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Abstract Stability and L2-gain control for positive Takagi-Sugeno (T-S) fuzzy
systems are further studied in this brief paper. First, considering that the system s-
tates are positive, some sufficient conditions of exponential asymptotic stability are
obtained by applying a copositive Lyapunov function with membership-function-
dependent (MFD) Lyapunov matrices. Based on a preset switching rule, the con-
ditions are expressed as linear matrix inequalities by eliminating the nonconvex
factors due to the time-derivative of MFD Lyapunov matrices. Then, stability is
extended to stabilization by designing a switching controller with time-varying
controller gains such that the L2-gain performance requirements are satisfied. In
addition, a quadratic switching strategy is established to further reduce conser-
vativeness. Finally, the applicability and validity of the theoretical results are
validated by two examples.

Keywords Positive nonlinear systems · Membership-function-dependent coposi-
tive Lyapunov function · T-S fuzzy model · L2-gain

1 Introduction

Positive nonlinear systems have been gaining increasing attention in recent years
due to their wide range of applications in emerging fields such as cancer treatment
[1], physical systems [2], and circuit control [3]. A key feature of positive systems
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is that they maintain nonnegative states when the initial conditions are nonneg-
ative, which leads to interesting and unique properties [4]. However, the positive
constraints in controlling systems make their study and analysis challenging.

It is well known that the T-S fuzzy model can accurately represent smooth
nonlinear systems by using local linearization [5]. Therefore, it is possible to use
existing linear system research results to study nonlinear systems. At present, sta-
bility and stabilization are research hotspots for positive systems [4,6,7], and many
results have shown that designing a Lyapunov function representing the system
characteristics is an important research method. For example, less conservative
results are obtained by applying an impulse-time-dependent method to construc-
t a discretized copositive Lyapunov function for exponential stability analysis of
positive impulsive systems [7]. Obviously, for positive systems, using a general
quadratic Lyapunov function often leads to overly conservative results, as it does
not adequately reflect the positive characteristics. Note that a quadratic copositive
Lyapunov function (QCLF) was designed in [8] to study the stability and track-
ing control of positive fuzzy systems, the characteristics of positive systems were
better considered, but the result was conservative because the membership func-
tion was neglected. With the advancement of research, the membership function,
which is an essential characteristic of T-S fuzzy models, has attracted attention
in the study of T-S fuzzy systems. Associating a Lyapunov function with the
membership function can significantly reduce the conservativeness of the stability
analysis results for fuzzy systems [9,10]. For instance, to avoid having to take the
time-derivative of MFD Lyapunov matrices, a linear integration fuzzy Lyapunov
function has been designed for T-S fuzzy systems [11]. A line copositive Lyapunov
function with MFD Lyapunov matrices has been used to study the ℓ1 filter for
discrete positive fuzzy systems [12]. Recently, larger delay bounds were found in
[13] for time delay fuzzy systems by applying switching rules to deal with MFD
Lyapunov matrices. Therefore, designing a MFD copositive Lyapunov function
(MFDCLF) to obtain less conservative results for positive T-S fuzzy systems is
the primary motivation of the current study.

The parallel distributed compensation (PDC) method is widely used to design
positive fuzzy system controllers and can be further improved by designing non-
linear gains instead of a time-independent matrix. In addition, since exogenous
disturbances are often present in practical systems, an input-to-output analysis
is required to characterize the attenuation capability of the disturbance input.
Therefore, many researchers have studied H∞ control [14], L1-gain control [15],
the L2-gain control [16] for fuzzy systems. The second motivation of this work is
to design controller gains that are dependent on the time-derivative of the mem-
bership function to analyze the perturbation input attenuation capability.

Based on the above discussion, the stability analysis of T-S positive fuzzy sys-
tems with L2-gain performance optimization is further studied in this brief paper.
The main contributions of this paper are the following four points: 1, A new MFD-
CLF is constructed to obtain less conservative exponential stability conditions. 2,
A fuzzy controller is designed via the preset switching rules for the corresponding
closed-loop positive fuzzy systems. According to the switching signal of the time-
derivative of MFD Lyapunov matrices, better L2-gain performance is obtained. 3,
Linear switching is extended to quadratic switching, which uses more information
on the membership function. 4, The average dwell-time technique, along with an
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analysis of the membership function, is applied to ensure stability regardless of
how the controller switches.

