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Abstract
We study stochastic reaction–diffusion equation

𝜕𝑡𝑢𝑡(𝑥) =
1

2
𝜕2
𝑥𝑥𝑢𝑡(𝑥) + 𝑏(𝑢𝑡(𝑥)) + 𝑊̇𝑡(𝑥), 𝑡 > 0, 𝑥 ∈ 𝐷

where 𝑏 is a generalized function in the Besov space
𝛽

𝑞,∞(ℝ), 𝐷 ⊂ ℝ and 𝑊̇ is a space-time white noise on
ℝ+ × 𝐷. We introduce a notion of a solution to this equa-
tion and obtain existence and uniqueness of a strong
solution whenever 𝛽 − 1∕𝑞 ⩾ −1, 𝛽 > −1 and 𝑞 ∈ [1,∞].
This class includes equations with 𝑏 being measures,
in particular, 𝑏 = 𝛿0 which corresponds to the skewed
stochastic heat equation. For 𝛽 − 1∕𝑞 > −3∕2, we obtain
existence of aweak solution. Our results extend thework of
Bass andChen (2001) to the framework of stochastic partial
differential equations and generalize the results of Gyöngy
and Pardoux (1993) to distributional drifts. To establish
these results, we exploit the regularization effect of the
white noise through a new strategy based on the stochastic
sewing lemma introduced in Lê (2020).
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1 INTRODUCTION

While regularization by noise for ordinary differential equations (ODEs) is quite well understood
by now,much less is known about regularization by noise for partial differential equations (PDEs).
The goal of this article is to analyze regularization by noise for parabolic PDEs and to build new
robust techniques for studying this phenomenon. We consider stochastic heat equation with a
drift (stochastic reaction-diffusion equation)

⎧⎪⎨⎪⎩
𝜕𝑡𝑢𝑡(𝑥) =

1

2
𝜕2
𝑥𝑥𝑢𝑡(𝑥) + 𝑏(𝑢𝑡(𝑥)) + 𝑊̇𝑡(𝑥), 𝑡 ∈ (0, 𝑇0], 𝑥 ∈ 𝐷,

𝑢(0, 𝑥) = 𝑢0(𝑥),

(1.1)

where 𝑏 is a generalized function in the Besov space 𝛽
𝑞,∞(ℝ,ℝ), 𝛽 ∈ ℝ, 𝑞 ∈ [1,∞], the domain

𝐷 is either [0, 1] or ℝ, 𝑇0 > 0, 𝑊̇ is space-time white noise on [0, 𝑇0] × 𝐷, and 𝑢0 ∶ 𝐷 → ℝ is a
bounded measurable function. Note that for 𝛽 < 0 this equation is not well-posed in the standard
sense: indeed in this case 𝑏 is not a function but only a distribution and thus the composition
𝑏(𝑢𝑡(𝑥)) is a priori not well-defined. We introduce a natural notion of a solution to this equa-
tion in the spirit of [3, Definition 2.1]. We show that equation (1.1) has a unique strong solution
if 𝛽 −

1

𝑞
⩾ −1, 𝛽 > −1 and 𝑞 ∈ [1,∞], see Theorem 2.6. This includes equations where 𝑏 is mea-

sure, in particular, the skewed stochastic heat equation, which corresponds to the case 𝑏 = 𝜅𝛿0,
𝜅 ∈ ℝ. The latter equation is important for the stochastic interface models and appeared in [6]
where its well-posedness was left open.We resolve this problem in our paper, see Theorem 2.8 and
Corollary 2.9.
Our results extend [3] to the framework of stochastic partial differential equations (SPDEs)

and generalize [28, 29] to singular drifts. We exploit the regularization effect of the white noise
and develop a new proof strategy based on stochastic sewing [37]. Furthermore, we give several
extensions of the stochastic sewing lemmawhich allow singularities, critical exponents and usage
of random controls. In particular, we extend to the stochastic setting deterministic sewing with
controls, see, for example, [14, 19, 24, 40]. We would like to stress that in contrast to vast majority
of regularization-by-noise papers for ODEs [9, 12, 31, 47, 51] our method uses neither Girsanov
transformnorZvonkin transformation. These twopopular techniques are not useful in our setting.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 3

It has been known since 1970s that ill-posed deterministic systems can become well-posed if
a random noise is injected into the system. Consider the following simple example. The ODE
𝑑𝑋𝑡 = 𝑏(𝑋𝑡)𝑑𝑡 with a bounded measurable vector field 𝑏 ∶ ℝ𝑑 → ℝ𝑑 is ill-posed. It might have
infinitelymany or no solutions in some specific cases. Yet, if this deterministic system is perturbed
by a Brownian noise 𝐵, then the corresponding stochastic differential equation (SDE)

𝑑𝑋𝑡 = 𝑏(𝑋𝑡) 𝑑𝑡 + 𝑑𝐵𝑡, 𝑋0 = 𝑥0 (1.2)

is well-posed and has a unique strong solution [47, 52]. This phenomenon is called regularization
by noise, see [15].
Regularization by noise for ODEs has been studied extensively since the pioneering works of

Zvonkin and Veretennikov mentioned above and many interesting results are available by now.
Strong existence and uniqueness of solutions to (1.2) for the case of possibly unbounded drifts
satisfying only a certain integrability condition was proved by Krylov and Röckner in [35], see also
related works [13, 16, 50]. Well-posedness of (1.2) in a stronger sense (path-by-path uniqueness)
for the case of bounded 𝑏 was obtained in the celebrated paper [12] of Davie.
Furthermore, it turned out that equation (1.2) makes sense even if 𝑏 is a distribution. In this

case, the term 𝑏(𝑋𝑡) is not defined and one has to define a notion of a solution to this equa-
tion. These can be done in a number of ways. Zhang and Zhao [51] proved weak existence and
uniqueness of solutions to (1.2) for 𝑏 belonging to the Besov–Hölder space 𝛼

∞,∞ with 𝛼 > −1∕2.
Bass and Chen [3] established strong existence and uniqueness of solutions to (1.2) under the
same assumptions in dimension one. A critical case when 𝑏 is the spatial white noise in one
dimension is treated by Hu et al. [32]. The specific case of 𝑏 = 𝜅𝛿0, |𝜅| ⩽ 1, which corresponds
to the skew Brownian motion, was treated by Harisson and Shepp in [31] and extended by Le Gall
in [38].
Let usmention that there is nothing special here about𝐵 being a Gaussian or aMarkov process:

indeed, regularization for ODEs driven by various other noise processes (Lévy noise, fractional
Brownian noise) also holds, see, for example, [9, 30, 33, 37, 43].
Unfortunately,most of themethodswhich are used in theODE/SDE setting are not transferable

to the PDE setting. Indeed, the most popular technique, the Zvonkin-Veretennikov transform [13,
43, 47, 52], allows to pass from the analysis of the original SDE with irregular drift, to the analysis
of a new SDE (called sometimes “virtual equation” [17]) whose drift and diffusion are easier to
handle. Then well-posedness for the original SDE can be derived from the well-posedness of the
new SDE. However, to implement this technique, it is absolutely essential that the stochastic sys-
tem has a good Itô formula. While the Itô formula is also available for SPDEs ([4, 49]), it involves
additional renormalized non-linear terms. This makes its application very difficult.
An alternative strategy was suggested in [9, 21], in which the authors work directly with the

original SDE, fixing a trajectory of the noise and viewing the equation as a non-linear Young
equation. The Girsanov theorem is pivotal to the whole approach: if the noise does not allow
for a good version of Girsanov theorem, the obtained results are not optimal, see [21, Lemma 10
and Remark 18]. It seems challenging to extend this method to SPDEs with distributional drifts.
One particular problem is that the the domain of the non-linear vector field is no longer of finite
dimension but is a certain function space.
Thus, it is clear that the analysis of regularization-by-noise for PDEs requires a very different

approach. One of the first results in this research area belongs to Gyöngy and Pardoux [28, 29].
The authors used comparison theorems to establish existence and uniqueness of (analytically)
weak solutions to (1.1) for the case where the drift 𝑏 is the sum of a bounded function and an
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4 ATHREYA et al.

𝐿𝑞-integrable function with 𝑞 > 2. Path-by-path uniqueness of solutions to (1.1) for bounded 𝑏

was obtained recently in [8].
Bounebache and Zambotti [6] considered stochastic PDEs with measure valued drift. In par-

ticular, motivated by problems arising in the study of random interface models, see, for example,
[20], they studied the skew stochastic heat equation, that is, (1.1) with 𝑏 being a Dirac delta func-
tion. Using Dirichlet form techniques, they obtained existence of a weak solution. However
existence and uniqueness of strong solution remained open. Resolving this problem was one of
the motivations for our work.
From the above discussion, we note that there is a gap between the ODE and PDE settings. For

ODEs numerous results treating distributional drifts are available [3, 9, 31, 42, 51]. On the other
hand, almost no such results were known for PDEs, note though the paper [25] and the discussion
there. Our goal in this article is to construct a robust general method for proving strong existence
and uniqueness to (1.1) in the case where the drift 𝑏 is a Schwarz distribution. In particular, we
treat the skew stochastic heat equation.
Inspired by the finite dimensional setting [3, 9] we define a natural notion of a solution to

(1.1) in Definition 2.3 and show that (1.1) has a unique strong solution when 𝑏 belongs to the
Besov space 𝛽

𝑞,∞(ℝ,ℝ), 𝛽 −
1

𝑞
⩾ −1, 𝛽 > −1 and 𝑞 ∈ [1,∞], see Theorem 2.6, and when 𝑏 is

a finite Radon measure, Theorem 2.8. We also prove strong convergence of smooth approxi-
mations to (1.1) in Theorem 2.10. We establish strong existence and uniqueness of the skew
stochastic heat equation in Corollary 2.9 and show that this equation appears naturally as a cer-
tain scaling limit of “standard” SPDEs where the drifts are continuous integrable functions, see
Theorem 2.12.
To obtain these results we develop a new strategy based on certain regularization estimates

for SPDEs, see Lemma 5.2. These estimates can be viewed as infinite-dimensional analogues
of the corresponding Davie’s bounds for SDEs [12, Proposition 2.1], see also [51, Lemma 5.8].
Note though that Davie’s method involves exact moment computations and is not easily
extended to the SPDE setting. Therefore to obtain these regularization estimates, we extend
and employ the stochastic sewing technique introduced originally in [37]. We believe that these
new stochastic sewing lemmas (Theorems 4.1, 4.5 and 4.7) form a very useful toolkit which
might be of independent interest. The usage of regularization estimates are explained briefly in
Section 2.2.
We conclude the introduction by commenting on the optimality of our results. It is known

[39] that for each fixed space point, the free stochastic heat equation (that is, equation (1.1) with
𝑏 ≡ 0) behaves “qualitatively” like a fractional Brownian motion (fBM) with the Hurst parameter
1∕4, denoted further by 𝐵1∕4. Therefore, one can expect that strong existence and uniqueness for
equation (1.1) would hold under the same conditions on 𝑏 as in the equation

𝑑𝑋𝑡 = 𝑏(𝑋𝑡) 𝑑𝑡 + 𝑑𝐵
1∕4
𝑡 ,

that is 𝑏 ∈ 𝛽
𝑞 , where 𝛽 − 1∕𝑞 > −1, (see [9, Theorem 1.13] for 𝑞 = ∞ case). This indeed turned

out to be the case, see Theorem 2.6, even though the method of [9] could not be transferred to the
PDE setting. Note that this class of functions does not include the Dirac delta function, which lies
in −1+1∕𝑞

𝑞 , 𝑞 ∈ [1,∞]. Therefore we had to come up with an additional argument to cover the
case 𝛽 − 1∕𝑞 = −1 as well (see Proposition 3.6).
The rest of the paper is organized as follows. We present our main results and a brief overview

of the proof strategy in Section 2. Since the proofs are quite technical, for the convenience of the

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22157 by T

est, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 5

reader we split them in several steps. In Section 3 we prove the main results. The proofs are based
on key propositions, which are stated also in Section 3 and proved in Section 5. Extensions of
the stochastic sewing lemma are stated and proved in Section 4. The proofs of crucial regularity
results are given in Section 6.A, B, C contains auxiliary technical results which we will use freely
throughout the paper.
Convention on constants. Throughout the paper 𝐶 denotes a positive constant whose value

may change from line to line. All other constants will be denoted by𝐶1, 𝐶2, …. They are all positive
and their precise values are not important. The dependence of constants on parameters if needed
will be indicated, for example, 𝐶𝛽 or 𝐶(𝛽).

2 MAIN RESULTS

2.1 Well-posedness of the stochastic heat equation with a
distributional drift

Webegin by introducing the necessary notation. Let𝐁(𝐷) be the space of all real boundedmeasur-
able functions on 𝐷. Let ∞

𝑏
= ∞

𝑏
(𝐷,ℝ) be the space of infinitely differentiable real functions on

𝐷which are bounded and have bounded derivatives.We denote by∞
𝑐 = ∞

𝑐 (𝐷,ℝ) the set of func-
tions in ∞

𝑏
(𝐷,ℝ) with compact supports. For 𝛽 ∈ (0, 1], let 𝛽 be the space of bounded Hölder

continuous functions with exponent 𝛽. For each 𝛽 ∈ ℝ and 𝑞 ∈ [1,∞], let𝛽
𝑞 denote the (nonho-

mogeneous) Besov space𝛽
𝑞,∞(ℝ) of regularity 𝛽 and integrability 𝑞, see Definition A.1. We recall

that for 𝛽 ∈ (0, 1), the space𝛽
∞ coincides with the space 𝛽 (see [2, page 99]). For 𝛽 ∈ (−1, 0) the

space 𝛽
∞ includes all derivatives (in the distributional sense) of functions in 𝛽+1.

Let 𝑔𝑡, 𝑝
𝑝𝑒𝑟
𝑡 , 𝑝𝑁𝑒𝑢

𝑡 be the free-space heat kernel, the heat kernel on [0, 1]with periodic boundary
conditions, and the heat kernel on [0, 1] with the Neumann boundary conditions, respectively.
That is,

𝑔𝑡(𝑥) ∶=
1√
2𝜋𝑡

𝑒
−

𝑥2

2𝑡 , 𝑡 > 0, 𝑥 ∈ ℝ; (2.1)

𝑝
𝑝𝑒𝑟
𝑡 (𝑥, 𝑦) ∶=

∑
𝑛∈ℤ

𝑔𝑡(𝑥 − 𝑦 + 𝑛), 𝑡 > 0, 𝑥, 𝑦 ∈ [0, 1]; (2.2)

𝑝𝑁𝑒𝑢
𝑡 (𝑥, 𝑦) ∶=

∑
𝑛∈ℤ

(𝑔𝑡(𝑥 − 𝑦 + 2𝑛) + 𝑔𝑡(𝑥 + 𝑦 + 2𝑛)), 𝑡 > 0, 𝑥, 𝑦 ∈ [0, 1]. (2.3)

Our main results are valid in three different setups: when equation (1.1) is considered on the
domain 𝐷 = ℝ; when (1.1) is considered on the domain 𝐷 = [0, 1] with the periodic boundary
conditions; and when (1.1) is considered on 𝐷 = [0, 1] with the Neumann boundary conditions.
To simplify the notation and to ease the stating of the results we will use the notation 𝑝 for 𝑔, 𝑝𝑝𝑒𝑟

or 𝑝𝑁𝑒𝑢 and 𝐷 will denote the corresponding domain.

Convention 2.1. From now on if not stated otherwise the pair (𝐷, 𝑝) will stand for one of the three
options: (ℝ, 𝑔), ([0, 1], 𝑝𝑝𝑒𝑟), or ([0, 1], 𝑝𝑁𝑒𝑢).

The specific choice of the domain and of the boundary condition (out of the above three options)
will not affect the results and arguments inmost places of the paper. In very fewplaces of the paper
where the choice of the domain is important we will highlight it.
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6 ATHREYA et al.

For bounded measurable functions 𝜑 ∶ 𝐷 → ℝ, 𝑡 > 0 we put

𝑃𝑡𝜑(𝑥) ∶= ∫
𝐷

𝑝𝑡(𝑥, 𝑦)𝜑(𝑦) 𝑑𝑦, 𝑥 ∈ 𝐷.

It will be convenient to denote the heat semigroup on ℝ by

𝐺𝑡𝜓(𝑥) ∶= ∫
ℝ

𝑔𝑡(𝑥 − 𝑦)𝜓(𝑦) 𝑑𝑦, 𝑥 ∈ ℝ, 𝑡 > 0,

for all bounded measurable functions 𝜓 ∶ ℝ → ℝ.
Let 𝑇0 > 0 and let (Ω, , (𝑡)𝑡∈[0,𝑇0], 𝖯) be a filtered probability space. For each𝑚 ∈ [1,∞], the

norm of a random variable 𝜉 in 𝐿𝑚(Ω) is denoted by ‖𝜉‖𝐿𝑚
. Here, as usual, we use the conven-

tion ‖𝜉‖𝐿∞
∶= ess sup𝜔∈Ω |𝜉(𝜔)|when𝑚 = ∞. We recall that a random process𝑊 ∶ 𝐿2(𝐷, 𝑑𝑥) ×

[0, 𝑇0] × Ω → ℝ is called (𝑡)-white noise if for any 𝜑 ∈ 𝐿2(𝐷, 𝑑𝑥) the process (𝑊𝑡(𝜑))𝑡∈[0,𝑇0] is
an (𝑡)-Brownian motion with 𝖤𝑊𝑡(𝜑)2 = 𝑡‖𝜑‖2

𝐿2(𝐷,𝑑𝑥)
and 𝑊𝑡(𝜑) and 𝑊𝑡(𝜓) are independent

whenever 𝜑, 𝜓 ∈ 𝐿2(𝐷, 𝑑𝑥) with ∫
𝐷
𝜑(𝑥)𝜓(𝑥) 𝑑𝑥 = 0.

Set now

𝑉𝑡(𝑥) ∶= ∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑊(𝑑𝑟, 𝑑𝑦), 𝑡 ⩾ 0, 𝑥 ∈ 𝐷, (2.4)

where the integration in (2.4) is a stochastic integration understood in the sense of Walsh ([48,
Chapter 2]). It is known that 𝑉 is a Gaussian random field adapted to (𝑡) and has a continuous
version on [0, 𝑇0] × 𝐷 which we will use throughout the paper. It follows from (2.4) that𝑉 has the
local nondeterminism property

‖𝑉𝑡(𝑥) − 𝖤(𝑉𝑡(𝑥)|𝑠)‖𝐿2
⩾ 𝜋

−
1

4 |𝑡 − 𝑠| 1

4 for every 𝑠 ⩽ 𝑡 and 𝑥 ∈ 𝐷. (2.5)

Let us note that we do not analyze in our article equation (1.1) equipped with the Dirichlet
boundary conditions. In this case, the right-hand side of (2.5) goes to 0 as 𝑥 tends to the boundary
of the domain.
The uniformity in 𝑥 in (2.5) plays a key role in our arguments. While it is possible to adapt our

proofs to treat Dirichlet boundary condition as well (and we are convinced that our results hold
in the setting), we have deliberately decided not to focus on this case in order to emphasize how
our approach works and to avoid additional technical difficulties.
Now let us give a notion of a solution to (1.1). It is inspired by the definition in finite dimensional

setting in [3, Definition 2.1].

Definition 2.2. Let 𝑓 be a distribution in 𝛽
𝑞 with 𝛽 ∈ ℝ and 𝑞 ∈ [1,∞]. We say that a sequence

of functions (𝑓𝑛)𝑛∈ℤ+
converges to 𝑓 in 𝛽−

𝑞 as 𝑛 → ∞ if sup𝑛∈ℤ+
‖𝑓𝑛‖𝛽

𝑞
< ∞ and

lim
𝑛→∞

‖𝑓𝑛 − 𝑓‖𝛽′

𝑞
= 0, for any 𝛽′ < 𝛽.

It is clear that for any 𝑓 ∈ 𝛽
𝑞 , there is a sequence of functions (𝑓𝑛)𝑛∈ℤ+

⊂ ∞
𝑏
which converges

to 𝑓 in 𝛽−
𝑞 as 𝑛 → ∞. For example, one can take 𝑓𝑛 ∶= 𝐺1∕𝑛𝑓, see Lemma A.3.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 7

Definition 2.3. Let 𝛽 ∈ ℝ, 𝑞 ∈ [1,∞], 𝑏 ∈ 𝛽
𝑞 and 𝑇0 > 0. Let 𝑢0 ∈ 𝐁(𝐷). A measurable adapted

process 𝑢 ∶ (0, 𝑇0] × 𝐷 × Ω → ℝ is called a solution of (1.1) with initial condition 𝑢0 if there exists
a process 𝐾 ∶ [0, 𝑇0] × 𝐷 × Ω → ℝ such that

(1) 𝑢𝑡(𝑥) = 𝑃𝑡𝑢0(𝑥) + 𝐾𝑡(𝑥) + 𝑉𝑡(𝑥) a.s., where 𝑥 ∈ 𝐷, 𝑡 ∈ (0, 𝑇0];
(2) for any sequence of functions (𝑏𝑛)𝑛∈ℤ+

in ∞
𝑏
converging to 𝑏 in 𝛽−

𝑞 we have for any 𝑁 > 0

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑁

|||||∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑢𝑟(𝑦)) 𝑑𝑦 𝑑𝑟 − 𝐾𝑡(𝑥)

||||| → 0 in probability as 𝑛 → ∞;

(3) a.s. the function 𝑢 is continuous on (0, 𝑇0] × 𝐷.

We note that Definition 2.3 defines a solution to equation (1.1) in three different settings, see
Convention 2.1. When 𝑏 ∈ 𝛽 with 𝛽 > 0, we can choose a sequence (𝑏𝑛) which converges to 𝑏

in uniformly. Then it is immediate that Definition 2.3 is equivalent to the usual notion of a mild
solution of (1.1), that is, 𝖯-almost surely Eq(𝑢0; 𝑏)

𝑢𝑡(𝑥) = 𝑃𝑡𝑢0(𝑥) + ∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑏(𝑢𝑟(𝑦))𝑑𝑦𝑑𝑟 + 𝑉𝑡(𝑥) ∀(𝑡, 𝑥) ∈ [0, 𝑇0] × 𝐷.

We say that a solution 𝑢 ≡ {𝑢𝑡(𝑥) ∶ 𝑡 ∈ (0, 𝑇0], 𝑥 ∈ 𝐷} is a strong solution to (1.1) if it is adapted
to the filtration (𝑊

𝑡 ). A weak solution of (1.1) is a couple (𝑢,𝑊) on a complete filtered probability
space (Ω,, (𝑡)𝑡⩾0, 𝖯) such that 𝑢 is adapted to (𝑡),𝑊 is (𝑡)-white noise, and 𝑢 is a solution to
(1.1). We say that strong uniqueness holds for (1.1) if whenever 𝑢 and 𝑢 are two strong solutions of
(1.1) defined on the same probability space with the same initial condition 𝑢0, then

𝖯(𝑢𝑡(𝑥) = 𝑢𝑡(𝑥) for all 𝑡 ∈ (0, 𝑇0], 𝑥 ∈ 𝐷) = 1.

Consider the following class of solutions.

Definition 2.4. Let 𝜅 ∈ [0, 1]. We say that a solution 𝑢 to SPDE (1.1) belongs to the class (𝜅) if
for any𝑚 ⩾ 2, sup(𝑡,𝑥)∈(0,𝑇0]×𝐷 ‖𝑢𝑡(𝑥)‖𝐿𝑚

< ∞ and

sup
0<𝑠⩽𝑡⩽𝑇0

sup
𝑥∈𝐷

‖𝑢𝑡(𝑥) − 𝑉𝑡(𝑥) − (𝑃𝑡−𝑠[𝑢𝑠 − 𝑉𝑠](𝑥))‖𝐿𝑚|𝑡 − 𝑠|𝜅 < ∞.

Remark 2.5. Recalling that 𝑢𝑡 = 𝑃𝑡𝑢0 + 𝐾𝑡 + 𝑉𝑡, 𝑡 > 0, we see that the numerator in Definition 2.4
is just ‖𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥)‖𝐿𝑚

. Thus, class (𝜅) contains solutions of (1.1) such that the moments
of their drifts satisfy certain regularity conditions.

We are now ready to present our main result. Fix 𝑇0 > 0 and recall Convention 2.1.

Theorem 2.6. Let 𝛽 ∈ ℝ, 𝑞 ∈ [1,∞], 𝑏 ∈ 𝛽
𝑞 and 𝑢0 ∈ 𝐁(𝐷).

(i) If 𝛽 −
1

𝑞
> −

3

2
, then there exists a weak solution to equation (1.1) and this solution is in the class

(𝜅) for 𝜅 ∈ (0, 1 +
𝛽∧0

4
−

1

4𝑞
] ⧵ {1}.

(ii) If 𝛽 −
1

𝑞
⩾ −1 and 𝛽 > −1, then in the class (3∕4) there exists a unique strong solution to

equation (1.1).
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8 ATHREYA et al.

Remark 2.7. It follows from the proof of Theorem 2.6 (see Proposition 3.6) that in the case
𝛽 −

1

𝑞
⩾ −1, 𝛽 > −1, condition (2) of Definition 2.3 can be relaxed. Namely, if a measurable

adapted process 𝑢 ∶ (0, 𝑇0] × 𝐷 × Ω → ℝ satisfies conditions (1) and (3) of Definition 2.3, belongs
to (3∕4), and satisfies the following weaker condition (2′)

(2′) there exists a sequence of functions 𝑏𝑛 ∈ ∞
𝑏
converging to 𝑏 in 𝛽−

𝑞 such that for any 𝑡 ∈

[0, 𝑇0], 𝑥 ∈ 𝐷, we have

∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑢𝑟(𝑦)) 𝑑𝑦 𝑑𝑟 → 𝐾𝑡(𝑥) in probability as 𝑛 → ∞,

then it satisfies a stronger condition (2) of Definition 2.3 for any sequence of smooth
approximations 𝑏𝑛 → 𝑏 in 𝛽−

𝑞 .

Note that the additional assumption in Theorem 2.6(ii) that the solution lies in (3∕4) is a
natural extension to the SPDE setting of a very similar condition arising in the analysis of SDEs
with the distributional drift. It appears in [3, Definition 2.1], [51, Definition 3.1 and Corollary 5.3],
[1, Theorem 2.3], [30, Lemma 31].
Since for any 𝑞 ∈ [1,∞], 𝐿𝑞(ℝ) is continuously embedded in 0

𝑞(ℝ) ([2, Proposition 2.39]),
Theorem 2.6 complements the corresponding results in [28, 29]. Namely, Theorem 2.6(ii) allows
𝐿1(ℝ)-integrable drifts, while the aforementioned papers requires the drift to be 𝐿𝑞(ℝ)-integrable
for some 𝑞 > 2. Note that the drift 𝑏 in [28, 29] can also depend on (𝑡, 𝑥). It is clear that our
method can be adapted to this setting; however, for clarity and to highlight the main ideas, we
only consider equations of the type (1.1) herein.
Since signed measures belong to 0

1 ([2, Prop. 2.39]), Theorem 2.6(ii) is also applicable for this
class. Other specific cases of drift 𝑏 for which (1.1) has a unique strong solution include 𝑏(𝑢) =|𝑢|−𝜎, 𝜎 ∈ (−1, 0) and 𝑏(𝑢) = 𝜁−1(𝑢), where 𝜁−1 is the Cauchy principal value of 1∕𝑢, defined in
(2.9) below. This is due to the fact that | ⋅ |−𝜎 belongs to 0

1∕𝜎
while 𝜁−1 belongs to −1∕2

2 (see
Lemma A.4). In the case when 𝑏 is a finite non-negative measure on ℝ, we have the following
improved result.

Theorem2.8. Let 𝑏 be a finite non-negative Radonmeasure. Then for any bounded initial condition
𝑢0 equation (1.1) has a unique strong solution.

Corollary 2.9. The skew stochastic heat equation, that is equation (1.1) with 𝑏 = 𝜅𝛿0, 𝜅 ∈ ℝ, has a
unique strong solution for every bounded measurable initial condition 𝑢0.

Note that in Theorem 2.8 and Corollary 2.9, the assumption 𝑢 ∈ (3∕4) is not required.
Our next result is a stability theorem. Let (𝑏𝑛)𝑛∈ℤ+

be a smooth approximation of 𝑏. The-
orem 2.10 shows that a solution to SPDE (1.1) with smooth drift 𝑏𝑛 converges as 𝑛 → ∞

and that the limit does not depend on the particular choice of the approximating sequence.
Such solutions are sometimes called “constructable solutions” [29, Definition 2.2]. We show
that in our setting “constructable solutions” coincide with the standard solutions defined
above.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 9

Theorem 2.10. Let 𝛽 ∈ ℝ, 𝑞 ∈ [1,∞]. Suppose that 𝛽 −
1

𝑞
⩾ −1 and 𝛽 > −1. Let 𝑏 ∈ 𝛽

𝑞 , 𝑢0 ∈

𝐁(𝐷). Let (𝑏𝑛)𝑛∈ℤ+
be a sequence of bounded continuous functions converging in 𝛽−

𝑞 to 𝑏. Let
(𝑢𝑛

0 )𝑛∈ℤ+
be a sequence of functions from 𝐁(𝐷) converging to 𝑢0 uniformly on 𝐷.

Let 𝑢𝑛 be a strong solution to Eq(𝑢𝑛
0 ; 𝑏

𝑛). Then there exists a measurable function 𝑢 ∶ [0, 𝑇0] ×

𝐷 × Ω → ℝ such that

(1) for any𝑁 > 0 we have

sup
𝑡∈(0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑁

|𝑢𝑛
𝑡 (𝑥) − 𝑢𝑡(𝑥)| → 0 in probability as 𝑛 → ∞; (2.6)

(2) 𝑢 is a strong solution to (1.1) with the initial condition 𝑢0;
(3) 𝑢 satisfies

sup
0<𝑠<𝑡⩽𝑇

sup
𝑥∈𝐷

ess sup
𝜔∈Ω

𝖤(|𝑢𝑡(𝑥) − 𝑉𝑡(𝑥) − 𝑃𝑡−𝑠(𝑢𝑠 − 𝑉𝑠)(𝑥)|𝑚|𝑠)
1∕𝑚

|𝑡 − 𝑠|3∕4 < ∞ (2.7)

for every𝑚 ⩾ 1. In particular, 𝑢 belongs to (3∕4).

