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Abstract

Although the most recent respiratory virus pandemic was triggered by a Coronavirus, sustained
and elevated prevalence of highly pathogenic avian influenza viruses able to infect mammalian
hosts highlights the continued threat of pandemics of influenza A virus (IAV) to global health.
Retrospective analysis of pandemic outcomes, including comparative investigation of intervention
efficacy in different regions, provide important contributions to the evidence base for future pan-
demic planning. The swine-origin IAV pandemic of 2009 exhibited regional variation in onset,
infection dynamics and annual infection attack rates (IARs). For example, the UK experienced
three severe peaks of infection over two influenza seasons, whilst Australia experienced a single
severe wave. We adopt a seasonally forced 2-subtype model for the transmission of pH1N12009
and seasonal H3N2 to examine the role vaccination campaigns may play in explaining differences
in pandemic trajectories in temperate regions. Our model differentiates between the nature of
vaccine- and infection-acquired immunity. In particular, we assume that immunity triggered by
infection elicits heterologous cross-protection against viral shedding in addition to long-lasting neu-
tralising antibody, whereas vaccination induces imperfect reduction in susceptibility. We employ
an Approximate Bayesian Computation (ABC) framework to calibrate the model using data for
pH1N12009 seroprevalence, relative subtype dominance, and annual IARs for Australia and the
UK. Heterologous cross-protection substantially suppressed the pandemic IAR over the posterior,
with the strength of protection against onward transmission inversely correlated with the initial
reproduction number. We show that IAV pandemic timing relative to the usual seasonal influenza
cycle influenced the size of the initial waves of pH1N12009 in temperate regions and the impact of
vaccination campaigns.

Keywords: pandemic influenza, vaccination, influenza seasonality

1. Introduction

Influenza A (IAV) pandemic viruses, characterised by their high transmissibility and novel ge-15

netic material, spread rapidly through a population due to low population-average immunological
protection, quickly replacing seasonal viruses [12]. Pandemics triggered by IAV remain a threat to
human health. Of recent concern are several clades of highly pathogenic avian H5N1 IAV that have
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caused widespread disease in wild and farmed birds [29]. Although the extent to which the virus is
adapting to mammalian host receptors is uncertain [80], there is evidence of spillover to multiple20

mammalian hosts [29, 80]. In 2009, seasonal H1N1 viruses were displaced by a triple reassortant
swine-origin H1N1 virus (henceforth pH1N12009). Prior to the emergence of pH1N12009, neutral-
ising antibody (NAb) to this virus were present primarily in older adults with overall prevalence
observed to be similar across many regions worldwide [10]. As for other historical pandemic out-
breaks, multiple waves of infection were observed [57, 83]. However, there were marked differences25

between epidemic patterns in different regions (Figure 1, [86]).
In Australia, the pandemic was largely characterised by one distinct 10–12 week wave of infec-

tion that occurred during the typical influenza season months [5, 82], and this was followed by a
second wave of infection, observed one year later in the usual window for seasonal influenza activity,
but with much reduced magnitude [82]. In Australia the first cases of pH1N12009 were identified30

in late April. Community transmission was established in early June, it peaked in mid-July, and
largely resolved by late-September [5], with some differences in timing between individual states
[7]. The overall IAR during the 2009 outbreak in Australia, estimated via the rise in prevalence of
Ab titres above 40 (measured via haemaglutination inhibition assays), was up to ≈ 20% [26, 54]
(similar to that seen in neighbouring New Zealand, [6]).35

In the UK, the pandemic was predominantly characterised by a wave of infection over the
spring and early summer months of 2009, followed by another wave over the 2009–2010 influenza
season. The first pandemic wave in the UK peaked in late July and receded after the start of
the summer school holidays [85], generating IARs of around 30 per cent amongst children in high
incidence areas [56]. The epidemic was reestablished alongside the resumption of school term in40

September [42]. Most countries in the Northern Hemisphere experienced a mild wave of infection
in the second year following emergence, in the usual window for seasonal activity [47]. In contrast,
the UK experienced another large outbreak over the 2010–11 season [60].

Travel links can somewhat synchronise influenza epidemics across neighbouring countries, but
even with frequent air-travel, epidemics are not synchronised globally [59]. The determinants of45

variations in pandemic experience are unclear and likely multifactorial. Multi-strain dynamical
systems tracking host infection history display complex dynamics [30, 65], suggesting differences
in host immune profiles may be at play. Geographical heterogeneity in immune profiles could also
be driven by differences in the uptake of seasonal and pandemic vaccination [17, 40, 69, 84, 89],
differences in vaccine efficacy with nationally-adopted formulations [1, 40], and global variations50

in age-dependent mixing [63], either alone or in concert with age-dependent variation in vaccine
uptake and/or efficacy [7, 37, 53, 85]. Pandemic influenza circulation is also likely to be influenced
by local climatic effects including the effect of temperature and humidity on host immunity, mixing
and virus survival [68, 72, 74].