Notations: X ≽ 0 means all elements of X are nonnegative. A ≡ [apq]∈n×m.
If all off-diagonal elements of X are nonnegative, then X is called Metzler. For
integer n0 ≤ n1, n0, n1 = {n0, n0+1, · · · , n1} and Im = [0(n−m+1)×(m−1)|In−m+1]

∈ R(n−m+1)×n.

2 Problem formulation

Consider the following positive T-S fuzzy mode with r IF-THEN rules:
Model rule i: If ς1(t) is µ

i
1 and ς2(t) is µ

i
2 and · · · and ςg(t) is µ

i
g, THEN

ẋ(t) = Aix(t) +Biu(t) + Eiω(t),

z(t) = Cix(t), (1)

where ςj(t) are the premise variables, µij are the fuzzy sets, i = 1, r, j ∈ 1, g. x(t) ∈
Rn, z(t) ∈ Rnz , u(t) ∈ Rnu , and ω(t) ∈ Rnω denote the state vector, the output
vector, the control input vector, and the disturbance input, respectively. Ai ∈
Rn×n, Bi ∈ Rn×nu , Ei ∈ Rn×nω and Ci ∈ Rnz×n are constant real matrices. Denote
ς(t) = [ς1(t), ς2(t), · · · , ςg(t)]T , and denote µij(ςj) ≥ 0 as the grade of membership

of ςj(t) in µ
i
j .

Applying the fuzzy inference method with Xh =
∑r

i=1 hi(ς(t))Xi, the T-S fuzzy
system (1) can be formulated as

ẋ(t) = Ahx(t) +Bhu(t) + Ehω(t),

z(t) = Chx(t), (2)

where 0 ≤ hi(ς(t)) ≤ 1 are the membership functions with

hi(ς(t)) =
ϑi(ς(t))∑r
i=1 ϑi(ς(t))

, ϑi(ς(t)) =

g∏
j=1

µij (ςj(t)) .

To simplify the notation, we will use x, ω, z, and hi instead of x(t), ω(t), z(t),
and hi(ς(t)).

Lemma 1 ([15]) System (2) is positive, if for all x(t0) ≽ 0 and disturbance input

ω ≽ 0, there exists u such that x ≽ 0, ∀t ≥ t0.

Lemma 2 ([16]) If and only if matrix Ai are Metzler, Bi ≽ 0, Ei ≽ 0, and Ci ≽ 0,
for any i ∈ 1, r, then system (2) with u(t) = 0 is positive.

As shown in [13], we construct the Lyapunov function V (t) = xTP
τ(t)
h x, where

τ(t) is switching signal generated by ḣi. For time t ∈ [tk, tk+1), P
τ(t)
h = P l

h, l ∈
1, 2r−1, and the switching method is proposed to ensure Ṗ l

h ≤ 0 as follows:{
if ḣs ≤ 0, then P l

s − P l
r ≥ 0

if ḣs > 0, then P l
s − P l

r < 0
, s = 1, r − 1, (3)
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with P l
i > 0. Note

Ṗ l
h=

r∑
i=1

ḣiP
l
i =

r−1∑
s=1

ḣs

(
P l
s − P l

r

)
,

where ḣs = dhs
dt and ḣ1 + ḣ2 + · · ·+ ḣr = 0. Inequation (3) can be presented as

if Hl, then Jl (4)

where Hl represent the possible permutations of ḣs, and Jl are the constraints of
P l
i , l ∈ 1, 2r−1. For example, if r = 3, and

H1 : ḣ1 ≤ 0, ḣ2 ≤ 0, H2 : ḣ1 ≤ 0, ḣ2 > 0,

H3 : ḣ1 > 0, ḣ2 ≤ 0, H4 : ḣ1 > 0, ḣ2 > 0,

then we have

J1 :
{
P 1
1 ≥ P 1

3 , P
1
2 ≥ P 1

3

}
, J2 :

{
P 2
1 ≥ P 2

3 , P
2
2 < P 2

3

}
,

J3 :
{
P 3
1 < P 3

3 , P
3
2 ≥ P 3

3

}
, J4 :

{
P 4
1 < P 4

3 , P
4
2 < P 4

3

}
.