Finally, we state two interesting applications of Theorem 2.10. The first one is the comparison
principle for the solutions of SPDE (1.1), which extends the standard comparison principle. As
usual, for two Schwarz distributions 𝑏′, 𝑏′′ wewrite 𝑏′ ⪯ 𝑏′′, if for any nonnegative test function
𝜑 ∈ ∞

𝑏
(ℝ,ℝ) one has ⟨𝑏′, 𝜑⟩ ⩽ ⟨𝑏′′, 𝜑⟩. It is known (see, e.g., [46, Exersice 22.5]) that 𝑏′ ⪯ 𝑏′′ if

and only if 𝑏′′ − 𝑏′ is a nonnegative Radon measure.

Corollary 2.11. Let 𝛽 ∈ ℝ, 𝑞 ∈ [1,∞]. Suppose that 𝛽 −
1

𝑞
⩾ −1 and 𝛽 > −1. Let 𝑏′, 𝑏′′ ∈ 𝛽

𝑞 ,
𝑢′
0, 𝑢

′′
0 ∈ 𝐁(𝐷). Let 𝑢′, 𝑢′′ be the solutions of (1.1) with drifts 𝑏′, 𝑏′′ and initial conditions 𝑢′

0, 𝑢
′′
0 ,

respectively. Suppose that

𝑢′
0(𝑥) ⩽ 𝑢′′

0 (𝑥) for almost all 𝑥 ∈ 𝐷;

𝑏′ ⪯ 𝑏′′.

Then almost surely 𝑢′(𝑡, 𝑥) ⩽ 𝑢′′(𝑡, 𝑥) for all 𝑡 > 0, 𝑥 ∈ 𝐷.

Our second applications of Theorem 2.10 shows that the skew stochastic heat equation appears
naturally as a scaling limit of certain SPDEs.
Let us introduce the space uc((0, 𝑇0] × 𝐷) of real continuous functions on (0, 𝑇0] × 𝐷 equipped

with the topology of uniform convergence over compact sets. It is well-known that this topology
is induced by the metric

𝑑uc(𝑓, ℎ) ∶=

∞∑
𝑖=1

2−𝑛 sup
𝑥∈𝐷,|𝑥|⩽𝑛

𝑡∈[
1

𝑛
,𝑇0]

(|𝑓(𝑡, 𝑥) − ℎ(𝑡, 𝑥)| ∧ 1), 𝑓, ℎ ∈ uc((0, 𝑇0] × 𝐷) (2.8)

and uc((0, 𝑇0] × 𝐷) is separable.
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10 ATHREYA et al.

We define the Schwarz distributions 𝜁−1 on ℝ by

𝜁−1(𝜑) ∶= lim
𝜀↓0 ∫|𝑥|>𝜀

𝜑(𝑥)

𝑥
𝑑𝑥 = ∫

∞

0

𝜑(𝑥) − 𝜑(−𝑥)

𝑥
𝑑𝑥 (2.9)

for each Schwarz function 𝜑. Similarly, for 𝛼 ∈ (−1, 0) we put

𝜁𝛼
+(𝑥) ∶= 𝑥𝛼𝟙(𝑥 > 0) and 𝜁𝛼

−(𝑥) ∶= |𝑥|𝛼𝟙(𝑥 < 0), (2.10)

where 𝑥 ∈ ℝ.
In the following result we consider the stochastic heat equation with 𝐷 = ℝ.

Theorem 2.12. Let 𝜌 ∈ [1, 3∕2), 𝑓 ∶ ℝ → ℝ be a bounded continuous function. Let 𝑢0 ∈ 𝐁(ℝ) and
for each 𝜆 > 0 let 𝑢𝜆 be the solution to

𝜕𝑡𝑢𝜆(𝑡, 𝑥) −
1

2
𝜕2
𝑥𝑥𝑢𝜆(𝑡, 𝑥) = 𝜆−𝜌𝑓(𝑢𝜆(𝑡, 𝑥)) + 𝑊̇, 𝑡 ⩾ 0, 𝑥 ∈ ℝ, (2.11)

with the initial condition 𝑢𝜆(0, ⋅) = 𝑢0(⋅).

(i) Assume that 𝜌 = 1 and

lim
𝜆→∞∫|𝑥|>𝜆

|||𝑓(𝑥) −
𝑐

𝑥
|||𝑑𝑥 = 0 and lim

𝜆→∞∫|𝑥|⩽𝜆

𝑓(𝑥)𝑑𝑥 = 𝑐0 (2.12)

for some constants 𝑐, 𝑐0 ∈ ℝ. Then the random field

{𝜆−1∕2𝑢𝜆(𝜆
2𝑡, 𝜆𝑥) ∶ (𝑡, 𝑥) ∈ (0, 1] × ℝ}

converges weakly in the space uc((0, 1] × ℝ) as 𝜆 → ∞ to the solution of the stochastic heat
equation

𝜕𝑡𝑢(𝑡, 𝑥) −
1

2
𝜕2
𝑥𝑥𝑢(𝑡, 𝑥) =

(
𝑐𝜁−1 + 𝑐0𝛿0

)
(𝑢(𝑡, 𝑥)) + 𝑊̇, 𝑡 ∈ [0, 1], 𝑥 ∈ ℝ (2.13)

with the initial condition 𝑢0 ≡ 0.
(ii) Assume that 𝜌 ∈ (1, 3∕2) and

lim
𝑥→+∞

𝑓(𝑥)𝑥3−2𝜌 = 𝑐+ and lim
𝑥→−∞

𝑓(𝑥)|𝑥|3−2𝜌 = 𝑐− (2.14)

for some constants 𝑐−, 𝑐+ ∈ ℝ. Then the random field

{𝜆−1∕2𝑢𝜆(𝜆
2𝑡, 𝜆𝑥) ∶ (𝑡, 𝑥) ∈ (0, 1] × ℝ}

converges weakly in the space uc((0, 1] × ℝ) as 𝜆 → ∞ to the solution of the stochastic heat
equation

𝜕𝑡𝑢(𝑡, 𝑥) −
1

2
𝜕2
𝑥𝑥𝑢(𝑡, 𝑥) =

(
𝑐−𝜁

2𝜌−3
− + 𝑐+𝜁

2𝜌−3
+

)
(𝑢(𝑡, 𝑥)) + 𝑊̇, 𝑡 ∈ [0, 1], 𝑥 ∈ ℝ (2.15)

with the initial condition 𝑢0 ≡ 0.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 11

Remark 2.13. It easy to see that if 𝑓 is absolutely integrable onℝ, then 𝑐 = 0, 𝑐0 = ∫
ℝ
𝑓(𝑥)𝑑𝑥, and

one deduces a convergence to the skew stochastic heat equation frompart (i) of the above result. In
such case, Theorem 2.12(i) is an analogue of [44] (see also [38, Corollary 3.3]) for stochastic PDEs.

Remark 2.14. It is known that any homogeneous distribution on ℝ of order 𝛼 ∈ (−1, 0) is a lin-
ear combination of 𝜁𝛼

+ and 𝜁𝛼
−, and any homogeneous distribution on ℝ of order −1 is a linear

combination of 𝛿0 and 𝜁−1, [22, Chapter I]. Therefore, Theorem 2.12 shows that for any homoge-
neous distribution ℎ of order 𝛼 ∈ [−1, 0), one can easily find a continuous function 𝑓, so that the
corresponding scaling limit of (2.11) converges to stochastic heat equation with drift ℎ.

2.2 Overview of the proofs of the main results

Before we proceed to the proofs of our main results, we would like to demonstrate our strategy
on the following simple example, provide an overview of our arguments, and highlight the main
challenges arising in the proofs. We hope that this would help the reader to better understand our
method and grasp the main ideas without having to dive into too many technical details.
Thus, in this section we first consider the uniqueness problem for the equation (1.1), where

the initial condition 𝑢0 ≡ 0, the drift 𝑏 is a function (not a distribution) and 𝑏 ∈ 𝛽 = 𝛽
∞ with

𝛽 ∈ (0, 1). Furthermore, we consider this equation on the time horizon [0, 𝓁] rather than [0, 𝑇0],
where 𝓁 ∈ (0, 1) is small enough and to be chosen later.
As mentioned before, in this setting (1.1) is equivalent to Eq(0; 𝑏). Assume the contrary and

suppose that this equation has two solutions 𝑢 and 𝑣. We define

𝜓𝑡 ∶= 𝑢𝑡 − 𝑉𝑡; 𝜑𝑡 ∶= 𝑣𝑡 − 𝑉𝑡; 𝑧𝑡 ∶= 𝑢𝑡 − 𝑣𝑡 = 𝜓𝑡 − 𝜑𝑡, 𝑡 ∈ [0, 𝓁].

We note that 𝑧(0) = 0 and our goal is to prove that 𝑧(𝑡) = 0 for all 𝑡 ∈ [0, 𝓁]. We clearly have for
any 𝑡 ∈ [0, 𝓁], 𝑥 ∈ 𝐷

‖𝑧𝑡(𝑥)‖𝐿2
=

‖‖‖‖‖∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)
(
𝑏(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏(𝑉𝑟(𝑦) + 𝜑𝑟(𝑦))

)
𝑑𝑦𝑑𝑟

‖‖‖‖‖𝐿2

. (2.16)

A naive (and wrong) approach would be to then use directly the fact that 𝑏 ∈ 𝛽 and to put the‖ ⋅ ‖𝐿2
norm inside the integral. Then one would get

‖𝑧𝑡(𝑥)‖𝐿2
⩽ ‖𝑏‖𝛽 ∫

𝑡

0

sup
𝑦∈𝐷

‖𝑧𝑟(𝑦)‖𝛽
𝐿2
𝑑𝑟

and hence

sup
𝑡∈[0,𝓁]

sup
𝑥∈𝐷

‖𝑧𝑡(𝑥)‖𝐿2
⩽ 𝓁‖𝑏‖𝛽 sup

𝑡∈[0,𝓁]
sup
𝑥∈𝐷

‖𝑧𝑡(𝑥)‖𝛽
𝐿2
. (2.17)

Since 𝛽 ∈ (0, 1), it is obvious that neither of the above inequalities allows to conclude that
sup𝑦∈𝐷 ‖𝑧𝑡(𝑦)‖ = 0. Instead, our aim is show that the following trade-off holds: one can have
(2.17) with the factor ‖𝑧𝑡(𝑥)‖𝐿2

to the power 1 and the price to pay is that factor 𝓁 will be in a
certain power smaller than 1. However this will not obstruct the final conclusion.
To show this we are planning to work directly with the integral in the right-hand side of (2.16)

and exploit the regularizing properties of thewhite noise. Recall that in the SDE setting it is known
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12 ATHREYA et al.

that‖‖‖‖‖∫
𝑡

0

(𝑏(𝐵𝐻
𝑟 + 𝑥1) − 𝑏(𝐵𝐻

𝑟 + 𝑥2)) 𝑑𝑟
‖‖‖‖‖𝐿2

⩽ 𝐶‖𝑏‖𝛽 𝑡1+𝐻(𝛽−1)|𝑥1 − 𝑥2|, 𝑡 ⩾ 0, 𝑥1, 𝑥2 ∈ ℝ, (2.18)

where 𝐵𝐻 denotes the fBM with Hurst index 𝐻 ∈ (0, 1) and 𝛽 > 1 − 1∕(2𝐻), see [12, Proposi-
tion 2.1], [9, Theorem 1.1]. This is a trade-off we are aiming at. Unfortunately, Davie’s argument
does not allow for an easy extension beyond the Brownian case; note that, additionally, we would
like to replace constants 𝑥1, 𝑥2 in (2.18) by drifts (random fields) 𝜓, 𝜑which depend on the spatial
and time variables.
Therefore, we apply the stochastic sewing lemma (Theorem 4.1) to conclude that for any

0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝓁, 𝜏 ∈ [1∕4, 1]

sup
𝑥∈𝐷

‖𝑧𝑡(𝑥) − 𝑃𝑡−𝑠𝑧𝑠(𝑥)‖𝐿2
= sup

𝑥∈𝐷

‖‖‖‖‖∫
𝑡

𝑠
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)
(
𝑏(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏(𝑉𝑟(𝑦) + 𝜑𝑟(𝑦))

)
𝑑𝑦𝑑𝑟

‖‖‖‖‖𝐿2

⩽ 𝐶‖𝑏‖𝛽‖𝑧‖0,0𝐿2([𝑠,𝑡])(𝑡 − 𝑠)
3

4
+

𝛽

4 + 𝐶‖𝑏‖𝛽 [𝑧]𝜏,0𝐿2([𝑠,𝑡])(𝑡 − 𝑠)
3

4
+

𝛽

4
+𝜏

, (2.19)

where we used the notation

‖𝑧‖0,0𝐿2([𝑠,𝑡]) ∶= sup
𝑟∈[𝑠,𝑡]
𝑥∈𝐷

‖𝑧𝑟(𝑥)‖𝐿2
;

[𝑧]𝜏,0𝐿2([𝑠,𝑡])
∶= sup

𝑠⩽𝑠′⩽𝑡′⩽𝑡
sup
𝑥∈𝐷

‖𝑧𝑡′ (𝑥) − 𝑃𝑡′−𝑠′𝑧𝑠′ (𝑥)‖𝐿𝑚|𝑡′ − 𝑠′|𝜏 .

Remark 2.15. The exponent 3

4
+

𝛽

4
in (2.19) can be written as 𝐻(𝛽 − 1) + 1 for 𝐻 =

1

4
, which is

the same as in (2.18). This is due to the local nondeterministic property of 𝑉 in (2.5). Note that
fBM with𝐻 = 1∕4 satisfies a very similar local nondeterministic property. This provides another
connection of our results and the results in [9] concerning regularization by noise for fBM.

Now let us apply (2.19) with 𝜏 = 3∕4 + 𝛽∕4, divide both sides of the inequality by |𝑡 − 𝑠|3∕4+𝛽∕4

and take supremum over all 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝓁. We get

[𝑧]3∕4+𝛽∕4,0𝐿2([0,𝓁])
⩽ 𝐶‖𝑏‖𝛽‖𝑧‖0,0𝐿2([0,𝓁]) + 𝐶‖𝑏‖𝛽 [𝑧]3∕4+𝛽∕4,0𝐿2([0,𝓁])

𝓁
3

4
+

𝛽

4 . (2.20)

Since the constant 𝐶 does not depend on 𝓁, we can choose 𝓁 small enough so that 𝐶‖𝑏‖𝛽𝓁
3

4
+

𝛽

4 ⩽

1∕2. Substituting this back into (2.20), we get

[𝑧]3∕4+𝛽∕4,0𝐿2([0,𝓁])
⩽ 𝐶‖𝑏‖𝛽‖𝑧‖0,0𝐿2([0,𝓁]).

Applying this bound to (2.19), setting there 𝑠 = 0, and taking there supremum over all 0 ⩽ 𝑡 ⩽ 𝓁,
we finally obtain

‖𝑧‖0,0𝐿2([0,𝓁]) ⩽ 𝐶‖𝑏‖𝛽 (1 + ‖𝑏‖𝛽 )‖𝑧‖0,0𝐿2([0,𝓁])𝓁
3

4
+

𝛽

4 . (2.21)

Provided that 𝓁 is small enough, this yields ‖𝑧‖0,0𝐿2([0,𝓁]) = 0, and thus Eq(0; 𝑏) has a unique
strong solution.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 13

Weak existences of solutions to (1.1) would follow from similar bounds (see Lemma 5.2) and
Prokhorov’s theorem. Finally, strong existence follows fromweak existence and stronguniqueness
by the Yamada–Watanabe principle (by the method of [26]).
While the uniqueness proof outlined above is quite short and “almost” rigorous, two major

obstacles appears when one tries to extend this proof to cover distributional drifts 𝑏 ∈ 𝛽 , 𝛽 < 0,
and especially the case 𝑏 = 𝛿0.
First, for 𝛽 < 0 the right-hand side of (2.19) contains the additional factor

sup
𝑠⩽𝑠′⩽𝑡′⩽𝑡

sup
𝑥∈𝐷

ess sup
𝜔∈Ω

𝖤[|𝜓𝑡′(𝑥) − 𝑃𝑡′−𝑠′𝜓𝑠′ (𝑥)|2|𝑠′ ]|𝑡′ − 𝑠′|1+ 𝛽∧0

4

=∶ [𝜓]2

1+
𝛽∧0
4

,0
𝐿2,∞([𝑠,𝑡])

. (2.22)

When 𝑏 was a bounded function and 𝛽 ⩾ 0, it was obvious that

|𝜓𝑡′(𝑥) − 𝑃𝑡′−𝑠′𝜓𝑠′ (𝑥)| = ∫
𝑡′

𝑠′
∫
𝐷

𝑝𝑡′−𝑟(𝑥, 𝑦)𝑏(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) 𝑑𝑦𝑑𝑟 ⩽ |𝑡′ − 𝑠′| sup
𝑧∈ℝ

|𝑏(𝑧)|
and thus this extra factor was finite. Nowwhen 𝑏 is a distribution, the finiteness of this extra factor
is not clear at all (note also the appearance of ess sup there).
The second obstacle is even more hindering. It turns out that the bound (2.19) is valid only for

𝛽 > −1 and thus is not applicable to the case where 𝑏 is the Dirac delta function. This is similar
to the fact that the corresponding bound for fBM with the Hurst parameter 1∕4, (2.18), is also
known to be valid only for 𝛽 > −1, see [9, Theorem 1.1]. While it is true that the Dirac delta func-
tion actually has better regularity and belongs to −1+1∕𝑞

𝑞 for any 𝑞 ∈ [1,∞], this does not help
much. Indeed, one can show that the bounds (2.18) and (2.19) hold for 𝑏 ∈ 𝛽

𝑞 with 𝛽 − 1∕𝑞 > −1;
however this still does not cover the delta function.
Let us explain now how we are overcoming these obstacles. A crucial role in our approach

belongs to Proposition 3.6. It shows that if 𝑢, 𝑣 ∈ (3∕4) are two weak solutions to (1.1) adapted to
the same filtration, and if for one of them expression (2.22) is finite, then these solutions coincide.
To obtain this proposition we combine the critical stochastic sewing lemma (Theorem 4.5, exten-
sion of the stochastic sewing lemma from [37] and [18, Lemma 2.9]) with a very delicate analysis of
the solution to (1.1). Bound (2.19) (which is not valid for the case 𝑏 = 𝛿0) is replaced by (5.33), see
Lemma 5.7. Note that we have to use a certain rough-path inspired expansion of the solution and
bound its norm as well, see (5.34). Since new bound (5.33) contains now some logarithmic terms,
the final part of the uniqueness proof is less straightforward compared with (2.21), see Section 5.2.
Our argument there is a stochastic analogue of Davie’s argument in [11, Theorem 3.6].
Now we are ready to outline our strategy for establishing strong existence and uniqueness for

equation (1.1).
Step 1. We show that for any solution 𝑢𝜂;𝑓 to Eq(𝜂; 𝑓), where 𝜂 is a bounded initial condition

and 𝑓 is a smooth function, the additional factor [𝑢𝜂;𝑓 − 𝑉]1+
𝛽
4
,0
𝐿2,∞([0,𝓁])

from (2.22) is finite and

is bounded by a constant which depends only on the norm ‖𝑓‖𝛽 , see Proposition 3.2. This is done
using regularization bounds from Lemma 5.2.
Step 2. At this stepwe fix two sequences of smooth functions (𝑏′

𝑛)𝑛∈ℤ+
, (𝑏′′

𝑛 )𝑛∈ℤ+
converging to 𝑏

in𝛽−
𝑞 and denote by 𝑢′

𝑛, 𝑢′′
𝑛 the solutions of Eq(𝑢0; 𝑏

′
𝑛), Eq(𝑢0; 𝑏

′′
𝑛 ), respectively. Then, using again

bounds from Lemma 5.2, we are able to show that the sequence (𝑢′
𝑛, 𝑢

′′
𝑛 ) is tight. By Prokhorov’s

theorem, this implies that it has a subsequence which converges weakly. We denote its limit by
(𝑢′, 𝑢′′). This is done in Proposition 3.3.
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14 ATHREYA et al.

Step 3. Now we show that both 𝑢′ and 𝑢′′ solve (1.1), belong to (3∕4) and the factor
[𝑢′ − 𝑉]1+

𝛽
4
,0
𝐿2,∞([0,𝓁])

is finite. This is the content of Proposition 3.4 and Corollary 3.5.

Step 4. Now we have two solutions 𝑢′, 𝑢′′ ∈ (3∕4) for which the extra factor from (2.22) is
finite. Hence, by Proposition 3.6 discussed above 𝑢′ = 𝑢′′. This implies, thanks to a Yamada-
Watanabe type result from [26, Lemma 1.1], that 𝑢′ is actually a strong solution to (1.1), see the
proof of Theorem 2.10.
Step 5. Now if 𝑣 ∈ (3∕4) is any other solution (for which the factor from (2.22) is not necessary

finite), it still coincides with the strong solution 𝑢′ constructed at the previous step. This is again
due to Proposition 3.6, see the proof of Theorem 2.6(ii).
Step 6. Finally we show that the extra condition 𝑢 ∈ (3∕4) is automatically satisfied for SPDEs

with measure valued drift. This is done in Proposition 3.8 using stochastic sewing lemma with
random controls (Theorem 4.7). This proves Theorem 2.8.
Thus, we see that regularization estimates (Lemmas 5.2 and 5.7) play a very important role in

our proofs. They are obtained using a flexible toolkit of stochastic sewing, which extends upon
the original stochastic sewing from [37]. For the convenience of the reader, all sewing results are
stated separately in Section 4.

3 PROOFS OF THEMAIN RESULTS

In this section we prove the main results stated in Section 2.1. The technical parts, including the
regularization estimates, are stated as propositions. The proofs of these propositions are postponed
to the following sections. First, we set up some necessary notation.
For 0 ⩽ 𝑆 < 𝑇 we denote by Δ𝑆,𝑇 the simplex {(𝑠, 𝑡) ∶ 𝑆 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇}. Let (Ω, , (𝑡)𝑡⩾0, 𝖯) be a

complete filtered probability space on which the white noise 𝑊 is defined. We assume that the
filtration = (𝑡)𝑡∈[0,𝑇] satisfies the usual condition and that𝑊 is (𝑡)-white noise.Wewill write
𝖤𝑠 for the conditional expectation given 𝑠

𝖤𝑠[⋅] ∶= 𝖤[⋅|𝑠], 𝑠 ⩾ 0.

For a random process 𝑍 ∶ [0, 𝑇0] × 𝐷 × Ω → ℝ we will denote by (𝑍
𝑡 ) its natural filtration.

If 𝒢 ⊂  is a sub-𝜎-algebra, then we introduce the conditional quantity

‖𝜉‖𝐿𝑚|𝒢 ∶= (𝖤[|𝜉|𝑚|𝒢])
1

𝑚 , (3.1)

which is a𝒢-measurable non-negative random variable. It is evident that for 1 ⩽ 𝑚 ⩽ 𝑛 ⩽ ∞ one
has ‖𝜉‖𝐿𝑚

= ‖‖𝜉‖𝐿𝑚|𝒢‖𝐿𝑚
⩽ ‖‖𝜉‖𝐿𝑚|𝒢‖𝐿𝑛

⩽ ‖𝜉‖𝐿𝑛
. (3.2)

Let 0 ⩽ 𝑆 ⩽ 𝑇. Let 𝜓 ∶ [𝑆, 𝑇] × 𝐷 × Ω → ℝ be a measurable function. For 𝜏 ∈ (0, 1], 𝑚, 𝑛 ∈

[1,∞] define

[𝜓]𝜏,0𝐿𝑚([𝑆,𝑇]) ∶= sup
(𝑠,𝑡)∈Δ𝑆,𝑇

sup
𝑥∈𝐷

‖𝜓𝑡(𝑥) − 𝑃𝑡−𝑠𝜓𝑠(𝑥)‖𝐿𝑚|𝑡 − 𝑠|𝜏 ;

[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇]) ∶= sup
(𝑠,𝑡)∈Δ𝑆,𝑇

sup
𝑥∈𝐷

‖‖𝜓𝑡(𝑥) − 𝑃𝑡−𝑠𝜓𝑠(𝑥)‖𝐿𝑚|𝑠
‖𝐿𝑛|𝑡 − 𝑠|𝜏 ;

‖𝜓‖0,0𝐿𝑚([𝑆,𝑇]) ∶= sup
𝑡∈[𝑆,𝑇]

sup
𝑥∈𝐷

‖𝜓𝑡(𝑥)‖𝐿𝑚
. (3.3)
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 15

It follows from (3.2) that for 1 ⩽ 𝑚 ⩽ 𝑛 ⩽ ∞

[𝜓]𝜏,0𝐿𝑚([𝑆,𝑇]) = [𝜓]𝜏,0𝐿𝑚,𝑚([𝑆,𝑇]) ⩽ [𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇]) ⩽ [𝜓]𝜏,0𝐿𝑛([𝑆,𝑇]). (3.4)

Let 𝐁𝐿𝑚, where𝑚 ⩾ 1, be the space of all measurable functions 𝐷 × Ω → ℝ such that

‖𝑓‖𝐁𝐿𝑚
∶= sup

𝑥∈𝐷
‖𝑓(𝑥)‖𝐿𝑚

< ∞. (3.5)

Before we begin the proofs of our main results, we would like to claim that in Theorems 2.6 and
2.10 it suffices to consider only the case 𝑞 ∈ [2,∞], 𝛽 < 0. Indeed, recall the following embedding
between Besov spaces ([2, Proposition 2.71])

𝛽
𝑞1
is continuously embedded in 𝛽−

1

𝑞1
+

1

𝑞2
𝑞2

for every 1 ⩽ 𝑞1 ⩽ 𝑞2 ⩽ ∞. (3.6)

In Theorem 2.6(ii), when 𝑏 ∈ 𝛽
𝑞 , with 𝑞 ∈ [1, 2), we use embedding 𝛽

𝑞 ↪ 𝛽
2 where 𝛽 ∶=

𝛽 −
1

𝑞
+

1

2
. Note that 𝛽 −

1

2
= 𝛽 −

1

𝑞
⩾ −1 and 𝛽 > −1. This means that the results of The-

orem 2.6(ii) for 𝑏 in 𝛽
𝑞 with 𝑞 ∈ [1, 2) are consequences of those with larger integrability

components 𝑞. Exactly the same argument is valid for Theorem 2.6(i) and Theorem 2.10. Hence,
we assume without loss of generality hereafter that 𝑞 ∈ [2,∞]. Similarly, thanks to embedding
𝛽

𝑞 ↪ −𝛽′

𝑞 for all 𝛽, 𝛽′ > 0, we see that the statements of Theorems 2.6 and 2.10 for 𝑏 ∈ 𝛽
𝑞 with

𝛽 ⩾ 0 follows from the results of these theorems for some 𝛽 < 0. Hence, we can also assume
without loss of generality that 𝛽 < 0. To summarize, we have the following

Assumption 3.1. From now on and till the end of this section we fix 𝛽 < 0, 𝑞 ∈ [2,∞], 𝑏 ∈ 𝛽
𝑞 ,

𝑢0 ∈ 𝐁(𝐷). We assume that 𝛽 − 1∕𝑞 > −3∕2.

We begin with the proof of the existence of the solutions to (1.1). It consists of several steps.

Proposition 3.2 (A priori estimate). Let 𝑚 ∈ [2,∞), 𝑓 ∶ ℝ → ℝ be a bounded continuous
function in 𝛽

𝑞 , 𝜂 ∈ 𝐁(𝐷). Let 𝑢𝜂;𝑓 be the solution to Eq(𝜂; 𝑓). Then there exists a constant
𝐶 = 𝐶(𝛽, 𝑞,𝑚, 𝑇0) > 0 independent from 𝜂, 𝑓 such that

[𝑢𝜂;𝑓 − 𝑉]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([0,𝑇0])

⩽ 𝐶‖𝑓‖𝛽
𝑞
(1 + ‖𝑓‖2

𝛽
𝑞

). (3.7)

To formulate the next two statements we consider the space uc([0, 𝑇0] × 𝐷) of real continuous
functions on [0, 𝑇0] × 𝐷 equipped with the topology of uniform convergence over compact sets of
[0, 𝑇0] × 𝐷. It is well-known that uc([0, 𝑇0] × 𝐷) is a Polish space andmetrizable by the following
metric, similar to (2.8),

𝜌uc(𝑓, ℎ) ∶=

∞∑
𝑖=1

2−𝑛 sup
𝑥∈𝐷,|𝑥|⩽𝑛
𝑡∈[0,𝑇0]

(|𝑓(𝑡, 𝑥) − ℎ(𝑡, 𝑥)| ∧ 1), 𝑓, ℎ ∈ uc([0, 𝑇0] × 𝐷).

Proposition 3.3 (Tightness). Let (𝑏′
𝑛)𝑛∈ℤ+

, (𝑏′′
𝑛 )𝑛∈ℤ+

be two sequences of bounded continuous func-
tions converging to 𝑏 in 𝛽−

𝑞 . Let (𝑢′
0,𝑛)𝑛∈ℤ+

, (𝑢′′
0,𝑛)𝑛∈ℤ+

be two sequences of functions from 𝐁(𝐷)
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16 ATHREYA et al.

which both converge to 𝑢0 uniformly on 𝐷. Let 𝑢′
𝑛, 𝑢′′

𝑛 be the solutions of Eq(𝑢′
0,𝑛; 𝑏

′
𝑛), Eq(𝑢′′

0,𝑛; 𝑏
′′
𝑛 ),

respectively. Put

𝑢′
𝑛(𝑡, 𝑥) ∶= 𝑢′

𝑛(𝑡, 𝑥) − 𝑃𝑡𝑢
′
0,𝑛(𝑥), 𝑢′′

𝑛 (𝑡, 𝑥) ∶= 𝑢′′
𝑛 (𝑡, 𝑥) − 𝑃𝑡𝑢

′′
0,𝑛(𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷.

Then there exists a subsequence (𝑛𝑘)𝑘∈ℤ+
such that (𝑢′

𝑛𝑘
, 𝑢′′

𝑛𝑘
, 𝑉)𝑘∈ℤ+

converges weakly in the space
[uc([0, 𝑇0] × 𝐷)]3.

Proposition 3.4 (Stability). Let (𝑏𝑛)𝑛∈ℤ+
be a sequence of bounded continuous functions converging

to 𝑏 in𝛽−
𝑞 . Let (𝑢𝑛

0 )𝑛∈ℤ+
be a sequence of functions from 𝐁(𝐷) converging to 𝑢0 uniformly on𝐷. Let

𝑉𝑛 be a random element having the same law as𝑉. Assume that 𝑢𝑛 is a strong solution of Eq(𝑢𝑛
0 ; 𝑏

𝑛)
with 𝑉𝑛 in place of 𝑉. Let

𝑢𝑛(𝑡, 𝑥) ∶= 𝑢𝑛(𝑡, 𝑥) − 𝑃𝑡𝑢
𝑛
0 (𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷.

