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Abstract—CHIP-Seq data is critical for identifying the loca-
tions where proteins bind to DNA, offering valuable insights into
disease molecular mechanisms and potential therapeutic targets.
However, identifying regions of protein binding, or peaks, in
CHIP-seq data can be challenging due to limitations in peak
detection methods. Current computational tools often require
manual human inspection using data visualization, making it
challenging and resource demanding to detect all peaks, par-
ticularly in large datasets. CHIP-seq data poses difficulties in
detecting peaks due to its high background noise, low signal-to-
noise ratio, and variation in the size and shape of the peaks.
To overcome these challenges, we propose a data preprocessing
approach using sliding window and feature reduction techniques,
and the resulting features can be further used in machine learning
methods. Our machine learning methodology can accurately
identify peaks using a small training set, which represents a
distinct advantage over commonly used statistical approaches, as
it has a greater capacity for learning from data.

We tested our methodology on the H3K9me3 TDH BP CHIP-
Seq dataset exploring a range of different machine learning meth-
ods, sliding window settings, and feature reduction techniques
to detect peak values without human intervention. Our pipeline
efficiently detected the peaks, and achieved an F1-score of 0.9644
and a false positive rate of 0.1030.

Index Terms—Peak detection, CHIP-Seq dataset, Machine
learning, Sliding window, Feature reduction.

I. INTRODUCTION

Chromatin immunoprecipitation followed by high-
throughput sequencing (CHIP-Seq) is a widely used technique
for studying the binding of DNA-associated proteins, such as
transcription factors, to the genome [1]. The method enables
researchers to map the binding sites of DNA-associated
proteins and their target genes, providing important insights
into the regulation of gene expression. The CHIP-Seq data
generated from this technique requires further analysis to
identify the regions of the genome where DNA-associated
proteins bind. To aid in this process, researchers use a variety
of software tools, including both graphical tools and peak
detection algorithms. This process is known as peak detection,
and it is a key step in the CHIP-Seq data analysis pipeline
[2].

Graphical tools, such as the UCSC genome browser [3],
provide a visual interface for exploring genomic data, includ-
ing the locations of functional elements. These tools allow
scientists to view their data in the context of the genome,

alongside other relevant information, such as gene annotations
and conservation information. This visual representation can
be particularly useful in the early stages of data exploration,
as it helps to identify trends and patterns that may not be
immediately apparent from the raw data.

However, graphical tools suffer from three main disad-
vantages. At a single base resolution, peak start and end
locations are not obvious on visual inspection. Second, visual
interpretation is inherently subjective, which makes it difficult
for other researchers to reproduce it. Finally, it is not enough
time for researchers to visually inspect and identify peaks
across the entire genome. For these reasons, it is useful to
use computational methods, and peak detection algorithms,
to systematically and accurately identify CHIP-Seq peaks, in
addition to using the UCSC Genome Browser [3] for data
visualization and exploration.

Peak detection algorithms are used to identify the regions of
the genome that are enriched with CHIP-Seq signals, repre-
senting the binding sites of DNA-associated proteins. There
are several peak detection algorithms available, including
MACS [2], SICER [4], and SPP [5], which are based on differ-
ent statistical models and assumptions about the distribution of
the CHIP-Seq signals. However, the accuracy and reliability of
these algorithms can vary based on the specific requirements
of the research question and the characteristics of the CHIP-
Seq data. Statistical methods are relatively straightforward, but
have limited capacity for acquiring knowledge from previously
identified peaks (training data). As a result, it is a need for
machine learning methods with better learning capacity, and
to further carefully evaluate their performance to be able to
select the appropriate algorithm for a specific study [6].

In recent years, machine learning techniques, such as ran-
dom forest [7] and Support Vector Machine (SVM) [8], have
been increasingly used for peak detection in CHIP-Seq data
analysis [6], [9], [10]. These algorithms have shown promising
results in terms of accuracy, sensitivity, and specificity in
detecting binding sites compared to traditional peak detection
algorithms [11].

In this paper, we present a peak detection pipeline that
is illustrated in Figure 1, moving from left to right. The
pipeline begins by utilizing a sliding window approach to
explore the dataset and extract sub-sequences from the data.



Fig. 1: ML-Peaks pipeline overview. The proposed sliding window technique extracts sub-sequences from labeled regions in the chip-seq dataset. Feature reduction followed by
machine learning algorithms yield binary classification: Peaks or NoPeaks.

Dimensionality reduction algorithms are then applied to the
extracted sub-sequences, which are subsequently used as input
for machine learning models to conduct experiments for peak
and noise detection.

