S j
i

S j
eCi

}
(4)

ℑS = max
(1≤y≤S j−1)

{
δ(t, t̄ −1,S j

y,S j−1)aS j−1

SeCy
ϒS

}
(5)

AFseq = max
Cl(1≤w≤m)

{
δ(T,Clw),τ(T,Clw),ψ(T,Clw)

}
(6)

5 Evaluations
This section assesses the detection and role-based access control, focusing on the mea-
surement of performance and reliability.

5.1 Detection Evaluation

Assessment1: Simulation Environment

Environment Settings: The testing environment is built with Python. It runs on VMware
and consists of three nodes (i.e., VM instances), which are for (1) VM1: the Healthcare
application that handles patient data. The VM1 is connected to an edge gateway device
that acts as a local hub for data aggregation and processing. The edge gateway collects
data from the IoT device and transmits the collected data to VM1 for further process-
ing. The device communicates with the edge gateway through Wi-Fi. Edge devices with
similar functionality are grouped and allocated to a respective group. For VM1, we cre-
ated a patient application on the edge device that generates patient information using
the Python Faker and paho-mqtt libraries and transmits the information to VM1. The
edge gateway is presented by the MQTT client, which establishes a connection to the
gateway’s IP address and port. (2) VM2: correctly configured container-based cluster
node, and (3) VM3: controller. For each node, we implemented a set of containers and
services. Each node is equipped with Linux OS (Ubuntu 18.10 version), a VCPU, and
2GB of VRAM. The virtual platform is allocated to a physical PC equipped with Win-
dows 11, Intel Core i7-1260P 2.10 GHz, and 32GB of RAM. Around 30 namespaces
are created, each with 4 microservices (pods) used for performance measurements and
assigned the same number of network policies. The number of policies created was
900, which were ordered, managed, and evaluated using Calico, Open Policy Agent,
and Styra DAS, respectively. A set of agents was installed to collect data on CPU,
memory, network, changes in the file system (i.e., no flow issued to the component),
patient health information, device operation status, device id, and system components
service status. The agent adds a data interval function to determine the time interval to
which the collected data belong. The agent is configured to connect to the system auto-
matically with the valid credentials of the system users for authentication. The Datadog
tool is used to obtain a live data stream for the running components and to capture
the request-response tuples and associated metadata. Prometheus is used to group the
collected data and to store them in a time series database using Timescale-DB.
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Table 1. Detection Evaluation

Models RMSE PFD Recall Accuracy
HHMM 0.3299 0.4050 95.01% 94%
CRFs 0.4023 0.4208 92.86% 92%

Edge Device Configuration Errors: We installed K3s on a Raspberry Pi 3 Model B+
and set up a single node Kubernetes cluster. We created three configuration errors. The
first one is an ’empty configuration file’ that makes the device have trouble starting
modules. The second one is ’enabling unnecessary port’, in which the YAML config-
uration defines a pod with a single container running the Nginx image. The container
is configured to expose three ports: 80, 443, and 8080. The third one deployed a con-
tainer image ’Simulated Hospital1’ that generates patient data. The YAML image file is
configured to allow privilege escalation.

Container-based Cluster Configuration Error Scenarios: We write our configuration
files using YAML. Privilege escalation configuration errors were deployed, such as
Privilege Escalation Flaw and Privilege Escalation Flaw and Redeployment Fail [20].
The configuration files of the components are stored in GitOps version control to sim-
plify the rollback of configuration changes. We use Kube-Applier to fetch our declara-
tive configuration files for our clusters from the Git repository.

Performance Evaluation: The model was trained on the collected data and on the con-
figuration error scenarios all at once. The performance of the detection model is eval-
uated by the root mean square error (RMSE) and the probability of false detection
(PFD), which are the metrics commonly used to assess the accuracy of the detection.
The RMSE measures the differences between the detected value and the one observed
by the model. A lower RMSE value indicates a more effective detection scheme. The
PFD measures the number of components normally detected that have been misde-
tected as anomalies by the model. A lower PFD value indicates a more effective detec-
tion scheme. The efficiency of the model is compared to Conditional Random Fields
(CRFs); see Table 1. We noticed that the computation of CRFs is harder than that of the
HHMM. The results show that the performance of the proposed detection is better than
that of the CRF, as it correctly detected misconfigurations with around 95% recall and
94% accuracy with few false positives, which occur due to some ports being identified
as insecure (e.g., insecure docker registry 5000). A false positive occurred at the edge
level due to a condition identified in the YAML rule that is based on a fixed threshold
without taking into account personal variations that could affect normal ranges of vital
signs (e.g., condition : heart rate > 100).