Suppose that there exist measurable functions 𝑢, 𝑉 ∶ [0, 𝑇0] × 𝐷 × Ω → ℝ such that the sequence
(𝑢𝑛, 𝑉𝑛)𝑛∈ℤ+

converges to (𝑢, 𝑉) in [uc([0, 𝑇0] × 𝐷)]2 in probability as 𝑛 → ∞. Then the function

𝑢(𝑡, 𝑥) ∶= 𝑢(𝑡, 𝑥) + 𝑃𝑡𝑢0(𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷

is a solution to (1.1) with the initial condition 𝑢0 and for any 𝑚 ∈ [2,∞) there exists
𝐶 = 𝐶(𝛽, 𝑞,𝑚, 𝑇0) > 0 such that

[𝑢 − 𝑉]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([0,𝑇0])

⩽ 𝐶 sup
𝑛∈ℤ+

‖𝑏𝑛‖𝛽
𝑞
(1 + ‖𝑏𝑛‖2

𝛽
𝑞

) < ∞. (3.8)

The proofs of Propositions 3.2–3.4 are presented in Section 5.1.
Combining the above propositions we obtain the following corollary, which immediately

implies Theorem 2.6(i). This corollary will be also important to show the existence of strong
solutions to (1.1).

Corollary 3.5. In the setting of Proposition 3.3 the following holds. There exists a filtered probabil-
ity space (Ω̂, ̂ , (̂𝑡)𝑡∈[0,𝑇0], 𝑃), an (̂𝑡)-white noise 𝑊 defined on this space, measurable functions
𝑣′, 𝑣′′ ∶ [0, 𝑇0] × 𝐷 × Ω̂ → ℝ such that

(1) both 𝑣′ and 𝑣′′ are adapted to the filtration (̂𝑡) and are weak solutions to (1.1) with the initial
condition 𝑢0;

(2) there exists a subsequence (𝑛𝑘) such that (𝑢′
𝑛𝑘

, 𝑢′′
𝑛𝑘

)𝑘∈ℤ+
converges weakly to (𝑣′, 𝑣′′) in the space

[uc([0, 𝑇0] × 𝐷)]2 as 𝑘 → ∞, where

𝑣′(𝑡, 𝑥) ∶= 𝑣′(𝑡, 𝑥) − 𝑃𝑡𝑢0(𝑥), 𝑣′′(𝑡, 𝑥) ∶= 𝑣′′(𝑡, 𝑥) − 𝑃𝑡𝑢0(𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷. (3.9)

(3) for 𝑉 defined as in (2.4) with𝑊 in place of𝑊 the following holds:

[𝑣′ − 𝑉]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([0,𝑇0])

+ [𝑣′′ − 𝑉]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([0,𝑇0])

< ∞. (3.10)

Proof. By Proposition 3.3, there exists a subsequence (𝑛𝑘) such that (𝑢′
𝑛𝑘

, 𝑢′′
𝑛𝑘

, 𝑉)𝑘∈ℤ+
converges

weakly in the space [uc([0, 𝑇0] × 𝐷)]3. By passing to this subsequence, to simplify the notation,

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22157 by T

est, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 17

we may assume without loss of generality that (𝑢′
𝑛, 𝑢

′′
𝑛 , 𝑉) converges weakly. Since this space

is Polish, we can apply the Skorohod representation theorem [5, Theorem 6.7] and deduce that
there exists a sequence of random elements (𝑣′

𝑛, 𝑣
′′
𝑛 , 𝑉𝑛) defined on a common probability space

(Ω̂, ̂ , 𝑃 ) and a random element (𝑣′, 𝑣′′, 𝑉) such that

Law(𝑣′
𝑛, 𝑣

′′
𝑛 , 𝑉𝑛) = Law(𝑢′

𝑛, 𝑢
′′
𝑛 , 𝑉) (3.11)

and (𝑣′
𝑛, 𝑣

′′
𝑛 , 𝑉𝑛) converges to (𝑣′, 𝑣′′, 𝑉) a.s. in space [uc([0, 𝑇0] × 𝐷)]3.

Define for 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷

𝑣′
𝑛(𝑡, 𝑥) ∶= 𝑣′

𝑛(𝑡, 𝑥) + 𝑃𝑡𝑢
′
0,𝑛(𝑥), 𝑣′′

𝑛 (𝑡, 𝑥) ∶= 𝑣′′
𝑛 (𝑡, 𝑥) + 𝑃𝑡𝑢

′′
0,𝑛(𝑥),

𝑣′(𝑡, 𝑥) ∶= 𝑣′(𝑡, 𝑥) + 𝑃𝑡𝑢
′
0(𝑥), 𝑣′′(𝑡, 𝑥) ∶= 𝑣′′(𝑡, 𝑥) + 𝑃𝑡𝑢

′′
0 (𝑥).

Since 𝑢′
𝑛 satisfies Eq(𝑢′

0,𝑛; 𝑏
′
𝑛), by (3.11) we have that 𝑣′

𝑛 satisfies Eq(𝑢′
0,𝑛; 𝑏

′
𝑛) with 𝑉𝑛 in

place of 𝑉.
Since 𝑢′

𝑛 is the strong solution to Eq(𝑢′
0,𝑛; 𝑏

′
𝑛), the random variable 𝑢′

𝑛(𝑡, 𝑥) is 𝑊
𝑡 -measurable,

where 𝑡 ∈ (0, 𝑇0], 𝑥 ∈ 𝐷. By Lemma B.2, 𝑊
𝑡 = 𝑉

𝑡 . This and (3.11) implies that 𝑣
′
𝑛(𝑡, 𝑥) is 𝑉𝑛

𝑡 -
measurable. By Lemma B.2, there exists a white noise𝑊𝑛 such that (2.4) holds for𝑊𝑛 in place of
𝑊 and 𝑉𝑛 in place of 𝑉 and 𝑉𝑛

𝑡 = 𝑊𝑛

𝑡 . Thus 𝑣′
𝑛(𝑡, 𝑥) is 𝑊𝑛

𝑡 -measurable. Identity (3.11) implies
now that 𝑣′

𝑛 is a strong solution to Eq(𝑢′
0,𝑛; 𝑏

′
𝑛) with 𝑉𝑛 in place of 𝑉. Similarly, 𝑣′′

𝑛 is a strong
solution to Eq(𝑢′′

0,𝑛; 𝑏
′′
𝑛 ) with 𝑉𝑛 in place of 𝑉.

We see now that all the conditions of Proposition 3.4 are satisfied. Applying this result, we see
that 𝑣′ and 𝑣′′ are solutions to (1.1) in the sense of Definition 2.3 with 𝑉 in place of 𝑉.
Define now ̂𝑡 ∶= 𝜎(𝑣′

𝑟(𝑥), 𝑣
′′
𝑟 (𝑥), 𝑉𝑟(𝑥), 𝑥 ∈ 𝐷, 𝑟 ∈ [0, 𝑡]). Clearly, 𝑣′ and 𝑣′′ are ̂𝑡

measurable.
It follows immediately from the definition of the white noise that for any (𝑠, 𝑡) ∈ Δ0,𝑇0

, 𝜑 ∈ ∞
𝑐 ,

𝑛 ∈ ℤ+ the random variable

∫
𝐷
∫

𝑡

𝑠
∫
𝐷

𝜑(𝑥)𝑝𝑡−𝑟(𝑥, 𝑦)𝑊
𝑛(𝑑𝑦, 𝑑𝑟)𝑑𝑥 = ∫

𝐷

𝜑(𝑥)(𝑉𝑛
𝑡 (𝑥) − 𝑃𝑡−𝑠𝑉

𝑛
𝑠 (𝑥)) 𝑑𝑥

is independent of ̂𝑊𝑛

𝑠 = 𝜎(𝑣′
𝑛(𝑟, 𝑥), 𝑣

′′
𝑛 (𝑟, 𝑥), 𝑉𝑛

𝑟 (𝑥), 𝑥 ∈ 𝐷, 𝑟 ∈ [0, 𝑠]). Therefore, Proposition B.1
implies that the random variable ∫

𝐷
𝜑(𝑥)(𝑉𝑡(𝑥) − 𝑃𝑡−𝑠𝑉𝑠(𝑥)) 𝑑𝑥 is independent of ̂𝑠. Thus, by

Lemma B.2, there exists an (̂𝑡)-white noise𝑊 such that (2.4) holds for𝑊 in place of𝑊 and 𝑉 in
place of 𝑉. Hence 𝑣′ and 𝑣′′ are weak solutions to (1.1) and they are adapted to the same filtration
(̂𝑡).
Finally, it remains to note that (3.10) follows now from (3.8). □

Proof of Theorem 2.6(i). Let (𝑏𝑛) be a sequence of smooth functions converging to 𝑏 in𝛽−
𝑝 . Apply-

ing Corollary 3.5 with 𝑏′
𝑛 = 𝑏′′

𝑛 = 𝑏𝑛 and 𝑢′
0,𝑛 = 𝑢′′

0,𝑛 = 𝑢0 we obtain existence of a weak solution
𝑣′. By (3.10),

[𝑣′ − 𝑉]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚([0,𝑇0])

⩽ [𝑣′ − 𝑉]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([0,𝑇0])

< ∞,

where the first inequality follows from (3.2). Hence 𝑣′ ∈ (1 +
𝛽

4
−

1

4𝑞
). □
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18 ATHREYA et al.

Now we move on to the proofs of strong existence and uniqueness of solutions to (1.1).

Proposition 3.6 (Uniqueness). Suppose additionally that 𝛽 ⩾ −1 + 1∕𝑞, 𝛽 > −1. Let (𝑢𝑡)𝑡∈[0,𝑇0]

be a solution of SPDE (1.1) starting from the initial condition 𝑢0. Let (𝑣𝑡)𝑡∈[0,𝑇0] be a measurable
process (0, 𝑇0] × 𝐷 × Ω → ℝ, which satisfies conditions (1), (3) of Definition 2.3 and condition (2′)
of Remark 2.7.
Suppose that 𝑢, 𝑣 are adapted to the filtration (𝑡)𝑡∈[0,𝑇0] and belong to the class (3∕4). Assume

further that for some𝑚 ⩾ 2

[𝑢 − 𝑉] 3
4
,0
𝐿𝑚,∞([0,𝑇0])

< ∞. (3.12)

Then 𝑢 = 𝑣 a.s.

The proof of Proposition 3.6 is given in Section 5.2.
The proof of strong existence uses the following statement from [26]. For the convenience of

the reader we provide it here.

Proposition 3.7 ([26, Lemma 1.1]). Let (𝑍𝑛) be a sequence of random elements in a Polish space
(𝐸, 𝜌) equipped with the Borel 𝜎-algebra. Assume that for every pair of subsequences (𝑍𝑙𝑘 ) and (𝑍𝑚𝑘

)

there exists a further sub-subsequence (𝑍𝑙𝑘𝑟
, 𝑍𝑚𝑘𝑟

) which converges weakly in the space 𝐸 × 𝐸 to a
random element 𝑤 = (𝑤1, 𝑤2) such that 𝑤1 = 𝑤2 a.s.
Then there exists an 𝐸-valued random element 𝑍 such that (𝑍𝑛) converges in probability to 𝑍.

Proof of Theorem 2.10. We will use Proposition 3.7. Fix a sequence (𝑏𝑛) of bounded continuous
functions converging to 𝑏 in 𝛽−

𝑞 and a sequence (𝑢0,𝑛) of functions from 𝐁(𝐷) converging to 𝑢0.
Let 𝑢𝑛 be the strong solution to Eq(𝑢0,𝑛; 𝑏𝑛). Define

𝑢𝑛(𝑡, 𝑥) ∶= 𝑢𝑛(𝑡, 𝑥) − 𝑃𝑡𝑢0,𝑛(𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷.

Let (𝑏′
𝑛, 𝑢

′
𝑛) and (𝑏′′

𝑛 , 𝑢′′
𝑛 ) be two arbitrary subsequences of (𝑏𝑛, 𝑢𝑛). Applying Corollary 3.5,

there exist a filtered probability space (Ω̂, ̂ , (̂𝑡)𝑡∈[0,𝑇0], 𝑃), an (̂𝑡)-white noise 𝑊 defined on
this space, and a pair of weak solutions (𝑣′, 𝑣′′) to (1.1) adapted to the filtration (̂𝑡). We see also
that there exists a subsequence (𝑛𝑘) such that (𝑢′

𝑛𝑘
, 𝑢′′

𝑛𝑘
) converges to (𝑣′, 𝑣′′) weakly in the space

[uc([0, 𝑇0] × 𝐷)]2 as 𝑘 → ∞, where (𝑣′, 𝑣′′) are defined in (3.9). We note that (3.10) together with
(3.2) implies that for any𝑚 ⩾ 2

[𝑣′ − 𝑉] 3
4
,0
𝐿𝑚([0,𝑇0])

⩽ [𝑣′ − 𝑉] 3
4
,0
𝐿𝑚,∞([0,𝑇0])

< ∞,

where we used the fact that 1 + 𝛽∕4 − 1∕(4𝑞) ⩾ 3∕4. Thus the pair (𝑣′, 𝑉) satisfies (3.12) and
𝑣′ belong to the class (3∕4). Similarly, 𝑣′′ ∈ (3∕4). Thus, we see that all the assumptions of
Proposition 3.6 are satisfied and we can conclude that 𝑣′ = 𝑣′′ a.s. By definition, this implies that
𝑣′ = 𝑣′′ a.s.
Thus, all the conditions of Proposition 3.7 are met. Hence there exists a uc([0, 𝑇0] × 𝐷)-valued

random element 𝑢 such that 𝑢𝑛 converges to 𝑢 in probability as 𝑛 → ∞. Set now

𝑢(𝑡, 𝑥) ∶= 𝑢(𝑡, 𝑥) + 𝑃𝑡𝑢0(𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 19

Applying Proposition 3.4, we see that 𝑢 is a solution to (1.1) with the initial condition 𝑢0. Since
𝑢𝑛(𝑡, 𝑥), where 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷, is 𝑊

𝑡 -measurable, we see that 𝑢(𝑡, 𝑥) and, hence 𝑢(𝑡, 𝑥) are
𝑊

𝑡 -measurable. Thus, 𝑢 is a strong solution to (1.1).
From the convergence of probability of 𝑢𝑛 to 𝑢, we get that for any 𝑁 > 0

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑁

|𝑢𝑛
𝑡 (𝑥) − 𝑢𝑡(𝑥)| → 0 in probability as 𝑛 → ∞. (3.13)

Further, by the assumptions of the theorem

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷

|𝑃𝑡𝑢
𝑛
0 (𝑥) − 𝑃𝑡𝑢0(𝑥)| ⩽ sup

𝑥∈𝐷
|𝑢𝑛

0 (𝑥) − 𝑢0(𝑥)| → 0 as 𝑛 → ∞, (3.14)

where we used the fact that |𝑃𝑡𝑓(𝑥)| ⩽ sup𝑦 |𝑓(𝑦)| for any bounded function 𝑓. Combining (3.13)
and (3.14), we obtain (2.6).
Finally, part (3) of the theorem follows from (3.8) and the fact that 1 +

𝛽

4
−

1

4𝑞
⩾

3

4
. □

Proof of Theorem 2.6(ii). By Theorem 2.10, there exists a strong solution 𝑢 to (1.1) satisfying (3.12).
If 𝑣 is another strong solution to (1.1) in the class (3∕4), then, by Proposition 3.6 𝑢 = 𝑣. This
shows strong uniqueness of solutions to (1.1). □

Proposition 3.8. Suppose that 𝑏 is a non-negative finitemeasure, then every solution of (1.1) belongs
to the class (3∕4).

The proof of Proposition 3.8 is given in Section 5.3.

Proof of Theorem 2.8. Let 𝑢0 be a bounded measurable function. Since measures belong to 0
1,

Theorem 2.6 yields existence and uniqueness of a strong solution 𝑢 to (1.1) in (3∕4) starting from
𝑢0. On the other hand, by Proposition 3.8, every solution to (1.1) belongs to (3∕4) and thus has
to coincide with 𝑢, thus completing the proof. □

Proof of Corollary 2.11. The proof uses an idea similar to [29, Proof of Theorem 2.4]. For 𝑛 ∈ ℕ,
put 𝑏′

𝑛 ∶= 𝐺1∕𝑛𝑏
′, 𝑏′′

𝑛 ∶= 𝐺1∕𝑛𝑏
′′. By Lemma A.3, 𝑏′

𝑛 and 𝑏′′
𝑛 are smooth and bounded. Let 𝑢′

𝑛

be the strong solution to Eq(𝑢′
0; 𝑏

′
𝑛) and let 𝑢′′

𝑛 be the strong solution to Eq(𝑢′′
0 ; 𝑏

′′
𝑛 ). Note that

𝑏′ ⪯ 𝑏′′ implies 𝑏′
𝑛(𝑥) ⩽ 𝑏′′

𝑛 (𝑥) for any 𝑥 ∈ ℝ, thanks to the definition of the partial order. Then,
using again that 𝑏′

𝑛 and 𝑏′′
𝑛 are smooth and bounded, the standard comparison principle (see, for

example, [29, Theorem 2.4], [7, Lemma 3.3]) yields

𝑢′
𝑛(𝑡, 𝑥) ⩽ 𝑢′′

𝑛 (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ 𝐷. (3.15)

By Lemma A.3, 𝑏′
𝑛 → 𝑏′, 𝑏′′

𝑛 → 𝑏′′ in 𝛽−
𝑞 as 𝑛 → ∞. Therefore, by passing to the limit as 𝑛 → ∞

in (3.15), we get for any fixed 𝑡 > 0, 𝑥 ∈ 𝐷 by Theorem 2.10.

𝑢′(𝑡, 𝑥) ⩽ 𝑢′′(𝑡, 𝑥), a.s.

Since 𝑢′ and 𝑢′′ are continuous, this implies that a.s. 𝑢′(𝑡, 𝑥) ⩽ 𝑢′′(𝑡, 𝑥) for all 𝑡 > 0, 𝑥 ∈ 𝐷. □
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20 ATHREYA et al.

Proof of Theorem 2.12. Define 𝑓𝜆(𝑥) = 𝜆3∕2−𝜌𝑓(𝜆1∕2𝑥),

𝑢̄𝜆(𝑡, 𝑥) = 𝜆−1∕2𝑢𝜆(𝜆
2𝑡, 𝜆𝑥) and 𝑉𝜆(𝑡, 𝑥) = 𝜆−1∕2𝑉(𝜆2𝑡, 𝜆𝑥).

By a change of variables, we have

𝑢̄𝜆(𝑡, 𝑥) = 𝜆−1∕2 ∫
ℝ

𝑝𝑡(𝑥 − 𝑦)𝑢0(𝜆𝑦)𝑑𝑦 + 𝑉𝜆(𝑡, 𝑥) + ∫
𝑡

0
∫
ℝ

𝑝𝑡−𝑟(𝑥 − 𝑦)𝑓𝜆(𝑢̄𝜆(𝑟, 𝑦))𝑑𝑟𝑑𝑦.

Note that the random fields 𝑉𝜆 and 𝑉 have the same probability law. Hence, 𝑢̄𝜆 is a weak solu-
tion to (1.1) with 𝑓𝜆 in place of 𝑏 and 𝑢̄𝜆(0, 𝑥) = 𝜆−1∕2𝑢0(𝜆𝑥). It is straightforward to see that
𝑢̄𝜆(0, ⋅) converges to 0 uniformly on ℝ. If 𝜌 = 1, then by Lemma A.5, 𝑓𝜆 converges to 𝑐𝜁−1 + 𝑐0𝛿0

in (−1+1∕𝑝)−
𝑝 as 𝜆 → ∞ for any 𝑝 ∈ (1,∞). If 𝜌 ∈ (1, 3∕2), then by Lemma A.6, 𝑓𝜆 converges to

𝑐−𝜁
2𝜌−3
− + 𝑐+𝜁

2𝜌−3
+ in (2𝜌−3)−

∞ as 𝜆 → ∞.
Applying Theorem 2.10, we see that if 𝜌 = 1, then the process 𝑢̄𝜆 converges weakly in the

space uc((0, 1] × ℝ) as 𝜆 → ∞ to the solution of (2.13). Similarly, if 𝜌 ∈ (1, 3∕2) the same the-
orem implies that the process 𝑢̄𝜆 converges weakly in the space uc((0, 1] × ℝ) as 𝜆 → ∞ to the
solution of (2.15). □

4 STOCHASTIC SEWING LEMMAS

We present three extensions of the stochastic sewing lemma introduced earlier in [37]. More
precisely, we incorporate singularities, critical exponents and random controls in the stochas-
tic sewing lemma. In addition, we also provide estimates in some conditional moment norms,
inspired by the stochastic sewing in [18]. As we will see in later sections, singularities allow
for improvements of regularities and broaden the scope of applications of the stochastic sewing
techniques (see for instance Lemma 6.1 and Corollary 6.2 in Section 6). The result with random
controls (Theorem 4.7 below) is used in Proposition 3.8 to obtain a priori estimates for solutions
to Equation 1.1 when the drift 𝑏 is a measure. The stochastic sewing result for critical exponent
is used to prove Proposition 3.6, that is strong uniqueness for Equation 1.1 when 𝛽 − 1∕𝑞 = −1.
Finally, the estimates in conditional moment norms are also used in Proposition 3.2 which is later
used in Proposition 3.6 to prevent a loss of integrability. We believe that these results complement
[37, Theorem 2.1], [18, Theorem 2.7] and form a toolkit which is also of independent interest and
can be useful for other purposes.

4.1 Statements of stochastic sewing lemmas

Till the end of this section we fix a time horizon 𝑇 ∈ (0,∞) and a filtered probability space
(Ω, , (𝑡)𝑡∈[0,𝑇], 𝖯). Recall that for 0 ⩽ 𝑆 < 𝑇 we denoted by Δ𝑆,𝑇 the simplex {(𝑠, 𝑡) ∈ [𝑆, 𝑇]2 ∶

𝑠 ⩽ 𝑡}. The mesh size of a partition Π of an interval will be denoted by |Π|. Let 𝐴 ∶ Δ𝑆,𝑇 → 𝐿𝑚 be
such that 𝐴𝑠,𝑡 is 𝑡-measurable for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇 . For every triplet of times (𝑠, 𝑢, 𝑡) such that
𝑆 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 𝑇, we denote

𝛿𝐴𝑠,𝑢,𝑡 ∶= 𝐴𝑠,𝑡 − 𝐴𝑠,𝑢 − 𝐴𝑢,𝑡.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 21

For each 𝛼, 𝛽 ∈ [0, 1), (𝑠, 𝑡) ∈ Δ𝑆,𝑇 define the function

𝜂
(𝛼,𝛽)
𝑆,𝑇

(𝑠, 𝑡) ∶= ∫
𝑡

𝑠

(𝑟 − 𝑆)−𝛼(𝑇 − 𝑟)−𝛽𝑑𝑟.

It is immediate that

𝜂
(𝛼,𝛽)
𝑆,𝑇

(𝑠, 𝑡) ⩽ 𝐶(𝛼, 𝛽)(𝑡 − 𝑠)1−𝛼−𝛽. (4.1)

Recall the notation ‖ ⋅ ‖𝐿𝑚|𝑡
introduced in (3.1).

Theorem 4.1 (Stochastic sewing lemma). Let 𝑚 ∈ [2,∞) and 𝑛 ∈ [𝑚,∞] be fixed. Assume that
there exist constants Γ1, Γ2 ⩾ 0, 𝜀1, 𝜀2 > 0, 𝛼1, 𝛽1 ∈ [0, 1) and 𝛼2, 𝛽2 ∈ [0,

1

2
) such that the following

conditions hold for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇 and 𝑢 ∶= (𝑠 + 𝑡)∕2

‖𝖤𝑠[𝛿𝐴𝑠,𝑢,𝑡]‖𝐿𝑛
⩽ Γ1(𝑢 − 𝑆)−𝛼1(𝑇 − 𝑢)−𝛽1 |𝑡 − 𝑠|1+𝜀1 , (4.2)

‖‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑚|𝑆
‖𝐿𝑛

⩽ Γ2(𝑢 − 𝑆)−𝛼2(𝑇 − 𝑢)−𝛽2 |𝑡 − 𝑠| 1

2
+𝜀2 . (4.3)

Further, suppose that there exists a process  = {𝑡 ∶ 𝑡 ∈ [𝑆, 𝑇]} such that for any 𝑡 ∈ [𝑆, 𝑇] and
any sequence of partitions Π𝑁 ∶= {𝑆 = 𝑡𝑁0 , … , 𝑡𝑁

𝑘(𝑁)
= 𝑡} of [𝑆, 𝑡] such that lim𝑁→∞ |Π𝑁| → 0 one

has

𝑡 = lim
𝑁→∞

𝑘(𝑁)−1∑
𝑖=0

𝐴𝑡𝑁
𝑖
,𝑡𝑁
𝑖+1

in probability. (4.4)

Then there exists a constant 𝐶 = 𝐶(𝜀1, 𝜀2,𝑚) independent of 𝑆, 𝑇 such that for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇

we have

‖‖𝑡 −𝑠 − 𝐴𝑠,𝑡‖𝐿𝑚|𝑆
‖𝐿𝑛

⩽ 𝐶Γ2

(
𝜂
(2𝛼2,2𝛽2)
𝑆,𝑇

(𝑠, 𝑡)
) 1

2 |𝑡 − 𝑠|𝜀2 + 𝐶Γ1𝜂
(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)|𝑡 − 𝑠|𝜀1 (4.5)

and

‖𝖤𝑆[𝑡 −𝑠 − 𝐴𝑠,𝑡] ‖𝐿𝑛
⩽ 𝐶Γ1𝜂

(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)|𝑡 − 𝑠|𝜀1 . (4.6)

Remark 4.2. When 𝑛 = 𝑚 and 𝛼𝑖 = 𝛽𝑖 = 0, 𝑖 = 1, 2, the estimates (4.5) and (4.6) coincide with
those in [37, Theorem 2.1]. Using the arguments in the aforementioned paper, one can obtain
from (4.2) and (4.3) the existence of the process satisfying (4.4). However, by imposing condition
(4.4), our presentation on the applications of Theorem 4.1 in later sections is simplified.

Remark 4.3. In view of (3.2), condition (4.3) follows from the following simpler condition. There
exist constants Γ2 ⩾ 0, 𝜀2 > 0, 𝛼2, 𝛽2 ∈ [0,

1

2
) such that for every 𝑆 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇, 𝑢 ∶= (𝑠 + 𝑡)∕2,

𝑥 ∈ 𝐷 one has

‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑛
⩽ Γ2(𝑢 − 𝑆)−𝛼2(𝑇 − 𝑢)−𝛽2 |𝑡 − 𝑠| 1

2
+𝜀2 . (4.7)

Sometimes, it might be useful to apply the following modification of stochastic sewing lemma.
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22 ATHREYA et al.

Theorem 4.4. Suppose that all the conditions of Theorem 4.1 are satisfied apart from (4.4), which is
replaced by the following: there exists a process = {𝑡 ∶ 𝑡 ∈ [𝑆, 𝑇]} such that for any (𝑠, 𝑡) ∈ Δ𝑆,𝑇

and any sequence of partitions Π𝑁 ∶= {𝑠 = 𝑡𝑁0 , … , 𝑡𝑁
𝑘(𝑁)

= 𝑡} of [𝑠, 𝑡] such that lim𝑁→∞ |Π𝑁| → 0

one has

|𝑡 −𝑠| ⩽ lim inf
𝑁→∞

||||||
𝑘(𝑁)−1∑

𝑖=0

𝐴𝑡𝑁
𝑖
,𝑡𝑁
𝑖+1

|||||| a.s. (4.8)

Then there exists a constant 𝐶 = 𝐶(𝜀1, 𝜀2,𝑚) independent of 𝑆, 𝑇 such that for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇 we
have

‖‖𝑡−𝑠‖𝐿𝑚|𝑆
‖𝐿𝑛

⩽‖‖𝐴𝑠,𝑡‖𝐿𝑚|𝑆
‖𝐿𝑛

+𝐶Γ2

(
𝜂
(2𝛼2,2𝛽2)
𝑆,𝑇

(𝑠, 𝑡)
) 1

2 |𝑡−𝑠|𝜀2 +𝐶Γ1𝜂
(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)|𝑡−𝑠|𝜀1
(4.9)

and

‖𝖤𝑆[𝑡 −𝑠] ‖𝐿𝑛
⩽ ‖𝖤𝑆𝐴𝑠,𝑡 ‖𝐿𝑛

+ 𝐶Γ1𝜂
(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)|𝑡 − 𝑠|𝜀1 . (4.10)

The next result, which is used later in the proof of Proposition 3.6, is inspired by the stochastic
Davie–Grönwall from [18].

Theorem 4.5 (Stochastic sewing with critical exponent). Let 𝑚 ∈ [2,∞). Assume that all the
conditions of Theorem 4.1 are satisfied with the choice 𝑛 = 𝑚, 𝛼1 = 𝛽1 = 𝛼2 = 𝛽2 = 0. Suppose
additionally that there exist constants Γ3 > 0, Γ4 ⩾ 0, 𝜀4 > 0 such that

‖𝖤𝑠[𝛿𝐴𝑠,𝑢,𝑡]‖𝐿𝑚
⩽ Γ3|𝑡 − 𝑠| + Γ4|𝑡 − 𝑠|1+𝜀4 , (4.11)

for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇 and 𝑢 ∶= (𝑠 + 𝑡)∕2. Then there exist a constant 𝐶 = 𝐶(𝜀1, 𝜀2, 𝜀4,𝑚) indepen-
dent of 𝑆, 𝑇 such that for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇 we have

‖𝑡 −𝑠 − 𝐴𝑠,𝑡‖𝐿𝑚
⩽ 𝐶Γ3

(
1 +

||||log Γ1𝑇
𝜀1

Γ3

||||
)
(𝑡 − 𝑠) + 𝐶Γ2(𝑡 − 𝑠)

1

2
+𝜀2 + 𝐶Γ4(𝑡 − 𝑠)1+𝜀4 . (4.12)

Finally, our last sewing lemma is stochastic sewing lemma with random controls. It is interest-
ing to compare it with the deterministic sewing lemmawith controls [19, Theorem 2.2]. We would
need the following definition.