Based on the above definition, we can also use other switching rules to ensure
Ṗ l
h ≥ 0 as follows:

if Hl, then Ĵl (5)

where Ĵl represent the constraints of P l
i for Ṗ l

h ≥ 0. For example, if J1 represents
P 1
1 − P 1

2 ≥ 0, Ĵ1 represents P 1
1 − P 1

2 ≤ 0.

Lemma 3 Given ρ > 1, α > 0, the positive T-S fuzzy system (2) is globally exponen-

tially stable (GES), if the average dwell-time satisfies τa > (ln ρ/α), and there exist

V (t) = xTP
τ(t)
h x, P ı

i > 0, ı, ȷ ∈ l, l ∈ 1, 2r−1, and i = 1, r such that (4) and the

following inequalities hold:

P ı
i ≤ ρP ȷ

i , (6)

V̇ (t) + αV (t) < 0. (7)

Proof For time t ∈ [tk, tk+1), P
τ(t)
h = P ı

h, k ∈ 1,∞, tk are switching instants.

Suppose hi(t
+
k ) = hi(tk) = hi(t

−
k ), P

τ(t−k )

h = P ȷ
h, from (6) and (7), the following

inequality holds:

V (t) ≤ e−α(t−tk)V (tk)

≤ ρe−α(t−tk)V (t−k )

and, thus

V (t) ≤ e−α(t−t0)ρkV (t0). (8)

For every period, we have k ≤ ([t− t0]/τa), and

V (t) ≤ e(
ln ρ
τa

−α)(t−t0)V (t0). (9)

Then, we obtain the conclusion.
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Remark 1 Note that the switching signals depend on the system state, but the
satisfied average dwell-time condition can be obtained by searching the parame-

ters α and ρ. In addition, when the MFDCLF V (t) = xT (P
τ(t)
h )−1x is used, the

corresponding condition can be obtained by replacing (6) with

P ı
i ≥ 1

ρ
P ȷ
i . (10)

In addition, Ph in what follows is P
τ(t)
h under a certain switching condition and

will not be specifically indicated.

Definition 1 Given γ > 0 and α > 0, system (2) is said to be GES with L2-gain
bound γ, if the system (2) is GES when ω = 0 and the inequality

∫∞
t0
zT zdt ≤

γ2
∫∞
t0
ωTωdt is satisfied under zero initial condition.

3 Main results

3.1 Relaxed stability conditions

The membership function is an essential difference between the T-S fuzzy model
and other models. Reasonable use of the membership function in stability analysis
can reduce conservativeness. This section derives new stability criteria for the
positive fuzzy system (2) by applying a new MFDCLF.

Theorem 1 Given ρ > 1, α > 0, the positive T-S fuzzy system (2) with ω = 0, u = 0
is GES , if there exist real matrices Pi = PT

i , Πi = ΠT
i , Φij = ΦT

ij , i, j = 1, r, such
that (4), (6) and the following inequalities hold:

−Pj −Πj < 0, (11)

Π̃j < 0, (12)

AT
i Pj + PjAi +AT

j Pi + PiAj + αPj + Φij ≤ 0, (13)

−Φ̃ij ≤ 0, (14)

where

Πj = [πjpq (1− δpq)](p,q)∈n×n , Π̃j = diag
{
π′j1, · · · , π

′
j(n−1)

}
,

Φij = [ϕijpq (1− δpq)](p,q)∈n×n , Φ̃ij = diag
{
ϕ′ij1, · · · , ϕ′ij(n−1)

}
,

δpq =

{
0, p ̸= q

1, p = q
,

π′jk = diag
{
2πjk(k+1), · · · , 2πjkn

}
,

ϕ′ijk = diag
{
2ϕijk(k+1), · · · , 2ϕijkn

}
, k ∈ 1, n− 1.

