# Synthesis of Consequent Pole Vernier Permanent Magnet Machine Based on Oscillating Magnetic Potential Difference Model

Li Fang<sup>1</sup>, \*Yuanzhi Zhang<sup>2</sup>, Member, IEEE, Dawei Li<sup>1</sup>, Senior Member, IEEE, Tianjie Zou<sup>3</sup>, Member, IEEE

<sup>1</sup> School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, China

<sup>2</sup> Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan

University, Wuhan 430070, China

<sup>3</sup> Power Electronics, Machines and Control (PEMC) Group, University of Nottingham, NG7 2RD, Nottingham, UK

Email: d202080539@hust.edu.cn; yz\_zhang@whu.edu.cn; daweili@hust.edu.cn; Tianjie.Zou@nottingham.ac.uk

Abstract-In recent years, consequent pole vernier permanent magnet machine (CPVPMM) has been found higher torque capability and less magnet usage compared to the surfacemounted counterpart i.e. SVPMM, thus attracting extensive interests. Meanwhile, the theoretical basis of CPVPMM is not well established because of its unconventional PM arrangement. Due to the simplified dual-salient permeance model widely adopted in CPVPMM, the misinterpretation in time-space distribution of magnetizing magnetomotive force (MMF) and air-gap permeance leads to deviated sizing equations, which hinders the development of CPVPMM. This paper proposes a new analytical model, i.e. the magnetic potential difference between stator core and rotor surface, based on the modified dual-salient permeance and the resultant improved MMF. Via the proposed model, a new analytical derivation featuring precise calculation of air-gap flux density is obtained to clarify the working mechanism of CPVPMM and give helpful design hints to fulfill high torque density. For the first time, it is identified the phenomenon of potential difference oscillation and additional harmonic exist in both CPVPMM and SVPMM. The influence of potential difference oscillation on working flux density is quantitatively analyzed, which reveals the operation principle of CPVPMM, and also unveils the underlying torque improvement mechanism over SVPMM, which gives new insight on enhancing torque of vernier machines. Finally, the analytical and FEA results are validated by experiments.

Index Terms—Consequent pole, vernier PM machine, magnetic potential difference, torque density, simulation and analysis

I. NOMENCLATURE

| $\theta_{s,r}$     | Position angle relative to stator and rotor, respectively                |
|--------------------|--------------------------------------------------------------------------|
| $\Omega$           | Mechanical angular velocity of rotor                                     |
| $P_{r,s}$          | Pole-pair number of rotor and armature winding, respectively             |
| $Z_s$              | Number of stator slots                                                   |
| $	au_{s,r}$        | Pole arc of stator and rotor, respectively                               |
| $B_g$              | Open-circuit air-gap flux density                                        |
| $B_r$              | Amplitude of PM remanence flux density                                   |
| $F_{pm}$           | Magneto-motive force of PM array                                         |
| $F_m$              | Magnetizing magneto-motive force                                         |
| $\Lambda_{s,r}$    | Air-gap permeance of slotted stator and rotor, respectively              |
| $\Lambda_{sr}$     | Dual-salient air-gap permeance                                           |
| $\lambda_{s,r}$    | Relative permeance of slotted stator and rotor, respectively             |
| 1                  | Minimum value of relative air-gap permeance of slotted stator            |
| <b>∧</b> smin,rmin | and rotor, respectively                                                  |
| $\Phi_{ri}$        | Flux through the <i>i</i> <sup>th</sup> ferromagnetic pole               |
| $\Lambda_{ri}$     | Lumped air-gap permeance above <i>i</i> <sup>th</sup> ferromagnetic pole |
| $\varphi_{s,r}$    | Magnetic potential of stator core and rotor core, respectively           |

| 0 | Magnetic potential of magnet surface |
|---|--------------------------------------|
| m | Magnetic potential of magnet surface |

- Magnetic potential difference between stator core and rotor  $\Delta \varphi$ surface
- $l_{s,r}$ Equivalent air-gap length of slotted stator and rotor, separately
- Air-gap radius
- $r_g$ Axial stack length of machine
- lstk  $k_{v}$ Winding factor of v<sup>th</sup> harmonic
- $N_s$ Turn number in series for one phase winding

#### **II. INTRODUCTION**

**V**ERNIER permanent magnet machines (VPMM) have been extensively researched owing to their inherent high torque density, low torque ripple and simple structure [1-4], which cater to the surging need of low-speed, direct-drive applications from various industry sectors[2], [3].

Surface-mounted VPMM (SVPMM) were firstly proposed in [5], which generally have small armature pole pair  $P_s$  and large rotor pole pair  $P_r$ . The working principle of SVPMM i.e. flux modulation theory was proposed in [6] which reveals that by the teeth of open-slot stator, the  $P_s$ -pole-pair flux density is modulated to produce torque. Moreover, the torque produced by the modulated flux density will be amplified by pole ratio (PR) owing to "magnetic gearing effect", while PR is defined as the ratio of  $P_r$  to  $P_s$ . Therefore, the torque density of SVPMM is boosted to nearly twice that of the regular PM machine [7].

Based on the growing consensus of reducing heavy usage of rare-earth PM, consequent-pole (CP) magnet structure has gained increasing attention by replacing nearly half PMs with iron poles. With much reduced PM, considerably lower air-gap flux density, i.e.  $B_{g}$  in regular PM machines inevitably causes weaker torque capability than its surface-mounted counterparts [8]. Interestingly, when CP magnet rotor is applied in VPMM, the torque capability is even improved which is counterintuitive. In literature [9], consequent-pole VPMM (CPVPMM) with PR=11 is found to have higher torque density than SVPMM with even 40% reduced PM consumption. To reveal the torque improvement mechanism of CPVPMM over SVPMM, the accurate analytical investigation is highly required.

Numerous literatures are attributed to exploring the analytical modelling for VPMM. Typical approaches include the equivalent flux circuit method [10], sub-domain field method [11], conformal mapping method [12] and equivalent magnetomotive force (MMF)-permeance model [13].

The first method calculates  $B_g$  by constructing typical lumped parameters along the flux path to reflect the flux distribution in the machine. However, the expression of  $B_g$  is quite complicated, while the result accuracy highly depends on the physical definition of the lumped parameters in the flux circuit. Sub-domain field method transforms the slotted air gap region into several sub-domain plains,  $B_g$  is calculated by solving the Laplace equation in the plain with simple boundary condition. Otherwise, this method cannot be directly applied in the machine with complex air gap structure and boundary conditions such as CPVPMM. Conformal mapping transforms the slotted domain into the slotless domains where  $B_{g}$  at any position can be obtained. However, iteration is required to solve the transformation between two domains for each point in the complete conformal point waveform. Besides, the accuracy of  $B_g$  would deteriorate as the slot opening width increase [14].

As for the equivalent MMF-permeance model, it has been mostly adopted in VPMM owing to its accurate and simple mathematical expression of  $B_g$ . By establishing MMF and permeance models based on the machine physical structure,  $B_g$ and machine sizing equation can be rapidly obtained. Moreover, the characteristics of  $B_g$  harmonics can be intuitively obtained thus revealing the machine working principle as well as the essential relationship between the local geometric parameters and the electromagnetic performance [5]-[12].

Currently,  $B_g$  in CPVPMM is usually calculated based on the equivalent MMF-permeance model as shown in Fig. 1.



Fig. 1 The regular equivalent MMF-permeance model for CPVPMM.

The dual-salient air-gap permeance  $\Lambda_{sr}$  is usually simplified as (1-b) from (1-a) [15] by employing  $\Lambda_s$  and  $\Lambda_r$ , which is the single-salient permeance of slotted stator and rotor, respectively, and has definite harmonic expression [16].

 $\Lambda_{sr}(\theta_s, t) = \mu_0 / (l_s(\theta_s) + l_r(\theta_s, t) - g)$ (1-a)

$$\Lambda_{\rm sr}(\theta_{\rm s},t) = g \Lambda_{\rm r}(\theta_{\rm s},t) \Lambda_{\rm s}(\theta_{\rm s}) / \mu_0 \tag{1-b}$$

, where  $l_{s,r}$  is the equivalent air-gap length of slotted stator and rotor, respectively. *g* is the air-gap length,  $\mu_0$  is the vacuum permeability.  $\Lambda_s$  and  $\Lambda_r$  is expressed as  $\mu_0/l_s$  and  $\mu_0/l_r$ , separately.

The equivalent MMF is the PM magnetizing MMF when stator is unslotted as expressed in (2) [15], where  $F_{pm}$  is the PM-excited MMF [17,18],  $\varphi_r$  is the magnetic potential of rotor core while that of stator core  $\varphi_s$  is assumed as 0.

$$F_m(\theta_s, t) = \varphi_r + F_{nm}(\theta_s, t) \tag{2}$$

It is noted that the conclusion of  $\varphi_s = \varphi_r$  in regular PM machines cannot be applied to machine that adopts CP rotor due to the biased flux excitation of CP magnet, which should be offset by the additional potential difference between the stator and rotor core according to the Gauss Theorem.

In this paper, however, the analysis result of CPVPMM under different PR indicates that this regular modelling approach would cause deviated  $B_g$  and fundamental back EMF  $E_1$ . For one, the simplified  $\Lambda_{sr}$  is invalid in the dual-salient air gap, thus miscalculating the permeance harmonic contents. For another, MMF is different before and after stator is slotted.

What's more, the regular model would cause inaccurate analysis of the contribution to  $E_1$  by individual  $B_g$  harmonic, which is the key to understand the operation essence of CPVPMM. Besides, the MMF-permeance model of SVPMM, which has single-salient air gap structure, is completely different from that of CPVPMM, thus it is difficult to directly compare and judge the factors that cause output torque advantage of CPVPMM over SVPMM.

In this paper, the modified  $\Lambda_{sr}$  and resultant improved MMF are derived by precisely defining two models. Further, a new analytical model  $\Delta \varphi$  which is defined as the magnetic potential difference between the rotor surface and stator core, as shown in Fig. 2, is proposed for the first time. Via the proposed model, the  $E_1$  generation mechanism of CPVPMM is accurately analyzed, while CPVPMM and SVPMM could be analyzed by the same analytical derivation (3) due to the same air-gap structure. Thus, the underlying torque improvement principle of CPVPMM over SVPMM can be quantitatively unveiled.



Fig. 2 Magnetic potential difference  $\Delta \varphi$  model. (a) CPVPMM. (b) SVPMM.

The paper is organized as follows. In part III, the accurate MMF-permeance model for CPVPMM is analyzed. In part IV, the proposed model  $\Delta \varphi$  in CPVPMM is analytically derived and is validated by FEA. The phenomenon of oscillating  $\Delta \varphi$  and additional harmonics of  $Z_s \pm P_r$  pole pairs, i.e.  $\Delta \varphi_{Z_s \pm P_r}$  is identified. In part V, a new analytical derivation of CPVPMM is obtained to analyze the electromagnetic performance. It turns out that  $\Delta \varphi_{Zs \pm Pr}$  influences the amplitude of flux density, and is the key to accurately analyze the  $E_1$  generation in CPVPMM. Then, the influences of structure parameters on  $E_1$  is conducted via the  $\Delta \varphi$  model, which decouples the interactive influence between rotor and stator dimensions unveiling the ideal major machine configurations. Further, the effect of iron saturation is taken into consideration to guide the appropriate design of structure parameters in regard of actual torque output under loaded condition. In part VI, CPVPMM and SVPMM are both analyzed via the oscillating  $\Delta \varphi$  model. It is unveiled that the huge amplitude difference in  $\Delta \varphi_{Zs\pm Pr}$  causes the torque advantage of CPVPMM over SVPMM. This result gives new insight on improving torque output of VPMM. Finally, a 12 slots/20 poles CPVPMM is manufactured based on the analysis result, and was tested to verify the analytical and FEA results.