We focus on the extent to which regional differences in vaccination campaign timing may drive55

these differences. In Australia the vaccination campaign began on September 30th 2009 [7]. In the
UK vaccination for health-care workers and their patients began on the 21st October, with phase
2 of the rollout extending to young children beginning in mid-November [34]. A systematic review
of vaccine efficacy indicates that unadjuvanted vaccines (such as Panvax adopted in Australia
[55]) reduced risk of laboratory confirmed pH1N12009 infection by 80% (95% CI: 59% − 90%).60

Adjuvanted vaccines (such as the GSK’s Pandemrix AS03 adjuvanted vaccine used in the UK
[43]) had lower overall efficacy against laboratory confirmed infection, and efficacy of adjuvanted
vaccines was higher amongst children 66% (95% CI: 47% − 78%) [43]. In future pandemics,
deployment of vaccines for a novel IAV may be possible within ≈ 100 days with mRNA vaccines,
which don’t require the time intensive step of growing large quantities of virus [41]. Fast-tracked65
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Figure 1: Influenza reporting in the Northern and Southern Hemispheres. The number of pH1N12009 (purple) and
H3N2 (orange) specimens detected in Australia, Brazil, South Africa, China, the UK and the USA are shown, from
January 2009 to Dec 2012. The shaded regions indicate the typical influenza peak seasons in both hemispheres.

production of licensed subunit IAV vaccines may also expedite rollout of a pandemic vaccine [70].
The development of higher efficacy vaccines may be possible through mRNA platforms that include
multiple IAV proteins, or other next generation platforms perhaps in combination with the use of
adjuvants [76].

In this paper, we describe a mathematical model for the spread of pandemic influenza that70

captures many possible time-dependent influences on pandemic IAV transmission: the timing of
vaccination campaigns, waning of vaccine-induced immunity, acquisition and loss of sterilising
and cross-protective immunity from natural infection, circulation of a competing resident seasonal
IAV subtype, seasonal forcing and seasonal importation of cases. We focus on IAV circulation
in approximately polar opposite countries with (largely) temperate climates: Australia and the75

United Kingdom. We use Approximate Bayesian Computation, with distance measure based on
serological surveys of pandemic H1N1 circulation and seasonal H3N2 during and following the
pandemic and data on relative subtype prevalence from sentinel surveillance, to calibrate our
model and generate candidate parameter sets. Candidate parameter sets are then used to explore
extent to which the timing of pandemic emergence with respect to seasonal drivers influences the80

impact of realised and hypothetical pandemic influenza vaccination programs on future waves of
pandemic and seasonal IAV infection.
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2. Materials and Methods

2.1. Influenza transmission model

We model the spread of pH1N12009 in concert with the seasonal H3N2 subtype from the85

emergence of pH1N12009 in April 2009 (t = 0) until April 2014. We have designed a two-subtype
Susceptible-Infected-Recovered-Susceptible (SIRS) model that can describe and track the presence
of protective NAb from a natural infection, partially protective cross-reactive immune responses,
and vaccine induced protection, for each subtype. Each of the N hosts is assigned to one of a
number of susceptible states Snm where n (m) denotes the nature of susceptibility to subtype a90

(b). Indices are defined as 1: full susceptibility, ρa: vaccine-induced protection only, εSa: heterol-
ogous cross-protection only, χa: vaccine-induced protection with heterologous cross-protection, 0:
infection-induced reduction in susceptibiity with heterologous cross-protection and 0s: infection-
induced reduction in susceptibility from infection without heterologous cross-protection (see also
the model schematic in Figure 2). The infectious period is assumed to have an average duration of95

2.7 days [77]. Following recovery from infection, hosts migrate to a different susceptible state that
reflects the impact of infection on their susceptibility to each subtype as depicted in Figure 2 and
formalised in equation (A.1). In brief, natural infection with subtype i confers long-lasting neu-
tralising protection to subtype i for an average time period 1/φD,i, following which strain turnover
due to antigenic drift renders protective antibody to this subtype redundant [67]. Infection with100

subtype i also provides shorter lived cross-subtype protection that reduces a host’s potential infec-
tiousness by a factor εI . This feature is motivated by human challenge studies indicating influenza
specific cytotoxic T cells [51] aid viral clearance, and household studies noting lower rates of
symptomatic PCR-confirmed IAV for those with serum influenza-specific CD8+ T-cells [31].

We assume that cross-subtype protection decays over a time-scale of 1/φX = 2 years, motivated105

by individual-level longitudinal data measuring the ability of serum cytotoxic T cells to lyse IAV
infected cells [52]. Vaccination is assumed to reduce subtype-specific susceptibility by a factor ρi.
Protection induced by vaccination is assumed to be lost over a time-scale 1/φV,i, independently of
the rate of loss of naturally acquired sterilising or partially protective immunity. We assume that
the population mixes homogeneously and both subtypes have the same basic reproduction number110

(in the absence of seasonal forcing), R0, however differences in the effective reproduction number
between subtypes arise due to differences in the population immune profile to each subtype, driven
initially by parameters in Table B.1. Infection with one subtype excludes concurrent infection with
the other subtype.

We model transmission in each hemisphere by introducing a sinusoidal seasonal forcing term115

with timing determined by θoffset. Transmission is enhanced maximally in winter for each hemi-
sphere by a factor di. The importation of external cases ni, which modifies the force of infection
when added to Itot,i, is modelled by a constant forcing term modified by an additive sinusoidal
term with opposite phase to the seasonal forcing, capturing air-travel from an epidemic in the
opposite hemisphere, ni = N(ci − si cos[2π(t/1 year)− θoffset]).120