Proof Designing the MFDCLF as

V (t) =
(√

x{2}
)T [Ph +Πh 0

0 −Π̃h

]√
x{2}, (15)
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where x{2} = [x[2];x1(I2x);x2(I3x) · · · ;xn−1(Inx)], x[2] = [x21, x
2
2, · · · , x2n]T . From

(11) and (12), we have V (t) > 0. Letting x̃ = [x1(I2x);x2(I3x) · · · ;xn−1(Inx)], we
have (

x[2]
)T

Πhx
[2] =

n∑
a=1

n∑
b=1

πhab (1− δab)x
2
ax

2
b

=
n−1∑
a=1

n∑
b=a+1

(πhab + πhab)x
2
ax

2
b

= x̃T diag
{
π′h1, π

1
h2, · · · , π

′
h(n−1)

}
x̃

= x̃T Π̃hx̃ (16)

and similarly

xTΠhx =
√
x̃T Π̃h

√
x̃T . (17)

Together with (15), (16) and (17), one gets

V̇ (t) =
d

dt
[xT (Ph +Πh)x−

√
x̃T Π̃T

h

√
x̃]

=
d

dt
[xTPhx]

=ẋTPhx+ xTPhẋ+ xT Ṗhx. (18)

Applying (4), (17) and (18), we have

V̇ (t) + αV (t) ≤ẋTPhx+ xTPhẋ+ αxTPhx

=xT
(
AT
hPh + PhAh + αPh

)
x

=
r∑

i=1

r∑
j=1

hihjx
T
(
AT
i Pj + PjAi + αPj + Φij

)
x

−
r∑

i=1

r∑
j=1

hihj

(√
x̃T Φ̃ij

√
x̃T
)
.

From (6), (13) and (14), we obtain

V (t) ≤ e(
ln ρ
τa

−α)(t−t0)V (t0), t ∈ [t0,∞]. (19)

Letting σ1 = λmin

([
Ph +Πh 0

0 −Π̃h

])
and σ2 = λmax

([
Ph +Πh 0

0 −Π̃h

])
, it

yields that

V (t) ≥ σ1∥x(t0){2}∥2 ≥ σ1∥x∥2, (20)

V (t0) ≤ σ2∥x(t0){2}∥2, (21)

where ∥x∥2 is the Euclidean norm of x. From (19)-(21), we have

∥x∥2 ≤ σ2
σ1
e−(α− ln ρ

τa
)(t−t0)∥x(t0){2}∥2, (22)

which means that system (2) with ω = 0 and u = 0 is GES.
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Remark 2 GES is guaranteed by designing a new MFDCLF that includes the previ-
ous results as special cases. For example, by selecting the particular values Pi = P ,
the MFDCLF reduces to QCLF, which means that the classic QCLF used in [8]
and [16] is a special case of (15). In addition, the external variables Πi and Φij

are introduced by applying the positive system states to reduce conservativeness.
Theorem 1 in this paper dramatically reduces the conservativeness of the results
in [8], and the details are shown in Example 1.

Theorem 2 Given ρ > 1, α > 0, the positive T-S fuzzy system (2) with u = 0 is GES

with L2-gain γ > 0, if there exist matrices Pi = PT
i , Πi = ΠT

i , Ψij = ΨT
ij , i, j = 1, r,

such that (4), (6) and the following inequalities hold:

−Pj −Πj < 0, (23)

Π̃j < 0, (24)[
Wij + Ψij 0

0 −Ψ̃ij

]
≤ 0, (25)

where

Wij =

[
AT
i Pj + PjAi + αPj + CT

i Cj PjEi,

ET
i Pj −γ2I

]
,

Πj = [πjpq (1− δpq)](p,q)∈n×n ,

Ψij = [ψijpq (1− δpq)](p,q)∈(n+nω)×(n+nω)
,

Π̃j = diag
{
π′j1 · · ·π

′
j(n−1)

}
,

Ψ̃ij = diag
{
ψ′
ij1 · · ·ψ

′
ij(n+nω−1)

}
,

δpq =

{
0, p ̸= q

1, p = q
,

π′jk = diag
{
2πjk(k+1) · · · 2πjkn

}
, k ∈ 1, n− 1,

ψ′
ijk = diag

{
2ψijk(k+1) · · · 2ψijk(n+nω)

}
, k ∈ 1, n+ nω − 1.