#### III. ACCURATE MODELLING OF EQUIVALENT MAGNETO-MOTIVE FORCE AND AIR-GAP PERMEANCE IN CPVPMM

Fig.3 presents a typical CPVPMM, based on which the study is conducted. The PM magnetization direction is from the rotor to the stator, and the geometric parameters are given in Table I.

The following analysis is conducted on the assumptions:

1). The permeability of ferrimagnet is assumed to be infinite. 2).  $B_g$ , MMF and  $\Lambda$  only vary in the circumference direction and is uniform in the radial and axial direction.



Fig. 3 CPVPMM model (t=0).(a)Structure. (b)Detailed geometric parameters.

| I ABLE I                             |              |                                  |        |  |  |  |  |
|--------------------------------------|--------------|----------------------------------|--------|--|--|--|--|
| MAJOR STRUCTURE PARAMETERS OF CPVPMM |              |                                  |        |  |  |  |  |
| Parameters                           | value        | Parameters                       | value  |  |  |  |  |
| Stator outer radius, D <sub>so</sub> | 124mm        | Air-gap length, g                | 0.7mm  |  |  |  |  |
| Stator inner radius, D <sub>si</sub> | 74.4mm       | Slot opening ratio, c            | 0.6    |  |  |  |  |
| PM pole arc ratio, $\beta$           | 0.6          | Stack length, L                  | 70mm   |  |  |  |  |
| Magnet thickness, hpm                | 2.5mm        | Rotating speed, $\Omega$         | 300rpm |  |  |  |  |
| Stator slot number, $Z_s$            | 12           | Rotor pole pair, $P_r$           | 11     |  |  |  |  |
| Remanence flux                       | 1 225T(25°C) | Turn number in                   | 400    |  |  |  |  |
| density, $B_r$                       | 1.2551(25 C) | series per phase, N <sub>s</sub> | 400    |  |  |  |  |

## A. Dual-salient Air-Gap Permeance in CPVPMM

 $\Lambda_{sr}$  is originally expressed as (1-a) which can be expressed as:

$$\Lambda_{sr}(\theta_{s},t) = g \Lambda_{r}(\theta_{s},t) \Lambda_{s}(\theta_{s}) k_{\lambda} / \mu_{0},$$
  

$$k_{\lambda} = 1 / (\lambda_{r}(\theta_{s},t) + \lambda_{s}(\theta_{s}) - \lambda_{r}(\theta_{s},t) \lambda_{s}(\theta_{s}))$$
(4)

, where  $\lambda_{s,r}$  is the relative permeance function of slotted stator and rotor, which equals to  $g\Lambda_s/\mu_0$  and  $g\Lambda_r/\mu_0$ , respectively. Besides,  $k_{\lambda}$  is a  $\lambda_r$  and  $\lambda_s$ -related function.

 $k_{\lambda}$  has been widely approximated as 1 [16], thus (4) is usually simplified as (1-b). However, it is proved in this paper that " $k_{\lambda}$ =1" is not valid in the whole dual-salient air gap region, and (1-a) would miscalculate the amplitude of major permeance harmonics, thus leading to the deviated prediction of  $B_g$ .

As shown in Fig.4, when the rotor iron pole is close to the stator tooth,  $\lambda_{s,r}$  is close to 1, thus  $k_{\lambda}$  is nearly 1. However, when the magnet pole is moving towards the stator slot,  $\lambda_{s,r}$  decreases towards 0 and  $k_{\lambda}$  considerably increases. At this time,  $\Lambda_{sr}$  will be much larger than that of (1-a). *This means that*  $B_g$  *above magnet would be largely underrated if adopting simplified*  $\Lambda_{sr}$ .



Fig. 4 Variation of  $k_{\lambda}$  along with different  $\lambda_s$  and  $\lambda_r$ .

The waveforms and harmonic spectra of original  $\Lambda_{sr}$  calculated by (4) and simplified  $\Lambda_{sr}$  calculated by (1-a) are compared to FEA result. As shown in Fig.5, the simplified  $\Lambda_{sr}$  would lead to large error in the amplitude of air-gap permeance harmonics, which in turn produces deviated prediction of  $B_g$  harmonics and their contribution to  $E_1$ . Thus, the original  $\Lambda_{sr}$  instead of simplified  $\Lambda_{sr}$  should be applied in CPVPMM.

It is noted that the FEA-simulated air-gap permeance is conducted on an equivalent electrostatic field-based method [19]. According to flux modulation theory, air-gap permeance  $\Lambda$  could be analytically calculated by (5), which means  $\Lambda$  equals to  $B_g$  if a simulation model is built which has the same air gap structure as the actual one, and a constant magnetic potential difference F=1A is added between the two sides of the air gap, as shown in Fig.6.



Fig. 5 Original  $\Lambda_{sr}$  calculated by (4) and simplified  $\Lambda_{sr}$  calculated by (1-b) and FEA results. (a) Waveforms. (b) Harmonic spectra.



Fig. 6 Simulation model of air gap permeance.

However, the divergence of  $B_g$  is zero, which means the simulation model where  $B_g$  only distributes in the air gap cannot establish. Thus, an equivalent electrostatic field simulation model is adopted, where a constant potential difference of U=1V is excited between both sides of the air gap. According to the definition of electric field strength E, (6) is obtained, where  $l_e(\theta)$  is the equivalent air-gap length at position  $\theta$ .

$$l_{e}(\theta) = U(\theta) / E(\theta) = 1 / E(\theta) \Big|_{U(\theta) = 1V}$$
(6)

Combine (5) and (6),  $\Lambda$  could be calculated as (7) where *E* simulates the distribution path of flux lines. The simulated results via the proposed equivalent model have been validated by the analytical results which confirm its practicability [19].

$$\Lambda(\theta) = \mu_0 E(\theta) \Big|_{U(\theta) = 1\mathrm{V}}$$
<sup>(7)</sup>

# B. Magnetizing Magneto-Motive Force in CPVPMM

As described in (2) in section II,  $F_m(\theta_s, t)$  is decided by  $\varphi_r$  and  $F_{pm}(\theta_s, t)$  which can be expanded as (8) based on the CP rotor.

$$F_{pm}(\theta_s, t) \approx F_{pm0} + \sum_{n=1}^{3} F_{pmn} \sin(nP_r(\theta_s - \Omega t))$$

$$F_{pm0} = \beta B_r h_{pm} / (\mu_r \mu_0), F_{pmn} = 2B_r h_{pm} \sin(n\beta\pi) / (\mu_r \mu_0 n\pi)$$
(8)

, where  $F_{pm0}$  and  $F_{pmn}$  is the constant and  $n^{th}$  harmonic of  $F_{pm}$ , respectively.  $\beta$  is the PM pole arc ratio,  $B_r$  is the remanence flux density of magnet.  $h_{pm}$  is the magnet thickness, and  $\mu_r$  is the

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3301549

relative permeability of magnet. It is noted that both even-order and odd-order MMF harmonic exist because of asymmetric magnetization of CP rotor structure.

Hence, the key of  $F_m(\theta_s, t)$  lies in the accurate derivation of  $\varphi_r$ , which is found different before and after slotted.

Before stator is slotted,  $B_g$  could be calculated by (9), where  $\Lambda_r$  could be analytically expanded as (10).

$$B_{\rho}(\theta_{s},t) = F_{m}(\theta_{s},t)A_{r}(\theta_{s},t)$$
(9)

$$A_r(\theta_s, t) = A_{r0} - A_{r1} \cos(P_r(\theta_s - \Omega t))$$
(10)

, where  $\Lambda_{r0}$  and  $\Lambda_{r1}$  is the constant and fundamental permeance harmonic of slotted rotor, respectively [16].

According to Gauss theorem,  $B_g$  has no constant term and must satisfy (11). Then,  $\varphi_r$  could be derived by putting (8)-(10) into (11), which turns out to be (12).

$$\int_{0}^{2\pi} B_g(\theta_s, t) d\theta_s = 0$$
(11)

$$\varphi_r = \frac{B_r h_{pm}}{\mu_r \mu_0} \left( \frac{\Lambda_{r1} \sin(\beta \pi)}{\pi \Lambda_{r0}} - \beta \right)$$
(12)

Based on (8)-(12), the waveform and harmonic spectra of  $B_g$  are given in Fig.7, where high agreements have been observed, validating the effectiveness of analytical model in (8)-(10).

After stator is slotted,  $B_g$  will be calculated by (13), where  $\Lambda_s$  could be analytically expanded as (14)

$$B_g(\theta_s, t) = F_m(\theta_s, t) g \Lambda_r(\theta_s, t) \Lambda_s(\theta_s) k_{\lambda} / \mu_0$$
(13)

$$\Lambda_{s}(\theta_{s}) = \Lambda_{s0} + \Lambda_{s1} \cos\left(Z_{s}\theta_{s}\right) \tag{14}$$

, where  $\Lambda_{s0}$  and  $\Lambda_{s1}$  is the constant and fundamental permeance harmonic of slotted stator, respectively [16].

It is also noted that  $k_{\lambda}$  has  $\lambda_r$  and  $\lambda_s$  in denominator, which makes it hard to analyze. Herein,  $k_{\lambda}$  is simplified as (15), where  $\lambda_{rmin}$  is the minimum value of  $\lambda_r$ . The detailed derivation procedure of  $k_{\lambda}$  is given in the appendix.

$$k_{\lambda} \approx \left\lfloor \left(1 - \lambda_{r}\right) \lambda_{r\min} \left(k_{1} \lambda_{s}^{2} + k_{2} \lambda_{s} + k_{3}\right) + \left(\lambda_{r} - \lambda_{r\min}\right) \right\rfloor / (1 - \lambda_{r\min}) (15)$$

By putting (8)-(11) and (13)-(15) into (12),  $\varphi_r$  is then obtained as (16), where coefficient  $A_1$ - $A_4$  are given in appendix. It is found that  $\varphi_r$  is related to  $\Lambda_{s0}$  and  $\Lambda_{s1}$ , which indicates that the stator slotting will have effect on  $\varphi_r$  and  $F_m(\theta_s, t)$ .

$$\varphi_r = -\frac{2B_r h_{pm} \sin(\beta \pi)}{\mu_r \mu_0 \pi} \frac{A_1 A_{s0} + A_2 A_{s1}}{A_3 A_{s0} + A_4 A_{s1}/2} - \frac{\beta B_r h_{pm}}{\mu_r \mu_0} \quad (16)$$

Further, the waveforms of equivalent  $F_m(\theta_s, t)$  under both unslotted and slotted stator are plotted in Fig.8. It proves that  $\varphi_r$ and  $F_m(\theta_s, t)$  are different before and after stator is slotted. However, when the simplified  $\Lambda_{sr}$  is adopted in the above analysis, the analytical result of  $\varphi_r$  turns out to be the same as (12) regardless of stator slotting.