Our main contributions are as follows:
1) We propose a flexible sliding window approach for

CHIP-Seq data analysis, which yields high accuracy.
2) We demonstrate the effectiveness of feature reduction

methods in enhancing machine learning algorithms for
peak detection. By reducing the dimensionality of the
input data, we optimize the performance of the machine
learning algorithms and achieve more accurate peak
detection results.

3) We compare the performance of different machine learn-
ing algorithms for peak detection.

Overall, our paper presents a flexible and effective pipeline for
peak detection in CHIP-Seq datasets using machine learning
and offers valuable contributions to the field of CHIP-Seq data
analysis.

We conducted our experiments on Google Colaboratory,
using version 1.0 of the platform. The hardware specifications
of the system are as follows: Intel(R) Xeon(R) CPU @
2.20GHz, 25 GB RAM, and Disk space 107 GB. We used
Python version 3.8 and scikit-learn [12] library version 1.2.2
to implement machine learning algorithms and evaluation
metrics. The code used to perform the experiments described
in this article is open-source and available on GitHub [13].
Users can modify the code to suit their needs and reproduce
the experimental results in the paper, promoting transparency
and reproducibility in scientific research.

II. DATA AND METHODS

A. Data description

The data used in this paper was obtained from the UCI
Machine Learning Repository [14]. The data examine his-
tone modifications such as histones H3K4me1, H3K9me3,
H3K27ac, H3K27me3, and H3K36me3 and label files con-
taining labeled regions. Some segments of the long ge-
nomic sequences had been labeled by human experts us-
ing a genome visualization browser. In this paper, we used
H3K9me3 TDH BP CHIP-Seq sequences. This dataset con-
tains CHIP-Seq data for the histone modification H3K9me3
in the TDH-BP cell line. In the context of peak detection,
the H3K9me3 TDH BP dataset provides a rich resource for

evaluating and developing algorithms for identifying regions
of high signal intensity, commonly referred to as ”peaks”, in
CHIP-Seq data. The peaks in the dataset correspond to regions
of the genome where the H3K9me3 histone modification is
enriched and may represent sites of regulation or epigenetic
changes.

The dataset consists of 540 labeled sequences and con-
tains both positive and negative control sequences, providing
a robust evaluation resource for peak detection algorithms.
Figure 2a shows a part of a sequence, including the labels
peakStart, peakEnd, noPeaks and parts that were not annotated.
The data is presented in a tab-delimited format with four
columns: chromosome, start position, end position, and signal
intensity, and saved using run-length encoding. Both peaks
(peakStart and peakEnd) and noPeaks classes have almost the
same number of sequences, 253 peak sequences and 287 non-
peak sequences of varying lengths, but noPeaks sequences are
on average much longer than peaks sequences. Table I lists
the attributes of the H3K9me3 TDH BP dataset.

TABLE I: H3K9me3 TDH BP chip-seq data attributes.

Dataset attribute Value

Dataset name H3K9me3 TDH BP
Data type Chip-Seq
Domain Broad peaks
Number of files 240 files
File format bedgraph
Data labels peakStart, peakEnd and NoPeaks
Number of labeled regions 540 regions
Number of Peak Sequences 253
Number of NoPeak Sequences 287
The total length of all Peaks sequences 4,122,705
The total length of all NoPeaks sequences 11,590,675

B. Data preprocessing

The H3K9me3 TDH BP CHIP-Seq dataset comprises la-
beled sequences that are represented as vectors of non-negative
integer count data. This data is stored on disk space using
the run-length encoding [14] method as tables, with each
table containing information for a labeled sequence. These
tables consist of four columns: the first column indicates the
chromosome number, the second column indicates the starting
point of the genomic position in the vector, the third column
indicates the end point of the genomic position in the vector,
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Fig. 2: The chip-seq data and the proposed sliding window. Figure 2a A partial sequence of the chip-seq dataset is shown, with colored backgrounds indicating annotated regions
and unannotated regions displayed without coloration. Figure 2b To extract sub-sequences, the proposed sliding window approach is employed on the annotated regions, with the
window size, shift size, and pick more parameters utilized in the process.

and the fourth column specifies the value to be placed in
the vector from the starting point to the end of the genomic
position. In our preprocessing module, we first decoded the
sequences and extracted the labeled regions based on the label
files that indicated which parts of the sequences were labeled.
We redefined the labels, by introducing the label peaks as
every region has peakStart or peakEnd, resulting in the two
labels peaks and noPeaks.

