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Abstract

We study stochastic reaction-diffusion equation

oiu(x) = %aﬁxut(x) + b, (x)) + W, (x), t>0,x€D

where b is a generalized function in the Besov space
Bg’w(R), D CR and W is a space-time white noise on
R, x D. We introduce a notion of a solution to this equa-
tion and obtain existence and uniqueness of a strong
solution whenever § —1/q > -1, 8 > —1 and q € [1, 0]
This class includes equations with b being measures,
in particular, b = §, which corresponds to the skewed
stochastic heat equation. For § —1/q > —3/2, we obtain
existence of a weak solution. Our results extend the work of
Bass and Chen (2001) to the framework of stochastic partial
differential equations and generalize the results of Gyongy
and Pardoux (1993) to distributional drifts. To establish
these results, we exploit the regularization effect of the
white noise through a new strategy based on the stochastic

sewing lemma introduced in Lé (2020).
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1 | INTRODUCTION

While regularization by noise for ordinary differential equations (ODEs) is quite well understood
by now, much less is known about regularization by noise for partial differential equations (PDEs).
The goal of this article is to analyze regularization by noise for parabolic PDEs and to build new
robust techniques for studying this phenomenon. We consider stochastic heat equation with a
drift (stochastic reaction-diffusion equation)

8,1,(x) = %(ﬁxut(x) + b, (0) + W,(x), te€©,Tl, x €D, .

u(0, x) = uy(x),

where b is a generalized function in the Besov space Bg’oo(lR, R), € R, g € [1, 0], the domain
D is either [0,1] or R, T, > 0, W is space-time white noise on [0,Ty] X D, and uy : D - R is a
bounded measurable function. Note that for 8 < 0 this equation is not well-posed in the standard
sense: indeed in this case b is not a function but only a distribution and thus the composition
b(u,(x)) is a priori not well-defined. We introduce a natural notion of a solution to this equa-
tion in the spirit of [3, Definition 2.1]. We show that equation (1.1) has a unique strong solution
if g — ! > —1,8 > —1and q € [1, oo], see Theorem 2.6. This includes equations where b is mea-

sure, in particular, the skewed stochastic heat equation, which corresponds to the case b = k),
x € R. The latter equation is important for the stochastic interface models and appeared in [6]
where its well-posedness was left open. We resolve this problem in our paper, see Theorem 2.8 and
Corollary 2.9.

Our results extend [3] to the framework of stochastic partial differential equations (SPDESs)
and generalize [28, 29] to singular drifts. We exploit the regularization effect of the white noise
and develop a new proof strategy based on stochastic sewing [37]. Furthermore, we give several
extensions of the stochastic sewing lemma which allow singularities, critical exponents and usage
of random controls. In particular, we extend to the stochastic setting deterministic sewing with
controls, see, for example, [14, 19, 24, 40]. We would like to stress that in contrast to vast majority
of regularization-by-noise papers for ODEs [9, 12, 31, 47, 51] our method uses neither Girsanov
transform nor Zvonkin transformation. These two popular techniques are not useful in our setting.
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It has been known since 1970s that ill-posed deterministic systems can become well-posed if
a random noise is injected into the system. Consider the following simple example. The ODE
dX, = b(X,)dt with a bounded measurable vector field b : R? — R is ill-posed. It might have
infinitely many or no solutions in some specific cases. Yet, if this deterministic system is perturbed
by a Brownian noise B, then the corresponding stochastic differential equation (SDE)

dX, = b(X,)dt + dB,, X, = x, 1.2)

is well-posed and has a unique strong solution [47, 52]. This phenomenon is called regularization
by noise, see [15].

Regularization by noise for ODEs has been studied extensively since the pioneering works of
Zvonkin and Veretennikov mentioned above and many interesting results are available by now.
Strong existence and uniqueness of solutions to (1.2) for the case of possibly unbounded drifts
satisfying only a certain integrability condition was proved by Krylov and Rockner in [35], see also
related works [13, 16, 50]. Well-posedness of (1.2) in a stronger sense (path-by-path uniqueness)
for the case of bounded b was obtained in the celebrated paper [12] of Davie.

Furthermore, it turned out that equation (1.2) makes sense even if b is a distribution. In this
case, the term b(X;) is not defined and one has to define a notion of a solution to this equa-
tion. These can be done in a number of ways. Zhang and Zhao [51] proved weak existence and
uniqueness of solutions to (1.2) for b belonging to the Besov-Holder space B, , with a > —1/2.
Bass and Chen [3] established strong existence and uniqueness of solutions to (1.2) under the
same assumptions in dimension one. A critical case when b is the spatial white noise in one
dimension is treated by Hu et al. [32]. The specific case of b = x4, |x| < 1, which corresponds
to the skew Brownian motion, was treated by Harisson and Shepp in [31] and extended by Le Gall
in [38].

Let us mention that there is nothing special here about B being a Gaussian or a Markov process:
indeed, regularization for ODEs driven by various other noise processes (Lévy noise, fractional
Brownian noise) also holds, see, for example, [9, 30, 33, 37, 43].

Unfortunately, most of the methods which are used in the ODE/SDE setting are not transferable
to the PDE setting. Indeed, the most popular technique, the Zvonkin-Veretennikov transform [13,
43, 47, 52], allows to pass from the analysis of the original SDE with irregular drift, to the analysis
of a new SDE (called sometimes “virtual equation” [17]) whose drift and diffusion are easier to
handle. Then well-posedness for the original SDE can be derived from the well-posedness of the
new SDE. However, to implement this technique, it is absolutely essential that the stochastic sys-
tem has a good It6 formula. While the Itd formula is also available for SPDEs ([4, 49]), it involves
additional renormalized non-linear terms. This makes its application very difficult.

An alternative strategy was suggested in [9, 21], in which the authors work directly with the
original SDE, fixing a trajectory of the noise and viewing the equation as a non-linear Young
equation. The Girsanov theorem is pivotal to the whole approach: if the noise does not allow
for a good version of Girsanov theorem, the obtained results are not optimal, see [21, Lemma 10
and Remark 18]. It seems challenging to extend this method to SPDEs with distributional drifts.
One particular problem is that the the domain of the non-linear vector field is no longer of finite
dimension but is a certain function space.

Thus, it is clear that the analysis of regularization-by-noise for PDEs requires a very different
approach. One of the first results in this research area belongs to Gyongy and Pardoux [28, 29].
The authors used comparison theorems to establish existence and uniqueness of (analytically)
weak solutions to (1.1) for the case where the drift b is the sum of a bounded function and an
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Lg-integrable function with g > 2. Path-by-path uniqueness of solutions to (1.1) for bounded b
was obtained recently in [8].

Bounebache and Zambotti [6] considered stochastic PDEs with measure valued drift. In par-
ticular, motivated by problems arising in the study of random interface models, see, for example,
[20], they studied the skew stochastic heat equation, that is, (1.1) with b being a Dirac delta func-
tion. Using Dirichlet form techniques, they obtained existence of a weak solution. However
existence and uniqueness of strong solution remained open. Resolving this problem was one of
the motivations for our work.

From the above discussion, we note that there is a gap between the ODE and PDE settings. For
ODEs numerous results treating distributional drifts are available [3, 9, 31, 42, 51]. On the other
hand, almost no such results were known for PDEs, note though the paper [25] and the discussion
there. Our goal in this article is to construct a robust general method for proving strong existence
and uniqueness to (1.1) in the case where the drift b is a Schwarz distribution. In particular, we
treat the skew stochastic heat equation.

Inspired by the finite dimensional setting [3, 9] we define a natural notion of a solution to
(1.1) in Definition 2.3 and show that (1.1) has a unique strong solution when b belongs to the
Besov space Bg’oo(R, R), f — é > —1, 3> —1and q € [1, o0], see Theorem 2.6, and when b is

a finite Radon measure, Theorem 2.8. We also prove strong convergence of smooth approxi-
mations to (1.1) in Theorem 2.10. We establish strong existence and uniqueness of the skew
stochastic heat equation in Corollary 2.9 and show that this equation appears naturally as a cer-
tain scaling limit of “standard” SPDEs where the drifts are continuous integrable functions, see
Theorem 2.12.

To obtain these results we develop a new strategy based on certain regularization estimates
for SPDEs, see Lemma 5.2. These estimates can be viewed as infinite-dimensional analogues
of the corresponding Davie’s bounds for SDEs [12, Proposition 2.1], see also [51, Lemma 5.8].
Note though that Davie’s method involves exact moment computations and is not easily
extended to the SPDE setting. Therefore to obtain these regularization estimates, we extend
and employ the stochastic sewing technique introduced originally in [37]. We believe that these
new stochastic sewing lemmas (Theorems 4.1, 4.5 and 4.7) form a very useful toolkit which
might be of independent interest. The usage of regularization estimates are explained briefly in
Section 2.2.

We conclude the introduction by commenting on the optimality of our results. It is known
[39] that for each fixed space point, the free stochastic heat equation (that is, equation (1.1) with
b = 0) behaves “qualitatively” like a fractional Brownian motion (fBM) with the Hurst parameter
1/4, denoted further by B'/4. Therefore, one can expect that strong existence and uniqueness for
equation (1.1) would hold under the same conditions on b as in the equation

dX, = b(X,)dt + dB}"*,
thatis b € Bg , where 8 —1/q > —1, (see [9, Theorem 1.13] for ¢ = oo case). This indeed turned
out to be the case, see Theorem 2.6, even though the method of [9] could not be transferred to the
PDE setting. Note that this class of functions does not include the Dirac delta function, which lies
in BQ_HI/ 1 q €[1, o]. Therefore we had to come up with an additional argument to cover the
case 5 — 1/q = —1 as well (see Proposition 3.6).

The rest of the paper is organized as follows. We present our main results and a brief overview
of the proof strategy in Section 2. Since the proofs are quite technical, for the convenience of the
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reader we split them in several steps. In Section 3 we prove the main results. The proofs are based
on key propositions, which are stated also in Section 3 and proved in Section 5. Extensions of
the stochastic sewing lemma are stated and proved in Section 4. The proofs of crucial regularity
results are given in Section 6.A, B, C contains auxiliary technical results which we will use freely
throughout the paper.

Convention on constants. Throughout the paper C denotes a positive constant whose value
may change from line to line. All other constants will be denoted by Cy, C», .... They are all positive
and their precise values are not important. The dependence of constants on parameters if needed
will be indicated, for example, Cg or C(f).

2 | MAIN RESULTS

2.1 | Well-posedness of the stochastic heat equation with a
distributional drift

We begin by introducing the necessary notation. Let B(D) be the space of all real bounded measur-
able functions on D. Let C;° = C;°(D, R) be the space of infinitely differentiable real functions on
D which are bounded and have bounded derivatives. We denote by C° = C°(D, R) the set of func-
tions in C;°(D, R) with compact supports. For 8 € (0,1], let CP be the space of bounded Holder
continuous functions with exponent 5. For each 8 € Rand q € [1, o], let Bg denote the (nonho-
mogeneous) Besov space Bg,oo([R) of regularity 8 and integrability g, see Definition A.1. We recall
that for 8 € (0, 1), the space Bfo coincides with the space C# (see [2, page 99]). For 8 € (—1,0) the
space Bfo includes all derivatives (in the distributional sense) of functions in CF*1,

Let g, pf “, pf’ ¢! be the free-space heat kernel, the heat kernel on [0, 1] with periodic boundary
conditions, and the heat kernel on [0, 1] with the Neumann boundary conditions, respectively.
That is,

x2

g:(x) 1= e 2, t>0x€eER; 21
2rt
Pl ) = ) glx—y+n), t>0,xy€l01]; 2.2)
nezZ
Py, y) 1= ) (@(x—y+2m) +g(x+y+2n), >0,xy€[0,1]. 23)
nezZ

Our main results are valid in three different setups: when equation (1.1) is considered on the
domain D = R; when (1.1) is considered on the domain D = [0, 1] with the periodic boundary
conditions; and when (1.1) is considered on D = [0, 1] with the Neumann boundary conditions.
To simplify the notation and to ease the stating of the results we will use the notation p for g, pP*"
or pV¢* and D will denote the corresponding domain.

Convention 2.1. From now on if not stated otherwise the pair (D, p) will stand for one of the three
options: (R, g), ([0,1], pP¢"), or ([0,1], pNe¥).

The specific choice of the domain and of the boundary condition (out of the above three options)
will not affect the results and arguments in most places of the paper. In very few places of the paper
where the choice of the domain is important we will highlight it.

85UB017 SUOWIWOD 8A1I8.1D) 3|dedl|dde ays A peueAob afe saoile YO ‘8Sn JO'Sa|nJ 10} Akeid18UlUQ AB]I/ UO (SUOIPUOD-pUe-SWBI WD A8 |IMAIq 1 Bul JUo//:SANy) SUONIPUOD pue swie | 81 88S *[£202/ZT/T0] Uo A%iqiaulluo A8|IM ‘8L Aq 25TZZedd/Z00T 0T/10p/w0d A8 |im Areiq1ut|uoy/sdny woly papeojumod ‘0 ‘ZTE0L60T



6 | ATHREYA ET AL.

For bounded measurable functions ¢ : D —» R, ¢t > 0 we put

Pip(x) := / pi(x, )p(y)dy, xe€D.
D

It will be convenient to denote the heat semigroup on R by

Cp(x) = / g(x =P dy, xERE>0,
R

for all bounded measurable functions ¢ : R — R.

Let Ty > 0 and let (Q, F, (F;)ie[o,r,]> P) be a filtered probability space. For each m € [1, o], the
norm of a random variable £ in L,,(Q) is denoted by ||£]| 1,,- Here, as usual, we use the conven-
tion [|§|l,  :=esssup, ., |£(w)| when m = co. We recall that a random process W : L,(D, dx) X
[0,T¢] X Q — R is called (F;)-white noise if for any ¢ € L,(D, dx) the process (W(¢));e[o,r,] 1S

an (F,)-Brownian motion with EW,(¢)? = t||cp||i2(D dx) and W,(¢) and W,(y) are independent
whenever ¢, € Ly(D,dx) with [ o(x)p(x)dx = 0.
Set now
t
Vi i= [ [ pocywndy, 1>0.xep, 24
o Jp

where the integration in (2.4) is a stochastic integration understood in the sense of Walsh ([48,
Chapter 2]). It is known that V is a Gaussian random field adapted to (¥;) and has a continuous
version on [0, Ty] X D which we will use throughout the paper. It follows from (2.4) that V has the
local nondeterminism property

1 1

IVi(x) = EV I F)I, =7 +|t—s|+ forevery s<t and xe&D. (2.5)

Let us note that we do not analyze in our article equation (1.1) equipped with the Dirichlet
boundary conditions. In this case, the right-hand side of (2.5) goes to 0 as x tends to the boundary
of the domain.

The uniformity in x in (2.5) plays a key role in our arguments. While it is possible to adapt our
proofs to treat Dirichlet boundary condition as well (and we are convinced that our results hold
in the setting), we have deliberately decided not to focus on this case in order to emphasize how
our approach works and to avoid additional technical difficulties.

Now let us give a notion of a solution to (1.1). It is inspired by the definition in finite dimensional
setting in [3, Definition 2.1].

Definition 2.2. Let f be a distribution in Bg with § € R and q € [1, oo]. We say that a sequence

. . B .
of functions (f},),cz, convergesto fin B; asn — oo if SUP,c7, ||fn||B§ < o0 and
lim ||f, — fll » =0, foranypB’ <§p.
n—oo Bq

Itisclear thatforany f € B , there is a sequence of functions (f;),ez, C C,° which converges

to f in Bg_ as n — oo. For example, one can take f, := G/, f, see Lemma A.3.
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Definition 2.3. Let3 € R,q € [1,],b € Bg and T > 0. Let u, € B(D). A measurable adapted
process u : (0,Ty] X D X Q — R is called a solution of (1.1) with initial condition u, if there exists
aprocessK : [0,Ty] X D X Q — R such that

@) u;(x) = Pug(x) + K, (x) + Vi(x) a.s., where x € D, t € (0, Ty];
(2) for any sequence of functions (b"),cz, in C;° converging to b in Bg_ we have forany N > 0

t
sup sup / / DPi—r(x, y)b"(u,(y))dy dr — K;(x)| = 0 in probability as n — oo;
te[0,Ty) |xleD o JD
x|<N

(3) a.s. the function u is continuous on (0, Ty ] X D.

We note that Definition 2.3 defines a solution to equation (1.1) in three different settings, see
Convention 2.1. When b € C? with 8 > 0, we can choose a sequence (b") which converges to b
in uniformly. Then it is immediate that Definition 2.3 is equivalent to the usual notion of a mild
solution of (1.1), that is, P-almost surely Eq(u; b)

t
w,(x) = Pt + / / Prr (5 )b, ()dydr + Vi(x)  W(E,x) € [0,To] X D.
0 D

We say that a solution u = {u,(x) : t € (0,T], x € D}is a strong solution to (1.1) if it is adapted
to the filtration (FtW). A weak solution of (1.1) is a couple (u, W) on a complete filtered probability
space (Q, G, (G )0, P) such that u is adapted to (G;), W is (G;)-white noise, and u is a solution to
(1.1). We say that strong uniqueness holds for (1.1) if whenever u and % are two strong solutions of
(1.1) defined on the same probability space with the same initial condition u,, then

P(u,(x) = %;(x) for all t € (0,T,], x € D) = 1.
Consider the following class of solutions.
Definition 2.4. Let x € [0, 1]. We say that a solution u to SPDE (1.1) belongs to the class V(x) if
foranym > 2, SUD(; 1)e(0,To]xD llue; (Ol < oo and

llue () = V(%) = (Pr—s[us = V]I,
sup sup < o0

0<s<i<Ty XED [t — s|*

Remark 2.5. Recalling thatu, = P,uy + K; + V,, t > 0, we see that the numerator in Definition 2.4
is just || K;(x) — P,_K(x)l|1,, - Thus, class V(x) contains solutions of (1.1) such that the moments
of their drifts satisfy certain regularity conditions.

‘We are now ready to present our main result. Fix T > 0 and recall Convention 2.1.

Theorem 2.6. Letf € R, g€ [1,0], b € Bg and uy € B(D).

@ Ifp - s —%, then there exists a weak solution to equation (1.1) and this solution is in the class
q
V) forx € 0,1+ 52 — ]\ {1}

(i) If B — 1> -1and B > —1, then in the class V(3/4) there exists a unique strong solution to
q
equation (1.1).
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Remark 2.7. Tt follows from the proof of Theorem 2.6 (see Proposition 3.6) that in the case
B - ! > —1, > —1, condition (2) of Definition 2.3 can be relaxed. Namely, if a measurable
q

adapted process u : (0,T] X D X Q — R satisfies conditions (1) and (3) of Definition 2.3, belongs
to V(3/4), and satisfies the following weaker condition (2")

(2") there exists a sequence of functions b" € C;° converging to b in Bg_ such that for any ¢ €
[0,T,], x € D, we have

t
/ / Di—r(x, )b (u,(y))dy dr - K,(x) in probability as n — oo,
o Jp

then it satisfies a stronger condition (2) of Definition 2.3 for any sequence of smooth
approximations b" — b in Bg_.

Note that the additional assumption in Theorem 2.6(ii) that the solution lies in V(3/4) is a
natural extension to the SPDE setting of a very similar condition arising in the analysis of SDEs
with the distributional drift. It appears in [3, Definition 2.1], [51, Definition 3.1 and Corollary 5.3],
[1, Theorem 2.3], [30, Lemma 31].

Since for any g € [1, 00], Ly(R) is continuously embedded in Bg([R) ([2, Proposition 2.39]),
Theorem 2.6 complements the corresponding results in [28, 29]. Namely, Theorem 2.6(ii) allows
L,(R)-integrable drifts, while the aforementioned papers requires the drift to be L, (R)-integrable
for some g > 2. Note that the drift b in [28, 29] can also depend on (t, x). It is clear that our
method can be adapted to this setting; however, for clarity and to highlight the main ideas, we
only consider equations of the type (1.1) herein.

Since signed measures belong to B(l) ([2, Prop. 2.39]), Theorem 2.6(ii) is also applicable for this
class. Other specific cases of drift b for which (1.1) has a unique strong solution include b(u) =
lu|=, o € (—1,0) and b(u) = ¢{~!(u), where ¢! is the Cauchy principal value of 1/u, defined in
(2.9) below. This is due to the fact that | - |7 belongs to B(l) /o while ¢! belongs to B;l/ 2 (see
Lemma A.4). In the case when b is a finite non-negative measure on R, we have the following
improved result.

Theorem 2.8. Let b be a finite non-negative Radon measure. Then for any bounded initial condition
Uy equation (1.1) has a unique strong solution.

