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Abstract

This paper is concerned with the stabilization and event-triggered con-
trol for positive nonlinear systems in terms of Takagi-Sugeno (T-S) fuzzy
models. By employing the unique positivity of positive systems, a new
event-triggered mechanism is introduced to select necessary signals so
that the communication resources can be saved effectively while guaran-
teeing the system performance. It is different from the traditional event-
triggered mechanism that is designed in the quadratic form for general
systems, the one adopted in this paper is in linear form which is beneficial
to facilitate the stability analysis in terms of a linear copositive Lyapunov
function. However, the tricky non-convex problem makes controller
design extremely challenging. For handling this issue, the matrix decom-
position technique plays a very important part in designing the feedback
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control law. Furthermore, improving the relaxation of the analysis results
is another considerably vital but challenging issue. To break through this
difficulty, an asynchronous premise re-construct method is presented to
extract the information of membership functions (MFs), which is con-
ducive to obtaining more relaxed stability and positivity analysis. Finally,
the validity of this control strategy is illustrated by simulation examples.

Keywords: Positive T-S fuzzy systems, event-triggered scheme,
asynchronous constraints, membership functions (MFs), stability analysis

Article Highlights. 1. The proposed strategy is helpful to save the com-
munication resources for positive T-S fuzzy event-triggered control systems.
2. The feedback control law can be acquired to guarantee the stability and
positivity of the positive nonlinear systems.
3. Relaxed stability conditions and positivity conditions are developed so that
wider stable regions can be found.

1 Introduction

In many application fields, such as ecological system, chemistry, and epidemiol-
ogy [1, 2], a special kind of systems which is known as positive systems is often
encountered, whose state variables and input variables always are constrained
in the positive quadrant if the initial conditions are non-negative. Inspired by
this, some researchers have devoted a great deal of time and energy to posi-
tive systems in recent decades [3]. In the initial phase, the main concerns of
researchers are the realization, the controllability, as well as the reachability of
positive systems [4–7]. With the further development of positive system theory,
some researchers are increasingly interested in the control synthesis, stabil-
ity analysis and positivity analysis for positive systems [8–11]. Thus, many
findings and results related to positive systems have been reported in terms
of state feedback control [12, 13], output feedback control [14, 15], observer
design [16], filter design [17] and so on.

In recent years, a number of efforts have been made in a new digital con-
trol paradigm that is referred to an event-triggered mechanism, which can
lengthen task periods than the common time-triggered strategy. Thereby, the
communication burden can be reduced effectively and the usage of the system
resources can be improved as well. Moreover, a better system performance can
be achieved, such as, ensuring asymptotically stability, restraining disturbance,
and improving tracking performance, which motivates the wide applications in
many systems [18–20]. However, most of the achievements related to the event-
triggered mechanism are developed for general systems. Only in the last few
years, the problem of event-triggered control for positive systems has attracted
some attention from researchers. For example, the authors in [21] designed
a filter for positive systems by proposing a novel event-triggered condition.
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Further follow-up work based on event-triggered mechanism for positive sys-
tems can refer to [16, 22, 23]. However, it is rare to find research achievements
relating to the event-triggered control for positive nonlinear systems.

Thanks to the support of fuzzy set theory, there is growing concern on
T-S fuzzy models [24] which offer an effective mathematical framework to
facilitate the system analysis and control synthesis. Under this framework, a
complex nonlinear system allows to be expressed approximately via an average
weighted sum of a set of linear subsystems, namely, the mature theories for
linear systems can be adopted for nonlinear systems. Up to now, abundant
accomplishment on analyzing the stability of general systems on account of T-S
fuzzy models have been produced, which can refer to [25–28] and the references
therein. As far as positive nonlinear systems are concerned, some results also
have been obtained by adopting the T-S fuzzy models to investigate the control
synthesis problems in the literature, which provides significant theoretical basis
for further exploration of positive nonlinear systems. For instance, the design
and analysis of a fuzzy observer for positive systems by T-S fuzzy modeling
have been discussed in [29]. The work in [30] discussed the optimal L1-gain
and L∞-gain controller design and synthesis problem for positive nonlinear
systems on the strength of T-S fuzzy models. A filter design with satisfying
L1 performance for positive T-S fuzzy models was studied in [31]. To the
best of authors’ knowledge, hitherto few researchers aim at the event-triggered
mechanism on positive T-S fuzzy systems, which greatly motivates this study.

Although there have been some research findings for positive linear sys-
tems, they were investigated based on quadratic Lyapunov function which
usually leads to conservative results owing to the absence of positivity. Rel-
atively speaking, a novel linear co-positive Lyapunov function [32] has many
advantages than quadratic Lyapunov function to promote the stability analy-
sis for positive systems. Firstly, by constructing a linear co-positive Lyapunov
function, the distinct positivity of positive systems can be utilized for the sta-
bility analysis. Furthermore, it will make the analysis process relatively simpler
and make the computational burden lighter as well [33, 34]. Moreover, the ele-
gant positivity contributes to extract more unique features of positive systems,
thus people can have a deeper understanding and cognition of the positive sys-
tems. Nevertheless, it is necessary to point out that when a linear co-positive
Lyapunov function is established, a novel and reasonable event-triggered mech-
anism needs to be established so that the stability analysis can be carried out
effectively. Taking that into account, the authors in [16, 21] proposed a new
method by assuming that the error term is non-negative, which caused the
analysis results to be conservative since actually the error term cannot always
remain non-negative. To get rid of the assumption about the event-triggered
mechanism, a new one based on the absolute value of the error term was intro-
duced in [35, 36]. Inspired by them, an improved event-triggered approach by
taking the positivity into account is presented in our paper. In addition, it
requires to be explained that the application of the event-triggered technique
may result in an asynchronous problem of premise variables. Although some
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methods have been developed in [37–41], the event-triggered control problem
with considering the asynchronous premises for T-S fuzzy positive systems has
not yet been attracted much attention, which further encourages us to develop
a deep research on the current work.

To sum up, the main concern of this paper is on the controller design and
stability as well as positivity analysis for positive nonlinear systems under the
event-triggered scheme on the basic of T-S fuzzy models. To realize that goal,
the following puzzles are required to be handled: Firstly, since the advanced lin-
ear co-positive Lyapunov function is constructed, some existing event-triggered
methods are developed based on the assumption that the error terms are
non-negative, which will lead to the conservativeness. Hence, to eliminate this
assumption, it is necessary to propose an improved event-triggered formula.
Secondly, on account of the constraint of positivity, it is difficult to guarantee
the stability and positivity conditions to be convex, simultaneously. Thus, it
is the main barrier for the feedback control strategy design. Thirdly, the infor-
mation embedded in the membership functions can raise the relaxation of the
stability analysis, however, due to the triggering actions, the premise variables
of the fuzzy system and the ones of the fuzzy controller are asynchronous,
which makes it hard to adopt the existed relaxed methods.

To address the above problems, this paper has following contributions: 1)
A new even-triggered mechanism which is constructed in terms of the positiv-
ity of systems and the absolute value of the error term is presented to remove
the assumption of the error terms being non-negative. 2) For overcoming the
non-convex problem, the non-convex terms can be transformed into convex
ones by taking advantage of the matrix decoupling method, which is beneficial
to acquire the feedback control law. 3) For deriving relaxed stability condi-
tions, the improved asynchronous premise reconstruction approach is taken
into account so that more useful information of the membership functions can
be extracted and introduced into the stability and positivity analysis.