This indicates that via the simplified  $\Lambda_{sr}$  model, the inaccurate  $F_m(\theta_s, t)$  would lead to deviated  $B_g$  of CPVPMM. Finally, the accurate expression of  $F_m(\theta_s, t)$  is given in (17), which is actually highly related to the stator slotting effect.

$$F_{m}(\theta_{s},t) = \varphi_{r} + F_{pm}(\theta_{s},t) = F_{0} + \sum_{n=1}^{3} F_{pmn} \sin(nP_{r}(\theta_{s} - \Omega t))$$

$$F_{0} = -\frac{2B_{r}h_{pm}\sin(\beta\pi)}{\mu_{r}\mu_{0}\pi} \frac{A_{1}A_{s0} + A_{2}A_{s1}}{A_{3}A_{s0} + A_{4}A_{s1}/2}$$
(17)



Fig. 7  $B_g$  of unslotted CPVPMM calculated via analytical and FEA method. (a) Waveforms. (b) Harmonic spectra.



Fig. 8 Waveform of  $F_m(\theta_s, t)$  of unslotted CPVPMM and slotted CPVPMM.

#### IV. MAGNETIC POTENTIAL DIFFERENCE BETWEEN STATOR CORE AND ROTOR SURFACE IN CPVPMM

#### A. Magnetic Potential Difference Model

Based on the accurate modelling  $\Lambda_{sr}$  and  $F_m(\theta_s, t)$  as presented in section III,  $B_g$  could be obtained as shown in (18) to facilitate machine analysis and design. However, both  $F_m$  and  $\Lambda_{sr}$  are  $\Lambda_r$ and  $\Lambda_s$ -related fractions, which not only makes it impossible to establish the concise analytical expression of working flux density, but also tangles the influence of stator and rotor structural parameters on machine performance.  $B_r(\theta, t) = F_r(\theta, t) \Lambda_r(\theta, t)$ 

$$B_g(\theta_s,t) = F_m(\theta_s,t)A_{sr}(\theta_s,t)$$

$$= \left[ F_0 + \sum_{n=1}^{3} F_{pmn} \sin(nP_r(\theta_s - \Omega t)) \right] \times \begin{cases} \frac{gk_\lambda}{\mu_0} \left[ \Lambda_{s0} + \Lambda_{s1} \cos(Z_s \theta_s) \right] \\ \times \left[ \Lambda_{r0} - \Lambda_{r1} \cos(P_r(\theta_s - \Omega t)) \right] \end{cases}$$
(18)

To solve this issue, a new analytical model, the magnetic potential difference between stator core and rotor surface i.e.  $\Delta \varphi$ , is proposed as illustrated in Fig.2. Accordingly, a new analytical approach i.e.  $\Delta \varphi - A_s$  model is derived to analyze  $B_g$ , where  $\Delta \varphi$  takes the rotor salience into account thus decoupling the electromagnetic influence between stator and rotor.

Because  $B_g$  could be expressed by both (3) and (13),  $\Delta \varphi$  of CPVPMM could be obtained by simultaneous equation (19).

$$F_{m}(\theta_{s},t) g A_{r}(\theta_{s},t) A_{s}(\theta_{s}) k_{\lambda} / \mu_{0} = \Delta \varphi(\theta_{s},t) A_{s}(\theta_{s})$$

$$\Delta \varphi(\theta_{s},t) = F_{m}(\theta_{s},t) \lambda_{r}(\theta_{s},t) k_{\lambda}$$
(19)

Then,  $\Delta \varphi$  can be calculated as (20).

$$\Delta \varphi(\theta_s, t) = \Delta \varphi_0 + \Delta \varphi_{Z_s} \sin(Z_s \theta_s) + \Delta \varphi_{P_r} \sin(P_r \theta_s - P_r \Omega t)$$

$$+ \Delta \varphi_{Z_{s} \pm P_{r}} \sin((Z_{s} \pm P_{r})\theta_{s} \mp P_{r}\Omega t) \\ \begin{cases} \Delta \varphi_{0} = (2F_{0}A_{3} + A_{1}F_{pm1})/2 \\ \Delta \varphi_{P_{r}} = (2F_{0}A_{1} + (A_{3} - A_{5})F_{pm1} + A_{5}F_{pm3})/2 \\ \Delta \varphi_{Z_{s}} = F_{0}A_{4} + A_{2}F_{pm1} \\ \Delta \varphi_{Z_{s} \pm P_{r}} = (2F_{0}A_{2} + (A_{4} - A_{6})F_{pm1} + A_{6}F_{pm3})/2 \end{cases}$$
(20)

, where  $\Delta \varphi_0$  and  $\Delta \varphi_n$  is the constant and  $n^{th}$  harmonic of  $\Delta \varphi$ , respectively, while other harmonics are not expounded herein. Coefficient  $A_5$ ,  $A_6$  are also presented in the appendix.

From (20), it is revealed that  $\Delta \varphi$  oscillates when rotor rotates, thus additional harmonic  $\Delta \varphi_{Zs-Pr}$  and  $\Delta \varphi_{Zs+Pr}$  exist apart from the fundamental harmonic  $\Delta \varphi_{Pr}$ . Besides,  $\Delta \varphi_{Zs-Pr}$  and  $\Delta \varphi_{Zs+Pr}$  rotates at fundamental electrical angular speed in the anticlockwise direction and clockwise direction, respectively.

#### B. The Phenomenon of Oscillating Magnetic Potential Difference

The waveforms of  $\Delta \varphi(\theta_s, t)$  at t=0 and  $t_1$ , e.g.  $t_1=2\pi/(5P_r\Omega)$ , calculated by (21) are then compared to the result which is calculated by  $B_g(\theta_s, t)/\Lambda_s(\theta_s)$ ,  $B_g$  and  $\Lambda_s$  are both FEA-predicted.

As shown in Fig.9 (a), high agreement between two methods proves the accuracy of the proposed analytical approach. It is proved that the amplitude of  $\Delta \varphi$  oscillates as rotor rotates, i.e. the valley of waveform moves anticlockwise by  $2\pi/5$ .

It implies that additional time-space  $\Delta \varphi$  harmonics exist, and one of them is rotating anticlockwise at speed of  $P_r\Omega$ , which accords with  $\Delta \varphi_{Zs-Pr}$  in (20). Further, the harmonic spectra of oscillating  $\Delta \varphi$  is presented in Fig.9(b),  $\Delta \varphi_{Zs\pm Pr}$  is negative which means it has the opposite initial phase to that of  $\Delta \varphi_{Pr}$ .



Fig. 9  $\Delta \varphi$  in CPVPMM calculated by the proposed analytical method and FEA. (a) Waveforms at t=0 and  $t_1$ . (b) Harmonic spectra.



Fig. 10  $\Delta \varphi$  in CPVPMM at t=0 and  $t=t_1$  calculated by the regular analytical method. (a) Waveforms at t=0 and  $t_1$ . (b) Harmonic spectra.

However, when the regular analytical model with simplified  $\Lambda_{sr}$  and  $F_m(\theta_{s,t})$  is adopted in analyzing  $\Delta \varphi$ ,  $\Delta \varphi$  will be calculated as (21), where  $\Delta \varphi$  is merely decided by  $F_m(\theta_{s,t})$  and  $\lambda_r(\theta_{s,t})$ . In this situation, the waveforms and harmonic spectra of  $\Delta \varphi$  at t=0 and  $t_1$  are plotted in Fig.10. It shows that the amplitude of  $\Delta \varphi_{Pr}$  is 28% smaller than FEA result. Moreover,

the amplitude of  $\Delta \varphi$  remains constant as rotor rotates thus only  $\Delta \varphi_{nPr}$  (*n* is integer) exist, the additional harmonics  $\Delta \varphi_{Zs\pm Pr}$  will not exist, which opposes to the FEA result in Fig. 9.

$$\begin{aligned} \Delta\varphi(\theta_r) &= F_m(\theta_s, t)\lambda_r(\theta_s, t) = \sum_{n=0,1,2,3} \Delta'\varphi_{nP_r} \cos(nP_r(\theta_s - \Omega t)) \\ \Delta'\varphi_0 &= (2F_0\lambda_{r0} - F_{pm1}\lambda_{r1})/2, \quad \Delta'\varphi_{P_r} = F_{pm1}\lambda_{r0} - F_0\lambda_{r1} \\ \Delta'\varphi_{2P_r} &= (F_{pm1}\lambda_{r1})/2, \quad \Delta'\varphi_{3P_r} = (2F_{pm3}\lambda_{r0} - F_{pm2}\lambda_{r1})/2 \end{aligned}$$
(21)

Hence, the simplified  $\Lambda_{sr}$  not only causes the smaller  $\Delta \varphi_{Pr}$ , but also omits the crucial phenomenon of oscillating  $\Delta \varphi$  and additional harmonics  $\Delta \varphi_{Zs\pm Pr}$ , which is the key to understand the working mechanism of CPVPMM as will analyzed after.

#### V. STUDY OF CPVPMM BASED ON MAGNETIC POTENTIAL DIFFERENCE MODEL

#### A. Analytical Sizing Equation of CPVPMM

 $B_g$  calculated via the oscillating  $\Delta \varphi$  model can be expressed as (22-a), while  $B_g$  calculated via the non-oscillating  $\Delta \varphi$  model is expressed as (22-b). The waveforms and harmonic spectra of  $B_g$  acquired by (22) are compared to the FEA result. As shown in Fig.11,  $B_g$  calculated by the oscillating  $\Delta \varphi$  model agrees well with FEA result. However, via the non-oscillating  $\Delta \varphi$  model,  $B_{Zs\pm Pr}$  is 12% larger and  $B_{Pr}$  is 23% smaller than the FEA result. *Especially,*  $B_g$  *above magnet is considerably underrated when adopting simplified*  $\Lambda_{sr}$ , *which validates the above analysis.* 

$$B_{g} = (\Delta \varphi_{0} \Lambda_{s0} + 0.5 \Delta \varphi_{Z_{s}} \Lambda_{s1}) + \Delta \varphi_{Z_{s}} \Lambda_{s0} \sin(Z_{s} \theta_{s})$$
  
+ 
$$\left[ \Delta \varphi_{P_{r}} \Lambda_{s0} + \frac{\Delta \varphi_{Z_{s}-P_{r}} + \Delta \varphi_{Z_{s}+P_{r}}}{2} \Lambda_{s1} \right] \sin \left( P_{r} \theta_{s} - P_{r} \Omega t \right)$$
(22-a)  
+ 
$$\left( 0.5 \Delta \varphi_{P_{r}} \Lambda_{s1} + \Delta \varphi_{Z_{s}\pm P_{r}} \Lambda_{s0} \right) \sin \left( (Z_{s} \pm P_{r}) \theta_{s} \mp P_{r} \Omega t \right)$$

$$B_{g} = 0.5 \Delta \varphi_{0} \Lambda_{s0} + \Delta \varphi_{P_{r}} \Lambda_{s0} \sin \left( P_{r} (\theta_{s} - \Omega t) \right) + 0.5 \Delta \varphi_{P_{r}} \Lambda_{s1} \sin \left( (Z_{s} \pm P_{r}) \theta_{s} \mp P_{r} \Omega t \right)$$
(22-b)

To figure out, the generation of  $B_{Pr}$  and  $B_{Zs\pm Pr}$  by  $\Delta \varphi$  harmonic from two  $\Delta \varphi$  models are given in Fig.12. Via the oscillating  $\Delta \varphi$  model, it turns out that  $\Delta \varphi_{Zs\pm Pr}$  undermines both  $B_{Pr}$  and  $B_{Zs\pm Pr}$ . However, via the non-oscillating  $\Delta \varphi$  model,  $B_{Pr}$  and  $B_{Zs\pm Pr}$  are only created by  $\Delta \varphi_{Pr}$  which is underestimated. As a result, the inaccurate  $\Delta \varphi_{Pr}$  and absence of  $\Delta \varphi_{Zs\pm Pr}$  in the regular analytical method underestimate  $B_{Pr}$  while overestimate  $B_{Zs\pm Pr}$ .