To divide the labeled regions into more sub-sequences, we
introduced a sliding window approach, as shown in Figure 2b.
The idea is that to predict the class in a given genomic position,
the most important information is in some neighborhood, or
window, around the position. The labeled regions varied in
length, and using the sliding window approach on each region
resulted in a different number of labeled sub-sequences. This
approach includes adjustable parameters that influence the
number of labeled sub-sequences generated, which can impact
the performance of machine learning algorithms.

This approach enables us to evaluate three important fac-
tors that impact the extraction of sub-sequences, namely
window size, shift size, and pick more, see Figure 2b. The
variable window size specifies the size of the sub-sequences
to be extracted from the labeled regions. The pick more
factor specifies the part of the unlabeled regions to use along
with the labeled regions to create additional sub-sequences.
The shift size factor controls the amount of horizontal shift
between each extracted feature. By extracting labeled sub-
sequences, our method enables the identification of additional
patterns from labeled regions and provides more data for

pattern extraction for machine learning algorithms.
To evaluate the effectiveness of our pipeline for peaks

and noise identification, we conducted several experiments
using the proposed sliding window algorithm to generate sub-
sequences of specific lengths.

C. Feature reduction

In the field of machine learning, feature reduction methods
play a crucial role in reducing the dimensionality of the data
while preserving the most informative features. Principal Com-
ponent Analysis (PCA) [15], Linear Discriminant Analysis
(LDA) [16], and Independent Component Analysis (ICA) [17]
are among the most widely used feature reduction techniques.

PCA [15] is an unsupervised method that reduces the
dimensionality of the data by projecting it onto a lower-
dimensional subspace while retaining the maximum amount
of variance. PCA [15] is particularly useful when dealing with
high-dimensional data, such as epigenetic data and sequences,
where the number of features exceeds the number of samples.

ICA [17] is another unsupervised feature reduction method
that seeks to separate the observed data into statistically
independent sources. By separating the data into independent
sources, ICA [17] can reduce the complexity of the data and
improve the interpretability of the results.

LDA [16], on the other hand, is a supervised feature reduc-
tion method that seeks to maximize the separation between
classes while minimizing the within-class variance. LDA [16]
is commonly used in classification tasks, where the goal is to
identify the class membership of a given sample.



In addition to the aforementioned feature reduction tech-
niques, we also employed hand-crafted methods to reduce
the dimensionality of the data. Specifically, we calculated the
maximum and average values for each sub-sequence, as well as
the mean, range of values (maximum-minimum) along an axis
called Peak-to-Peak (PTP) [18], and Standard Deviation (STD)
of each sub-sequence. These methods can provide valuable
insights into the underlying patterns in the data.

D. Machine learning models

In this study, several machine learning approaches from
diverse families were chosen for experimentation. These meth-
ods were specifically selected due to their unique features and
included: Decision tree [19], XGBoost [20], Adaboost [21],
Bagging [22], Random forest [7], and SVM [8]. The algo-
rithms were implemented using the scikit-learn [12] library in
Python.

Adaboost [21] and Bagging are both iterative boosting
algorithms that use a set of independent learners that are
combined into strong learners. The combination of the learners
reduces overfitting and improves the stability of the method.
Bagging is an ensemble learning method that trains multiple
models on different subsets of the training data and combines
their predictions to obtain a better result. Random Forest [7]
is an extension of the Bagging method that selects a random
subset of features for each split in the decision tree [19]. This
method is known for its ability to handle high-dimensional
data effectively and reduce overfitting.

The Decision tree [19] and XGBoost [20] algorithms are
both tree-based models that utilize a hierarchical structure to
make predictions. The decision tree [19] is a simple and inter-
pretable model that can handle both continuous and categorical
variables. XGBoost [20], short for eXtreme Gradient Boosting,
is an optimized version of the gradient boosting algorithm. It
is widely used for its ability to handle missing values and
high-dimensional data effectively. SVM [8] is a supervised
learning algorithm that is known for its ability to handle non-
linear problems and high-dimensional data. SVM [8] has been
widely used in various fields, including bioinformatics and
genomics, due to their performance in handling complex data
structures.

Besides employing sophisticated machine learning algo-
rithms, we also use a DummyClassifier algorithm, which
utilizes elementary rules for prediction. This algorithm func-
tions as a baseline in conjunction with other algorithms and
consistently predicts the class with the most frequency in
the training data. The DummyClassifier algorithm can be
configured to adopt different strategies, and we have employed
three of these strategies, namely ”most frequent”, ”stratified”,
and ”uniform”.

E. Evaluation metrics

To evaluate the performance of the machine learning algo-
rithms used in this study, several metrics were utilized. The
performance of the algorithms was evaluated on the test dataset

using accuracy, precision, recall, F1-score, balanced accuracy,
and Matthews Correlation Coefficient (MCC).