The arrangement of the rest of this paper is as follows. For the sake of
presentation, some preliminaries and the event-triggered mechanism are intro-
duced in Section 2. We establish the stable and positive conditions for ensuring
the asymptotic stability and positivity of positive T-S fuzzy event-triggered
control systems in Section 3, which follows by a numerical example in Section
4. A conclusion of this article is shown in Section 5.

2 Preliminaries

2.1 Notation

For a matrix W ∈ <l×n whose r-th row and s-th column element is defined
as wrs, W � 0, W � 0, W � 0 and W ≺ 0 denote that matrix W is a non-
negative matrix, positive matrix, non-positive matrix and negative matrix,
respectively, i.e., wrs � 0, wrs � 0, wrs � 0 and wrs ≺ 0, respectively. ‖ · ‖
represents Euclidean norm, where ‖ x ‖1=

∑n
i=1 |xi| means 1-norm of a vector

x ∈ <n, and |xi| is the absolute value of xi. In = [1, 1, . . . , 1]T ∈ <n means
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T-S Fuzzy Positive System

u(t)

x(t)

Event GeneraterZOH

x(tϛ)x(tϛ)

Fuzzy Controller

Fig. 1 Positive T-S fuzzy event-triggered control systems.

each element in the matrix In is 1. ei = [0, 0, . . . , 1, . . . , 0, 0]T ∈ <n means
that the ith element in the matrix en is 1 and the rest elements are 0. xT is
the transpose of matrix x. Q(x) = diag(x1, x2 . . . , xn) represents a diagonal
matrix where x1, x2 . . . , xn are located on the main diagonal.

Considering a T-S fuzzy positive system, the ith fuzzy rule is described as:

Rule i : IF θ1(x(t)) is ℵi1 · · · θΨ(x(t)) is ℵiΨ
THEN ẋ(t) = Aix(t) + Biu(t), (1)

where θl(x(t)) is the premise variable, l ∈ {1, 2, . . . ,Ψ} with Ψ being a positive
integer; ℵil is the fuzzy membership function of the ith rule for i ∈ {1, 2, . . . , q}
with q being the rule number of the T-S fuzzy model; x(t) ∈ <n is the state
vector and u(t) ∈ <m is the input variable; Ai ∈ <n×n is the system matrix
and Bi ∈ <n×m is the input matrix.

The whole positive T-S fuzzy system can be shown as:

ẋ(t) =

q∑
i=1

ηi(x(t))
(
Aix(t) + Biu(t)

)
, (2)

where

wi(x(t)) = φℵi1(θ1(x(t)))× · · · × φℵiΨ(θΨ(x(t))) =

Ψ∏
l=1

φℵil (θl(x(t))),

ηi(x(t)) =
wi(x(t))
q∑
i=1

wi(x(t))

,

φℵil (x(t)) is the grade of membership of ℵil, and ηi(x(t)) is the normalized

grade of membership. Since wi(x(t)) ≥ 0 and
q∑
i=1

wi(x(t)) > 0, thereby, we

have ηi(x(t)) ≥ 0 and
∑q

i=1 ηi(x(t)) = 1.

Definition 1 [32] A system is a positive system if its states are non-negative for
any non-negative initial condition and any non-negative input.
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Lemma 1. [32, 42] System (2) is said to be positive if Ai is a Metzler matrix,
and Bi � 0.

Definition 2 [3] A matrix W is called a Metzler matrix if its off-diagonal elements
are non-negative: wrs � 0, r 6= s.

2.2 Event-Triggered Control Scheme

When event-triggered mechanism is adopted to control the T-S fuzzy positive
systems, the triggering instant is defined as tς , and the state variable is updated
as x(tς), which will be held by Zero-Order-Hold (ZOH) and transferred to the
fuzzy controller until the arrival of the next state data x(tς+1), i.e.,

x̂(t) = x(tς), t ∈ [tς , tς+1), (3)

where ς ∈ N is the ς-th data transmission, assuming that the first event is
generated when the system is deployed, which means 0 = t0 ≤ t1 ≤ t2 ≤ . . ..

In the following, we define the variable x̃(t) as the error between x̂(t) and
the current measured state x(t) after ς-th transmission:

x̃(t) = x̂(t)− x(t), t ∈ [tς , tς+1). (4)

By taking the positivity of the state variable x(t) of positive systems into
account, a new event-triggered condition which is considerably different from
the event-triggered conditions in quadratic form is applied to determine the
transmission of the measured data in the following:

‖ Kjx̃(t) ‖1≤ ϕ ‖ Kjx(t) ‖1, ∀j, (5)

where ϕ > 0 is a predefined scalar, x̃(t) is the error term which satisfies (4), Kj

is the feedback gain of the fuzzy controller which will be introduced in detail
in the next subsection. If (5) is violated, the control task will be triggered,
which means the control input u(t) will be updated by the new state variable
x(tς+1), otherwise, the control input remains unchanged.

Under the event-triggered condition (5), the next transmitted timing tς+1

is expressed as:

tς+1 = inf{t > tς | ‖ Kjx̃(t) ‖1> ϕ ‖ Kjx(t) ‖1}, ∀j.

2.3 Event-Triggered Control for T-S Fuzzy Positive
Systems

The T-S fuzzy control law is designed as follows:

Rule j : IF θ1(x̂(t)) is ℵj1 · · · θΨ(x̂(t)) is ℵjΨ
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THEN u(t) = Kjx̂(t), t ∈ [tς , tς+1),

where Kj ∈ <m×n is the feedback gain matrix to be determined.
Combining with (4), the fuzzy controller is expressed as:

u(t) =

q∑
j=1

ηj(x̂(t))Kjx̂(t) =

q∑
j=1

ηj(x̂(t))Kj(x̃(t) + x(t)). (6)

Then by substituting (6) into (2), the positive T-S fuzzy closed-loop control
system under event-triggered scheme is displayed in Fig. 1 and the expression
is shown as follows:

ẋ(t) =

q∑
i=1

q∑
j=1

ηi(x(t))ηj(x̂(t))
(
Aix(t) + BiKj(x̃(t) + x(t))

)
=

q∑
i=1

q∑
j=1

ηi(x(t))ηj(x̂(t))
(
(Ai + BiKj)x(t) + BiKjx̃(t)

)
, (7)

where 0 ≤ ηi(x(t))ηj(x̂(t)) ≤ 1,
q∑
i=1

q∑
j=1

ηi(x(t))ηj(x̂(t)) = 1, for all i, j.

Remark 1 To handle the event-triggered control problem for positive systems, one
event-triggered mechanism in [16] has been designed, it is reasonable to utilize the
positivity of the state variable x(t), but it is not rational to assume the error term x̃(t)
to be non-negative since in fact the error term is possible to be negative. Thereby, the
existing event-triggered scheme in [16] is not a perfect solution to design the event-
triggered controller for T-S fuzzy positive systems. Comparing with it, the method
in our paper eliminates this assumption, which has more practical significances.

For convenience, the time t will be omitted, i.e., x(t), x̂(t), x̃(t), wi(x(t))
and wj(x̂(t)) will be replaced by x, x̂, x̃, wi(x) and wj(x̂), respectively.