Fig. 12 Waveform of  $F_e(\theta_s, t)$  of unslotted CPVPMM and slotted CPVPMM.

Further, the phase back EMF  $E_n$ , and the amplitude of fundamental back EMF  $E_1$  can be calculated by (23).

$$E_{n}(t) = -\frac{d}{dt} r_{g} l_{sik} \int_{0}^{2\pi} B_{g}(\theta_{s}, t) N_{wn}(\theta_{s}) d\theta_{s}$$

$$E_{1} = 2r_{g} l_{sik} N_{s} P_{r} \Omega \Big[ B_{P_{r}} k_{wP_{r}} / P_{r} + B_{Z_{s} \pm P_{r}} k_{wZ_{s} \pm P_{r}} / (Z_{s} \pm P_{r}) \Big]$$
(23)

, where  $r_g$  is the air-gap radius,  $l_{stk}$  is the stack length,  $N_{wn}$  is the phase *n* winding function,  $k_{wv}$  is the winding factor of  $v^{th}$  armature harmonic,  $N_s$  is the serial turn number per phase.  $B_v$  is the amplitude of  $v^{th}$  flux density.

According to the electromechanical conversion principle, the average torque T of CPVPMM could be generated as (24).

$$T = (E_a i_a + E_b i_b + E_c i_c) / \Omega = 3E_1 I_m / 2$$
(24)

, where  $I_m$  is the amplitude of phase current. It is noted that  $i_d=0$  control is usually adopted because  $L_q/L_d$  nearly equals to 1, which is caused by the rotor anisotropic feature in VPMM [20].

It is found that T can be reflected by  $E_1$  when saturation in iron core is ignored. In this means,  $E_1$  and the  $E_1$  contribution by individual flux density harmonic is of vital importance.

In Fig.13, the  $E_a$  waveforms and harmonic spectra calculated by the oscillating  $\Delta \varphi$  model and non-oscillating  $\Delta \varphi$  model are compared to FEA result. The result calculated by the oscillating  $\Delta \varphi$  model agrees well with that of FEA, while  $E_1$  calculated by the non-oscillating  $\Delta \varphi$  model deviates from FEA result by 6.5%.

The deviation seems smaller than that of flux density in Fig.11. It can be explained via the contribution to  $E_1$  by  $B_{Pr}$  and  $B_{Zs\pm Pr}$  based on (23), as plotted in Fig.14 (a). It shows that  $B_{Zs\pm Pr}$  is the major contributor owing to amplifying effect of PR, especially when PR is high. Thus, the large discrepancy in  $B_{Pr}$  slightly reduces  $E_1$  and can be made up by that induced by  $B_{Zs\pm Pr}$ , which makes the deviation in total  $E_1$  not quite large.



Fig. 13 Back EMF of CPVPMM by FEA and two  $\Delta \varphi$  models. (a) Waveforms.



Fig. 14 Contribution to  $E_1$  by  $B_{Pr}$  and  $B_{Zs\pm Pr}$ . (a) Results via two  $\Delta \varphi$  models. (b) $B_{Pr}$  and  $B_{Zs\pm Pr}$  are decomposed into components created by  $\Delta \varphi$  harmonics.

Further,  $B_{Pr}$  and  $B_{Zs\pm Pr}$  are decomposed into the component created by  $\Delta \varphi$  harmonic as shown in Fig.14(b). Via the oscillating  $\Delta \varphi$  model,  $E_1$  induced by the individual flux density has two components, the positive part derives from  $\Delta \varphi_{Pr}$  while negative part derives from  $\Delta \varphi_{Zs\pm Pr}$ . As for  $E_1$  induced by  $B_{Zs\pm Pr}$ , the negative part offsets 42% of the positive one. However, via the non-oscillating  $\Delta \varphi$  model,  $E_1$  induced by  $B_{Pr}$  and  $B_{Zs\pm Pr}$  has only one component. In the next part, CPVPMM with different PR will be analyzed to illustrate the important effect of oscillating  $\Delta \varphi$  on the specific  $E_1$  contribution of  $B_{Pr}$  and  $B_{Zs\pm Pr}$ , as well as the accurate prediction of  $E_1$  in the whole range of PR.

#### B. Generation of back EMF in CPVPMM of Different PR

Five CPVPMM with different PR in Fig.15 are studied, of which the major structural parameters are presented in Table. II. Five machines have the same size, the same magnet thickness and pole arc, and the same stator slot opening ratio, except for the number of rotor pole pairs. PR of five machines is 5/7, 7/5, 2, 5 and 11 while the corresponding slot/pole combination is 12/10, 12/14, 12/16, 12/20 and 12/22, respectively.

Then, the  $E_1$  of five machines calculated by the oscillating  $\Delta \varphi$  model, non-oscillating  $\Delta \varphi$  model and FEA are compared in Fig.16. It shows that the difference between  $E_1$  calculated via the oscillating  $\Delta \varphi$  model and FEA in five models are all smaller than 2%. However, the error between  $E_1$  calculated via the non-oscillating  $\Delta \varphi$  model and FEA results increases as PR grows, the error is -16% when PR is 5/7, and gradually increases to almost 0 when PR is 5, then it reaches 6% when PR is 11.

This means in CPVPMM of certain PR,  $E_1$  predicted via the non-oscillating  $\Delta \varphi$  model might be close to the FEA result. However, the apparent error exists in the whole PR range due to the wrong prediction of  $B_{Pr}$  and  $B_{Zs\pm Pr}$  thus leading to the misinterpreted  $E_1$  composition.



| Parameters                 | Machine | Machine | Machine    | Machine | Machine |
|----------------------------|---------|---------|------------|---------|---------|
|                            | I       | II      | III        | IV      | V       |
| Stator slot number         |         |         | 12         |         |         |
| Rotor pole pairs           | 5       | 7       | 8          | 10      | 11      |
| Coil pitch                 | 1       | 1       | 1          | 3       | 6       |
| Winding factor             | 0.97    | 0.97    | 0.87       | 1       | 1       |
| Stator outer diameter      |         |         | 124mm      |         |         |
| Stator inner diameter      |         |         | 74.4mm     |         |         |
| Stack length               |         |         | 70mm       |         |         |
| Air-gap length             |         |         | 0.7mm      |         |         |
| Stator slot open ratio     |         |         | 0.6        |         |         |
| Magnet thickness           |         |         | 2.5mm      |         |         |
| PM Pole arc ratio          |         |         | 0.6        |         |         |
| Magnet trademark           |         |         | N38UH      |         |         |
| Silicon steel<br>trademark |         | :       | 35TW250    |         |         |
| Remanence flux<br>density  |         | 1.      | 235T(20°C) |         |         |



Fig. 16  $E_1$  calculated via the oscillating  $\Delta \varphi$  model and non-oscillating  $\Delta \varphi$  model and FEA.



Fig. 17  $E_1$  generated by  $B_{Pr}$  and  $B_{Zs\pm Pr}$  via FEA and two  $\Delta \varphi$  models. (a)  $E_1$  contributed by  $B_{Zs\pm Pr}$ . (b)  $E_1$  contributed by  $B_{Pr}$ 

The generation of  $E_1$  by  $B_{Pr}$  and  $B_{Zs\pm Pr}$  calculated via two  $\Delta \varphi$  models are also compared to the FEA results in Fig.17. It shows that the discrepancy between  $E_1$  created by  $B_{Zs\pm Pr}$  and FEA result is surging as PR increases because  $B_{Zs\pm Pr}$  is overrated by the non-oscillating  $\Delta \varphi$  model. Meanwhile, the error between the  $E_1$  generated by  $B_{Pr}$  and the FEA result is about -20% due to the underrated  $B_{Pr}$ . However, the error between the results from oscillating  $\Delta \varphi$  model and FEA is smaller than 5%.

# Hence, with the assistance of the oscillating $\Delta \varphi$ model, the $E_1$ generation of CPVPMM can be accurately interpreted.

#### C. Design Principle

Based on the proposed oscillating  $\Delta \varphi$  model, the dual-salient air gap in CPVPMM is converted into single-salient, i.e. statorslotted air gap. Hence, the flux density is calculated by the according  $\Delta \varphi - \Lambda_s$  model, where  $\Delta \varphi$  is only decided by the rotor structure, while  $\Lambda_s$  derives from the stator structure. In this means, the interaction between  $F_m$  and  $\Lambda_{sr}$  is decoupled by putting the effect of  $\Lambda_r$  into  $\Delta \varphi$ , then the influences of rotor/stator structure parameters could be separately studied.

In this part, the effects of magnet pole arc ratio  $\beta$ , magnet thickness  $h_{pm}$ , and stator slot open ratio c, are studied in regard of  $B_{Pr}$  and  $B_{Zs\pm Pr}$ . Moreover, the effect of saturation in rotor iron pole on the machine performance is also analyzed, which helps to design the optimal structure parameters so as to satisfy the output torque. The findings in this study will provide useful hints when designing high-torque density CPVPMM. Take 12slots/22poles CPVPMM in Table I to illustrate.

#### 1) Effect of Rotor Structure

The variation of  $\Delta \varphi_{Pr}$  and  $\Delta \varphi_{Zs\pm Pr}$  along with a series of  $h_{pm}$ under different  $\beta$  is plotted and shown in Fig.18. It shows that as  $h_m$  increases, both  $\Delta \varphi_{Pr}$  and  $\Delta \varphi_{Zs\pm Pr}$  increase. Moreover,  $\Delta \varphi_{Pr}$ has much wider varying range than  $\Delta \varphi_{Zs\pm Pr}$  in the overall  $h_{pm}$ range. Further, the variation of  $\Delta \varphi_{Pr}$  and  $\Delta \varphi_{Zs\pm Pr}$  along with a series of  $\beta$  under different  $h_{pm}$  is studied and presented in Fig.19.

It shows that as  $\beta$  increases,  $\Delta \varphi_{Zs\pm Pr}$  increases to the maximum where  $\beta$  is around 0.6 and then decreases. However,  $\Delta \varphi_{Pr}$  under different  $h_{pm}$  shows different trend, i.e. when  $h_{pm}$  is below 3.5mm, it has similar trend as  $\Delta \varphi_{Zs\pm Pr}$ ; when  $h_{pm}$  is larger than 3.5mm,  $\Delta \varphi_{Pr}$  is gradually increasing as  $h_{pm}$  increases. This

phenomenon indicates that as  $h_{pm}$  increases, the impact of negative  $\Delta \varphi_{Zs\pm Pr}$  could be better restrained by the positive  $\Delta \varphi_{Pr}$  so that working flux density would have larger amplitude.