Corollary 2.9. The skew stochastic heat equation, that is equation (1.1) with b = k6, xk € R, has a
unique strong solution for every bounded measurable initial condition u.

Note that in Theorem 2.8 and Corollary 2.9, the assumption u € V(3/4) is not required.

Our next result is a stability theorem. Let (b"),cz, be a smooth approximation of b. The-
orem 2.10 shows that a solution to SPDE (1.1) with smooth drift b" converges as n — o
and that the limit does not depend on the particular choice of the approximating sequence.
Such solutions are sometimes called “constructable solutions” [29, Definition 2.2]. We show
that in our setting “constructable solutions” coincide with the standard solutions defined
above.
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Theorem 2.10. Let 3 € R, g € [1, o0]. Suppose that § — é >—-land > -1 Letb € Bg, Ug €

B(D). Let (b"),cz, be a sequence of bounded continuous functions converging in B'g_ to b. Let
(ug)nez, be a sequence of functions from B(D) converging to uy uniformly on D.

Let u" be a strong solution to Eq(ug; b"). Then there exists a measurable function u : [0,T,] X
D x Q — R such that

(1) forany N > 0we have

sup sup |u(x) —u,(x)| > 0 in probability as n — o; (2.6)
te(0,Ty) |x|€?\l
x|<

(2) uis a strong solution to (1.1) with the initial condition u;
(3) u satisfies

1/m

E — -P — m|p
sup supesssup (Ju(xX) = Vi(x) = P (us = VI Fy)

2.7
0<s<I<T x€D  weQ |t —s]3/4

for every m > 1. In particular, u belongs to V(3 /4).

Finally, we state two interesting applications of Theorem 2.10. The first one is the comparison
principle for the solutions of SPDE (1.1), which extends the standard comparison principle. As
usual, for two Schwarz distributions b’, b” we write b’ < b”, if for any nonnegative test function
¢ € C;°(R,R) one has (b, p) < (b", ¢). It is known (see, e.g., [46, Exersice 22.5]) that b’ < b" if
and only if b”” — b’ is a nonnegative Radon measure.

Corollary 2.11. Let B € R, q € [1, co]. Suppose that § — 1> -1and B>—1. Letb',b" € Bg,

q
ug, uy € B(D). Let u’,u”” be the solutions of (1.1) with drifts b',b" and initial conditions ug, u),
respectively. Suppose that

up(x) < u(x)  foralmost all x € D;

b’ <b".
Then almost surely u'(t,x) < u''(t,x) forallt > 0, x € D.

Our second applications of Theorem 2.10 shows that the skew stochastic heat equation appears
naturally as a scaling limit of certain SPDEs.

Let us introduce the space C,.((0, T] X D) of real continuous functions on (0, Ty] X D equipped
with the topology of uniform convergence over compact sets. It is well-known that this topology
is induced by the metric

x€D,|x|<n
1
te[;,TO]

de(f. 1) 1= ¥ 27" sup (1f(Lx)~h(E I AL, f.hECue((0.T]xD)  (28)
i=1

and C,.((0,Ty] x D) is separable.
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We define the Schwarz distributions ¢! on R by

RPN p(x) % e(x) = p(=X)
() .—lglﬁ’)l " de—/o fdx (2.9)

for each Schwarz function ¢. Similarly, for « € (—1,0) we put
{i(x) :=x*1(x >0) and {%(x) :=[x]|*1(x <0), (2.10)

where x € R.
In the following result we consider the stochastic heat equation with D = R.

Theorem 2.12. Letp € [1,3/2), f : R —> R be a bounded continuous function. Let u, € B(R) and
foreach A > 0 let u, be the solution to

Oiuy(t,x) — %@%x“&(t, x) =APfu(t,x)+W, t20, x€R, (2.11)
with the initial condition u;(0, -) = uy(-).
(i) Assume thatp =1 and

lim ] f(x) - %‘dx =0 and lim f(x)dx = ¢, (2.12)

A=00 S 1x|>2 A= S 11«1

for some constants c,cy € R. Then the random field
A7 2u,(A%t, Ax) : (t,x) € (0,1] X R}

converges weakly in the space C,.((0,1] X R) as 1 — oo to the solution of the stochastic heat
equation

d,u(t,x) — %izmu(t,x) = (¢t +cobp)(u(t, x)+ W, tel0,1], xeR (2.13)

with the initial condition uy = 0.
(ii) Assume thatp € (1,3/2) and

lir+n f)x>% =c, and lim f(x)|x]>%° =c_ (2.14)
X—=>+00 X—=>—0
for some constants c_,c, € R. Then the random field

{A712u,(A%t, Ax) = (t,x) € (0,1] x R}

converges weakly in the space C,.((0,1] X R) as A — oo to the solution of the stochastic heat
equation

d,ult,x) — %6§xu(t,x) - (c_gif"3 + c+§ip‘3) (t,x)+W, telo1], xeR (215

with the initial condition uy = 0.
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Remark 2.13. It easy to see that if f is absolutely integrable on R, thenc = 0, ¢y = fR f(x)dx, and
one deduces a convergence to the skew stochastic heat equation from part (i) of the above result. In
such case, Theorem 2.12(i) is an analogue of [44] (see also [38, Corollary 3.3]) for stochastic PDEs.

Remark 2.14. It is known that any homogeneous distribution on R of order o € (—1,0) is a lin-
ear combination of {{ and {%, and any homogeneous distribution on R of order —1 is a linear
combination of §, and ¢!, [22, Chapter I]. Therefore, Theorem 2.12 shows that for any homoge-
neous distribution & of order ¢ € [—1, 0), one can easily find a continuous function f, so that the
corresponding scaling limit of (2.11) converges to stochastic heat equation with drift .

2.2 | Overview of the proofs of the main results

Before we proceed to the proofs of our main results, we would like to demonstrate our strategy
on the following simple example, provide an overview of our arguments, and highlight the main
challenges arising in the proofs. We hope that this would help the reader to better understand our
method and grasp the main ideas without having to dive into too many technical details.

Thus, in this section we first consider the uniqueness problem for the equation (1.1), where
the initial condition u, = 0, the drift b is a function (not a distribution) and b € Cf = Bfo with
B € (0,1). Furthermore, we consider this equation on the time horizon [0, £] rather than [0, T ],
where ¢ € (0, 1) is small enough and to be chosen later.

As mentioned before, in this setting (1.1) is equivalent to Eq(0; b). Assume the contrary and
suppose that this equation has two solutions u and v. We define

Yri=w =V @ =0 =V zp = u — v =9 — ¢, teE€[0,L].

We note that z(0) = 0 and our goal is to prove that z(t) = 0 for all ¢ € [0, ¢]. We clearly have for
anyt €[0,¢],x €D

lz:(Ollz, = (2.16)

t
/ / D Cea ) BV, 0) + 8,00)) = bV, () + 9,()) dydr
0 D

Ly
A naive (and wrong) approach would be to then use directly the fact that b € CF and to put the
| - Iz, norm inside the integral. Then one would get

sup ||z ()II; dr
yeD

t
Iz (Ollz, < ||b||cf>’/
0

and hence

sup sup ||z;(x)llr, < llbllcs sup sup ||zt(x)||f2. (2.17)
telo,¢] x€D telo,¢] xeD

Since 8 € (0,1), it is obvious that neither of the above inequalities allows to conclude that
SUpyep llz;()Il = 0. Instead, our aim is show that the following trade-off holds: one can have
(2.17) with the factor [|z;(x)||;, to the power 1 and the price to pay is that factor £ will be in a
certain power smaller than 1. However this will not obstruct the final conclusion.

To show this we are planning to work directly with the integral in the right-hand side of (2.16)
and exploit the regularizing properties of the white noise. Recall that in the SDE setting it is known
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12 | ATHREYA ET AL.

that

t
/ (b(BH + x1) = b(BH + x,))dr| < C|[b|lost'™ 1 EDx; — x5, t 2 0,x,x, ER, (2.18)
0

L,

where B denotes the fBM with Hurst index H € (0,1) and 8 > 1 — 1/(2H), see [12, Proposi-
tion 2.1], [9, Theorem 1.1]. This is a trade-off we are aiming at. Unfortunately, Davie’s argument
does not allow for an easy extension beyond the Brownian case; note that, additionally, we would
like to replace constants x;, x, in (2.18) by drifts (random fields) 1, ¢ which depend on the spatial
and time variables.

Therefore, we apply the stochastic sewing lemma (Theorem 4.1) to conclude that for any
0<s<t<?t,1e(1/4,1]

/ / Prr e ) (BV1 () + $,(3) = bV, (3) + 9, () )dydr
s 4D

sup |1z,(x) — P;_sz5(x)|lz, = sup
x€D x€D I

< Cliblleslizllcoor, s,y — )74 + Cliblleglz]eror, st —8)4 74 7, (2.19)

where we used the notation

zllcoor, (s := sup Iz, (I3

rels,t]
xeD
[ ] ”Z[/(X) - P[’—s’zs’(x)”Lm
Z]oe0 = sup sup .
CTOLy([s,t]) s<s/<t'<t xeD |t/ — 5|

Remark 2.15. The exponent Z + é in (2.19) can be written as H(8 — 1)+ 1 for H = i, which is
the same as in (2.18). This is due to the local nondeterministic property of V' in (2.5). Note that
fBM with H = 1/4 satisfies a very similar local nondeterministic property. This provides another
connection of our results and the results in [9] concerning regularization by noise for fBM.

Now let us apply (2.19) with 7 = 3/4 + 3/4, divide both sides of the inequality by |t — s|3/4+8/4
and take supremum over all 0 < s < ¢ < €. We get

3.8
_+_
[Z]c3/4+6/4,0L2([o,f]) < Cliblleslizllcoory o,y + Cliblles [Z]c3/4+6/4,0L2([o,f])f4 4. (2.20)

3,8
Since the constant C does not depend on ¢, we can choose ¢ small enough so that C||b]| ¢ it g

1/2. Substituting this back into (2.20), we get
[Z] 3487301, 10,61) S ClIDNl szl coor,o,67)-

Applying this bound to (2.19), setting there s = 0, and taking there supremum over all0 <t < ¢,
we finally obtain

3.8
_+_
Izllcoor,(ro,e7) < Cllblles (X + 1Bl el 2l coor,o,ent + "+ (221

Provided that ¢ is small enough, this yields ||z||coor,(jo,¢]) = 0, and thus Eq(0; b) has a unique
strong solution.
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Weak existences of solutions to (1.1) would follow from similar bounds (see Lemma 5.2) and
Prokhorov’s theorem. Finally, strong existence follows from weak existence and strong uniqueness
by the Yamada-Watanabe principle (by the method of [26]).

While the uniqueness proof outlined above is quite short and “almost” rigorous, two major
obstacles appears when one tries to extend this proof to cover distributional drifts b € C?, § < 0,
and especially the case b = §,.

First, for 8 < 0 the right-hand side of (2.19) contains the additional factor

E Xx)—P,_ X)|?|F,
sup  sup esssup [0 () — Py sflp;;(f 1Ty ] =: [p]? BAD . (2.22)
s<S/St/St XxED weQ |t/ _ S,|1+T CHT’OLZ,OO([SJJ)

When b was a bounded function and 8 > 0, it was obvious that

[/
0 (x) — Py ()] = / / P (e BV, (9) + %, () dydr < [t — /| sup |b(2)]
s/ D

zeR

and thus this extra factor was finite. Now when b is a distribution, the finiteness of this extra factor
is not clear at all (note also the appearance of ess sup there).

The second obstacle is even more hindering. It turns out that the bound (2.19) is valid only for
B > —1 and thus is not applicable to the case where b is the Dirac delta function. This is similar
to the fact that the corresponding bound for fBM with the Hurst parameter 1/4, (2.18), is also
known to be valid only for 8 > —1, see [9, Theorem 1.1]. While it is true that the Dirac delta func-

tion actually has better regularity and belongs to Bq_lﬂ/ 7 for any q € [1, o], this does not help

much. Indeed, one can show that the bounds (2.18) and (2.19) hold for b € Bg withf —1/q > —1;
however this still does not cover the delta function.

Let us explain now how we are overcoming these obstacles. A crucial role in our approach
belongs to Proposition 3.6. It shows that if u, v € V(3/4) are two weak solutions to (1.1) adapted to
the same filtration, and if for one of them expression (2.22) is finite, then these solutions coincide.
To obtain this proposition we combine the critical stochastic sewing lemma (Theorem 4.5, exten-
sion of the stochastic sewing lemma from [37] and [18, Lemma 2.9]) with a very delicate analysis of
the solution to (1.1). Bound (2.19) (which is not valid for the case b = §,)) is replaced by (5.33), see
Lemma 5.7. Note that we have to use a certain rough-path inspired expansion of the solution and
bound its norm as well, see (5.34). Since new bound (5.33) contains now some logarithmic terms,
the final part of the uniqueness proof is less straightforward compared with (2.21), see Section 5.2.
Our argument there is a stochastic analogue of Davie’s argument in [11, Theorem 3.6].

Now we are ready to outline our strategy for establishing strong existence and uniqueness for
equation (1.1).

Step 1. We show that for any solution u”/ to Eq(»; f), where 7 is a bounded initial condition

and f is a smooth function, the additional factor [u”/ — V'] B from (2.22) is finite and
C 47 L o ([0,6])

isbounded by a constant which depends only on the norm || | ¢, see Proposition 3.2. This is done
using regularization bounds from Lemma 5.2.

Step 2. At this step we fix two sequences of smooth functions (bfz)neer , (bl Jnez, convergingtob
in Bg_ and denote by u},, u!] the solutions of Eq(uy; b},), Eq(ug; b)), respectively. Then, using again
bounds from Lemma 5.2, we are able to show that the sequence (u},, u))) is tight. By Prokhorov’s
theorem, this implies that it has a subsequence which converges weakly. We denote its limit by
(u',u'"). This is done in Proposition 3.3.
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Step 3. Now we show that both u’ and u” solve (1.1), belong to V(3/4) and the factor

[W-V] is finite. This is the content of Proposition 3.4 and Corollary 3.5.
¢, o (10.6])

Step 4. Now we have two solutions u’,u” € V(3/4) for which the extra factor from (2.22) is
finite. Hence, by Proposition 3.6 discussed above u’ = u'’. This implies, thanks to a Yamada-
Watanabe type result from [26, Lemma 1.1], that »’ is actually a strong solution to (1.1), see the
proof of Theorem 2.10.

Step 5. Now if v € V(3/4) is any other solution (for which the factor from (2.22) is not necessary
finite), it still coincides with the strong solution u’ constructed at the previous step. This is again
due to Proposition 3.6, see the proof of Theorem 2.6(ii).

Step 6. Finally we show that the extra condition u € V(3/4) is automatically satisfied for SPDEs
with measure valued drift. This is done in Proposition 3.8 using stochastic sewing lemma with
random controls (Theorem 4.7). This proves Theorem 2.8.

Thus, we see that regularization estimates (Lemmas 5.2 and 5.7) play a very important role in
our proofs. They are obtained using a flexible toolkit of stochastic sewing, which extends upon
the original stochastic sewing from [37]. For the convenience of the reader, all sewing results are
stated separately in Section 4.

3 | PROOFS OF THE MAIN RESULTS

In this section we prove the main results stated in Section 2.1. The technical parts, including the
regularization estimates, are stated as propositions. The proofs of these propositions are postponed
to the following sections. First, we set up some necessary notation.

For 0 < S < T we denote by Ag  the simplex {(s,t) : S <s <t < T} Let (Q, F, (F)»0,P) be a
complete filtered probability space on which the white noise W is defined. We assume that the
filtration 7 = (F;);¢[o,r) satisfies the usual condition and that W' is (F;)-white noise. We will write
E® for the conditional expectation given F;

ES[-] := E[|F,], s>0.

For a random process Z : [0,Ty] X D x Q — R we will denote by (F7) its natural filtration.
If € C F is a sub-o-algebra, then we introduce the conditional quantity

1€l g 1= (ELIEME T, 3.

which is a ¢-measurable non-negative random variable. It is evident that for 1 < m < n < oo one
has

€1z, = Mg, gL, < L, ¢l < 0l (3.2)

Let 0K SKT.Lety : [S,T] XD X Q — R be a measurable function. For 7 € (0,1], m,n €
[1, co] define

1) = Pr_ ()1l

['(,b] 7, = sup ;
C™OLy, ([S,T1) (s:0€hgr x€D It —s|F
[] = sup sup % (x) —Pt_slﬁs(x)IImelan.
COLn((STD *= (PR veb TG ;
lPllcoor,,qs.rp) 2= sup sup [ (O)llL,- (3.3)
te[S,T] xeD
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It follows from (3.2) thatforl < m < n < o

[$lecor,,qsr = Wlecor,, s < Wlecor,, qs < Wleeor, s (3.4)

Let BL,,, where m > 1, be the space of all measurable functions D X Q — R such that
Il fllBL,, :=supllf()lL, < oo. (3.5
xeD

Before we begin the proofs of our main results, we would like to claim that in Theorems 2.6 and
2.10 it suffices to consider only the case g € [2, ], 8 < 0. Indeed, recall the following embedding
between Besov spaces ([2, Proposition 2.71])

1 1

Bgl is continuously embedded in B,, " *forevery 1 < ¢; < g, < 0. (3.6)

In Theorem 2.6(ii), when b € B , with g € [1,2), we use embedding Bg (S Bg where § :=

g - 14 % Note that § — % =p- L > —1 and > —1. This means that the results of The-
q q

orem 2.6(ii) for b in Bg with q € [1,2) are consequences of those with larger integrability
components g. Exactly the same argument is valid for Theorem 2.6(i) and Theorem 2.10. Hence,
we assume without loss of generality hereafter that g € [2, oo]. Similarly, thanks to embedding
Bg S Bq_ﬁ ' for all B, 8’ > 0, we see that the statements of Theorems 2.6 and 2.10 for b € Bg with
B = 0 follows from the results of these theorems for some 8 < 0. Hence, we can also assume
without loss of generality that 8 < 0. To summarize, we have the following

Assumption 3.1. From now on and till the end of this section we fix § < 0,q € [2, 0], b € Bg ,
ug € B(D). We assume that § —1/q > —3/2.

We begin with the proof of the existence of the solutions to (1.1). It consists of several steps.

Proposition 3.2 (A priori estimate). Let m € [2,0), f : R > R be a bounded continuous
function in Bg, n € B(D). Let u”/ be the solution to Eq(y; f). Then there exists a constant
C =C(B,q,m,Ty) > 0 independent from ), f such that
. 2
W/ —V] 5 1 < CIIfIIB§(1+ IF158)- (3.7)
q

473 L, (010D
To formulate the next two statements we consider the space C,.([0, To] X D) of real continuous
functions on [0, Ty] X D equipped with the topology of uniform convergence over compact sets of
[0, Ty] x D. 1t is well-known that C,.([0, Ty] X D) is a Polish space and metrizable by the following
metric, similar to (2.8),

puc(f>h) 1= Z 27" sup (If(6,0) —h(t,X)[ A1), f,h € Cy([0,To] X D).

i=1 X€D,|x|<n
tel0,Ty]

Proposition 3.3 (Tightness). Let (b;l)neZJr, (b Inez, be two sequences of bounded continuous func-

tions converging to b in Bg_. Let (u(’) ez, (u(’)’n)nez+ be two sequences of functions from B(D)
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which both converge to u, uniformly on D. Let u),, u]] be the solutions oqu(u0 2 b Eq(uy) 3 by),

respectively. Put

o,n’

i, (t,x) 1= uy(t, x) — Py (), Uy (t,x) 1= uy(t,x) = Pul (x), tel0,T,], xe€D.

Then there exists a subsequence (ny )iz, such that @, Uy, > ~,’1’k, V)kez, converges weakly in the space

[ uc([o TO] XD)P

Proposition 3.4 (Stability). Let (b"),ez, be asequence of bounded continuous functions converging

tobin B'g_. Let (u)necz, be asequence of functions from B(D) converging to u, uniformly on D. Let
V" be a random element having the same law as V. Assume that u" is a strong solution of Eq(ug; b")
with V" in place of V. Let

u™(t,x) :=u"(t,x) — Pug(x), te€[0,Ty], x €D.

Suppose that there exist measurable functions U,V : [0,Ty] X D X Q — R such that the sequence
@",V")pez, converges to (, V) in [C,c([0, To] X D)]? in probability as n — co. Then the function

u(t,x) :=u(t,x) + Pug(x), te[0,Ty]l, x€D

is a solution to (1.1) with the initial condition uy, and for any m € [2,00) there exists
C =C(B,q,m,Ty) > 0 such that
[u=v1 .61, <Csup 167151+ ||b"||25> < oo. (3.8)
C 4 4 Ly oo ([0,To]) nez

The proofs of Propositions 3.2-3.4 are presented in Section 5.1.