Throughout this work we assume subtype a corresponds to pH1N12009 IAV and subtype b
seasonal H3N2 IAV, and will sometimes use these labels on subtype dependent parameters when
emphasising the application of this model to post-2009 IAV circulation. We assume vaccines are
distributed over 3 month intervals for both seasonal and pandemic vaccination campaigns. The rate
of vaccination against pH1N12009 alone (va) is chosen to provide coverage of 20% [37]. The rate of125

seasonal vaccine containing both H3N2 and pH1N12009 (vab) is set to ensure an annual coverage of
15% from 2010 onward, beginning in May for the Australian-like [24] and September for the UK-
like scenarios. For simplicity we assume that vaccination rates are independent of immunological
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Figure 2: Model schematic indicating the types of susceptibility to subtype a: 1 indicates full susceptibility, ρa
indicates vaccine-induced protection only, εSa indicates heterologous cross-protection only, χa indicates vaccine-
induced protection with heterologous cross-protection, 0 indicates infection-induced reduction in susceptibiity with
heterologous cross-protection and 0s indicates infection-induced reduction in susceptibility from infection without
heterologous cross-protection. Directed lines indicate the mechanisms for transiting between different types of
susceptible states. Dashed lines indicate changes driven by infection; Ia signals infection with strain a and Ib
infection with strain b. Solid lines indicate changes driven by waning immunity and vaccination; φX indicates
waning heterologous cross-protection, va (vab) signals vaccination against subtype a (a and b), ΦV a signals waning
vaccine protection and Φa signals waning NAb protection due to antigenic drift. Processes altering the susceptibility
to subtype b are captured by the same flow diagram with a←→ b.

status, and hosts with remnant protection from a previous vaccination are re-vaccinated at the
same rate as unvaccinated individuals. As pH1N12009 was not observed to drift sufficiently to130

warrant an update of the vaccine strain during the modelled period [87], we assume φD,a = 0. For
simplicity we optimistically assume ρb = 0.

2.2. Model calibration with Approximate Bayesian Computation

We denote by ~θ the vector of transmission, pre-pandemic immunity, seasonal forcing and im-
portation parameters required to simulate the model. We have motivated fixed values of some135

parameters in §2.1, but there are many remaining parameters which can be adjusted to calibrate
the model. In a Bayesian context, the posterior P (~θ|D) encodes the information provided by

data D about ~θ. ABC is a likelihood-free method to approximate P (D|~θ) by defining a metric

capturing the distance of the model output D∗ = D∗(~θ) from the data, d(D,D∗), and exploiting

the approximation P (~θ|D) ≈ P (~θ|d(D,D∗) ≤ ε) [see, e.g. 58]. Here we generate samples from140

the posterior using a 1-step rejection method, simulating from uniform priors for ~θ using Latin
Hypercube Sampling (LHS) [35] (see 2.2.1), and accepting ~θ where d(D,D∗) ≤ ε. In §3 we present
posterior predictive checks for the distance metric criteria, trajectory of infections and IARs.
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2.2.1. Model priors

Priors for the initial conditions are chosen to be consistent with pre-pandemic serology for145

pH1N12009 in Australia and the UK, and are specified in Table B.1. Table B.2 summarises the
priors on the transmission parameters, and we note a few key assumptions here. Pre-pandemic
prevalence of serum antibody to seasonal H3N2 is allowed to vary widely. The prior for the phase
offset θoffset is chosen so that peak transmission occurs within a two month window centred around
the beginning of July (January) for the Southern (Northern) hemisphere simulations. We sample150

across the full range of possibilities forρpH1N1 and ρH3N2. Cross-protective immunity is assumed
to be of low to moderate strength, εI ∼ U(0.5, 1).

2.2.2. Distance metric

We construct d based on 12 hemisphere-dependent criteria (C1–C12) that we wish our model
output to satisfy, which are described in Table 1. Here Years 1–5 refer to annual periods beginning155

in April 2009–April 2013 respectively and IARs are calculated from the cumulative incidence for
the entire year (thus including any inter-seasonal activity). To summarise, criteria C1 & C3 require
annual epidemics in the simulation dynamics with appropriate IARs guided by the rise of sero-
prevalence of pH1N1 antibody from serological surveys. Criterion C9 refers to the seroprevalence
to the pH1N12009 in the second year of its circulation (note the slightly different constraints for160

Australia and the UK). Criterion C2 refers to the distinct second peak of pH1N12009 infection in
Year 2. Criteria C4–C8 are based on the numbers of sub-typed isolates in sentinel and/or WHO
influenza surveillance laboratories in Australia and equivalent reports from the UK. Criteria C3

and C9 are motivated by results from cross-sectional serological surveys. Criteria C10 and C12

reflect evidence for the prevalence cross-protection to both seasonal and pandemic subtypes that165

reduces host infectiousness. Criterion C11 refers to a double peaked pH1N1 epidemic in Year 1 and
is only applied to the UK-like scenario.

Simulations are performed independently for each location and each parameter set, adjusting
only the parameters governing the region dependent timing of seasonal forcing and vaccination
campaigns. For a given parameter set, Table 1 specifies 23 conditions that we would wish a170

simulation to satisfy across both hemispheres in our ABC process. We define the distance from
the model to the data via a union metric [49] (for nc > 1):

d(D,D∗) =
1

[(1− Π
nCe
j=1I(Ce,j))/nc + Π

nCe
j=1I(Ce,j)]

∑2
l=1

∑i=12
i=1 I(C l

i)
, (1)

where l indexes the locations considered (Australia, UK) and i indexes the criteria. We explore the

sensitivity of our results to assuming that a vector of location dependent criteria ~Ce, with length
nCe , are essential, by including the first factor in the denominator of equation (1). We accept175

parameter sets ~θ with d(D,D∗) 6 ε = 1
nc

with nc = 19. We trial two choices for ~Ce. We firstly

consider ~Ce = (C2
11) as without satisfying C11 we do not select parameter sets displaying the double

peaked incidence of pH1N1 in 2009 observed in the UK-like scenario. We also explore candidates
with ~Ce = (C1