3 Stability Analysis

In order to analyze the stability of positive T-S fuzzy closed-loop control
system (7). The membership-function-independent (MFI) conditions are estab-
lished firstly. Furthermore, the asynchronous premise reconstruction approach
is introduced not only into the stability conditions but also into positivity
conditions to promote the relaxation effect.

3.1 MFI Stability and Positivity Analysis

Consider the following linear Lyapunov function
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V (t) = xTλ,

where 0 � λ ∈ <n is a positive vector.
Differentiating the V (t) along the system (7), we have:

V̇ (t) = ẋTλ =

q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)
(
xT(Ai + BiKj)

T + (Kjx̃)TBT
i

)
λ. (8)

Then, through the property of the 1-norm, we can handle (5) as follows:

‖ Kjx̃ ‖1≤ ϕ(|Kj1|+ |Kj2|+ . . .+ |Kjm|)x,

where Kjι ∈ <1×n, ι ∈ {1, 2, . . . ,m} is the ι-th row of the feedback gain Kj .
By getting rid of the absolute value of ‖ Kjx̃ ‖1, we have:

−Ωjx � Kjx̃ � Ωjx, (9)

where Ωj ∈ <m×n satisfies

Ωj = ϕ

|Kj1|+ |Kj2|+ . . .+ |Kjm|
...

|Kj1|+ |Kj2|+ . . .+ |Kjm|


m×n

= ϕIm
[
|Kj1|+ |Kj2|+ . . .+ |Kjm|

]
.

By taking (9) into account, (8) can be coped with as:

V̇ (t) �
q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)
(
xT(Ai + BiKj + BiΩj)

T
)
λ.

Therefore, we have the following condition:

(Ai + BiKj + BiΩj)
Tλ ≺ 0,∀ i, j. (10)

We can see that V̇ (t) < 0 can be achieved if (10) can be ensured. However,
it is non-convex owing to the non-convex term (BiKj + BiΩj)

Tλ in (10).
For approximating it into convex one, the matrix decomposition technique is
employed to design the feedback gain:

Kj =
Zj

IT
mBTλ

=

∑m
τ=1 eτZjτ

IT
mBTλ

, (11)

where B = [brs] ∈ <n×m is a matrix with the r-th row and s-th column
element being brs = min{birs}, for all r = {1, 2, . . . , n}, s = {1, 2, . . . ,m},
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i = {1, 2, . . . , q}. Zjτ ∈ <1×n is located in the τ -th row of Zj ∈ <m×n which
is to be determined.

Next, through introducing a vector Z̃j ∈ <1×n which satisfies Zjτ � Z̃j �
0, the following condition holds: Kj =

∑m
τ=1 eτZjτ
ITmBTλ

� ImZ̃j
ITmBTλ

.

And the non-convex term (BiKj + BiΩj)
Tλ can be dealt with as follows:

KT
j B

T
i λ+ ΩT

j B
T
i λ

�
Z̃T
j I

T
mBT

i λ

IT
mBTλ

+ ϕ
[
|Kj1|+ |Kj2|+ . . .+ |Kjm|

]T
IT
mBT

i λ

=
Z̃T
j I

T
mBT

i λ

IT
mBTλ

+ ϕ

[
|Zj1|+ |Zj2|+ . . .+ |Zjm|

]T
IT
mBT

i λ

IT
mBTλ

=
Z̃T
j I

T
mBT

i λ− ϕ
[
Zj1 + Zj2 + . . .+ Zjm

]T
IT
mBT

i λ

IT
mBTλ

=

(
Z̃T
j − ϕ

[
Zj1 + Zj2 + . . .+ Zjm

]T)
IT
mBT

i λ

IT
mBTλ

.

Let Z̃T
j − ϕ

[
Zj1 + Zj2 + . . . + Zjm

]T � 0, and considering the fact that
ITmBT

i λ

ITmBTλ
≥ 1, the following inequality will hold:

KT
j B

T
i λ+ ΩT

j B
T
i λ � Z̃T

j − ϕ
[
Zj1 + Zj2 + . . .+ Zjm

]T
. (12)

Thus, the convex stability conditions have been derived:

Fij = AT
i λ+ Z̃T

j − ϕ
[
Zj1 + Zj2 + . . .+ Zjm

]T ≺ 0. (13)

In the following, the positivity conditions will be derived based on (9),
which yield to:

ẋ =

q∑
i=1

ηi(x)
(
Aix + Biu

)
�

q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)
((

Ai + BiKj

)
x−BiΩjx

)
�

q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)Hijx, (14)

where Hij = Ai + BiKj −BiΩj .
According to Lemma 1, it can be seen that the closed-loop system is a

positive system if Hij is a Metzler matrix. Recalling (11), we have

Hij = Ai + BiKj −BiΩj
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= Ai + Bi
Zj

IT
mBTλ

+ ϕBiIm

[
Zj1 + Zj2 + . . .+ Zjm

]
IT
mBTλ

= Ai +
BiZj + ϕBiIm

[
Zj1 + Zj2 + . . .+ Zjm

]
IT
mBTλ

, ∀i, j. (15)

By multiplying both sides of (15) by the scalar IT
mBTλ, one has:

hijr,sI
T
mBTλ � 0, ∀i, j, r 6= s, (16)

where hijr,s is an entry on the r-th row and s-th column of Hij .
Consequently, the convex MFI stability and positivity conditions are

derived, which will be summarized as Theorem 1.

Theorem 1 Consider a positive T-S fuzzy model (2) satisfying Lemma 1, an event-
triggered control (5) is designed with a predefined scalar ϕ > 0 such that the closed-
loop positive T-S fuzzy system (7) is stable and positive, if there exist vectors λ ∈ <n,

Zj ∈ <m×n and Z̃j ∈ <1×n satisfying:

hijr,sI
T
mBTλ is SOS, ∀i, j, r 6= s, (17)

ζT
(

diag
(
λ
))
ζ is SOS, (18)

ζT
(

diag
(
Z̃j − Zjτ

))
ζ is SOS, ∀ j, τ, (19)

− ζT
(

diag
(
Z̃j
)
− ε1I

)
ζ is SOS, ∀ j, (20)

− ζT
(

diag
(
Z̃T
j − ϕ

[
Zj1 + Zj2 + . . .+ Zjm

]T))
ζ is SOS,∀ j, (21)

− ζT
(

diag
(
Fij
)
− ε2I

)
ζ is SOS, ∀ i, j, (22)

where λ, Z̃j and Zjτ are matrices to be determined. ζ ∈ <n is an arbitrary
vector, ε1 and ε2 are predefined positive scalars. I ∈ <n×n is an identity matrix.
Fij is defined in (13). The feedback gains are calculated based on (11).

Remark 2 Inspired by [43, 44], it is a matter worth thinking how to ensure the
minimum inter-event time to be strictly greater than zero because the Zeno behavior
may occur if the minimum inter-event time is zero, which means the infinite events
will triggered within a finite time interval. Fortunately, the Zeno behavior can be
excluded via designing the event-triggered scheme in our paper and the proof has
been shown in the Appendix section.