Combining the above propositions we obtain the following corollary, which immediately
implies Theorem 2.6(i). This corollary will be also important to show the existence of strong
solutions to (1.1).

Corollary 3.5. In the setting of Proposition 3.3 the following holds. There exists a filtered probabil-
ity space (Q, F, (ﬁt)te[O,To]’P) an (F,)-white noise W defined on this space, measurable functions
v/, 0" [0,To] X D x Q — R such that

(1) both v’ and v’ are adapted to the filtration (F,) and are weak solutions to (1.1) with the initial
condition u;

(2) there exists a subsequence (n) such that (i, Uy, , U a’’ )kez converges weakly to (07, 0"') in the space
[C.([0,To] X D)]? as k — co, where

0'(t,x) :=0'(t,x) — Pup(x), 0'(t,x) :=v"(t,x) — Pug(x), te€][0,Ty], x€D. (3.9)
(3) forV defined as in (2.4) with W in place of W the following holds:

[V =V] 6 1, + [v” V] < 0. (3.10)
C 4 4 Ly o([0.To]) 4 q Lm «([0,To])

Proof. By Proposition 3.3, there exists a subsequence (#;,) such that (i Uy, » ~£,’k, V)iez, converges
weakly in the space [C,.([0, To] X D)]*. By passing to this subsequence, to simplify the notation,

85UB017 SUOWIWOD 8A1I8.1D) 3|dedl|dde ays A peueAob afe saoile YO ‘8Sn JO'Sa|nJ 10} Akeid18UlUQ AB]I/ UO (SUOIPUOD-pUe-SWBI WD A8 |IMAIq 1 Bul JUo//:SANy) SUONIPUOD pue swie | 81 88S *[£202/ZT/T0] Uo A%iqiaulluo A8|IM ‘8L Aq 25TZZedd/Z00T 0T/10p/w0d A8 |im Areiq1ut|uoy/sdny woly papeojumod ‘0 ‘ZTE0L60T



STOCHASTIC HEAT EQUATION WITH DISTRIBUTIONAL DRIFT | 17

we may assume without loss of generality that (i), %]/, V) converges weakly. Since this space
is Polish, we can apply the Skorohod representation theorem [5, Theorem 6.7] and deduce that
there exists a sequence of random elements (&7,, 5/, V") defined on a common probability space
(Q, F, P) and a random element (&', 5", V) such that

Law (D), 0!/, V") = Law(it,, @i/, V) (3.11)

and (), 0!/, V™) converges to (07, 5", V) a.s. in space [C,c([0, To] X D)J3.
Define fort €[0,Ty], x€D

v, (t,x) 1= 0),(t, x) +Ptu0n(x) v(t,x) 1= 0)/(t,x) +Ptu L (),
U'(t, x) 1= 0'(t,x) + Paug(x), v'(t,x) :=0"(t,x) + Puf(x).

Since u], satisfies Eq(u/
place of V.

Since u}, is the strong solution to Eq(u{)’n; b},), the random variable u},(¢, x) is F” -measurable,
where t € (0,To], x € D. By Lemma B.2, 7V = F). This and (3.11) implies that v},(¢,x) is T’[‘?n—
measurable. By Lemma B.2, there exists a white noise W™ such that (2.4) holds for W" in place of
W and V" in place of ¥ and Ft‘? "= FtVAV " Thus v (t,x)is F?V\ "measurable. Identity (3.11) implies
now that vy, is a strong solution to Eq(u ,; by,) with V" in place of V. Similarly, v/’ is a strong

;by), by (3.11) we have that v, satisfies Eq(uy ;by,) with V" in

o,n’

solution to Eq(u()’, > b)) with V" in place of V.

‘We see now that all the conditions of Proposition 3.4 are satisfied. Applying this result, we see
that v’ and v”’ are solutions to (1.1) in the sense of Definition 2.3 with ¥ in place of V.

Define now 7, :=o(v.(x), v/(x), V.(x),x € D,r € [0,t]). Clearly, v/ and v” are F,
measurable.

It follows immediately from the definition of the white noise that for any (s, t) € A 1, ¢ € C°,
n € Z, the random variable

t
/ / / o (X)P1 (e, Y)W (dy, dr)dx = / ()P (x) — P, P7(x)) dx
DJs D D

is independent of f’fv\" = o(v)(r,x), v'(r,x), V(x),x € D,r € [0, s]). Therefore, Proposition B.1
implies that the random variable /D e(x)(V,(x) = P,_V(x)) dx is independent of F. Thus, by
Lemma B.2, there exists an (ft)-white noise W such that (2.4) holds for W in place of W and Vin
place of V. Hence v’ and v’ are weak solutions to (1.1) and they are adapted to the same filtration
(Fo.

Finally, it remains to note that (3.10) follows now from (3.8). O

Proof of Theorem 2.6(i). Let (b™) be a sequence of smooth functions converging to b in Bf,_. Apply-
ing Corollary 3.5 with by, = b)) = b" and u;, = u/, = u, we obtain existence of a weak solution
v'. By (3.10),

W =V] 5 < -V 51 < oo,
¢ TR L, (0] ¢, (010D
where the first inequality follows from (3.2). Hence v’ € V(1 + g — 4i). O
q
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Now we move on to the proofs of strong existence and uniqueness of solutions to (1.1).

Proposition 3.6 (Uniqueness). Suppose additionally that 8 > —=1+1/q, f > —1. Let (4 )iefo,1,]
be a solution of SPDE (1.1) starting from the initial condition u. Let (v;);e[o,,] be a measurable
process (0,Ty] X D x Q — R, which satisfies conditions (1), (3) of Definition 2.3 and condition (2')
of Remark 2.7.
Suppose that u, v are adapted to the filtration (F;):c|o,1,] and belong to the class V(3/4). Assume
further that for some m > 2
[u-v] s < oo. (3.12)

€Ly o (10,70

Thenu = v a.s.

The proof of Proposition 3.6 is given in Section 5.2.
The proof of strong existence uses the following statement from [26]. For the convenience of
the reader we provide it here.

Proposition 3.7 ([26, Lemma 1.1]). Let (Z,,) be a sequence of random elements in a Polish space
(E, p) equipped with the Borel c-algebra. Assume that for every pair of subsequences (Z, ) and (Z,,, )
there exists a further sub-subsequence (Zlkr , kar) which converges weakly in the space E X E to a

2

random element w = (w!, w?) such that w' = w? a.s.

Then there exists an E-valued random element Z such that (Z,)) converges in probability to Z.

Proof of Theorem 2.10. We will use Proposition 3.7. Fix a sequence (b,,) of bounded continuous
functions converging to b in Bg_ and a sequence (u, ,) of functions from B(D) converging to u.
Let u,, be the strong solution to Eq(u ,; by,). Define

u,(t,x) 1= u,(t,x) — Piug »(x), t€[0,Ty], x €D.

Let (b}, u),) and (b, ) be two arbitrary subsequences of (b,,,). Applying Corollary 3.5,
there exist a filtered probability space (Q, 7, (?t)IGlO,To J,@, an (F,)-white noise W defined on
this space, and a pair of weak solutions (v’, v"”) to (1.1) adapted to the filtration (ﬁ). We see also
that there exists a subsequence (1) such that (ﬁ;,k, ﬁ;’k) converges to (0, 0"") weakly in the space
[Cue([0,Ty] x D)]? as k — oo, where (07, 0"") are defined in (3.9). We note that (3.10) together with
(3.2) implies that for any m > 2

[V -=V] s <[V -V] s < o0,

c3°La((0,To)) €7°Ly o (10,To])

where we used the fact that 1+ /4 —1/(4q) > 3/4. Thus the pair (v/,V) satisfies (3.12) and
v’ belong to the class V(3/4). Similarly, v” € V(3/4). Thus, we see that all the assumptions of
Proposition 3.6 are satisfied and we can conclude that v’ = v”’ a.s. By definition, this implies that
U =0"as.

Thus, all the conditions of Proposition 3.7 are met. Hence there exists a C,,.([0, Ty] X D)-valued
random element u such that 2, converges to & in probability as n — co. Set now

u(t,x) :=u(t,x) + Pug(x), tel0,Ty], x €D.
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Applying Proposition 3.4, we see that u is a solution to (1.1) with the initial condition u. Since
u,(t,x), where t € [0,T,], x € D, is T’[W-measurable, we see that (¢, x) and, hence u(t, x) are
FtW-measurable. Thus, u is a strong solution to (1.1).

From the convergence of probability of u,, to u, we get that for any N > 0

sup sup |#}'(x) — U (x)| = 0 in probability as n — . (3.13)
te[0,Ty] lee?\]
x|<

Further, by the assumptions of the theorem

sup sup |P;ug(x) — Piug(x)| < sup |ug(x) —up(x)| = 0 asn — oo, (3.14)
tel0,Ty] x€ED x€D

where we used the fact that |P, f(x)| < sup,, | f(¥)| for any bounded function f. Combining (3.13)
and (3.14), we obtain (2.6).

Finally, part (3) of the theorem follows from (3.8) and the fact that 1 + é — i > %. O
Proof of Theorem 2.6(ii). By Theorem 2.10, there exists a strong solution u to (1.1) satisfying (3.12).
If v is another strong solution to (1.1) in the class V(3/4), then, by Proposition 3.6 u = v. This
shows strong uniqueness of solutions to (1.1). O

Proposition 3.8. Suppose that b is a non-negative finite measure, then every solution of (1.1) belongs
to the class V(3/4).

The proof of Proposition 3.8 is given in Section 5.3.

Proof of Theorem 2.8. Let u, be a bounded measurable function. Since measures belong to /3,
Theorem 2.6 yields existence and uniqueness of a strong solution u to (1.1) in V(3 /4) starting from
uy. On the other hand, by Proposition 3.8, every solution to (1.1) belongs to V(3/4) and thus has
to coincide with u, thus completing the proof. O

Proof of Corollary 2.11. The proof uses an idea similar to [29, Proof of Theorem 2.4]. For n € N,
put by, := Gy,b’, by := Gy,b". By Lemma A.3, bj, and bj, are smooth and bounded. Let uy,
be the strong solution to Eq(ug; by,) and let u;/ be the strong solution to Eq(u ; by). Note that
b’ < b" implies b/, (x) < b)/(x) for any x € R, thanks to the definition of the partial order. Then,
using again that b), and b}, are smooth and bounded, the standard comparison principle (see, for
example, [29, Theorem 2.4], [7, Lemma 3.3]) yields

u)(t,x) <u)(t,x), t>0,x€D. (3.15)

By Lemma A.3, b/, - b’,b!/ - b" in B’g_ as n — oo. Therefore, by passing to the limit as n — oo
in (3.15), we get for any fixed t > 0, x € D by Theorem 2.10.

u'(t,x) <u'(t,x), as.

Since u’ and u’ are continuous, this implies that a.s. u/(¢t,x) < u”(t,x) forallt > 0,x € D. []
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Proof of Theorem 2.12. Define f;(x) = 13/27° f(11/%x),
(8, x) = A712u,(A%t,Ax)  and  V(t,x) = A7Y2V (A%, Ax).

By a change of variables, we have

(1, x) = 471/ / piCx = Yuo(Ay)dy + Vi(t.x) + / / Doy = YA y))drdy.
R 0 R

Note that the random fields V; and V have the same probability law. Hence, i1, is a weak solu-
tion to (1.1) with f, in place of b and ,(0, x) = 1~'/2uy(Ax). It is straightforward to see that
i1, (0, -) converges to 0 uniformly on R. If p = 1, then by Lemma A.5, f; converges to ¢~ + ¢,d,
in B;_Hl/p)‘ as 1 — oo for any p € (1, ). If p € (1,3/2), then by Lemma A.6, f; converges to

c_{zp_S + c+§'ip_3 in ng_S)’ asl — oo.

Applying Theorem 2.10, we see that if p = 1, then the process i1; converges weakly in the
space C,c((0,1] X R) as 4 —» oo to the solution of (2.13). Similarly, if p € (1,3/2) the same the-
orem implies that the process i; converges weakly in the space C,.((0,1] X R) as 1 — oo to the

solution of (2.15). O

4 | STOCHASTIC SEWING LEMMAS

We present three extensions of the stochastic sewing lemma introduced earlier in [37]. More
precisely, we incorporate singularities, critical exponents and random controls in the stochas-
tic sewing lemma. In addition, we also provide estimates in some conditional moment norms,
inspired by the stochastic sewing in [18]. As we will see in later sections, singularities allow
for improvements of regularities and broaden the scope of applications of the stochastic sewing
techniques (see for instance Lemma 6.1 and Corollary 6.2 in Section 6). The result with random
controls (Theorem 4.7 below) is used in Proposition 3.8 to obtain a priori estimates for solutions
to Equation 1.1 when the drift b is a measure. The stochastic sewing result for critical exponent
is used to prove Proposition 3.6, that is strong uniqueness for Equation 1.1 when 8 —1/q = —1.
Finally, the estimates in conditional moment norms are also used in Proposition 3.2 which is later
used in Proposition 3.6 to prevent a loss of integrability. We believe that these results complement
[37, Theorem 2.1], [18, Theorem 2.7] and form a toolkit which is also of independent interest and
can be useful for other purposes.

4.1 | Statements of stochastic sewing lemmas

Till the end of this section we fix a time horizon T € (0, 00) and a filtered probability space
(Q, F, (Ft)iejo,r)» P)- Recall that for 0 < S < T we denoted by Ag ;- the simplex {(s, t) € [S, T)? :
s < t}. The mesh size of a partition IT of an interval will be denoted by |IT|. Let A : Agy — Ly, be
such that A;, is F;-measurable for every (s, t) € Ag . For every triplet of times (s, u, ) such that
S <s<u<t<T,wedenote

5As,u,t = As,t - As,u - Au,t~
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For each a, 8 € [0,1), (s,t) € Ag r define the function

t
260 = [e=sye@-ntar
N

It is immediate that

1&P(5.0) < Cla f)(E — 5)' P @1

Recall the notation || - ||, #, introduced in (3.1).
Theorem 4.1 (Stochastic sewing lemma). Let m € [2, ) and n € [m, oo] be fixed. Assume that

there exist constants T'1,T, > 0, €1,&, > 0, a1, 31 € [0,1) and a,, 3, € [0, )such that the following
conditions hold for every (s,t) € Agrandu := (s +1)/2

IES[8A; iz, < Ta(u—S)™ (T —w)Prie — s+, (4.2)
l+£
N8 A el 7gllL, < To(u—S)~(T —u)P2|r — 5277, (4.3)
Further, suppose that there exists a process A = {A; : t € [S,T]} such that for any t € [S,T] and
any sequence of partitions Iy :={S = té\] v tkN(N) = t} of [S, t] such that limy_,, |IIy| — O one
has
k(N)-1
A= 1\}1m A[N o in probability. (4.4)
— 00 i=0

Then there exists a constant C = C(ey, €5, m) independent of S, T such that for every (s, t) € Agr
we have

1

20,2,
A = As = Al iyl < O 5,0) 1t = 51 + CT$ P, 0l - 519 @.9)

and

IESTA, = As = Ag ]Iz, < TSPV, 0l = 5190, (4.6)

Remark 4.2. When n=m and a; = f3; =0, i = 1,2, the estimates (4.5) and (4.6) coincide with
those in [37, Theorem 2.1]. Using the arguments in the aforementioned paper, one can obtain
from (4.2) and (4.3) the existence of the process A satisfying (4.4). However, by imposing condition
(4.4), our presentation on the applications of Theorem 4.1 in later sections is simplified.

Remark 4.3. In view of (3.2), condition (4. 3) follows from the following simpler condition. There
exist constants I', > 0, €, > 0, a,, 3, € [0, ) such that for every S<s<t<T,u :=(s+1)/2,
x € D one has

1
I8As NIz, < To(u—S)2(T —u) 2|t — 5|27, (4.7)

Sometimes, it might be useful to apply the following modification of stochastic sewing lemma.
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Theorem 4.4. Suppose that all the conditions of Theorem 4.1 are satisfied apart from (4.4), which is
replaced by the following: there exists a process A = {A; : t € [S, T} such that for any (s,t) € Ag r

and any sequence of partitions Iy :={s =Y, ..., tkN(N) =t} of [s, t] such that limy_, [TIy| — 0
one has
k(N)-1
A, = A| < lim inf 20 Axpy | as (4.8)
i=

Then there exists a constant C = C(gy, €, m) independent of S, T such that for every (s, t) € Agr we
have

1

20,2 2 ,
1A = Al g, SHAs i i, + €T (055577265, 00) e =s1%2 +CTyn s, =51
(4.9)
and
IESTA = Ay, < HESAg I, + CTing (s, 0l = 5|, (4.10)

The next result, which is used later in the proof of Proposition 3.6, is inspired by the stochastic
Davie-Gronwall from [18].

Theorem 4.5 (Stochastic sewing with critical exponent). Let m € [2, ). Assume that all the
conditions of Theorem 4.1 are satisfied with the choice n = m, a; = §; = a, = 3, = 0. Suppose
additionally that there exist constants I's; > 0, Ty > 0, ¢4 > 0 such that

IE°[8As 0]z, < Tslt —s|+Tyft —s|'*, (4.11)

forevery (s,t) € Agr and u := (s + t)/2. Then there exist a constant C = C(gy, &,, &4, m) indepen-
dent of S, T such that for every (s,t) € Ag r we have

I,Té
I's

lA; = Ag — Agllr, < CF3<1 + |log

>(t —8) 4+ CT,(t — sﬁ“2 + CT,(t —s)'*5.  (4.12)

Finally, our last sewing lemma is stochastic sewing lemma with random controls. It is interest-
ing to compare it with the deterministic sewing lemma with controls [19, Theorem 2.2]. We would
need the following definition.

Definition 4.6. Let A be a measurable function Ag r X Q — R,. We say that A is a random control
ifforany S < s < u <t < T one has

A(s,u,w) + A(u, t,w) < A(s,t,w) a.s.

Theorem 4.7 (Stochastic sewing lemma with random controls). Let m € [2, o). Let A be a random
control. Assume that there exist constants T'y,a,, 81 = 0, such that o; + 3, > 1 and

|E¥SA | < Tyt —s|9AGs, 0P as. (4.13)
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forevery(s,t) € Agrandu := (s + t)/2. Assume further that condition (4.3) is satisfied withn = m,
a, =, =0, e, > 0and condition (4.4) holds.

Then there exists a map B . Agr — L, and a constant C > 0, such that B is a functional of
(s, t) > 5As,(s+[)/2,[) and for every (s,t) € Ag 7

|A, — Ay — Ag;| < CTy|t — s|%A(s, )Pt + By, as. (4.14)

and

1

+e
IBs Iz, < CTalt —s|277.