Proof Considering (4), (15) and (17), we have

V̇ (t) + αV (t) + zT z − γ2ωTω

≤ẋTPhx+ xTPhẋ+ αxTPhx+ (Chx)
T (Chx)− γ2ωTω

=

[
x

ω

]T [
AT
hPh + PhAh + αPh + CT

h Ch PhEh

ET
h Ph −γ2I

] [
x

ω

]
=

r∑
i=1

r∑
j=1

hihj

(
ξT
[
AT
i Pj + PjAi + αPj + CT

i Cj PjEi

ET
i Pj −γ2I

]
ξ

+ ξTΨijξ −
√
ξ̃T Ψ̃T

ij

√
ξ̃

)

=
r∑

i=1

r∑
j=1

hihj

[
ξ√
ξ̃

]T [
Wij + Ψij 0

0 −Ψ̃ij

][
ξ√
ξ̃

]
,
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where ξT = [xT ωT ].

From (25), we have V̇ (t) + αV (t) + zT z − γ2ωTω ≤ 0, which implies that

V (t) ≤ e(
ln ρ
τa

−α)(t−t0)V (t0) +

∫ t

t0

e(
ln ρ
τa

−α)(t−t0)
(
γ2ωT (s)ω(s)− zT (s)z(s)

)
ds.

(26)

Under zero initial condition, we have∫ ∞

t0

e(
ln ρ
τa

−α)(t−t0)zT zdt ≤ γ2
∫ ∞

t0

e(
ln ρ
τa

−α)(t−t0)ωTωdt. (27)

Therefore, the L2-gain performance γ is guaranteed.

3.2 Stabilization conditions

In this subsection, some relaxed stabilization conditions are obtained by designing
membership-function-dependent fuzzy controller via the preset switching rule as
follows:

if Hl, then u(t) = ul(t), (28)

where ul(t) = Kl,hx(t), Kl,h =
∑r

i=1 hiKl,i. Combining (28) with the positive
fuzzy system (2), the closed-loop system is represented as

if Hl, then

{
ẋ = (Ah +BhKl,h)x+ Ehω,

z = Chx.
(29)

Theorem 3 Given ρ > 1, α > 0, the closed-loop fuzzy system (29) is GES with L2-

gain γ > 0 and positive, if there exist scalar β > 0, diagonal matrices Pi > 0, and real

matrices Fi, i, j = 1, r, such that (5), (10) and the following inequalities hold:

(AiPj +BiFj +AjPi +BjFi) + βI ≽ 0, (30)

Wij +Wji ≤ 0, (31)

where

Wij =

 (AiPj +BiFj)
T + (AiPj +BiFj) + αPj Ei PjC

T
i

ET
i −γ2I 0

CiP
T
j 0 −I


and the controller gains are

Kl,i = Fi(Ph)
−1. (32)

Proof Applying the Lyapunov function

V (t) = xT (P−1
h )x, (33)



Title Suppressed Due to Excessive Length 9

and considering (5) and (33), we have

V̇ (t) + αV (t) + zT z − γ2ωTω

=ẋTP−1
h x+ xTP−1

h ẋ− xTP−1
h ṖhP

−1
h x+ αxTP−1

h x

+ xTCT
h Chx− γ2ωTω

≤ ((Ah +BhKh)x+ Ehω)
T
P−1
h x+ αxTP−1

h x

+ xTP−1
h ((Ah +BhKhx+ Ehω)) + xTCT

h Chx− γ2ωTω

= [xT ωT ]Ξ[xT ωT ]T

where

Ξ =

[
(Ah +BhKh)

TP−1
h + P−1

h (Ah +BhKh) + αP−1
h + CT

h Ch P
−1
h Ei

ET
i P

−1
h −γ2I

]
.

Applying Schur complement to Ξ ≤ 0, we have (Ah +BhKh)
TP−1

h + P−1
h (Ah +BhKh) + αP−1

h P−1
h Eh C

T
h

ET
h P

−1
h −γ2I 0

Ch 0 −I

 ≤ 0. (34)

Then, we get the conclusion by pre- and post-multiplying both sides of (34) with
diag{Ph, I, I}.

Remark 3 Note that controller gain matrixKl,i obtained in (32) is dependent on Ph

which switches according to the switching rule (5), if Pi = P ,Kl,i becomes a general
time-invariant matrix, and the controller will not switch any longer. In addition,
in Theorem 1, Ph is only linearly dependent on the membership function. Further
improvement can be obtained if the linear switching is extended to quadratic
switching. Letting Pf =

∑r
i=1

∑r
j=1 hihjP

f
ij , f ∈ 1, 2r−1, one gets

Ṗf =
r∑

i=1

r∑
j=1

ḣihj(P
f
ij + P f

ji)

= ḣr

r∑
j=1

hj(P
f
rj + P f

jr) +
r−1∑
v=1

r∑
j=1

ḣvhj(P
f
vj + P f

jv)

=
r−1∑
v=1

ḣv

 r∑
j=1

hj(P
f
vj + P f

jv − P f
rj − P f

jr)

 .