Assessment2: Real-World Scenario

Learning Settings: The controller is further trained in some of the misconfigurations
that allow an escalation of privileges to the host [15], [16]. We evaluated the detec-
tion performance by comparing the HHMM with the HMM and measuring their log-
likelihood. We ran each model for a maximum of 10 iterations with a random start and

1 https://github.com/google/simhospital
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an approximate training period ranging from 164 seconds to 9 minutes with two layers
of HHMM. The size of our generated data set was approximately 10 MB with a period
of 6 months. We selected a subset of the data set of around 4.3 MB mainly related to the
types of misconfiguration mentioned above to train the models and provide more tar-
geted and specialized training data sets. We trained the models on different hidden state
numbers (8, 16, 32, 64) and evaluated their performance. The data are divided into 70%
training data and 30% testing data, more details on the environment settings in [20].

Performance Evaluation: In the training data, the log-likelihood of the HHMM was
around -63 with 8 states, which increased with increasing number of states to -50 with
10 states and -20 with 30 states. The HMM was -30 with eight states, -20 with 10 states,
and reached -15 with 30 states. On the test data, the log-likelihood of HHMM gradu-
ally increased from -50 with 8 states to a peak of -5 with 30 states. Then the model
increased slightly with increasing number of states, while the HMM fluctuated to -65
with 8 states, -50 with 10 states, and -60 with 30 states. After that, the HMM decayed
to -70 with increasing numbers of states. We observed that HHMM outperforms HMM
in different states. With a decreasing number of states, both models show good per-
formance. However, with an increasing number of states, HHMM performance shows
better results, whereas HMM performance gradually decays, showing a symptom of
overfitting as its likelihood drops from training data to testing data. This returns to the
larger capacity of the HHMM, which allows the model to adapt to new changes and to
be less prone to overfitting.

5.2 Rule-based Access Control Performance Evaluation

Test Settings: We created access control roles for system participants with different
roles and different access levels, as shown in Figure 2. We evaluated the performance
of rule-based access control under misconfiguration by giving the Pharmacy the Doctor
role. This misconfiguration violates the principle of privileged access and leads to se-
curity breaches or unauthorized access. We use NetPerf and iPerf to measure network
latency. The NetPerf is configured with a 200-second test duration and a goal of 99%
confidence that the measured mean values are within +/- 2.5% of the real mean values.
The iPerf is configured with a 30-second duration of the test, a 5-second reporting in-
terval, and 3 numbers of parallel user threads to use, in which each thread will initiate
a separate connection to the server. To constitute unauthorized access to the system,
we define the rule that a pharmacy can write and update patient data. We implemented
a trace file with 5000 requests that correspond to 15 minutes of workload. The trace
file is generated using OpenTelemetry and Jaeger in Kubernetes. We generated several
unauthorized access attempts from the Pharmacy due to the misconfiguration. We fo-
cussed on measuring the overhead latency of network performance during the creation
of several network access policies.