(4.15)

4.2 | Proofs of stochastic sewing lemmas

The proofs of the results from Section 4.1 make use of the following common notation. For
each integer k > 0 and each (s, t) € Agr with s > 0, let nf‘s 0= {s= tg < t’l‘ < < t’z‘k = t}be the
dyadic partition of [s, ¢]. ’

For each k, i, uﬁ‘ denotes the midpoint of [tf‘ , tl‘H]. Define

2k—1

k ._
As,t = Z At?‘,t?‘ .
: 77+l
i=0

Let (s, t) € Ag 7 be fixed. For every k > 0, we have

2k—1
k+1 k _ _ 71k k
Al —al =Y SAk e =1+, (4.16)
i=0
where
2k—1 . 2k—1 .
k _ t; k _ t;
Is,t = Z E" 5Atlg<’ul(<’tlk+l and ‘]s,t = Z <6A[f€’“zk’t§(+1 —E% 5Aff‘ﬂu§‘7f§‘+1 > (4.17)
i=0 i=0

Proof of Theorem 4.1. We estimate | é‘ ; by triangle inequality and condition (4.2),

2k—1 2k_1
k —a -B
||I§t||Ln < Z E' 5Atl?‘ uk ¢k . sh Z (u:‘ - 5) 1 (T - ufc) 1 (t§<+1 - t:()

4 it 4
i=0 i=0

1+¢&

Using (B.6), it is easy to see that

2k-1 t
D @k = sy —ufy Pk, — ) <2t / (r = S)™(T —r) Prdr,
i=0 s

which implies

t
HETE N, < K, <z—’<ﬁzl+“1r1< / (r—s>—°f1<T—r>—ﬁ1dr>(r—s)El. (4.18)
S
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To estimate J k , we observe that it is a sum of martingale differences and use the conditional
Burkholder— DaV1s Gundy (BDG) inequality (see, e.g., [10, Proposition 27]) to obtain

2k—1 . 2 2 261 2
t.
|| t”L P < Ky 2 5Algc k (k —E% 5Algc k (k < 2K, Z 5Algc k gk ,
i 1 i+1 i 1 i+l L |7;. i=0 l i+l L |FS

i=0
where x,, is the constant from the conditional BDG inequality. Then, we use the Minkowski
inequality, condition (4.3) and similar reasoning as above, to see that

1

2k—1 2
k
ISl i, < 2en 20 04kt |, .
22k_1 . —2a, —26, K k 1+42¢; :
< 2K, T3 Z (ui -S) (T—ui) (t1+1 ti)

5 t
< 27ken3 e T, / (r —8)22(T —r)22dr | (¢t —s)2.
N
Hence, we have shown that

1
|kt — Ak | < 27keiqr n(“l F(s, )t = s) + 2—’<€281<mr2|n(2“2 282)(s, 0|2 (t — 5)°.

ol <

This implies that

1
20,2 -
IAS, = Agelln, e, < CTimgaP(s,00 = 9 + CTLn e P s 0@ -2 (419)

for some constant C = C(gy, &5, m). By sending k — oo, using (4.4) and Fatou’s lemma, we obtain
(4.5). We observe that ESJk = 0, the relation (4.16) also yields ES(Ak+1 — Akt) = ESIk In view
of the estimate (4.18), we obtaln

|ES (k! — AF)) |, <2faziar P (s, 0 = sy
This yields
IES(AK, — Ag0lly, < CTynsa(s, 0t — sy (4.20)
Sending k — oo and reasoning as previously, we obtain (4.6). O

Proof of Theorem 4.4. The proof goes along exactly the same lines as the proof of Theorem 4.1 till
(4.19). Rewriting this inequality, we derive

1

Al <Al Crm(“lﬁl)(s,t)(t—s)ﬁ+cr2 NS (s, 0] (¢ - sy,
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By passing to the limit as k - oo and using (4.8) and Fatou’s lemma, we obtain (4.9). Inequality
(4.10) follows similarly from (4.20), (4.8) and Fatou’s lemma. O

Proof of Theorem 4.5. The term J f’[ is estimated as in the proof of Theorem 4.1, which gives

+£2

5z, < 2752 26, Th(t — 5)2 (4.21)

On the other hand, we estimate I éft differently, using triangle inequality and condition (4.11) in
the following way

2k—1 2k—1 2k—1

k 1+E
£ _ k 4
S X B SA g N, STs 2 (=) + 10 2 (e = 1)

= rg(t - S) + 2_k541"4(t - S)1+E4.

Hence, in view of (4.16), we have shown that for any k € Z
1
AsH - Ak[” STt — 5) + 27K, (t — s)t+es 4 27Kkeat2y, To (1 — 5)2 7%, (4.22)

However, recalling (4.18), we still have
||I§[||Lm < 2—k€1+1r1(t _ S)l+£1’

which together with (4.21) provides an alternative bound for ||Ai,‘t+1 — AIS‘ Iz, - Namely,

1
||Ak+1 _ Akt” < 2—kel+11-1(t _ S)1+al + 2_k52+21<ml“2(t _ s)5+£2. (4.23)

Combining (4.22) and (4.23) together, we get that there exists a constant C = C(g;, €5, €4, m) such
that for any fixed integers0 < k < N

k

1A% = Aull, < P IAST —AL ), + Z lase = A5l

i=0 i=k+1

< C(KT3 + 27K Ta)(t — §) + CT4(t — 5)1+4 + CTH(t — s)2+€2

where in the first sum we have applied (4.22) and in the second sum we used (4.23). Similar to
the proof of Theorem 4.1, we pass now to the limit as N — oo (note that k remains fixed) with the
help of Fatou’s lemma and (4.4). We deduce

4, — Ay = Aggll,, < C(kT3 + 27K, T)(t — ) + CT4(t — 5)'*% + CT,(t — s)z“z
Now, let us fine-tune the parameter k. If I'; > I'; T¢1, we choose k = 1 and the previous inequality

implies (4.12). If ['; < T, T, we can choose k > 1 so that 271, Té1 < Ty < 2070a, T4 which
optimizes the right-hand side above and contributes the logarithmic factor. This gives (4.12). [
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Proof of Theorem 4.7. We use a slightly different version of (4.16)

2k_1 2k_1
k
Ak _ gk = E“ SA A E“4 SA =1k +Jk .
oAl = Y EYS k,k;;+2 (A —E“8Ak e ) = K +TE,

1 1 i77i+1

By (4.13),
2k-1 8
|TE | < Tyt —s|T2rken YU A(ek ek ) < Tyt = sj2ke@arBimD (s, pf, (4.25)
i=0

where the last inequality follows from the Holder inequality and superadditivity of the random
control A. Note that.J é‘ ; is the sum of martingale differences, hence, can be estimated analogously

toJ f , as in the proof of Theorem 4.1. Applying the BDG and Minkowski inequalities, we have

2k—1

VS, < 2kmf D U8AK e IF

Using condition (4.3) (with n = m and a, = 3, = 0), we have

+£2

V5l <27 8xulalt =512 (4.26)
Thus, we get from (4.24) and (4.25)
|AKH — AY | < Tyt — s|m2- K@t Bi-Dacs, oft + |75 |, as. (4.27)

Define B, := Z;f:o |J é‘ ;|- Using (4.26) and triangle inequality, we see that B satisfies (4.15).
It follows from (4.27) that

k
| — Ay | < AR - AL | <Oyt — s|MAGs, 1)1 + By,
i=0
Sending k — oo and using condition (4.4), we obtain (4.14). O

5 | PROOFS OF KEY PROPOSITIONS

In this section, we present the proofs of the propositions from Section 3. The regularization esti-
mates which are necessary for the proofs are summarized in Lemma 5.1 and Lemma 5.2 below.
The proofs of these lemmas are presented in Section 6.1. We recall (3.5) which defines the space
BL,,.

Lemmas5.1. Let f € B; be a bounded function. Let m € [2,00), p € [m, 0] andy € (—2,0). There
exists a constant C = C(y, m, p) such that for any 0 < s < t < T and any B(R) ® F,-measurable
function x € BL,,, one has

1+L-—
< C||f||3>l’7(t —s) 4 . (5.1)

L

t
/ / e (6 W (Vo) + Pr_ox(y)) dydr
S D
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Lemma 5.2. Let f : R — R be a bounded continuous function in Bi’,, T>0,and ) : [0,T] x
D x Q — R be a measurable function adapted to the filtration {F,}. Let m € [2, ), n € [m, 0],
D € [n,00] and t € (0,1) be fixed numbers. Lety € (=2 + 1/p,0) and assume that

1
y—5+4r>1. (5.2)

Then the following statements hold.

(i) There exists a constant C = C(y, p, t,m) > 0 independent of T such that forany S € [0, T]

T
/ / e (e WV, ) + $(0))dydr
S D

sup
xeb Liy|Fs Ly
142 L S
SCUflg (T =8) * # + Cllfll g [blewor,, uqsrp(T =S+ # (5.3)

(ii) Let 8 € (0,1). There exists a constant C = C(y, p, 1,8, m) > 0 independent of T such that for
anyS € [0,T], x;,x, €D

T
/ / D1y (51,3) = Prr G VSV () + %, ())ddydr
S D

Lin

1 36 7y 1

-1 L
" + [Pleror, qsp(T —8)* 2 4 4 T)- (5.4)

1_§+l
<Clfllgln =l (=972

(iii) Let § € (0,1) and T > 0. There exists a constant C = C(y, p,t,8,m) > 0 independent of T, T
such that forany S € [0, T]

T
/ / (Pratr(63) = Prr( YWV + $r()dydr
S D

sup
xeD L,
_C_S 1—é+l(y—l) §_§+Z_L+T
<C||f||B£T2 <(T—S) 247 Pt [Plevor, qsrp(T —S)4 24 4 ) (5.5)

Remark 5.3. Estimate (5.3) is an analogue of the following estimate by Davie in [12] for Brownian
motion

1
< Cp sup |f(2)||t = s]2]x; — x5], (5.6)
Lm ZGRd

t
/ (B, +x1)— f(B, + x,)ldr

which holds for every s < t, x;, X, € R? and bounded measurable f : R¢ — R9. Noting that the
map x — (f(x + x;) — f(x + x,))/(]x; — X,|) has finite B3!-norm and therefore (5.6) is indeed
an estimate with distributions. A closely related estimate is of the type

o ([ o)

< Clf e, @lt = s1°, (5.7)
LOO
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where p>d+1,6=0(p)=1- %, X is a martingale of the form X, = /Ot 0,dB,, o is adapted,

A7l > o, = A for all r, A is a deterministic positive constant. Estimate (5.7) follows from a
general result of Krylov in [34] and an argument similar to [27, Corollary 3.2]. When f is a non-
negative function, by expanding moment and successively conditioning, one can obtain from the
above estimate that for every integer m > 2, s < t,

/S 0

which is comparable to Davie-type estimate (5.6). However, the fact that f is a non-negative
function is crucial and in particular, one cannot obtain (5.6) from such an argument.

As observed in [37] for the case of fBM, one can indeed obtain estimates of the types (5.6)
and (5.8) from estimates of the type (5.7) by mean of the stochastic sewing lemma for f being
a distribution provided that 8 > 1/2. This passage is also visible in the proof of Lemma 5.2 in
Section 6.

S Cullfllz,@lt = s1°, (5.8)
Lm

5.1 | Proof of Propositions 3.2-3.4

Proof of Proposition 3.2. We will use the estimate (5.3) from Lemma 5.2. Fix m, f, u, satisfying the
assumptions of the proposition. Define for brevity

P(t,x) = u’”f(t,x) —-V(t,x), te€]0,Ty], x €D.

First we note that since the function f is bounded, we have for any (s, t) € Aoty

t
9(x) — Pr_yps ()] = / / P e )l ) dydr| < sup @ s,
N D z

which implies that [1]cc0 Lo ([0.T,]) 18 finite for any 7 € (0,1].
Let us apply now Lemma 5.2 with the following set of parameters: y = —1/q, h=p =
and 7 = 1+ /4 — 1/(4q). In other words, we consider f as a distribution Bfo_l/ 1 thanks to the

embedding Bg S Bfo_l/ 7 (see (3.6)). Since g — 1/q > —3/2, we see that (5.2) holds. Therefore, all
the assumptions of Lemma 5.2 are satisfied and we obtain from (5.3) that there exists C > 0 such
that for any (s, t) € Ay r,

1

B_1
sup 1) =Py Ol 7 Nl SCIA (=) (1+[¢] B, (t—s)
xXe q C

3 1
3.6 1
474 4q

44 Ly oo ([s,t])
(5.9)

where we used the fact that ”f”Bﬁ—l/q < C||f||B,3 thanks to (3.6). Fix now S € [0,T,] and ¢ €
© q

(0, T, — S]. By dividing both sides of inequality (5.9) by (t — s)!*#/4=1/(49) and taking supremum
over all (s,t) € Ag ¢, We get

(%] 148

+
) <CIflg +CUflgld] o 2 3T,

1
T30, W (S.S+C]) 7730, (S,5+6])
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Note that3/4 + 3/4 —1/(4q) > 0 (since § — 1/q > —3/2) and the constant C does not depend on
S or ¢. Hence, by choosing ¢, € (0,T) small enough such that

1

4 4 4q
Cliflpts * ¥ <3

we get that there exists C; > 0 such that for any S € [0, Ty — €]

(9] e 2 S Cillfll - (5.10)
C q

B~
44 Lo ([S.S+€0])

It remains to show that the above estimate implies (3.7). For arbitrary (s, ) € A r,, we choose
N > 2 such that Ty/N < ¢y < To/(N — 1) and define successively s, = s, 8, = Sx_1 + (t —5)/N
foreach k = 1,..., N. From the following telescopic identities

N N
Y — Py = 2 (Pt—sklpsk - Pt—sk_1¢sk_1) = Z Pt—sk (¢Sk - Psk—sk_llpsk_l)’
k=1 k=1

we apply triangle inequality and (B.8) to obtain that

N
1% () = Pt COllL, 17 . < Y NP, (s, = Popse s ) Ol 7 ML
k=1
N
< ) sup (s, ) = Py by Oz i7 1 (5.11)
k=1 yeD
Since Fy C Fy,_,, one has

”¢Sk (y) - Psk_sk—l ¢sk_1 (y)“Lm|FS = ” ||¢Sk (y) - Psk—sk_1¢sk_1(y)”Lm|Tsk_1 “Lml}’s'
Note that s; — s;_; < €, We can apply (5.10) to obtain that for any y € D

LB 1
4

||1»bsk(y) Py g 1¢sk 1(y)||Lm|F Cl”f”Bﬁ(Sk — Sk— 1)

Hence we can continue (5.11) in the following way

N 8
1+=——
.G = Prosths GOl 7, < Collfll o 205k = sie-n) ™+
k=1

18- L
SClfll N (t—s) ¢ «
q

Since N <1+T,/¢,, this implies (3.7). Note that the restriction ,8—1>—§ implies
q
. 2
N'=T e+ IfI2,). m
q
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To prove Propositions 3.3 and 3.4 we will need the following statement. For a bounded
continuous function & : R — R and a measurable function ¢ : (0,Ty] X D X Q — R define

t
K™o(t, x) :=/ /pt_r(x,y)h(o(r,y))dydr, t €[0,Ty], x € D. (5.12)
o Jp

Lemma5.4. Let 3 <0, q € [2,0]. Assume that § — 1/q > —3/2. Let h, f be bounded continuous
functions in B, n € B(D). Let u = u”/ be the solution to Eq(y; f). Let 5 € (0,1). Then there exists
a random variable H such that for a.s w, for any x;,x, € D, s,t € [0, Ty]

5
[K"u(t, x1) — K™4(s, x5)| < H(@)(1+ |x1] + |x5]) <|x1 — x|+t — S|5) , (5.13)

and EH < C|h|l (1 + ”f“fsﬁ)’ where the constant C = C(8,q,6,v,Ty) > 0 is independent
q q
ofn, h, f.

Proof. In the proof, for brevity, we write u = u”/, K = K"*, Fix § € (0,1), m € [2, ). Let 8’ €
(6,1). Note that for x;,x, € D and (s, t) € Ay, we have

IK (£, x1) — K(s, X)p,,, < IIK(E,x0) — K (8, x)Mlp,,, + IIK(E, %) — P gK(s, %)lI1,,
+ ”(PI—S —Id)K(S,x2)||Lm = I] +Iz +I3 (514)

To bound Iy, I,, and I3 we will use Lemma 5.2 with the following parameters:

1 B 1
v=u-V,y=8 q,n m,p=0o0,7 +4 1’ t (5.15)
First, the estimate in Proposition 3.2 and (3.4) give
9] .6 1 <[] 6 2 SCIfI @+ NF11% ) (5.16)
¢T3 L, (0,1, ¢ TR L, (0T D) & B

Second, Assumption 3.1 implies that (5.2) holds. Therefore, all the conditions of Lemma 5.2 are
satisfied. By part (ii) of the lemma with S = 0, we get

I SC(T)llnll (1 + ||f||25)|x1 - x,%, (5.17)
E q

where we also used the bound (5.16).
To bound the second term in (5.14), I,, we use Lemma 5.2(i) with the parameters described in
(5.15)aswellasn = m, x = x,, S = 5. We get

1

t B_
L= / / Pe—rCou D, dydr|| < CAIRI A+ IFIP)E—5) %, (518)
N D q Bq

Ly

where we used again bound (5.16).
Finally, let us bound I3. We note that

L= /0 /D [P (5,9) = Por (s 9)TR(u, (7)) dydr

Ly
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In view of (5.16), we can apply Lemma 5.2(iii) to obtain
5/

IERS C(T0)||h||,3§(1 + IIfllzﬁ)(t —5)2.

Now combining this with (5.17), (5.18) and substituting into (5.14), we arrive at

5/
’ -
IK(, x1) — K(s, x)|l1,, < C(To)R <|x1 —x|% 4+t —s|2 > ,

g1 _ 1

where we used the fact that 1 + > 5 > % and denotedR := ||h||B;3(1 + ||f||3ﬁ). Recall that
q q B

1 g
q

5 € (0,8") and m is arbitrarily large. Then, by the Kolmogorov continuity theorem (which is an

easy extension of [36, Theorem 1.4.1]), there exists a random variable H(w) such that for any w €

Q, x1,x, € D, s,t € [0,T,] we have
g
[K(£,x1) — K(s,x2)| < H(@w)(1 + |x;] + |x2]) <|x1 —x|° + |t — 5] 2> ,
and EH(w) < C(Ty)R. This completes the proof of the theorem. O

Proof of Proposition 3.3. Fix the sequences (by,),cz, » (b))nez, » (U} ,Inez, and (U, ez, - Recall
definition (5.12). Put

K = Kbwun K .= Kbiun
n - > B :
Note that
(1) =K () + V), /@) =K/)+V(Q). (5.19)
ForM > 0,8 € (0,1), v > 0 put

Ay 1={f € C([0,Ty] XD) : f(0,-) = 0 and for every x;,x, € D,s,t € [0, T]

5
|£eCer) = (el S ML+ |y | + [x2D)(1x) — X216 + |t —s]2)}.

By the Arzela-Ascoli theorem, for each M > 0 the set A, isa compact set in the space C,.([0, Ty] X
D). We apply Lemma 5.4 withh = f = b/, = u(’) - Foranyn € Z ., we derive from (5.13) and the
Chebyshev inequality

P(K},  An) < ClIbL o (L4 1B )M ™! < CRM,
q

where we denoted R = sup,, ||b;1||Bg(1 + ||b§l||3ﬁ) < oo. Thus, the sequence (K},),> is tight
q B

in Cy([0,To] X D). Similarly, (K}/),so is tight in Cu.([0,T] X D) and obviously the constant
sequence (V)¢ is tight in this space as well. Hence the sequence (K, K}/, V), is tight in
[C,([0,Ty] x D)]3. Since this space is separable, by the Prokhorov theorem there exists a sub-
sequence (1 )iez, such that (K}, , Ky ,V)iez, converges weakly in the space [C([0, To] x D)J°.
Recalling (5.19), we see that (i, , &, , V)iez, converges weakly. This completes the proof of the
theorem. O
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Proof of Proposition 3.4. Step 1. We show that u is a solution to (1.1). We define for each (¢,x) €
[0,Ty] x D

K(t,x) :=u(t,x) — V(t, x). (5.20)

Let (b") be an arbitrary sequence of functions in C,° converging to b in Bf;_. Fix arbitrary R > 0.
In view of Definition 2.3, we need to show that

lim sup sup |Kt5”;u(x) — K;(x)| = 0 in probability. (5.21)
N=tel0,Ty] x €D
[x| <R

By triangle inequality, we decompose for any k,n € Z,,x € D, t € [0, T,]

Bn; Bn; En; k Bn; k bk; k
1K, 00 = Kl < 1K, () =K (0l + 1K () =K, ()

+ K ) = Ky ()] =1 Lk, £,%) + L(n, ko £,X) + Ik, £, %), (5.22)

Let us estimate successively all the terms in the right-hand side of (5.22). Since for any fixed n
the function b" is a smooth bounded function, we have for any |[x| <R, x€D,M >R

t
Li(nk,t,x) = / /pz_r(x,y)(5”(ur(y))—5”(u’f(y))) dydr
o Jp

t
< 115" / / Prr e 16, 3) — uk ()| dydr
0 JDn{lyl<m}

t
205" leo / / per(x,y) dydr
0 JDn{ly|>M}

_ (M-R)?
<IB" 1 To sup  sup [u,(») — uk )| + ClIB"|coTpe ™o
t€[0,Ty] y€D
[ylsM

We use triangle inequality and the estimate |P,p(x)| < Sup,,p |p(y)| valid for any bounded
measurable function ¢ to obtain that

sup sup |u,(y) —uf(Y)| < sup sup [& () — TY)| + sup luy(y) — uf )l
tel0,Ty] YED t€l0,Ty] yED yeD
lylsM lylsM

By assumption, the above implies that u* converges to u in Cy([0, Ty] X D) in probability. Hence,
in the previous estimates for I;, we send k — oo then M — oo to see that

lim sup sup I;(n,k,t,x) =0 in probability. (5.23)
k=00 te10,7,] |xleD
x|<R

Tobound I, we fix 8 < Bsuch that3’ — 1/q > —3/2. This is possible thanks to Assumption 3.1.