It is indicated that the optimal  $\beta$  in CPVPMM is around 0.6. Moreover, thick magnet is suitable for CPVPMM. This is an important conclusion because thick magnet cannot be adopted in SVPMM due to reduced flux modulation effect [3].



Fig. 19 Influence of magnet pole arc ratio on  $\Delta \varphi$  harmonics. (a)  $\Delta \varphi_{Pr}$  (b)  $\Delta \varphi_{Zs\pm Pr}$ .

#### 2) Effect of Stator Structure

Via the oscillating  $\Delta \varphi$  model, it is known that the stator slot open ratio *c* would impact  $\Lambda_{sr}$  which in return influences  $\Delta \varphi$ . Thus, the influence of *c* on  $\Delta \varphi$  should be studied at first. When  $\beta$  is designed as 0.6 and  $h_{pm}$  is 2.5mm, the variation of  $\Delta \varphi_{Pr}$  and  $\Delta \varphi_{Zs\pm Pr}$  along with a series of *c* is studied and presented in Fig.20 (a). It is revealed that  $\Delta \varphi_{Pr}$  keeps increasing when *c* increases while  $\Delta \varphi_{Zs\pm Pr}$  climbs to the maximum at *c*=0.7 and begins to fall. Besides, the influence of *c* on  $\Lambda_{s0}$  and  $\Lambda_{s1}$  is also studied and presented in Fig. 20 (b). It shows that  $\Lambda_{s0}$  keeps decreasing as *c* increases which is opposed to that of  $\Delta \varphi_{Pr}$ , but  $\Lambda_{s1}$  exhibits the similar trend as that of  $\Delta \varphi_{Zs\pm Pr}$ , that is  $\Lambda_{s1}$  first increasing to the top at *c*=0.6 before starting to decrease.



Fig. 20 Influence of stator slot open ratio *c*. (a) Amplitude of  $\Delta \varphi$  harmonics. (b) Amplitude of  $\Lambda_s$  harmonics. (c) Amplitude of  $E_1$ .

According to (27), the effect of c on  $E_1$  can be reflected by combining the effect of c on  $\Delta \varphi$  and  $\Lambda_s$ , as shown in Fig. 20(c). It shows that  $E_1$  has the similar trend as that of  $\Lambda_{s1}$ :  $E_1$  increases to the maximum when c equals to 0.6 before decreasing. It is analyzed that the strengthening effect of  $\Delta \varphi_{Pr}$  is neutralized by the mitigating effect of  $\Lambda_{s0}$ , while the amplitude variation of  $\Delta \varphi_{Z_{s\pm Pr}}$  is quite limited. *Hence, the influence of c on E*<sub>1</sub> *is basically decided by*  $\Lambda_{s1}$ *, and the optimal c is around 0.6.* 

#### 3) Effect of Saturation in Rotor Iron Pole

Similar to the regular MMF-permeance model, the proposed  $\Delta \varphi$  model is carried out based on the assumption of ignoring iron core saturation. In this sector, the effect of core saturation on the accuracy of the proposed analytical model as well as the actual torque output will be studied with the assistance of FEA.

The flux density contours of CPVPMM model under different electric loading *A* are plotted in Fig. 21, where the major saturation actually happens in the rotor iron pole and gets severer as *A* increases due to stronger armature reaction [18].

Then, the effect of different iron pole saturation on air gap flux density established by PM is studied by frozen permeability (FP) method [21], as shown in Fig. 22. It shows that the amplitude of working harmonics slightly decreases as saturation gets severer, while the phase angle of  $B_{Pr}$  merely changes. However, the phase of  $B_{Zs-Pr}$  varies as A increases because  $\Lambda_r$  is altered by iron pole saturation, indicating the amplitude and phase of  $E_1$  both change as A increases.

To clarify, the contribution of  $E_1$  by  $B_{Pr}$  and  $B_{Zs \cdot Pr}$  and total  $E_1$  VI. under different A are calculated and presented in Table III VI. which has been validated by FEA (FP).



Fig. 22  $B_g(t=0s)$  established by magnet under different electric loading *A*. (a) Waveforms. (b) Harmonic spectra.

 TABLE III

 BACK EMF  $E_1$  CONTRIBUTION BY  $B_{7x,P_R}$  AND  $B_{P_R}$  UNDER DIFFERENT A

| $D_{TOTAL D} = D_{TOTAL D} = $ |             |          |             |          |             |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------------|----------|-------------|----------|--|
| E contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A=0 A/cm    |          | A=100 A/cm  |          | A=150 A/cm  |          |  |
| $E_1$ contribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $B_{Zs-Pr}$ | $B_{Pr}$ | $B_{Zs-Pr}$ | $B_{Pr}$ | $B_{Zs-Pr}$ | $B_{Pr}$ |  |
| Amplitude(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 165         | 19       | 161         | 18.7     | 158         | 18.5     |  |
| Phase(elec. deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108.5       | 106.2    | 100.5       | 104.4    | 95.4        | 103.6    |  |
| Total $E_1$ 184 $\angle 108^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 179.6.   | ∠101°       | 1762     | ∠96°        |          |  |

# It is found that the amplitude of total $E_1$ decreases by 4%, while the phase angle deviates by 11%, *indicating that the phase current angle should be adjusted according to actual* $E_1$ angle instead of open-circuit one so as to output larger average torque.

Further, the characteristics of actual torque along with magnet pole arc ratio  $\beta$  are studied by FEA and compared to analytical results, as presented in Fig. 23. It is shown the torque variations from two methods have the similar characteristic that is the maximum torque is obtained when  $\beta$  is about 0.6, which also accords with the analytical result in *1*).

Hence, the rotor iron pole saturation does not affect the flux density composition and  $E_1$  generation despite reducing amplitude. Therefore, the proposed analytical method is always feasible for the analysis and design of CPVPMM.



Fig. 23 Average torque variation with magnet pole arc under different A.

## COMPARISON STUDY OF CPVPMM AND SVPMM BASED ON OSCILLATING POTENTIAL DIFFERENCE MODEL

Due to the facts that air gap length and permeance components in CPVPMM and SVPMM are different, the MMF-permeance models of two machines are completely different which makes it tricky to figure out the reasons that cause the torque advantage of CPVPMM over SVPMM.

Owing to the proposed  $\Delta \varphi$  model, the air-gap structure of CPVPMM transforms into the same stator-slotted one as that of SVPMM, which unifies the length of air gap while the comparison between CPVPMM and SVPMM only lies in  $\Delta \varphi$ .

In the following analysis, SVPMM that has the same major sizes in Table. I except that  $\beta$ =0.5 is taken for example.

## A. Open-Circuit Back EMF

To begin with,  $\Delta \varphi$  of SVPMM is obtained when the equivalent air-gap length g' is taken into by MMF so that airgap permeance in SVPMM is also decided by the physical airgap length g.  $\Delta \varphi$  of SVPMM is then calculated by (25) and Fourier expressed as (26), where  $\Delta \varphi_{Zs \pm Pr}$  exist implying that  $\Delta \varphi$ of SVPMM also oscillates.

$$\Delta \varphi(\theta_s, t) = F_e A_s' / A_s \tag{25}$$

, where  $\Lambda'_s$  is the stator-slotted permeance function when the equivalent air-gap length g' is  $g+h_{pm}/\mu_r$ .

The waveforms of  $\Delta \varphi$  (*t*=0s) are obtained by (26) and compared to FEA result. As shown in Fig. 24, high agreement is observed which validates (26). Then, the harmonic spectra of  $\Delta \varphi$  in CPVPMM and SVPMM are compared in Fig. 25, where  $\Delta \varphi_{Zs\pm Pr}$  in SVPMM is negative, so it also reduces working flux density. *Moreover*,  $\Delta \varphi_{Zs\pm Pr}$  in SVPMM triples that of *CPVPMM*, while  $\Delta \varphi_{Pr}$  only enhances by 51%. Then, the influence of different  $\Delta \varphi_{Zs\pm Pr}$  and  $\Delta \varphi_{Pr}$  content between CPVPMM and SVPMM is analyzed in regard of electromagnetic performance.

$$\begin{split} \Delta\varphi(\theta_{s},t) &= \sum_{n=1,3,5} \Delta\varphi_{nP_{r}} \sin\left[nP_{r}(\theta_{s}-\Omega t)\right] \\ &+ \Delta\varphi_{Z_{s}\pm P_{r}} \sin\left[(Z_{s}\pm P_{r})\theta_{s}\mp P_{r}\Omega t\right] \\ \Delta\varphi_{nP_{r}} &= \begin{bmatrix} \frac{1-c}{1+h_{pm}/(g\mu_{r})} + \\ \frac{\Lambda_{s\min}^{'}/\Lambda_{s\min}-1/\left[1+h_{pm}/(g\mu_{r})\right]}{(2-c)\left(\pi/Z_{s}\right)^{2}/2} \end{bmatrix} \frac{4F_{m}\sin(n\beta\pi)}{n\pi} \\ \Delta\varphi_{Z_{s}\pm P_{r}} &= \begin{cases} \frac{\sin(\pi(1-c))}{1+h_{pm}/(g\mu_{r})} + \frac{\Lambda_{s\min}^{'}\sin(\pi c)(c-1)}{\Lambda_{s\min}c} \\ -\frac{\sin(\pi c)(c-1)}{c+ch_{pm}/(g\mu_{r})} + \frac{\cos(\pi c)-1}{\pi c} \end{cases} \end{cases} \frac{4F_{m}\sin(\beta\pi)}{\pi^{2}} \end{split}$$

$$(26)$$



Fig. 27 Flux density harmonics of CPVPMM and SVPMM. (a) Harmonic spectra. (b) Generation of  $B_{Pr}$  and  $B_{Zs\pm Pr}$  by  $\Delta \varphi$  harmonics.

Owing to the  $\Delta \varphi - A_s$  analytical model, SVPMM has the same  $B_g$  expression as (22-a). Combine (22-a) and (26), the waveform of  $B_g$  in SVPMM is presented in Fig. 26 and agrees well with FEA result. Further, the harmonic spectra of  $B_g$  in SVPMM and CPVPMM is compared in Fig. 27(a),  $B_{Zs\pm Pr}$  in CPVPMM is 30% larger than SVPMM, while  $B_{Pr}$  is only 18.5% smaller.

The difference could be explained by decomposing  $B_{Pr}$  and  $B_{Zs\pm Pr}$  into component created by  $\Delta \varphi_{Zs\pm Pr}$  and  $\Delta \varphi_{Pr}$ , as given in Fig. 27(b). Compared to CPVPMM, the positive  $B_{Pr}$  and  $B_{Zs\pm Pr}$  created by  $\Delta \varphi_{Pr}$  in SVPMM is 51% larger, however, the negative  $B_{Pr}$  and  $B_{Zs\pm Pr}$  created by  $\Delta \varphi_{Zs\pm Pr}$  is 135% larger. The negative  $B_{Zs\pm Pr}$  outweighs the slight advantage in positive  $B_{Zs\pm Pr}$ , which makes  $B_{Zs\pm Pr}$  in SVPMM much smaller than that of CPVPMM, while the improvement in  $B_{Pr}$  is quite limited.