Remark 3 With the aid of the matrix decomposition approach, we have acquired a set
of convex conditions which are listed in Theorem 1, where (17) is able to ensure the
positivity of the closed-loop system, and the asymptotic stability can be guaranteed
by conditions (18)-(22). However, these convex conditions are conservative because
the information of membership functions is disregarded. To raise the relaxation effect,
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in the following, the asynchronous premise reconstruction method will not only be
used to obtain relaxed stability conditions but also be used to relax the positivity
conditions such that the results with less conservatism can be obtained.

3.2 Improved Positivity and Stability Analysis

As we can see that the fuzzy controller shares the identical fuzzy rules with
the positive system, but the premise variables are asynchronous, which means
the conventional parallel distributed compensation (PDC) approach cannot be
utilized directly. To address this, the membership function ηj(x̂) in (6) will be
re-constructed so that it has the same time scales as the one in (2). Inspired by
[40], the asynchronous constraints on membership functions are presented as:

|ηj(x̂)− ηj(x)| ≤ ∆j , ∀ j, (23)

ηj(x̂) = ρj(x̂,x)ηj(x),∀ j, (24)

where ∆j ≥ 0 is the upper bound of the asynchronous error. The membership
function ηj(x) satisfies 0 < ηj(x) ≤ 1. And ρj(x̂,x) satisfies the following

inequality: µj1 ≤ 1 − ∆j

ηj(x) ≤ ρj(x̂,x) ≤ 1 +
∆j

ηj(x) ≤ µj2,∀ j, where µj1 and µj2
are the minimum and maximum values of ρj(x̂,x) during the operation. In
order to simplify, the ρj(x̂,x) will be rewritten as ρj in the following.

Then, according to the inequality
µi1
µj2

= min{ρi}
max{ρj} ≤

ρi
ρj
≤ max{ρi}

min{ρj} =
µi2
µj1

with

defining µ1 = min{µi1} and µ2 = max{µi2}, we have: γ1 = µ1

µ2
≤ ρi

ρj
≤ µ2

µ1
≤ γ2.

In the following, the stability analysis with membership functions for
positive T-S fuzzy event-triggered control systems (7) is developed:

V̇ (t) = ẋTλ �
q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)
(
xT(Ai + BiKj + BiΩj)

T
)
λ

�
q∑
i=1

q∑
j=1

ρjηi(x)ηj(x)
(
xT(Ai + BiKj + BiΩj)

T
)
λ

� xT
( q∑
i=1

q∑
j>i

ρjηi(x)ηj(x)
(
Qij +

ρi
ρj

Qji

)
+

q∑
i=1

ρiη
2
i (x)Qii

)

� xT

(
q∑
i=1

q∑
j>i

ρjηi(x)ηj(x)

(
ε1

(
Qij + γ1Qji

)
+ ε2

(
Qij + γ2Qji

))

+

q∑
i=1

ρiη
2
i (x)Qii

)
,

where Qij = (Ai + BiKj + BiΩj)
Tλ. ε1 =

γ2−
ρi
ρj

γ2−γ1
, ε2 =

ρi
ρj
−γ1

γ2−γ1
.
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Then, the stability conditions are shown as:Qii ≺ 0, ∀i,
Qij + γ1Qji ≺ 0, ∀j > i,
Qij + γ2Qji ≺ 0, ∀j > i.

(25)

However, the stability conditions in (25) are non-convex due to the exis-
tance of the non-convex term (BiKj +BiΩj)

Tλ. To address this problem, the
non-convex conditions in (25) can be approximated as convex ones following
the same idea in (11)-(12), which is referred to as follows:Fii ≺ 0, ∀i,

Fij + γ1Fji ≺ 0, ∀j > i,
Fij + γ2Fji ≺ 0, ∀j > i,

(26)

where Fij is defined in (13).
According to the above analysis, the stability conditions obtained based on

membership functions are summarized as Theorem 2.

Theorem 2 Consider a positive T-S fuzzy model (2) satisfying Lemma 1 and the
predefined scalars γ1 and γ2, an event-triggered control (5) is designed with a prede-
fined scalar ϕ > 0 such that the closed-loop positive T-S fuzzy system (7) is stable

and positive, if there exist vectors λ ∈ <n, Zj ∈ <m×n and Z̃j ∈ <1×n satisfying:

(17), (18), (19), (20), (21),

− ζT
(

diag
(
Fii
)
− ε2I

)
ζ is SOS,∀ i, (27)

− ζT
(

diag
(
Fij + γ1Fji

)
− ε3I

)
ζ is SOS,∀ j > i, (28)

− ζT
(

diag
(
Fij + γ2Fji

)
− ε4I

)
ζ is SOS,∀ j > i, (29)

where ε2, ε3, ε4 are predefined positive scalars. I ∈ <n×n is an identity matrix.
The feedback gains can be calculated based on (11).

Remark 4 The asynchrony premise problem has been handled through the asyn-
chronous premise reconstruction method. And the relaxed stability conditions have
been developed in Theorem 2, where the condition (17) has the ability to ensure the
positivity of the closed-loop system, the conditions (18)-(21) and (27)-(29) have the
ability to ensure the asymptotic stability of the closed-loop system.

Remark 5 It is worth noting that asynchronous premise reconstruction method usu-
ally is adopted to decrease the conservatism of stability conditions, but there has
been no work employing this method to further enhance the relaxation of the positive
conditions. Inspired by this point, following the similar line, asynchronous premise
reconstruction method is also taken into the positive conditions so that more relaxed
analysis results can be developed.
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Based on (24), the positive condition (14) can be written as:

ẋ �
q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)Hijx �
q∑
i=1

q∑
j=1

ρjηi(x)ηj(x)Hijx

�

(
q∑
i=1

q∑
j>i

ρjηi(x)ηj(x)
(
Hij +

ρi
ρj

Hji

)
+

q∑
i=1

ρiη
2
i (x)Hii

)
x

�

(
q∑
i=1

q∑
j>i

ρjηi(x)ηj(x)

(
ε1

(
Hij + γ1Hji

)
+ ε2

(
Hij + γ2Hji

))
+

q∑
i=1

ρiη
2
i (x)Hii

)
x,

where Hij = Ai + BiKj −BiΩj .
Hence, the positivity of the closed-loop control systems can be ensured by

the following conditions:Hii is Metzler, ∀i,
Hij + γ1Hji is Metzler, ∀j > i,
Hij + γ2Hji is Metzler, ∀j > i.

(30)

Recalling to (15) and (16), we have:
hiir,sI

T
mBTλ � 0, ∀i, r 6= s,

(hijr,s + γ1hjir,s)I
T
mBTλ � 0, ∀j > i, r 6= s,

(hijr,s + γ2hjir,s)I
T
mBTλ � 0, ∀j > i, r 6= s,

(31)

By taking membership functions into stability condition as well as positive
condition, the further improved results are shown as Theorem 3.

