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Abstract—This article proposes a new droop control design 

method based on a “reversed data training” of artificial neural 

network (ANN). Conventionally, after data collection, the ANN is 

used for forward mapping the control variables (inputs) and 

system response (outputs). After training, the ANN model can be 

used for optimal control design for each specific system 

performance requirement either through curve fittings or other 

optimization methods. In our proposed method, however, a 

reversed data training process is used. The ANN uses system 

responses as its inputs and control variables as outputs. By doing 

so, the ANN can identify the requested control variables directly 

for a given system performance request. In the example aircraft 

DC microgrid, multiple generation systems feed a common DC bus 

with droop control implemented. During the data-generating 

process, different droop coefficient combinations are used, and the 

resulting power sharing ratios are stored as outputs. However, the 

ANN is data reversely trained with power sharing ratios as inputs 

and droop coefficients being the outputs. Through this example, 

we have shown that the proposed approach is straightforward and 

effective to derive the optimal droop gains based on desired power 

sharing requests. The proposed approach is tested in both 

simulation and experiment.  

 
Index Terms—Computation, droop coefficient, droop control, 

converters, more electric aircraft, neural network, optimization 

 

 
 

I. INTRODUCTION 

HE single-bus DC microgrid (MG) is considered a 

promising electrical power system (EPS) solution for 

various applications including the more electric aircraft (MEA). 

In this MG configuration, multiple power generation sources 

are interconnected in parallel to a shared DC bus using 

interfacing power electronic converters (PECs), as depicted in 

Fig. 1. The effective control and management of these power 

sources, as well as the regulation of the DC bus voltages, are 

achieved through the utilization of these interconnected PECs 

[1]. Numerous strategies have been proposed in recent studies 

to address the power sharing control challenges in such DC 

MGs [2]. The droop control method is one of the most widely 

employed methods among them. However, practical factors 

such as mismatched line impedance and offset in nominal 

voltage reference impact the accuracy of load sharing and the 

performance of voltage regulation. In the droop control 

mechanism, there is typically a trade-off between power sharing 

accuracy and voltage regulation. Increasing the droop gain can 

improve power sharing accuracy, but it may lead to poorer 

voltage regulation. Hence, the droop gain of converters plays 

an important role in determining the effectiveness of the droop 

control method. To improve its performance, it is necessary to 

explore new approaches and employ intelligent optimization 
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techniques. 

The design and calculation of the optimal droop gains for 

converters represent a clever approach to improve the 

performance of the droop control method, without 

compromising its reliability and modularity. Designing the 

optimal droop gain to achieve accurate load sharing and 

effective voltage regulation poses a multi-objective 

optimization challenge, as these control objectives often 

conflict with each other. Different artificial intelligence (AI) 

multi-objective optimization techniques have been employed to 

compute the optimal droop gains of the converters to achieve 

the desired control objectives [3, 4, 5, 6, 7, 8, 9, 10, 11]. The 

most used AI techniques in power electronics applications are 

the metaheuristic algorithms (such as genetic algorithm (GA) 

and particle swarm optimization (PSO)) and the machine 

learning (ML) techniques (an example is the artificial neural 

network (ANN)) [12]. 

In [3, 4, 5, 7], the MOOP is tackled by converting these 

multiple-objective optimization problems to a single objective 

(SO) one using a weighted sum method [13]. The PSO 

technique is employed in [3, 4, 5] for the computation of the 

optimal droop settings to realize two control objectives of 

current sharing error minimization and enhanced voltage 

regulations for various loading conditions of a DC microgrid. 

In the weighted sum approach, the objective functions are 

added together with different weights for optimization. 

However, when one objective is realized, the other objective is 

degraded due to its conflicting nature. Thus, this requires the 

knowledge of the optimum weighting factor design to obtain 

the optimal solution. The tuning of the weighting coefficients is 

not trivial and is a time-consuming task. In addition, a slight 

change in the weighing coefficient may result in a large change 

in the control objectives [8, 10]. Besides, this approach only 

provides a single solution and is highly dependent on the 

assigned weights, thus, not providing flexibility to the power 

system designer [14]. 

In contrast, authors in [8, 10] solved this MOOP by using an 

extra compromising step called the fuzzy membership function 

after deriving Pareto optimal front solutions. For example, to 

obtain the optimal droop gains for distributed generators (DGs) 

in an islanded DC microgrid, the nondominated sorting genetic 

algorithm (NSGA II) was used to generate the Pareto optimal 

front of the formulated multi-objective optimization (MOO) in 

[8]. The proposed MOO approach considers the system voltage 

regulation, improved current sharing among the DGs and 

minimization of the total loss in the system. The fuzzy 

membership function is employed to obtain the best-

compromised solution from the Pareto optimal front. 

Though the population-based methods (especially the GA 

and PSO) are the most widely used to solve optimization 

problems in power electronics and allow the user to find good 

optimal design variables (i.e., have good search capability) 

[12], however, they are heuristic and have an intensive 

computational burden [12]. In addition, for every design 

objective, a new set of simulations are required [15] to find the 

optimal droop gain. Another drawback includes the possibility 

of being stuck in the local optimum due to the premature 

convergence of the results of the optimization [16, 17]. Thus, 

there is no guarantee that their solutions are globally optimal. 

Besides, since optimization involves different control 

objectives, there is a need to formulate the objective function. 

Furthermore, when a wide operating range is considered, the 

heuristic methods will need to run many simulations and 

experimental results which are time-consuming. Thus, limiting 

their practical implementation in industrial applications that 

require speed and efficiency [12]. 

A. Motivation for Using the ANNs 

An approach can be considered good for optimal droop gain 

design if it provides the power system designer with a simple 

way to obtain the optimum system performance for any design 

criteria without incurring a huge computational burden in the 

implementation of the algorithm. In this article, the use of the 

ANN is proposed for the design and computation of the optimal 

droop gain of PECs. The ANN can offer the optimal solution 

by automatically learning the underlying relationship between 

the model inputs and outputs by using its inherent decision-

making feature. Also, unlike the classical and well-known 

optimization techniques that require an explicit fitness function, 

the ANN can approximate so many non-linear functions to a 

high degree of accuracy with little knowledge about the system. 

As a result, it can be applied to a problem where the fitness 

function is unknown or difficult to formulate and can generate 

the optimum solution without trade-offs at a reduced 

computational burden [18]. In addition, the data collection 

needs to be carried out only once and not several times as is the 

case with heuristic methods [19] when a different design 

objective is considered. These are huge advantages of the use 

of the ANN in a MOOP. Besides, the ANN is the most widely 

used AI technique in power electronics control applications 

[12]. The ANN model has been widely employed in 

applications that require classification, optimization, and 

prediction.  

In recent years, conventional ANN optimization-based 

design has been employed for the design and automated 

selection of some power electronics parameters such as the 

weighting factor in the cost function of the finite control set 

model predictive control (FCS-MPC) [15, 20, 21]. In [17], it 

was used to design and select the parameter of the active 

disturbance rejection control controller for the dual active 

bridge converter. In [22], an ANN-aided automated design for 

the reliability of power electronics systems is proposed. The 

design and optimization of the DC filter for the MEA 

distribution system using search and surrogate algorithms are 

carried out in [23]. In [24], it is used for the design and selection 

of the optimal weighting factors used for predictive torque 

control in a motor drive. Similarly, [25] employs it to facilitate 

the design of optimal droop gain for droop control of parallel-

connected PECs in the MEA. 

In the conventional ANN optimization-based design [15], 

[17]-[25], the ANN is trained as a surrogate model offline using 

data obtained from experiments or a detailed simulation model 

of the EPS under study. Thereafter, the surrogate model is used 

to replace the original detailed simulation model in performing 
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optimization and selection of the desired optimal system 

parameter. Compared to the met-heuristic optimization 

techniques, the surrogate model in the conventional ANN 

optimization-based design can be used in future studies without 

the need of running the original system model and this saves 

time. In addition, there is no need to run a new set of simulations 

for new control objectives within a sub-design space [15]. 

However, despite the benefits of conventional ANN 

optimization-based design, it exhibits two main drawbacks that 

are undesirable in practical implementation. Firstly, after 

training, the process involves probing thousands or even 

millions of design points using the surrogate model to find the 

optimal design point, leading to a substantial increase in 

computational burden and potentially prolonging the execution 

time [15]. Secondly, similar to meta-heuristic optimization 

techniques, it necessitates formulating an objective function 

and converting the MOOP to a Single-Objective (SO) one using 

the weighted sum method, which adds complexity to the 

optimal droop gain design and selection process. 