Ṗf ≥ 0 is ensured by the following switching rules:{
if ḣv ≤ 0, then P f

vj + P f
jv − P f

rj − P f
jr ≤ 0

if ḣv > 0, then P f
vj + P f

jv − P f
rj − P f

jr > 0
, v = 1, r − 1, j = 1, r. (35)

Similar to (4), inequality (35) is presented as

if Hf , then Gf (36)
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where Hf represent the possible permutations of ḣv, and Gf are the constraints of

P f
ij , f ∈ 1, 2r−1. The design of the controller based on the switching rule (36) is the

same as that of (28). In addition, when Lyapunov function V (t) = xT (Pτ(t))−1x

is used, the GES can be obtained by replacing (6) in Lemma 3 with

P ı
ij + P ı

ji ≥
1

ρ
(P ȷ

ij + P ȷ
ji). (37)

Applying the improved switching rule (36), we get the following Corollary 1.

Corollary 1 Given ρ > 1, α > 0, the closed-loop fuzzy system (29) is GES with L2-

gain γ > 0 and positive, if there exist a scalar β > 0, diagonal matrices Pij , and real

matrices Fi, i, j = 1, r, such that (36), (37) and the following inequalities hold:

Pij + Pji ≥ 0, (38)

Miii + βI ≽ 0, (39)

Miij +Miji +Mjii + βI ≽ 0, i ̸= j, (40)

Mijk +Mikj +Mjik +Mjki +Mkij +Mkji + βI ≽ 0,

i = 1, r − 2, j = i+ 1, r − 1, k = j + 1, r, (41)

Wiii ≤ 0, (42)

Wiij +Wiji +Wjii ≤ 0, i ̸= j, (43)

Wijk +Wikj +Wjik +Wjki +Wkij +Wkji ≤ 0,

i = 1, r − 2, j = i+ 1, r − 1, k = j + 1, r, (44)

where

Mijk = AiPjk +BiFj ,

Wijk =

MT
ijk +Mijk + αPjk Ei PjkC

T
i

ET
i −γ2I 0

CiP
T
jk 0 −I

 .
and the controller gains are

Kf,i = Fi(P)−1. (45)

Proof Considering the Lyapunov function

V (t) = xT (P−1)x (46)

with P =
∑r

i=1

∑r
j=1 hihjPij , and following similar steps in the proof of Theorem

3, we easily obtain Corollary 1.

Remark 4 If Pij = Pi, i, j = 1, r, the Lyapunov function (46) will reduce to (33),
which means that the proposed MFD Lyapunov function (46) can potentially
reduce conservativeness.

Remark 5 Since there are 2r−1 possible cases in (5) and (36), for each case, ap-
plying Theorem 3 or Corollary 1, we get a corresponding L2-gain performance
index denoted as γζ , ζ ∈ 1, 2r−1. In order to ensure stability, the final best value
is max1≤ζ≤2r−1(γζ). On the other hand, for some given γ > max1≤ζ≤2r−1(γζ), the
switching controller can be designed easily. The details are shown in Example 2.
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Fig. 1. Stability regions based on different methods for Example 1

4 Numerical examples

Example 1 Consider a two-rule open-loop T-S fuzzy system (2), and its parameters
are given by [8]:

A1 =

−1 0 a

b −1 0
0 0 −10

 , A2 =

−10 0 10
0 −10 0
0 10 −1

 ,
with h1 = 1 − sin2x1, h2 = sin2x1. By Lemma 2, it is obtained easily that the
system is positive when x(0) ≥ 0 and a, b ≥ 0.