Accuracy, precision, recall, and F1-score are commonly
used metrics for evaluating the performance of machine learn-
ing algorithms. Accuracy measures the percentage of correct
predictions made by the model, while precision measures
the percentage of true positive predictions among all positive
predictions. Recall, also known as sensitivity, measures the
percentage of positive instances that were correctly detected
by the model. The F1-score is the harmonic mean of precision
and recall, and it provides a balance between the two metrics.

These metrics provide a comprehensive evaluation of the
performance of the model, especially when dealing with
imbalanced datasets. Balanced accuracy is a modification of
accuracy that takes into account the imbalance in the class
distribution of the data. This metric is particularly useful
when dealing with imbalanced datasets, as it provides a more
accurate evaluation of the performance of the model. MCC
is a correlation coefficient that measures the quality of binary
classifications. One of the primary challenges in peak detection
algorithms is the identification of noise signals as true peaks.
Consequently, the false positive rate in the confusion matrix
can serve as a useful metric to compare and evaluate the
performance of these algorithms. By examining the accuracy
of peak detection and minimizing the false positive rate,
researchers can develop more reliable and efficient peak de-
tection methods.

III. EXPERIMENTS AND RESULTS

We tested the performance of various machine learning
methods on the extracted sub-sequences, which were presented
to the models in eight different configurations of the extraction.
The methods were tested on unmodified sub-sequences, as well
as on subsequences that had been processed using the seven
different dimension reduction methods, including PCA [15]
with 2 and 3 components, ICA [17] with 2 and 3 components,
LDA [16] with one component, calculation of average and a
maximum of each sub-sequence, and calculation of mean, PTP
[18], and STD for each sub-sequence.

The computed features used to train the popular machine
learning methods such as Decision tree [19], XGBoost [20],
AdaBoost [21], Bagging, Random Forest [7], and SVM [8]
to classify between peaks and noPeaks. The default machine
learning model settings and five-fold cross-validation were
used for training. We used 70% of the data for training and
five-fold cross-validation, and 30% for testing.

The noPeaks sequences were on average much longer than
peaks sequences, and can therefore result in far more noPeaks
than peaks sub-sequences. To address this imbalance problem,
we used a higher shift size factor for extracting sub-sequences
from the noPeaks sequences compared to the peaks sequences.

To compare the impact of these changes on peak detection
models, 138 experiments were conducted by altering win-
dow size, shift size, and pick more parameters and selecting
different feature reduction methods and machine learning
models,and the main findings are summarized below.



TABLE II: The table displays the best result achieved by combinations of machine learning models, feature reduction techniques, and window sizes across all 138 experiments
based on the evaluation metrics used.

ML Model Feature reduction method Window size F1 score Balanced accuracy MCC False positive rate

SVM [8] LDA [16] 4001 0.9644 0.9641 0.9290 0.1260
XGBoost [20] LDA [16] 4001 0.9638 0.9634 0.9281 0.1030
AdaBoost [21] LDA [16] 4001 0.9626 0.9623 0.9258 0.1030

Random forest [7] LDA [16] 4001 0.9489 0.9488 0.8979 0.2350
Bagging [22] LDA [16] 4001 0.9489 0.9488 0.8979 0.2290

Baseline ”most frequent” LDA [16] 4001 0.3395 0.5 0.0 0.0
Baseline ”stratified” LDA [16] 4001 0.4953 0.4954 −0.9100 0.2441
Baseline ”uniform” LDA [16] 4001 0.5036 0.5037 0.7400 0.2550

TABLE III: This table shows comparing windows size used for making sub-sequences
and effect on machine learning models. All sub-sequences fed to models without any
feature reduction

Model Window size Shift size F1 score

XGBoost [20]

2001 100 0.6993
4001 100 0.7748
10001 100 0.8733
4001 500 0.7787

Table III, shows the performance of XGBoost [20] for
different choices of window size and shift size. According to
the results, using a window size of 10, 001 and a shift size of
100 led to the highest F1-Score of 0.8733. This indicates that
peak detection accuracy can be improved by using a larger
window size to scan the dataset. Nevertheless, the study also
demonstrated that a combination of other settings and a smaller
window size can result in a better outcome in some cases.