AI techniques can provide adaptive and robust power 

systems control variables that can respond to changes in system 

conditions in real-time [12]. In this regard, for ease of 

implementation, methods are required that have low complexity 

and computational burden. Due to the drawbacks associated 

with the meta-heuristic approach and conventional ANN 

optimization-based design, they not only make the offline 

design of control parameter complex and computationally 

intensive, but none of these methods also allow control 

parameters to be tuned in real-time [26]. Based on the literature 

reviewed, it is identified that it has become imperative to 

analyze ANN for droop gain parameters design and 

computation from the practical implementation perspective.  

B. Statement of Contribution 

Motivated by the above discussions, this article is an 

extension of the previous work [27], where detailed analysis, 

generalized methodology, simulation results and controller 

hardware-in-the-loop (C-HIL) experimental test validation are 

considered. In addition, it builds upon our recent research [25], 

where the conventional ANN optimization-based design is used 

for offline computation of optimal droop gains of PECs. Unlike 

the work in [25], the proposed approach eliminates the need for 

intermediate optimizations by utilizing reverse data training of 

the ANN to directly predict the optimal droop gain settings. 

Thus, reducing computational burden and complexity, and 

enabling real-time tuning of droop gain parameters. The 

proposed approach represents a significant improvement over 

the method in [25] and offers several advantages: (1) It is a self-

contained application that does not depend on external 

hardware to set the optimal droop gain of converters in local 

controllers. This advantage stems from the fact that the ANN is 

implemented directly within a hardware control platform. (2) 

Facilitates automatic updates of optimal droop gain settings in 

local controllers, and ensures quick adaptation to reference 

changes, thereby achieving the desired control performance. (3) 

By employing real-time computation of droop gains, this 

method enhances the overall performance and responsiveness 

of the control system, making it well-suited for a wide range of 

applications in power systems. 

The trained ANN model can be used offline or implemented 

in a digital control platform for real-time computation of the 

optimal droop gains. In the proposed approach, once the 

training is completed, the power system designer can input the 

desired control objectives (i.e., a specific design point). The 

surrogate model can then quickly calculate the optimal droop 

gains based on these specified objectives. This allows for 

immediate determination of the optimal droop gains using the 

surrogate model. The main research contributions in this article 

are highlighted as follows. 

1. The design and validation of a real-time method for the 

online tuning of the optimal droop gains of parallel-

connected converters based on the desired power sharing 

ratios and voltage regulation references. This approach 

effectively regulates power-sharing and bus voltage control 

for droop-controlled converters. To the best knowledge of 

the authors, this work represents the first attempt to address 

the real-time tuning of optimal droop gain settings for 

droop control of parallel connected converters. 

2. A detailed comparison between the proposed design 

strategy and conventional ANN optimization-based design 

has been performed. 

3. Extensive simulations and experiments are conducted to 

validate the effectiveness of the proposed approach. 

The article is structured as follows. Section II introduces the 

system architecture and provides an analysis of the droop 

control method along with its challenges. The procedure for the 

proposed and conventional ANN optimization-based optimal 

droop gain design strategies is discussed in Section III. In 

Section IV, the proposed approach is compared and validated 

against the conventional ANN optimization-based design 

through simulations. Experimental results validating the 

proposed approach are presented in Section V. Finally, Section 

VI concludes the article and outlines potential future research 

directions. 

PMSG1

PWM1

AR1

+ -

HVDC bus

Vbus

PMSG2

PWM2

AR2

PMSG3

PWM3

AR3

C1

C2

C3

Idc1

Idc2

Idc3

Rc1 Lc1

Rc2 Lc2

Rc3 Lc3

Cb

Vdc1

Vdc2

Vdc3

IL

LOAD

PMSG-AR1 

controller 

(Fig. 3)

PMSG-AR2 

controller 

(Fig. 3)

PMSG-AR3 

controller 

(Fig. 3)

 

Fig. 2 MEA EPS HVDC grid 
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II. SYSTEM DESCRIPTION 

A. Islanded DC MG of the MEA EPS 

Fig. 2 illustrates the architecture of a 270 V single DC bus 

power system. This architecture is recognized as a highly 

prospective choice for the EPS of future more electric aircraft 

(MEA) [28, 29, 28]. Therefore, it serves as a relevant case study 

in this article. In Fig. 2, the power system configuration consists 

of multiple parallel-connected generators (specifically, 

permanent magnet generators, denoted as PMSGi) that supply 

electrical power to a high-voltage direct current (HVDC) bus. 

Each generator is connected to the bus through its respective 

AC/DC converter (ARi). The chosen converter is a standard 

two-level voltage source converter, which simplifies the system 

design and control process. The generators are operated using 

vector control and are set to operate in the flux weakening (FW) 

mode at high speeds. The FW control is implemented to ensure 

that the generators operate within the voltage limit circle as 

defined in [29]. For more detailed information regarding the 

control structure of the MEA EPS and design analysis, please 

refer to [30]. However, the control structure of the system 

typically follows a cascaded design, consisting of outer voltage 

and inner current control loops, as depicted in Fig. 3. The outer 

loop is responsible for regulating the DC-link voltage, which is 

achieved through the implementation of droop characteristics 

during the generation mode. On the other hand, the inner current 

control loop is dedicated to controlling the d- and q-axis 

currents. The FW controller generates the Idref, while the Iqref is 

produced by the DC-link voltage controller. However, to 

simplify the control structure and given the focus of this article 

on the design of droop gains for power sharing among various 

power generation sources in an onboard HVDC power network 

for MEA applications, only the droop control structure is 

presented in Fig. 3. 
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Fig. 3 Local PMSG-ARi primary controller 

The converters are pulse-width modulated and controlled via 

their respective primary local controllers. The capacitor Cb is 

the capacitor bank of the main DC bus, and the local capacitors 

for each of the converter modules are represented as C1, C2 and 

C3. The load power in the MEA DC grid is composed of a 

combination of constant impedance load, such as the wing ice 

protection load, and constant power load, which is typically 

driven by tightly controlled power electronics converters like 

the power converter-driven compressors for the environment 

control system [31]. For this study, a DC bus load in the form 

of an inverter-controlled permanent magnet machine (PMM) 

acting as a constant power load (CPL) is utilized. Additionally, 

to represent the generators on the left-wing engine, right-wing 

engine, and auxiliary power unit (APU) of the aircraft, three 

Permanent Magnet Synchronous Generator (PMSG)-Active 

Rectifier (AR) systems are considered.   

B. Droop Control Method 

Within an islanded DC MG, the primary controller is used 

for current loop and voltage loop control within a single PMSG-

AR system. The droop control is generally implemented to 

define the voltage reference within the primary level voltage 

control, as shown in Fig. 3. With well-designed current and 

voltage control, each converter should be able to track its dc-

link voltage reference. The generated voltage reference from 

the droop characteristics can be expressed as 
*

ref i dc d i d ciV V k I= −       1,2,3i =      (1) 

where the droop gain is represented by
dik , *

dcV is the nominal 

DC voltage, and the output currents of the converter are denoted 

as
dciI . 

Also, the DC bus voltage connecting the parallel sources 

from Fig. 3 can be expressed as 

 * ( )refi ci d ci di ci du ib s dc cV V R I k R IV− += −=    (2) 

where Rci is the line resistance. In the low-voltage DC MG, the 

transmission line impedance is predominantly resistive, thus, 

the line inductance Lci can be ignored. The normalized bus 

voltage 
bnV can be obtained by diving 

busV by 270. 

To limit the bus voltage Vbus within an acceptable range, the 

value of the droop gain is conventionally designed following 

the expression in (3).  

max

max

di

d ci

V
k

I


           (3) 

where Idcimax is the maximum output current of the converter, 

and δVmax denotes the maximum permissible deviation of the 

DC bus voltage. The value of δVmax is typically set at about 5% 

of the nominal DC voltage [4]. For the MEA EPS application, 

a voltage range of between 250 V and 280 V is acceptable in 

steady states. 

From (2), the sharing ratio between the ith converter and 

converter 1 (considered as the base converter) can be expressed 

as 

2 1 1

1

1 2 2

dc d c

dc d c

I k R
n

I k R

+
= =

+
                         () 

3 1 1

2

1 3 3

dc d c

dc d c

I k R
n

I k R

+
= =

+
                          () 

where n1 represents the current sharing ratio between converter 

1 and converter 2, while n2 represents the current sharing ratio 

between converter 1 and converter 3.  

From (4) and (5), the line impedance between generator-

connected ARs and the main DC bus has a significant impact 

on power sharing between different sources. This is extremely 

true for aerospace applications, where two main generators and 

PECs (assuming AR1 and AR2) are located within the engine 

nacelle and another generator set (assuming to be AR3) is 
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within the auxiliary power unit located at the tail of the aircraft. 