In Fig. 28, the waveform and harmonic spectra of  $E_a$  in two machines are calculated by the oscillating  $\Delta \varphi$  model and FEA.  $E_1$  of CPVPMM is 20.2% larger owing to 30% larger  $E_1$ 

component induced by  $B_{Zs\pm Pr}$  as shown in Fig.29(a). In Fig. 29(b), the contribution to  $E_1$  by  $\Delta \varphi$  harmonics in two machines are also given. For the major  $E_1$  component induced by  $B_{Zs\pm Pr}$ , the offset ratio of negative  $E_1$  induced by  $\Delta \varphi_{Zs\pm Pr}$  is marked gray. It shows the negative  $E_1$  in SVPMM offsets 70% of the positive one, while that in CPVPMM is only 42%. This explicitly explains why  $E_1$  of SVPMM is smaller despite more magnets.



Fig. 29  $E_1$  composition in SVPMM and CPVPMM. (a)  $E_1$  contributed by  $B_{Pr}$  and  $B_{Zs2Pr}$ . (b)  $E_1$  contributed by  $\Delta \varphi$  harmonics.

#### B. Torque Capability

The instantaneous torque *T* of CPVPMM and SVPMM can be generally expressed as (27), where  $T_{mag}$  is the electromagnetic torque as expressed in (24),  $T_{cog}$  is the cogging torque and  $T_{rel}$  is the reluctance torque.

$$T = T_{mag} + T_{cog} + T_{rel} \tag{27}$$

 $T_{rel}$  does not exist in SVPMM while  $T_{rel}$  is often ignored in CPVPMM due to the small ratio of  $L_q$  to  $L_d$  caused by the rotor anisotropic feature [20]. As a result, both machines can adopt the  $i_d=0$  control strategy.

It is noted that as analyzed before, q axis would vary when saturation appears under loaded condition. Thus, the current initial phase should be adjusted accordingly.

When current density J is 2.1A/mm<sup>2</sup> at light load, the torque waveforms of two machines by FEA and analytical method are given in Fig. 30(a), where  $T_{cog}$  is FEA results. Good agreement between two methods validates the analytical method.

Further, the variations of torque density of two machines along with current density J are shown in Fig. 30(b), where the deviation between two methods in CPVPMM begins to increase when J exceeds 3.5A/mm<sup>2</sup>. The reason is that iron core is more likely to saturate in CPVPMM due to the severer armature reaction, as shown in Fig. 31.



Fig. 30 Torque output of CPVPMM and SVPMM. (a) Torque waveforms by FEA and analytical methods. (b) Torque density variation with current density *J*.



Fig. 31 Flux density contour plot of SVPMM and CPVPMM at  $I_m$ =2A. (a) SVPMM. (b) CPVPMM.

When rated current density is set as 4.2A/mm<sup>2</sup> (A=150A/cm) under natural cooling, the torque density of CPVPMM and SVPMM is 18.3Nm/L and 17.4Nm/L, respectively, while torque per magnet volume of two machines is 650.1Nm/L and 376.2Nm/L, separately. It indicates that CPVPMM has large torque capability and superior advantage in torque per magnet volume given the rising price of rare earth material.

#### C. Power Factor

Fig. 32 shows the vector diagram of VPMM. Under id=0 control and neglecting winding resistance, power factor (*PF*) of VPMM can be expressed as (28).

$$PF = \frac{E}{U} = \frac{E}{\sqrt{E^2 + (\omega\psi_a)^2}} = \frac{1}{\sqrt{1 + (\psi_a/\psi_{pm})^2}}$$
(28)

, where  $\psi_a$  and  $\psi_{pm}$  are armature and PM flux linkage, respectively. It is observed that *PF* is inversely proportional to  $\psi_a/\psi_{pm}$ . Thus, the key to restore *PF* is to analyze  $\psi_a$ .

Based on winding function, armature MMF  $F_a$  is given as:

$$F_{a}(\theta_{s},t) = F_{w}(\theta_{s},t) + \Delta\varphi_{a}$$

$$F_{w}(\theta_{s},t) = \sum_{\nu P_{a} \neq 3k}^{\infty} F_{w\nu} \cos\left[\nu P_{a}\theta_{s} - \operatorname{sgn}(\nu)\omega t + \theta_{w\nu}\right]$$
(29)

 $F_{wv} = 3N_s I_m k_{wv} / (\pi v P_a), \Delta \varphi_a = \varphi_s - \varphi_r$ 

, where  $F_w$  is the MMF excited by the winding, sgn(v) and  $\theta_{wv}$  reflects the rotation direction and initial phase of  $v^{th}$  MMF harmonic.  $\Delta \varphi_a$  is the potential difference between stator core and rotor core under armature excitation, as shown in Fig. 33.

Similarly, if  $\varphi_s$  is assumed as 0,  $\varphi_r$  could be determined based on Gauss Theorem.  $\varphi_r$  in SVPMM and CPVPMM can be calculated as (30).

$$\varphi_{r\_svpmm} = 0$$

$$\varphi_{r\_cpvpmm} = F_{wP_r} \lambda_{r1} / (2\lambda_{r0}) + F_{wP_a} \lambda_{s1} \lambda_{r1} / (4\lambda_{r0} \lambda_{s0})$$
(30)

, where  $\varphi_r \neq 0$  in CPVPMM and would have impact on armature flux density.



Fig. 33 Potential difference  $\Delta \varphi_a$  in two VPMMs. (a) SVPMM. (b) CPVPMM.

Similarly, armature flux density  $B_a$  in two machines can be calculated as (31) and (32), respectively. It is observed that  $\Delta \varphi_a$  in CPVPMM would also undermine  $B_{a1}$  and  $B_{aPr/Pa}$ .

$$B_{a\_svpmm}(\theta_{s},t) = F_{a}(\theta_{s},t)A_{s}(\theta_{s})$$

$$= \sum F_{av}A_{s0}\cos(vP_{a}\theta_{s} - \operatorname{sgn}(v)\omega t + \theta_{wv}) \qquad (31)$$

$$+ \sum 0.5F_{av}A_{s1}\cos((vP_{a} \pm Z_{s})\theta_{s} - \operatorname{sgn}(v)\omega t + \theta_{wv})$$

$$B_{a\_cpvpmm}(\theta_{s},t) = F_{a}(\theta_{s},t)A_{sr}(\theta_{s})$$

$$\approx \sum g/\mu_{0} F_{av}A_{r0}A_{s0}\cos(vP_{a}\theta_{s} - \operatorname{sgn}(v)\omega t + \theta_{wv})$$

$$+ \sum g/\mu_{0} F_{av}A_{s1}A_{r0}\cos((vP_{a} \pm Z_{s})\theta_{s} - \operatorname{sgn}(v)\omega t + \theta_{wv}) \qquad (32)$$

$$- \Delta \varphi_{a}g/\mu_{0} \left[ A_{r0}A_{s0}\cos(P_{r}\theta_{s} - \omega t + \theta_{wP_{r}}) \right]$$

Then,  $\psi_a$  in two machines can be calculated as (33) and (34), where the higher order  $F_{av}$ , the less contribution to  $\psi_a$ . Moreover,  $\Delta \varphi_a$  undermines  $\psi_a$  in CPVPMM.

$$\Psi_{a\_svpmm} = 2N_{s}r_{g}L\left(\sum_{\nu P_{a}}\frac{F_{a\nu}A_{s0}}{\nu P_{a}}k_{w\nu} + \sum_{\nu P_{a}\pm Z_{s}}\frac{0.5F_{a\nu}A_{s1}}{\nu P_{a}\pm Z_{s}}k_{w\nu\pm\frac{Z_{s}}{P_{a}}}\right)(33)$$

$$\Psi_{a\_cp\nupmm} = \frac{2N_{s}gr_{g}L}{\mu_{0}}\left(\sum_{\nu P_{a}}\frac{F_{a\nu}A_{s0}A_{r0}}{\nu P_{a}}k_{w\nu} + \sum_{\nu P_{a}\pm Z_{s}}\frac{F_{a\nu}A_{s1}A_{r0}}{\nu P_{a}\pm Z_{s}}k_{w\nu\pm\frac{Z_{s}}{P_{a}}}\right)(33)$$

$$(34)$$

Based on (33) and (34), the detailed major armature flux density harmonics and induced flux linkage at J=2.1 A/mm<sup>2</sup> are analyzed, as presented in Table IV, while the power factor comparison is presented in Table V.

TABLE IV Armature Flux Density Harmonics and Flux Linkage

| SVPMM                         |                          |               |                |                        |                |      |                 |
|-------------------------------|--------------------------|---------------|----------------|------------------------|----------------|------|-----------------|
| $B_{av}$ and induced $\psi_a$ |                          |               |                | Major Source           |                |      |                 |
|                               |                          | 0 /0          | /9 /1-         | Armature MMF Permenace |                |      | ermenace        |
| V                             | <i>D<sub>V</sub></i> / 1 | $\sigma_{wv}$ | $\psi_{a'}$ wb | v                      | value/A        | j    | value/mH        |
| 1                             | 0.1                      | 0             | 0.2            | 1                      | 378∠0°         | 0    | 0.27∠0°         |
| 1                             | 0.1                      | U             | 0.2            | 11                     | <b>16∠180°</b> | 12   | 0.14∠0°         |
| 5                             | 0                        | -             | -              | 5                      | 66∠0°          | 0    | 0.27∠0°         |
| 7                             | 0                        | -             | -              | 7                      | 41∠180°        | 0    | 0.27∠0°         |
| 11                            | 0.04                     | 0             | 0.002          | 11                     | 16∠180°        | 0    | 0.27∠0°         |
| 11                            | 0.04                     | 0             | 0.003          | 1                      | 378∠0°         | 12   | 0.14∠0°         |
| 13                            | 0.02                     | 0             | 0.001          | 13                     | 9∠0°           | 0    | 0.27∠0°         |
|                               |                          |               | A              | Analytical             |                | FEA  |                 |
| Total $\psi_a$ (wb)           |                          |               |                | 0.2                    |                | 0.22 |                 |
| CPVPMM                        |                          |               |                |                        |                |      |                 |
| $B_{av}$ and induced $\psi_a$ |                          |               |                | Major S                | ource          |      |                 |
| 12                            | B/T                      | A /º          | w /wh          | Armature MMF Permenace |                |      | ermenace        |
| V                             | $D_{V}$ 1                | U ww          | $\psi_{a'}$ wo | v                      | value/A        | j    | value/mH        |
|                               |                          |               |                | 1                      | 378∠0°         | 0    | 0.6∠0°          |
| 1                             | 0.21                     | 0             | 0.428          | 11                     | <b>16∠180°</b> | 12   | 0.5∠0°          |
|                               |                          |               |                | $\Delta \varphi_a$     | 84.5∠0°        | 1    | <b>0.2∠180°</b> |
| 5                             | 0.01                     | 180           | -0.004         | 5                      | 66∠0°          | 0    | 0.6∠0°          |
| 7                             | 0.01                     | 180           | -0.002         | 7                      | 41∠180°        | 0    | 0.6∠0°          |
|                               |                          |               |                | 11                     | 16∠180°        | 0    | 0.6∠0°          |
| 11                            | 0.1                      | 0             | 0.008          | 1                      | 378∠0°         | 12   | 0.5∠0°          |
|                               |                          |               |                | $\Delta \varphi_a$     | 84.5∠0°        | 11   | 0.4∠180°        |
| 13                            | 0.08                     | 0             | 0.004          | 13                     | 9∠0°           | 0    | 0.6∠0°          |
|                               | Tota                     | 1 w (wb       | )              | Analytical FEA         |                |      | FEA             |
| Total $\psi_a$ (wb)           |                          |               |                | 0.43                   |                | 0.44 |                 |

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on September 06,2023 at 20:16:35 UTC from IEEE Xplore. Restrictions apply. © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information. This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3301549

 TABLE V

 FLUX LINKAGE COMPONENTS AND POWER FACTOR IN TWO MACHINES

| TEEN ENGINE COM CREATE AND TO VERTAETOR IN TWO MINEMAED |               |              |              |  |  |  |
|---------------------------------------------------------|---------------|--------------|--------------|--|--|--|
| Maahina tuna                                            | Armature flux | PM flux      | Dower Feator |  |  |  |
| Machine type                                            | linkage (wb)  | linkage (wb) | Fower Factor |  |  |  |
| SVPMM                                                   | 0.22          | 0.44         | 0.89         |  |  |  |
| CPVPMM                                                  | 0.44          | 0.54         | 0.78         |  |  |  |
|                                                         |               |              |              |  |  |  |

It is found that  $B_{a1}$  mainly induces  $\psi_a$  in both machines. **Moreover,**  $F_{a11}$  undermines  $B_{a1}$ , while  $\Delta \varphi_a$  also undermines  $B_{a1}$  in CPVPMM which is good for improving PF. However,  $\Lambda_0$  and  $\Lambda_{12}$  in CPVPMM is much larger than that of SVPMM due to smaller equivalent airgap length, thus  $B_{a1}$  in CPVPMM is twice that of SVPMM, and leads to smaller PF.