TABLE IV: The table compares the impact of feature reduction methods on labeled
sequences within the H3K9me3 TDH BP dataset on the Bagging machine learning
model’s ability to detect peaks and noises, measured by the F1-score criteria. The highest
F1-score is highlighted in bold

Model Feature reduction F1 score

Bagging [22]

Raw sub-sequences 0.7540
Min, Max 0.7039

Mean, PTP [18], STD 0.7814
PCA [15] with 2 components 0.7395
PCA [15] with 3 components 0.7640
ICA [17] with 2 components 0.7419
ICA [17] with 3 components 0.7648
LDA [16] with 1 component 0.9489

Abbreviations: Min = Minimum, Max = Maximum,
STD = Standard deviation, PTP = Peak to peak
function in numpy library, PCA = Principal compo-
nent analysis, ICA = Independent component analysis,
LDA= Linear discriminant analysis.

Table IV shows the performance of the Bagging machine
learning model using different feature reduction methods.
The results show that using LDA [16] for feature reduction
resulted in the highest F1-Score of 0.9489. This indicates
that LDA [16] is a highly effective method for reducing the
dimensionality of the data and improving the performance of
the machine learning models.

Table II displays the top five outcomes out of 138 ex-
periments conducted. The SVM [8] algorithm, along with a

window size of 4001 and LDA [16] feature reduction method,
produced the highest performance in the current pipeline,
achieving an F1-score of 0.9644. This indicates that using
the SVM [8] algorithm, a window size of 4001, and applying
LDA [16] for feature reduction can significantly enhance the
accuracy of peak detection in this dataset.

Additionally, we observed that the XGBoost [20] and Ad-
aboost [21] machine learning models had the lowest false
positive rates, with values of 0.0103. The low false positive
rates observed in XGBoost [20] and Adaboost [21] models
suggest that these models have the potential to be used in other
CHIP-Seq datasets for accurate peak detection. The results
indicate that the machine learning algorithms have achieved
considerably higher accuracy in contrast to the baseline mod-
els.

The outcome of our experiments demonstrates that machine
learning methods can effectively address peak detection prob-
lems with high accuracy, without the need for domain experts.
These techniques can distinguish between peak shapes and
noises, which is a major challenge in this field, and achieve
low false positive rates, thereby increasing the reliability of
peak detection. Our findings indicate that the size of the
window in the sliding window method plays a crucial role
in extracting meaningful patterns from the data. A larger
window size can capture more information, but it may also
include more noise, whereas a smaller window size may miss
important peaks. Therefore, choosing an appropriate window
size is essential for accurate peak detection. Furthermore, our
results reveal that feature reduction methods can significantly
improve the performance of machine learning models in peak
detection. These methods can remove irrelevant and redundant
features, reducing the complexity of the model and improving
its generalization ability. By selecting relevant features, feature
reduction methods provide more suitable data for training
machine learning models, resulting in higher accuracy and
faster computation time.

IV. CONCLUSION

In this paper, we have introduced a pipeline for peak
detection in CHIP-Seq genomic data, which combines sliding
window, feature reduction techniques, and machine learning
methods. To assess the performance of the pipeline, various
evaluation metrics were utilized, demonstrating their effec-
tiveness in accurately detecting peaks. Our findings indicate



that the selection of window sizes can significantly impact
feature extraction using the sliding window approach. Addi-
tionally, feature reduction methods can yield more relevant
features, which can improve the performance of machine
learning models trained on the dataset. Importantly, the use
of feature reduction methods can reduce the dimensionality of
the training data and decrease the training and testing time for
machine learning algorithms. We evaluated several machine
learning methods and found that SVM [8], XGBoost [20],
and AdaBoost [21] outperformed other models in detecting
peaks. Our study provides insight into the benefits of combin-
ing sliding window, feature reduction, and machine learning
techniques in peak detection, and highlights the importance
of optimizing these methods for specific CHIP-Seq genomic
sequences.

In the future, the peak detection pipeline proposed in this
study could be expanded and applied to a diverse range of
CHIP-Seq datasets with different peak characteristics, such as
sharp or broad peaks. Moreover, the sub-sequences located
between peakStart and peakEnd could be leveraged to extract
patterns that are associated with peaks. The combination of
the sliding window, feature reduction and machine learning
models used in this pipeline has shown promising results,
but further optimization through fine-tuning could improve its
accuracy and efficiency. Moreover, deep learning models and
pre-trained models can be employed to extract peak patterns
from extracted sub-sequences by the proposed sliding window,
which could enhance the performance of the pipeline. Future
research could explore the use of these models and evaluate
their effectiveness compared to existing methods. In summary,
our proposed peak detection pipeline has great potential for
advancing CHIP-Seq data analysis and providing insights into
the functional genomics of various biological systems. Further
investigation and optimization of the pipeline could lead to
more accurate and efficient detection of peaks in diverse
datasets.
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