These 3 ARs are connected to DC bus bars located at the power 

distribution center at the center of an aircraft fuselage with long 

cables. Achieving equal power sharing and maintaining DC bus 

voltage regulation poses a significant challenge for the droop 

control method. One approach to ensure accurate power sharing 

is by setting the droop gains to values much larger than the line 

resistances (i.e., kdi >> Rci). By doing so, the power sharing 

accuracy improves as the influence of line impedance is 

mitigated. However, the application of large droop gain will 

compromise the bus voltage regulation as a small load current 

Idci will result in a large voltage drop Vdci.  

    This article thus proposes a more effective way to enable 

accurate power sharing and acceptable voltage regulation while 

mitigating the impact of line impedance with the methodology 

discussed in Section III. 

 

III. PROPOSED DROOP GAIN DESIGN APPROACH AND 

COMPARISON WITH CONVENTIONAL ANN OPTIMIZATION-

BASED DESIGN 

This section presents a detailed description of the procedures 

involved in the droop gain design using both the proposed 

design approach and the conventional ANN optimization-based 

design. Additionally, a comprehensive overview of the ANN 

structure and training process is provided, highlighting the key 

aspects of the network architecture and the training procedure.   

A. Procedure 

The design process for both approaches is carried out in three 

stages, (i.e., Stages A, B and C) as illustrated in the flowchart 

shown in Fig. 4. Stage A is data generation, and the process is 

the same for both approaches. The data can be generated from 

either a detailed simulation or experiments. The data generated 

from high-fidelity simulation models of a multi-generator 

system (the system in Fig. 2 as an example) can be carried out 

on a standard multi-core personal computer (PC). Stage B 

involves ANN training with the data obtained from stage A in 

both approaches. The training process varies between the two 

approaches. With the surrogate model from stage B, the 

required droop gains can be derived immediately for the defined 

power sharing ratio and DC bus voltage in stage C using the 

proposed approach. However, the selection of the optimal 

droop gain with the aid of the surrogate model from stage B 

requires extra effort when using the conventional ANN 

optimization-based design. Hence, the method of obtaining the 
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optimal droop gain settings differs between the two approaches. 

These three stages are further elaborated as follows. 

In stage A, data is extracted by running the detailed 

simulation model of the MEA EPS shown in Fig. 2 for different 

combinations of the droop gains (i.e., kd1, kd2, and kd3) within a 

design range. The corresponding current sharing ratios (i.e., n1 

and n2) and the normalized bus voltage (Vbn) are computed 

automatically at the end of each simulation and stored. The 

relationship between the input (x) and the processed output (y) 

of the simulation during data generation is represented as [25] 

1 2 1 2 3( ) ( , , ) ( , , )bn d d dy F x n n V F k k k=  =    (6) 

In stage B, for the proposed approach, the surrogate model is 

trained with the system performance indicators (i.e., n1, n2 and 

Vbn) as inputs and the droop coefficients (i.e., kd1, kd2 and kd3) as 

outputs. This way, the surrogate model can be used to predict 

its output quickly and accurately when provided with a suitable 

input. For clarity, the surrogate model represents the 

relationship in (7). 

 
1 2 3 1 2( ) ( , , ) ( , , )d d d bny F x k k k F n n V=  =    (7) 

On the other hand, for the conventional ANN optimization-

based design, the surrogate model is trained by following the 

same input-output pattern used in data generation (i.e., the 

relationship in (6)) to train the surrogate model.  

Finally, in stage C, for the proposed approach, the power 

system designer can specify the desired performance metrics 

(i.e., one design point) as input for the surrogate model to 

compute the optimal droop coefficient that will yield such 

performance as shown in Fig. 4. This approach is expected to 

significantly reduce the prediction time and simplify the 

optimal droop coefficient design and computation process. In 

contrast, the conventional ANN optimization-based design 

involves a stage C that consists of sampling the design space 

using small steps, resulting in numerous design points. These 

design points are then fed into a surrogate model, which 

predicts the corresponding system performance metrics. 

Subsequently, a user-defined fitness function, denoted as fann, is 

formulated, and evaluated using the surrogate model 

predictions (refer to Fig. 4). By minimizing the fitness function 

fann, the optimal droop coefficient setting that satisfies the 

desired control objectives can be determined instantly [25].  

B. ANN Structure and Training 

Theoretical analysis suggests that an ANN has the potential 

to approximate any input-output relationship with high 

precision, given the appropriate structure, including the number 

of neurons and layers, is selected for training. Among the key 

aspects of structure selection, determining the number of 

neurons in the hidden layer poses a significant challenge. 

Typically, this responsibility falls on the power system 

designer, as it directly impacts the training performance of the 

ANN. In practice, the structure of the neural network model is 

often determined through a trial-and-error process, which can 

be performed rapidly since the training itself takes only a few 

seconds. A common approach is to start with a small number of 

neurons in the hidden layer and adjust the count based on the 

observed training performance [12]. Additionally, the number 

of neurons in the input and output layers is selected to match 

the number of input and output variables in the training dataset. 

In this article, the surrogate models are trained offline using 

a feedforward neural network (FFNN) with a Levenberg-

Marquardt-based backpropagation training algorithm. The 

choice of FFNN is driven by its simple structure. In an FFNN, 

data flows in a forward direction, starting from the input layer 

and progressing through the hidden layer(s) before reaching the 

output layer [32]. The FFNN comprises an input layer for 

processing input data, a hidden layer, and an output layer 

responsible for generating results, such as predictions or 

classifications. Neurons within each layer are connected to 

neurons in the preceding layer through weighted connections. 

Additionally, a non-linear function is applied to the weighted 

sum of inputs received by each neuron in the hidden layer, with 

the output then passed on to the next layer. Depending on the 

complexity of the problem, the FFNN structure can be 

expanded to include multiple hidden layers. For a more 

comprehensive understanding of the FFNN, refer to [18] for 

additional details. Figs. 5(a) and 5(b) illustrate the structure of 

the surrogate models for the proposed approach and the ANN 

optimization-based design, respectively. Both surrogate models 

consist of three layers. To ensure a fair comparison, both 

approaches employ hidden layers with 11 neurons each.  

Input layer Output layer

Hidden layer

 

 n2

Vbn

n1
kd1

kd2

kd3

 

(a) 

Input layer Output layer

Hidden layer

 

 

kd1

kd2

kd3

n2

Vbn

n1

 

(b) 

Fig. 5 Schematics of the feed-forward neural networks specifically designed for 
the computation or selection of the optimal droop gain settings (a) Proposed 

design approach (b) Convectional ANN optimization-based design [25]. 

The data sample is divided into three sets—training samples, 

validation samples, and testing samples—prior to training the 

surrogate model. The percentage for each set is randomly 

allocated with the training data having the largest share. 

Thereafter the weight and biases of the ANN are also randomly 

selected for the initial iteration. However, the weight and biases 

are updated in subsequent iterations based on the error observed 

in the previous iteration. The validation set of data is used to 

evaluate the ANN training by computing the error between the 

ANN-predicted output and the training data set [33]. The root 

mean square error (RMSE) is commonly employed as a metric 

to assess the training performance of the regression ANN. If the 
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computed RMSE indicates overfitting or underfitting, the 

training can be halted. However, if the training performance is 

unsatisfactory, adjustments can be made to the surrogate model 

structure, particularly regarding the number of neurons in the 

hidden layer. For further details on the ANN training algorithm, 

refer to [34]. 

 

IV. DROOP GAIN DESIGN FOR THE MEA EPS 

This section aims to validate the procedures of both design 

strategies in the context of droop control for the system depicted 

in Fig. 2. Furthermore, the verification will include the 

demonstration of Stage C using a design example for both 

approaches. Additionally, the flexibility of the proposed 

approach will be showcased through two other design 

examples. It is worth noting that the proposed design strategy 

can be applied to other bus systems without any loss of 

generality, highlighting its broad applicability. 