Definition 4.6. Let 𝜆 be ameasurable functionΔ𝑆,𝑇 × Ω → ℝ+. We say that 𝜆 is a random control
if for any 𝑆 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 𝑇 one has

𝜆(𝑠, 𝑢, 𝜔) + 𝜆(𝑢, 𝑡, 𝜔) ⩽ 𝜆(𝑠, 𝑡, 𝜔) a.s.

Theorem4.7 (Stochastic sewing lemmawith random controls). Let𝑚 ∈ [2,∞). Let 𝜆 be a random
control. Assume that there exist constants Γ1, 𝛼1, 𝛽1 ⩾ 0, such that 𝛼1 + 𝛽1 > 1 and

|𝖤𝑢𝛿𝐴𝑠,𝑢,𝑡| ⩽ Γ1|𝑡 − 𝑠|𝛼1𝜆(𝑠, 𝑡)𝛽1 a.s. (4.13)
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 23

for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇 and𝑢 ∶= (𝑠 + 𝑡)∕2. Assume further that condition (4.3) is satisfiedwith𝑛 = 𝑚,
𝛼2 = 𝛽2 = 0, 𝜀2 > 0 and condition (4.4) holds.
Then there exists a map 𝐵 ∶ Δ𝑆,𝑇 → 𝐿𝑚 and a constant 𝐶 > 0, such that 𝐵 is a functional of

((𝑠, 𝑡) ↦ 𝛿𝐴𝑠,(𝑠+𝑡)∕2,𝑡) and for every (𝑠, 𝑡) ∈ Δ𝑆,𝑇

|𝑡 −𝑠 − 𝐴𝑠,𝑡| ⩽ 𝐶Γ1|𝑡 − 𝑠|𝛼1𝜆(𝑠, 𝑡)𝛽1 + 𝐵𝑠,𝑡 a.s. (4.14)

and

‖𝐵𝑠,𝑡‖𝐿𝑚
⩽ 𝐶Γ2|𝑡 − 𝑠| 1

2
+𝜀2 . (4.15)

4.2 Proofs of stochastic sewing lemmas

The proofs of the results from Section 4.1 make use of the following common notation. For
each integer 𝑘 ⩾ 0 and each (𝑠, 𝑡) ∈ Δ𝑆,𝑇 with 𝑠 > 0, let 𝜋𝑘

[𝑠,𝑡]
= {𝑠 = 𝑡𝑘0 < 𝑡𝑘1 < ⋯ < 𝑡𝑘

2𝑘
= 𝑡} be the

dyadic partition of [𝑠, 𝑡].
For each 𝑘, 𝑖, 𝑢𝑘

𝑖
denotes the midpoint of [𝑡𝑘

𝑖
, 𝑡𝑘

𝑖+1
]. Define

𝐴𝑘
𝑠,𝑡 ∶=

2𝑘−1∑
𝑖=0

𝐴𝑡𝑘
𝑖
,𝑡𝑘
𝑖+1

.

Let (𝑠, 𝑡) ∈ Δ𝑆,𝑇 be fixed. For every 𝑘 ⩾ 0, we have

𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡 =

2𝑘−1∑
𝑖=0

𝛿𝐴𝑡𝑘
𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

= 𝐼𝑘𝑠,𝑡 + 𝐽𝑘𝑠,𝑡 (4.16)

where

𝐼𝑘𝑠,𝑡 =

2𝑘−1∑
𝑖=0

𝖤𝑡𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

and 𝐽𝑘𝑠,𝑡 =

2𝑘−1∑
𝑖=0

(
𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

− 𝖤𝑡𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

)
. (4.17)

Proof of Theorem 4.1. We estimate 𝐼𝑘𝑠,𝑡 by triangle inequality and condition (4.2),

‖‖𝐼𝑘𝑠,𝑡‖‖𝐿𝑛
⩽

2𝑘−1∑
𝑖=0

‖‖‖‖𝖤𝑡𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

‖‖‖‖𝐿𝑛

⩽ Γ1

2𝑘−1∑
𝑖=0

(
𝑢𝑘
𝑖
− 𝑆

)−𝛼1(
𝑇 − 𝑢𝑘

𝑖

)−𝛽1(
𝑡𝑘
𝑖+1

− 𝑡𝑘
𝑖

)1+𝜀1
.

Using (B.6), it is easy to see that

2𝑘−1∑
𝑖=0

(𝑢𝑘
𝑖
− 𝑆)−𝛼1(𝑇 − 𝑢𝑘

𝑖
)−𝛽1(𝑡𝑘

𝑖+1
− 𝑡𝑘

𝑖
) ⩽ 21+𝛼1 ∫

𝑡

𝑠

(𝑟 − 𝑆)−𝛼1(𝑇 − 𝑟)−𝛽1𝑑𝑟,

which implies

‖𝖤𝑠𝐼𝑘𝑠,𝑡‖𝐿𝑛
⩽ ‖𝐼𝑘𝑠,𝑡‖𝐿𝑛

⩽ 2−𝑘𝜀121+𝛼1Γ1

(
∫

𝑡

𝑠

(𝑟 − 𝑆)−𝛼1(𝑇 − 𝑟)−𝛽1𝑑𝑟

)
(𝑡 − 𝑠)𝜀1 . (4.18)
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24 ATHREYA et al.

To estimate 𝐽𝑘𝑠,𝑡, we observe that it is a sum of martingale differences and use the conditional
Burkholder–Davis–Gundy (BDG) inequality (see, e.g., [10, Proposition 27]) to obtain

‖‖𝐽𝑘𝑠,𝑡‖‖𝐿𝑚|𝑆
⩽ 𝜅𝑚

⎛⎜⎜⎝
2𝑘−1∑
𝑖=0

‖‖‖‖𝛿𝐴𝑡𝑘
𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

− 𝖤𝑡𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

‖‖‖‖
2

𝐿𝑚|𝑆

⎞⎟⎟⎠
1

2

⩽ 2𝜅𝑚

⎛⎜⎜⎝
2𝑘−1∑
𝑖=0

‖‖‖‖𝛿𝐴𝑡𝑘
𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

‖‖‖‖
2

𝐿𝑚|𝑆

⎞⎟⎟⎠
1

2

,

where 𝜅𝑚 is the constant from the conditional BDG inequality. Then, we use the Minkowski
inequality, condition (4.3) and similar reasoning as above, to see that

‖‖‖‖𝐽𝑘𝑠,𝑡‖‖𝐿𝑚|𝑆

‖‖
𝐿𝑛

⩽ 2𝜅𝑚

⎛⎜⎜⎝
2𝑘−1∑
𝑖=0

‖‖‖‖‖‖‖‖𝛿𝐴𝑡𝑘
𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

‖‖‖‖𝐿𝑚|𝑆

‖‖‖‖
2

𝐿𝑛

⎞⎟⎟⎠
1

2

⩽ 2𝜅𝑚

⎛⎜⎜⎝Γ2
2

2𝑘−1∑
𝑖=0

(
𝑢𝑘
𝑖
− 𝑆

)−2𝛼2(
𝑇 − 𝑢𝑘

𝑖

)−2𝛽2(
𝑡𝑘
𝑖+1

− 𝑡𝑘
𝑖

)1+2𝜀2
⎞⎟⎟⎠

1

2

⩽ 2−𝑘𝜀22
3

2
+𝛼2𝜅𝑚Γ2

(
∫

𝑡

𝑠

(𝑟 − 𝑆)−2𝛼2(𝑇 − 𝑟)−2𝛽2𝑑𝑟

) 1

2

(𝑡 − 𝑠)𝜀2 .

Hence, we have shown that

‖‖‖‖𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡
‖‖𝐿𝑚|𝑆

‖‖
𝐿𝑛

⩽ 2−𝑘𝜀14Γ1𝜂
(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)(𝑡 − 𝑠)𝜀1 + 2−𝑘𝜀28𝜅𝑚Γ2|𝜂(2𝛼2,2𝛽2)
𝑆,𝑇

(𝑠, 𝑡)| 1

2 (𝑡 − 𝑠)𝜀2 .

This implies that

‖‖𝐴𝑘
𝑠,𝑡 − 𝐴𝑠,𝑡‖𝐿𝑚|𝑆

‖𝐿𝑛
⩽ 𝐶Γ1𝜂

(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)(𝑡 − 𝑠)𝜀1 + 𝐶Γ2|𝜂(2𝛼2,2𝛽2)
𝑆,𝑇

(𝑠, 𝑡)| 1

2 (𝑡 − 𝑠)𝜀2 (4.19)

for some constant 𝐶 = 𝐶(𝜀1, 𝜀2,𝑚). By sending 𝑘 → ∞, using (4.4) and Fatou’s lemma, we obtain
(4.5). We observe that 𝖤𝑆𝐽𝑘𝑠,𝑡 = 0, the relation (4.16) also yields 𝖤𝑆(𝐴𝑘+1

𝑠,𝑡 − 𝐴𝑘
𝑠,𝑡) = 𝖤𝑆𝐼𝑘𝑠,𝑡. In view

of the estimate (4.18), we obtain

‖‖𝖤𝑆
(
𝐴𝑘+1

𝑠,𝑡 − 𝐴𝑘
𝑠,𝑡

)‖‖𝐿𝑛
⩽ 2−𝑘𝜀121+𝛼1Γ1𝜂

(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)(𝑡 − 𝑠)𝜀1 .

This yields

‖𝖤𝑆(𝐴𝑘
𝑠,𝑡 − 𝐴𝑠,𝑡)‖𝐿𝑛

⩽ 𝐶Γ1𝜂
(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)(𝑡 − 𝑠)𝜀1 . (4.20)

Sending 𝑘 → ∞ and reasoning as previously, we obtain (4.6). □

Proof of Theorem 4.4. The proof goes along exactly the same lines as the proof of Theorem 4.1 till
(4.19). Rewriting this inequality, we derive

‖‖‖‖𝐴𝑘
𝑠,𝑡

‖‖𝐿𝑚|𝑆

‖‖
𝐿𝑛

⩽ ‖‖‖‖𝐴𝑠,𝑡
‖‖𝐿𝑚|𝑆

‖‖
𝐿𝑛

𝐶Γ1𝜂
(𝛼1,𝛽1)
𝑆,𝑇

(𝑠, 𝑡)(𝑡 − 𝑠)𝜀1 + 𝐶Γ2
|||𝜂(2𝛼2,2𝛽2)

𝑆,𝑇
(𝑠, 𝑡)

||| 1

2 (𝑡 − 𝑠)𝜀2 .

 10970312, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22157 by T

est, W
iley O

nline L
ibrary on [01/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 25

By passing to the limit as 𝑘 → ∞ and using (4.8) and Fatou’s lemma, we obtain (4.9). Inequality
(4.10) follows similarly from (4.20), (4.8) and Fatou’s lemma. □

Proof of Theorem 4.5. The term 𝐽𝑘𝑠,𝑡 is estimated as in the proof of Theorem 4.1, which gives

‖𝐽𝑘𝑠,𝑡‖𝐿𝑚
⩽ 2−𝑘𝜀2+2𝜅𝑚Γ2(𝑡 − 𝑠)

1

2
+𝜀2 . (4.21)

On the other hand, we estimate 𝐼𝑘𝑠,𝑡 differently, using triangle inequality and condition (4.11) in
the following way

‖‖𝐼𝑘𝑠,𝑡‖‖𝐿𝑚
⩽

2𝑘−1∑
𝑖=0

‖‖𝖤𝑡𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

‖‖
𝐿𝑚

⩽ Γ3

2𝑘−1∑
𝑖=0

(
𝑡𝑘
𝑖+1

− 𝑡𝑘
𝑖

)
+ Γ4

2𝑘−1∑
𝑖=0

(
𝑡𝑘
𝑖+1

− 𝑡𝑘
𝑖

)1+𝜀4

= Γ3(𝑡 − 𝑠) + 2−𝑘𝜀4Γ4(𝑡 − 𝑠)1+𝜀4 .

Hence, in view of (4.16), we have shown that for any 𝑘 ∈ ℤ+

‖‖𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡
‖‖𝐿𝑚

⩽ Γ3(𝑡 − 𝑠) + 2−𝑘𝜀4Γ4(𝑡 − 𝑠)1+𝜀4 + 2−𝑘𝜀2+2𝜅𝑚Γ2(𝑡 − 𝑠)
1

2
+𝜀2 . (4.22)

However, recalling (4.18), we still have

‖‖𝐼𝑘𝑠,𝑡‖‖𝐿𝑚
⩽ 2−𝑘𝜀1+1Γ1(𝑡 − 𝑠)1+𝜀1 ,

which together with (4.21) provides an alternative bound for ‖𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡‖𝐿𝑚
. Namely,

‖‖𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡
‖‖𝐿𝑚

⩽ 2−𝑘𝜀1+1Γ1(𝑡 − 𝑠)1+𝜀1 + 2−𝑘𝜀2+2𝜅𝑚Γ2(𝑡 − 𝑠)
1

2
+𝜀2 . (4.23)

Combining (4.22) and (4.23) together, we get that there exists a constant 𝐶 = 𝐶(𝜀1, 𝜀2, 𝜀4,𝑚) such
that for any fixed integers 0 ⩽ 𝑘 ⩽ 𝑁

‖‖𝐴𝑁
𝑠,𝑡 − 𝐴𝑠,𝑡

‖‖𝐿𝑚
⩽

𝑘∑
𝑖=0

‖‖𝐴𝑖+1
𝑠,𝑡 − 𝐴𝑖

𝑠,𝑡
‖‖𝐿𝑚

+

𝑁−1∑
𝑖=𝑘+1

‖‖𝐴𝑖+1
𝑠,𝑡 − 𝐴𝑖

𝑠,𝑡
‖‖𝐿𝑚

⩽ 𝐶(𝑘Γ3 + 2−𝑘𝜀1Γ1𝑇
𝜀1)(𝑡 − 𝑠) + 𝐶Γ4(𝑡 − 𝑠)1+𝜀4 + 𝐶Γ2(𝑡 − 𝑠)

1

2
+𝜀2 ,

where in the first sum we have applied (4.22) and in the second sum we used (4.23). Similar to
the proof of Theorem 4.1, we pass now to the limit as𝑁 → ∞ (note that 𝑘 remains fixed) with the
help of Fatou’s lemma and (4.4). We deduce

‖𝑡 −𝑠 − 𝐴𝑠,𝑡‖𝐿𝑚
⩽ 𝐶(𝑘Γ3 + 2−𝑘𝜀1Γ1𝑇

𝜀1)(𝑡 − 𝑠) + 𝐶Γ4(𝑡 − 𝑠)1+𝜀4 + 𝐶Γ2(𝑡 − 𝑠)
1

2
+𝜀2 .

Now, let us fine-tune the parameter 𝑘. If Γ3 ⩾ Γ1𝑇
𝜀1 , we choose 𝑘 = 1 and the previous inequality

implies (4.12). If Γ3 < Γ1𝑇
𝜀1 , we can choose 𝑘 ⩾ 1 so that 2−𝑘𝜀1Γ1𝑇

𝜀1 ⩽ Γ3 ⩽ 2(1−𝑘)𝜀1Γ1𝑇
𝜀1 which

optimizes the right-hand side above and contributes the logarithmic factor. This gives (4.12). □
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26 ATHREYA et al.

Proof of Theorem 4.7. We use a slightly different version of (4.16)

𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡 =

2𝑘−1∑
𝑖=0

𝖤𝑢𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

+

2𝑘−1∑
𝑖=0

(
𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

− 𝖤𝑢𝑘
𝑖 𝛿𝐴𝑡𝑘

𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

)
=∶ 𝐼𝑘𝑠,𝑡 + 𝐽𝑘𝑠,𝑡.

By (4.13),

||𝐼𝑘𝑠,𝑡|| ⩽ Γ1
||𝑡 − 𝑠||𝛼12−𝑘𝛼1

2𝑘−1∑
𝑖=0

𝜆
(
𝑡𝑘
𝑖
, 𝑡𝑘

𝑖+1

)𝛽1
⩽ Γ1|𝑡 − 𝑠|𝛼12−𝑘(𝛼1+𝛽1−1)𝜆(𝑠, 𝑡)𝛽1 , (4.25)

where the last inequality follows from the Hölder inequality and superadditivity of the random
control 𝜆. Note that 𝐽𝑘𝑠,𝑡 is the sum of martingale differences, hence, can be estimated analogously
to 𝐽𝑘𝑠,𝑡 as in the proof of Theorem 4.1. Applying the BDG and Minkowski inequalities, we have

‖‖𝐽𝑘𝑠,𝑡‖‖𝐿𝑚
⩽ 2𝜅𝑚

⎛⎜⎜⎝
2𝑘−1∑
𝑖=0

‖𝛿𝐴𝑡𝑘
𝑖
,𝑢𝑘

𝑖
,𝑡𝑘
𝑖+1

‖2
𝐿𝑚

⎞⎟⎟⎠
1

2

.

Using condition (4.3) (with 𝑛 = 𝑚 and 𝛼2 = 𝛽2 = 0), we have

‖‖𝐽𝑘𝑠,𝑡‖‖𝐿𝑚
⩽ 2−𝑘𝜀28𝜅𝑚Γ2|𝑡 − 𝑠| 1

2
+𝜀2 . (4.26)

Thus, we get from (4.24) and (4.25)

||𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑘

𝑠,𝑡
|| ⩽ Γ1|𝑡 − 𝑠|𝛼12−𝑘(𝛼1+𝛽1−1)𝜆(𝑠, 𝑡)𝛽1 + ||𝐽𝑘𝑠,𝑡||, a.s. (4.27)

Define 𝐵𝑠,𝑡 ∶=
∑∞

𝑘=0
||𝐽𝑘𝑠,𝑡||. Using (4.26) and triangle inequality, we see that 𝐵 satisfies (4.15).

It follows from (4.27) that

||𝐴𝑘+1
𝑠,𝑡 − 𝐴𝑠,𝑡

|| ⩽ 𝑘∑
𝑖=0

||𝐴𝑖+1
𝑠,𝑡 − 𝐴𝑖

𝑠,𝑡
|| ⩽ 𝐶Γ1|𝑡 − 𝑠|𝛼1𝜆(𝑠, 𝑡)𝛽1 + 𝐵𝑠,𝑡.

Sending 𝑘 → ∞ and using condition (4.4), we obtain (4.14). □

5 PROOFS OF KEY PROPOSITIONS

In this section, we present the proofs of the propositions from Section 3. The regularization esti-
mates which are necessary for the proofs are summarized in Lemma 5.1 and Lemma 5.2 below.
The proofs of these lemmas are presented in Section 6.1. We recall (3.5) which defines the space
𝐁𝐿𝑚.

Lemma 5.1. Let𝑓 ∈ 𝛾
𝑝 be a bounded function. Let𝑚 ∈ [2,∞),𝑝 ∈ [𝑚,∞] and 𝛾 ∈ (−2, 0). There

exists a constant 𝐶 = 𝐶(𝛾,𝑚, 𝑝) such that for any 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇 and any ℬ(ℝ) ⊗ 𝑠-measurable
function 𝜅 ∈ 𝐁𝐿𝑚 one has‖‖‖‖‖∫

𝑡

𝑠
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜅(𝑦)) 𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚

⩽ 𝐶‖𝑓‖𝛾
𝑝
(𝑡 − 𝑠)

1+
𝛾

4
−

1

4𝑝 . (5.1)
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 27

Lemma 5.2. Let 𝑓 ∶ ℝ → ℝ be a bounded continuous function in 𝛾
𝑝, 𝑇 > 0, and 𝜓 ∶ [0, 𝑇] ×

𝐷 × Ω → ℝ be a measurable function adapted to the filtration {𝑡}. Let 𝑚 ∈ [2,∞), 𝑛 ∈ [𝑚,∞],
𝑝 ∈ [𝑛,∞] and 𝜏 ∈ (0, 1) be fixed numbers. Let 𝛾 ∈ (−2 + 1∕𝑝, 0) and assume that

𝛾 −
1

𝑝
+ 4𝜏 > 1. (5.2)

Then the following statements hold.

(i) There exists a constant 𝐶 = 𝐶(𝛾, 𝑝, 𝜏,𝑚) > 0 independent of 𝑇 such that for any 𝑆 ∈ [0, 𝑇]

sup
𝑥∈𝐷

‖‖‖‖‖
‖‖‖‖‖∫

𝑇

𝑆
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝑓(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦))𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚|𝑆

‖‖‖‖‖𝐿𝑛

⩽ 𝐶‖𝑓‖𝛾
𝑝
(𝑇 − 𝑆)

1+
𝛾

4
−

1

4𝑝 + 𝐶‖𝑓‖𝛾
𝑝
[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑇 − 𝑆)

3

4
+

𝛾

4
−

1

4𝑝
+𝜏

. (5.3)

(ii) Let 𝛿 ∈ (0, 1). There exists a constant 𝐶 = 𝐶(𝛾, 𝑝, 𝜏, 𝛿,𝑚) > 0 independent of 𝑇 such that for
any 𝑆 ∈ [0, 𝑇], 𝑥1, 𝑥2 ∈ 𝐷

‖‖‖‖‖∫
𝑇

𝑆
∫
𝐷

(𝑝𝑇−𝑟(𝑥1, 𝑦) − 𝑝𝑇−𝑟(𝑥2, 𝑦))𝑓(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦))𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚

⩽ 𝐶‖𝑓‖𝛾
𝑝
|𝑥1 − 𝑥2|𝛿 (

(𝑇 − 𝑆)
1−

𝛿

2
+

1

4
(𝛾−

1

𝑝
)
+ [𝜓]𝜏,0𝐿𝑚([𝑆,𝑇])(𝑇 − 𝑆)

3

4
−

𝛿

2
+

𝛾

4
−

1

4𝑝
+𝜏

)
. (5.4)

(iii) Let 𝛿 ∈ (0, 1) and 𝑇̄ > 0. There exists a constant 𝐶 = 𝐶(𝛾, 𝑝, 𝜏, 𝛿,𝑚) > 0 independent of 𝑇, 𝑇̄

such that for any 𝑆 ∈ [0, 𝑇]

sup
𝑥∈𝐷

‖‖‖‖‖∫
𝑇

𝑆
∫
𝐷

(𝑝𝑇+𝑇̄−𝑟(𝑥, 𝑦) − 𝑝𝑇−𝑟(𝑥, 𝑦))𝑓(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦))𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚

⩽ 𝐶‖𝑓‖𝛾
𝑝
𝑇̄

𝛿

2

(
(𝑇 − 𝑆)

1−
𝛿

2
+

1

4
(𝛾−

1

𝑝
)
+ [𝜓]𝜏,0𝐿𝑚([𝑆,𝑇])(𝑇 − 𝑆)

3

4
−

𝛿

2
+

𝛾

4
−

1

4𝑝
+𝜏

)
. (5.5)

Remark 5.3. Estimate (5.3) is an analogue of the following estimate by Davie in [12] for Brownian
motion

‖‖‖‖‖∫
𝑡

𝑠

[𝑓(𝐵𝑟 + 𝑥1) − 𝑓(𝐵𝑟 + 𝑥2)]𝑑𝑟
‖‖‖‖‖𝐿𝑚

⩽ 𝐶𝑚 sup
𝑧∈ℝ𝑑

|𝑓(𝑧)||𝑡 − 𝑠| 1

2 |𝑥1 − 𝑥2|, (5.6)

which holds for every 𝑠 ⩽ 𝑡, 𝑥1, 𝑥2 ∈ ℝ𝑑 and bounded measurable 𝑓 ∶ ℝ𝑑 → ℝ𝑑. Noting that the
map 𝑥 ↦ (𝑓(𝑥 + 𝑥1) − 𝑓(𝑥 + 𝑥2))∕(|𝑥1 − 𝑥2|) has finite −1

∞ -norm and therefore (5.6) is indeed
an estimate with distributions. A closely related estimate is of the type

‖‖‖‖‖‖𝖤𝑠

(
∫

𝑡

𝑠

𝑓(𝑋𝑟)𝑑𝑟

)‖‖‖‖‖‖𝐿∞

⩽ 𝐶‖𝑓‖𝐿𝑝(ℝ)|𝑡 − 𝑠|𝜃, (5.7)
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28 ATHREYA et al.

where 𝑝 ⩾ 𝑑 + 1, 𝜃 = 𝜃(𝑝) = 1 −
𝑑

2𝑝
, 𝑋 is a martingale of the form 𝑋𝑡 = ∫ 𝑡

0
𝜎𝑟𝑑𝐵𝑟, 𝜎 is adapted,

Λ−1 ⩾ |𝜎𝑟| ⩾ Λ for all 𝑟, Λ is a deterministic positive constant. Estimate (5.7) follows from a
general result of Krylov in [34] and an argument similar to [27, Corollary 3.2]. When 𝑓 is a non-
negative function, by expanding moment and successively conditioning, one can obtain from the
above estimate that for every integer𝑚 ⩾ 2, 𝑠 ⩽ 𝑡,

‖‖‖‖‖∫
𝑡

𝑠

𝑓(𝑋𝑟)𝑑𝑟
‖‖‖‖‖𝐿𝑚

⩽ 𝐶𝑚‖𝑓‖𝐿𝑝(ℝ)|𝑡 − 𝑠|𝜃, (5.8)

which is comparable to Davie-type estimate (5.6). However, the fact that 𝑓 is a non-negative
function is crucial and in particular, one cannot obtain (5.6) from such an argument.
As observed in [37] for the case of fBM, one can indeed obtain estimates of the types (5.6)

and (5.8) from estimates of the type (5.7) by mean of the stochastic sewing lemma for 𝑓 being
a distribution provided that 𝜃 > 1∕2. This passage is also visible in the proof of Lemma 5.2 in
Section 6.

5.1 Proof of Propositions 3.2-3.4

Proof of Proposition 3.2. We will use the estimate (5.3) from Lemma 5.2. Fix𝑚, 𝑓, 𝑢0 satisfying the
assumptions of the proposition. Define for brevity

𝜓(𝑡, 𝑥) ∶= 𝑢𝜂;𝑓(𝑡, 𝑥) − 𝑉(𝑡, 𝑥), 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷.

First we note that since the function 𝑓 is bounded, we have for any (𝑠, 𝑡) ∈ Δ0,𝑇0
,

|𝜓𝑡(𝑥) − 𝑃𝑡−𝑠𝜓𝑠(𝑥)| = |||||∫
𝑡

𝑠
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑓(𝑢
𝜂;𝑓
𝑟 (𝑦)) 𝑑𝑦𝑑𝑟

||||| ⩽ sup
𝑧∈𝐷

|𝑓(𝑧)||𝑡 − 𝑠|,
which implies that [𝜓]𝜏,0𝐿𝑚,∞([0,𝑇0]) is finite for any 𝜏 ∈ (0, 1].
Let us apply now Lemma 5.2 with the following set of parameters: 𝛾 = 𝛽 − 1∕𝑞, 𝑛 = 𝑝 = ∞

and 𝜏 = 1 + 𝛽∕4 − 1∕(4𝑞). In other words, we consider 𝑓 as a distribution 𝛽−1∕𝑞
∞ , thanks to the

embedding𝛽
𝑞 ↪ 𝛽−1∕𝑞

∞ (see (3.6)). Since 𝛽 − 1∕𝑞 > −3∕2, we see that (5.2) holds. Therefore, all
the assumptions of Lemma 5.2 are satisfied and we obtain from (5.3) that there exists 𝐶 > 0 such
that for any (𝑠, 𝑡) ∈ Δ0,𝑇0

sup
𝑥∈𝐷

‖‖𝜓𝑡(𝑥)−𝑃𝑡−𝑠𝜓𝑠(𝑥)‖𝐿𝑚|𝑠
‖𝐿∞

⩽𝐶‖𝑓‖𝛽
𝑞
(𝑡−𝑠)

1+
𝛽

4
−

1

4𝑞

(
1+[𝜓]

1+
𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([𝑠,𝑡])

(𝑡−𝑠)
3

4
+

𝛽

4
−

1

4𝑞

)
,

(5.9)
where we used the fact that ‖𝑓‖𝛽−1∕𝑞

∞
⩽ 𝐶‖𝑓‖𝛽

𝑞
thanks to (3.6). Fix now 𝑆 ∈ [0, 𝑇0] and 𝓁 ∈

(0, 𝑇0 − 𝑆]. By dividing both sides of inequality (5.9) by (𝑡 − 𝑠)1+𝛽∕4−1∕(4𝑞) and taking supremum
over all (𝑠, 𝑡) ∈ Δ𝑆,𝑆+𝓁, we get

[𝜓]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([𝑆,𝑆+𝓁])

⩽ 𝐶‖𝑓‖𝛽
𝑞
+ 𝐶‖𝑓‖𝛽

𝑞
[𝜓]

1+
𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([𝑆,𝑆+𝓁])

𝓁
3

4
+

𝛽

4
−

1

4𝑞 .
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 29

Note that 3∕4 + 𝛽∕4 − 1∕(4𝑞) > 0 (since 𝛽 − 1∕𝑞 > −3∕2) and the constant𝐶 does not depend on
𝑆 or 𝓁. Hence, by choosing 𝓁0 ∈ (0, 𝑇0) small enough such that

𝐶‖𝑓‖𝛽
𝑞
𝓁

3

4
+

𝛽

4
−

1

4𝑞

0 ⩽
1

2
,

we get that there exists 𝐶1 > 0 such that for any 𝑆 ∈ [0, 𝑇0 − 𝓁0]

[𝜓]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([𝑆,𝑆+𝓁0])

⩽ 𝐶1‖𝑓‖𝛽
𝑞
. (5.10)

It remains to show that the above estimate implies (3.7). For arbitrary (𝑠, 𝑡) ∈ Δ0,𝑇0
, we choose

𝑁 ⩾ 2 such that 𝑇0∕𝑁 ⩽ 𝓁0 < 𝑇0∕(𝑁 − 1) and define successively 𝑠0 = 𝑠, 𝑠𝑘 = 𝑠𝑘−1 + (𝑡 − 𝑠)∕𝑁

for each 𝑘 = 1,… ,𝑁. From the following telescopic identities

𝜓𝑡 − 𝑃𝑡−𝑠𝜓𝑠 =

𝑁∑
𝑘=1

(
𝑃𝑡−𝑠𝑘𝜓𝑠𝑘 − 𝑃𝑡−𝑠𝑘−1

𝜓𝑠𝑘−1

)
=

𝑁∑
𝑘=1

𝑃𝑡−𝑠𝑘

(
𝜓𝑠𝑘 − 𝑃𝑠𝑘−𝑠𝑘−1

𝜓𝑠𝑘−1

)
,

we apply triangle inequality and (B.8) to obtain that

‖‖𝜓𝑡(𝑥) − 𝑃𝑡−𝑠𝜓𝑠(𝑥)‖𝐿𝑚|𝑠
‖𝐿∞

⩽

𝑁∑
𝑘=1

‖‖𝑃𝑡−𝑠𝑘

(
𝜓𝑠𝑘 − 𝑃𝑠𝑘−𝑠𝑘−1

𝜓𝑠𝑘−1

)
(𝑥)‖𝐿𝑚|𝑠

‖𝐿∞

⩽

𝑁∑
𝑘=1

sup
𝑦∈𝐷

‖‖𝜓𝑠𝑘 (𝑦) − 𝑃𝑠𝑘−𝑠𝑘−1
𝜓𝑠𝑘−1

(𝑦)‖𝐿𝑚|𝑠
‖𝐿∞

. (5.11)

Since 𝑠 ⊂ 𝑠𝑘−1
, one has

‖𝜓𝑠𝑘 (𝑦) − 𝑃𝑠𝑘−𝑠𝑘−1
𝜓𝑠𝑘−1

(𝑦)‖𝐿𝑚|𝑠
= ‖‖𝜓𝑠𝑘 (𝑦) − 𝑃𝑠𝑘−𝑠𝑘−1

𝜓𝑠𝑘−1
(𝑦)‖𝐿𝑚|𝑠𝑘−1

‖𝐿𝑚|𝑠
.