Theorem 3 Consider a positive T-S fuzzy model (2) satisfying Lemma 1, and the
predefined scalars γ1 and γ2, an event-triggered control (5) is designed with a prede-
fined scalar ϕ > 0 such that the closed-loop positive T-S fuzzy system (7) is stable

and positive, if there exist vectors λ ∈ <n, Zj ∈ <m×n and Z̃j ∈ <1×n satisfying:

(18), (19), (20), (21), (27), (28), (29)

hiir,sI
T
mBTλ is SOS, ∀ i, r 6= s, (32)

(hijr,s + γ1hjir,s)I
T
mBTλ is SOS, ∀ j > i, r 6= s, (33)

(hijr,s + γ2hjir,s)I
T
mBTλ is SOS, ∀ j > i, r 6= s, (34)

where hijr,s is an entry which is on the r-th row and s-th column of Hij and
Hij = Ai + BiKj −BiΩj . The feedback gains can be calculated by (11).
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Remark 6 By introducing the asynchronous premise reconstruction method into
both of the positivity and stability conditions, the further relaxed results have been
obtained in Theorem 3, where (32)-(34) are employed to guarantee the closed-loop
system to be still a positive system, (18)-(21) and (27)-(29) is adopted to ensure the
closed-loop system to be stable.

4 Simulation Examples

In this section, we mainly discuss the results from three aspects: (1) How
the scalar ϕ influences the stability region. (2) Whether the information of
membership functions is useful to obtain more relaxed stability conditions.
(3) Whether the relaxation of the analysis results can be strengthen if the
information embedded in membership functions is injected into both stability
and positivity conditions.

Example 1: A positive T-S fuzzy model with three fuzzy rules is given in
the following:

A1 =

[
−0.24 + 0.1a 0.52

1.56 −1.13

]
,A2 =

[
−0.32 0.58
1.57 −1.15

]
,

A3 =

[
−0.35 0.64
1.62 −1.18

]
,B1 =

[
1.28 + b

3.15

]
,B2 =

[
1.64
3.35

]
,

B3 =

[
1.84
3.76

]
,B =

[
1.64
3.15

]
,x = [ x1 x2 ]T.

As mentioned before, B is the matrix whose r-th row and s-th column
element is brs = min{birs}. The parameters a and b are set to 0 ≤ a ≤ 8,
1 ≤ b ≤ 21 with the intervals being 0.5 and 1, respectively. The membership
functions are selected as η1(x1) = 1 − 1

1+e−(x1−8)/2 , η3(x1) = 1
1+e−(x1−12)/2 ,

η2(x1) = 1 − η1(x1) − η3(x1). In addition, γ1 = 0.8 and γ2 = 1.25, ε1 = ε2 =
ε3 = ε4 = 0.0001, the scalar ϕ is chosen as 0.1, 0.2 and 0.3, respectively.

According to Theorem 1, the obtained basic stability regions are displayed
in Fig. 3, which are represented by“+”, “◦” and “4” for the scalar ϕ chosen
as 0.1, 0.2 and 0.3, respectively. Based on Theorem 2, the obtained relaxed
stability regions are shown in Fig. 4, which are represented by “�”, “�” and
“•” for the scalar ϕ chosen as 0.1, 0.2 and 0.3, respectively. On account of
Theorem 3, the obtained relaxed stability regions are displayed in Fig. 5, which
are represented by “×”, “+” and “�” for the scalar ϕ chosen as 0.1, 0.2 and
0.3, respectively. In the following, we will compare the stable regions from the
below three aspects.

Firstly, how the stable regions change with the scalar ϕ. In the case that
the membership functions are ignored, the stability regions with different ϕ
are shown in Fig. 3. By comparing with them, it can be observed that the
stable region obtained with ϕ = 0.1 (“+”) is wider than the one obtained with
ϕ = 0.2 ( “◦”) which is larger than the one obtained with ϕ = 0.3 ( “4”). In
the case that the information of membership functions is considered to relax
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Fig. 3 Stable regions based on Theorem 1
for the scalar ϕ chosen as 0.1 (“+”), 0.2 (“◦”)
and 0.3 (“4”).
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Fig. 4 Stable regions based on Theorem 2
for the scalar ϕ chosen as 0.1 (“�”), 0.2 (“�”)
and 0.3 (“•”).
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Fig. 5 Stable regions based on Theorem 3
for the scalar ϕ chosen as 0.1 (“×”), 0.2 (“+”)
and 0.3 (“�”).

the stability conditions only, the stability regions with different ϕ are shown
in Fig. 4. By comparing with them, it can be found that the stable region
obtained with ϕ = 0.1 (“�”) is wider than the one obtained with ϕ = 0.2 (
“�”) which is larger than the one obtained with ϕ = 0.3 ( “•”). Furthermore,
through comparing with the stable regions in Fig. 5, we can find that when
the information of membership functions is dealt with and used to deduce the
stability and positivity conditions, the stable region obtained with ϕ = 0.1 (
“×”) is bigger than the one obtained with ϕ = 0.2 (“+”) which is bigger than
the one obtained with ϕ = 0.3 (“�”). Therefore, it comes to a conclusion that
the smaller the scalar ϕ, the bigger the stable region, which indicates that the
scalar ϕ is capable of enhancing the relaxation effect.

Secondly, how the relaxing stability conditions effect the stability regions.
By comparing the stable regions in Fig. 3 with the ones in Fig. 4, it can be seen
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that when ϕ = 0.1, the stable region represented by “+” in Fig. 3 is smaller
than the one represented by “�” in Fig. 4; when ϕ = 0.2, the stable region
represented by “◦” in Fig. 3 is smaller the one represented by “�” in Fig. 4;
when ϕ = 0.3, the stable region represented by “4” in Fig. 3 is smaller than
the one represented by “•” in Fig. 4. Hence, we can draw a conclusion that
when the scalar ϕ keeps same, the stable regions obtained in accordance with
the conditions in Theorem 2 are bigger than the ones obtained according to the
conditions in Theorem 1. Thereby, the information of membership functions
can raise the relaxation effect of the stability analysis.

Thirdly, how the relaxed positivity and stability conditions impact the
stable regions. By comparing the stable regions in Fig. 4 with the ones in Fig. 5,
we can discover that when ϕ = 0.1, the stable region (“�”) in Fig. 4 is smaller
than the one (“×”) in Fig. 5; when ϕ = 0.2, the stable region (“�”) in Fig. 4 is
smaller the one (“+”) in Fig. 5; when ϕ = 0.3, the stable region (“•”) in Fig. 4
is smaller than the one (“�”) in Fig. 5. Thereby, we may arrive at a conclusion
that when the scalar ϕ keeps same, the stable regions obtained in accordance
with the conditions in Theorem 3 are bigger than the ones obtained according
to the conditions in Theorem 2, which demonstrates that when the information
of membership functions is introduced into the positivity conditions as well,
the relaxation of the analysis results can be enhanced further.

For further revealing the effectiveness of the theoretical results, we try to
pick out some feasible points randomly to verify the time response and the
event-triggered signal. In addition, the corresponding feedback gain matrices
and the event-triggered times are shown in Table 1. For instance, in Fig. 3,
the point (a = 6, b = 3) represented by “+”, the point (a = 3.5, b = 1)
represented by “◦”, and the point (a = 0.5, b = 1) represented by “4” are
picked out. And in Fig. 4, the point (a = 0, b = 19) represented by “�”,
the point (a = 2, b = 4) represented by “�”, and the point (a = 1, b = 1)
represented by “•” are picked out. In addition, in Fig. 5, the point (a = 8, b =
1) represented by “×”, the point (a = 4, b = 3) represented by “+”, and the
point (a = 0, b = 2) represented by “�” are picked out. The corresponding time
responses and the event-triggered signals of the system states with the initial
conditions x0 = [0.5; 0.5] are displayed in Figs. 6-23. It worth mentioning
that for the point (a = 0, b = 2) represented by “�” Fig. 5, the time span
is set as 0 − 35s which is longer than the time span of other points because
the triggered intervals change obviously after 9s. From these figures, we can
see that the event-triggered controller can drive the time responses close to
zero. Therefore, it comes to a conclusion that the event-triggered T-S fuzzy
controller can achieve the asymptotic stability, at the same time, the positivity
of the positive T-S fuzzy event-triggered control systems can be ensured.