TABLE I 
RANGE AND SAMPLING STEP USED IN DATA GENERATION 

Parameter Range Sampling 

Step 

Number of 

Samples 

1/𝑘𝑑1 [3.825, 4.675] 0.085 11 x 11 x 

11 = 1331 
1/𝑘𝑑2 [3.825, 4.675] 0.085 

1/𝑘𝑑3 [3.825, 4.675] 0.085 

TABLE II 

PARAMETERS OF THE SYSTEM USED AS CASE STUDY IN 

SIMULATIONS AND EXPERIMENTS 

Category Parameters Values 

PMSG 

parameters 

Nominal power 

Base speed 

45 kW 

8000 rpm 

Switching frequency fc 100 kHz 

Maximum modulation index 

Pole pair 

0.9 

3 

 Stator winding resistance Rs 

Winding inductance Ld=Lq 

Flux linkage 

1.058 mΩ 

99 µH 

0.03644 Wb 

Converter, 

cable, and load 

parameters 

 

 

 

 

DC-link capacitance Cb 

Converter dead time Td 

DC link-rated voltage  

Traditional droop coefficients 

kd1, kd2, and kd3 

Cable resistances Rc1, Rc2, and Rc3 

Cable inductances Lc1, Lc2, and 

Lc3 

1.2 mF 

3 µs 

270 V 

1/4.25, 1/4.25, 1/4.25 

                                    

3 mΩ,30 mΩ, 15 mΩ 

1µH, 10 µH, 5 µH 

 

 

A. Data generation 

Prior to data generation, it is important to establish a defined 

range, known as the design space, for the droop gains. TABLE 

I presents the range of droop gains used for data generation, 

along with the corresponding sampling step. The design space 

is carefully chosen to align with practical considerations, taking 

into account the desired control objectives while ensuring 

system stability. In the case of conventional droop gain design, 

the determination of droop gains is typically based on the power 

rating of the converters, aiming to achieve effective voltage 

regulation and stable operation. To maintain consistency, the 

upper and lower boundaries of the design range for each design 

parameter are set at +10% and -10% respectively, relative to the 

conventional droop gains specified in TABLE II. In addition, 

extensive stability analysis of droop control approaches in 

voltage source converter-based DC microgrids, along with the 

investigation of the effects of droop gains on stability [35], 

confirms that the selected design range falls within the 

acceptable limits for stable operation. As indicated in TABLE 

I, a total of 1331 droop gain combinations are systematically 

explored as inputs in the simulation model depicted in Fig. 2. 

Random combinations of these inputs are utilized to generate 

the dataset used for training the artificial neural network 

(ANN). Following each simulation, the values of n1, n2, and Vbn 

are automatically calculated and stored for further analysis. 

The simulation utilizes the system parameters and equivalent 

DC cable parameters listed in TABLE II. The PMSG parameter 

values in TABLE II are based on the specifications of the 

AEGART (Aircraft Electrical Starter-Generation System with 

Active Rectification Technology) machine, designed for the 

next-generation business Jet application [36]. These PMSGs 

have identical power ratings and are designed to transmit power 

in a 1:1:1 ratio. The AC-DC converter's switching frequency, fc, 

is set at 100 kHz. To simulate real-world conditions, a dead time 

Td and a computational delay of one sampling time are included 

in the simulation model. The simulations were performed on a 

standard PC equipped with a quad-core processor, with each 

simulation taking approximately 6 seconds to execute. 

Therefore, the total time required for data collection amounts to 

approximately 35 minutes. The data generation process is 

automated through MATLAB codes. Data was extracted 

specifically for a 40-kW load connected to a CPL. The extracted 

data was subsequently utilized to train the FFNN structures 

illustrated in Fig. 5 (a) and (b).  

B. Development of the Surrogate Model 

Prior to training the surrogate models, the generated data is 
divided into three sets: 70% for training, 15% for validation, 
and the remaining 15% for testing. The training process is 
successfully conducted using the NN fitting toolbox in 
MATLAB. The weights and biases of both surrogate models are 
optimized using the Levenberg-Marquardt backpropagation 
algorithm, ensuring a fair comparison between the two 
approaches. Since the ANNs in the proposed approach and the 
conventional ANN optimization-based design are trained 
differently, it is crucial to compare the performance of the ANN 
models. Fig. 6(a) and Fig. 6(b) illustrate the performance 
comparison for the two models, where evaluation metrics such 
as root mean square error (RMSE) and correlation coefficient 
(regression R-value) are employed. A lower RMSE value and a 
higher R-value indicate higher accuracy in the trained network 
predictions. Thus, the closer the RMSE value is to 0 and the R-
value is to 1, the better the accuracy of the trained network 
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predictions.  
The proposed approach demonstrates calculated root mean 

square error (RMSE) values of 0.0032956, 0.002183, and 
0.0031714 for kd1, kd2, and kd3, respectively. On the other hand, 
the conventional ANN optimization-based design approach 
yields calculated RMSE values of 0.00085733, 0.0012517, and 
0.000045932 for n1, n2, and Vbn, respectively. These RMSE 
values indicate that the surrogate models are effectively trained, 
and the FFNN structures presented in Fig. 5(a) and (b) deliver 
exceptional results. The regression plots depicted in Fig. 6, 
generated by the NN fitting toolbox, display a strong alignment 
of data points with the linear regression lines for both 
approaches. Moreover, the R-values exhibited in Fig. 6(a) and 
(b) confirm the satisfactory training of the surrogate models in 
both approaches.  

 

(a) 

 

(b) 

Fig. 6 Comparison of the regression plot of the trained ANN showing the 

relationship between the targeted data (o) and the surrogate model prediction 

(blue line) for (a) Proposed design approach and (b) ANN optimization-based 

design approach. 

C. Design Examples 

1) First design example 

As the benchmark method, the conventional ANN 

optimization-based design is initially employed to identify the 

optimal droop coefficient setting (i.e., kd1
opt, kd2

opt, and kd3
opt) 

that achieves a well-balanced solution between the current 

sharing ratios among the converters and normalized bus voltage 

regulation. Subsequently, the proposed approach is utilized to 

obtain the same results efficiently and effectively.   

a) Conventional ANN optimization-based design 

In the initial stage of the conventional ANN optimization-

based design, the design range of the droop coefficient is evenly 

sampled with a small step size of 0.01. This sampling process 

results in approximately 636,056 design points, representing 

various droop gains, which are utilized as input for the surrogate 

model. Subsequently, the surrogate model is employed to 

predict the corresponding performance metrics, namely n1ann, 

n2ann, and Vbnann, for each of the 636,056 droop gain 

combinations. These predictions are then utilized to evaluate a 

user-defined fitness function, facilitating the assessment of the 

performance of each droop gain setting. 

To guide the conventional ANN optimization-based design, 

a fitness function to achieve the control objective of this design 

example is formulated as [25] 

1 1 1

1 1 2 2

1 3

1

1

1

ann i ann

ann i ann i ann

ann i bnann

f n

f f n

f V

−

−

−

 = −


= = −


= −

                      () 

From (8), three objective functions are defined to quantify the 

errors in predicted values compared to desired values. 

Specifically, fann1_1i represents the error in the difference 

between the ith predicted current sharing ratio between 

converters 1 and 2, as estimated by the surrogate model, and the 

desired current sharing ratio between converters 1 and 2. 

Similarly, fann1_2i denotes the error in the difference between the 

ith predicted current sharing ratio between converters 1 and 3 

and the desired current sharing ratio between converters 1 and 

3. Finally, fann1_3i represents the error in the difference between 

the ith predicted normalized bus voltage (Vbnann) and the desired 

normalized system nominal voltage, set at 1 (i.e., 270 V). 

Hence, these three objective functions are formulated to assess 

the discrepancies between predicted and desired values.  

To aid in the selection of the optimal design point, the MOOP 

formulated in (8) is converted to SO using an integrated 

function as [25] 

2 2 2

1_1 1_ 2 1_ 3

1_1max 1_ 2 max 1_ 3max

20. 20.
ann i ann i ann i

i

ann ann ann

f f f
z

f f f

     
= + +     

     
     

           () 

It can be observed from (9) that a weighting factor of 20 is 
assigned to the minimization of the error in the current sharing 
ratio objective. This choice reflects a higher priority given to this 
objective over voltage regulation, which is a common practice 
[4]. The selection of the weighting factor was determined 
through a trial-and-error process. However, when control 
objectives have equal priority, a value of 1 can be chosen. To 
identify the minimum value of e and its corresponding index, an 
exhaustive search algorithm such as the min function in 
MATLAB can be employed, utilizing the expression provided 
in (10). Subsequently, this index is used to determine the optimal 
droop coefficient setting (kdi

opt) that minimizes the objective 
function z [25]. 

( )[min_ , ] min iz index z=                     () 

The evaluation of the expression in (10) using the surrogate 

model predictions yielded results within approximately 0.16 

seconds. The quick execution time highlights the convenience 

of employing an exhaustive search algorithm to identify the 

minimum of the fitness function, corresponding to the optimal 

droop coefficient setting. However, as the system complexity 

increases, the feasibility of using such an exhaustive search 

algorithm may diminish. In such cases, the execution time may 

become impractically long. This topic will be further discussed 

in Section IV-D to provide more insights. 
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Fig. 7 Plot of the fitness function (9). Optimal droop gain settings were 

obtained (indicated with the red star). 