Note that 𝑠𝑘 − 𝑠𝑘−1 ⩽ 𝓁0, we can apply (5.10) to obtain that for any 𝑦 ∈ 𝐷

‖𝜓𝑠𝑘 (𝑦) − 𝑃𝑠𝑘−𝑠𝑘−1
𝜓𝑠𝑘−1

(𝑦)‖𝐿𝑚|𝑠
⩽ 𝐶1‖𝑓‖𝛽

𝑞
(𝑠𝑘 − 𝑠𝑘−1)

1+
𝛽

4
−

1

4𝑞 .

Hence we can continue (5.11) in the following way

‖‖𝜓𝑡(𝑥) − 𝑃𝑡−𝑠𝜓𝑠(𝑥)‖𝐿𝑚|𝑠
‖𝐿∞

⩽ 𝐶1‖𝑓‖𝛽
𝑞

𝑁∑
𝑘=1

(𝑠𝑘 − 𝑠𝑘−1)
1+

𝛽

4
−

1

4𝑞

⩽ 𝐶1‖𝑓‖𝛽
𝑞
𝑁1−𝜏(𝑡 − 𝑠)

1+
𝛽

4
−

1

4𝑞 .

Since 𝑁 < 1 + 𝑇0∕𝓁0, this implies (3.7). Note that the restriction 𝛽 −
1

𝑞
> −

3

2
implies

𝑁1−𝜏 ≤ 𝐶(1 + ‖𝑓‖2

𝛽
𝑞

). □
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30 ATHREYA et al.

To prove Propositions 3.3 and 3.4 we will need the following statement. For a bounded
continuous function ℎ ∶ ℝ → ℝ and a measurable function 𝜎 ∶ (0, 𝑇0] × 𝐷 × Ω → ℝ define

𝐾ℎ;𝜎(𝑡, 𝑥) ∶= ∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)ℎ(𝜎(𝑟, 𝑦))𝑑𝑦𝑑𝑟, 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷. (5.12)

Lemma 5.4. Let 𝛽 ⩽ 0, 𝑞 ∈ [2,∞]. Assume that 𝛽 − 1∕𝑞 > −3∕2. Let ℎ, 𝑓 be bounded continuous
functions in 𝛾

𝑞 , 𝜂 ∈ 𝐁(𝐷). Let 𝑢 = 𝑢𝜂;𝑓 be the solution to Eq(𝜂; 𝑓). Let 𝛿 ∈ (0, 1). Then there exists
a random variable𝐻 such that for a.s 𝜔, for any 𝑥1, 𝑥2 ∈ 𝐷, 𝑠, 𝑡 ∈ [0, 𝑇0]

|𝐾ℎ;𝑢(𝑡, 𝑥1) − 𝐾ℎ;𝑢(𝑠, 𝑥2)| ⩽ 𝐻(𝜔)(1 + |𝑥1| + |𝑥2|)(|𝑥1 − 𝑥2|𝛿 + |𝑡 − 𝑠| 𝛿

2

)
, (5.13)

and E𝐻 ⩽ 𝐶‖ℎ‖𝛽
𝑞
(1 + ‖𝑓‖3

𝛽
𝑞

), where the constant 𝐶 = 𝐶(𝛽, 𝑞, 𝛿, 𝜈, 𝑇0) > 0 is independent

of 𝜂, ℎ, 𝑓.

Proof. In the proof, for brevity, we write 𝑢 = 𝑢𝜂;𝑓 , 𝐾 = 𝐾ℎ;𝑢. Fix 𝛿 ∈ (0, 1), 𝑚 ∈ [2,∞). Let 𝛿′ ∈

(𝛿, 1). Note that for 𝑥1, 𝑥2 ∈ 𝐷 and (𝑠, 𝑡) ∈ Δ0,𝑇0
we have

‖𝐾(𝑡, 𝑥1) − 𝐾(𝑠, 𝑥2)‖𝐿𝑚
⩽ ‖𝐾(𝑡, 𝑥1) − 𝐾(𝑡, 𝑥2)‖𝐿𝑚

+ ‖𝐾(𝑡, 𝑥2) − 𝑃𝑡−𝑠𝐾(𝑠, 𝑥2)‖𝐿𝑚

+ ‖(𝑃𝑡−𝑠 − 𝐼𝑑)𝐾(𝑠, 𝑥2)‖𝐿𝑚
=∶ 𝐼1 + 𝐼2 + 𝐼3. (5.14)

To bound 𝐼1, 𝐼2, and 𝐼3 we will use Lemma 5.2 with the following parameters:

𝜓 = 𝑢 − 𝑉, 𝛾 = 𝛽 −
1

𝑞
, 𝑛 = 𝑚, 𝑝 = ∞, 𝜏 = 1 +

𝛽

4
−

1

4𝑞
, 𝑇 = 𝑡. (5.15)

First, the estimate in Proposition 3.2 and (3.4) give

[𝜓]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚([0,𝑇0])

⩽ [𝜓]
1+

𝛽
4
−

1
4𝑞

,0
𝐿𝑚,∞([0,𝑇0])

⩽ 𝐶‖𝑓‖𝛽
𝑞
(1 + ‖𝑓‖2

𝛽
𝑞

). (5.16)

Second, Assumption 3.1 implies that (5.2) holds. Therefore, all the conditions of Lemma 5.2 are
satisfied. By part (ii) of the lemma with 𝑆 = 0, we get

𝐼1 ⩽ 𝐶(𝑇0)‖ℎ‖𝛽
𝑞
(1 + ‖𝑓‖3

𝛽
𝑞

)|𝑥1 − 𝑥2|𝛿′
, (5.17)

where we also used the bound (5.16).
To bound the second term in (5.14), 𝐼2, we use Lemma 5.2(i) with the parameters described in

(5.15) as well as 𝑛 = 𝑚, 𝑥 = 𝑥2, 𝑆 = 𝑠. We get

𝐼2 =
‖‖‖‖‖∫

𝑡

𝑠
∫
𝐷

𝑝𝑡−𝑟(𝑥2, 𝑦)ℎ(𝑢(𝑟, 𝑦))dydr
‖‖‖‖‖𝐿𝑚

⩽ 𝐶(𝑇0)‖ℎ‖𝛽
𝑞
(1 + ‖𝑓‖3

𝛽
𝑞

)(𝑡 − 𝑠)
1+

𝛽

4
−

1

4𝑞 , (5.18)

where we used again bound (5.16).
Finally, let us bound 𝐼3. We note that

𝐼3 =
‖‖‖‖‖∫

𝑠

0
∫
𝐷

[𝑝𝑡−𝑟(𝑥, 𝑦) − 𝑝𝑠−𝑟(𝑥, 𝑦)]ℎ(𝑢𝑟(𝑦))𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚

.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 31

In view of (5.16), we can apply Lemma 5.2(iii) to obtain

𝐼3 ⩽ 𝐶(𝑇0)‖ℎ‖𝛽
𝑞
(1 + ‖𝑓‖3

𝛽
𝑞

)(𝑡 − 𝑠)
𝛿′

2 .

Now combining this with (5.17), (5.18) and substituting into (5.14), we arrive at

‖𝐾(𝑡, 𝑥1) − 𝐾(𝑠, 𝑥2)‖𝐿𝑚
⩽ 𝐶(𝑇0)𝑅

(|𝑥1 − 𝑥2|𝛿′
+ |𝑡 − 𝑠| 𝛿′

2

)
,

wherewe used the fact that 1 +
𝛽

4
−

1

4𝑞
>

1

2
>

𝛿′

2
and denoted𝑅 ∶= ‖ℎ‖𝛽

𝑞
(1 + ‖𝑓‖3

𝛽
𝑞

). Recall that

𝛿 ∈ (0, 𝛿′) and 𝑚 is arbitrarily large. Then, by the Kolmogorov continuity theorem (which is an
easy extension of [36, Theorem 1.4.1]), there exists a random variable 𝐻(𝜔) such that for any 𝜔 ∈

Ω, 𝑥1, 𝑥2 ∈ 𝐷, 𝑠, 𝑡 ∈ [0, 𝑇0] we have

|𝐾(𝑡, 𝑥1) − 𝐾(𝑠, 𝑥2)| ⩽ 𝐻(𝜔)(1 + |𝑥1| + |𝑥2|)(|𝑥1 − 𝑥2|𝛿 + |𝑡 − 𝑠| 𝛿

2

)
,

and 𝖤𝐻(𝜔) ⩽ 𝐶(𝑇0)𝑅. This completes the proof of the theorem. □

Proof of Proposition 3.3. Fix the sequences (𝑏′
𝑛)𝑛∈ℤ+

, (𝑏′′
𝑛 )𝑛∈ℤ+

, (𝑢′
0,𝑛)𝑛∈ℤ+

and (𝑢′′
0,𝑛)𝑛∈ℤ+

. Recall
definition (5.12). Put

𝐾′
𝑛 ∶= 𝐾𝑏′

𝑛;𝑢
′
𝑛 , 𝐾′

𝑛 ∶= 𝐾𝑏′′
𝑛 ;𝑢′′

𝑛 .

Note that

𝑢′
𝑛(𝑡) = 𝐾′

𝑛(𝑡) + 𝑉(𝑡), 𝑢′′
𝑛 (𝑡) = 𝐾′′

𝑛 (𝑡) + 𝑉(𝑡). (5.19)

For𝑀 > 0, 𝛿 ∈ (0, 1), 𝜈 > 0 put

𝐴𝑀 ∶=
{
𝑓 ∈ ([0, 𝑇0] × 𝐷) ∶ 𝑓(0, ⋅) = 0 and for every 𝑥1, 𝑥2 ∈ 𝐷, 𝑠, 𝑡 ∈ [0, 𝑇0]

|𝑓𝑡(𝑥1) − 𝑓𝑠(𝑥2)| ⩽ 𝑀(1 + |𝑥1| + |𝑥2|)(|𝑥1 − 𝑥2|𝛿 + |𝑡 − 𝑠| 𝛿

2 )
}
.

By theArzela–Ascoli theorem, for each𝑀 > 0 the set𝐴𝑀 is a compact set in the spaceuc([0, 𝑇0] ×

𝐷). We apply Lemma 5.4 with ℎ = 𝑓 = 𝑏′
𝑛, 𝜂 = 𝑢′

0,𝑛. For any 𝑛 ∈ ℤ+, we derive from (5.13) and the
Chebyshev inequality

P(𝐾′
𝑛 ∉ 𝐴𝑀) ⩽ 𝐶‖𝑏′

𝑛‖𝛽
𝑞
(1 + ‖𝑏′

𝑛‖3

𝛽
𝑞

)𝑀−1 ⩽ CR𝑀−1,

where we denoted 𝑅 ∶= sup𝑛∈ℤ+
‖𝑏′

𝑛‖𝛽
𝑞
(1 + ‖𝑏′

𝑛‖3

𝛽
𝑞

) < ∞. Thus, the sequence (𝐾′
𝑛)𝑛⩾0 is tight

in uc([0, 𝑇0] × 𝐷). Similarly, (𝐾′′
𝑛 )𝑛⩾0 is tight in uc([0, 𝑇0] × 𝐷) and obviously the constant

sequence (𝑉)𝑛⩾0 is tight in this space as well. Hence the sequence (𝐾′
𝑛, 𝐾

′′
𝑛 , 𝑉)𝑛⩾0 is tight in

[uc([0, 𝑇0] × 𝐷)]3. Since this space is separable, by the Prokhorov theorem there exists a sub-
sequence (𝑛𝑘)𝑘∈ℤ+

such that (𝐾′
𝑛𝑘

, 𝐾′′
𝑛𝑘

, 𝑉)𝑘∈ℤ+
converges weakly in the space [([0, 𝑇0] × 𝐷)]3.

Recalling (5.19), we see that (𝑢′
𝑛𝑘

, 𝑢′′
𝑛𝑘

, 𝑉)𝑘∈ℤ+
converges weakly. This completes the proof of the

theorem. □
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32 ATHREYA et al.

Proof of Proposition 3.4. Step 1. We show that 𝑢 is a solution to (1.1). We define for each (𝑡, 𝑥) ∈

[0, 𝑇0] × 𝐷

𝐾(𝑡, 𝑥) ∶= 𝑢(𝑡, 𝑥) − 𝑉(𝑡, 𝑥). (5.20)

Let (𝑏̄𝑛) be an arbitrary sequence of functions in ∞
𝑏
converging to 𝑏 in 𝛽−

𝑞 . Fix arbitrary 𝑅 > 0.
In view of Definition 2.3, we need to show that

lim
𝑛→∞

sup
𝑡∈[0,𝑇0]

sup
𝑥 ∈ 𝐷|𝑥| ⩽ 𝑅

|𝐾𝑏̄𝑛;𝑢
𝑡 (𝑥) − 𝐾𝑡(𝑥)| = 0 in probability. (5.21)

By triangle inequality, we decompose for any 𝑘, 𝑛 ∈ ℤ+, 𝑥 ∈ 𝐷, 𝑡 ∈ [0, 𝑇0]

|𝐾𝑏̄𝑛;𝑢
𝑡 (𝑥) − 𝐾𝑡(𝑥)| ⩽ |𝐾𝑏̄𝑛;𝑢

𝑡 (𝑥) − 𝐾𝑏̄𝑛;𝑢𝑘

𝑡 (𝑥)| + |𝐾𝑏̄𝑛;𝑢𝑘

𝑡 (𝑥) − 𝐾𝑏𝑘;𝑢𝑘

𝑡 (𝑥)|
+ |𝐾𝑏𝑘;𝑢𝑘

𝑡 (𝑥) − 𝐾𝑡(𝑥)| =∶ 𝐼1(𝑛, 𝑘, 𝑡, 𝑥) + 𝐼2(𝑛, 𝑘, 𝑡, 𝑥) + 𝐼3(𝑘, 𝑡, 𝑥). (5.22)

Let us estimate successively all the terms in the right-hand side of (5.22). Since for any fixed 𝑛

the function 𝑏̄𝑛 is a smooth bounded function, we have for any |𝑥| ⩽ 𝑅, 𝑥 ∈ 𝐷,𝑀 > 𝑅

𝐼1(𝑛, 𝑘, 𝑡, 𝑥) =
|||||∫

𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)
(
𝑏̄𝑛(𝑢𝑟(𝑦)) − 𝑏̄𝑛(𝑢𝑘

𝑟 (𝑦))
)
𝑑𝑦𝑑𝑟

|||||
⩽ ‖𝑏̄𝑛‖1 ∫

𝑡

0
∫
𝐷∩{|𝑦|⩽𝑀}

𝑝𝑡−𝑟(𝑥, 𝑦)|𝑢𝑟(𝑦) − 𝑢𝑘
𝑟 (𝑦)|𝑑𝑦𝑑𝑟

+ 2‖𝑏̄𝑛‖0 ∫
𝑡

0
∫
𝐷∩{|𝑦|⩾𝑀}

𝑝𝑡−𝑟(𝑥, 𝑦) 𝑑𝑦𝑑𝑟

⩽ ‖𝑏̄𝑛‖1𝑇0 sup
𝑡∈[0,𝑇0]

sup
𝑦∈𝐷|𝑦|⩽𝑀

|𝑢𝑟(𝑦) − 𝑢𝑘
𝑟 (𝑦)| + 𝐶‖𝑏̄𝑛‖0𝑇0𝑒

−
(𝑀−𝑅)2

𝑇0 .

We use triangle inequality and the estimate |𝑃𝑡𝜑(𝑥)| ⩽ sup𝑦∈𝐷 |𝜑(𝑦)| valid for any bounded
measurable function 𝜑 to obtain that

sup
𝑡∈[0,𝑇0]

sup
𝑦∈𝐷|𝑦|⩽𝑀

|𝑢𝑟(𝑦) − 𝑢𝑘
𝑟 (𝑦)| ⩽ sup

𝑡∈[0,𝑇0]
sup
𝑦∈𝐷|𝑦|⩽𝑀

|𝑢𝑟(𝑦) − 𝑢𝑘
𝑟 (𝑦)| + sup

𝑦∈𝐷
|𝑢0(𝑦) − 𝑢𝑘

0 (𝑦)|.
By assumption, the above implies that 𝑢𝑘 converges to 𝑢 in uc([0, 𝑇0] × 𝐷) in probability. Hence,
in the previous estimates for 𝐼1, we send 𝑘 → ∞ then𝑀 → ∞ to see that

lim
𝑘→∞

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

𝐼1(𝑛, 𝑘, 𝑡, 𝑥) = 0 in probability. (5.23)

To bound 𝐼2 we fix 𝛽′ < 𝛽 such that 𝛽′ − 1∕𝑞 > −3∕2. This is possible thanks to Assumption 3.1.
We apply Lemma 5.4 with ℎ = 𝑏̄𝑛 − 𝑏𝑘, 𝑓 = 𝑏𝑘, 𝜂 = 𝑢𝑘

0 , 𝑥1 = 𝑥2 = 𝑥, 𝑠 = 0, 𝛽′ in place of 𝛽. We
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 33

get that there exists a random variable 𝐻𝑛,𝑘 such that

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

𝐼2(𝑛, 𝑘, 𝑡, 𝑥) = sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

|𝐾𝑏̄𝑛−𝑏𝑘;𝑢𝑘

𝑡 (𝑥)| ⩽ 𝐻𝑛,𝑘(𝜔)(1 + 𝑅)(1 + 𝑇0)

and
E𝐻𝑛,𝑘(𝜔) ⩽ 𝐶‖𝑏̄𝑛 − 𝑏𝑘‖𝛽′

𝑞
(1 + ‖𝑏𝑘‖3

𝛽′

𝑞

)

⩽ 𝐶(‖𝑏̄𝑛 − 𝑏‖𝛽′

𝑞
+ ‖𝑏𝑘 − 𝑏‖𝛽′

𝑞
)(1 + sup

𝑟∈ℤ+

‖𝑏𝑟‖3

𝛽′

𝑞

),

where again the constant 𝐶 does not depend on 𝑛, 𝑘. Thus for any 𝜀 > 0 one has

P( sup
𝑡∈[0,𝑇0]

sup
𝑥 ∈ 𝐷|𝑥| ⩽ 𝑅

𝐼2(𝑛, 𝑘, 𝑡, 𝑥) > 𝜀)

⩽ 𝐶𝜀−1(‖𝑏̄𝑛 − 𝑏‖𝛽′

𝑞
+ ‖𝑏𝑘 − 𝑏‖𝛽′

𝑞
)(1 + sup

𝑟∈ℤ+

‖𝑏𝑟‖3

𝛽′

𝑞

)(1 + 𝑅)(1 + 𝑇0).

This implies that

lim
𝑛→∞

lim
𝑘→∞

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

𝐼2(𝑛, 𝑘, 𝑡, 𝑥) = 0 in probability.

To treat 𝐼3, we first derive from (5.12) and the definition of 𝑢𝑘 that for any 𝑘 ∈ ℤ+, 𝑢𝑘 = 𝐾𝑏𝑘;𝑢𝑘
+

𝑉𝑘. Hence, together with (5.20), we have

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

𝐼3(𝑘, 𝑡, 𝑥) = sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

|𝐾𝑏𝑘;𝑢𝑘

𝑡 (𝑥) − 𝐾𝑡(𝑥)|
⩽ sup

𝑡∈[0,𝑇0]
sup
𝑥∈𝐷|𝑥|⩽𝑅

(|𝑢𝑘
𝑡 (𝑥) − 𝑢𝑡(𝑥)| + |𝑉𝑘

𝑡 (𝑥) − 𝑉𝑡(𝑥)|).
This implies that

lim
𝑘→∞

sup
𝑡∈[0,𝑇0]

sup
𝑥∈𝐷|𝑥|⩽𝑅

𝐼3(𝑘, 𝑡, 𝑥) = 0 in probability. (5.24)

Finally, combining (5.23)-(5.24) and (5.22), we obtain (5.21).
Step 2. It remains to show (3.8). It follows from Proposition 3.2, that there exists a constant 𝐶

such that for every (𝑠, 𝑡) ∈ Δ0,𝑇0
, 𝑥 ∈ 𝐷, 𝑛 ∈ ℤ+

‖𝑢𝑛
𝑡 (𝑥) − 𝑉𝑛

𝑡 (𝑥) − 𝑃𝑡−𝑠(𝑢
𝑛
𝑠 (𝑥) − 𝑉𝑛

𝑠 (𝑥))‖𝐿𝑚|𝑠
⩽ 𝐶(𝑡 − 𝑠)

1−
𝛽

4
−

1

4𝑞 .

Note that we used here that sup𝑛∈ℤ+
‖𝑏𝑛‖𝛽

𝑞
< ∞ thanks to the definition of convergence in𝛽−

𝑞 .
It follows from the mild formulation of 𝑢𝑛 (recall that 𝑢𝑛 solves Eq(𝑢𝑛

0 ; 𝑏
𝑛) with 𝑉𝑛 in place of 𝑉),

𝑢𝑛
𝑡 (𝑥) − 𝑉𝑛

𝑡 (𝑥) − 𝑃𝑡−𝑠(𝑢
𝑛
𝑠 (𝑥) − 𝑉𝑛

𝑠 (𝑥)) = 𝐾𝑏𝑛;𝑢𝑛

𝑡 (𝑥) − 𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢𝑛

𝑠 (𝑥).
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34 ATHREYA et al.

Hence, we have

‖𝐾𝑏𝑛;𝑢𝑛

𝑡 (𝑥) − 𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢𝑛

𝑠 (𝑥)‖𝐿𝑚|𝑠
⩽ 𝐶(𝑡 − 𝑠)

1−
𝛽

4
−

1

4𝑞 . (5.25)

Putting 𝑠 = 0, the previous estimate implies that

‖‖‖𝐾𝑏𝑛;𝑢𝑛

𝑡 (𝑥)
‖‖‖𝐿𝑚

⩽ 𝐶𝑡
1−

𝛽

4
−

1

4𝑞 . (5.26)

On the other hand, we see from (5.24) that lim𝑛→∞ 𝐾𝑏𝑛;𝑢𝑛
= 𝐾 in uc([0, 𝑇0] × 𝐷) in probabil-

ity. Hence, by passing to the limit as 𝑛 → ∞ in (5.26) and applying Fatou’s lemma, we see that
sup(𝑡,𝑥)∈[0,𝑇0]×𝐷 ‖𝐾𝑡(𝑥)‖𝐿𝑚

< ∞. By Lemma B.4, we see that 𝑃𝑡−𝑠𝐾𝑠(𝑥) is well-defined as an 𝐿𝑚-
integrable random variable. Furthermore, in view of (5.26) and the convergence of𝐾𝑏𝑛;𝑢𝑛 to𝐾, we
obtain from Lemma B.5 that for each fixed 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇0, 𝑥 ∈ 𝐷

lim
𝑛→∞

𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢𝑛

𝑠 (𝑥) = 𝑃𝑡−𝑠𝐾𝑠(𝑥) in probability.

Therefore, we can pass to the limit as 𝑛 → ∞ in (5.25) and apply Fatou’s lemma to obtain that

‖𝑢𝑡(𝑥) − 𝑉𝑡(𝑥) − 𝑃𝑡−𝑠(𝑢𝑠(𝑥) − 𝑉𝑠(𝑥))‖𝐿𝑚|𝑠
= ‖𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥)‖𝐿𝑚|𝑠

⩽ 𝐶(𝑡 − 𝑠)
1−

𝛽

4
−

1

4𝑞 ,

where we also used the definition of 𝐾 in (5.20). This implies (3.8). □

5.2 Proof of Proposition 3.6

In this subsection we will use the following additional notation. Let (𝑆, 𝑇) ∈ Δ0,𝑇0
. For a

measurable function 𝑍 ∶ Δ𝑆,𝑇 × 𝐷 × Ω → ℝ, 𝜏 ∈ [0, 1],𝑚 ⩾ 1 we put

‖𝑍‖𝜏,0𝐿𝑚([𝑆,𝑇]) ∶= sup
(𝑠,𝑡)∈Δ𝑆,𝑇

sup
𝑥∈𝐷

‖𝑍𝑠,𝑡(𝑥)‖𝐿𝑚|𝑡 − 𝑠|𝜏 . (5.27)

Till the end of the subsection fix the parameters 𝛽, 𝑞 satisfying the conditions of Proposi-
tion 3.6 and 𝑏 ∈ 𝛽

𝑞 . We fix also (𝑢𝑡)𝑡∈[0,𝑇0], (𝑣𝑡)𝑡∈[0,𝑇0] ∈ (3∕4), which are as in the statement
of Proposition 3.6.
We define

𝜓𝑡 ∶= 𝑢𝑡 − 𝑉𝑡, 𝜑𝑡 ∶= 𝑣𝑡 − 𝑉𝑡, 𝑧𝑡 ∶= 𝑢𝑡 − 𝑣𝑡 = 𝜓𝑡 − 𝜑𝑡, 𝑡 ∈ [0, 𝑇0].

Our goal is to prove that 𝑧(𝑡) = 0 for all 𝑡 ∈ [0, 𝑇0]. Fix 𝑚 ∈ [2,∞) such that 𝑚 ⩽ 𝑞. We see that
(3.12) and the fact that 𝑢, 𝑣 ∈ (3∕4) implies that

[𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])
< ∞, [𝜓]3∕4,0𝐿𝑚([0,𝑇0])

< ∞, [𝜑]3∕4,0𝐿𝑚([0,𝑇0])
< ∞.

This in turn yields that for any 𝑡 ∈ [0, 𝑇0] one has

𝜑𝑡, 𝜓𝑡 ∈ 𝐁𝐿𝑚, (5.28)

where the space 𝐁𝐿𝑚 is introduced in (3.5).
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 35

Recall that the process 𝑣 satisfies condition (2′) of Remark 2.7. We fix a sequence of smooth
functions (𝑏𝑛) which appeared there. For 𝑛 ∈ ℤ+ introduce the process

𝐻
𝑛,𝜓
𝑠,𝑡 (𝑥) ∶= ∫

𝑡

𝑠
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑡−𝑟𝜓𝑠(𝑦)) 𝑑𝑦 𝑑𝑟, (𝑠, 𝑡) ∈ Δ0,𝑇0
, 𝑥 ∈ 𝐷. (5.29)

Define 𝐻
𝑛,𝜑
𝑠,𝑡 (𝑥) in a similar way with 𝜑𝑠 in place of 𝜓𝑠 in the right-hand side of (5.29). Note that

the expressions 𝑃𝑡−𝑟𝜓𝑠 and 𝑃𝑡−𝑟𝜑𝑠 are well-defined thanks to (5.28) and Lemma B.4.
Our first step in obtaining uniqueness is to pass to the limit as 𝑛 → ∞ in (5.29).

Lemma 5.5. For each 𝑥 ∈ 𝐷, (𝑠, 𝑡) ∈ Δ0,𝑇0
there exist random variables𝐻𝜓

𝑠,𝑡(𝑥),𝐻
𝜑
𝑠,𝑡(𝑥), such that

𝐻
𝑛,𝜓
𝑠,𝑡 (𝑥) → 𝐻

𝜓
𝑠,𝑡(𝑥), 𝐻

𝑛,𝜑
𝑠,𝑡 (𝑥) → 𝐻

𝜑
𝑠,𝑡(𝑥), in probability as 𝑛 → ∞.

Furthermore, there exists a constant 𝐶 > 0 such that for any (𝑠, 𝑡) ∈ Δ0,𝑇0
we have

sup
𝑥∈𝐷

‖𝐻𝜓
𝑠,𝑡(𝑥) − 𝐻

𝜑
𝑠,𝑡(𝑥)‖𝐿𝑚

⩽ 𝐶(1 + 𝑇0) ‖𝑧𝑠‖𝐁𝐿𝑚
(𝑡 − 𝑠)

1

2 , (5.30)

sup
𝑥∈𝐷

‖𝐻𝜓
𝑠,𝑡(𝑥) − 𝐻

𝜑
𝑠,𝑡(𝑥)‖𝐿𝑚

⩽ 𝐶(1 + 𝑇0) (𝑡 − 𝑠)
3

4 . (5.31)

The lemma is proved using the stochastic sewing lemma.We postpone the proof till Section 6.2.
Recall the notation (5.12). Denote 𝐾𝑢 ∶= 𝜓 − 𝑃𝑢0 and 𝐾𝑣 ∶= 𝜑 − 𝑃𝑢0. It follows from Defini-

tion 2.3 and condition (2′) of Remark 2.7, that 𝐾𝑏𝑛;𝑢(𝑡, 𝑥) → 𝐾𝑢(𝑡, 𝑥) and 𝐾𝑏𝑛;𝑣(𝑡, 𝑥) → 𝐾𝑣(𝑡, 𝑥) in
probability as 𝑛 → ∞ for any 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷.

Lemma 5.6. For every fixed (𝑠, 𝑡) ∈ Δ0,𝑇0
, 𝑥 ∈ 𝐷 we have

𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢
𝑠 (𝑥) → 𝑃𝑡−𝑠𝐾

𝑢
𝑠 (𝑥), 𝑃𝑡−𝑠𝐾

𝑏𝑛;𝑣
𝑠 (𝑥) → 𝑃𝑡−𝑠𝐾

𝑣
𝑠 (𝑥) in probability as 𝑛 → ∞.