As the major parameter  $h_{pm}$  would impact  $\Delta \varphi_a$  which in return influences *PF* of CPVPMM, the effect of  $h_{pm}$  on both torque and *PF* are analyzed in analytical and FEA methods, as shown in Fig. 34. Despite saturation effect, both *PF* and average torque enhances as  $h_{pm}$  increases. Besides, iron saturation has larger effect on reducing  $B_a$ , thus *PF* will be larger than the analytical result. *Hence, large h<sub>pm</sub> is very suitable for CPVPMM*.

Finally, the torque and *PF* variations along with *J* of SVPMM with  $\beta$ =0.5,  $h_{pm}$ =2.5mm and CPVPMM with  $\beta$ =0.6,  $h_{pm}$ =4.2mm (same magnet usage) are compared in Fig. 35, indicating that CPVPMM has almost 20% larger torque density and similar *PF* as SVPMM at light load.



Fig. 34 Variation of torque and Fig. 35 Torque and *PF* variation power factor along with  $h_{pm}$ . along with current density *J*.

#### D. Relationship between CPVPMM and SVPMM

It is now revealed that  $\Delta \varphi$  oscillation undermines the torque output, which indicates that CPVPMM can be regarded as the improvement of SVPMM in regard of structure.

To illustrate,  $\Delta \varphi$  of SVPMM is qualitatively plotted in Fig.36, where  $\Delta \varphi$  oscillation appears on the surface of both *N* and *S* magnet array due to the oscillating flux in each magnet caused by the slotted stator, thus  $\Delta \varphi_{Zs-Pr}$  in SVPMM comes from two sets of magnet arrays. Hence, it is rational to think about restraining  $\Delta \varphi_{Zs-Pr}$  via retaining the flux that passes the magnetic pole.



Fig. 37 Evolution from SVPMM to CPVPMM.

As plotted in Fig.37, half magnets of same polarity in

SVPMM are replaced with ferromagnetic poles, which are passive magnetic pole and their magnetic potential are decided by the corresponding flux circuit. Then, all the ferromagnetic poles are connected by the rotor core to form one magnetic pole, of which the potential  $\varphi_r$  could be analyzed by (35).

$$\varphi_r = \sum_{i=1,2\dots}^{P_r} \Phi_{ri}(\theta_s, t) / \sum_{i=1,2\dots}^{P_r} \overline{\Lambda}_{ri}(\theta_s, t)$$
(35)

, where  $\Phi_{ri}(\theta_s, t)$  is the flux passing the *i*<sup>th</sup> rotor pole and  $\bar{\Lambda}_{ri}(\theta_s, t)$  is the lumped permeance above *i*<sup>th</sup> rotor pole as shown in Fig.37. Because of the stator slotting effect, the amplitude variation of  $\Phi_{ri}(\theta_s, t)$  and  $\bar{\Lambda}_{ri}(\theta_s, t)$  repeats once rotor rotates a stator pole arc [22]. Thus,  $\Phi_{ri}(\theta_s, t)$  and  $\bar{\Lambda}_{ri}(\theta_s, t)$  could be presented as (36).

$$\frac{\Phi_{ri}(\theta_s, t) = \Phi_{r0} + \Phi_{r1}\cos(Z_s(\theta_s - \Omega t) + i2\pi/Z_s)}{\overline{\Lambda_{ri}(\theta_s, t)} = \overline{\Lambda_{r0}} - \overline{\Lambda_{r1}}\cos(Z_s(\theta_s - \Omega t) + i2\pi/Z_s)}$$
(36)

, where  $\Phi_{r0}$  and  $\Phi_{r1}$  is the amplitude of constant and fundamental harmonic of  $\Phi_{ri}$ .  $\bar{\Lambda}_{r0}$  and  $\bar{\Lambda}_{r1}$  is the amplitude of constant and fundamental harmonic of  $\bar{\Lambda}_{ri}$ .

Put (35) into (36), it is found that fundamental harmonic of  $\Phi_{ri}$  and  $\bar{\Lambda}_{ri}$  in  $P_r$  rotor poles cancel out each other and (35) becomes (37) where  $\varphi_r$  is almost constant when rotor rotates, indicating that  $\Delta \varphi_{Zs-Pr}$  is only from one magnet array.

$$\varphi_r = \Phi_{r0} / \overline{\Lambda}_{r0} \tag{37}$$

As a result, the amplitude of undesired  $\Delta \varphi_{Zs-Pr}$  in CPVPMM is at least half of that in SVPMM, thus leading to larger working flux density. In other words, CPVPMM gives better play to the flux modulation effect due to consequent pole structure, which helps to exploit the torque potential in VPMM.

#### VII. EXPERIMENTAL VALIDATION

Based on the given design hints, a 12slots20poles CPVPMM was manufactured with the structure parameters listed in Table VI to validate the analysis above. The machine assembly and test platform setup are presented in Fig. 38.



Fig. 38 Machine assembly and test platform. (a) Consequent-pole rotor. (b) Cross section view of prototype. (c) Test platform setup.

| TABLE VI              |              |                |       |  |  |
|-----------------------|--------------|----------------|-------|--|--|
| PARAMI                | ETERS OF CPV | PMM PROTOTYPE  |       |  |  |
| Parameter             | Value        | Parameter      | Value |  |  |
| Stator outer diameter | 124mm        | Air-gap length | 0.8mm |  |  |

| Stator inner diameter | 76mm  | Stack length      | 80mm |
|-----------------------|-------|-------------------|------|
| Magnet thickness      | 3.5mm | PM Pole arc ratio | 0.6  |
| Serial turn number    | 120   | Slot open ratio   | 0.6  |

The platform includes the magnetic powder brake, prototype, driver, current sensor, load controller, and oscilloscope, where the magnetic powder brake worked as the load and is driven by the load controller. The average torque can be measured according to the value shown on the load controller. At the same time, the phase voltage and current can be tested and shown by the oscilloscope, and used to measure the machine power factor.

Firstly, the open-circuit phase back EMF waveform at rotation speed 300rpm was tested as depicted in Fig. 39, where the analysis, FEA and measured results have good agreement.

Then, the loaded performances are investigated. Considering winding inductance has small variation with rotor rotation,  $i_d=0$  control has been adopted. The average torque versus current characteristic for the prototype are measured and compared with analytical and FEA results in Fig. 40(a). High agreement between three methods are observed, except that iron core becomes saturated when current exceeds 8A, and error between analytical result and measured one begins to increase.

Fig. 40(b) shows the measured phase current/voltage waveforms at the current  $I_{rms}$ =10A. It can be seen that the phase angle difference between voltage and current is 53° and the *PF* is then obtained as 0.6, which reflects the low *PF* of CPVPMM brought by the large inductance under CP structure.



Fig. 40 Loaded performances. (a) Average torque versus phase current. (b) Measured phase voltage/current waveforms.

#### VIII. CONCLUSIONS

In this paper, a new analytical model i.e. the oscillating magnetic potential difference  $\Delta \varphi$  between stator core and rotor surface is proposed to comprehend the working mechanism of CPVPMM. The main conclusions of the paper are as followed.

1) The mostly-used simplified  $\Lambda_{sr}$  model is invalidated in CPVPMM due to the inaccurate interpretation of air gap flux density harmonics. Moreover, the simplified  $\Lambda_{sr}$  would miss the physical phenomenon of oscillating  $\Delta \varphi$ , thus losing the vital information of additional time-space harmonics  $\Delta \varphi_{Zs\pm Pr}$ .

2)  $\Delta \varphi_{Zs \pm Pr}$  reduces working flux density, and influences the  $E_1$  composition in CPVPMM to different extent depending on PR. Thus,  $\Delta \varphi_{Zs \pm Pr}$  is of vital importance to understanding the working mechanism of CPVPMM.

3) The stator and rotor structure parameters are separately studied based on the proposed  $\Delta \varphi$  model, while the core saturation is also considered. It is found that when magnet thickness is large and pole arc ratio is around 0.6, CPVPMM can obtain large torque output and power factor at the same time.

4) Based on the proposed  $\Delta \varphi$  model, both CPVPMM and SVPMM has  $\Delta \varphi_{Pr}$  and  $\Delta \varphi_{Zs\pm Pr}$ . However, CPVPMM has 135% smaller  $\Delta \varphi_{Zs\pm Pr}$  while  $\Delta \varphi_{Pr}$  is only 51% smaller than SVPMM owing to the CP magnet structure, thus acquiring larger flux density and torque capability. In this means, CP magnet gives better play to the flux modulation effect by restraining  $\Delta \varphi_{Zs\pm Pr}$ , which gives clue to exploiting the torque capability of VPMM.

5) The potential oscillation induced by the dual-salient air gap could reduce armature reaction, thus improving power factor of CPVPMM to some extent. Besides, both power factor and torque enhance as  $h_{pm}$  increases, which further proves that thick magnet is very suitable for CPVPMM.

In the future, the research will involve the analysis and design of rotors with different CP structures. Besides, the reluctance torque in CPVPMM with medium/low PR also contributes to torque, and is closely related to the CP rotor structure. Thus, how to design the CP rotor to restrain the iron saturation and exert the reluctance torque is of vital importance. In this means, the proposed analytical model lays the foundation for accurately studying the flux density distribution and torque generation of CPVPMM.