In Fig. 7, a 3D colour map is presented, depicting the 

distribution of droop gain design points. The colour of each point 

corresponds to the value of the integrated function (z) 

representing the three objectives in equation (9). Based on 

equation (10), the optimal droop gain design point is selected. In 

this case, the optimal droop settings are determined as kd1
opt = 

1/4.1550, kd2
 opt = 1/4.6750 and kd3

 opt = 1/4.3750. These optimal 

values are denoted by a red star marker in Fig. 7. Furthermore, 

the surrogate model predicts the corresponding current sharing 

ratios and normalized bus voltage as n1ann = 0.9994, n2ann
 = 

1.0005 and Vbnann = 0.9532, respectively. 

b) Proposed approach 

In the proposed approach, the power system designer is only 

required to specify the desired system performance metrics 

within the design space, representing a single design point. 

These desired metrics serve as inputs to the surrogate model, 

which computes the optimal droop gain settings necessary to 

achieve the specified control objectives. To facilitate direct 

comparison, the predicted performance metrics obtained from 

the surrogate model in the conventional ANN optimization-

based design approach are utilized as inputs for the surrogate 

model in the proposed approach. Specifically, the desired 

performance metrics are set as n1desired = 0.9994, n2desired = 

1.0005, and Vbndesired = 0.9532. As a result, the surrogate model 

in the proposed approach calculates the optimal droop 

coefficients as kd1computed = 1/4.1509, kd2computed = 1/4.6718, and 

kd3computed = 1/4.3710. 

 
(a) 

 
(b) 

Fig. 8 Simulation results of a comparison of the current sharing and bus voltage 

regulation performance using droop gain settings from the (a) Conventional 

ANN optimization-based design and (b) Proposed design approach. 

To validate the obtained results, the optimal droop coefficient 

settings from both approaches are utilized as inputs in the 

simulation model shown in Fig. 2. Simulations are conducted 

with different constant power loads (CPLs) of 20 kW, 30 kW, 

and 40 kW at different time intervals, and the corresponding 

results are presented in Fig. 8. The simulation parameters remain 

consistent with those provided in TABLE II. In Fig. 8(a), the 

current sharing and bus voltage regulation obtained using the 

optimal droop coefficient settings obtained from the 

conventional ANN optimization-based design approach are 

recorded as Idc1 = 51.82 A, Idc2 = 51.77 A, Idc3 = 51.84 A, and 

Vbus = 257.4 V at t = 0.5 s. Consequently, the computed current 

sharing ratios between the converters and normalized bus 

voltage regulation are determined as n1 = 0.9990, n2 = 1.0004, 

and Vbn = 0.9533. Similarly, in Fig. 8(b), the current sharing and 

bus voltage regulation using the computed optimal droop 

coefficient settings from the proposed approach yield Idc1 = 

51.81 A, Idc2 = 51.78 A, Idc3 = 51.84 A, and Vbus = 257.4 V, 

respectively. Consequently, the calculated current sharing ratios 

between the converters and normalized bus voltage regulation 

are determined as n1 = 0.9994, n2 = 1.0006, and Vbn = 0.9533. 

Based on the obtained results, it is evident that both 

approaches can achieve the desired control objectives. 

Additionally, it is observed that under the same design criteria, 

similar optimal droop gain settings can be obtained from both 

approaches, resulting in similar control performance as shown 

in Fig. 8. However, the proposed approach offers notable 

advantages over the conventional ANN optimization-based 

design. With the proposed approach, only a single desired design 

point is required as input to the surrogate model for computing 

the optimal droop parameters. In contrast, the conventional 

ANN optimization-based design necessitates processing and 

feeding the surrogate model with approximately 636,056 design 

points to determine the optimal droop gain parameter. Moreover, 

the proposed approach eliminates the need for formulating 

objective functions and assigning weighting factors to trade off 

control objectives, which is required in the conventional 

approach. As a result, the proposed design approach offers the 

power system designer a simple, flexible, and efficient method 

for generating optimal droop gain settings with low complexity 

and computational burden. These advantages are significant 

when compared to other optimization techniques.  
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TABLE III 
OTHER DESIGN EXAMPLES 

Case 

 

Desired 

performance 

metrics 

Computed optimal droop gains 

kd1
computated kd2

computated kd3
computated 

1 n1desired = 1, 

n2desired = 1, 

Vbndesired = 

0.9532 

1/4.1508 1/4.6749 1/4.3685 

2 n1desired = 0.8, 

n2desired = 1, 

Vbndesired = 

0.9600 

1/5.0684 1/4.5701 1/5.4082 

 

Furthermore, the proposed approach shows potential for 

online computation of droop gain parameters due to its low 

complexity and computational burden, as indicated by existing 

literature [37, 38, 39, 40]. Previous works that share similarities 

with the proposed design approach demonstrate reduced 

iterations for identifying optimal control variables [37], 

decreased computational burden [38], absence of weighting 

factor tuning, and short execution time [39, 40]. These features 

serve as the primary motivations behind the proposed approach. 

In general, ANN models trained offline can be employed either 

offline or implemented in a digital microprocessor for online 

applications [40]. The potential, effectiveness, and flexibility of 

the proposed approach in the computation of the optimal droop 

gains of converters are further demonstrated by using two other 

design examples (presented in TABLE III). These examples 

also demonstrate how the power system designer can leverage 

the proposed approach in decision-making about the MG 

operation. Such decisions may include the best mode of 

operation that will minimize the system losses and maximize its 

efficiency. However, such an analysis is not within the scope of 

this article. 

2) Other design examples 

For the three-source system examined in this article, there are 

multiple possibilities for meeting the load power demand. This 

article focuses on two specific approaches, which are outlined 

in TABLE III. 

In Case 1, all three sources are assumed to have identical 

ratings and are expected to cooperate in sharing the load power 

demand equally. Additionally, the bus voltage should be 

regulated within an acceptable range for the maximum 

electrical load considered in this study. As shown in TABLE 

III, for equal load sharing among the sources, the desired 

sharing ratio is defined as n1desired = 1 and n2desired = 1. Moreover, 

the desired bus voltage regulation is around 95% of its nominal 

value (i.e., Vbndesired = 0.9532 = 257.364 V). Using the proposed 

approach, by inputting the above desired performance metrics 

into the trained surrogate model, the surrogate model predicts 

the optimal droop gain settings required to achieve such 

performance objectives, as shown in TABLE III. 

In Case 2, generators 1 and 3 are tasked with sharing an equal 

load (assumed to have the same ratings), which is higher than 

the load assigned to generator 2 (assumed to have 80% of the 

rating of generator 1). To accomplish the desired load sharing 

and bus voltage regulation, the performance metrics presented 

in TABLE III are employed as inputs to the surrogate model of 

the proposed approach. The surrogate model predicts the 

optimal droop gain settings necessary to achieve the desired 

performance objectives, as shown in TABLE III. This 

demonstrates that the same surrogate model can be utilized to 

compute different optimal droop gain settings to accomplish 

various control objectives within the design space, eliminating 

the need for additional simulations. Consequently, our proposed 

approach offers flexibility and time-saving advantages 

compared to other optimization techniques such as PSO and 

GA. Due to limitations in space, the predicted optimal droop 

settings for Cases 1 and 2, as shown in TABLE III, will be 

validated only in the experiment.  

D. Computational burden 

Both approaches share the same computational burden in 
data generation. For the three design variables considered in this 
study (i.e., kd1, kd2 and kd3), it took approximately 35 minutes to 
generate the required data. However, if the number of design 

TABLE IV 

COMPARISON BETWEEN THE CONVENTIONAL DROOP GAIN DESIGN, CONVENTIONAL ANN OPTIMIZATION-BASED DESIGN AND 

PROPOSED DESIGN APPROACH FOR THE DESIGN OF THREE CONTROL VARIABLES, kd1, kd2 AND kd3 

Method Accuracy of 

power sharing 

Complexity of 

implementation  

Code execution time  Potential for online tuning of 

droop gain parameter  

Conventional droop 

gain design 

Low Low - - 

Conventional ANN 

optimization-based 

design [25] 

High High -High 

- Around 0.16 s 

- Increases with an increase in the number of 

design variables and may become 

impractically long. 

Not possible [26]. 

Proposed design 

approach 

High Low -Low 

-Around 0.000135 s  

- Low prediction time irrespective of the 

number of design variables. 

Good [37, 38, 39, 40]. 
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variables is increased to four (e.g., for a system with four PMSG-
AR systems) and each variable has 11 settings to be tested, a 
total of 114 = 14,641 data samples would be needed for training. 
With each simulation taking 6 seconds to run on a standard PC 
with 4-core processors, it would take around 6 hours to generate 
the data. Therefore, the offline computational burden in stage A 
increases exponentially as the number of design variables 
increases. To mitigate this, one option is to increase the sampling 
step. Instead of testing 11 combinations for each design variable, 
a smaller number, such as 10, could be tested. This would reduce 
the total number of data samples generated to 103 = 1000 instead 
of 1331 for a system with three design variables. However, 
increasing the sampling step may impact the learning and 
performance of the neural network model [20]. A better solution 
is to utilize the parallel computing toolbox in MATLAB. This 
toolbox enables efficient utilization of the computer's multicore 
processors. By incorporating a few lines of code, simulations 
that would typically take days to run can be completed in just a 
few hours. Furthermore, by employing a PC with a higher 
number of processors, such as 24-core processors, the data 
generation process can be significantly accelerated. For 
instance, the 1331 data samples used in this study could be 
obtained within approximately 6 minutes on a PC with 24-core 
processors. 