Example 2: A biological system model [45] is applied to verify the
effectiveness of the analysis results, which is given by:

ẋ1(t) = αx2(t)− γ1x1(t)− βx1(t)− ηx2
1(t) + u(t),

ẋ2(t) = βx1(t)− γ2x2(t),
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where x1(t) is the density of immature population of the species and x2(t)
denotes the density of mature population of the species. α, γ1, β, η, γ2 are
positive constants, and u(t) is the control input.

Then according to the sector nonlinearity technique and assuming x1 ∈
[0, 20], each fuzzy rule is obtained as follows:

Rule 1 : IF x1 is LARGE

THEN ẋ = A1x + B1u,

Rule 2 : IF x1 is SMALL

THEN ẋ = A2x + B2u,

By combining with above all the fuzzy models via MFs wi(x), the overall
T-S fuzzy model of this real system is obtained:

ẋ =

2∑
i=1

wi(x)
(
Aix + Biu

)
,

where

A1 =

[
−fmaxη − γ1 − β α

β −γ2

]
,

A2 =

[
−fminη − γ1 − β α

β −γ2

]
,

B1 =
[

1 0
]T
,B2 = B1,x = [ x1 x2 ]T,

w1(x1) = x1/20, w2(x1) = 1− w1(x1).

Then the fuzzy controller is designed as:

u =

2∑
j=1

wj(x̂)Kjx̂, t ∈ [tς , tς+1),

By setting the parameters as α = 0.15; γ1 = 0.2; β = 0.5; η = 0.001; γ2 =
0.1, we can see that A1 and A2 are Metzler, B1 = B2 � 0. Let ε1 = ε2 =
ε3 = ε4 = 0.0001, and ϕ = 0.1, based on the stability and positivity conditions
in Theorem 3, the feedback gains are obtained as K1 = [−6.6519× 10−1 −
1.0256 × 10−1], K2 = [−6.7405 × 10−1 − 9.5649 × 10−2]. Furthermore, the
time response and the event-triggered signals are shown in Figs. 24-25 with the
initial condition x0 = [0.2 0.1]T, which shows that the asymptotic stability
and positivity of the closed-loop control system can be realized. Therefore, the
validity and feasibility of the methods in our paper are verified.
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Fig. 6 Release instants and release interval
for the point a = 6, b = 3 represented by “+”
in Fig. 3.
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Fig. 7 Time responses for the point a =
6, b = 3 represented by “+” in Fig. 3.
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Fig. 8 Release instants and release interval
for the point a = 3.5, b = 1 represented by
“◦” in Fig. 3.
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Fig. 9 Time responses for the point a =
3.5, b = 1 represented by “◦” in Fig. 3.
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Fig. 10 Release instants and release interval
for the point a = 0.5, b = 1 represented by
“4” in Fig. 3.

Time (sec)
0 2 4 6 8 10

x
1
/
x
2

0

0.1

0.2

0.3

0.4

0.5

x1

x2

Fig. 11 Time responses for the point a =
0.5, b = 1 represented by “4” in Fig. 3.
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Fig. 12 Release instants and release interval
for the point a = 0, b = 19 represented by
“�” in Fig. 4.
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Fig. 13 Time responses for the point a =
0, b = 19 represented by “�” in Fig. 4.
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Fig. 14 Release instants and release inter-
val for the point a = 2, b = 4 represented by
“�” in Fig. 4.
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Fig. 15 Time responses for the point a =
2, b = 4 represented by “�” in Fig. 4.
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Fig. 16 Release instants and release inter-
val for the point a = 1, b = 1 represented by
“•” in Fig. 4.
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Fig. 17 Time responses for the point a =
1, b = 1 represented by “•” in Fig. 4.
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Fig. 18 Release instants and release interval
for the point a = 8, b = 1 represented by “×”
in Fig. 5.
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Fig. 19 Time responses for the point a =
8, b = 1 represented by “×” in Fig. 5.
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Fig. 20 Release instants and release inter-
val for the point a = 4, b = 3 represented by
“+” in Fig. 5.
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Fig. 21 Time responses for the point a =
4, b = 3 represented by “+” in Fig. 5.

5 Conclusion

In this paper, the event-based control design for the T-S fuzzy positive sys-
tem has been investigated. An advanced event-triggered method has been
employed so that the innate positivity features of the positive systems can be
studied and the assumption that the states error x̃(t) are non-negative can
be eliminated. In addition, the convex stability and positivity criterions have
been developed by adopting the matrix decomposition method, thus the sta-
bility and positivity of the positive T-S fuzzy event-triggered control systems
can be guaranteed. For decreasing the conservatism of the analysis results,
the asynchronous premise reconstruction method has been utilized to derive
relaxed stability and positivity conditions. Finally, the effectiveness of the con-
trol strategy has been proved by the simulation examples. In order to further
research the event-triggered control for positive nonlinear systems, the more
attractive and efficient dynamic event-triggered conditions will be considered
in the future work.
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Fig. 22 Release instants and release inter-
val for the point a = 0, b = 2 represented by
“�” in Fig. 5.

Time (sec)
0 2 4 6 8 10

x
1
/
x
2

0

0.1

0.2

0.3

0.4

0.5

x1

x2

Fig. 23 Time responses for the point a =
0, b = 2 represented by “�” in Fig. 5.
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Fig. 24 Release instants and release inter-
val for the real system.
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Fig. 25 Time responses for the real system.
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6 Appendix

In event-triggered control systems, the Zeno behavior may be encountered,
which means that an infinite event may happen in a finite-length time interval.
In the following, we will give the proof that the Zeno behavior cannot arise
when the event-triggered mechanism (5) is adopted.
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Table 1 The feedback gain matrices and the triggered times for the chosen stable points.