Let a = 1, b = 1.5, using Theorem 1 in this paper and the criterion in [8],
the maximum upper bound of α is 1.32 and 0.46 respectively. Therefore, Theorem
1 in this paper is less conservative than the criterion in [8]. Then, we use the
simulation tool Yalmip in MATLAB and the feasibility region is searched in a×b ∈
[0, 10]× [0, 5] with x ∈ Rn

+. Based on the switching rule (4), solving (12)-(14) with
α = 0 and constraint J1 : {P 1

1 ≥ P 1
2 } or constraint J2 : {P 2

1 < P 2
2 }, we obtain two

stability regions S1 and S2. The final stability region obtained by Theorem 1 is
the intersection of S1 and S2 which are plotted in Figure 1. Obviously, a larger
stability region can be found in this paper than [8]. Given a = 1 and b = 5, and
applying Theorem 1, we have

Constraint ḣ1 < 0, J1{P 1
1 ≥ P 1

2 }

P 1
1 =

 0.7295 0.1999 0.2923
0.1999 0.7889 0.6450
0.2923 0.6450 0.7440

 , P 1
2 =

 0.0549 0.1303 0.0091
0.1303 0.6533 0.5854
0.0091 0.5854 0.4382

 ,
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Fig. 2. State trajectories of x for Example 1

Constraint ḣ1 ≥ 0, J2{P 2
1 < P 2

2 }

P 2
1 =

 1.9171 0.9250 0.7981
0.9250 1.7781 1.9314
0.7981 1.9314 1.2220

 , P 2
2 =

 2.5032 0.2433 −0.3602
0.2433 7.9634 6.4987
−0.3602 6.4987 6.5281

 ,
Figure 2 shows the state trajectories with x(0) = [10, 10, 10]T , which shows that
the system states are asymptotically stable. Note that this point in Figure 1 cannot
be found by the method in [8].

Example 2 Consider a nonlinear positive system with disturbances:

ẋ1 =(0.8sin2x1)x1 + (0.6− 0.5sin2x1)x2

+ (1.5− 1.3sin2x1)u1 + (0.1 + 0.4sin2x1)u2 + 0.4ω,

ẋ2 =(0.35 + 0.65sin2x1)x1 + (0.2− 0.1sin2x1)x2

+ (0.2 + 0.5sin2x1)u1 + (0.8− 0.5sin2x1)u2 + 0.7ω,

z =0.2x1 + 0.6x2,

ω =0.5e−0.5t. (47)

System (47) can be represented as T-S fuzzy model (2) with h1 = 1 − sin2x1,
h2 = sin2x1, and the following system matrices

A1 =

[
0 0.6

0.35 0.2

]
, A2 =

[
0.8 0.1
1 0.1

]
, B1 =

[
1.5 0.1
0.2 0.8

]
, B2 =

[
0.2 0.5
0.7 0.3

]
,

C1 = C2 =

[
0.2
0.6

]T
, E1 = E2 =

[
0.4
0.7

]
.
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system in Example 2
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Fig. 4. Trajectories of x for closed-loop
system in Example 2
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Fig. 5. Evolution of ḣ1 and controller
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Fig. 6. Evolution of the h1 and ḣ1 in
closed-loop system

By solving (30) and (31) with α = 0.05, we obtain a feasible solution with
different value of L2-gain performance index γ

Constraint ḣ1 < 0, Ĵ1{P 1
1 ≤ P 1

2 }
min(γ) = 6.7419, β = 0.0670,

P 1
1 =

[
0.0821 0

0 0.1825

]
, P 1

2 =

[
0.0821 0

0 0.2594

]
,

F 1
1 =

[
−0.0200 −0.0655
0.0425 −0.1129

]
, F 1

2 =

[
−0.0656 −0.0679
−0.1206 −0.0247

]
.

Constraint ḣ1 ≥ 0, Ĵ2{P 2
1 > P 2

2 }
min(γ) = 4.9961, β = 0.1596,

P 2
1 =

[
0.5020 0

0 0.2914

]
, P 2

2 =

[
0.3624 0

0 0.2116

]
,

F 2
1 =

[
−0.0434 −0.1106
−0.2088 −0.0896

]
, F 2

2 =

[
−0.2584 −0.0582
−0.6051 −0.0191

]
.
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As shown in Remark 5, the final performance is 6.7419. The system states, the
controller and the time derivative of membership function are shown in Figures
3 - 6 with initial state x(0) = [5, 8]T . Figure 3 indicates that system (47) with
u = 0 is unstable. Then, the trajectories of the closed-loop system with controller
(28) are as shown in Figure 4, which demonstrates that the controller renders the
T-S fuzzy closed-loop system stable and maintains its positivity. Based on the
switching rule, the controller switches at the switching points t ≈ 0.909, t ≈ 3.463,
and t ≈ 8.247 in Figure 5. Moreover, the trajectories of h1 and ḣ1 are shown in
Figure 6, where the switching points correspond to the switching signal change of
ḣ1.