12, C
2
12), ensuring an epidemiologically motivated minimal prevalence of cross-reactive,

partial protection against transmission following a natural infection in both locations, the inclusion180

of which is a distinguishing feature of our model.
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Criteria Reference
C1 At least 4 epidemic peaks in each subtype over

Years 1–5
Annual or near-
annual circulation of
each subtype

C2 Peak incidence of pH1N1 in Year 2 at least 10%
first peak

[86]

C3 pH1N12009 IAR during Year 1 in the range 5-20% [26, 53, 54, 56]
C4 H3N2 IAR less than pH1N12009 IAR for Year 1 [50]
C5 Australia: Total IAR for H3N2 and pH1N12009 in

Years 2 and 3 lower than for Year 1
[4]

UK: Total IAR for H3N2 and pH1N12009 in Year
3 lower than for Year 1

[32]

C6 H3N2 IAR less than pH1N12009 IAR in Year 2 [14, 32]
C7 Australia: H3N2 IAR less than 110% of

pH1N12009 IAR in Year 3
[15]

UK : H3N2 IAR greater than pH1N12009 IAR in
Year 3

[32]

C8 H3N2 IAR in Year 4 less than than pH1N12009
IAR

[16, 22]

C9 Australia: Peak cross-sectional sero-prevalence to
pH1N12009 in Year 2 is 30–60%

[54]

UK: Peak cross-sectional sero-prevalence to
pH1N12009 in Year 2 is 30-70%

[36]

C10 Cross-sectional cross-protection to pH1N12009 at
least 50% of the pre-pandemic level at end of Year
5

[31]

C11 For the UK only: two peaks of pH1N12009 in-
fection in Year 1, with approximately 8-26 weeks
separation.

[42, 56]

C12 Cross-protection to both subtypes is com-
mon: PXH3N2|XpH1N1

> 0.25, at least 10% of
hosts have cross protection to each subtype
[min(PXpH1N1

, PXH3N2
) > 0.1], over 25% of hosts

have cross-protection to at least one subtype
[max(PXpH1N1

, PXH3N2
) > 0.25)], and effective:

εI < 0.7.

[31]

Table 1: LHS filtering criteria. Note that some criteria differ slightly for simulations in the UK and Australia
depending on surveillance data.

3. Results

3.1. ABC acceptance rates

Out of 100,000 LHS samples ≈ 0.0083% satisfy threshold distance d: 69 of the candidates
satisfy at least 19 criteria including C11 (henceforth Group 1) and 71 of the candidates satisfy this185

nominal threshold including C12 (henceforth Group 2). The distribution of the number of criteria
satisfied in each hemisphere is shown in Figure B.1. The criterion that is least frequently satisfied
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differs between the UK and Australian-like scenarios (see Figure B.1). For the UK-like scenarios
the relative dominance of H3N2 and pH1N1 in Year 3 (C7) is least frequently replicated in Groups
1 & 2. For the Australian-like scenarios the weak conservation of cross-protection (C10) is satisfied190

least frequently amongst candidates in Groups 1 & 2.

Group Requirements No.

1 d ≤ 1/19, ~Ce = (C2
11) 69

2 d ≤ 1/19, ~Ce = (C1
12, C

2
12) 71

3 d ≤ 1/19, ~Ce = (C2
11, C

1
12, C

2
12) 58

4 d ≤ 1/19, ~Ce = (C2
11, C

1
12, C

2
12), ρpH1N12009 ≤ 0.5 20

Table 2: Metric requirements for each group filtered from LHS and number of candidates satisfying each.

3.2. Candidate parameters

We present the marginal posterior median and range across posterior samples in each group in
Tables C.1 & C.2.

The median basic reproduction number, R0 is approximately 1.26 for Group 1, and 1.29 for195

Group 2. The effective reproductive number Re typically peaks at lower values often close to
unity (Figure 3i&j), due to the immunity in the modelled populations. Other estimates of Re

from seroprevalence data are sensitive to the inclusion of children in serological surveys, and are
as low as Re ≈ 1.14 when excluding children [28]. The median amplitude of the seasonal forcing
corresponds to increases in transmission by 6–7 per cent from the average for each subtype, but200

ranging from 1 per cent up to 10 per cent, roughly consistent with other estimates of variation
due to climatic factors [78]. Posterior samples for the phase of seasonal forcing θoffset take values
across the prior within each group, however the prior is fairly narrowly constrained (see Table B.2).
The median value for the H3N2 drift-rate φH3N2 which would mimic antigenic replacement over
approximately 3 years which is consistent with rates from phylogenetic analyses of this subtype205

[12]. The rate of loss of vaccine induced protection φv in posterior samples can vary with subtype
but is always lost on a time-scale of less than one year, consistent with estimates from vaccine
efficacy studies [64].

Hosts with cross-protection experience a median of approximately 40% reduction in infectious-
ness across posterior samples of εI , but candidate values of εI consistent with a limited effect of210

cross-protection on transmission exist in Groups 1 & 2. The median prevalence of pre-pandemic
cross-protection to pH1N12009 (PXpH1N1

) is 22% (23%) in Group 1 (2) and for H3N2 (PXH2N2
) is

approximately 40% for both groups. The overlap of hosts with cross-protection to both strains
(PXH3N2|XpH1N1

) has posterior median 40% in Group 1 and slightly higher in Group 2 (46%) (as
expected given the essential criteria imposed when selecting these candidates). The median pro-215

portion with neutralising protection against H3N2 (PH3N2) is approximately a quarter, while (con-
sistent with our tight sampling constraints) the proportion with neutralising immunity to pH1N1
is between 5 and 9 per cent. A non-negligible fraction (PvH3N2

), 5–15%, are vaccinated against
H3N2 at the beginning of the pandemic in our Group 1 and 2 candidates. Correlations between
sampled parameters are presented in Figures C.1 & C.2.220

There is a large common membership between Groups 1 and 2, which is reflected in the sim-
ilarity of the range and median of the candidate parameters. In Section 3.3 we consider the 58
candidates who are members of both Groups 1 & 2 (denoted Group 3).