Performance Evaluation: We created a cluster with two namespaces: ”users-
namespace” and ”healthcare-namespace” with 4 microservices (pods) for each. We
created an access control policy that assigns to the pharmacy the ”edit” ClusterRole,
which allows for write and update access to resources within the ”healthcare-
namespace”. We measured unauthorized access to the application. The average access
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was about 3100 access attempts per 2 minutes with CPU and memory loads 80% and
75%, respectively. We measured the performance overhead for network latency by
increasing the number of policies from 100 to 900 policies by 100 policies at a time.
We created some policies, one that allows traffic communication between pods and
gave it the highest order, and the other one, a policy that disallows traffic between pods,
and we gave it the lowest order. We increase the number of policies to measure network
performance in terms of latency. Our goal is to enforce a network policy that restricts
communication between these namespaces. Hence, the pods in the ”users-namespace”
namespace can only communicate with pods in the ”healthcare-namespace” namespace
on a specific port while denying all other traffic and on specific roles. We created a mis-
configuration that violates the principle of privileged access in the ”users-namespace”
namespace by assigning the user ”pharmacy” the ”cluster-admin” ClusterRole, which
grants the pharmacy full access including the ability to modify resources and update
other patient’s data at least. During the evaluation, the network performance shows an
unremarkable impact on latency while increasing the number of policies. The latency
was almost stable, from 70 microseconds with 100 policies to 85 microseconds with
900 policies. Due to the misconfiguration of the network policy, the pods within the
nodes were able to communicate with resources that should be restricted. We created
another VM (VM4) with 4 pods to communicate with VM1 to measure the latency of
the pods between the nodes. We stress the resources of VM4 with Locust with a waiting
time between requests of 5 to 15 milliseconds. The latency for the pods’ communica-
tions between the nodes was higher than that for the pods’ communication within the
node. It increased from 250 microseconds with 100 policies to 280 microseconds with
900 policies. This leads to shared resources and direct communications between the
pods on the same network, resulting in lower latency.

From the results obtained, we conclude that system performance is directly affected
by configuration errors. The higher the number of configuration errors, the more likely
the system will experience performance degradation.

6 Related Work
Existing frameworks have paid limited attention to the critical role of efficient manage-
ment of misconfiguration in edge devices and clusters [24], [4], [1]. The work in [19]
conducted an empirical study with 2,039 Kubernetes manifests to categorize the se-
curity misconfiguration and quantify it. Another work [3] presented a performance-
centric configuration framework for containers on Kubernetes that gives unified key-
value data, including configurations and metrics, to analysis plugins by providing a
built engine for processing defined rules in analysis plugins. However, those techniques
are time-consuming to come up with good result quality and are unmanageable with
large datasets. The techniques suffer from catching every code defect and are limited
when it comes to addressing issues in complex, multi-component applications, espe-
cially in scale and load balance environments. The work in [27] focused on detecting
configuration errors at the startup time by analyzing the source code and generating
the configuration checking code. However, this technique cannot handle the interaction
between the configuration parameters. An analysis of misconfigurations and their as-
sociated code blocks helps in detecting which parts of the system code are associated
with configuration parameters. This could be achieved by deriving the specification of
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the configurations by designing a custom control and data flow analysis targeting the
configuration-based code [28], [9], based rule [22], or based inference. However, those
ways are highly specialized as some of them only focus on security, are not simple to
write and maintain, are geared towards a host only instead of container images and edge
devices, and can result in false positives or false negatives. Unlike our work, previous
techniques are (1) limited in the types of configuration errors that can be detected. (2)
Focus on detecting misconfiguration based on the type inference of the source code. (3)
lack of adaptable detection that works on configurations inherited from different sys-
tems or incorrect settings that fall into normal ranges.

7 Conclusions and Future Work
The paper presented a controller that detects misconfigurations of container-based clus-
ters and edge devices in hierarchical computing environments. The controller mapped
observable quality concerns onto hidden settings to track misconfiguration paths and
enforced access to informational constraints derived from healthcare legislation. The
controller used the Hierarchical HMM mechanism and extended its mechanism to pro-
pose an access control policy model to increase the flexibility of role-based access con-
trol so that users can gain access to resources with regard to the model constraints, and
the permissions could be adjusted based on user and environment conditions. Com-
pared with other techniques, the evaluation presented the ability of the controller to
detect misconfigurations with few false positive instances and promised log-likelihood.
The purpose of the paper is to introduce the controller mechanism by providing its main
processes and evaluations to assess its reliability and performance.

In the future, our objective is to carry out more experiments to confirm the results
concluded, highlight the difference between the controller detection and other miscon-
figuration tools, improve the security of the access control model to handle system
failure, and expand the evaluation of access control and policy rules.
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