We apply Lemma 5.4 with h = b" — b¥, f = bX, n = uf, x; = x, = x, s = 0, B in place of 8. We
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get that there exists a random variable H,, ; such that

n_pk. k
sup sup Ly(n,k,t,x)= sup sup K, " (0] < Hyg(@)(1 + R)(1 + Tp)
tel0,Ty] x€D tel0,Ty] x€D
[x|<R |x|<R

and
EH, (w) < C|Ib" - bk”BE’(l + IIkaI35,)
q By

< C(IB" = bll g + IIb* — bl| o)1+ sup ||
q q

3
ﬁ’ )1
rez, By

where again the constant C does not depend on n, k. Thus for any € > 0 one has

P( sup sup L(n,k,t,x)>¢)
[E[O,T()] x€D
[x| <R

< Ce (6" = bil r + 1B = bll o)1+ sup [ID"I )1+ RL +T0).
q q rez, A

This implies that

lim lim sup sup I,(n,k,t,x) =0 in probability.
n=00 k=00 t0,T,] |xIED
x|<R

To treat I5, we first derive from (5.12) and the definition of u* that forany k € Z,, i = K? 4
V. Hence, together with (5.20), we have

k., k
sup sup Iz(k,t,x)= sup sup |Ktb U (x) = Ki(x)|
te[0,Ty] XED tel0,Ty] x€D
|xI<R |xI<R

< sup sup (JaF(x) — &, ()] + [VE(x) = V(X))
t€[0,Ty] x€D

x|<R
This implies that
lim sup sup I3(k,t,x) =0 in probability. (5.24)
k—c0 tef0,7,] |xleD
x|<R

Finally, combining (5.23)-(5.24) and (5.22), we obtain (5.21).
Step 2. It remains to show (3.8). It follows from Proposition 3.2, that there exists a constant C
such that for every (s,t) € Ao, X ED,n € Z,

1

_B_1
lluy' (%) = V(X)) = Py (ug (X) = VS, 17, < C(E = OEET

Note that we used here that sup, ez, [1B™ ]| 5 < 0 thanks to the definition of convergence in Bf;_.
q

It follows from the mild formulation of u" (recall that u" solves Eq(u; b") with V" in place of V),

ul(x) = VI(x) = Pr_y(ul'(x) = VI(x) = K2 (x) = P_ KD ™ (x).
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Hence, we have

/3 1
b";u b -
IR () = PR (0l i, < CE—9) 4 (5.25)
Putting s = 0, the previous estimate implies that
n.n 1_é_l
& (x)HL <cr T (5.26)

On the other hand, we see from (5.24) that lim,_,, K*"*" =K in Cy.([0,Ty] X D) in probabil-
ity. Hence, by passing to the limit as n — oo in (5.26) and applying Fatou’s lemma, we see that
SUP(; 1)e(0.T, JxD IK;(x)|lz,, < co.By Lemma B.4, we see that P,_K(x) is well-defined as an L,,-

integrable random variable. Furthermore, in view of (5 26) and the convergence of K?"*" to K, we
obtain from Lemma B.5 that for each fixed 0 < LTy, x€D

hm Pt _K (x) P,_(K(x) in probability.

Therefore, we can pass to the limit as n — oo in (5.25) and apply Fatou’s lemma to obtain that

_E_1L
llue (x) = Vi(xX) = Pr_s(us(x) = ViGIIL,, 17, = 1K (%) = Py K (I, 7, < CE = 5) 4,

where we also used the definition of K in (5.20). This implies (3.8). O

5.2 | Proof of Proposition 3.6

In this subsection we will use the following additional notation. Let (S,T) € Ayr,. For a
measurable function Z : Agr XD xQ — R, 7 €[0,1], m > 1 we put

1Zs,: (I,
IZllceor, (s,T) *= sup _— (5.27)

(s)easyxeD =3[

Till the end of the subsection fix the parameters 3, q satisfying the conditions of Proposi-
tion 3.6 and b € Bg . We fix also (u;)se(o,1,]> (Viiefo.r,] € V(3/4), which are as in the statement
of Proposition 3.6.

We define

Y i=w =V, @ =0 =V, zp = u — v =9 — ¢, t€[0,Tg).

Our goal is to prove that z(t) = 0 for all t € [0, T,]. Fix m € [2, o) such that m < q. We see that
(3.12) and the fact that u, v € V(3/4) implies that

[bles/aor,, oo < 000 [Plessaor,, qory) < 00 [@lesrmor,, oy < -
This in turn yields that for any ¢ € [0, Ty] one has
®1> Py € BLy,, (5.28)

where the space BL,, is introduced in (3.5).
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Recall that the process v satisfies condition (2) of Remark 2.7. We fix a sequence of smooth
functions (b,,) which appeared there. For n € Z, introduce the process

t
2@ = [ [ b b V,0) + P OD dydr, (50 € Mg x €D, (529)
N D

Define H, <"(x) in a similar way with ¢; in place of 1 in the right-hand side of (5.29). Note that
the express1ons P;_,1, and P,_, ¢, are well-defined thanks to (5.28) and Lemma B.4.
Our first step in obtaining uniqueness is to pass to the limit as n — oo in (5.29).
Lemma 5.5. Foreach x € D, (s,t) € A 1, there exist random variables H;’ljt(x), Hzt(x), such that
(x) - H¢t(x) H (x) - H¢t(x) in probability as n — oo.

Furthermore, there exists a constant C > 0 such that for any (s, t) € Ay, we have

1
sup IHY (x) — H (0)ll1,, < C(L+To) llzgllg,, (t = 5)7, (5.30)
xe
3
sup IHY () = H (0)ll1,, < C(L+To) (¢ = 5)%. (5.31)
xe

The lemma is proved using the stochastic sewing lemma. We postpone the proof till Section 6.2.
Recall the notation (5.12). Denote K* := 1% — Puy and K" := ¢ — Pu. It follows from Defini-
tion 2.3 and condition (2') of Remark 2.7, that K" (¢, x) - K“(t, x) and K?"(¢, x) » K"(¢, x) in
probability as n — oo for any ¢t € [0,T,], x € D.
Lemma 5.6. For every fixed (s,t) € Ay, x € D we have
P,_ K" (x) = P,_K*(x), P,_K,""(x)— P,_K’(x) in probabilityasn — .

It follows from Lemma 5.5, that we can now define

= (z»bt - Pt—slps - H;pt) - (@t - Pt—s§0s - Hzt)’ (S, t) € AO,TO- (5-32)

The next result is crucial for proving that z = 0 and thus obtaining strong uniqueness.

Lemma5.7. Thereexists§ = 6(,q) € (0,1/2) such that foranyt € (1/2,1] there exists a constant
C = C(T, ||b|IB§, [$lesaor,, oo [#les/aon, o.r,p) Sich that for any (s, 1) € Ao,

1
lys
sup l12:(x) = Pyszs()ll1,, < CIzllcoor,, s + IRl eror,, qs.p)E = )2
xe
+ Clizllcoor,, (sl Log(lZll coor,, (s, (E = $), (5.33)
1
lys
sup IR (COIIz,,, < CUIzllcoor, ispy + IRl ceor,, qs,q)(E — )2
Xe

+ Clizllcoor,, (s, 10gI zll coor,, (s, 1(E = $)- (5.34)
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The proof is presented in Section 6.2, in which we use the stochastic sewing lemma with critical
exponent, Theorem 4.5.

Now we are ready to prove the main result of this subsection: uniqueness of solutions of
equation (1.1).

Proof of Proposition 3.6. Step 1. We show that there exist constants ¢, C such that

1
z; — Pi—sZsllBL,, < Clizllcoor,, (st — 9270+ Clizllcoor,,(1s,en 1 log(llzll coor,, (15, I(E = 5)
(5.35)
for any (s, t) € Ay 7, satisfyingt —s < ¢.
We first observe that ”R”C3/4v0Lm([0,T0]) is finite. Indeed, from (5.32) and (5.31) we see that

IRl 3401, g0 < [Blessor, oy + [@lesaor,, qozypy + 1HY = Hllesaor, oz,
< [¢]C3/4’0Lm([0)T0D + [¢]C3/4’0Lm([0,T0]) + C(l + TO)”b”B; < 00.

Fixnow (S,T) € A 7, . Let & be as in Lemma 5.7. Let us apply Lemma 5.7 with 7 :=1/2 4+ 6 /2.
Dividing both sides of (5.34) by (¢ — 5)/2*9/2 and taking supremum over (s, t) € Ag; we deduce
for some constant

Cy = CAIbl . [Plesaor,, o ro,ron [Plevsor,, qo.ren)

which does not depend on T, S that
s
||R||c1/2+5/2,0Lm([s,T]) < C1(||Z||COsOLm([S,T]) + ||R||c1/2+5/2,0Lm([s,T]))(T —5)2
1 6
+ Cylizlleoor,, qs,rp 1 1og (1121l coor,, s.rp) I(T = S)2 2. (5.36)
)
Let € = ¢(Cy,B8,9) < (1 ATy) be such that C;€2 < % Then for any (S,T) € Ay, such that
T — S < ¢, we derive from (5.36) for C, := 2C; that

1 6
IRl ¢1/2+620, 157y S Callzllcoor,, s,y + Callzllcoor,, (s, 108Ul coor,, (57T = S)2 2.

In the above, we have used the fact that 1/2 + §/2 < 3/4 and hence

”R”CV”‘i/Z*OLm([S,T]) < ”R”C3/4*0Lm([0,To]) is finite.

Substituting this into (5.33), we obtain (5.35).
Step 2. We show that the map ¢ — ||z||g,, is continuous on [0, T,)]. By triangle inequality, we
have for every (s, t) € Ay 7,

z:llL,, = l1zsllBL, | < 120 = 2ZsllBL, < 1120 = Pi—sZsllBL, + 1Pi—s2s = ZsllBL,,-

From (5.35), itis clear thatlim, ||z, — P;_sZ,|lsr,, = 0and limgy, ||z, — P;_yz||g;,, = 0.1t remains
to consider the last term in the above estimate.

Since u = Puy + K* + V and v = Puy + K" + V by definition, we see that z = K* — K. Hence,
it suffices to show that P,_K* — K¥ and P,_(K} — K} converge to 0 in BL,, ast | sand s 1T t. We
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have foreachx e D,ne Z,,

P KM (x) — KT (x) = / / [Di—r(X,¥) = Dy_r(x, )]b"(u, (y))dydr.
0 D

Fix arbitrary € € (0,1). Let us apply Lemma 5.2(iii) with f =b", y =, p=q, S=0, T =35,
T =t—s,6 =¢,7=3/4 We see that condition (5.2) is satisfied and thus we obtain

bn; bn, E
||1P;—sK u(x) - K u(x)”Lm < C(e, Ty, [¢]C3/4‘0Lm([0,T0]))”b”Bf;’(t —5)2,

where we also used the fact that ||b,,|| 5 S [1b]| pr Applying Lemma 5.6 and Fatou’s lemma, we
q q

can pass to the limit as n — oo in the above inequality to obtain by Fatou’s lemma that
€
1P K2 (x) = KE(Ollg,, < (& To, [$]es/sor, oz, DI et = 5)2.
q

This implies that lim ||P,_(K{ — K{|lg;,, =0 as ¢ | s and s 1 t. The convergence of P,_(K{ — K{
to 0 is obtained by exactly the same way.

Step 3. We show by contradiction that z = 0. Suppose that ||z |, is not identically 0 on [0, T, ].
Choose k;, > 1 such that 27% < SUD; 0,7, ] 1z¢|IBz,, - Then for each integer k > k, define

ty = inf{t € [0,To] : llz,llpr,, =27}
It is evident that each f; is well defined. In addition, ||zl <27F for t <t, while

z;, 8L, = 27K by continuity shown in the previous step. Consequently, the sequence {1k,
is strictly decreasing. For k sufficiently large so that ¢, — ;. < ¢, estimate (5.35) with (s, ) =

(tre41, i) yields

1
_ -+6 _
12, = Pro—tyy Zeo 8L, < C27K(t — tie1)? - +C2 Fk(ty = tier)-

On the other hand, by (B.8), |IP;, _y,,, 2, lIst,, <12, |ls1,, =27%"" and hence by triangle
inequality,

”Ztk _Ptk_tk+1ztk+1 ”BLm > ”Ztk”BLm — ||Ptk_tk+lztk+1 ”BLm > o—k-1
It follows that

1
27K < C27R (g — 1141)7 0 + C27Fk(ty — ty4)
which implies that t; —t;,; > C(1 + k)~ for some constant C. This implies that Zk>ko(tk -

tr41) = o0, which is a contradiction because {t, } is a decreasing sequence in [0, Tj]. We conclude
that z = 0, and hence, u = v. O

5.3 | Proof of Proposition 3.8

Let u be a solution to (1.1) and m be arbitrary in [2, o). Since b is a non-negative measure, we
can choose a sequence of smooth bounded non-negative functions (b") which converges to b in
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B(l)_ and ||b”||B(1J < ||b||B(1) (see Lemma A.3). Foreachn € Z,,t € [0,T,],x € D, define

t
K'(x) = /0 /D Pes (6 )" (uy(y))dydr.

By Definition 2.3, we see that K" converges to K in Cy.([0,Ty] X D) in probability. By pass-
ing through a subsequence, we can assume without loss of generality that this convergence is
almost sure. Hence, we can find Q* C Q such that P(Q*) = 1 and that K"(w) converges to K(w)
in Cy([0,Ty] x D) for every w € Q*. Since (t, x,w) - K'(x, ) is non-negative measurable, so
is (t,x,w) — K;(x,w). As a consequence (T,t,x,w) — Pr_,K,(x,w) is well-defined as a non-
negative measurable function. We note that at this stage, we do not rule out the possibility that
Pr_K,(x,w) may take infinite value. We divide the proof into several steps.
Step 1. Fix arbitrary w € Q*. We show that

Pr_K,(x,w) > Pr_jKi(x,w) forevery0 < s <t < T < Tpand x € D. (5.37)

For simplicity, we omit the dependence on w. By definition, we have

t
Py K"(x) = Pr_yK'(x) = / / pr_2 e, )b (u, (7)) dydr
N D

which implies that Pr_,K['(x) > Pr_ K (x) forevery0 < s <t < T < Tpand x € D.In particular,
setting T = t, one gets P,_(K{(x) < K}'(x). Applying this inequality and Fatou’s lemma, we have

P;_Ki(x) < liminf P,_(K{(x) < liminf K'(x) = K,(x).
n n

This shows that P, _(K(x) < K;(x). Applying Pr_, on both sides, we obtain (5.37).
Step 2. Definep = u —V = K + Puy and

t
AL = [ [ b W00+ P 0D dydr, 05 <EST STy x €D,
N D

We claim that

1AL GO, < Clibllole = s/ (538)

Indeed, for each integer j > 1, define z,bf (%) 1= (K(x) A j) + P;ug(x) which belongs to BL,,. We
note that measures belong to B%, which is embedded in Bin/m_l (see (3.6)). Applying Lemma 5.1,
we have

3

< ClIb"lole =51+
Lm

t .
/ / Py (B (V, () + P, pl() dydr
N D

for a universal constant C > 0. By the Lebesgue monotone convergence theorem, we have
lim;_, Pr_sgbg (y) = P,_s¢p5(y) for everyr, s, y. Then by the Lebesgue dominated convergence the-
orem, we see that the left-hand side above converges to ||A£;”(x)|| 1, 8 j — oo. Since [|b"|| B <
||b||;3f1), this implies (5.38).
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Step 3. We show by mean of Theorem 4.7 that for every n € Z,, (s, t) € A, there exist a non-
negative measurable map (x, w) — L”t(x w) and a deterministic finite constant C such that

3
sup L, ()l < C(t —5)3

neZ ,xeD

and
K['(x) = P;_¢K{(x) < C[K;(x) — P;_ (K (x)](t — S)‘31 +Lg,(x) (5.39)

for every (s,t) € Ay, x € D.
Fixx € D, T € [0,T,]. We define

ASTJ(X) = PT—[K[(X) - PT—SKS(X)’ (S, t) € AO,T'

From (5.37), we see that 0 < 4], (x) < K7(x) < oo. It is evident that A is additive, that is 4] (x) =
u(x) + AT [(x) for every s < u < t. Hence, (s, t) — AT[(x) is a random control per Definition 4.6.
Define A (x) as in the previous step and

t
AT (x) 1= / / P (6 YDV, () + 8, () dydr = Py_KP(x).
0 D

Then for u := (s + t)/2 we have

t
5T (x) = / / e e B V() + Pr i) = B'(V,(3) + Pr_abu(y))] dydr.
u D

Applying consequently the Fubini theorem, (C.7), Lemma A.3(iv) and Lemma C.3, we deduce
that

[E45AT ()| =

S,u,t

t
/ / P (6 VE DV, (1) + Py (3)) = V(1) + Py uhu ()] dydlr
u D

t
< / / D1 NGy, o™ et 1Py By (¥) — Praipu )] dydr
u D

t
< C”bn”]s‘(lJ / / pT—r(x’ y)lpr—u¢u(y) - Pr—s¢s(y)|(r - u)—1/2 dydr’
u 4D

where we used the notation p,(x) := Var(V,(x)). Since ¥ = Puy + K, we see that P,_,, —
P._ys = P,_, K, — P,_¢K;. Using the elementary inequality

|Pr—uKu(y) - Pr—sKs(y)l < Pr—ulKu(') - Pu—sKs(')l(y)

and (5.37), we get
t
|ESAT ()] < ClIb" 0 / / Proue DKL) = PucsK I =)™/ dydr
u JD

1
< CIB AL, (O = ).
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As we have shown previously, (s,t) — ASTJ(x) is a random control for every fixed T, x. Hence,
the above estimate verifies condition (4.13). The estimate (5.38) verifies condition (4.3) (with
a, = f, =0 and n = m). It remains to verify condition (4.4). Let IT := {0 = t, t,...,t, = T} be
an arbitrary partition of [0, T]. Denote by |II] its mesh size. Then we have

k-1 k—1 liv1
A=A | < 3 [ [ b el V00 49,00 - D'V, 0) + By, O] dydr
i=0 i/ Jp

For each i, using the fact that b" is Lipschitz, we have

/ | / P BV, 0) + $.0)) = bV, (0) + Py b ()] dydr
t Jp

lit1
<I1B"len / / Prr GOV, — Py_aytb ()] dydr.
t; D

Since ¢ = Puy + K, we have [$,(9) = Pr_y %, 0] = IK,(9) = Pr_ K, 0)] = K,(9) = Pr_y K, ()
where we have used (5.37). Hence, combining with the above estimate and applying (5.37) once
again yield

iyl
/ / Pror DBV, (0) + $.5)) — BV, (0) + Py b ()] dydr

i1
< 1Bl / [Pr_ K, (x) = Pr_ K;,()]dr < [|b"|c1 [Pr—y,, Ky, (X) = Pr_y Ky, ()] (g0 — £7)-
¢

It follows that

k-1
A - ZA[i,li+1

i=0

< Ib"ler Y [Pry,, Ky, (6) = Pr_y Ky, GOty — 1)
i

< ||b| 1 (Kp(x) = PrKo(x)|II],

which converges to 0 a.s. as |ITI| — 0. Thus, condition (4.4) holds.
Applying Theorem 4.7, we have

1
|Pr_K"(x) = Pr_K2(x)| < C[Pr_K,(x) — Pr_yK ()t = 5)2 + BL"(x) + |AL"(x)]

where ||BST’;"(x)||Lm < C|t — s3/* uniformly in T, n, x. To obtain (5.39), it suffices to put T =t,
L}, (x) = B;::l(x) + |A§::l(x)|. Since BT is a functional of AT"(x), measurability of (x, w) — Ly,
follows. The uniform moment estimate for L;t(x) follows from those of BST’;"(x) and Ai;n(x) in
(5.38).

Step 4. We show that lim,_ . P.K]'(x) = P,K;(x) in probability for every t € [0,T],
r €[0,Ty—t] and x € D.

The situation here is similar to Lemma B.5 except for a uniform moment bound for K7'(x). We
replace this condition by estimate (5.39) and the uniform moment bound for L(’)"t(x). Indeed, let
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x € D be fixed and let M > 0 be a positive number. We write

P,K"(x) = / P, (% YKy + / P, (%, )K" (»)dy.
[ylsM ly|>M

Since K' converges to K, uniformly on {y € D : |y| < M}, we see that

/ pr(x, ¥)K['(y)dy converges to / pr(x, y)K,(y)dy as.
lyI<M lylsM

To treat the second term, we first set s = 0 in (5.39) to obtain that
1
IKf DI < Ce2K,(») + Lg (v) as. Vy€D.

It follows that

/ P, VK )y < Ct3 / P, (e K )y + / P YL ()dy.
ly[>M ly|>M ly|>M ’

By the Lebesgue monotone convergence theorem and (5.37), we see that a.s.