It follows from Lemma 5.5, that we can now define

𝑅𝑠,𝑡 ∶= (𝜓𝑡 − 𝑃𝑡−𝑠𝜓𝑠 − 𝐻
𝜓
𝑠,𝑡) − (𝜑𝑡 − 𝑃𝑡−𝑠𝜑𝑠 − 𝐻

𝜑
𝑠,𝑡), (𝑠, 𝑡) ∈ Δ0,𝑇0

. (5.32)

The next result is crucial for proving that 𝑧 ≡ 0 and thus obtaining strong uniqueness.

Lemma5.7. There exists 𝛿 = 𝛿(𝛽, 𝑞) ∈ (0, 1∕2) such that for any 𝜏 ∈ (1∕2, 1] there exists a constant
𝐶 = 𝐶(𝑇0, ‖𝑏‖𝛽

𝑞
, [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

, [𝜑]3∕4,0𝐿𝑚([0,𝑇0])
) such that for any (𝑠, 𝑡) ∈ Δ0,𝑇0

sup
𝑥∈𝐷

‖𝑧𝑡(𝑥) − 𝑃𝑡−𝑠𝑧𝑠(𝑥)‖𝐿𝑚
⩽ 𝐶(‖𝑧‖0,0𝐿𝑚([𝑠,𝑡]) + ‖𝑅‖𝜏,0𝐿𝑚([𝑠,𝑡]))(𝑡 − 𝑠)

1

2
+𝛿

+ 𝐶‖𝑧‖0,0𝐿𝑚([𝑠,𝑡])| log(‖𝑧‖0,0𝐿𝑚([𝑠,𝑡]))|(𝑡 − 𝑠), (5.33)

sup
𝑥∈𝐷

‖𝑅𝑠,𝑡(𝑥)‖𝐿𝑚
⩽ 𝐶(‖𝑧‖0,0𝐿𝑚([𝑠,𝑡]) + ‖𝑅‖𝜏,0𝐿𝑚([𝑠,𝑡]))(𝑡 − 𝑠)

1

2
+𝛿

+ 𝐶‖𝑧‖0,0𝐿𝑚([𝑠,𝑡])| log(‖𝑧‖0,0𝐿𝑚([𝑠,𝑡]))|(𝑡 − 𝑠). (5.34)
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36 ATHREYA et al.

The proof is presented in Section 6.2, in whichwe use the stochastic sewing lemmawith critical
exponent, Theorem 4.5.
Now we are ready to prove the main result of this subsection: uniqueness of solutions of

equation (1.1).

Proof of Proposition 3.6. Step 1. We show that there exist constants 𝓁, 𝐶 such that

‖𝑧𝑡 − 𝑃𝑡−𝑠𝑧𝑠‖𝐁𝐿𝑚
⩽ 𝐶‖𝑧‖0,0𝐿𝑚([𝑠,𝑡])(𝑡 − 𝑠)

1

2
+𝛿

+ 𝐶‖𝑧‖0,0𝐿𝑚([𝑠,𝑡])| log(‖𝑧‖0,0𝐿𝑚([𝑠,𝑡]))|(𝑡 − 𝑠)

(5.35)
for any (𝑠, 𝑡) ∈ Δ0,𝑇0

satisfying 𝑡 − 𝑠 ⩽ 𝓁.
We first observe that ‖𝑅‖3∕4,0𝐿𝑚([0,𝑇0])

is finite. Indeed, from (5.32) and (5.31) we see that

‖𝑅‖3∕4,0𝐿𝑚([0,𝑇0])
⩽ [𝜓]3∕4,0𝐿𝑚([0,𝑇0])

+ [𝜑]3∕4,0𝐿𝑚([0,𝑇0])
+ ‖𝐻𝜓 − 𝐻𝜑‖3∕4,0𝐿𝑚([0,𝑇0])

⩽ [𝜓]3∕4,0𝐿𝑚([0,𝑇0])
+ [𝜑]3∕4,0𝐿𝑚([0,𝑇0])

+ 𝐶(1 + 𝑇0)‖𝑏‖𝛾
𝑝
< ∞.

Fix now (𝑆, 𝑇) ∈ Δ0,𝑇0
. Let 𝛿 be as in Lemma 5.7. Let us apply Lemma 5.7 with 𝜏 ∶= 1∕2 + 𝛿∕2.

Dividing both sides of (5.34) by (𝑡 − 𝑠)1∕2+𝛿∕2 and taking supremum over (𝑠, 𝑡) ∈ Δ𝑆,𝑇 we deduce
for some constant

𝐶1 ∶= 𝐶(‖𝑏‖𝛽
𝑞
, [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

, [𝜑]3∕4,0𝐿𝑚([0,𝑇0])
)

which does not depend on 𝑇, 𝑆 that

‖𝑅‖1∕2+𝛿∕2,0𝐿𝑚([𝑆,𝑇]) ⩽ 𝐶1(‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]) + ‖𝑅‖1∕2+𝛿∕2,0𝐿𝑚([𝑆,𝑇]))(𝑇 − 𝑆)
𝛿

2

+ 𝐶1‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])| log (‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])

) |(𝑇 − 𝑆)
1

2
−

𝛿

2 . (5.36)

Let 𝓁 = 𝓁(𝐶1, 𝛽, 𝑞) < (1 ∧ 𝑇0) be such that 𝐶1𝓁
𝛿

2 ⩽
1

2
. Then for any (𝑆, 𝑇) ∈ Δ0,𝑇0

such that
𝑇 − 𝑆 ⩽ 𝓁, we derive from (5.36) for 𝐶2 ∶= 2𝐶1 that

‖𝑅‖1∕2+𝛿∕2,0𝐿𝑚([𝑆,𝑇]) ⩽ 𝐶2‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]) + 𝐶2‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])| log(‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]))|(𝑇 − 𝑆)
1

2
−

𝛿

2 .

In the above, we have used the fact that 1∕2 + 𝛿∕2 ⩽ 3∕4 and hence

‖𝑅‖1∕2+𝛿∕2,0𝐿𝑚([𝑆,𝑇]) ⩽ ‖𝑅‖3∕4,0𝐿𝑚([0,𝑇0])
is finite.

Substituting this into (5.33), we obtain (5.35).
Step 2. We show that the map 𝑡 ↦ ‖𝑧𝑡‖𝐁𝐿𝑚

is continuous on [0, 𝑇0]. By triangle inequality, we
have for every (𝑠, 𝑡) ∈ Δ0,𝑇0

,

|‖𝑧𝑡‖𝐁𝐿𝑚
− ‖𝑧𝑠‖𝐁𝐿𝑚

| ⩽ ‖𝑧𝑡 − 𝑧𝑠‖𝐁𝐿𝑚
⩽ ‖𝑧𝑡 − 𝑃𝑡−𝑠𝑧𝑠‖𝐁𝐿𝑚

+ ‖𝑃𝑡−𝑠𝑧𝑠 − 𝑧𝑠‖𝐁𝐿𝑚
.

From (5.35), it is clear that lim𝑡↓𝑠 ‖𝑧𝑡 − 𝑃𝑡−𝑠𝑧𝑠‖𝐁𝐿𝑚
= 0 and lim𝑠↑𝑡 ‖𝑧𝑡 − 𝑃𝑡−𝑠𝑧𝑠‖𝐁𝐿𝑚

= 0. It remains
to consider the last term in the above estimate.
Since 𝑢 = 𝑃𝑢0 + 𝐾𝑢 + 𝑉 and 𝑣 = 𝑃𝑢0 + 𝐾𝑣 + 𝑉 by definition, we see that 𝑧 = 𝐾𝑢 − 𝐾𝑣. Hence,

it suffices to show that 𝑃𝑡−𝑠𝐾
𝑢
𝑠 − 𝐾𝑢

𝑠 and 𝑃𝑡−𝑠𝐾
𝑣
𝑠 − 𝐾𝑣

𝑠 converge to 0 in 𝐁𝐿𝑚 as 𝑡 ↓ 𝑠 and 𝑠 ↑ 𝑡. We
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 37

have for each 𝑥 ∈ 𝐷, 𝑛 ∈ ℤ+,

𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢
𝑠 (𝑥) − 𝐾𝑏𝑛;𝑢

𝑠 (𝑥) = ∫
𝑠

0
∫
𝐷

[𝑝𝑡−𝑟(𝑥, 𝑦) − 𝑝𝑠−𝑟(𝑥, 𝑦)]𝑏
𝑛(𝑢𝑟(𝑦))𝑑𝑦𝑑𝑟.

Fix arbitrary 𝜀 ∈ (0, 1). Let us apply Lemma 5.2(iii) with 𝑓 = 𝑏𝑛, 𝛾 = 𝛽, 𝑝 = 𝑞, 𝑆 = 0, 𝑇 = 𝑠,
𝑇̄ = 𝑡 − 𝑠, 𝛿 = 𝜀, 𝜏 = 3∕4. We see that condition (5.2) is satisfied and thus we obtain

‖𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢
𝑠 (𝑥) − 𝐾𝑏𝑛;𝑢

𝑠 (𝑥)‖𝐿𝑚
⩽ 𝐶(𝜀, 𝑇0, [𝜓]3∕4,0𝐿𝑚([0,𝑇0])

)‖𝑏‖𝛽
𝑞
(𝑡 − 𝑠)

𝜀

2 ,

where we also used the fact that ‖𝑏𝑛‖𝛽
𝑞
⩽ ‖𝑏‖𝛽

𝑞
. Applying Lemma 5.6 and Fatou’s lemma, we

can pass to the limit as 𝑛 → ∞ in the above inequality to obtain by Fatou’s lemma that

‖𝑃𝑡−𝑠𝐾
𝑢
𝑠 (𝑥) − 𝐾𝑢

𝑠 (𝑥)‖𝐿𝑚
⩽ 𝐶(𝜀, 𝑇0, [𝜓]3∕4,0𝐿𝑚([0,𝑇0])

)‖𝑏‖𝛽
𝑞
(𝑡 − 𝑠)

𝜀

2 .

This implies that lim ‖𝑃𝑡−𝑠𝐾
𝑢
𝑠 − 𝐾𝑢

𝑠 ‖𝐁𝐿𝑚
= 0 as 𝑡 ↓ 𝑠 and 𝑠 ↑ 𝑡. The convergence of 𝑃𝑡−𝑠𝐾

𝑣
𝑠 − 𝐾𝑣

𝑠

to 0 is obtained by exactly the same way.
Step 3. We show by contradiction that 𝑧 ≡ 0. Suppose that ‖𝑧𝑡‖𝐁𝐿𝑚

is not identically 0 on [0, 𝑇0].
Choose 𝑘0 ⩾ 1 such that 2−𝑘0 < sup𝑡∈[0,𝑇0]

‖𝑧𝑡‖𝐁𝐿𝑚
. Then for each integer 𝑘 ⩾ 𝑘0, define

𝑡𝑘 = inf {𝑡 ∈ [0, 𝑇0] ∶ ‖𝑧𝑡‖𝐁𝐿𝑚
⩾ 2−𝑘}.

It is evident that each 𝑡𝑘 is well defined. In addition, ‖𝑧𝑡‖𝐁𝐿𝑚
< 2−𝑘 for 𝑡 < 𝑡𝑘 while‖𝑧𝑡𝑘‖𝐁𝐿𝑚

= 2−𝑘 by continuity shown in the previous step. Consequently, the sequence {𝑡𝑘}𝑘⩾𝑘0

is strictly decreasing. For 𝑘 sufficiently large so that 𝑡𝑘 − 𝑡𝑘+1 ⩽ 𝓁, estimate (5.35) with (𝑠, 𝑡) =

(𝑡𝑘+1, 𝑡𝑘) yields

‖𝑧𝑡𝑘 − 𝑃𝑡𝑘−𝑡𝑘+1
𝑧𝑡𝑘+1

‖𝐁𝐿𝑚
⩽ 𝐶2−𝑘(𝑡𝑘 − 𝑡𝑘+1)

1

2
+𝛿

+ 𝐶2−𝑘𝑘(𝑡𝑘 − 𝑡𝑘+1).

On the other hand, by (B.8), ‖𝑃𝑡𝑘−𝑡𝑘+1
𝑧𝑡𝑘+1

‖𝐁𝐿𝑚
⩽ ‖𝑧𝑡𝑘+1

‖𝐁𝐿𝑚
= 2−𝑘−1 and hence by triangle

inequality,

‖𝑧𝑡𝑘 − 𝑃𝑡𝑘−𝑡𝑘+1
𝑧𝑡𝑘+1

‖𝐁𝐿𝑚
⩾ ‖𝑧𝑡𝑘‖𝐁𝐿𝑚

− ‖𝑃𝑡𝑘−𝑡𝑘+1
𝑧𝑡𝑘+1

‖𝐁𝐿𝑚
⩾ 2−𝑘−1.

It follows that

2−𝑘−1 ⩽ 𝐶2−𝑘(𝑡𝑘 − 𝑡𝑘+1)
1

2
+𝛿

+ 𝐶2−𝑘𝑘(𝑡𝑘 − 𝑡𝑘+1)

which implies that 𝑡𝑘 − 𝑡𝑘+1 ⩾ 𝐶̄(1 + 𝑘)−1 for some constant 𝐶̄. This implies that
∑

𝑘⩾𝑘0
(𝑡𝑘 −

𝑡𝑘+1) = ∞, which is a contradiction because {𝑡𝑘} is a decreasing sequence in [0, 𝑇0]. We conclude
that 𝑧 ≡ 0, and hence, 𝑢 = 𝑣. □

5.3 Proof of Proposition 3.8

Let 𝑢 be a solution to (1.1) and 𝑚 be arbitrary in [2,∞). Since 𝑏 is a non-negative measure, we
can choose a sequence of smooth bounded non-negative functions (𝑏𝑛) which converges to 𝑏 in
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38 ATHREYA et al.

0−
1 and ‖𝑏𝑛‖0

1
⩽ ‖𝑏‖0

1
(see Lemma A.3). For each 𝑛 ∈ ℤ+, 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷, define

𝐾𝑛
𝑡 (𝑥) = ∫

𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑢𝑟(𝑦))𝑑𝑦𝑑𝑟.

By Definition 2.3, we see that 𝐾𝑛 converges to 𝐾 in uc([0, 𝑇0] × 𝐷) in probability. By pass-
ing through a subsequence, we can assume without loss of generality that this convergence is
almost sure. Hence, we can find Ω∗ ⊂ Ω such that 𝖯(Ω∗) = 1 and that 𝐾𝑛(𝜔) converges to 𝐾(𝜔)

in uc([0, 𝑇0] × 𝐷) for every 𝜔 ∈ Ω∗. Since (𝑡, 𝑥, 𝜔) ↦ 𝐾𝑛
𝑡 (𝑥, 𝜔) is non-negative measurable, so

is (𝑡, 𝑥, 𝜔) ↦ 𝐾𝑡(𝑥, 𝜔). As a consequence (𝑇, 𝑡, 𝑥, 𝜔) ↦ 𝑃𝑇−𝑡𝐾𝑡(𝑥, 𝜔) is well-defined as a non-
negative measurable function. We note that at this stage, we do not rule out the possibility that
𝑃𝑇−𝑡𝐾𝑡(𝑥, 𝜔)may take infinite value. We divide the proof into several steps.
Step 1. Fix arbitrary 𝜔 ∈ Ω∗. We show that

𝑃𝑇−𝑡𝐾𝑡(𝑥, 𝜔) ⩾ 𝑃𝑇−𝑠𝐾𝑠(𝑥, 𝜔) for every 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇 ⩽ 𝑇0 and 𝑥 ∈ 𝐷. (5.37)

For simplicity, we omit the dependence on 𝜔. By definition, we have

𝑃𝑇−𝑡𝐾
𝑛
𝑡 (𝑥) − 𝑃𝑇−𝑠𝐾

𝑛
𝑠 (𝑥) = ∫

𝑡

𝑠
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑢𝑟(𝑦))𝑑𝑦𝑑𝑟

which implies that𝑃𝑇−𝑡𝐾
𝑛
𝑡 (𝑥) ⩾ 𝑃𝑇−𝑠𝐾

𝑛
𝑠 (𝑥) for every 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇 ⩽ 𝑇0 and 𝑥 ∈ 𝐷. In particular,

setting 𝑇 = 𝑡, one gets 𝑃𝑡−𝑠𝐾
𝑛
𝑠 (𝑥) ⩽ 𝐾𝑛

𝑡 (𝑥). Applying this inequality and Fatou’s lemma, we have

𝑃𝑡−𝑠𝐾𝑠(𝑥) ⩽ lim inf
𝑛

𝑃𝑡−𝑠𝐾
𝑛
𝑠 (𝑥) ⩽ lim inf

𝑛
𝐾𝑛

𝑡 (𝑥) = 𝐾𝑡(𝑥).

This shows that 𝑃𝑡−𝑠𝐾𝑠(𝑥) ⩽ 𝐾𝑡(𝑥). Applying 𝑃𝑇−𝑡 on both sides, we obtain (5.37).
Step 2. Define 𝜓 = 𝑢 − 𝑉 = 𝐾 + 𝑃𝑢0 and

𝐴𝑇,𝑛
𝑠,𝑡 (𝑥) ∶= ∫

𝑡

𝑠
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) 𝑑𝑦𝑑𝑟, 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇 ⩽ 𝑇0, 𝑥 ∈ 𝐷.

We claim that

‖𝐴𝑇,𝑛
𝑠,𝑡 (𝑥)‖𝐿𝑚

⩽ 𝐶‖𝑏‖0
1
|𝑡 − 𝑠|3∕4. (5.38)

Indeed, for each integer 𝑗 ⩾ 1, define 𝜓
𝑗
𝑡 (𝑥) ∶= (𝐾𝑡(𝑥) ∧ 𝑗) + 𝑃𝑡𝑢0(𝑥) which belongs to 𝐁𝐿𝑚. We

note that measures belong to 0
1, which is embedded in 1∕𝑚−1

𝑚 (see (3.6)). Applying Lemma 5.1,
we have ‖‖‖‖‖∫

𝑡

𝑠
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓

𝑗
𝑠 (𝑦)) 𝑑𝑦𝑑𝑟

‖‖‖‖‖𝐿𝑚

⩽ 𝐶‖𝑏𝑛‖0
1
|𝑡 − 𝑠| 3

4

for a universal constant 𝐶 > 0. By the Lebesgue monotone convergence theorem, we have
lim𝑗→∞ 𝑃𝑟−𝑠𝜓

𝑗
𝑠 (𝑦) = 𝑃𝑟−𝑠𝜓𝑠(𝑦) for every 𝑟, 𝑠, 𝑦. Then by the Lebesgue dominated convergence the-

orem, we see that the left-hand side above converges to ‖𝐴𝑇,𝑛
𝑠,𝑡 (𝑥)‖𝐿𝑚

as 𝑗 → ∞. Since ‖𝑏𝑛‖0
1
⩽‖𝑏‖0

1
, this implies (5.38).
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 39

Step 3. We show by mean of Theorem 4.7 that for every 𝑛 ∈ ℤ+, (𝑠, 𝑡) ∈ Δ0,𝑇0
there exist a non-

negative measurable map (𝑥, 𝜔) ↦ 𝐿𝑛
𝑠,𝑡(𝑥, 𝜔) and a deterministic finite constant 𝐶 such that

sup
𝑛∈ℤ+,𝑥∈𝐷

‖𝐿𝑛
𝑠,𝑡(𝑥)‖𝐿𝑚

⩽ 𝐶(𝑡 − 𝑠)
3

4

and

𝐾𝑛
𝑡 (𝑥) − 𝑃𝑡−𝑠𝐾

𝑛
𝑠 (𝑥) ⩽ 𝐶[𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥)](𝑡 − 𝑠)

3

4 + 𝐿𝑛
𝑠,𝑡(𝑥) (5.39)

for every (𝑠, 𝑡) ∈ Δ0,𝑇0
𝑥 ∈ 𝐷.

Fix 𝑥 ∈ 𝐷, 𝑇 ∈ [0, 𝑇0]. We define

𝜆𝑇
𝑠,𝑡(𝑥) = 𝑃𝑇−𝑡𝐾𝑡(𝑥) − 𝑃𝑇−𝑠𝐾𝑠(𝑥), (𝑠, 𝑡) ∈ Δ0,𝑇.

From (5.37), we see that 0 ⩽ 𝜆𝑇
𝑠,𝑡(𝑥) ⩽ 𝐾𝑇(𝑥) < ∞. It is evident that 𝜆 is additive, that is 𝜆𝑇

𝑠,𝑡(𝑥) =

𝜆𝑇
𝑠,𝑢(𝑥) + 𝜆𝑇

𝑢,𝑡(𝑥) for every 𝑠 ⩽ 𝑢 ⩽ 𝑡. Hence, (𝑠, 𝑡) ↦ 𝜆𝑇
𝑠,𝑡(𝑥) is a random control per Definition 4.6.

Define 𝐴𝑇,𝑛
𝑠,𝑡 (𝑥) as in the previous step and

𝑇,𝑛
𝑡 (𝑥) ∶= ∫

𝑡

0
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝑏
𝑛(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) 𝑑𝑦𝑑𝑟 = 𝑃𝑇−𝑡𝐾

𝑛
𝑡 (𝑥).

Then for 𝑢 ∶= (𝑠 + 𝑡)∕2 we have

𝛿𝐴𝑇,𝑛
𝑠,𝑢,𝑡(𝑥) = ∫

𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)[𝑏
𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜓𝑢(𝑦))] 𝑑𝑦𝑑𝑟.

Applying consequently the Fubini theorem, (C.7), Lemma A.3(iv) and Lemma C.3, we deduce
that

|𝖤𝑢𝛿𝐴𝑇,𝑛
𝑠,𝑢,𝑡(𝑥)| = |||||∫

𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝖤
𝑢[𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜓𝑢(𝑦))] 𝑑𝑦𝑑𝑟

|||||
⩽ ∫

𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)‖𝐺𝜌𝑟−𝑢(𝑥)𝑏
𝑛‖1 |𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑢𝜓𝑢(𝑦)|𝑑𝑦𝑑𝑟

⩽ 𝐶‖𝑏𝑛‖0
1 ∫

𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)|𝑃𝑟−𝑢𝜓𝑢(𝑦) − 𝑃𝑟−𝑠𝜓𝑠(𝑦)|(𝑟 − 𝑢)−1∕2 𝑑𝑦𝑑𝑟,

where we used the notation 𝜌𝑡(𝑥) ∶= Var(𝑉𝑡(𝑥)). Since 𝜓 = 𝑃𝑢0 + 𝐾, we see that 𝑃𝑟−𝑢𝜓𝑢 −

𝑃𝑟−𝑠𝜓𝑠 = 𝑃𝑟−𝑢𝐾𝑢 − 𝑃𝑟−𝑠𝐾𝑠. Using the elementary inequality

|𝑃𝑟−𝑢𝐾𝑢(𝑦) − 𝑃𝑟−𝑠𝐾𝑠(𝑦)| ⩽ 𝑃𝑟−𝑢|𝐾𝑢(⋅) − 𝑃𝑢−𝑠𝐾𝑠(⋅)|(𝑦)
and (5.37), we get

|𝖤𝑢𝛿𝐴𝑇,𝑛
𝑠,𝑢,𝑡(𝑥)| ⩽ 𝐶‖𝑏𝑛‖0

1 ∫
𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑢(𝑥, 𝑦)[𝐾𝑢(𝑦) − 𝑃𝑢−𝑠𝐾𝑠(𝑦)](𝑟 − 𝑢)−1∕2 𝑑𝑦𝑑𝑟

⩽ 𝐶‖𝑏𝑛‖0
1
𝜆𝑇
𝑠,𝑢(𝑥)(𝑡 − 𝑢)

1

2 .
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40 ATHREYA et al.

As we have shown previously, (𝑠, 𝑡) ↦ 𝜆𝑇
𝑠,𝑡(𝑥) is a random control for every fixed 𝑇, 𝑥. Hence,

the above estimate verifies condition (4.13). The estimate (5.38) verifies condition (4.3) (with
𝛼2 = 𝛽2 = 0 and 𝑛 = 𝑚). It remains to verify condition (4.4). Let Π ∶= {0 = 𝑡0, 𝑡1, … , 𝑡𝑘 = 𝑇} be
an arbitrary partition of [0, 𝑇]. Denote by |Π| its mesh size. Then we have
||||||𝑡 −

𝑘−1∑
𝑖=0

𝐴𝑡𝑖,𝑡𝑖+1

|||||| ⩽
𝑘−1∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)||𝑏𝑛(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦))
|| 𝑑𝑦𝑑𝑟.

For each 𝑖, using the fact that 𝑏𝑛 is Lipschitz, we have

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)||𝑏𝑛(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦))
||𝑑𝑦𝑑𝑟

⩽ ‖𝑏𝑛‖1 ∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)|𝜓𝑟(𝑦) − 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦)|𝑑𝑦𝑑𝑟.
Since 𝜓 = 𝑃𝑢0 + 𝐾, we have |𝜓𝑟(𝑦) − 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦)| = |𝐾𝑟(𝑦) − 𝑃𝑟−𝑡𝑖𝐾𝑡𝑖 (𝑦)| = 𝐾𝑟(𝑦) − 𝑃𝑟−𝑡𝑖𝐾𝑡𝑖 (𝑦)

where we have used (5.37). Hence, combining with the above estimate and applying (5.37) once
again yield

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)||𝑏𝑛(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏𝑛(𝑉𝑟(𝑦) + 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦))
||𝑑𝑦𝑑𝑟

⩽ ‖𝑏𝑛‖1 ∫
𝑡𝑖+1

𝑡𝑖

[𝑃𝑇−𝑟𝐾𝑟(𝑥) − 𝑃𝑇−𝑡𝑖𝐾𝑡𝑖 (𝑥)]𝑑𝑟 ⩽ ‖𝑏𝑛‖1 [𝑃𝑇−𝑡𝑖+1
𝐾𝑡𝑖+1

(𝑥) − 𝑃𝑇−𝑡𝑖𝐾𝑡𝑖 (𝑥)](𝑡𝑖+1 − 𝑡𝑖).

It follows that||||||𝑡 −

𝑘−1∑
𝑖=0

𝐴𝑡𝑖,𝑡𝑖+1

|||||| ⩽ ‖𝑏𝑛‖1

∑
𝑖

[𝑃𝑇−𝑡𝑖+1
𝐾𝑡𝑖+1

(𝑥) − 𝑃𝑇−𝑡𝑖𝐾𝑡𝑖 (𝑥)](𝑡𝑖+1 − 𝑡𝑖)

⩽ ‖𝑏𝑛‖1 (𝐾𝑇(𝑥) − 𝑃𝑇𝐾0(𝑥))|Π|,
which converges to 0 a.s. as |Π| → 0. Thus, condition (4.4) holds.
Applying Theorem 4.7, we have

|𝑃𝑇−𝑡𝐾
𝑛
𝑡 (𝑥) − 𝑃𝑇−𝑠𝐾

𝑛
𝑠 (𝑥)| ⩽ 𝐶[𝑃𝑇−𝑡𝐾𝑡(𝑥) − 𝑃𝑇−𝑠𝐾𝑠(𝑥)](𝑡 − 𝑠)

1

2 + 𝐵𝑇,𝑛
𝑠,𝑡 (𝑥) + |𝐴𝑇,𝑛

𝑠,𝑡 (𝑥)|
where ‖𝐵𝑇,𝑛

𝑠,𝑡 (𝑥)‖𝐿𝑚
⩽ 𝐶|𝑡 − 𝑠|3∕4 uniformly in 𝑇, 𝑛, 𝑥. To obtain (5.39), it suffices to put 𝑇 = 𝑡,

𝐿𝑛
𝑠,𝑡(𝑥) = 𝐵𝑡,𝑛

𝑠,𝑡 (𝑥) + |𝐴𝑡,𝑛
𝑠,𝑡 (𝑥)|. Since 𝐵𝑇,𝑛 is a functional of 𝛿𝐴𝑇,𝑛(𝑥), measurability of (𝑥, 𝜔) ↦ 𝐿𝑛

𝑠,𝑡

follows. The uniform moment estimate for 𝐿𝑛
𝑠,𝑡(𝑥) follows from those of 𝐵𝑇,𝑛

𝑠,𝑡 (𝑥) and 𝐴𝑇,𝑛
𝑠,𝑡 (𝑥) in

(5.38).
Step 4. We show that lim𝑛→∞ 𝑃𝑟𝐾

𝑛
𝑡 (𝑥) = 𝑃𝑟𝐾𝑡(𝑥) in probability for every 𝑡 ∈ [0, 𝑇0],

𝑟 ∈ [0, 𝑇0 − 𝑡] and 𝑥 ∈ 𝐷.
The situation here is similar to Lemma B.5 except for a uniform moment bound for 𝐾𝑛

𝑡 (𝑥). We
replace this condition by estimate (5.39) and the uniform moment bound for 𝐿𝑛

0,𝑡(𝑥). Indeed, let
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 41

𝑥 ∈ 𝐷 be fixed and let𝑀 > 0 be a positive number. We write

𝑃𝑟𝐾
𝑛
𝑡 (𝑥) = ∫|𝑦|⩽𝑀

𝑝𝑟(𝑥, 𝑦)𝐾
𝑛
𝑡 (𝑦)𝑑𝑦 + ∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝐾
𝑛
𝑡 (𝑦)𝑑𝑦.

Since 𝐾𝑛
𝑡 converges to 𝐾𝑡 uniformly on {𝑦 ∈ 𝐷 ∶ |𝑦| ⩽ 𝑀}, we see that

∫|𝑦|⩽𝑀

𝑝𝑟(𝑥, 𝑦)𝐾
𝑛
𝑡 (𝑦)𝑑𝑦 converges to ∫|𝑦|⩽𝑀

𝑝𝑟(𝑥, 𝑦)𝐾𝑡(𝑦)𝑑𝑦 a.s.

To treat the second term, we first set 𝑠 = 0 in (5.39) to obtain that

|𝐾𝑛
𝑡 (𝑦)| ⩽ 𝐶𝑡

1

2 𝐾𝑡(𝑦) + 𝐿𝑛
0,𝑡(𝑦) a.s. ∀𝑦 ∈ 𝐷.

It follows that

∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝐾
𝑛
𝑡 (𝑦)𝑑𝑦 ⩽ 𝐶𝑡

1

2 ∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝐾𝑡(𝑦)𝑑𝑦 + ∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝐿
𝑛
0,𝑡(𝑦)𝑑𝑦.

By the Lebesgue monotone convergence theorem and (5.37), we see that a.s.

lim
𝑀→∞∫|𝑦|⩽𝑀

𝑝𝑟(𝑥, 𝑦)𝐾𝑡(𝑦)𝑑𝑦 = ∫
𝐷

𝑝𝑟(𝑥, 𝑦)𝐾𝑡(𝑦)𝑑𝑦 ⩽ 𝐾𝑡+𝑟(𝑥) < ∞

so that a.s.

lim
𝑀→∞∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝐾𝑡(𝑦)𝑑𝑦 = 0.