The efficacy of pH1N1 vaccination ρpH1N1 varies widely across simulations suggesting that an
efficacious vaccine is not required for our model to satisfy our union metric distance threshold.225
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Many of the Group 3 candidates have ρpH1N1 corresponding to poor efficacy (defined here as
ρpH1N1 ≥ 0.5). For the purpose of exploring the impact of pandemic vaccination in Section 3.4,
we focus on the 20 candidates with ρa < 0.5, henceforth Group 4.

3.3. Capturing pH1N1 and seasonal H3N2 transmission dynamics

The posterior predictive check for Group 3 candidate dynamics is provided in Figure 3. The230

simulated Year 1 epidemic for the UK-like scenario has extended duration with higher inter-season
levels of infection compared to the Australian-like scenario (Figure 3a&b). Model pH1N12009
IARs are highest in the year following pandemic onset (Year 1), and greater in the Australian-
like scenario than the UK-like scenario (Figure 4). This is also true of posterior counterfactual
simulations without vaccination (Figures C.23-C.24). Attack rates for pH1N12009 in subsequent235

years are smaller, and the Year 2 pH1N12009 IAR is weakly inversely correlated with the Year 1
pH1N12009 IAR. Our filtering criteria do not select for the timing or shape of epidemics within
each annual period, and therefore epidemics in each hemisphere tend to begin when the simulations
begin, earlier than the June/July first wave observed in the UK.

Most Group 3 candidates recover the sharp rise in seroprevalence of sterilising antibody to240

pH1N12009 following the pandemic wave and subsequent vaccination campaign (C9) in the Australian-
like scenario. The corresponding sero-prevalence to pH1N12009 rises more gradually in the UK-like
scenario, but plateaus at a similar level following Year 2 (Figure 3c&d). The peaks and troughs
superimposed on this trend are due to the acquisition and loss of vaccine acquired protection (since
φD,pH1N12009 = 0 in our model). Consistent with the imposed filtering (C10, C12) approximately245

10–20 per cent of hosts initially have cross-protection to both circulating subtypes. The preva-
lence of hosts with cross-protection to either subtype tends to fall during the simulations, though
is transiently sustained or boosted by the large initial pandemic wave (Figure 3e,f,g&h). The
time-dependent local effective reproduction number in Figure3i&j accounts for the shifting popu-
lation immune profile, potential infectiousness and seasonality in transmissibility equation (A.3).250

Note that Re,i does not always peak above one during each annual period, indicating circulation
is often sustained by importations in the model. Indeed R0 and cH2N2 are inversely correlated
amongst Group 1 and 2 candidates (see Figure C.1). Local bivariate sensitivity analyses highlight
the influence of the constant importation rate (cpH1N12009) on the timing and size of the initial
peaks of pH1N12009, with higher importation rates typically preferred (see Figures C.11-C.14,255

Appendix C.2.3). In contrast our model has limited sensitivity to the much smaller seasonal
fluctuations (controlled by spH1N12009). Given estimates of the population size [3, 79] and the
number of incoming domestic and international travellers in 2009 [2, 62], our maximum value
of cpH1N12009 = 10−4/capita/year indicates a modest average incoming prevalence of 0.018% for
Australia and 0.0066% for the UK during 2009.260

3.4. Seasonality, pandemic timing and vaccination impact

Without monovalent vaccination against pH1N12009 in Year 1, Group 4 simulations yield a
Year 1 pH1N12009 IAR which is ≈ 17 − 36% in the Australian-like scenario and ≈ 17 − 30%
in the UK-like scenario (Figures C.23-C.24). Simulations with the default vaccination campaign
yield a reduction in the Year 1 pH1N12009 IAR (∆IAR) of less than 1 percentage point in the265

Australian-like scenario but ≈ 1 − 10 percentage points in the UK-like scenario (Figure C.22).
For the UK-like simulations, all but one of the Group 4 candidates suggests pandemic vaccination
campaigns reduced the Year 1 pH1N12009 IAR by ∆IAR ≥ 1.5 percentage points. A lone Group 4
candidate with ∆IAR < 1 has a very high baseline Year 1 pH1N12009 IAR of ≈ 30% (Figure C.22).
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Figure 3: Left: Australian-like scenario for Group 3 candidates. Right: UK-like scenario for the same candidates.
(a) & (b): incidence of infection per 1000 population with pH1N1 (purple) and H3N2 (orange) curves, (c) & (d):
the proportion of the population sero-protection assuming immediate protection following infection or vaccination to
pH1N1 (purple) and H3N2 (orange), (e) & (f): proportion of the population with only cross-protection to against
H1N1 (purple) or with cross-protection and infection induced antibodies (turquoise), (g) & (h): proportion with
only cross-protection against H3N2 (orange) or cross-protection with infection induced antibodies (turquoise), (i)
& (j): effective reproduction number for pH1N12009 (purple) and H3N2 (orange). One of the several candidates
with the smallest realised value of d(D,D∗) [equation (1)] is sketched in bold.