Jim [ p KMy = [ p K0y €Kiy () < o0
—00
lylsM D
so that a.s.
Jm pr(x, K (y)dy = 0.
*Jyl>m
Lastly,

E / pr(xe, )Ly, (»)dy < sup |ILg (D)L, ( / pr(x,y)dy>
|y|>M n€Z+,ZED |y|>M

which converges to 0 as M — oo. These facts imply the claim.
Step 5. We define L ,(x) = liminf L"[(x) then by Fatou’s lemma and Step 3, ||Lg,(x)l|z,,

C|t — s|*/* uniformly in x. In (5.39), we send n — oo, applying the convergence in step 4 to obtam
that

K (x) = Pi_K(x) < C(K(x) — Py K (x))(t — $)2 + Ls,l(x)-

This implies that K;(x) — P,_K(x) < 2L, ,(x) for t —s < ¢ and ¢ is such that C¢ 1/2 < -. An
application of L,,-norm yields

1K (x) = P K (1, < 20ILg; (NI, <2C|t—s|3/*

for every t — s < ¢. Using the identity K, — P,_,K = ¢; — P;_;, once again and recalling that
¥ = u — V, the above estimate shows that u — V belongs to C>/*°L,, ([S, T]). This completes the
proof of Proposition 3.8.
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6 | PROOFS OF REGULARITY LEMMAS

In this section, we present the proofs of Lemmas 5.1, 5.2, 5.5, 5.6 and 5.7. Throughout the section,
we fix the filtration ()50, which appears in the aforementioned lemmas.

6.1 | Proofof Lemmas 5.1 and 5.2

We begin with the following auxiliary result, which will be crucial also for the proof of Propo-
sition 5.7. The proof relies on the stochastic sewing lemma (Theorem 4.1) and the estimates in
Lemma C.3 and Lemma C.4.

Lemma 6.1. Let 0 S<KT. Let y €(—2,0), m € [2,00), n € [m,00] and p € [n,00]. Let h :
R X [S,T] x D x Q — R be a globally bounded measurable function. Let X : [S,T] XD — R be a
measurable function. Suppose further that the following conditions hold:

1) forany fixed (z,r,x) € R X [S,T] X D the random variable h(z, r, x) is Fs-measurable;
2) there exists a constant 'y, > 0 such that

sup [ [AC,r, )z |, < Ths (6.1)
(r,x)€[S,T1xD p

3) there exist constants Ty > 0, v € [0, %) such that for everyr € [S,T],x € D

/ X, (0)ldy < Ty (T — 1)~ (62)
D

Then there exists a constant C = C(y, m, n, p) which does not depend on S, T, 'y, Ty, h, K such that
foranyt € [S,T]

Proof. The proofis based on the stochastic sewing lemma, Theorem 4.1. Weputfor S < s <t < T,

r_1
SCT,Tx(T=S)"(t—5) 4w,  (63)
L,

t
//Xr(y)h(vr(y)ar’y)dydr
S JD

Lin|Fs

t
Ay = B / / X, ()h(V, (). r,y) dydr.
N D
Put also for (¢t,x) € [0,T] x D

t
Al = / / Xr(y)h(vr(y)’ rY, C()) dydr
S JD

Note that the integral in the left-hand side of inequality (6.3) is just A; — Ag.
Let us verify that all the conditions of Theorem 4.1 are satisfied. Forany S<s<t < T, u :=
(s +t)/2 we have

t t
5A, ;= E° / / X, (Dh(V, (), . y) dydr — EX / / X, )RV, (), r,y) dydr.
u D u D
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Therefore ES0 Ay, , = 0 and thus condition (4.2) holds.
Further, it is easy to see by the conditional Jensen’s inequality and Minkowski’s integral
inequality thatforanyx € D,S<s<t<Tandu :=(s+1)/2

t
164,01l <2 [E¥ / / X, ()R(V, (v, r, ) dydr
u JD

(6.4)
Now for fixed r € [u,t], y € D we apply bound (C.8) to the function f : (z,w) — h(z,r,y,w)
which is B(R) ® Fg-measurable. We get

14 _L X
IE*A(V,(0), 1, PlIL,, < CIIAC, 7, Pl g7 Iz, (r = )+ (u = S) 2 (r = S)*

14 _1
<Cl ”h(',r’y)”B;”Ln(r_u)4(u_S) 0, (6.5)

where the last inequality follows because r — S < 2(u — S). Substituting (6.5) into (6.4) and using
(6.1), (6.2), we obtain that

Y
)1+Z

1
16AsuellL, < CTpIx(u—S) (T —u)™"(t —u

where the last inequality follows from (B.7). From the assumptions v € (0,1/2),y > =2, p > 2,we
see that condition (4.7) holds with &, = 1/(4p) < 1/2,5, =v <1/2,e, =1/2 + y/4 > 0. Hence,
by Remark 4.3 inequality (4.3) is satisfied.

Finally, let us check condition (4.4). Let IT := {S = t;, t1, ..., t; = t} be an arbitrary partition
of [S,t]. Denote by [TI| its mesh size. Note that for any i € [0,k — 1] we have E; (A, — A, —
Ayy)=0and A, | — A, — Ay, is Ty, -measurable. Therefore, A, — Zi.:ol Ay p,, Isasum
of martingale differences. Then using orthogonality,

lit1
/ (T—r)dr
t.

k—1 2 2
A= D A
i=0 i

k-1 k-1
2
= Z ||Ati+1 - 'A'[i - Ativti+1“L2 S C”h”LwFX Z <
i=0 i=0

Lit1
/ (T—-r)"dr
t

i

L,

< Cllhll, Tx(T —S$)'™” max
0 i=0..(k—1)

< Cllhll Tx(T = $)' 7|1~

Therefore, Zi:ol Ay, 1,,, converges to A, in probability as |TI| — oo and thus condition (4.4) holds.
Thus, all the conditions of Theorem 4.1 are satisfied. Hence, by inequality (4.5), taking into
account (B.7) and (3.2) we have forany ¢t € [S,T],x € D

1

1+l—
A = Asllz,,i7sllz, < IAsllz, + CTRIx(T =877 (= S) + . (6.6)

Applying (C.9) to the function f : (z,w) — h(z,r,y,w), we get
t
s, < [ [ O IERV, 00l dydr
s Jp

! r_1
< C/ / X1 ||h(',",y)||;3;||L,,(" —S)* “ dydr
S D

1

N +l-=
SCOITX(T =877 —=S) + *,

t
< / / 15, OIE“RCV, (), )l dydr.
Ln u D
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where in the last inequality we made use of (6.1), (6.2) and (B.7). Combining this with (6.6), we
finally obtain (6.3). O

An important consequence of Lemma 6.1 is the following statement.

Corollary 6.2. Let f € BZ, be a bounded function, y € (—2,0), m € [2, ), p € [m, x].
(i) LetX : [0,T] X D - R be a measurable function satisfying (6.2) for some T'x > 0, v € [0, %).

Then there exists a constant C = C(y, m, p,v) such that forany0 < s < t < T and any B(R) ®
Fs-measurable function x € BL,,, one has

|

(ii) Let A € (0,1] and assume that

v L
<CIf g DT =) =s) 450,
LP

t
/ / X, (0 F(V, () + P,_ox(y)) dydr
N D

Lin|Fs
(6.7)

y> -2+ (6.8)

Then there exists a constant C = C(y,A,m, p) such that for any 0 < s <t <T; and any
B(R) @ Fy-measurable functions x,,x, € BL,, one has

t
sup | [ [ b1 W0+ P = FV,0) + P -eso)lr
x€eD s D L
3 142 L
< CIIfIIB;IIM —1ollg, (E=5)  + . (6.9)
(iii) LetA,A;, A, € (0,1]. Assume that (6.8) holds and that
y> =2+ +4,. (6.10)

Then there exists a constant C = C(y,A,41,1,, p) such that for any 0 < s<u <t <1, any
B(R) ® F, measurable functions x;, x, € BL,,, any B(R) ® F,, measurable functionsxs,x, €
BL,, one has

sup
xeD

t
/ / Pro DV ) + Proain ) = FV, ) + Pyara(3))
u D

—fV, )+ Pr_yx3(0) + f(V,.(y) + Pr—uK4(y))] dr

Ly

y=A1—4y 1

A A 1+
< Clfllg, sup M) = 13D, 7 I ke —xallgy, (E—w) 4 @ (6.11)
Ye

y—A 1

1 1+2
+CI Sl ey =72 =73 +xallg (E—w) + .

Proof. The results are obtained by choosing suitable n, K and h in Lemma 6.1. In what follows, we
fix0 < s <u <t <Tand xin D. We note that the expressions P,x;(y), i = 1, ..,4 are well defined
thanks to Lemma B.4 and the assumption x; € BL,,,.
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®

(ii)

(iii)

Wetaken = p, h(z,r,y,w) := f(z + P,_[x(-,w)](y)), wherez € R,r € [s,t],y € D,w € Q.
Let us verify that h satisfies all the assumptions of Lemma 6.1 with s in place of S. Since x
is F;-measurable, we see that the random variable h(z,r, x) is F; measurable and the first
assumption of Lemma 6.1 holds. It follows from (A.4) that

”f( + Pr—sk(y))”B}’) < “f”Bz

Hence (6.1) holdswith T, := || f]] B Thus all the conditions of Lemma 6.1 are met. Now (6.7)

follows directly from inequality (6.3).
We fix x € D, choose n =m and X,(y) := pr_.(x,y). Let us apply Lemma 6.1 for the
function

h:(zrywe f(z+P_x(Q) - fz+P_3:0), z€R,relst],y€eD,weQ.

It is easy to see that (6.2) is satisfied with 'y = 1 and v = 0. Let us verify that h satisfies all
the assumptions of Lemma 6.1 with s in place of S. The first assumption clearly holds. To
check the second assumption, we note that (A.5) implies

”f( + Pr—skl(y)) - f( + Pr—sKZ(y))”BZ*A < ”f”b’z |Pr—sK1(y) - Pr—sKZ(y)lﬂ-
Therefore,
Il IIh(-,V,y)IIB;—AIILm < ”f”B;”Pr—s‘Kl(y) —Pr—us(Y)llfm

A
< Il sup Nl (2) — (2N = I1F Nl llxr — KzIIBL ,
P zeD " p

where in the first inequality we used the fact that |||£|*|] Ly, S 1€ ||/1 for any random variable
& and 1 € (0, 1]; the second inequality follows from (B. 8) the third inequality follows from
the definition of the norm || - ||g;, , see (3.5). Thus, inequality (6.1) is satisfied with ', :=
£ B, I — lel’éLm. Thus all the conditions of Lemma 6.1 are met. Bound (6.9) follows now
from (6.3) and (3.2).

We fix x € D, choose n = m, X,(y) := pr_,(x,y) and

h(z,r,y,w) := f(z + P,_,x:(¥)) — f(z + Pr_y15(¥))
- f(Z + Pr—uKS(y)) + f(Z + [Pr—u(KS +x — Kl)](y))»

wherez € R,r € [u,t],y € D,w € Q. Let us verify h satisfies the assumptions of Lemma 6.1
with u in place of S.

Again, it is easy to see that the first and the third conditions of Lemma 6.1 are satisfied
with T'y = 1 and v = 0. To check the second condition, we note that (A.6) yields

AC,r N rinte <l 1Pr-wr ) = Proaio I 1P ) = Proares )12

Using the fact that the functions x; and x, are F;-measurable, we derive from the above
bound

EllA., ry)n Y-, = EECIIRC, ry)ll

85UB017 SUOWIWOD 8A1I8.1D) 3|dedl|dde ays A peueAob afe saoile YO ‘8Sn JO'Sa|nJ 10} Akeid18UlUQ AB]I/ UO (SUOIPUOD-pUe-SWBI WD A8 |IMAIq 1 Bul JUo//:SANy) SUONIPUOD pue swie | 81 88S *[£202/ZT/T0] Uo A%iqiaulluo A8|IM ‘8L Aq 25TZZedd/Z00T 0T/10p/w0d A8 |im Areiq1ut|uoy/sdny woly papeojumod ‘0 ‘ZTE0L60T



46 ATHREYA ET AL.

< ”f”Zy E [lPr—uKI(y) - Pr—uKZ(.V)lm/ll Eslpr—u(Kl(y)) - Pr—uK3(y)|m/12]
14

< ”f”zy ” Eslpr—ukl(y) - Pr—uK3(y)|m/12 ”Loo E [lPr—ukl(y) - Pr—uKZ(y)|m/11]
P

A A

<A Pl = 1Oz 7 722 1Pr—lies = 1]

p

ma ma
<A sup e () = k3L, 7, 1l e = xollgy -
p yeD * m

Here in the penultimate inequality we used the fact that ES[|£|*] < (ES|¢|)* for any random
variable £ and A € (0,1], s > 0; in the last inequality we applied bound (B.8).
Thus, inequality (6.1) is satisfied with

. A y!
T 2= £z sup e, (0) = 13, 17, 117 Ml — 2l
pyED 00 m

Bound (6.11) follows now from Lemma 6.1 and part 6.2 of the Corollary.
[

Proof of Lemma 5.1. In Corollary 6.2 we choose X, (y) = Pr_,(x, ). In this case, condition (6.2) is
satisfied with I'y = 1 and v = 0. Hence the estimates (6.7) and (3.2) imply (5.1). O

To establish Lemma 5.2, we need the following result.

Lemma 6.3. Assume that all the conditions of Lemma 5.2 are satisfied. Let X : [0,T]| XD — R
be a measurable function satisfying (6.2) for some T'y > 0, v € [0, %). Then there exists a constant

C =C(y, p,t,m,n) > 0such that forany S € [0,T]

T

/ / X, 0F(V, ) + %) dydr -
S D

1+5(—=
<CIfllgTx(@ =8) =+
Ln

L |rS

3.1

2le=D)t—v
+Clflls Dx[$lewor,, qsonT = S)* 47 2

(6.12)
Proof. The proof of the lemma is based on the Stochastic Sewing lemma (Theorem 4.1),
Corollary 6.2 and dominated convergence arguments.

We can assume without loss of generality that [ ]c.0 Ly a([8.T]) < ©0. Indeed, otherwise the right-
hand side of (6.12) is infinite. Therefore, recalling (3.2), we have [$]cror, (s,)) < 0. Thus for any
s € [S,T] we have

s € BLy,. (6.13)

Step 1. Assume first that f € Cl.Fix0< S < Tandputfor(s,t) € A T
b p S,

t
Ay o= / /D X, WV, () + Pr_sby(y)) dydr.
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Note that the expression P,_ () is well-defined thanks to Lemma B.4 and (6.13). Set now

t
- / / X, 0V, ) + % 0))dydr.
S D

It is easy to see that the integral in the left-hand side of inequality (6.12) is A — Ag. Let us verify
that all the conditions of Theorem 4.1 are satisfied.
Clearly, forany S < s <u <t < T we get

t
5, = / / X, LF Vo 0) + Prsbs)) = FVo () + Py O))] dydr.
u D

For fixed S < s <u <r < T,y € D introduce a function b, , : RXxQ — R

hr,y D (z,w) = f(z 4+ Pr_shs(0) — f(z + Pr_ypu (V).

Note that for fixed non-random parameters the random variable h, ,(z) is F,,-measurable. Hence,
applying (C.9) with u, r in place of s, t, respectively, we deduce

|E*6 A | =

/ / X, (9)Ehy y(V,(y)) dydr
/ s O =) T dyr

t _lyr 1
<C|IfIIB;/ /IXr(y)I(r— w) 4 WES|P,_ () — Pr_yu(y)| dydr,
u D

where the last inequality follows from (A.5) with 4 = 1. Applying the integral Minkowski
inequality, we derive

! _lyr 1
IE*SAsucllz, < Cllfll, / / X I —w) 4 ||ES P () — Pr_y ()] I, dydr.
D
! (6.14)
Using the fact that for any s > 0 and random variable £ one has E*|§| < [|€]|.,,», We deduce for

anyy € D,

” ES|Pr—s¢s(J’) - Pr—ulnbu(y)l ”Ln = “ Esl[Pr—u(Pu—szps - lpu)](y)l”L,,
< ||||[Pr—u(Pu—s¢s - l:bu)](y)”Lmﬂ”S ”Ln
< Slelg Py—stps(2) — ¢u(z)|rs”Lm ”Ln

< [$levor,, ,qsrp — )7,
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where the penultimate inequality follows from (B.8), and in the last inequality we used the
definition of the seminorm [-]¢czor, , (s,7) given in (3.3). Substituting this into (6.14), we obtain

1
_lyr_

t 1
IE*0 Az, < Clifllg, [$]ceor,, s — S)T/ / IX,WDI(r —u) * 4 * dydr
u JD

y 1

3
Stio—4r
S Cl Sl Txlezor, ,qsmpT —w) 7t =)+

where the last inequality follows from assumption (6.2) and inequality (B.7). Since, by assump-
tion, y/4 — 1/(4p) + T > 1/4, we see that condition (4.2) of Theorem 4.1 holds with a; = 0, 8; =
v<1/2,e,=y/4—1/(4p)+Tt—-1/4> 0.

Now we move on to the verification of condition (4.3). Applying Corollary 6.2 to the function
k := 1, we deduce that for any (s, t) € Ag r

y 1

_ 1+ —
I As Mz, 17z, < AL, 7 M, < CIFILy Tx (T = )77 —5) ¢ . (6.15)

This induces that for any (s, ) € Agr and u € [s, t] one has

B FRAE
NS AsuillL,, 17 llz, < CIfplx(T —u)™> (¢ —5) + 4.

Since y — s by assumption, we see that condition (4.3) holds with o, =0, 3, = v < 1/2,
p
& =1/2+y/4—1/(4p) > 0.

Finally, let us check condition (4.4). Let IT := {S = t;, t1, ..., t}, = t} be an arbitrary partition of
[S,t]. Denote by |II] its mesh size. Note that contrary to the proof of Lemma 6.1, we cannot use
here the orthogonality because the sum Z;:;(Atm — Ay, — Ay ) is nOt a sum of martingale
differences. Indeed, in contrast to the proof of Lemma 6.1, E; (A;,,, — A;,) # A, 4, - Nevertheless,
we have

k=1 k=1t
A — Z At < Z / X ”f(Vr(y) +9.0)) - fF(V,(») + Pr—fi¢fi(y))||Lm dydr
i=0 i=0o/t; JD

m

< CTx( + DI fllcr[Plecor, s, I T

This verifies condition (4.4).
We see that for f € C; all the conditions of Theorem 4.1 are satisfied. Thus, by (4.5), taking into
account (4.1), we have

141 (y—2)—v
A7 — Asllz, 7z, < WAs Tz, 7z, + C||f||BZFX(T -8) ¢ p

3 0y 1

-+ -——+T=V
+WN%HWb%mmmU—$44“
which together with (6.15) implies (6.12).
Step 2. Let f be a bounded continuous function. For each integer k > 1, define f¥ = G, Ik
Then {f*} is a sequence of bounded continuous functions such that sup, IIf o B, < |IfIl B, (see
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Lemma A.3) and lim;, f¥(z) = f(z) for every z € R. We apply (6.12) for f* to get

T
/ / X, WV, 0) + 9, ()dydr
S D

sup
xeb LmlrS Ly
Kk 142 (=)=
<Clf ||Bgl“x(T -S5) +°
E-i-l(y—l)+r—v
+ C”fk”/g; Tx[$leror,, ,qsop(T —S)* 47 » .

We now send k — oo, using the dominated convergence theorem and the properties of the
sequence {f¥} described previously to obtain (6.12) for the function f. O

Now we can finally give the proof of Lemma 5.2.

Proof of Lemma 5.2. The result follows immediately from Lemma 6.3 and (3.2) by choosing
appropriate kernel X.

In part (i), we choose X, (y) = pr_,(x, y) which satisfies condition (6.2) with v = 0and I'y = 1.

In part (ii), we choose X, () = pr_;(x1,¥) — pr—(x,,¥), n = m. In this case, thanks to (C.2),
condition (6.2) holds with v = §/2 and Ty = C|x; — x,|°.

In part (iii), we choose X,(y) = pry7—_(x,¥) — pr_.(x,y), n = m. In this case, thanks to (C.4),
condition (6.2) holds with v = §/2 and T'y = CT9%/2. O

6.2 | Proofof Lemmas5.5,5.6 and 5.7
Now let us move to the proof of the key lemmas needed for the uniqueness proof.

Proof of Lemma 5.5. Fixx € D, (s,t) € Ay r,, ' € (—2,5). Foranyk,l € Z, we apply Corollary 6.2
with f =b, —b,y=8,p=¢q, T =t,X,(y) = pi_(x,y), [x =1,v =0, ¥ = §h;. Note that ¢, €
BL,, by (5.28). Recalling (3.2), we get that there exists a constant C > 0 independent of k, [ such
that

I, k,
1H Y () = H P (Ollz,, < €A+ To)llby = bill -
q

!
Since the sequence (b,,) converges in B’ , we see that the right-hand side of the above inequality
tends to 0 as n, k — oo0. Hence the sequence of random variables (Hi’;p(x))keL is Cauchy in L,,.
Thus this sequence converges in L,, (and hence in probability). We denote its limit by H;pt ().