Note that in the above analysis, the parameter is ρ = 6.12, and the average
dwell-time is τa > 36.2. A smaller decay rate α and larger parameter ρ lead to
better results but increase the average dwell-time τa at the same time. As seen in
Figure 5, the number of switches is finite in system (47), so there exists a longer
average dwell-time satisfying the requirement. In practical applications, a long
average dwell- time will not be satisfied for some cases. Therefore, the values of α
and ρ should be properly selected. For example, if α = 0.05 and ρ = 1.4, we have

Constraint ḣ1 ≥ 0, Ĵ2{P 2
1 > P 2

2 }
min(γ) = 5.3652, β = 0.1595, ρ = 1.4

P 2
1 =

[
0.1149 0

0 0.2555

]
, P 2

2 =

[
0.0849 0

0 0.1933

]
,

F 2
1 =

[
−0.0063 −0.0969
−0.0487 −0.0795

]
, F 2

2 =

[
−0.0605 −0.0538
−0.1420 −0.0171

]
.

In this case, the average dwell-time is τa > 6.73.

Table 1: Min value of γ with different α for Example 2

γ α = 0.01 α = 0.05 α = 0.1

[16] 5.752 7.125 10.054
Theorem 3 5.369 6.742 9.723
Corollary 1 4.835 5.976 8.393

The L2-gain performance index γ is shown in Table 1 with different α values
for different methods. For example, when α = 0.01, applying Theorem 3 with
Ĵ1 : {P 1

1 ≤ P 1
2 } and Ĵ2 : {P 2

1 > P 2
2 }, we get the following feasible solution

Ĵ1

{
γ
Ĵ1

= 5.369, β = 0.0807, P 1
1 =

[
0.1268 0

0 0.2033

]
, P 1

2 =

[
0.1268 0

0 0.3147

]}
,

Ĵ2

{
γ
Ĵ2

= 4.154, β = 0.1935, P 2
1 =

[
0.6029 0

0 0.3494

]
, P 2

2 =

[
0.4365 0

0 0.2549

]}
,

and the final L2-gain performance is γ=max{γ
Ĵ1
, γ

Ĵ2
} = 5.369. Applying Corollary

1 with G1 : {2P 1
11 ≤ P 1

12+P
1
21, P

1
12+P

1
21 ≤ 2P 1

22}, G2 : {2P 2
11 > P 2

12+P
2
21, P

2
12+P

2
21 >
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2P 2
22}, we get the following results

G1

{
γG1

= 4.835, β = 0.2327, P 1
11 =

[
0.0954 0

0 0.2322

]
,

P 1
12 + P 1

21 =

[
0.4133 0

0 0.5337

]
, P 1

22 =

[
0.2066 0

0 0.3015

]}
,

G2

{
γG2

= 4.146, β = 0.3002, P 2
11 =

[
0.6050 0

0 0.3499

]
,

P 2
12 + P 2

21 =

[
1.0430 0

0 0.6063

]
, P 2

22 =

[
0.4381 0

0 0.2564

]}
,

and the final L2-gain performance is γ=max{γG1
, γG2

} = 4.835. While, applying
the method in [16] we get γ =5.752. Obviously, the results obtained by Theorem 3
and Corollary 1 are less conservative than those in [16]. Moreover, it is shown that
the results can be further relaxed by increasing the degree of the MFD polynomial.

5 Conclusions

In this paper, we study the issue of stability and L2-gain control synthesis for posi-
tive T-S fuzzy systems. A new MFDCLF is designed to relax the stability analysis
results. Moreover, a switching-dependent controller with time-varying controller
gain is designed to obtain better performance. The theoretical results are shown
to be effective through two examples. It is also observed that stability analysis
results improve with an increase in the degree of membership functions. In future
work, the role of the membership function in T-S fuzzy systems will be further
studied.
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