While the NN model itself is computationally lightweight, 
the computational burden in stage C of the conventional ANN 
optimization-based design increases with the number of design 
variables. However, the burden is not as significant as in stage 
A. For example, for the three design variables considered in this 
study, the surrogate model can output one design point in 
approximately 0.252 µs, resulting in the evaluation of all 
636,056 design points taking around 0.16 s. The optimal solution 
is then obtained by simply finding the minimum value of the 
fitness function plot using the min function in MATLAB. 
However, when the number of design variables increases to four, 
and the same sampling step of 0.01 is used, approximately 55 
million fitness functions need to be evaluated using the surrogate 
model. This evaluation process takes around 14 s. As a result, 
the computational burden for fitness function evaluation 
becomes more intensive. Furthermore, evaluating such large 
fitness functions using the min function in MATLAB may 
become impractically long, and MATLAB's maximum array 
size preference could be exceeded due to memory and 
processing limitations. Consequently, the conventional ANN 
optimization-based design may impose restrictions on the 
number of design variables that can be effectively handled. To 
mitigate the computational burden and overcome the limitation 
on the number of design variables, the fitness function can be 
evaluated sequentially, or gradient descent optimization can be 
employed [15]. However, the latter approach may be prone to 
getting trapped in local minima. On the other hand, stage C of 
the proposed approach only requires a single user-defined 
desired design point as input to predict the optimal droop 
coefficients. Thus, it maintains a low computational burden 
regardless of the number of design variables, which is a 
significant advantage. 

TABLE IV provides a summarized comparison between the 
conventional ANN optimization-based design and the proposed 
design approach. The proposed approach offers additional 
advantages, including its potential for real-time tuning of droop 
gain parameters.  

 

Fig. 9 Simulation results for current sharing and bus voltage regulation using 

the proposed design approach for equal power sharing among four generators. 

E. Equal Power Sharing with Four Generators 

To assess the performance of the proposed design approach 

in scenarios involving more than three control variables, a case 

study is conducted with four PMSG-AR systems aiming for 

equal power sharing. In this setup, an additional PMSG-AR 

system is connected in parallel to the system depicted in Fig. 2. 

To establish the connection, an extra DC cable with parasitic 

resistance and inductance values of 20 mΩ and 6.67 µH, 

respectively, is employed. 

To accommodate the additional PMSG-AR system, a new 

dataset is generated for training the surrogate model. This 

process involves generating a total of 14,641 data samples, 

which requires approximately 6 hours to complete. For 

achieving equal power sharing among the generators and 

ensuring good bus voltage regulation, the desired inputs 

provided to the trained surrogate model are specified as n1desired 

= 1, n2desired = 1, n3desired = 1, and Vbndesired = 0.964. Furthermore, 

the desired current sharing ratio between converter 1 and 4 is 

denoted as n3desired. The surrogate model executes the code and 

computes the optimal droop gain settings to achieve the desired 

control performance within a mere 0.000176 seconds. 

The computed optimal droop gain settings for the four 

PMSG-AR systems are determined as kd1
computed = 4.0017, 

kd2
computed = 4.4865, kd3

computed = 4.2035, and kd4
computed = 4.2939. 

These settings are utilized as inputs in the simulation, where 

CPLs of 20 kW, 30 kW, and 40 kW are applied at different time 

intervals. The resulting outcomes are presented in Fig. 9. At t = 

0.5 s, the obtained current sharing and bus voltage regulation 

values are Idc1 = 38.42 A, Idc2 = 38.42 A, Idc3 = 38.42 A, Idc4 = 

38.42 A, and Vbus = 260.30 V. Consequently, the computed 

current sharing ratios between the converters and normalized 

bus voltage regulation are determined as n1 = 1.000, n2 = 1.000, 

n3 = 1.000, and Vbn = 0.964. These results demonstrate the 

capability of our proposed approach to handle complex 

networks and promptly compute the optimal droop gain settings 

immediately after the training process. 



IEEE Transactions on Transportation Electrification 

 

 

12 

 
Fig. 10 C-HIL setup 
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Fig. 11 Block diagram of the proposed control strategy for the PMSG-ARi 

systems in the MEA EPS distribution network 

 

V. EXPERIMENTAL RESULTS 

The proposed ANN-based approach has undergone 

experimental verification using a controller hardware-in-the-

loop (C-HIL) setup, illustrated in Fig. 10, with its 

corresponding parameters listed in Table II. The primary 

objective of the study is to achieve real-time computation of the 

optimal droop gain settings (kd1
opt, kd2

opt, and kd3
opt) for the 

converters to enable the controller to adapt quickly to reference 

changes as shown in Fig. 11. As mentioned earlier, the ANN 

models, trained offline, can be employed either offline or 

implemented in a digital microprocessor for online 

applications. The article presents a comparison of the 

controller's performance using the computed optimal droop 

gain settings obtained from both the proposed design approach 

and the conventional ANN optimization-based design. For this 

comparison, the trained ANN models will be used offline. 

Hence, the experimental validation section is divided into two 

parts: validation of the offline computation of optimal droop 

gain settings using both design approaches and the assessment 

of real-time implementation performance using the proposed 

approach.  
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Fig. 12. Comparative Performance Assessment of Current Sharing and Bus 

Voltage Regulation under Load Changes using Optimal Droop Gain Settings 

from the First Design Example. (a) Results from Conventional ANN 

Optimization-Based Design. (b) Results from Proposed Design Approach. 

A. Experimental validation of the offline computed optimal 

droop gain settings   

In this section, we compare and validate the performance of 

the controller using the offline computed optimal droop gain 

settings obtained through both the conventional ANN 

optimization-based design [25] and the proposed design 

approach. The C-HIL experimental setup involves modeling the 

PMSGs, converters, and transmission line impedances from 

Fig. 2 in real-time and with high fidelity using the typhoon 

(HIL-604) device real-time emulator. Meanwhile, the control 

algorithms are implemented on the TI F28379D DSP control 

card using the Embedded Coder Support Package in MATLAB. 

The developed codes are debugged and transferred to the DSP 

through the Code Composer Studio (CCS) software. The gating 

signal for driving the converter switches is derived from the 

control card, while communication between the control card 

and the typhoon software is established through an interface 

board. Due to the high-fidelity emulation of the power stage by 

the Typhoon HIL-604 device, the real DSP controller can 

effectively control the machines and power converters as it 

would in a physical power stage. This successful integration 

validates our proposed approach from the controller's 

perspective. Results collection during the experiments was 

performed using an oscilloscope. 

I. Load changes  

In this case study, we further validate the optimal droop gain 

settings obtained from the first design example using both the 

conventional ANN optimization-based design and the proposed 

design approach (see Section IV-C) in the Controller Hardware-

in-the-Loop (C-HIL) experiment. Additionally, we assess the 
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current sharing and voltage regulation performance of both 

approaches when the system experiences load changes. The 

experimental results are presented in Fig. 12 (a) and (b) for the 

conventional ANN optimization-based design and the proposed 

design approach, respectively, with CPLs of 20 kW, 30 kW, and 

40 kW applied during the experiment.  

Fig. 12 (a) displays the current sharing and voltage regulation 

results obtained using the optimal droop gain settings from the 

conventional ANN optimization-based design for the 40-kW 

load. In this case, the calculated current sharing ratios and 

normalized bus voltage regulation in steady state are n1 = 

0.9990, n2 = 1.0006, and Vbn = 0.9537, respectively. Similarly, 

Fig. 12 (b) illustrates the current sharing and voltage regulation 

results obtained using the computed optimal droop gain settings 

from the proposed approach for the 40-kW load, resulting in n1 

= 0.9994, n2 = 1.0008, and Vbn = 0.9537 in steady state. These 

results affirm that both design approaches effectively achieve 

the desired user-defined control objectives, minimizing the 

error in current sharing ratios between the generators and 

ensuring good bus voltage regulation. 

Furthermore, it is evident from Fig. 12 (a) and (b) that both 

design approaches maintain equal current sharing and good 

voltage regulation even when the load conditions change. This 

robustness to load changes is a significant advantage of the 

optimal droop gain design compared to other methods (e.g., 

adaptive, and non-linear droop control approaches) that require 

different droop gains for different loading conditions [1, 41]. 