Motivated by the contrast between the impact of very similar pandemic vaccination campaigns270

in the UK-like and Australian-like scenarios, we perform a sensitivity analysis for our Group 4
candidates on the potential benefit of vaccination campaigns across all possible offsets between
IAV seasonality and pandemic emergence (controlled by φoffset). We compare default vaccination
campaigns to counterfactual vaccination campaigns with the same coverage that are delivered 3
months earlier than was achieved (‘early’) or with the same timing but with a perfectly efficacious275

vaccine (‘perfect’).
We note that baseline modelled pH1N12009 Year 1 IAR are seasonal and lowest when seasonal

forcing peaks ≈ 11 months after pandemic onset. The seasonality in IAR is preserved when con-
sidering the first two years of pandemic IAV circulation (Figure C.19). The averted infections in
the presence of vaccination campaigns are also seasonal, although the timing of averted infections280
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Figure 4: Upper panels: Annual attack rate for Group 3 candidates in Australian-like scenarios (left) and UK-like
scenarios (right). White circles indicate the median in Group 3. Lower panels: Attack rates in Years 1 and 2 for
pH1N12009 (purple diamonds) and H3N2 (orange circles).

differs with the nature of the modelled vaccination campaign and the time-frame considered (Fig-
ure 5). When considering the Year 1 pH1N12009 IAR only, early vaccination campaigns are most
effective at reducing the IAR, and this benefit is maximal when seasonal forcing peaks ≈ 9 months
after pandemic onset. Perfect and default counterfactual vaccination simulations have maximal
impact when the seasonal forcing peaks ≈ 10 months after pandemic offset. For many Group 4285

candidates and seasonal offsets even vaccination campaigns up to 12 weeks earlier than achieved
in 2009 cannot significantly reduce the Year 1 pH1N12009 IAR over a large range of timings for
the emergence of sustained pandemic virus transmission with respect to seasonal influenza. When
considering the summed Year 1 and 2 pH1N12009 IAR perfect and early vaccination campaigns
have similar maximal impact. However early vaccination campaigns have higher median reduc-290

tion in IAR than perfect campaigns when seasonal forcing peaks 6–9 months after vaccine offset,
whereas perfect vaccination campaigns have higher median impact when this offset is 10–12 or 1–2
months.

Posterior samples can be influenced by the choice of ρH3N2 (Figures C.6-C.6, Appendix C.2.1),
however trends in the pH1N12009 IAR with the timing of seasonal forcing are insensitive to the295

strong assumptions regarding seasonal vaccine efficacy for Group 4 candidates (Figure C.20) and we
expect our main conclusions to hold despite our simplifying assumption ρH3N2 = 0. The combined
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Figure 5: Reduction of pH1N12009 Year 1 IAR under default vaccination for Group 4 candidates (green), or with a
perfect vaccine and coverage with the same timing (purple), or the same efficacy but 12 week earlier outroll (cyan).
Lower panels show the cumulative reduction in pH1N12009 IARs for Year 1 and Year2. Offset indicates the time
between pandemic onset and peak seasonal forcing (as in Figure ??).

.

benefit of early and perfect vaccination against pH1N12009 is explored further in Figures C.21 &
C.22.

We also explore the implications of very high vaccination coverage and find that even 90%300

vaccine coverage does not alter the burden of pH1N12009 infection in the Australian-like Southern
Hemisphere scenario on short time-scales (Figure C.24), but there is still a small cumulative benefit
over 5 years that is slightly enhanced in the UK-like scenario (Figures C.23 & C.24).

3.5. Role of cross-protection in model dynamics

Heterosubtypic immunity of intermediate duration that reduces onward transmission but not305

susceptibility is well motivated by animal and human studies, yet typically neglected in SIRS-
type transmission models for IAV. We consider a bi-variate sensitivity analysis amongst Group 4
candidates, considering the influence of εI and ρpH1N1 on IAV and d (with ~Ce = (C2

11, C
1
12, C

2
12)). Al-

though the inclusion of C12 in ~Ce preferences values of εI < 0.7, parameter combinations satisfying
C12 often have values closer to the minimum sampled value of εI = 0.5 (left panels, Figures C.7-310

C.10). Year 1 and 2 pH1N12009 IARs are very sensitive to εI (Figures C.7-C10), more so than
than the pandemic vaccine efficacy ρpH1N1: increasing εI from 0.5 to 1 can increase the Year 1
pH1N12009 IAR by over 10 percentage points, while changing vaccine efficacy between its limits
has minimal effect (middle panels, Figures C.7-C.10, Appendix C.2.4). The magnitude of this
effect varies between Group 4 candidates, but the trend is consistent, and likely explained by the315
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presence of cross-protection at pandemic onset and with greater longevity than vaccine induced
immunity in our model. Indeed we find a significant negative correlation of moderate strength in
selected values of R0 and PXpH1N1

(Figure C.1). Amongst Group 4 candidates ≈ 14−66% (median
29%) of hosts have some cross-protection to the pandemic strain at pandemic onset. The burden
of infection due to the non-pandemic IAV virus (H3N2) is not, however, impacted by high levels320

of coverage with a monovalent pH1N12009 vaccine (Figures C.23-C.24), even though this could
preclude generation of cross-protection in this cohort, likely reflecting the short duration of vaccine
induced immunity in selected candidates.