Lastly,

𝖤 ∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝐿
𝑛
0,𝑡(𝑦)𝑑𝑦 ⩽ sup

𝑛∈ℤ+,𝑧∈𝐷
‖𝐿𝑛

0,𝑡(𝑧)‖𝐿𝑚

(
∫|𝑦|>𝑀

𝑝𝑟(𝑥, 𝑦)𝑑𝑦

)

which converges to 0 as𝑀 → ∞. These facts imply the claim.
Step 5. We define 𝐿𝑠,𝑡(𝑥) = lim inf𝑛 𝐿𝑛

𝑠,𝑡(𝑥) then by Fatou’s lemma and Step 3, ‖𝐿𝑠,𝑡(𝑥)‖𝐿𝑚
⩽

𝐶|𝑡 − 𝑠|3∕4 uniformly in 𝑥. In (5.39), we send 𝑛 → ∞, applying the convergence in step 4 to obtain
that

𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥) ⩽ 𝐶(𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥))(𝑡 − 𝑠)
1

2 + 𝐿𝑠,𝑡(𝑥).

This implies that 𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥) ⩽ 2𝐿𝑠,𝑡(𝑥) for 𝑡 − 𝑠 ⩽ 𝓁 and 𝓁 is such that 𝐶𝓁1∕2 ⩽
1

2
. An

application of 𝐿𝑚-norm yields

‖𝐾𝑡(𝑥) − 𝑃𝑡−𝑠𝐾𝑠(𝑥)‖𝐿𝑚
⩽ 2‖𝐿𝑠,𝑡(𝑥)‖𝐿𝑚

⩽ 2𝐶|𝑡 − 𝑠|3∕4
for every 𝑡 − 𝑠 ⩽ 𝓁. Using the identity 𝐾𝑡 − 𝑃𝑡−𝑠𝐾𝑠 = 𝜓𝑡 − 𝑃𝑡−𝑠𝜓𝑠 once again and recalling that
𝜓 = 𝑢 − 𝑉, the above estimate shows that 𝑢 − 𝑉 belongs to 3∕4,0𝐿𝑚([𝑆, 𝑇]). This completes the
proof of Proposition 3.8.
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42 ATHREYA et al.

6 PROOFS OF REGULARITY LEMMAS

In this section, we present the proofs of Lemmas 5.1, 5.2, 5.5, 5.6 and 5.7. Throughout the section,
we fix the filtration (𝑡)𝑡⩾0, which appears in the aforementioned lemmas.

6.1 Proof of Lemmas 5.1 and 5.2

We begin with the following auxiliary result, which will be crucial also for the proof of Propo-
sition 5.7. The proof relies on the stochastic sewing lemma (Theorem 4.1) and the estimates in
Lemma C.3 and Lemma C.4.

Lemma 6.1. Let 0 ⩽ 𝑆 ⩽ 𝑇. Let 𝛾 ∈ (−2, 0), 𝑚 ∈ [2,∞), 𝑛 ∈ [𝑚,∞] and 𝑝 ∈ [𝑛,∞]. Let ℎ ∶

ℝ × [𝑆, 𝑇] × 𝐷 × Ω → ℝ be a globally bounded measurable function. Let 𝑋 ∶ [𝑆, 𝑇] × 𝐷 → ℝ be a
measurable function. Suppose further that the following conditions hold:

1) for any fixed (𝑧, 𝑟, 𝑥) ∈ ℝ × [𝑆, 𝑇] × 𝐷 the random variable ℎ(𝑧, 𝑟, 𝑥) is 𝑆-measurable;
2) there exists a constant Γℎ > 0 such that

sup
(𝑟,𝑥)∈[𝑆,𝑇]×𝐷

‖ ‖ℎ(⋅, 𝑟, 𝑥)‖𝛾
𝑝
‖𝐿𝑛

⩽ Γℎ; (6.1)

3) there exist constants Γ𝑋 > 0, 𝜈 ∈ [0,
1

2
) such that for every 𝑟 ∈ [𝑆, 𝑇], 𝑥 ∈ 𝐷

∫
𝐷

|𝑋𝑟(𝑦)|𝑑𝑦 ⩽ Γ𝑋(𝑇 − 𝑟)−𝜈. (6.2)

Then there exists a constant 𝐶 = 𝐶(𝛾,𝑚, 𝑛, 𝑝) which does not depend on 𝑆, 𝑇, Γℎ, Γ𝑋 , ℎ,𝐾 such that
for any 𝑡 ∈ [𝑆, 𝑇]‖‖‖‖‖

‖‖‖‖‖∫
𝑡

𝑆
∫
𝐷

𝑋𝑟(𝑦)ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦) 𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚|𝑆

‖‖‖‖‖𝐿𝑛

⩽ 𝐶ΓℎΓ𝑋(𝑇 − 𝑆)−𝜈(𝑡 − 𝑆)
1+

𝛾

4
−

1

4𝑝 . (6.3)

Proof. The proof is based on the stochastic sewing lemma, Theorem 4.1. We put for 𝑆 ⩽ 𝑠 < 𝑡 ⩽ 𝑇,

𝐴𝑠,𝑡 ∶= 𝖤𝑠 ∫
𝑡

𝑠
∫
𝐷

𝑋𝑟(𝑦)ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦) 𝑑𝑦𝑑𝑟.

Put also for (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷

𝑡 = ∫
𝑡

𝑆
∫
𝐷

𝑋𝑟(𝑦)ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦, 𝜔) 𝑑𝑦𝑑𝑟.

Note that the integral in the left-hand side of inequality (6.3) is just𝑡 −𝑆 .
Let us verify that all the conditions of Theorem 4.1 are satisfied. For any 𝑆 ⩽ 𝑠 < 𝑡 ⩽ 𝑇, 𝑢 ∶=

(𝑠 + 𝑡)∕2 we have

𝛿𝐴𝑠,𝑢,𝑡 = 𝖤𝑠 ∫
𝑡

𝑢
∫
𝐷

𝑋𝑟(𝑦)ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦) 𝑑𝑦𝑑𝑟 − 𝖤𝑢 ∫
𝑡

𝑢
∫
𝐷

𝑋𝑟(𝑦)ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦) 𝑑𝑦𝑑𝑟.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 43

Therefore 𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡 = 0 and thus condition (4.2) holds.
Further, it is easy to see by the conditional Jensen’s inequality and Minkowski’s integral

inequality that for any 𝑥 ∈ 𝐷, 𝑆 ⩽ 𝑠 < 𝑡 ⩽ 𝑇 and 𝑢 ∶= (𝑠 + 𝑡)∕2

‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑛
⩽ 2

‖‖‖‖‖𝖤𝑢 ∫
𝑡

𝑢
∫
𝐷

𝑋𝑟(𝑦)ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦) 𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑛

⩽2∫
𝑡

𝑢
∫
𝐷

|𝑋𝑟(𝑦)|‖𝖤𝑢ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦)‖𝐿𝑛
𝑑𝑦𝑑𝑟.

(6.4)
Now for fixed 𝑟 ∈ [𝑢, 𝑡], 𝑦 ∈ 𝐷 we apply bound (C.8) to the function 𝑓 ∶ (𝑧, 𝜔) ↦ ℎ(𝑧, 𝑟, 𝑦, 𝜔)

which isℬ(ℝ) ⊗ 𝑆-measurable. We get

‖𝖤𝑢ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦)‖𝐿𝑛
⩽ 𝐶‖ ‖ℎ(⋅, 𝑟, 𝑦)‖𝛾

𝑝
‖𝐿𝑛

(𝑟 − 𝑢)
𝛾

4 (𝑢 − 𝑆)
−

1

2𝑝 (𝑟 − 𝑆)
1

4𝑝

⩽ 𝐶‖ ‖ℎ(⋅, 𝑟, 𝑦)‖𝛾
𝑝
‖𝐿𝑛

(𝑟 − 𝑢)
𝛾

4 (𝑢 − 𝑆)
−

1

4𝑝 , (6.5)

where the last inequality follows because 𝑟 − 𝑆 ⩽ 2(𝑢 − 𝑆). Substituting (6.5) into (6.4) and using
(6.1), (6.2), we obtain that

‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑛
⩽ 𝐶ΓℎΓ𝑋(𝑢 − 𝑆)

−
1

4𝑝 (𝑇 − 𝑢)−𝜈(𝑡 − 𝑢)
1+

𝛾

4 ,

where the last inequality follows from (B.7). From the assumptions 𝜈 ∈ (0, 1∕2), 𝛾 > −2,𝑝 ⩾ 2, we
see that condition (4.7) holds with 𝛼2 = 1∕(4𝑝) < 1∕2, 𝛽2 = 𝜈 < 1∕2, 𝜀2 = 1∕2 + 𝛾∕4 > 0. Hence,
by Remark 4.3 inequality (4.3) is satisfied.
Finally, let us check condition (4.4). Let Π ∶= {𝑆 = 𝑡0, 𝑡1, … , 𝑡𝑘 = 𝑡} be an arbitrary partition

of [𝑆, 𝑡]. Denote by |Π| its mesh size. Note that for any 𝑖 ∈ [0, 𝑘 − 1] we have 𝖤𝑡𝑖 (𝑡𝑖+1
−𝑡𝑖 −

𝐴𝑡𝑖,𝑡𝑖+1
) = 0 and 𝑡𝑖+1

−𝑡𝑖 − 𝐴𝑡𝑖,𝑡𝑖+1
is 𝑡𝑖+1

-measurable. Therefore, 𝑡 −
∑𝑘−1

𝑖=0 𝐴𝑡𝑖,𝑡𝑖+1
is a sum

of martingale differences. Then using orthogonality,‖‖‖‖‖‖𝑡 −

𝑘−1∑
𝑖=0

𝐴𝑡𝑖,𝑡𝑖+1

‖‖‖‖‖‖
2

𝐿2

=

𝑘−1∑
𝑖=0

‖𝑡𝑖+1
−𝑡𝑖 − 𝐴𝑡𝑖,𝑡𝑖+1

‖2
𝐿2

⩽ 𝐶‖ℎ‖𝐿∞
Γ𝑋

𝑘−1∑
𝑖=0

(
∫

𝑡𝑖+1

𝑡𝑖

(𝑇 − 𝑟)−𝜈 𝑑𝑟

)2

⩽ 𝐶‖ℎ‖𝐿∞
Γ𝑋(𝑇 − 𝑆)1−𝜈 max

𝑖=0..(𝑘−1)

|||||∫
𝑡𝑖+1

𝑡𝑖

(𝑇 − 𝑟)−𝜈 𝑑𝑟
|||||

⩽ 𝐶‖ℎ‖𝐿∞
Γ𝑋(𝑇 − 𝑆)1−𝜈|Π|1−𝜈.

Therefore,
∑𝑘−1

𝑖=0
𝐴𝑡𝑖,𝑡𝑖+1

converges to𝑡 in probability as |Π| → ∞ and thus condition (4.4) holds.
Thus, all the conditions of Theorem 4.1 are satisfied. Hence, by inequality (4.5), taking into

account (B.7) and (3.2) we have for any 𝑡 ∈ [𝑆, 𝑇], 𝑥 ∈ 𝐷

‖‖𝑡 −𝑆‖𝐿𝑚|𝑆
‖𝐿𝑛

⩽ ‖𝐴𝑆,𝑡‖𝐿𝑛
+ 𝐶ΓℎΓ𝑋(𝑇 − 𝑆)−𝜈(𝑡 − 𝑆)

1+
𝛾

4
−

1

4𝑝 . (6.6)

Applying (C.9) to the function 𝑓 ∶ (𝑧, 𝜔) ↦ ℎ(𝑧, 𝑟, 𝑦, 𝜔), we get

‖𝐴𝑆,𝑡‖𝐿𝑛
⩽ ∫

𝑡

𝑆
∫
𝐷

|𝑋𝑟(𝑦)| ‖𝖤𝑆ℎ(𝑉𝑟(𝑦), 𝑟, 𝑦)‖𝐿𝑛
𝑑𝑦𝑑𝑟

⩽ 𝐶 ∫
𝑡

𝑆
∫
𝐷

|𝑋𝑟(𝑦)| ‖ ‖ℎ(⋅, 𝑟, 𝑦)‖𝛾
𝑝
‖𝐿𝑛

(𝑟 − 𝑆)
𝛾

4
−

1

4𝑝 𝑑𝑦𝑑𝑟

⩽ 𝐶ΓℎΓ𝑋(𝑇 − 𝑆)−𝜈(𝑡 − 𝑆)
1+

𝛾

4
−

1

4𝑝 ,
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44 ATHREYA et al.

where in the last inequality we made use of (6.1), (6.2) and (B.7). Combining this with (6.6), we
finally obtain (6.3). □

An important consequence of Lemma 6.1 is the following statement.

Corollary 6.2. Let 𝑓 ∈ 𝛾
𝑝 be a bounded function, 𝛾 ∈ (−2, 0),𝑚 ∈ [2,∞), 𝑝 ∈ [𝑚,∞].

(i) Let 𝑋 ∶ [0, 𝑇] × 𝐷 → ℝ be a measurable function satisfying (6.2) for some Γ𝑋 > 0, 𝜈 ∈ [0,
1

2
).

Then there exists a constant𝐶 = 𝐶(𝛾,𝑚, 𝑝, 𝜈) such that for any 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇 and anyℬ(ℝ) ⊗

𝑠-measurable function 𝜅 ∈ 𝐁𝐿𝑚 one has‖‖‖‖‖
‖‖‖‖‖∫

𝑡

𝑠
∫
𝐷

𝑋𝑟(𝑦)𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜅(𝑦)) 𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚|𝑠

‖‖‖‖‖𝐿𝑝

⩽ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋(𝑇 − 𝑠)−𝜈(𝑡 − 𝑠)

1+
𝛾

4
−

1

4𝑝 .

(6.7)
(ii) Let 𝜆 ∈ (0, 1] and assume that

𝛾 > −2 + 𝜆. (6.8)

Then there exists a constant 𝐶 = 𝐶(𝛾, 𝜆,𝑚, 𝑝) such that for any 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 𝑇1 and any
ℬ(ℝ) ⊗ 𝑠-measurable functions 𝜅1, 𝜅2 ∈ 𝐁𝐿𝑚 one has

sup
𝑥∈𝐷

‖‖‖‖‖∫
𝑡

𝑠
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)
[
𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜅1(𝑦)) − 𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜅2(𝑦))

]
𝑑𝑟

‖‖‖‖‖𝐿𝑚

⩽ 𝐶‖𝑓‖𝛾
𝑝
‖𝜅1 − 𝜅2‖𝜆

𝐁𝐿𝑚
(𝑡 − 𝑠)

1+
𝛾−𝜆

4
−

1

4𝑝 . (6.9)

(iii) Let 𝜆, 𝜆1, 𝜆2 ∈ (0, 1]. Assume that (6.8) holds and that

𝛾 > −2 + 𝜆1 + 𝜆2. (6.10)

Then there exists a constant 𝐶 = 𝐶(𝛾, 𝜆, 𝜆1, 𝜆2, 𝑝) such that for any 0 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 1, any
ℬ(ℝ) ⊗ 𝑠measurable functions 𝜅1, 𝜅2 ∈ 𝐁𝐿𝑚, anyℬ(ℝ) ⊗ 𝑢measurable functions 𝜅3, 𝜅4 ∈

𝐁𝐿𝑚 one has

sup
𝑥∈𝐷

‖‖‖‖‖∫
𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)
[
𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜅1(𝑦)) − 𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜅2(𝑦))

− 𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜅3(𝑦)) + 𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜅4(𝑦))
]
𝑑𝑟

‖‖‖‖‖𝐿𝑚

⩽ 𝐶‖𝑓‖𝛾
𝑝
sup
𝑦∈𝐷

‖‖𝜅1(𝑦) − 𝜅3(𝑦)‖𝐿𝑚|𝑠
‖𝜆2

𝐿∞
‖𝜅1 − 𝜅2‖𝜆1

𝐁𝐿𝑚
(𝑡 − 𝑢)

1+
𝛾−𝜆1−𝜆2

4
−

1

4𝑝 (6.11)

+ 𝐶‖𝑓‖𝛾
𝑝
‖𝜅1 − 𝜅2 − 𝜅3 + 𝜅4‖𝜆

𝐁𝐿𝑚
(𝑡 − 𝑢)

1+
𝛾−𝜆

4
−

1

4𝑝 .

Proof. The results are obtained by choosing suitable 𝑛,𝐾 and ℎ in Lemma 6.1. In what follows, we
fix 0 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 𝑇 and 𝑥 in 𝐷. We note that the expressions 𝑃𝑟𝜅𝑖(𝑦), 𝑖 = 1, .., 4 are well defined
thanks to Lemma B.4 and the assumption 𝜅𝑖 ∈ 𝐁𝐿𝑚.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 45

(i) We take 𝑛 = 𝑝, ℎ(𝑧, 𝑟, 𝑦, 𝜔) ∶= 𝑓(𝑧 + 𝑃𝑟−𝑠[𝜅(⋅, 𝜔)](𝑦)), where 𝑧 ∈ ℝ, 𝑟 ∈ [𝑠, 𝑡], 𝑦 ∈ 𝐷,𝜔 ∈ Ω.
Let us verify that ℎ satisfies all the assumptions of Lemma 6.1 with 𝑠 in place of 𝑆. Since 𝜅

is 𝑠-measurable, we see that the random variable ℎ(𝑧, 𝑟, 𝑥) is 𝑠 measurable and the first
assumption of Lemma 6.1 holds. It follows from (A.4) that

‖𝑓(⋅ + 𝑃𝑟−𝑠𝜅(𝑦))‖𝛾
𝑝
⩽ ‖𝑓‖𝛾

𝑝
.

Hence (6.1) holds with Γℎ ∶= ‖𝑓‖𝛾
𝑝
. Thus all the conditions of Lemma 6.1 aremet. Now (6.7)

follows directly from inequality (6.3).
(ii) We fix 𝑥 ∈ 𝐷, choose 𝑛 = 𝑚 and 𝑋𝑟(𝑦) ∶= 𝑝𝑇−𝑟(𝑥, 𝑦). Let us apply Lemma 6.1 for the

function

ℎ ∶ (𝑧, 𝑟, 𝑦, 𝜔) ↦ 𝑓(𝑧 + 𝑃𝑟−𝑠𝜅1(𝑦)) − 𝑓(𝑧 + 𝑃𝑟−𝑠𝜅2(𝑦)), 𝑧 ∈ ℝ, 𝑟 ∈ [𝑠, 𝑡], 𝑦 ∈ 𝐷, 𝜔 ∈ Ω.

It is easy to see that (6.2) is satisfied with Γ𝑋 = 1 and 𝜈 = 0. Let us verify that ℎ satisfies all
the assumptions of Lemma 6.1 with 𝑠 in place of 𝑆. The first assumption clearly holds. To
check the second assumption, we note that (A.5) implies

‖𝑓(⋅ + 𝑃𝑟−𝑠𝜅1(𝑦)) − 𝑓(⋅ + 𝑃𝑟−𝑠𝜅2(𝑦))‖𝛾−𝜆
𝑝

⩽ ‖𝑓‖𝛾
𝑝
|𝑃𝑟−𝑠𝜅1(𝑦) − 𝑃𝑟−𝑠𝜅2(𝑦)|𝜆.

Therefore,

‖ ‖ℎ(⋅, 𝑟, 𝑦)‖𝛾−𝜆
𝑝

‖𝐿𝑚
⩽ ‖𝑓‖𝛾

𝑝
‖𝑃𝑟−𝑠𝜅1(𝑦) − 𝑃𝑟−𝑠𝜅2(𝑦)‖𝜆

𝐿𝑚

⩽ ‖𝑓‖𝛾
𝑝
sup
𝑧∈𝐷

‖𝜅1(𝑧) − 𝜅2(𝑧)‖𝜆
𝐿𝑚

= ‖𝑓‖𝛾
𝑝
‖𝜅1 − 𝜅2‖𝜆

𝐁𝐿𝑚
,

where in the first inequality we used the fact that ‖|𝜉|𝜆‖𝐿𝑚
⩽ ‖𝜉‖𝜆

𝐿𝑚
for any random variable

𝜉 and 𝜆 ∈ (0, 1]; the second inequality follows from (B.8); the third inequality follows from
the definition of the norm ‖ ⋅ ‖𝐁𝐿𝑚

, see (3.5). Thus, inequality (6.1) is satisfied with Γℎ ∶=‖𝑓‖𝛾
𝑝
‖𝜅1 − 𝜅2‖𝜆

𝐁𝐿𝑚
. Thus all the conditions of Lemma 6.1 are met. Bound (6.9) follows now

from (6.3) and (3.2).
(iii) We fix 𝑥 ∈ 𝐷, choose 𝑛 = 𝑚, 𝑋𝑟(𝑦) ∶= 𝑝𝑇−𝑟(𝑥, 𝑦) and

ℎ(𝑧, 𝑟, 𝑦, 𝜔) ∶= 𝑓(𝑧 + 𝑃𝑟−𝑢𝜅1(𝑦)) − 𝑓(𝑧 + 𝑃𝑟−𝑢𝜅2(𝑦))

− 𝑓(𝑧 + 𝑃𝑟−𝑢𝜅3(𝑦)) + 𝑓(𝑧 + [𝑃𝑟−𝑢(𝜅3 + 𝜅2 − 𝜅1)](𝑦)),

where 𝑧 ∈ ℝ, 𝑟 ∈ [𝑢, 𝑡], 𝑦 ∈ 𝐷, 𝜔 ∈ Ω. Let us verify ℎ satisfies the assumptions of Lemma 6.1
with 𝑢 in place of 𝑆.
Again, it is easy to see that the first and the third conditions of Lemma 6.1 are satisfied

with Γ𝑋 = 1 and 𝜈 = 0. To check the second condition, we note that (A.6) yields

‖ℎ(⋅, 𝑟, 𝑦)‖𝛾−𝜆1−𝜆2
𝑝

⩽ ‖𝑓‖𝛾
𝑝
|𝑃𝑟−𝑢𝜅1(𝑦) − 𝑃𝑟−𝑢𝜅2(𝑦)|𝜆1 |𝑃𝑟−𝑢𝜅1(𝑦) − 𝑃𝑟−𝑢𝜅3(𝑦)|𝜆2 .

Using the fact that the functions 𝜅1 and 𝜅2 are 𝑠-measurable, we derive from the above
bound

𝖤‖ℎ(⋅, 𝑟, 𝑦)‖𝑚

𝛾−𝜆1−𝜆2
𝑝

= 𝖤𝖤𝑠‖ℎ(⋅, 𝑟, 𝑦)‖𝑚

𝛾−𝜆1−𝜆2
𝑝
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46 ATHREYA et al.

⩽ ‖𝑓‖𝑚

𝛾
𝑝

𝖤
[|𝑃𝑟−𝑢𝜅1(𝑦) − 𝑃𝑟−𝑢𝜅2(𝑦)|𝑚𝜆1 𝖤𝑠|𝑃𝑟−𝑢(𝜅1(𝑦)) − 𝑃𝑟−𝑢𝜅3(𝑦)|𝑚𝜆2

]
⩽ ‖𝑓‖𝑚

𝛾
𝑝

‖𝖤𝑠|𝑃𝑟−𝑢𝜅1(𝑦) − 𝑃𝑟−𝑢𝜅3(𝑦)|𝑚𝜆2‖𝐿∞
𝖤
[|𝑃𝑟−𝑢𝜅1(𝑦) − 𝑃𝑟−𝑢𝜅2(𝑦)|𝑚𝜆1

]
⩽ ‖𝑓‖𝑚

𝛾
𝑝

‖ ‖𝑃𝑟−𝑢[𝜅1 − 𝜅3](𝑦)‖𝐿𝑚|𝑠
‖𝑚𝜆2

𝐿∞
‖𝑃𝑟−𝑢[𝜅1 − 𝜅2](𝑦)‖𝑚𝜆1

𝐿𝑚

⩽ ‖𝑓‖𝑚

𝛾
𝑝

sup
𝑦∈𝐷

‖‖𝜅1(𝑦) − 𝜅3(𝑦)‖𝐿𝑚|𝑠
‖𝑚𝜆2

𝐿∞
‖𝜅1 − 𝜅2‖𝑚𝜆1

𝐁𝐿𝑚
.

Here in the penultimate inequality we used the fact that 𝖤𝑠[|𝜉|𝜆] ⩽ (𝖤𝑠|𝜉|)𝜆 for any random
variable 𝜉 and 𝜆 ∈ (0, 1], 𝑠 ⩾ 0; in the last inequality we applied bound (B.8).
Thus, inequality (6.1) is satisfied with

Γℎ ∶= ‖𝑓‖𝛾
𝑝
sup
𝑦∈𝐷

‖‖𝜅1(𝑦) − 𝜅3(𝑦)‖𝐿𝑚|𝑠
‖𝜆2

𝐿∞
‖𝜅1 − 𝜅2‖𝜆1

𝐁𝐿𝑚
.

Bound (6.11) follows now from Lemma 6.1 and part 6.2 of the Corollary.
□

Proof of Lemma 5.1. In Corollary 6.2 we choose 𝑋𝑟(𝑦) = 𝑃𝑇−𝑟(𝑥, 𝑦). In this case, condition (6.2) is
satisfied with Γ𝑋 = 1 and 𝜈 = 0. Hence the estimates (6.7) and (3.2) imply (5.1). □

To establish Lemma 5.2, we need the following result.

Lemma 6.3. Assume that all the conditions of Lemma 5.2 are satisfied. Let 𝑋 ∶ [0, 𝑇] × 𝐷 → ℝ

be a measurable function satisfying (6.2) for some Γ𝑋 > 0, 𝜈 ∈ [0,
1

2
). Then there exists a constant

𝐶 = 𝐶(𝛾, 𝑝, 𝜏,𝑚, 𝑛) > 0 such that for any 𝑆 ∈ [0, 𝑇]

‖‖‖‖‖
‖‖‖‖‖∫

𝑇

𝑆
∫
𝐷

𝑋𝑟(𝑦)𝑓(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) 𝑑𝑦𝑑𝑟
‖‖‖‖‖𝐿𝑚|𝑆

‖‖‖‖‖𝐿𝑛

⩽ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋(𝑇 − 𝑆)

1+
1

4
(𝛾−

1

𝑝
)−𝜈

+ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑇 − 𝑆)

3

4
+

1

4
(𝛾−

1

𝑝
)+𝜏−𝜈

. (6.12)

Proof. The proof of the lemma is based on the Stochastic Sewing lemma (Theorem 4.1),
Corollary 6.2 and dominated convergence arguments.
We can assumewithout loss of generality that [𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇]) < ∞. Indeed, otherwise the right-

hand side of (6.12) is infinite. Therefore, recalling (3.2), we have [𝜓]𝜏,0𝐿𝑚([𝑆,𝑇]) < ∞. Thus for any
𝑠 ∈ [𝑆, 𝑇] we have

𝜓𝑠 ∈ 𝐁𝐿𝑚. (6.13)

Step 1. Assume first that 𝑓 ∈ 1
𝑏
. Fix 0 ⩽ 𝑆 ⩽ 𝑇 and put for (𝑠, 𝑡) ∈ Δ𝑆,𝑇

𝐴𝑠,𝑡 ∶= ∫
𝑡

𝑠
∫
𝐷

𝑋𝑟(𝑦)𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) 𝑑𝑦𝑑𝑟.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 47

Note that the expression 𝑃𝑟−𝑠𝜓𝑠(𝑦) is well-defined thanks to Lemma B.4 and (6.13). Set now

𝑡 = ∫
𝑡

𝑆
∫
𝐷

𝑋𝑟(𝑦)𝑓(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦))𝑑𝑦𝑑𝑟.

It is easy to see that the integral in the left-hand side of inequality (6.12) is𝑇 −𝑆 . Let us verify
that all the conditions of Theorem 4.1 are satisfied.
Clearly, for any 𝑆 ⩽ 𝑠 < 𝑢 < 𝑡 ⩽ 𝑇 we get

𝛿𝐴𝑠,𝑢,𝑡 = ∫
𝑡

𝑢
∫
𝐷

𝑋𝑟(𝑦)[𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜓𝑢(𝑦))] 𝑑𝑦𝑑𝑟.

For fixed 𝑆 ⩽ 𝑠 < 𝑢 < 𝑟 ⩽ 𝑇, 𝑦 ∈ 𝐷 introduce a function ℎ𝑟,𝑦 ∶ ℝ × Ω → ℝ

ℎ𝑟,𝑦 ∶ (𝑧, 𝜔) ↦ 𝑓(𝑧 + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑓(𝑧 + 𝑃𝑟−𝑢𝜓𝑢(𝑦)).

Note that for fixed non-random parameters the random variable ℎ𝑟,𝑦(𝑧) is 𝑢-measurable. Hence,
applying (C.9) with 𝑢, 𝑟 in place of 𝑠, 𝑡, respectively, we deduce

|𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡| = |||||𝖤𝑠 ∫
𝑡

𝑢
∫
𝐷

𝑋𝑟(𝑦)𝖤
𝑢ℎ𝑟,𝑦(𝑉𝑟(𝑦)) 𝑑𝑦𝑑𝑟

|||||
⩽ 𝐶 ∫

𝑡

𝑢
∫
𝐷

|𝑋𝑟(𝑦)|(𝑟 − 𝑢)
−

1

4
+

𝛾

4
−

1

4𝑝 𝖤𝑠‖ℎ𝑟,𝑦‖𝛾−1
𝑝

𝑑𝑦𝑑𝑟

⩽ 𝐶‖𝑓‖𝛾
𝑝 ∫

𝑡

𝑢
∫
𝐷

|𝑋𝑟(𝑦)|(𝑟 − 𝑢)
−

1

4
+

𝛾

4
−

1

4𝑝 𝖤𝑠|𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑢𝜓𝑢(𝑦)|𝑑𝑦𝑑𝑟,
where the last inequality follows from (A.5) with 𝜆 = 1. Applying the integral Minkowski
inequality, we derive

‖𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑛
⩽ 𝐶‖𝑓‖𝛾

𝑝 ∫
𝑡

𝑢
∫
𝐷

|𝑋𝑟(𝑦)|(𝑟 − 𝑢)
−

1

4
+

𝛾

4
−

1

4𝑝 ‖‖𝖤𝑠|𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑢𝜓𝑢(𝑦)|‖‖𝐿𝑛
𝑑𝑦𝑑𝑟.