(a, b) Feedback gains:Kj Triggered Times

(6, 3) K1 = K2 = K3 = [−3.9140 − 1.0822]× 10−1 76

(3.5, 1) K1 = K2 = K3 = [−3.5741 − 1.8516]× 10−1 29

(0.5, 1) K1 = K2 = K3 = [−3.3097 − 1.7378]× 10−1 28

K1 = [−2.0502× 10−1 − 2.3223× 10−2]

(0, 19) K2 = [−1.9457× 10−1 − 2.2991× 10−2] 100

K3 = [−1.9243× 10−1 − 2.3018× 10−2]

K1 = [−3.2317× 10−1 − 8.1685× 10−2]

(2, 4) K2 = [−2.8760× 10−1 − 7.9246× 10−2] 53

K3 = [−2.7694× 10−1 − 7.9642× 10−2]

K1 = [−3.3081× 10−1 − 1.5811× 10−1]

(1, 1) K2 = [−2.9647× 10−1 − 1.7256× 10−1] 23

K3 = [−2.7296× 10−1 − 1.7429× 10−1]

K1 = [−4.4965× 10−1 − 1.9774× 10−1]

(8, 1) K2 = [−3.8867× 10−1 − 2.6628× 10−1] 40

K3 = [−3.4142× 10−1 − 2.7515× 10−1]

K1 = [−3.9640× 10−1 − 1.0074× 10−1]

(4, 3) K2 = [−3.6396× 10−1 − 1.5346× 10−1] 48

K3 = [−3.3031× 10−1 − 1.5888× 10−1]

K1 = [−2.7966× 10−1 − 1.2151× 10−1]

(0, 2) K2 = [−3.2936× 10−1 − 1.7877× 10−1] 110

K3 = [−3.0422× 10−1 − 1.8474× 10−1]

By denoting y = ‖x̃‖1
‖x‖1 and g = ‖x̃‖2

‖x‖2 , and introducing the inequality ‖
x ‖2≤‖ x ‖1≤

√
n ‖ x ‖2, the derivation of g is then deduced as follows:

dg

dt
=

(‖ x̃ ‖2)′ ‖ x ‖2 − ‖ x̃ ‖2 (‖ x ‖2)′

(‖ x ‖2)2
=

x̃T ˙̃x

‖ x̃ ‖2‖ x ‖2
− ‖ x̃ ‖2 xTẋ

(‖ x ‖2)3

=
−x̃Tẋ

‖ x̃ ‖2‖ x ‖2
− ‖ x̃ ‖2 xTẋ

(‖ x ‖2)3
≤ ‖ ẋ ‖2
‖ x ‖2

+
‖ ẋ ‖2‖ x̃ ‖2

(‖ x ‖2)2
≤ (1 + ϕ

√
n)
‖ ẋ ‖2
‖ x ‖2

.

Taking (7) into the above analysis, and combining with the property of
membership functions, 0 ≤ ηi(x)ηj(x̂) ≤ 1, we have:

dg

dt
≤

q∑
i=1

q∑
j=1

ηi(x)ηj(x̂)(1 + ϕ
√
n)
‖ Ai + BiKj ‖2‖ x ‖2 + ‖ BiKj ‖2‖ x̃ ‖2

‖ x ‖2

≤
q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
‖ Ai + BiKj ‖2‖ x ‖2 + ‖ BiKj ‖2‖ x̃ ‖1

‖ x ‖2

≤
q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
‖ Ai + BiKj ‖2‖ x ‖2 +ϕ ‖ BiKj ‖2‖ x ‖1

‖ x ‖2
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≤
q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
‖ Ai + BiKj ‖2‖ x ‖2 +ϕ

√
n ‖ BiKj ‖2‖ x ‖2

‖ x ‖2

≤
q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
[
‖ Ai ‖2 + ‖ BiKj ‖2 +ϕ

√
n ‖ BiKj ‖2

]
=

q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
[
‖ Ai ‖2 +(1 + ϕ

√
n) ‖ BiKj ‖2

]
.

Next, through integrating both sides of the above inequality, we have:∫ t

tς

dg

dt
dτ ≤

∫ t

tς

q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
[
‖ Ai ‖2 +(1 + ϕ

√
n) ‖ BiKj ‖2

]
dτ .

Because of g(tς) = 0, therefore, g(t) ≤
q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
[
‖ Ai ‖2 +(1 +

ϕ
√
n) ‖ BiKj ‖2

]
(t − tς). By taking g = ‖x̃‖2

‖x‖2 into consideration, we have

‖ x̃ ‖2≤
q∑
i=1

q∑
j=1

(1 + ϕ
√
n)
[
‖ Ai ‖2 +(1 + ϕ

√
n) ‖ BiKj ‖2

]
(t − tς) ‖ x ‖2.

In addition, because ‖ x̃ ‖1≤
√
n ‖ x̃ ‖2 and ‖ x ‖2≤‖ x ‖1, thereby, it can be

derived that ‖ x̃ ‖1≤
q∑
i=1

q∑
j=1

√
n(1 + ϕ

√
n)
[
‖ Ai ‖2 +(1 + ϕ

√
n) ‖ BiKj ‖2]

(t − tς) ‖ x ‖1. Let
q∑
i=1

q∑
j=1

√
n(1 + ϕ

√
n)
[
‖ Ai ‖2 +(1 + ϕ

√
n) ‖ BiKj ‖2]

(t− tς) ‖ x ‖1= ϕ ‖ x ‖1, hence, the lower bound of the length of the interval
[tς , tς+1) can be obtained as: t− tς = ϕ

q∑
i=1

q∑
j=1

√
n(1+ϕ

√
n)
[
‖Ai‖2+(1+ϕ

√
n)‖BiKj‖2

] ,
which means the Zeno behavior can be avoided. The proof is complete.

References

[1] Ju, Y., Zhu, X., Sun, Y.: Stability analysis of continuous-time posi-
tive switched linear systems. In 2018 18th International Conference on
Control, Automation and Systems. (2018)

[2] Huynh, V.T., Arogbonlo, A., Trinh, H., Oo, A.M.T.: Design of observers
for positive systems with delayed input and output information. IEEE
Trans. Circuits and Syst. II: Express Briefs 67(1), 107–111 (2020)

[3] Rami, M.A., Tadeo, F.: Controller synthesis for positive linear systems
with bounded controls. IEEE Trans. Circuits Syst. 54(2), 151–155 (2007)

[4] Valcher, M.E.: Controllability and reachability criteria for discrete time
positive systems. Int. J. Control 65(3), 511–536 (1996)



Springer Nature 2021 LATEX template

24 Article Title

[5] Coxson, P.G., Shapiro, H.: Positive input reachability and controllability
of positive systems. Linear Algebra and its Appli. 94, 35–53 (1987)

[6] Anderson, B.D.O., Deistler, M., Farina, L., Benvenuti, L.: Nonnegative
realization of a linear system with nonnegative impulse response. IEEE
Trans. Circuits and Syst. I: Fun. Theory and Appli. 43(2), 134–142 (1996)

[7] Benvenuti, L., Farina, L.: A note on minimality of positive realizations.
IEEE Trans. Circuits and Syst. I: Fun. Theory and Appli. 45(6), 676–677
(1998)

[8] Kaykobad, M.: Positive solutions of positive linear systems. Linear
Algebra and its Appli. 64, 133–140 (1985)

[9] Wang, J., Zhao, J.: Output tracking control with L1 -gain performance
for positive switched systems. J. Franklin Institute 354(10), 3907–3918
(2017)

[10] Feng, S., Wang, J., Zhao, J.: Stability and robust stability of switched
positive linear systems with all modes unstable. IEEE/CAA J. Auto. 6,
167–176 (2019)

[11] Chen, X., Lam, J., Lam, H.K.: Positive filtering for positive Takagi-Sugeno
fuzzy systems under `1 performance. Inf. Sci. 299, 32–41 (2015)

[12] Deaecto, G.S., Geromel, J.C.: H2 state feedback control design of
continuous-time positive linear systems. IEEE Trans. Auto. Control
62(11), 5844–5849 (2017)