3.6. Impact of school holidays on model dynamics in the UK

Group 3 candidates often show two peaks of infection in the spring/summer of 2009 for the325

UK-like scenarios, with another small wave in the 2009–2010 influenza season. The shape of
these waves of infection, however, do not accurately reflect that observed in Northern Hemisphere
countries. Figure 1 shows that the first and second waves of infection are separated by a distinct
trough in the number of specimens detected, whereas, the two waves of infection in our candidate
parameter sets are separated by a very shallow trough. When school closure is included in the330

model (with overall mixing reduced by a factor ∼ U(0, 0.5) during end of term breaks and by
a factor ∼ U(0.7, 1) during mid-term breaks, appropriate for various countries in the Northern
Hemisphere) Group 3 parameter sets show qualitatively similar dynamics to that shown in Figure
1. When school closure is included in the simulation the magnitude of the 2010–2011 wave (Year 2
pH1N12009 IAR) increased (see ??). However only a single Group 3 candidate with school closure335

has pH1N12009 IARs exceeding 10% in Year 1 and Year 2 (Figure C.27).

4. Discussion

We introduced a model for the co-circulation of two influenza subtypes to explore the influence
of the timing and efficacy of vaccination campaigns on the dynamics of pH1N12009 infection in
the presence of a seasonal H3N2 subtype. We show that in an Australian-like scenario, where340

the pH1N12009 began community transmission only a month or two prior to the usual seasonal
influenza season, the first wave of the pandemic was more likely to be rapid with a high pH1N12009
IAR over 20%. In this situation, earlier vaccination campaigns can induce reductions in the Year 1
pH1N12009 IAR of less than approximately 2 percentage points, even when vaccines are perfectly
efficacious and delivery begins three months earlier than was achieved. This is consistent with345

seroepidemiology suggesting that Year 1 infection plus vaccination was able to largely suppress
further transmission in Year 2 in the Australian-like scenario [53]. In our simulations mimicking
an equivalent UK-like scenario, vaccination campaigns that begin approximately 6 months after
introduction of the pandemic virus are more effective at reducing the pH1N12009 IAR for the
first two years of pandemic spread. This enhanced impact is driven by the longer, often double-350

peaked, epidemic in the first year of pandemic transmission when pandemic emergence is out of
season. For simulations in both hemispheres, where vaccination is able to reduce the modelled
Year 1 pH1N12009 IAR, this is correlated with a larger Year 2 IAR. These results reinforce the
benefit of responding early in a pandemic with a ‘universal’ vaccine that can trigger or boost
influenza-specific cytotoxic T cells [8] to further limit transmission from hosts infected with a355

novel IAV strain for the IAR. In concluding this we have only considered the impact of immune
protection against infection and transmission on overall IARs; enhanced heterologous immune
responses due to infection and/or vaccination may yield more durable protection against severe
disease, as observed in some studies of SARS-CoV-2 vaccine immunogenicity and efficacy [71, 88].
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We have also not considered other relevant measures of epidemic severity such as peak incidence360

and epidemic duration.
A univariate sensitivity analysis of the role of the phase of seasonal forcing in our model sug-

gests there is a strong signature of influenza seasonality in the expected impact of any pandemic
vaccination campaign, that is magnified in delayed campaigns. Towers et al. use an SIR model
with harmonic seasonality and a simple age-structure to demonstrate that the benefits of school365

closure in a pandemic scenario depend on seasonal factors influencing transmissibility [75]. Lee
& Chowell also use an SIR model to explore the impact of the timing of epidemic emergence
with respect to seasonality and the timing of vaccination (and treatment), reporting that delayed
vaccination results in poorer outcomes when R0 < 2 [45]. A modelling study of global pandemic
influenza circulation with top-hat seasonal forcing and air-travel motivated choices for importa-370

tions yields similar conclusions regarding the poor efficacy of vaccination campaigns in southern
temperate regions [39]. Our study adds to this work by considering multi-dimensional immunity
and the medium-term impact of pandemic vaccination on subsequent IAV seasons.

We have preferentially selected (through inclusion of C12 in ~Ce) models with a minimal preva-
lence of cross-protective immunity against infectiousness in our model. We have enforced loss375

of this cross-protective immunity after an average of 2 years. With these constraints it is often
difficult to have weak conservation of cross-protection (reflected in low rates of the criterion C10

being satisfied). However declining population-levels of influenza specific cytotoxic T cells may be
expected following an IAV pandemic due the prevalence of recently acquired immunity, and such a
trend was noted in the 5 years following the 1977 pandemic [52]. Models in which cross-protection380

wanes more gradually would further suppress seasonal IAV in our model. Other computational
modelling studies have suggested that partially protective immunity of intermediate duration is
parsimonious with the epidemiological and evolutionary characterisations of influenza [23]. Tr-
uscott et al. [77] also report that cross-protection is required to explain multistrain IAV dynamics,
however in that model cross-protection is assumed to reduce susceptibility rather than infection385

and wane in synchrony with strain-specific immunity. If the invoked cross-protective immunity in
our modelling reflects its contribution to reducing transmission in a typical influenza season, the
dearth of circulation of IAV over the 2 years since NPIs were introduced in response to SARS-
CoV-2 [44], could result in significantly reduced protection that could translate to higher than
usual reproduction rates for the same social contact patterns (see also [33] for a modelling study390

predicting resurgence in the rates of severe IAV infection).
The UK experienced a large third wave of pH1N12009 in the 2010-2011 influenza season [86],

not reproduced in our study even when we include reductions in the contact rate during school
holiday periods. A direct conclusion of this result is that the inclusion of age structure in our
model may allow a study of this large third wave phenomenon, with the caveat that we have made395