II. Generator disconnection  

In this fault scenario, a constant power load (CPL) of 40 kW 

is applied during the experiment. The optimal droop gain 

settings obtained from the first design example are utilized in 

this scenario (see Section IV-C). Initially, all three PMSG-AR1-

3 systems work in parallel, sharing the load current demand 

equally among themselves and regulating the bus voltage as 

desired (as explained under Scenario I), as shown in Fig. 13 (a) 

and (b). When the second PMSG-AR2 is disconnected (assumed 

to be under fault), converters 1 and 3 take over the responsibility 

of supplying the load power demand, as indicated in Fig. 13 (a) 

and (b). It is observed that there is a drop in the bus voltage for 

both approaches when PMSG-AR2 is disconnected. However, 

despite the drop in the bus voltage under the fault condition, the 

bus voltage regulations remain within the acceptable limits (250 

V < Vbus < 280 V) for the MEA application. Therefore, it can be 

concluded that both design approaches are robust to generator 

disconnection and exhibit good and similar transient 

performance. 
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(b) 

Fig. 13. Comparative Performance Assessment of Current Sharing and Bus 

Voltage Regulation during Generator Disconnection using Optimal Droop Gain 
Settings from the First Design Example. (a) Results from Conventional ANN 

Optimization-Based Design. (b) Results from Proposed Design Approach. 

III. Line resistance variation 

In this experimental study, the robustness of the optimal 

droop gain settings obtained using the conventional ANN 

optimization-based design and the proposed design approach 

from the first design example (see Section IV-C) is assessed 

under the scenario where the line resistance values shown in 

TABLE II are increased by 20%. The experiment is conducted 

with a 40-kW load, and the results are presented in Fig. 14 (a) 

and (b) for the conventional ANN optimization-based design 

and the proposed design approach, respectively. 

In Fig. 14 (a), the output currents and bus voltage regulation 

obtained from the conventional ANN optimization-based 

design are shown. The calculated current sharing ratios between 

the converters are n1 = 0.977 and n2 = 0.991, resulting in an error 

of 2.30% and 0.90% in n1 and n2, respectively. Similarly, in Fig. 

14 (b), the output currents and bus voltage regulation obtained 

from the proposed design approach are shown. The calculated 

current sharing ratios between the converters are n1 = 0.978 and 

n2 = 0.991, resulting in an error of 2.20% and 0.90% in n1 and 

n2, respectively. The experimental results demonstrate that both 

design approaches exhibit a similar and significant reduction in 

the power sharing error while maintaining the bus voltage 

regulation within an acceptable range, even in the presence of 

variation in the line resistance. 
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(b) 

Fig. 14. Comparative Performance Assessment of Current Sharing and Bus 

Voltage Regulation under Line Resistance Variation using Optimal Droop Gain 
Settings from the First Design Example. (a) Results from Conventional ANN 

Optimization-Based Design. (b) Results from Proposed Design Approach. 

Idc1 (20 A/div)

Idc2 (20 A/div)

Idc3 (20 A/div)

Vbus (50 V/div)

CPL = 40 kW

Vbus = 257.10 V

when optimal droop 

gains are applied 

Vbus = 257.42 V

Idc1 = 54.610 A
Idc2 = 49.064 A

Idc3 = 52.004 A

Vbus = 257.10 V

Idc1 = 51.793 A (pink) Idc2 = 51.801 A (green)

Idc3 = 51.806 A (blue)

Vbus = 257.42 V

 

Fig. 15. Comparative Performance Assessment of Current Sharing and Bus 
Voltage using Different Droop Gain Settings (a) Results with Traditional 

Identical Fixed Droop Gain Settings (as shown in TABLE II) (b) Results with 

Optimal Droop Gain Settings for Case 1 from the Other Design Example. 

IV. Comparison with conventional droop gain 

This test is conducted to compare the current sharing and 

voltage regulation performance of the conventional droop gain 

design with the proposed design approach. The parallel-

connected PMSG-ARi system shown in Fig. 2 is controlled 

using two different droop gain settings: traditional identical 

fixed droop gain settings (as shown in TABLE II) and 

computed optimal droop gain settings obtained for case 1 (as 

shown in TABLE III). The experimental results are depicted in 

Fig. 15, where a CPL of 40 kW is applied during the 

experiment. 

In the conventional droop gain design, the droop gains are 

identical and determined based on the power rating of the 

converters (details in Section II). Fig. 15 shows the output 

currents flowing through the three converters and the bus 

voltage regulation for the traditional droop gain setting. The 

calculated current sharing ratios between the converters and 

normalized bus voltage regulation in steady state are n1 = 

0.8984, n2 = 0.9523, and Vbn = 0.9522, respectively. These 

results indicate a 10% error in the current sharing ratio between 

converters 1 and 2, a 4.77% error in the current sharing ratio 

between converters 1 and 3, and a 4.78% deviation of the bus 

voltage from its nominal value. These deviations demonstrate 

that the current sharing using the traditional droop gain settings 

is not as desired, likely due to the impact of unequal cable 

resistance on the conventional droop control method. 

Nevertheless, the bus voltage regulation is within the acceptable 

range for the MEA application. On the other hand, when the 

predicted optimal droop gain settings for case 1 are applied, the 

desired control objectives (as presented in TABLE III) are 

achieved, and the current sharing and bus voltage regulation 

improve significantly, as shown in Fig. 15. The calculated 

current sharing ratio and normalized bus voltage regulation in 

steady state are n1 = 1.0002, n2 = 1.0003, and Vbn = 0.9534, 

respectively. 

These results demonstrate a noteworthy enhancement in the 

current sharing performance of the proposed design approach 

compared to the conventional droop gain design. The optimal 

droop gain settings obtained using the proposed approach 

effectively mitigate the influence of subsystem cable resistance 

on the current sharing performance of the droop control 

method. Moreover, it successfully achieves desired system 

performance without relying on detailed information about the 

system parameters, such as the corresponding subsystem cable 

resistance. This effectiveness of the proposed approach is a key 

motivation of this study, as it enables the quick determination 

of appropriate droop gain settings for desired control objectives 

based on sample data collected from a simulation loop, without 

the need for extensive derivations or detailed information about 

the system. 

V. Unequal power sharing  

In this case study, the optimal droop gain settings for case 2, 

as obtained from the other design examples (see Section IV-C), 

are validated for unequal power sharing. Fig. 16 displays the 

current sharing and bus voltage regulation results for the 40-kW 

load. The computed current sharing ratios and normalized bus 

voltage regulation in steady state are n1 = 0.8058, n2 = 1.0024, 

and Vbn = 0.9592, respectively. These performance metrics 

closely match the desired control performance used as input to 

the surrogate model (as shown in TABLE III). Hence, it is 

confirmed that the proposed design approach can effectively 

share the load current demand and regulate the bus voltage 

based on user-defined design criteria. 

Furthermore, this validation demonstrates that when a 

different design criterion is considered within the considered 

design space, the proposed design approach can directly 

compute the optimal droop gain settings without requiring 

another round of data collection, as might be the case with 

heuristic methods [19]. This highlights the flexibility and 

efficiency of the proposed design approach, enabling quick 
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adaptation to various control objectives without the need for 

additional data gathering or extensive trial-and-error iterations. 
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Fig. 16. Experimental results demonstrating unequal current sharing and bus 

voltage regulation using the optimal droop gain settings from Case 2. 
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Fig. 17. Experimental results for current sharing and bus voltage regulation 
using the optimal droop gain settings from Case 1. Response to 20% reduction 

in Cb (dc-link capacitance).  

VI. Robustness to model parameter variation 

The experiment is conducted to assess the robustness of the 

optimal droop coefficient settings obtained using the proposed 

design approach to variations in the internal model parameters 

of the system. Specifically, the value of the dc-link capacitance, 

as shown in Table II, is reduced by 20%. Additionally, a load 

change from 20.5 kW to 40 kW is applied during the 

experiment. Fig. 17 displays the results using the optimal droop 

coefficient settings from case 1. 

It can be observed that the optimal droop gains remain robust 

to parameter uncertainties, with the reduction in capacitance 

mainly affecting the output DC current of the converters. This 

is evident from the slight oscillations observed in Fig. 17. 

Despite these oscillations, the current sharing and bus voltage 

regulation remain stable and as desired. The experiment 

validates that the proposed design approach can maintain the 

desired control performance even in the presence of parameter 

variations, highlighting its effectiveness and resilience in 

practical applications. 
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Fig. 18. Block diagram of the proposed approach for the real-time tuning of 

the optimal droop gains. 