By exactly the same argument, we see that the sequence (H f fo (X))kez, converges in probability
to a limit which we denote by Hzt(x). Now, applying the Fatou’s lemma we derive for each x € D,
(5,0) € Ag1,, A €[0,1]

.. k, k,
IHS, () = HY (O, < liminf 1H Y (o) = Hf (I,

-

1 1
< C sup [Ibll llhs — sl (E—s) *+ 4 4,
kez, q m
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where the second inequality follows from Corollary 6.2 with f =b,, y =8, p =q, ¥1 = @s,
%, = 3. Taking into account that by assumption SUPycz, 1D |l 5 <0 and B —1/q > -1, we
q

obtain
P H? p) 34
”H [(x) S,t(x)”Lm < C(l + TO)HI;DS - ¢S”BLm(t - S)4 4.
Now by taking 4 = 1 in this bound we get (5.30), and by taking 4 = 0 we get (5.31). O

Proofof Lemma 5.6. Since u belongs to V(3/4) and sup,, ||b, “135 < o0, we obtain from Lemma 5.2(i)
q
that

bp;
Sug ”KS u(x)”Lm < C(l + [¢]C3/4’0Lm([OvTOD)(1 + To)
XE

Therefore for any fixed x € D the sequence (Kf";u (X))nez, is uniformly integrable. Recalling that

Kf ""(x) converges to K¥(x) in probability, we get
K2 () = K4(x)ll, — 0 asn — co.

Thus,

1P K" (x) = Pr_KY ()L, =

Prs (6, K () — K2()) dy
D

Ly
by;
< / Pros e MIKE™ () = KX )L, dy = 0,
D

by the dominated convergence theorem (here we once again made use of (6.2)). Thus,
P,_K “ “(x) = P,_{K*(x)in probability as n — co. The convergence of P,_ K " “(x) to P,_;K¥(x)
in probablhty is obtained by exactly the same argument. O

Proof of Lemma 5.7. The proof is based on the stochastic sewing lemma with critical exponent,
Theorem 4.5. Let us verify that all the conditions of this theorem are satisfied. A key tool for
the verification will be Corollary 6.2. Fix 0< S < T, x € D, T > 1/2. Recall that we are given a
sequence of smooth functions (by)xez, such that by — b in Bg_ and ||bg|| S [1b]| 5 for any
kez,. ! !

We put for (s,t) € Agr,x €D, ke Z,

t
A;iz ‘= / -/DpT—r(x’ y) [bk(Vr(y) + Pr—s¢s(y)) - bk(Vr(y) + Pr—s¢s(y))] dydr

We note that P,_ () and P,_;p,(y) are well-defined thanks to Lemma B.4 and (5.28).
Put for (¢,x) € [S,T] XD

t
Af = / / pr—r 6, WbV, () + %,(0)) — b (V. (») + @,(»))] dydr.
S D

From now on we fix k € Z,, and will drop the superindex k in A¥ and .A¥.
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Let us verify that all the conditions of Theorem 4.5 are satisfied. We getforany S < s <u <t <
T

t
5A, ;= / /D 1o e [Be(Vy ) + Py 0)) = be(V, () + Prsps ()

- bk(Vr(y) + Pr—uwu(y)) + bk(Vr(y) + Pr—ugou(y))] dyd}".

We begin by verifying (4.2). For fixed S < s <u <r < T, y € D introduce functions h, 1, , :
RxQ—->R

hr,y : (Z’ CO) = bk(z + Pr—sd’s()’)) - bk(z + Pr—s@s()"))
—bi(z + Py, () + b(z + Pr_y by (¥) + Pr_s05(¥) — Pr_sths(»));

lr,y 1 (z2,0) P br(z + Pr_y 9y (¥)) — bi(z + Pr_y 9y (¥) + Pr_sps(¥) — Pr_hs ().

Clearly, for fixed non-random parameters the random variables h, ,(2), I, ,(z) are F,,-measurable.
Hence, by (C.9) with u, r in place of s, t, respectively, we deduce for any A € [0, 1]

t
ES6A, | = B / / Py G YTy (Vo) + 1y (V. ()] dydr
uJD

‘ poia_1 11
<c/[/ pT_,<x,y)l<r—u) T RE Nyl g + =)+ E Nl g | dyar.
uJD q 4

(6.16)
We see that by (A.6) and (B.8)
Es”l’lr,yllBg—l—/1 < ”bknt |Pr—s¢s(y) - Pr—sqos(y)ll ES|Pr—s¢s(y) - Pr—u¢u(y)|
< “bk”Bé? |Pr—szs(y)|/1 I Eslpr—slxbs(y) - Pr—u‘l:bu(y)l ”Lw
< IIka|,3§IPr—sZs(y)I’1 sup 1Py—ss(2) = Yu (@l 7L,
z
3
< ||bk||,3/§ [¢]C3/440me([0,T0])|Pr—szs(y)|/1(t — )4,
This, (B.8) and the fact that ||b, ||B,3 < ||b||B/3 imply
q q
3
VE iyl gs-s-ill,, < BN lesnon,, oaphelong, s,y @ = 9)°- 6.17)

In a similar manner, by (A.5) and (B.8) we see that

IIESIIlr,yIIB;qs—l llz,, < IlkaIBgllPr—uZu(y) =Pz WL, < IIbIIBg sup lz,(¥) = Pu—szsMlL,,-
ye

(6.18)
Thus,
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NES Nyl g1 llr,, < 1IDI 4 (sup [l (¥) — Pu—s@s(WI,,, +sup 19 (y) — Pu—sps(Wi,,)
q 9 yeD YED
3
< ||b||quf([¢]c3/4.0Lm([s,T]) + [plesraor, (st —8)4

3
< “b”b’g([¢]C3/4’0Lm,oo([0;T0]) + [¢]C3/4’0Lm([S,T]))(t —5)4.

Substituting this together with (6.17) into (6.16) and taking A = 0, we obtain

5
| Es5As,u,z||Lm < C(To, ||b||,3§, [¢]c3/4,0me([o,T0])’ [¢]C3/4’0me([0,T0]))(t —5)4,

where we used the fact that, by assumptions, § > —1 + 1/q. Thus, condition (4.2) holds.
Now let us verify (4.3). Fix € € (0,1 + 3). Let us apply Corollary 6.2(iii) with f = by, y = 6,
p=q,ly=A1=1landA, =f+1—cand

Ky 1= Py, Ky 1= Py_@s, K3 1=y, Ky i= Py

One can see that the functions x; and x, are 98(R) X F; measurable, and the functions %3 and
x4 are B(R) X F,, measurable, exactly as required by the conditions of Corollary 6.2(iii). Further,
we see that x; € BL,,, i = 1, .., 4, thanks to (5.28) and (B.8). Finally, conditions (6.8) and (6.10) are
satisfied thanks to our choice of 4, 1,, 4,. Therefore all the conditions of Corollary 6.2(iii) are met.
Recall the notation z : = 1 — ¢ and note that by (B.8)

lle1 — x2llB, < lZsllBL, < NZllcoor, (.75

sug 171 () = 3L, 7 e < [$lesaor,, qorop — u)*/4
ye ’

and

P ¢
llxy — %3 — %3 + )4llBL,, < 120 — Pu—sZsllBL,, < IRsullBL, + 1Hgy — HyullBL,,

1
S IRl ¢wor,, sy (t = W) + Clibll g lIzllcoor,, 5.7y (t — )2,

where the last inequality follows from (5.30) and the definition of the norm || - [|¢zor, (s5,7]) given

in (5.27). Substituting all this into (6.11) and using the fact that ||by|| 5 S 16]| 56> one gets
q q

y+i—e PR
1845, < Cllbil o Nzllcoon, s W1y o =0+ 47

1
+ Clibil g IRl cwo,, (e = )3
+ Cllbiell 161l el coor, st = ),

and hence

1
s
16 A0l < C(To, ||b||B§, [¢]c3/4>0Lm,m([0,T0])) (Izllcoor, (s + IRl ceor,,qs.0p) (€ — DB
(6.19)
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¥_1_ HA L Since
4 4q 2 2

B > —1+1/(3q), we see that there exists ¢ = (3, ) > 0 small enough such that § > 0. From now
on till the end of the proof we fix such ¢. Then (6.19) implies that condition (4.3) is satisfied.

Now let us check (4.4). We have

where we have also used that S —1/q > —1 and we put § := (% +

k-1
A _Z Ati-fi+1
i=0

k=1 oty
< Z / / pT—r(x’ y)“bk(Vr(y) + lpr(y)) - bk(Vr(y) + Pr—t,-z)bti (y))”Ll dydr
L, =074 D

k=1 ity
+ 3 [ ] bV )+ 000 = B0+ B O, dyer
i=0/t; 4D

The right-hand side can be further estimated by

k-1 i1
lbier 3, [ [ 1o G )00 = Proa O, + 1) = Py 2, 01,y
i=0“t JD
< CTOku||Cl([¢]c3/4»0Lm([0,T0]) + [¢]C3/4v°Lm([O,T0]))|H|3/4'

This implies that | A, — Zi:ol Ay, 1., | converges to 0 in L, as k — co. Hence (4.4) holds.
Finally, let us check (4.11). Substituting (6.17) and (6.18) into (6.16) and taking 1 = 1, we obtain

|| EsaAs,u,z ”Lm < C(l + To)”b“,gg [¢]c3/4,0me([o,T0])||Z||COYOL,,,([S,T])('? - S)
1
+ C+ To)lIbll 5 (t — 5)2 (sup IRy @)l + sup [ HL, () — HL, DI
q yeD yeD
<C+ To)llbllBg(l + [Plessor, qorolIZllcoor,, st = 5)
1
+ CA+Tolbll g IRllewor, s = 92",

where the last inequality follows from (5.30). Recalling that, by assumptions, we have 7 > 1/2, we
see that (4.11) holds.
Thus all the conditions of Theorem 4.5 are met. We deduce from (4.12)

IAY = AS = A% LI, < Clizlicoor,, sy + 110g |zl oo, .27y (T = S)
1
-+d
+ C(lzllcoor,, s, + IRl cror,,qs,rp)(T — S)2+

1
+ ClIRll¢wor,, qs.rp(T = 8)2 "

< Clizllcoor,, (s,rpl log 1zl coor,, (5,7 I(T = S)
1
lis
+ C(lizllcoor,, (s, + IRl oz, qs,rp)(T — $)2", (6.20)

where C = C(T, ||b||B;3, [$lcsraor,, (o T T ) is independent of x, S, T.
q m,co s
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Now let us pass to the limit in (6.20) as k — oo. Recall the notation K5 introduced in (5.12).
Then it is easy to see that

Al — Al = K00 = KO0 = P[R9 - K| (0.
Applying Lemma 5.6 and Lemma 5.5 we can conclude that
Jim Ak — A% = A% = 20(0) = Pr_szs(0) — (HEp (0 = HE1(0)) = Rop(),

in probability. Inequality (5.34) follows now from (6.20) by Fatou’s lemma. Inequality (5.33)
follows immediately from (5.34) and (5.30). O
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APPENDIX A: USEFUL RESULTS ON BESOV SPACES

We
For

give a brief summary on nonhomogeneous Besov space which is sufficient for our purpose.
a more detailed account on the topic, we refer to [2, Chapter 2]. Let ¢, @w be the radial func-

tions which are given by [2, Proposition 2.10]. We note that ¢ is supported on a ball while @ is
supported on an annulus. Let h_; and h respectively be the inverse Fourier transform of ¢ and w.

The

nonhomogeneous dyadic blocks A; are defined by

AL = /[R hoAM)fC—y)dy and Af = /R RO —y)dy for >0,

where h;(y) = 2/h(27y), j > 0.
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Definition A.1. Lety € R and 1 < p < o. The nonhomogeneous Besov space Bi’, = BZ’W(IR)
consists of all tempered distributions f such that

IIfIIB; .= sup 2J'VIIAijILp(R) < 0.
jz-1

For a distribution f in /3), we note that A ; ;if is a smooth function for each j > —1. In addition,
the Fourier transform of A_, f is supported on a ball B while for j > 1 the Fourier transform of
A;f is supported on the annulus 2/ N' € 2/ B for some annulus N

To obtain various properties of Besov spaces, we will make use of the following Bernstein’s
inequalities. Let f be a function in L,(R). For every integer k > 0, every 4 > 0 and ¢ > 0 we have

SuppFf C AB=> ”ka”LP(R) < Ck+1/1k||f||Lp(R), (A1)
Supp Ff CAN = |G fllL,®) < et 1z, @) (A.2)
Supp Ff CAB= |G f = fllL,m) < CUA* A DIz, m) (A.3)

where F f denotes the Fourier transform of f. We refer to [2, Lemmas 2.1 and 2.4] for proofs of
(A.1) and (A.2). For a proof of (A.3), we refer to [41, Lemma 4].

Lemma A.2. Let f be a tempered distributionon R, y € R, p € [1, o0]. Then forany a, a;,a,,a3 €
R, a,a;,a, € [0,1] one has

IfGa+ Mg = 1l (A4)
lf(ay +-)— fla; + -)IIB; <Cla; — azl“llfll,;;ﬂx, (A.5)
and

lf(a; +-)—=flaz+-)—flaz +)+f(laz+a,—a; + ‘)||;3; <Cla; — a2|°‘1|a1—a3|“2||f||B;+al+a2_

(A.6)
Proof. Since ||A;f(a + ')“Lp(R) = ||Ajf(')||Lp(R), (A.4) follows from Definition A.1.
For each j > —1, applying mean value theorem and (A.1), we have
14;(f(ar + ) = flaz + D, w) < Clay - azlzjllAjf“Lp([R)-
By triangle inequality, it is evident that
14;(f(ar + ) = flaz + Dl w) < 208 fllz,®w):

Hence, by interpolation, we obtain

14;(f(ar + ) = flaz + Dz, @) < Clay = az 1“2 1A f L, w)- (A.7)

In view of Definition A.1, we multiply both sides with 2/7 and take supremum over j > —1 to
obtain (A.5).

85UB017 SUOWIWOD 8A1I8.1D) 3|dedl|dde ays A peueAob afe saoile YO ‘8Sn JO'Sa|nJ 10} Akeid18UlUQ AB]I/ UO (SUOIPUOD-pUe-SWBI WD A8 |IMAIq 1 Bul JUo//:SANy) SUONIPUOD pue swie | 81 88S *[£202/ZT/T0] Uo A%iqiaulluo A8|IM ‘8L Aq 25TZZedd/Z00T 0T/10p/w0d A8 |im Areiq1ut|uoy/sdny woly papeojumod ‘0 ‘ZTE0L60T



58 | ATHREYA ET AL.

Similarly, using mean value theorem and (A.1), we have
1A;(f(ay+-) —flaz+-) —fazs + ) +f(az + a,—a; + '))||LP(R)<C|al—az||al—a3|22j||Ajf||Lp(R)
and
14;(fla1 + ) = flaa + ) = flas + ) + flas + @ — a1 + ), w)
< Cmin(l, |a; — a,|2/, |ag — a3|2j)||Ajf“Lp(R)-
Interpolating between these inequalities, we obtain
14;(flar + ) = flaz + ) = flas + ) + flaz + a2 — a1 + I, w)
< Cla; — ax|t]a; — a3|a22j(a1+a2)”Ajf”Lp(R)-

We multiply both sides with 2/7 and take supremum over j > —1 to obtain (A.6). O

Lemma A.3. Forevery f in B, y €R, p €[1, c0], we have

4
(i) provided thaty < 0, ||G[f||Lp(R) < Cyllfll,sly)tz forallt > 0;

(i) lim;_,(G,f = fin B; foreveryy <vy;
(iii) sup,,, IG:f1l 5, < IIf I, and

1 1
(iv) provided thaty =+ < 0,IG,fller < Cllfll >+ forallt > 0.

Proof. (i) Fix y < 0. We have by (A.2) that there exists some constant ¢ > 0 such that for every
Jj=0

o o
1G (ANl ) < Cem 7 NA; Sl @) < Ce™ 27|11l 5
For j = —1, we use the trivial bounds
1G(A_1 P,y < NAfllz,®) € C||f||13;-

Since G;(A; f) = Aj(G.f), we have

2 18, G P, @ < Cllfllg Y, e 2270, (A8)

jz—1 jz-1

Clearly,if j < x < j +1, j > —1, then e=C12% 3=y < @=¢t2% p=(x+1)7 Therefore,

2 i
Z e—ct2¥ o—jy $/

Jjz-1 -1

(9]

r o[ _r_ 4
e~C12% =XV dx < Ct2 / ey 2 dy < Ct2,
0

thanks to the assumption y < 0. Using this and the fact that A;(G, f) = G,(4; f), we derive from
(A.8)

14
2 18,GeNl,m) < Cllfllg 2.

jz-1
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On the other hand, the identity Id = ) i>_1 4 holds in distribution ([2, Proposition 2.12]). The
above estimate shows that it also holds in L,(R) and hence,

IG I, < Y, 185Gl ®) < CIIfIIBytZ

jz-1

which implies (i).
(ii) From (A.3), we derive that for every j > —1 and ¢ € (0,1]

1G:(A; ) = A fllL,®) < (22|14 ARG
This yields

2DU2NANGf = Pll,my < 2714, Iz, @) < S el fll-

By taking supremum over all j > —1 in the above inequality, we see that lim; |, G, f = f in Bi’,_zg.
Since ¢ is arbitrary in (0,1], this implies (ii) when 7 € [y — 2,y). If 7 < y — 2, then

1G.f = Fllg SNGf = flly2 > 0ast = 0.
This proves (ii).

(iii) follows immediately from the inequality [|G;(A; f)I| L,®) < 1A £l L,(R) and Definition A.1.
(iv) We write G, f = G;/,G,,f, apply standard heat kernel bounds and part (i) to get

1 11 1
1 —= s(r—-)
G fller < Ct 211Gy 2 f Ly S Ct 2827 27| fl e S CE th r IIfII,gr,

where the last inequality follows from the embedding B{, < B};o_l/ P This proves (iv). O
Recall that Schwarz distribution ¢! is defined in (2.9) and ¢ ¢, ¢% are defined in (2.10).

Lemma A.4. Let a € (—1,0). Then we have

1
_+_

a+=
(te B, "(R)Vpe(,o| and ({,{*€B, "(R) Vpe (Jae| 71, o0].
Proof. By homogeneity, for every j > 0, A;¢7(x) = 2/A¢¢~(2/x) so that

ja-5)

1A ,m =27 2 l1AG L, m)-

Note that

“h —h(x -
Aog—l(x)zl (x+y)y (x Y)dy

which is the Hilbert transform of h. It is known that Hilbert transform is bounded on L,(R) for
every p € (1, c0). Hence, we have ||Ao¢ 7Y, H(R) S < C|lhllL »(R) which is finite. Similarly, we see that
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— +_
Na_¢ () is finite. This shows that {~ ~!belong to B, *(R) for every p € (1, ). That {~!