very simple assumptions about the impact of school holidays on overall transmission rates [20, 21],
but in practice the impact of holidays will depend on the age-dependent epidemic progression, the
employment status of parents of school aged children, and the social activity connecting pupils and
their community during the holidays [e.g. 27]. Differences in age-dependent assortative mixing,
pre-existing immune profiles and demographics may also be at play [48]; several longitudinal cross-400

sectional sero-prevalence studies suggest that early attack rates were higher in school aged children
[19], with incidence in successive waves shifting into older age-groups [36, 53]. The efficacy of
seasonal influenza vaccination can vary by year and age group [46]. However, an analysis of
pH1N12009 in the UK using an age-structured transmission model, and allowing for some changes
in case ascertainment, found that the third wave could not be replicated using age groups and405

school closure alone, but required an increase in pH1N12009 transmission in the 2010-2011 influenza
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season [18], highlighting the challenges of explaining medium-term trends in IAV circulation.
Our assumptions of similar pre-pandemic immunological conditions across hemispheres neglects

differences in short-lived heterosubtypic immunity related to the timing of previous epidemics that
may drive seasonality in the possible timings of pandemic emergence [25]. It is possible that any410

such effect is absorbed into our estimated seasonal forcing. Further exploration of the role of cross-
protective immunity as distinct from other types of immunity and seasonal drivers in modelling
studies is warranted to understand its role in shaping IAV epidemiology. Given the widespread
prevalence of cross-protective CD8+ T-cells [31], which may not be explained purely by effector
CD8+ T-cells, characterising this response may require decoupling memory and effector CD8+ T415

cells in our model. Within-host modelling of IAV infections incorporating cellular and humoral
responses which can differentiate the impact of CTL pool size on viral clearance could be used to
motivate different population-level characterisation of the infection history driven multi-factorial
host immune state [11]. Indications that inactivated virus influenza vaccines can induce influenza
T-cells [66], and age-dependence of waning vaccine-induced immunity [64], may also be relevant for420

future modelling of the impact of pandemic vaccination campaigns. Differences in national IAV
vaccination policies, particularly around use of live attenuated IAV vaccines (which can induce
cellular responses in children [81], and are currently used in paediatric populations in the UK [61]
but not Australia [13]) could lead to global divergence in population immune profile that may
drive differences in outcomes of future IAV pandemics and associated interventions.425

Our approach has a number of additional limitations. Using a simple ABC approach, we
selected model parameter sets that satisfied a threshold number of epidemiological constraints but
have not obtained formal fits to the data through dense sampling of the posterior and adjustment
of the tolerance, as in, for example, ABC-SMC [58]. Although our model includes many possible
immunological states, it is simple in its assumption of homogeneous mixing, age-independent430

vaccination and immunity, and exponentially distributed waiting times between model states. The
failure of our model to concurrently satisfy all defined criteria highlights the limitations of our
model to capture epidemiological characteristics in multiple locations. Modelling the seasonal
forcing in each location based on regional meteorological/social mixing considerations may ease
this discrepancy. Accounting for differences in travel patterns between countries may be more435

appropriate than the fixed per-capita importation parameter adopted here [e.g. 39]. We have not
modelled case ascertainment which could change over time driving, for example, apparent troughs
in case time series.

Importantly, our conclusions relate only to pandemic scenarios in which the emerging subtype
has a history of circulation in humans (Pa > 0), that both constrains its initial spread and the440

evolutionary scope for rapid changes in antigenicity (i.e. we set φpH1N1 = 0 over our 5 year simu-
lations) or virulence (i.e. we fix the intrinsic maximal transmissibility R0) [73]. Our conclusions
would likely be less relevant for pandemics triggered by viruses with a limited history of circulation
in humans that may be expected to generate a large epidemic regardless of seasonal factors, and
may be followed by rapid adaptation to the human population that could generate multiple severe445

waves of infection [9, 38, 45].

5. Conclusions

Our analysis suggests that the small post-pandemic waves of pH1N12009 infection in Australia
arose because the initial pandemic wave was enhanced by seasonal forcing, driving rapid depletion
of the susceptible pool that left fewer hosts to fuel further waves of infection, rather than because450

the adopted vaccine was particularly efficacious or had a well-timed distribution. Although the
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timing of a vaccination campaign can have a small impact on the cumulative infections over the
first years of the pandemic, the potential benefit is inversely related to the size of the initial wave,
highlighting the inadequacy of the current pandemic influenza vaccination strategies. In pandemics
with low reproduction numbers, strategies for vaccine outroll might prioritise regions in which the455

pandemic is emerging in synchrony with seasonal outbreaks. However, if vaccine availability is
delayed similarly to in 2009, the biggest gains may be in distributing to regions for whom the
pandemic transmission has yet to experience seasonal enhancement.

Robust predictions of the role of seasonality on the potential impact of interventions such as
vaccination will require more detailed modelling of the influence of meteorological and environ-460

mental factors on transmission, mixing behaviour and immune response [74]. Predictions for the
timing of an outbreak in a given region may remain elusive given the dependence on importations
via travel, uncertainty in local climatic conditions, and stochastic effects [59]. However, the insight
that earlier vaccination campaigns make curbing the attack rate for the initial wave of pandemic
influenza possible over a wider range of scenarios for seasonal forcing is likely to remain for low to465

intermediate values of R0 [45]. Extending modelling to incorporate within-host immunological dy-
namics, time-varying transmissibility and importation to tropical and sub-tropical regions where
the seasonal drivers of transmission are less well understood could help inform global influenza
control strategies.
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