B. Evaluation of Real-Time Implementation Performance 

I. Digital Implementation 

Prior to assessing the real-time implementation performance, 

this section presents an overview of the digital implementation 

process. Power system designers leverage the capabilities of 

Field Programmable Gate Arrays (FPGAs) and advanced 

Reduced Instruction Set Computing (RISC) machines (such as 

ARM processors) as these technologies enable the 

implementation of machine learning algorithms and real-time 

tuning of control variables (an example is the weighting factor 

for the FCS-MPC) [26], [42], [43]. ARM refers to a family of 

processors known for their power efficiency and widespread 

use in various applications, including mobile devices and 

embedded systems. They are commonly found in control and 

communication systems [44].  

Fig. 18 shows the block diagram of the procedure for the real-

time tuning of the optimal droop gains. As shown in Fig. 18, the 

PMSG-AR systems control algorithm is implemented and runs 

on the DSP F28379D control card, while the ANN model’s 

compiled C code runs on the HIL’s ARM (ARM Cortex A9) 

real-time processor [45]. In the C-HIL configuration, real-time 

tuning of optimal droop gain settings is achieved through the 

ARM-based implementation of the ANN model. The ARM 

processor efficiently runs the ANN algorithm, providing rapid 

and accurate predictions of the optimal droop gain settings. The 

ANN model, trained offline in MATLAB, is compiled into a 

Simulink block, and then converted into a Functional Mock-up 

Unit (FMU) file, including its C source code. This FMU 

contains the ANN model's mathematical representation, 

including weights, biases, and activation functions. The 

inclusion of C source code in the FMU is important for real-

time tuning of optimal droop gain in the Typhoon HIL toolchain 

[46]. Consequently, the ANN model's FMU file is integrated 

into the Typhoon HIL toolchain via a Functional Mock-up 

Interface (FMI), allowing the ARM processor to execute the 

ANN model and making it accessible to the DSP control card 

for real-time communication through the HIL DSP 180 

interface board as shown in Fig. 18. During the C-HIL 

experiment, the control algorithm running on the DSP control 
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card continuously interacts with the ARM processor on the 

Typhoon HIL device to obtain optimized droop gain settings in 

real-time. This ARM-based implementation ensures low 

latency, high-speed execution, enabling adaptive control and 

quick adjustments to the optimal droop gain settings based on 

user-defined references. 

n1* (0.2 /div)

n2* (0.2 /div)

Vbn* (0.2 /div)

n1* = 1.0 (pink) n2* = 1.0 (green)

Vbn* = 0.9532 (blue)

n1* = 1.0 (pink)

n2* = 0.75 (green)

Vbn* = 0.9532 (blue)

n1* = 0.8 (pink)

n2* = 1.0 (green)

Vbn* = 0.9532 (blue)

Reference change 

instant

 
(a) 

Reference change 

instant

1/kd1
opt

 = 4.1508

1/kd2
opt

 = 4.6749

1/kd3
opt

 = 4.3685

1/kd2
opt

 = 3.9278
1/kd3

opt
 = 4.7030

1/kd1
opt

 = 4.4511

1/kd1
opt

 = 4.5339

1/kd2
opt

 = 5.2024

1/kd3
opt

 = 3.5160

1/kd1
opt

 (1.0 /div)

1/kd2
opt

  (1.0 /div)

1/kd3
opt

  (1.0 /div)

 
(b) 

Vbus = 257.40 V

Idc1 = 51.81 A (pink) Idc2 = 51.81 A (green)

Idc3 = 51.81 A (blue) Vbus = 257.40 V

Idc1 = 55.51 A (pink)

Idc2 = 44.41 A (green)

Idc1 (20 A/div)

Idc2 (20 A/div)

Idc3 (20 A/div)

Vbus (50 V/div)

CPL = 40 kW

257.40 V

Reference change 

instant

Idc1 = 56.46 A (pink)
Idc2 = 56.80 A (green)

Idc3 = 42.16 A (blue)
Vbus = 257.40 V

Idc3 = 55.51 A (blue)

257.40 V257.40 V

 
(c) 

Fig. 19 Transient-state experimental results under CPL = 40 kW. (a) ANN 

model references: Vbn
*
 = 0.9532 (constant), with step changes in current sharing 

ratios: n1
* = 1.0, n2

* = 1.0; n1
* = 0.8, n2

* = 1.0 and n1
* = 1.0, n2

* = 0.75. (b) 

Computed optimal droop gain settings by the ANN model (c) Current sharing 
and bus voltage regulation by the controller. 

II. Real-time Assessment Experimental Results 

In this section, we experimentally validate the feasibility and 

effectiveness of our proposed approach for real-time tuning of 

optimal droop gain settings using the C-HIL setup illustrated in 

Fig. 10. Firstly, we investigate the transient state performance 

under varying current sharing ratios while maintaining constant 

voltage regulation references. A CPL of 40 kW was applied 

during the experiment. Fig. 19 (a) displays the user-defined 

references supplied as input to the ANN model. Fig. 19 (b) 

shows the immediate response of the ANN, continuously 

updating the computed optimal droop gain settings following 

each transient. Fig. 19 (c) exhibits the controller's response, 

adeptly adjusting the current sharing and bus voltage regulation 

to achieve the desired system responses. Remarkably, the ANN 

response is nearly instantaneous, presenting a distinctive 

advantage of the proposed approach compared to alternative 

solutions based on heuristic and ANN optimization-based 

design methods. In contrast to those methods, which are 

confined to the offline computation of the optimal droop gain 

settings, our approach empowers real-time adaptation and 

control, enhancing the dynamic performance and 

responsiveness of the system. Hence, it can be confidently 

asserted that the proposed strategy functions effectively during 

transient state operation. In addition, the ANN reliably delivers 

the correct optimal droop gain settings (kdi
opt) for each 

operational point, empowering the controller to achieve the 

desired system response effectively. 
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(c) 

Fig. 20 Transient-state experimental results under CPLs = 40 kW and 20 kW. 

(a) ANN model references: n1
* = 1.0, n2

* = 1.0, Vbn
*
 = 0.9532 with step change 

of n1
* = 0.8, n2

* = 1.0, Vbn
*
 = 0.96. (b) Computed optimal droop gain settings by 

the ANN model (c) Current sharing and bus voltage regulation by the controller. 

Fig. 20 presents the transient experimental results, capturing 

load changes. Specifically, Fig. 20 (a) illustrates the step change 
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in the desired system responses, serving as the input to the ANN 

model. Fig. 20 (b) showcases the corresponding step changes in 

the computed optimal droop gain settings by the ANN model, 

responding to the reference modifications. Additionally, Fig. 20 

(c) displays the outcomes of current sharing and voltage 

regulation before and after the applied step-change transient. As 

depicted in Fig. 20 (c), the controller successfully maintains the 

desired current sharing ratios between the converters even in 

the face of load changes. Moreover, the droop control 

mechanism leads to improved bus voltage regulation as the load 

power demand decreases from 40 kW (assumed maximum 

load) to 20 kW. Nonetheless, for the 40-kW power demand, the 

controller achieves precise bus voltage regulation, following 

the desired reference. Of particular note, the ANN rapidly and 

autonomously adjusts the optimal droop gain settings to match 

the actual operating conditions. Furthermore, through the 

proposed approach, the controller demonstrates quick 

adaptability to reference changes, facilitating efficient and 

accurate control of the system. 

 

VI. CONCLUSION AND FUTURE WORK 

Existing methods for determining optimal droop gain 

settings have relied on heuristic approaches and ANN 

optimization-based design. However, these methods have 

drawbacks: heuristic optimization requires time-consuming 

simulation or experimental results for specific design points, 

while ANN optimization involves processing large datasets to 

find the best droop gain settings. Consequently, these 

approaches are complex and time-consuming, hindering real-

time tuning of the optimal droop gain settings. To overcome 

these challenges, this article introduces a fast and real-time 

method for computing the optimal droop gain settings in the 

droop control of parallel connected converters. The proposed 

approach utilizes reverse data training of an ANN, allowing 

online determination of the optimal droop gain settings based 

on the power sharing ratio and bus voltage regulation 

references. The implementation of the proposed design 

approach on a hardware control platform achieves the desired 

current-sharing ratios between converters and efficiently 

regulates the bus voltage, enhancing the overall control 

performance in real-time. The effectiveness of the proposed 

approach has been experimentally validated using the C-HIL 

experimental approach. A detailed comparison between the 

proposed approach and the conventionally ANN optimization-

based design has been performed, which shows the simplicity, 

flexibility, and low computational burden of the proposed 

design approach. Due to the real-time implementation of the 

ANN on a control hardware platform, one potential avenue for 

future research could involve utilizing the presented approach 

to create a pre-trained ANN-based surrogate model, which can 

then be fine-tuned and adapted using online learning 

techniques. This approach has the potential to accelerate and 

simplify the process of online training, making it more efficient 

and effective.  
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