— +_
belongs to B! (R) follows from the Besov embeddlng B, "(R)> B (R).
Slmllarly, we see that ||A; §+||LP(R) =2 /"% ||A0§+||L,,(R) Let g € [1,00] be such that
1++= =y+ E Applying the refined Young convolution inequality ([2, Theorem 1.5]), we see

that ||A0§’+||L H(R) S < |kl J(R) which is finite. That [|A_;{$ I, H(R) is finite follows from the same
argument. [l

Lemma A.5. Let f and c, ¢y be as in Theorem 2.12(i). For each A > 0, define f;(x) = Af(Ax). Then

1

[ converges in B, ?"(R) to the distribution et 4 ¢y8, for every p € (1, 0]

(-1+3)_
Proof. By Besov embedding, it suffices to obtain the convergence in 5, P" (R) for finite p. Fix

p € (1,00), B > 0. Define a distribution
x i=c¢ 4+ ¢y

and put R(x) := f(x) — c/x. Fix arbitrary € > 0. Choose N > 0 large enough so that

co— f(x)dx

|x|<N

/ [R(x)|dx <& and <eEe. (A9)
|x|>N

This is possible thanks to the assumptions of the theorem.
For each j > —1, we write

hj(y —x) —h;j(y + x)
Aj(f/l_)()(y)=/f/l(X)hj(y—X)dx—C/ YRR dx — coh;(y)
R

R, X

N hi(y—x)—hj(y+x
:/1/ R(/lx)hj(y—x)dx—c/ O =0~ h0O )dx
[X|>N /1 0 X

" '/|X|<NM AN =20 = Ry ) dx = <CO - /|x|<N 7 dx>hj(y)

=10 + L j(0) + I3 ;(p) + 14 j(p). (A.10)

We beginwith I; ;. Applying the integral Minkowski inequality, the change of variables x' = Ax,
and recalling (A.9), we deduce

R dx = iyl [ RGIdx
|x|>N

1l ®) < AllAjliL (R)/

|x|>N /A

ja=1
<2 (Rl ) + Th-lln,w)e- (A1)
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To bound I, j» We note thatfor j > 1

. INM gy~ —hy+x) .\
||I2-J||€p(R)=2’(p_l) /R < /0 Y - 4 dx | dy. (A.12)

Introduce the following notation. For fixed § > 0 define the truncated Hilbert, Hilbert, and
maximal Hilbert operators Hg, H, and H*, correspondingly, by

“+o0 _ _ _
Hs(@)(y) = / Py —x)— oy —x) d

p x, H(p) = Ho(p), H*(¢)(y) = sup |[Hs(@)(¥)I,
5 6>0

for each Schwarz function ¢. With this notation in hand, we continue (A.12) in the following way
12l @) = 2/0=Y/P)| Hyh — Hyinyahlle,w)- (A13)
Note also that the following bound holds:

2,1z, m) = 2j(l_l/p)(||Hoh||Lp([Ra) + 1Hyiny2kllL,m) < 2j(l_l/p)(HI‘Ioh||Lp([Ra) + [IH* (Wl w)-
(A.14)

Similarly,

12,11l ) = IHoh—1 — Hyjz2h-1 1l (R)- (A.15)

To treat I3 ; we apply the integral Minkowski inequality and (A.7) with f = &,. We get for any
g>0

sllye <4 [ SN = 0= By Ol gydx
[x|<N/A

<af DI d
|x|<N/A
= PPl [ 1@l dx
[x|<N

S ATRIERAD(|R L @) + 1A Dl @))Crs (A16)

where Cy := N# /I [f(x)] dx. Finally, it is easy to treat I, ;. Using (A.9), we get

x|<N
a1l ) < zj(l_l/p)(”h”Lp(R) + 11l w)e-
Now we substitute this, (A.11) and (A.16) into (A.10). To bound I, ; we use (A.15) for j = -1,

(A.13)for j € [1,J], and (A.14) for j > J; here J is a parameter to be fixed later. We finally obtain

J(=1+2-p)
sup 2° 2 1A (fa = Dll,w)

jz-1

< CAIRNL,m®) + 1Rl @) +A7PCy) + | Hoh_y — Hy/ahalln,m)
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+ sup ||[Hoh —Hshllp,w) + 2_Jﬁ(”H0h”Lp([R) + ||H*(h)||LP(R))-
§<2/'N /A

Sending first 1 — oo, then J — oo, then € | 0, we see that the left-hand side of the above
inequality converges to 0. Here we used the facts that ||[Hyhl|| L,(R) < 0, [|H*(h)|| L,(R) < ©,
|[Hoh — H5h||Lp(R) — 0, ||Hoh_1 — H5h_1||Lp(R) — 0 as d — 0; all of them are established in [23,
Theorem 5.1.12].

1

Hence, lim,_, o, f; = ¢! + 46, in B, P~ Since B is arbitrary in (0,1), this implies the
(~145)_
convergencein B, ° . O

Lemma A.6. Let f be a continuous function R — R. Suppose that for some a € (0,1), c,,c_ € R
one has

xlirf fOO)x*=c, and xlir_n FOOIx|* =c_. (A17)

Let fy(x) := A% f(Ax), where 1 > 0, x € R. Then f; converges to c_{~% + ¢, {* as 1 - oo in
1

B, " (R)foreveryp e (a”!,co].

Proof. The proof is in the same spirit as the proof of Lemma A.5. Again, by the Besov embedding
it is sufficient to consider the case of finite p. Fix p € (™!, o). Denote

x(x) i=c % +c, 7%, xeR

and put R(x) := f(x) — y(x).
Take arbitrary ¢ > 0. It follows from (A.17), that there exists N > 0 such that

|[R(x)||x|* < € whenever |x| > N. (A.18)

For each j > —1, we write

Aj(f2=200) = /(fA(X) — x(X)hj(y — x)dx = 2% / R(Ax)h;(y — x) dx
R R

=2 / + / )R(/lx)hj(y —x)dx =: L1(y) + L(y). (A.19)
|x|<N /A |x|>N/24

Fix 8 € (0,1 — a). To bound I; we apply Young inequality with p’,q’ > 1suchthat1/p’ +1/q' =
1+ 1/p and the change of variables x’ := 1x. We get

1/q
]l mw) < /lallhjlle,(R)</ IR(Ax)|9 dx>
x|<N /A

. 1/q'
——/+lx /
37 ||h,~||Lp,(R>< L dx)
|x|<N

——— Jja-
SCNA a2

1

=)
PR, @) + TRl @)
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where Cy 1= CN(1 +sup,y |f(x)]). By choosing now 1/ =a+B<1,wegetl/p =1+
1/p —a —f < 1and thus

Il ) < CNATFIEHEID(IRIL ) + A1l ) (A.20)

To deal with I, we apply (A.18) to deduce
LoN<e [ - oldx<e [ X - oldx
|[x|>N /A R

Thus, the Hardy-Littlewood-Sobolev inequality on R with 1/p”" =1+ 1/p — a [2, Theorem 1.7]
implies

Iz, r) < Eth“Lpu([R) < 82j(o‘_l/p)(||”l||Lp,/([Rz) + lhallz,, w®)-

p//

Combining this with (A.19) and (A.20), we finally get
lfz— )(||B;a—5+1/p < CN/1_5(||h||LP,(R) +llhalln, @) + eIl @) + TRl @)-

Taking now first A — o0, and recalling then that € was arbitrary completes the proof. O

APPENDIX B: OTHER AUXILIARY RESULTS

Proposition B.1. Let A be a set and let (X, ))nez, sen be a collection of random elements taking
values in a metric space E. Let (Y ,),ez, be a collection of random elements taking values in a metric
space E. Suppose that for each fixed n the random element Y, is independent of (X;, ) en- Further-
more, assume that for each fixed 1 € A one has X, ; - X; and'Y,, = Y in probability as n — co.
ThenY is independent of (X;),ea-

Proof. Consider a collection of 4;, 1,, ..., 4, for some n > 1. Then we can construct a common
subsequence such that

Xnk,/l,- - X,lj and Y, — Y almostsurelyask — oo foralll < j <n.

Let hy,hy...h, : E—> R, g : E - R be bounded continuous functions. Then by the Lebesgue
dominated convergence theorem,

E<H hj(xnk,ﬂj)g(ynk)> - E(H hj(xﬂj)g(y)> ask — o

j=1 Jj=1

and also

[T e X, ER(Y,) — [T B, DER(Y)) as k — oo.
j=1 j=1
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We have assumed for each k the random element Y, is independent of (X, ,1j)1S j<n- Therefore
from the above it is immediate that

E [J(rixa, () = [ ] Ehj(x2 )E@(Y))
j=1 j=1

J J

As,n >1,41,45,...,4, and hy, h, ... h,, g were arbitrary, the result follows. O

Lemma B.2 (Gaussian process representation). Let (Q, F,P) be a filtered probability space. Let
V 1 [0,To] X D x Q — R be a measurable function with the same law as V. Then on the same space
there exists a white noise W such that identity (2.4) holds with V in place of V.and W in place of W.
Furthermore,

@) FtW = Ftvfor anyt € [0,Ty];

(ii) suppose additionally that there exists a filtrati?n (f[)te[o,w such that P[V c F, and for any
(s,t) € Aoy € Cc° the random variable fD(V,(x) — P,V (x))p(x) dx is independent of F.
Then W is (ft)-white noise.

Proof. The result is probably well-known. However, we give a proof for the sake of completeness.
In what follows we will use the following notation:

(fg) i= / FOg) dy,
D

for measurable functions f,g : D — R for which the above integral is well-defined. It is well-
known that (2.4) is equivalent (see, e.g., [45, Theorem 2.1]) to representing V as a solution to the
additive stochastic heat equation in a distributional form:

t
1
(Vi) = > / (V. 05,0)ds+ W(p), foranyt>0,9 € C>. (B.)
0

Since V has the same law as V, we immediately get that the functional
1 t
W) :=(V,,p) — E/0 (V.05,0)ds, t>0,0€C® (B.2)

has the same distributional properties as W. That is, for any ¢ € C°, the process (Wt(qo))le[”o]

2
Ly(D,dx)

@ € Ly(D,dx) since C is dense in L*(D,dx). Also W,(¢) and Wt(z,b) are independent when-
ever ¢, € C° with /D @(x)(x)dx = 0, and again since C is dense in L*(D, dx), this holds for
any @,y € Ly(D, dx) with [ 1, #(0)P(x) dx = 0. This immediately implies that Wisan (Pt17 )-white
noise. Thus, V is a solution to

is an (F[V)-Brownian motion with EW;(p)? = ||| and clearly this also holds for any

t
- 1 - —
(V,,0) = 3 / (V. 05,0)ds + W,(p), foranyt>0,¢€C®, (B.3)
0

with white noise W. Using again [45, Theorem 2.1], we get that (2.4) holds with ¥ in place of V
and W in place of W.
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To prove (i) note that
t
7,(x) = / / prrCe, Y)W (dr.dy), 130, x €D, (B.4)
0 D

and thus for any ¢ € [0, T,], Ftv C FtW. On the other hand, from (B.2) we also immediately get

that 7—’;“7 C Ffi for any ¢ € [0, T,], and (i) follows.
Let us prove part (ii) of the proposition. We need just to show that for any (s,t) € A1, ¢ €
L*(D, dx)

W, (¢) — W,(¢) is independent of 7.

Fix arbitrary (s, t) € Ay, and ¢ € C¢°. By (2.4) and stochastic Fubini theorem we get that

—~ o~ [ S~
/ (7,00) = Po_s 7o () p(x) dx = / / P o)W (dr. dy).
D N D

By our assumptions, we get that the above stochastic integral is independent of F;. Clearly, since
Fs C F, for any s < r, we get that for any (s, 5,) € Ay,

52
Y5, :=/ /PSZ_,qo(y)W(dr,dy) is independent of 7. (B.5)
s D

1

n. (t=s)k

For any n > 1 define Sp =S8+ —— for k = 0,...,n and a function f" on [s, t] X D such that
n

n
fir,y) = kz ﬂsz71§r<szpsl’(‘—r¢(.)’)5 s<r<tyebD.
=1

Now we are ready to define the sequence of random variables

n t
Y=Y Ye o= / /D frr, )W (dr, dy).

k=1

It is trivial to check that
f" = @, in L*([s,t] X D), asn — co,

and hence
t
vie [ ] emWrndy) = Wie) - Wilo). asn — oo
N D

where convergence is in L?(Q). By (B.5) and properties of the white noise we get that Y” is inde-
pendent of F; for all n, and hence the limit in L2(Q) of this sequence, is also independent of F.
Thus we get that W,(¢) — W,(¢) is independent of 7, for any ¢ € C®. We can easily get the
same property for any ¢ € L?(D, dx), by approximating such ¢ in L?>(D,dx) by a sequence of
functions ¢" € C® and again passing to the limit of corresponding sequence of random variables
Wt(gon) - Ws(gon)- D
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Lemma B.3. Foreverya,f € [0,1), (s,t) € Agr and u = (s + t)/2, we have
t

(u—8)"%T —u) Bt —s) < 2!« / (r —S)~*(T —r) Fdr (B.6)

and
t
/ (T—r)Br—s)*dr <C(T —s) Pt —s)2. (B.7)
Proof. We have
t t
/ (r=S) (T —r)Fdr > / (r=S8)" T —r)PFdr > (t —S)" (T —u) Pt — u).

Sinceu = (s+t)/2,t — S < 2(u — S), we obtain (B.6) from the above inequalities.

For fixed s < ¢, the function q(T) := fst(?)ﬁ(r —s)~%dr is decreasing on T € [¢, o0). Hence
—-r
we have g(T) < q(t) = (fol(l — 1) Br=%dr)(t — s)'~. This yields (B.7). O

Lemma B.4. Let f : QXD — R be a measurable function. Then for any s,t 20, P,f : QX
D — R is measurable. Further forany x € D, m € [1,00], n € [1, 0], and a c-algebra € we have

P fCOl,,1¢llL, <supl If W, igll, and 1P fll,, <supllfWll,,- (B.8)
yeD yeD

In addition, if f € BL,,, there exists a set Q' C Q of full measure such that for any w € Q/
P, f(x,w) < o for Lebesgue almost every (t,x) € [0,Ty] X D. (B.9)
Proof. 1t suffices to show the result assuming that f is non-negative. In such case, it is evident

that P, f : Q X R — Ris measurable. Applying the conditional integral Minkowski inequality, we
obtain that

1P 6 < / eI Dl .
D

We then apply Minkowski inequality, to get

HIPf O, gl < /pt(x’Y)”||f(Y)”Lm|‘§||L” < sup Nf DL, %L, dy
D ye

which implies the former estimate in (B.8). The later one in (B.8) follows from the former by
setting n = m.
Finally, (B.9) follows from (B.8) and the Fubini theorem. [l

Lemma B.5. Let(¢"),c7, beasequence of continuous random fields on D such that ¢" converges to
0 in C,.(D) in probability and that SUP,c7. vep E|@"(x)| < oo. Then for every (t,x) € [0,Ty] X D,
P,¢"(x) converges to 0 in probability as n — oo.
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Proof. For every M > 0, we have

eI D)Idy + / piCe 1@ ()] dy
|ly|>M

P ()] < /

[ylsM

< sup ") + / e NI dy.
[yIsM ly|>M

Hence, for every € > 0, we have by Chebyshev inequality,

P(IP,¢"(x)| > 2¢) < P(sup |@"(y)| > €)+& 'sup EI¢”(Z)I</ pt(x,y)dy>-
lylsM n,z ly|>M

We send n - o then M — oo to see that lim,_ . P(|P;¢"(x)| > 2¢) = 0. This implies the
result. O

APPENDIX C: HEAT KERNEL ESTIMATES

In this section we provide a number of standard simple statements characterizing smoothing prop-
erties of the heat kernel. Recall that G and P are the heat semigroups on R and D defined in (2.1)
and Convention 2.1, correspondingly.

Lemma C.1. For (D, p) € {(R, g), ([0, 1], p”*"), ([0, 1], pN¢®)}, any t € [0, T, ], x € D we have

L 12 ¢ py(xx) < C(Tg) + —2— 1712, )

2 2

Proof. Since g,(0) = — =, and p;(x, x) > g(0)forp € {g, pP’, pNeu}, the lower bound in (C.1) is
T

7

trivial. We apply the elementary inequality e 717l < ¢|z| ™! to get

P =g+ Y gm<z©+c ¥ on

nez:|n|>1 nezZ:|n|>1

which shows the upper bound in (C.1) for p = pP¢". For pVe“

g:(2n) for x € [0, 1], we have

, using the estimate g;(2x + 2n) <
PN x) <280 +2 ) g(2n).
nez:|n|>1

From here, using the same argument as above, we obtain the upper bound in (C.1) for p =
Neu
P O

Lemma C.2. Forevery a € [0, 1], there exists a constant C = C(a, T)) > 0 such that for any s,t €
(0,Tyl, s < t, x,x;,Xx, € D we have

/ 1piCe1, ) = Puxa )] dy < Clixy — xa[5—12, ©2)
D
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/ P, My — x|*dy < Ct*/2, (C.3)
D
/ 1P ) = py(xs Iy < Cs=/2(t — )2, (c4)
D

Proof. From the elementary estimate
18:(x1 — ¥) — 802 — Y| < Clxy = x| *t7%/2(g5, (1 — ¥) + g2 (%2 — ¥))
and (2.2) and (2.3), we obtain that
|pe(x1,3) = pe(x2, )| < Clxy = x5] %t/ (pyy (31, ) + Par(%2,¥))

for p € {g, p?®", pN°“}. Integrating over y € D and note that fD Da(x,y)dy =1 for each x € D,
we obtain (C.2) for p € {g, pP¢", pN¢4}.

The estimate (C.3) for p,(x,y) = g;(x — y) follows easily by a change of variable. For the other
Ik] Hlnl

cases, we note thatg,(z + k) < cg,(z)e ~ ¢ forevery |z| < 2and everyk € R. Since Yoz ¢S
C(Ty), we see that from (2.2) and (2.3) that

/ i)y — x|%dy < C(Ty) / gi(x = )|x — yl*dy.
D R

From here, we obtain (C.3) for p € {p?®", pN*} by a change of variable.
To show (C.4), we use the estimate

[ ey -peeyiay< | [ peeolniey - pesyldyaz
and (C.2) to obtain that
/D |pe(x, ¥) — ps(x, ¥)Idy < Cs‘“/Z/Dp[_s(x,Z)Iz — x|%dz.
Taking into account (C.3), we obtain (C.4) from the above inequality. O

Recall that V is defined in (2.4). For t > 0, x € D put

pi(x) 1= Var(V(x)). (C.5)

Lemma C.3. Foranyt € [0,T,], x € D we have

Vi

2 < p(x) < C(To)Vt. (C.6)

\/77

Proof. We have from (C.1)

t t 1 \/;
p ) =VarV (e ) = [ panrndr> [ ———ar = L.
0 = ~Jo 24/7(t —r) \/;
The upper bound on p; is established in exactly the same way. O
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Lemma C.4. Let0<s<u<t<T, Let f: RXxQ — R be a bounded %B(R) ® F,-measurable
function. Then

EXf(Vi(X)) = Gp,_ () f (Pr—uVu(X)). (C.7)

In addition, there exists a universal constant C = C(T,) > 0 such that for every x € D,y <0, n €
[1,00] and p € [n, ]

IE POV GO, < CILIT gl (€ = )5 = 5) 30 = )7, (C8)

[ESF(VGDI < ClISf s (€ = )¢ . (C.9)

Proof. For s < t introduce the process

t
Zg(x) :=V(x) = P_Vi(x) = / / pi—r(x,y)W(dr,dy), x€D,0<s<t.
s D

By definition of Z, we have forany0 < s<u <t,x €D
Vt(x) = Pt—uvu(x) + Zu,t(x)- (C.lO)

It is immediate to see that Z, ;(x) is independent of 7 and is Gaussian with zero mean and
variance

t
Var(Z, (x)) = / Pattr (6 XY = pr_u(0). (c.11)
u
Using (C.10), this yields

E*f(V:()(@) =[Gy, _, (0.f (- ) ](Pr—y Vi (X)),

which is (C.7).

Next, we show (C.8). To proceed, we further decompose P,_,,V,,(x) = P,_V(x) + P,_, Z ,,(X).
The random variable P;_, Z,(x) = [, ! Jp, pi—r(x,y)W(dr,dy) is independent of F and has a
Gaussian law with mean zero and variance

o) = VatlPZou) = [ paonx0)dr > CVE =5 = V=)

N

> Cu—s)(t—s)"1/2, (C.12)

where the first inequality follows from (C.1). Hence, using (C.7) and the fact that f is
F,-measurable, we have

ESJE*f(V, ()" = E® [lGpt_u(x)f(Pt—uVu(x))ln] = / gpsgu,t(x)(z)|Gp[_u(x)f(Pt—sVs(x) + Z)|n dz,
R
(C13)
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P

where g is the standard Gaussian density (2.1). Now we put q = p =1, é + i =1 and apply

Holder inequality and (C.12) to estimate the above integral from above by

n/p
[‘/U%le[_u(x)f(Pt—sVs(x) + Z)|p dz ”gpswu,t(x)(')”[‘q’ s (C-14)

The first factor in the above expression equals [|G,,_ ) f (-, @)l and thus is bounded above

by

n
Lp(R)

CIFC I, prou()?

by Lemma A.3(i). The second factor in (C.14) is bounded by C psyu’t(x)_z for some constant C > 0,
where we again used Lemma A.3(i) for Dirac delta. Taking into account (C.6), the lower bound
for pg,, ¢(x) in (C.12), we continue (C.13) as follows:

ESJE SV, CON" < CILF G, () 2 P ()

yn _n n
SCATNFC el (E—w) 4 (w—s) > (t=s)*.
p
Taking expectation, we get (C.8).

To show (C.9), we use (C.7) with u = s. Applying Lemma A.3(i) and the Besov embedding
B, & B YP (see (3.6)), we deduce

r_1 r_1
[EFV G < CIflyovinpis ()7 < CIfllgE = )4,

where we also used (C.6). This implies (C.9). O
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