#### IX. APPENDIX

Based on the analysis in Fig. 4, the feature value of  $k_{\lambda}$  at  $\lambda_r = 1$ and  $\lambda_{rmin}$  is firstly obtained, which is  $k_{\lambda}=1$  and  $1/(\lambda_{rmin}+\lambda_s-\lambda_{rmin}\lambda_s)$ . Further,  $k_{\lambda}$  ( $\lambda_r = \lambda_{rmin}$ ) is expressed as the function of  $\lambda_s$ . Then,  $\lambda_s$ at 1,  $(1+\lambda_{smin})/2$  and  $\lambda_{smin}$  are selected, and the feature values of  $k_{\lambda}$  ( $\lambda_r = \lambda_{rmin}$ ) are obtained as (38).

$$\frac{1}{\lambda_{rmin} + \lambda_s - \lambda_{rmin}\lambda_s} = \begin{cases} 1, \lambda_s = 1\\ 2/(\lambda_{rmin} + \lambda_{smin} - \lambda_{rmin}\lambda_s + 1), \lambda_s = \frac{1 + \lambda_{smin}}{2}\\ 1/(\lambda_{rmin} + \lambda_{smin} - \lambda_{rmin}\lambda_{smin}), \lambda_s = \lambda_{smin} \end{cases}$$
(38)

, where  $\lambda_{smin}$  is minimum value of  $\lambda_s$ .

Then, the equivalent quadratic function of  $k_{\lambda} (\lambda_r = \lambda_{rmin})$  about  $\lambda_s$  is obtained by three-point formula, and expressed as (39).

$$k_{\lambda}(\lambda_{r} = \lambda_{rmin}) = k_{1}\lambda_{s}^{2} + k_{2}\lambda_{s} + k_{3}$$

$$k_{1} = \frac{2}{\left(1 - \lambda_{smin}\right)^{2}} \left(1 - \frac{4}{k + 1} + \frac{1}{k}\right)$$

$$k_{2} = -\frac{1}{\left(1 - \lambda_{smin}\right)^{2}} \left[3\lambda_{smin} + 1 - \frac{8(\lambda_{smin} + 1)}{k + 1} + \frac{\lambda_{smin} + 3}{k}\right] \quad (39)$$

$$k_{3} = \frac{1}{\left(1 - \lambda_{smin}\right)^{2}} \left[\left(\lambda_{smin}^{2} + \lambda_{smin}\right) - \frac{8\lambda_{smin}}{k + 1} + \frac{\lambda_{smin} + 1}{k}\right]$$

$$k = \lambda_{smin} + \lambda_{rmin} - \lambda_{smin}\lambda_{rmin}$$

Finally, (39) transforms to (15) to suit  $k_{\lambda}$  ( $\lambda_r$ =1) as well. Relative permeance-related coefficient  $A_1$ - $A_6$  is given as: This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3301549

$$A_{1} = \frac{\lambda_{r1}\lambda_{r\min}(k_{1}\lambda_{s0}^{2} + k_{2}\lambda_{s0} + k_{3} + \frac{k_{1}\lambda_{s1}^{2}}{2}) - \lambda_{r1}}{1 - \lambda_{r\min}}$$

$$A_{2} = \frac{\lambda_{r\min}\lambda_{r1}\lambda_{s1}(2k_{1}\lambda_{s0} + k_{2})}{2(1 - \lambda_{r\min})}$$

$$k_{2}\lambda_{s1}^{2}$$

$$A_{3} = \frac{\lambda_{r\min} (1 - \lambda_{r0}) (k_{1} \lambda_{s0}^{2} + k_{2} \lambda_{s0} + k_{3} + \frac{\kappa_{1} \lambda_{s1}}{2}) + (\lambda_{r0} - \lambda_{r\min})}{1 - \lambda_{r\min}}$$
(40)

$$A_{4} = \frac{\lambda_{r\min} (1 - \lambda_{r0}) \lambda_{s1} (2k_{1}\lambda_{s0} + k_{2})}{1 - \lambda_{r\min}}$$
$$\lambda_{r2} [\lambda_{r\min} (k_{1}\lambda_{s0}^{2} + k_{2}\lambda_{s0} + k_{3} + \frac{k_{1}\lambda_{s1}^{2}}{2}) - 1]$$

$$A_{5} = \frac{1}{\frac{1 - \lambda_{r\min}^{2} (2k_{1}\lambda_{s0}\lambda_{s1} + k_{2}\lambda_{s1})}{1 - \lambda_{r\min}^{2}}}$$
$$A_{6} = \frac{\lambda_{r\min}^{2} (2k_{1}\lambda_{s0}\lambda_{s1} + k_{2}\lambda_{s1})}{2(1 - \lambda_{r\min}^{2})}$$

#### X. ACKNOWLEDGEMENT

This work was supported in part by the National Key Laboratory of Electromagnetic Energy under Grant 61422172220101, and in part by the National Natural Science Foundation of China (NSFC) under Grant 51991382 and 52122705.

#### XI. REFERENCES

- C. Liu, "Emerging electric machines and drives-An overview," IEEE Trans. Eng. Convers., vol, 33, no. 4, pp. 2270–2280, Dec. 2018.
- [2] G. Zhang, W. Hua, M. Tong, etc., "Design and Manufacturing Considerations of Flux-Switching Permanent Magnet Motors for Mass Productions used in EVs and HEVs," in 18th Int. Conf. Elect. Mach. Sys., Thailand, 2015.
- [3] D. Li, R. Qu, J. Li, L. Wu, and W. Xu," Analysis of Torque Capability and Quality in Vernier Permanent-Magnet Machines," *IEEE Trans. Ind. Appl.*, vol.52, no.1, pp.125-135, Jan./Feb.2016.
- [4] K. Du, L. Xu, W. Zhao, G. Liu, "Analysis and Design of a Fault-Tolerant Permanent Magnet Vernier Machine With Improved Power Factor," *IEEE Trans. Ind. Electron.*, vol.69, no.5, pp. 4353-4363, May. 2022.
- [5] A. Ishizaki, T. Tanaka, K. Takasaki, and S. Nishikata, "Theory and Optimum Design of PM Vernier Motor," *in Proc. Int. Conf. Elect. Mach. Drives*, UK, 1995.
- [6] B. Kim, T. Lipo, "Operation and Design Principles of a PM Vernier Motor," *IEEE Trans. Ind. Appl.*, vol. 50, no.6, pp. 3656-3663, Nov./Dec. 2014.
- [7] L Fang, D Li, X Ren and Qu R, "A Novel Permanent Magnet Vernier Machine With Coding-Shaped Tooth". *IEEE Trans. Ind. Electron.*, vol.69, no.6, pp: 6058-6068, June 2022.
- [8] S. U. Chung, S.H. Moon, D.J. Kim, and J.M. Kim, "Development of a 20pole–24-slot SPMSM with Consequent Pole Rotor for In-wheel Direct Drive," *IEEE Trans. Ind. Electron.*, vol. 63, no. 1, pp. 302–309, Jan. 2016.
- [9] X. X. Liu, C. H. Zou, Y. Du, F. Xiao, "A Linear Consequent-Pole Stator Permanent Magnet Vernier Machine," in 17th Int. Conf. Elect. Mach. Sys., China, 2014.
- [10] Z. Zhu, Y. Pang, D. Howe, S. Iwasaki, etc., "Analysis of Electromagnetic Performance of Flux-Switching Permanent Magnet Machines by Nonlinear Adaptive Lumped Parameter Magnetic Circuit Model," *IEEE Trans. Magn.*, vol.41, no.11, pp.4277–4287, Nov. 2005.
- [11] L. Jian, G. Xu, C. C. Mi, K. T. Chau, etc., "Analytical Method for Magnetic Field Calculation in a Low-Speed Permanent-Magnet Harmonic Machine," *IEEE Trans. Energy Convers.*, vol. 26, no. 3, pp. 862–870, Sep. 2011.
- [12] D. Zarko, D. Ban, and T. A. Lipo, "Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet

motor using complex relative air-gap permeance," *IEEE Trans. Magn.*, vol. 42, no. 7, pp. 1828–1837, Jul. 2006.

- [13] A. Toba, T. A. Lipo, "Generic Torque-Maximizing Design Methodology of Surface Permanent-Magnet Vernier Machine," *IEEE Trans. Ind. Appl.*, vol. 36, no.6, pp.1539-1546, Nov./Dec. 2000.
- [14] L. J. Wu, Z. Q. Zhu, David. A. Staton, etc., "Comparison of Analytical Models of Cogging Torque in Surface-Mounted PM Machines," *IEEE Trans. Ind. Electron.*, vol. 59, no. 6, pp. 2414-2425, June 2012.
- [15] H. Yang, Z. Q. Zhu, H. Lin, H. Li and S. Lyu, "Analysis of Consequent-Pole Flux Reversal Permanent Magnet Machine With Biased Flux Modulation Theory," *IEEE Trans. Ind. Electron.*, vol. 67, no. 3, pp.2107-2121, March 2019.
- [16] B. Heller and V. Hamata, "Harmonic Field Effects in Induction Machines", *Elsevier Scientific Publishing Co.*, Amsterdam, 1977.
- [17] L. Fang, D. Li, R. Qu., "Torque Improvement of Vernier Permanent Magnet Machine with Larger Rotor Pole Pairs than Stator Teeth Number," *IEEE Trans. Ind. Electron.*, vol. 70, no. 12, pp. 12648-12659, Dec. 2023.
- [18] Y. Zhang, D. Li, P. Yan, X. Ren, et al. "A High Torque Density Claw Pole-Permanent Magnets Vernier Machine". *IEEE Jour. Emer. Select. Topics in Pow. Electron.*, vol.10, no.2, pp: 1756-1765, April 2022.
- [19] T. Zou, "Research on Theory and Topologies of High Performance Flux Modulation Permanent Magnet Machines," *Doctoral Thesis*, Huazhong University of Science and Technology, China, 2018.
- [20] D. Li, R. Qu and T. A. Lipo, "High-Power-Factor Vernier Permanent-Magnet Machines," *IEEE Trans. Ind. Appl.*, vol. 50, no. 6, pp. 3664-3674, Nov./Dec. 2014.
- [21] Z. Q. Zhu and Y. Liu, "Analysis of Air-Gap Field Modulation and Magnetic Gearing Effect in Fractional-slot Concentrated-Winding Permanent-Magnet Synchronous Machines," *IEEE Trans. Ind. Electron.* vol. 65, no. 5, pp. 1320-1330. Mar. 2018.
- [22] B. Kim, T. Lipo, "Operation and Design Principles of a PM vernier motor," *IEEE Trans. Ind. Appl.*, vol. 50, no.6, pp. 3656-3663, Nov./Dec. 2014.



Li Fang received her B.E.E. degree in electrical engineering in 2018 from the Huazhong University of Science and Technology, Wuhan, China, where she is currently working toward the Ph. D degree in electrical engineering. Her major research interests include design and analysis of novel magnetic field modulation permanent magnet machines.



Yuanzhi Zhang (Member, IEEE) received his B.E.E. degree and Ph. D degree in electrical engineering from the Huazhong University of Science and Technology, Wuhan, China in 2017 and 2022, respectively. He is currently a postdoc with Wuhan University. His research interests include analysis and design of novel permanent magnet brushless machines and superconducting machines.



**Dawei Li** (Senior Member, IEEE) received his B.E.E. degree from the Harbin Institute of Technology, Harbin, China, in 2010 and the Ph. D degree from the Huazhong University of Science and Technology, Wuhan, China, in 2015, both in electrical engineering. In 2015, he joined the Huazhong University of Science &Technology. His research areas include the design and analysis of servo motors, high-power electric machines and flux modulation permanent-magnet machines.



**Tianjie Zou** (Member, IEEE) received his B.E.E and Ph. D degree in electrical engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2013 and 2018, respectively. He is now a research fellow at the Power Electronics, Machines and Control Group, University of Nottingham. His research interests include the design, analysis and intelligent control of permanent magnet machines.