[13] Zaidi, I., Chaabane, M., Tadeo, F., Benzaouia, A.: Static state-feedback
controller and observer design for interval positive systems with time
delay. IEEE Trans. Circuits and Syst. II: Express Briefs 62(5), 506–510
(2015)

[14] Bhattacharyya, S., Patra, S.: Static output-feedback stabilization for
MIMO LTI positive systems using LMI-based iterative algorithms. IEEE
Control Syst. Letters 2(2), 242–247 (2018)

[15] Chen, X., Chen, M., Wang, L., Shen, J., Hu, J.: Static output-feedback
stabilization for MIMO LTI positive systems using LMI-based iterative
algorithms. Int. J. Control Auto. 17(11), 2871–2880 (2019)

[16] Xiao, S., Zhang, Y., Zhang, B.: Event-triggered network-based state
observer design of positive systems. Inf. Sci. 469, 30–43 (2018)

[17] Yin, K., Yang, D., Liu, J., Li, H.: Positive l1-gain asynchronous filter
design of positive markov jump systems. J. Franklin Institute 357(15),



Springer Nature 2021 LATEX template

Article Title 25

11072–11093 (2020)

[18] Fan, Q.Y., Yang, G.H.: Sampled-data output feedback control based on
a new event-triggered control scheme. Inf. Sci. 414, 306–318 (2017)

[19] Xie, X.P., Yue, D., Peng, C.: Event-triggered real-time scheduling stabi-
lization of discrete-time Takagi-Sugeno fuzzy systems via a new weighted
matrix approach. Inf. Sci. 457-458, 195–207 (2018)

[20] Peng, C., Li, F.: A survey on recent advances in event-triggered commu-
nication and control. Inf. Sci. 457-458, 113–125 (2018)

[21] Xiao, S., Zhang, Y., Xu, Q., Zhang, B.: Event-triggered network-based l1-
gain filtering for positive linear systems. Int. J. Syst. Sci. 48(6), 1281–1290
(2017)

[22] Xiao, S., Zhang, Y., Xu, Q.: Event-triggered network-based L1 finite-time
control for positive systems. In 36th Chinese Control Conf., Dalian China.
(2017)

[23] Xiao, S., Yi, J., Zhang, B., Zhang, Y.: Event-triggered networked fault
detection for positive markovian systems. Signal Processing 157, 161–169
(2019)

[24] Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application
to modeling and control. IEEE Trans. Syst., Man, and Cyber. 15(1),
116–132 (1985)

[25] Kwon, O.M., Park, M.J., Park, J.H., Lee, S.M.: Stability and stabilization
of T-S fuzzy systems with time-varying delays via augmented Lyapunov-
Krasovskii functionals. Inf. Sci. 372, 1–15 (2016)

[26] Kuppusamy, S., Joo, Y.H.: Nonfragile retarded sampled-data switched
control of T-S fuzzy systems and its applications. IEEE Trans. Fuzzy Syst.
28(10), 2523–2532 (2020)

[27] Datta, R., Saravanakumar, R., Dey, R., Bhattacharya, B., Ahn, C.K.:
Improved stabilization criteria for Takagi-Sugeno fuzzy systems with
variable delays. Inf. Sci. 579, 591–606 (2021)

[28] Wang, L., Lam, H.K.: New stability criterion for continuous-time Takagi-
Sugeno fuzzy systems with time-varying delay. IEEE Trans. Cyber. 49(4),
1551–1556 (2019)

[29] Zhao, X., Wu, T., Zheng, X., Li, R.: Discussions on observer design of
nonlinear positive systems via T-S fuzzy modeling. Neur. 157, 70–75
(2015)



Springer Nature 2021 LATEX template

26 Article Title

[30] Wang, J., Li, J.: Stabilization control with optimal l1-gain and l∞ gain for
positive T-S fuzzy systems. Int. J. Uncertainty Fuzziness and Knowledge-
Based Syst. 27(6), 881–903 (2019)

[31] Meng, A., Lam, H.K., Liu, F., Yang, Y.: Filter design for positive T-
S fuzzy continuous-time systems with time delay using piecewise-linear
membership functions. IEEE Trans. Fuzzy Syst. 29(9), 2521–2531 (2021)

[32] Farina, L., Rinaldi, S. (eds.): Positive Linear Systems: Theory and
Applications. John Wiley and Sons Inc., New York (2000)

[33] Fornasini, E., Valcher, M.E.: Linear copositive Lyapunov functions for
continuous-time positive switched systems. IEEE Trans. Auto. Control
55(8), 1933–1937 (2010)

[34] Zhu, B., Lam, J., Xie, X., Song, X., Kwok, K.: Stability and l1-gain anal-
ysis of periodic piecewise positive systems with constant time delay. IEEE
Trans. Autom. Control 67(5), 2655–2662 (2021)

[35] Shao, Y., Zhang, J., Liu, L., Yang, H.: Event-triggered control of positive
systems based on linear programming. In 38th Chinese Control Conf.,
Guangzhou China. (2019)

[36] Shao, Y., Zhang, J., Liu, L., Deng, X.: Event-triggered control of positive
systems with state saturation using linear programming. Int. J. Control
Auto. and Syst. 19(1), 158–171 (2021)

[37] Zhang, C., Hu, J., Qiu, J., Chen, Q.: Reliable output feedback control
for T-S fuzzy systems with decentralized event triggering communication
and actuator failures. IEEE Trans. Cyber. 47(9), 2592–2602 (2017)

[38] Pan, Y., Yang, G.: Event-triggered fault detection filter design for nonlin-
ear networked systems. IEEE Trans. Syst., Man, and Cyber.: Syst. 48(11),
1851–1862 (2018)

[39] Lam, H.K.: A review on stability analysis of continuous-time fuzzy-
model-based control systems: From membership-function-independent to
membership-function-dependent analysis. Engineering Appli. of Artif.
Intel. 67, 390–408 (2018)

[40] Liu, Y., Guo, B., Park, J.H., Lee, S.: Event-based reliable dissipative fil-
tering for T-S fuzzy systems with asynchronous constraints. IEEE Trans.
Fuzzy Syst. 26(4), 2089–2098 (2017)

[41] Wang, X., Yang, G.: Event-triggered controller design with varying gains
for T-S fuzzy systems. IEEE Trans. Cyber. 51(8), 4125–4133 (2021)



Springer Nature 2021 LATEX template

Article Title 27

[42] Zhang, J., Han, Z., Zhu, F., Huang, J.: Brief paper: feedback control for
switched positive linear systems. IET Control Theory and Appli. 7(3),
464–469 (2013)

[43] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control
tasks. IEEE Trans. Auto. Control 52(9), 1680–1685 (2007)

[44] Jan, L., Daniel, L.: A state-feedback approach to event-based control.
Auto. 46(1), 211–215 (2010)

[45] Zhang, Q., Liu, C., Zhang, X. (eds.): Complexity, Analysis and Control
of Singular Biological Systems. Springer, London (2012)


	Article Highlights
	Introduction
	Preliminaries
	Notation
	Event-Triggered Control Scheme 
	Event-Triggered Control for T-S Fuzzy Positive Systems 

	Stability Analysis
	 MFI Stability and Positivity Analysis 
	 Improved Positivity and Stability Analysis

	Simulation Examples
	Conclusion
	Acknowledgments

	Appendix 