(6.14)
Using the fact that for any 𝑠 ⩾ 0 and random variable 𝜉 one has 𝖤𝑠|𝜉| ⩽ ‖𝜉‖𝐿𝑚|𝑠

we deduce for
any 𝑦 ∈ 𝐷,

‖𝖤𝑠|𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑢𝜓𝑢(𝑦)|‖𝐿𝑛
= ‖𝖤𝑠|[𝑃𝑟−𝑢(𝑃𝑢−𝑠𝜓𝑠 − 𝜓𝑢)](𝑦)|‖𝐿𝑛

⩽ ‖‖[𝑃𝑟−𝑢(𝑃𝑢−𝑠𝜓𝑠 − 𝜓𝑢)](𝑦)‖𝐿𝑚|𝑠
‖𝐿𝑛

⩽ sup
𝑧∈𝐷

‖‖𝑃𝑢−𝑠𝜓𝑠(𝑧) − 𝜓𝑢(𝑧)|𝑠‖𝐿𝑚
‖𝐿𝑛

⩽ [𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑢 − 𝑠)𝜏,
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48 ATHREYA et al.

where the penultimate inequality follows from (B.8), and in the last inequality we used the
definition of the seminorm [⋅]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇]) given in (3.3). Substituting this into (6.14), we obtain

‖𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑛
⩽ 𝐶‖𝑓‖𝛾

𝑝
[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑢 − 𝑠)𝜏 ∫

𝑡

𝑢
∫
𝐷

|𝑋𝑟(𝑦)|(𝑟 − 𝑢)
−

1

4
+

𝛾

4
−

1

4𝑝 𝑑𝑦𝑑𝑟

⩽ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑇 − 𝑢)−𝜈(𝑡 − 𝑠)

3

4
+

𝛾

4
−

1

4𝑝
+𝜏

,

where the last inequality follows from assumption (6.2) and inequality (B.7). Since, by assump-
tion, 𝛾∕4 − 1∕(4𝑝) + 𝜏 > 1∕4, we see that condition (4.2) of Theorem 4.1 holds with 𝛼1 = 0, 𝛽1 =

𝜈 < 1∕2, 𝜀1 = 𝛾∕4 − 1∕(4𝑝) + 𝜏 − 1∕4 > 0.
Now we move on to the verification of condition (4.3). Applying Corollary 6.2 to the function

𝑘 ∶= 𝜓𝑠, we deduce that for any (𝑠, 𝑡) ∈ Δ𝑆,𝑇

‖‖𝐴𝑠,𝑡‖𝐿𝑚|𝑠
‖𝐿𝑛

⩽ ‖‖𝐴𝑠,𝑡‖𝐿𝑚|𝑠
‖𝐿𝑝

⩽ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋(𝑇 − 𝑠)−𝜈(𝑡 − 𝑠)

1+
𝛾

4
−

1

4𝑝 . (6.15)

This induces that for any (𝑠, 𝑡) ∈ Δ𝑆,𝑇 and 𝑢 ∈ [𝑠, 𝑡] one has

‖‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑚|𝑠
‖𝐿𝑛

⩽ 𝐶‖𝑓‖𝛼
𝑝
Γ𝑋(𝑇 − 𝑢)−𝜈(𝑡 − 𝑠)

1+
𝛾

4
−

1

4𝑝 .

Since 𝛾 −
1

𝑝
> −2 by assumption, we see that condition (4.3) holds with 𝛼2 = 0, 𝛽2 = 𝜈 < 1∕2,

𝜀2 = 1∕2 + 𝛾∕4 − 1∕(4𝑝) > 0.
Finally, let us check condition (4.4). Let Π ∶= {𝑆 = 𝑡0, 𝑡1, … , 𝑡𝑘 = 𝑡} be an arbitrary partition of

[𝑆, 𝑡]. Denote by |Π| its mesh size. Note that contrary to the proof of Lemma 6.1, we cannot use
here the orthogonality because the sum

∑𝑘−1

𝑖=0
(𝑡𝑖+1

−𝑡𝑖 − 𝐴𝑡𝑖,𝑡𝑖+1
) is not a sum of martingale

differences. Indeed, in contrast to the proof of Lemma 6.1, 𝖤𝑡𝑖 (𝑡𝑖+1
−𝑡𝑖 ) ≠ 𝐴𝑡𝑖,𝑡𝑖+1

. Nevertheless,
we have‖‖‖‖‖‖𝑡 −

𝑘−1∑
𝑖=0

𝐴𝑡𝑖,𝑡𝑖+1

‖‖‖‖‖‖𝐿𝑚

⩽

𝑘−1∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

|𝑋𝑟(𝑦)|‖‖𝑓(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑓(𝑉𝑟(𝑦) + 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦))
‖‖𝐿𝑚

𝑑𝑦𝑑𝑟

⩽ 𝐶Γ𝑋(1 + 𝑇)‖𝑓‖1 [𝜓]𝜏,0𝐿𝑚([𝑆,𝑇])|Π|𝜏.
This verifies condition (4.4).
We see that for 𝑓 ∈ 1

𝑏
all the conditions of Theorem 4.1 are satisfied. Thus, by (4.5), taking into

account (4.1), we have

‖‖𝑇 −𝑆‖𝐿𝑚|𝑆
‖𝐿𝑛

⩽ ‖‖𝐴𝑆,𝑇‖𝐿𝑚|𝑆
‖𝐿𝑛

+ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋(𝑇 − 𝑆)

1+
1

4
(𝛾−

1

𝑝
)−𝜈

+ 𝐶‖𝑓‖𝛾
𝑝
Γ𝑋[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑇 − 𝑆)

3

4
+

𝛾

4
−

1

4𝑝
+𝜏−𝜈

,

which together with (6.15) implies (6.12).
Step 2. Let 𝑓 be a bounded continuous function. For each integer 𝑘 ⩾ 1, define 𝑓𝑘 = 𝐺1∕𝑘𝑓.

Then {𝑓𝑘} is a sequence of bounded continuous functions such that sup𝑘 ‖𝑓𝑘‖𝛾
𝑝
⩽ ‖𝑓‖𝛾

𝑝
(see
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 49

Lemma A.3) and lim𝑘 𝑓𝑘(𝑧) = 𝑓(𝑧) for every 𝑧 ∈ ℝ. We apply (6.12) for 𝑓𝑘 to get

sup
𝑥∈𝐷

‖‖‖‖‖
‖‖‖‖‖∫

𝑇

𝑆
∫
𝐷

𝑋𝑟(𝑦)𝑓
𝑘(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦))𝑑𝑦𝑑𝑟

‖‖‖‖‖𝐿𝑚|𝑆

‖‖‖‖‖𝐿𝑛

⩽ 𝐶‖𝑓𝑘‖𝛾
𝑝
Γ𝑋(𝑇 − 𝑆)

1+
1

4
(𝛾−

1

𝑝
)−𝜈

+ 𝐶‖𝑓𝑘‖𝛾
𝑝
Γ𝑋[𝜓]𝜏,0𝐿𝑚,𝑛([𝑆,𝑇])(𝑇 − 𝑆)

3

4
+

1

4
(𝛾−

1

𝑝
)+𝜏−𝜈

.

We now send 𝑘 → ∞, using the dominated convergence theorem and the properties of the
sequence {𝑓𝑘} described previously to obtain (6.12) for the function 𝑓. □

Now we can finally give the proof of Lemma 5.2.

Proof of Lemma 5.2. The result follows immediately from Lemma 6.3 and (3.2) by choosing
appropriate kernel 𝑋.
In part (i), we choose𝑋𝑟(𝑦) = 𝑝𝑇−𝑟(𝑥, 𝑦)which satisfies condition (6.2) with 𝜈 = 0 and Γ𝑋 = 1.
In part (ii), we choose 𝑋𝑟(𝑦) = 𝑝𝑇−𝑟(𝑥1, 𝑦) − 𝑝𝑇−𝑟(𝑥2, 𝑦), 𝑛 = 𝑚. In this case, thanks to (C.2),

condition (6.2) holds with 𝜈 = 𝛿∕2 and Γ𝑋 = 𝐶|𝑥1 − 𝑥2|𝛿.
In part (iii), we choose 𝑋𝑟(𝑦) = 𝑝𝑇+𝑇̄−𝑟(𝑥, 𝑦) − 𝑝𝑇−𝑟(𝑥, 𝑦), 𝑛 = 𝑚. In this case, thanks to (C.4),

condition (6.2) holds with 𝜈 = 𝛿∕2 and Γ𝑋 = 𝐶𝑇̄𝛿∕2. □

6.2 Proof of Lemmas 5.5, 5.6 and 5.7

Now let us move to the proof of the key lemmas needed for the uniqueness proof.

Proof of Lemma 5.5. Fix𝑥 ∈ 𝐷, (𝑠, 𝑡) ∈ Δ0,𝑇0
,𝛽′ ∈ (−2, 𝛽). For any 𝑘, 𝑙 ∈ ℤ+we applyCorollary 6.2

with 𝑓 = 𝑏𝑘 − 𝑏𝑙, 𝛾 = 𝛽′, 𝑝 = 𝑞, 𝑇 = 𝑡, 𝑋𝑟(𝑦) = 𝑝𝑡−𝑟(𝑥, 𝑦), Γ𝑋 = 1, 𝜈 = 0, 𝜅 = 𝜓𝑠. Note that 𝜓𝑠 ∈

𝐁𝐿𝑚 by (5.28). Recalling (3.2), we get that there exists a constant 𝐶 > 0 independent of 𝑘, 𝑙 such
that

‖𝐻𝑙,𝜓
𝑠,𝑡 (𝑥) − 𝐻

𝑘,𝜓
𝑠,𝑡 (𝑥)‖𝐿𝑚

⩽ 𝐶(1 + 𝑇0)‖𝑏𝑙 − 𝑏𝑘‖𝛽′

𝑞
.

Since the sequence (𝑏𝑛) converges in 𝛽′

𝑞 , we see that the right-hand side of the above inequality
tends to 0 as 𝑛, 𝑘 → ∞. Hence the sequence of random variables (𝐻𝑘,𝜓

𝑠,𝑡 (𝑥))𝑘∈ℤ+
is Cauchy in 𝐿𝑚.

Thus this sequence converges in 𝐿𝑚 (and hence in probability). We denote its limit by𝐻
𝜓
𝑠,𝑡(𝑥).

By exactly the same argument, we see that the sequence (𝐻𝑘,𝜑
𝑠,𝑡 (𝑥))𝑘∈ℤ+

converges in probability
to a limit which we denote by𝐻

𝜑
𝑠,𝑡(𝑥). Now, applying the Fatou’s lemmawe derive for each 𝑥 ∈ 𝐷,

(𝑠, 𝑡) ∈ Δ0,𝑇0
, 𝜆 ∈ [0, 1]

‖𝐻𝜓
𝑠,𝑡(𝑥) − 𝐻

𝜑
𝑠,𝑡(𝑥)‖𝐿𝑚

⩽ lim inf
𝑘→∞

‖𝐻𝑘,𝜓
𝑠,𝑡 (𝑥) − 𝐻

𝑘,𝜑
𝑠,𝑡 (𝑥)‖𝐿𝑚

⩽ 𝐶 sup
𝑘∈ℤ+

‖𝑏𝑘‖𝛽
𝑞
‖𝜓𝑠 − 𝜑𝑠‖𝜆

𝐁𝐿𝑚
(𝑡 − 𝑠)

1−
𝜆

4
+

𝛽

4
−

1

4𝑞 ,
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50 ATHREYA et al.

where the second inequality follows from Corollary 6.2 with 𝑓 = 𝑏𝑘, 𝛾 = 𝛽, 𝑝 = 𝑞, 𝜅1 = 𝜑𝑠,
𝜅2 = 𝜓𝑠. Taking into account that by assumption sup𝑘∈ℤ+

‖𝑏𝑘‖𝛽
𝑞
< ∞ and 𝛽 − 1∕𝑞 ⩾ −1, we

obtain

‖𝐻𝜓
𝑠,𝑡(𝑥) − 𝐻

𝜑
𝑠,𝑡(𝑥)‖𝐿𝑚

⩽ 𝐶(1 + 𝑇0)‖𝜓𝑠 − 𝜑𝑠‖𝜆
𝐁𝐿𝑚

(𝑡 − 𝑠)
3

4
−

𝜆

4 .

Now by taking 𝜆 = 1 in this bound we get (5.30), and by taking 𝜆 = 0 we get (5.31). □

Proof of Lemma 5.6. Since𝑢 belongs to(3∕4) and sup𝑛 ‖𝑏𝑛‖𝛽
𝑞
< ∞, we obtain fromLemma5.2(i)

that

sup
𝑥∈𝐷

‖𝐾𝑏𝑛;𝑢
𝑠 (𝑥)‖𝐿𝑚

⩽ 𝐶(1 + [𝜓]3∕4,0𝐿𝑚([0,𝑇0])
)(1 + 𝑇0).

Therefore for any fixed 𝑥 ∈ 𝐷 the sequence (𝐾𝑏𝑛;𝑢
𝑠 (𝑥))𝑛∈ℤ+

is uniformly integrable. Recalling that
𝐾

𝑏𝑛;𝑢
𝑠 (𝑥) converges to 𝐾𝑢

𝑠 (𝑥) in probability, we get

‖𝐾𝑏𝑛;𝑢
𝑠 (𝑥) − 𝐾𝑢

𝑠 (𝑥)‖𝐿1
→ 0 as 𝑛 → ∞.

Thus,

‖𝑃𝑡−𝑠𝐾
𝑏𝑛;𝑢
𝑠 (𝑥) − 𝑃𝑡−𝑠𝐾

𝑢
𝑠 (𝑥)‖𝐿1

=
‖‖‖‖‖∫𝐷

𝑝𝑡−𝑠(𝑥, 𝑦)(𝐾
𝑏𝑛;𝑢
𝑠 (𝑦) − 𝐾𝑢

𝑠 (𝑦)) 𝑑𝑦
‖‖‖‖‖𝐿1

⩽ ∫
𝐷

𝑝𝑡−𝑠(𝑥, 𝑦)‖𝐾𝑏𝑛;𝑢
𝑠 (𝑦) − 𝐾𝑢

𝑠 (𝑦)‖𝐿1
𝑑𝑦 → 0,

by the dominated convergence theorem (here we once again made use of (6.2)). Thus,
𝑃𝑡−𝑠𝐾

𝑏𝑛;𝑢
𝑠 (𝑥) → 𝑃𝑡−𝑠𝐾

𝑢
𝑠 (𝑥) in probability as 𝑛 → ∞. The convergence of 𝑃𝑡−𝑠𝐾

𝑏𝑛;𝑣
𝑠 (𝑥) to 𝑃𝑡−𝑠𝐾

𝑣
𝑠 (𝑥)

in probability is obtained by exactly the same argument. □

Proof of Lemma 5.7. The proof is based on the stochastic sewing lemma with critical exponent,
Theorem 4.5. Let us verify that all the conditions of this theorem are satisfied. A key tool for
the verification will be Corollary 6.2. Fix 0 ⩽ 𝑆 ⩽ 𝑇, 𝑥 ∈ 𝐷, 𝜏 > 1∕2. Recall that we are given a
sequence of smooth functions (𝑏𝑘)𝑘∈ℤ+

such that 𝑏𝑘 → 𝑏 in 𝛽−
𝑞 and ‖𝑏𝑘‖𝛽

𝑞
⩽ ‖𝑏‖𝛽

𝑞
for any

𝑘 ∈ ℤ+.
We put for (𝑠, 𝑡) ∈ Δ𝑆,𝑇 , 𝑥 ∈ 𝐷, 𝑘 ∈ ℤ+

𝐴𝑘
𝑠,𝑡 ∶= ∫

𝑡

𝑠
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)
[
𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜑𝑠(𝑦))

]
𝑑𝑦𝑑𝑟.

We note that 𝑃𝑟−𝑠𝜓𝑠(𝑦) and 𝑃𝑟−𝑠𝜑𝑠(𝑦) are well-defined thanks to Lemma B.4 and (5.28).
Put for (𝑡, 𝑥) ∈ [𝑆, 𝑇] × 𝐷

𝑘
𝑡 = ∫

𝑡

𝑆
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)
[
𝑏𝑘(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏𝑘(𝑉𝑟(𝑦) + 𝜑𝑟(𝑦))

]
𝑑𝑦𝑑𝑟.

From now on we fix 𝑘 ∈ ℤ+, and will drop the superindex 𝑘 in 𝐴𝑘 and𝑘.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 51

Let us verify that all the conditions of Theorem 4.5 are satisfied. We get for any 𝑆 ⩽ 𝑠 < 𝑢 < 𝑡 ⩽

𝑇

𝛿𝐴𝑠,𝑢,𝑡 = ∫
𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)
[
𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑠𝜑𝑠(𝑦))

− 𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜓𝑢(𝑦)) + 𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑢𝜑𝑢(𝑦))
]
𝑑𝑦𝑑𝑟.

We begin by verifying (4.2). For fixed 𝑆 ⩽ 𝑠 < 𝑢 < 𝑟 ⩽ 𝑇, 𝑦 ∈ 𝐷 introduce functions ℎ𝑟,𝑦, 𝑙𝑟,𝑦 ∶

ℝ × Ω → ℝ

ℎ𝑟,𝑦 ∶ (𝑧, 𝜔) ↦ 𝑏𝑘(𝑧 + 𝑃𝑟−𝑠𝜓𝑠(𝑦)) − 𝑏𝑘(𝑧 + 𝑃𝑟−𝑠𝜑𝑠(𝑦))

− 𝑏𝑘(𝑧 + 𝑃𝑟−𝑢𝜓𝑢(𝑦)) + 𝑏𝑘(𝑧 + 𝑃𝑟−𝑢𝜓𝑢(𝑦) + 𝑃𝑟−𝑠𝜑𝑠(𝑦) − 𝑃𝑟−𝑠𝜓𝑠(𝑦));

𝑙𝑟,𝑦 ∶ (𝑧, 𝜔) ↦ 𝑏𝑘(𝑧 + 𝑃𝑟−𝑢𝜑𝑢(𝑦)) − 𝑏𝑘(𝑧 + 𝑃𝑟−𝑢𝜓𝑢(𝑦) + 𝑃𝑟−𝑠𝜑𝑠(𝑦) − 𝑃𝑟−𝑠𝜓𝑠(𝑦)).

Clearly, for fixed non-random parameters the random variables ℎ𝑟,𝑦(𝑧), 𝑙𝑟,𝑦(𝑧) are 𝑢-measurable.
Hence, by (C.9) with 𝑢, 𝑟 in place of 𝑠, 𝑡, respectively, we deduce for any 𝜆 ∈ [0, 1]

|𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡| = |||||𝖤𝑠 ∫
𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)𝖤
𝑢[ℎ𝑟,𝑦(𝑉𝑟(𝑦)) + 𝑙𝑟,𝑦(𝑉𝑟(𝑦))] 𝑑𝑦𝑑𝑟

|||||
⩽ 𝐶 ∫

𝑡

𝑢
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)

[
(𝑟−𝑢)

𝛽−1−𝜆

4
−

1

4𝑞 𝖤𝑠‖ℎ𝑟,𝑦‖𝛽−1−𝜆
𝑞

+ (𝑟−𝑢)
𝛽−1

4
−

1

4𝑞 𝖤𝑠‖𝑙𝑟,𝑦‖𝛽−1
𝑞

]
𝑑𝑦𝑑𝑟.

(6.16)

We see that by (A.6) and (B.8)

𝖤𝑠‖ℎ𝑟,𝑦‖𝛽−1−𝜆
𝑞

⩽ ‖𝑏𝑘‖𝛽
𝑞
|𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑠𝜑𝑠(𝑦)|𝜆 𝖤𝑠|𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑢𝜓𝑢(𝑦)|

⩽ ‖𝑏𝑘‖𝛽
𝑞
|𝑃𝑟−𝑠𝑧𝑠(𝑦)|𝜆 ‖𝖤𝑠|𝑃𝑟−𝑠𝜓𝑠(𝑦) − 𝑃𝑟−𝑢𝜓𝑢(𝑦)|‖𝐿∞

⩽ ‖𝑏𝑘‖𝛽
𝑞
|𝑃𝑟−𝑠𝑧𝑠(𝑦)|𝜆 sup

𝑧∈𝐷
‖‖𝑃𝑢−𝑠𝜓𝑠(𝑧) − 𝜓𝑢(𝑧)‖𝐿1|𝑠

‖𝐿∞

⩽ ‖𝑏𝑘‖𝛽
𝑞
[𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

|𝑃𝑟−𝑠𝑧𝑠(𝑦)|𝜆(𝑡 − 𝑠)
3

4 .

This, (B.8) and the fact that ‖𝑏𝑘‖𝛽
𝑞
⩽ ‖𝑏‖𝛽

𝑞
imply

‖𝖤𝑠‖ℎ𝑟,𝑦‖𝛽−1−𝜆
𝑞

‖𝐿𝑚
⩽ 𝐶‖𝑏‖𝛽

𝑞
[𝜓]3∕4,0𝐿𝑚,∞([0,1])‖𝑧‖𝜆0,0𝐿𝑚([𝑆,𝑇])

(𝑡 − 𝑠)
3

4 . (6.17)

In a similar manner, by (A.5) and (B.8) we see that

‖𝖤𝑠‖𝑙𝑟,𝑦‖𝛽−1
𝑞

‖𝐿𝑚
⩽ ‖𝑏𝑘‖𝛽

𝑞
‖𝑃𝑟−𝑢𝑧𝑢(𝑦) − 𝑃𝑟−𝑠𝑧𝑠(𝑦)‖𝐿𝑚

⩽ ‖𝑏‖𝛽
𝑞
sup
𝑦∈𝐷

‖𝑧𝑢(𝑦) − 𝑃𝑢−𝑠𝑧𝑠(𝑦)‖𝐿𝑚
.

(6.18)
Thus,
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52 ATHREYA et al.

‖𝖤𝑠‖𝑙𝑟,𝑦‖𝛽−1
𝑞

‖𝐿𝑚
⩽ ‖𝑏‖𝛽

𝑞
(sup
𝑦∈𝐷

‖𝜑𝑢(𝑦) − 𝑃𝑢−𝑠𝜑𝑠(𝑦)‖𝐿𝑚
+ sup

𝑦∈𝐷
‖𝜓𝑢(𝑦) − 𝑃𝑢−𝑠𝜓𝑠(𝑦)‖𝐿𝑚

)

⩽ ‖𝑏‖𝛽
𝑞
([𝜓]3∕4,0𝐿𝑚([𝑆,𝑇]) + [𝜑]3∕4,0𝐿𝑚([𝑆,𝑇]))(𝑡 − 𝑠)

3

4

⩽ ‖𝑏‖𝛽
𝑞
([𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

+ [𝜑]3∕4,0𝐿𝑚([𝑆,𝑇]))(𝑡 − 𝑠)
3

4 .

Substituting this together with (6.17) into (6.16) and taking 𝜆 = 0, we obtain

‖𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑚
⩽ 𝐶(𝑇0, ‖𝑏‖𝛽

𝑞
, [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

, [𝜑]3∕4,0𝐿𝑚,∞([0,𝑇0])
)(𝑡 − 𝑠)

5

4 ,

where we used the fact that, by assumptions, 𝛽 ⩾ −1 + 1∕𝑞. Thus, condition (4.2) holds.
Now let us verify (4.3). Fix 𝜀 ∈ (0, 1 + 𝛽). Let us apply Corollary 6.2(iii) with 𝑓 = 𝑏𝑘, 𝛾 = 𝛽,

𝑝 = 𝑞, 𝜆1 = 𝜆 = 1 and 𝜆2 = 𝛽 + 1 − 𝜀 and

𝜅1 ∶= 𝑃𝑢−𝑠𝜓𝑠, 𝜅2 ∶= 𝑃𝑢−𝑠𝜑𝑠, 𝜅3 ∶= 𝜓𝑢, 𝜅4 ∶= 𝜑𝑢.

One can see that the functions 𝜅1 and 𝜅2 are ℬ(ℝ) × 𝑠 measurable, and the functions 𝜅3 and
𝜅4 areℬ(ℝ) × 𝑢 measurable, exactly as required by the conditions of Corollary 6.2(iii). Further,
we see that 𝜅𝑖 ∈ 𝐁𝐿𝑚, 𝑖 = 1, .., 4, thanks to (5.28) and (B.8). Finally, conditions (6.8) and (6.10) are
satisfied thanks to our choice of 𝜆, 𝜆1, 𝜆2. Therefore all the conditions of Corollary 6.2(iii) are met.
Recall the notation 𝑧 ∶= 𝜓 − 𝜑 and note that by (B.8)

‖𝜅1 − 𝜅2‖𝐁𝐿𝑚
⩽ ‖𝑧𝑠‖𝐁𝐿𝑚

⩽ ‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]),

sup
𝑦∈𝐷

‖‖𝜅1(𝑦) − 𝜅3(𝑦)‖𝐿𝑚|𝑠
‖𝐿∞

⩽ [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])
(𝑡 − 𝑢)3∕4

and

‖𝜅1 − 𝜅2 − 𝜅3 + 𝜅4‖𝐁𝐿𝑚
⩽ ‖𝑧𝑢 − 𝑃𝑢−𝑠𝑧𝑠‖𝐁𝐿𝑚

⩽ ‖𝑅𝑠,𝑢‖𝐁𝐿𝑚
+ ‖𝐻𝜓

𝑠,𝑢 − 𝐻
𝜑
𝑠,𝑢‖𝐁𝐿𝑚

⩽ ‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑢)𝜏 + 𝐶‖𝑏‖𝛾
𝑝
‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑢)

1

2 ,

where the last inequality follows from (5.30) and the definition of the norm ‖ ⋅ ‖𝜏,0𝐿𝑚([𝑆,𝑇]) given
in (5.27). Substituting all this into (6.11) and using the fact that ‖𝑏𝑘‖𝛽

𝑞
⩽ ‖𝑏‖𝛽

𝑞
, one gets

‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑚
⩽ 𝐶‖𝑏𝑘‖𝛽

𝑞
‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])[𝜓]

𝛾+1−𝜀

3∕4,0𝐿𝑚,∞([0,𝑇0])
(𝑡 − 𝑢)

5

4
+

3𝛽

4
−

1

4𝑞
−

𝜀

2

+ 𝐶‖𝑏𝑘‖𝛽
𝑞
‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑢)

1

2
+𝜏

+ 𝐶‖𝑏𝑘‖𝛽
𝑞
‖𝑏‖𝛽

𝑞
‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑢),

and hence

‖𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑚
⩽ 𝐶

(
𝑇0, ‖𝑏‖𝛽

𝑞
, [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

)(‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]) + ‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇])

)
(𝑡 − 𝑠)

1

2
+𝛿

,

(6.19)
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 53

where we have also used that 𝛽 − 1∕𝑞 ⩾ −1 and we put 𝛿 ∶= (
3

4
+

3𝛽

4
−

1

4𝑞
−

𝜀

2
) ∧

1

2
. Since

𝛽 > −1 + 1∕(3𝑞), we see that there exists 𝜀 = 𝜀(𝛽, 𝑞) > 0 small enough such that 𝛿 > 0. From now
on till the end of the proof we fix such 𝜀. Then (6.19) implies that condition (4.3) is satisfied.
Now let us check (4.4). We have

‖‖‖‖‖𝑡 −

𝑘−1∑
𝑖=0

𝐴𝑡𝑖,𝑡𝑖+1

‖‖‖‖‖𝐿1

⩽

𝑘−1∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)‖‖𝑏𝑘(𝑉𝑟(𝑦) + 𝜓𝑟(𝑦)) − 𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦))
‖‖𝐿1

𝑑𝑦𝑑𝑟

+

𝑘−1∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)‖‖𝑏𝑘(𝑉𝑟(𝑦) + 𝜑𝑟(𝑦)) − 𝑏𝑘(𝑉𝑟(𝑦) + 𝑃𝑟−𝑡𝑖𝜑𝑡𝑖 (𝑦))
‖‖𝐿1

𝑑𝑦𝑑𝑟.

The right-hand side can be further estimated by

‖𝑏𝑘‖1

𝑘−1∑
𝑖=0

∫
𝑡𝑖+1

𝑡𝑖
∫
𝐷

𝑝𝑇−𝑟(𝑥, 𝑦)(‖𝜓𝑟(𝑦) − 𝑃𝑟−𝑡𝑖𝜓𝑡𝑖 (𝑦)‖𝐿1
+ ‖𝜑𝑟(𝑦) − 𝑃𝑟−𝑡𝑖𝜑𝑡𝑖 (𝑦)‖𝐿1

) 𝑑𝑦𝑑𝑟

⩽ 𝐶𝑇0‖𝑏𝑘‖1 ([𝜓]3∕4,0𝐿𝑚([0,𝑇0])
+ [𝜑]3∕4,0𝐿𝑚([0,𝑇0])

)|Π|3∕4.
This implies that |𝑡 −

∑𝑘−1

𝑖=0 𝐴𝑡𝑖,𝑡𝑖+1
| converges to 0 in 𝐿1 as 𝑘 → ∞. Hence (4.4) holds.

Finally, let us check (4.11). Substituting (6.17) and (6.18) into (6.16) and taking 𝜆 = 1, we obtain

‖𝖤𝑠𝛿𝐴𝑠,𝑢,𝑡‖𝐿𝑚
⩽ 𝐶(1 + 𝑇0)‖𝑏‖𝛽

𝑞
[𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑠)

+ 𝐶(1 + 𝑇0)‖𝑏‖𝛽
𝑞
(𝑡 − 𝑠)

1

2 (sup
𝑦∈𝐷

‖𝑅𝑠,𝑢(𝑦)‖ + sup
𝑦∈𝐷

‖𝐻𝜓
𝑠,𝑢(𝑦) − 𝐻

𝜑
𝑠,𝑢(𝑦)‖)

⩽ 𝐶(1 + 𝑇0)‖𝑏‖𝛽
𝑞
(1 + [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

)‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑠)

+ 𝐶(1 + 𝑇0)‖𝑏‖𝛽
𝑞
‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇])(𝑡 − 𝑠)

1

2
+𝜏

,

where the last inequality follows from (5.30). Recalling that, by assumptions, we have 𝜏 > 1∕2, we
see that (4.11) holds.
Thus all the conditions of Theorem 4.5 are met. We deduce from (4.12)

‖𝑘
𝑇 −𝑘

𝑆
− 𝐴𝑘

𝑆,𝑇
‖𝐿𝑚

⩽ 𝐶‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])(1 + | log ‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])|)(𝑇 − 𝑆)

+ 𝐶(‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]) + ‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇]))(𝑇 − 𝑆)
1

2
+𝛿

+ 𝐶‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇])(𝑇 − 𝑆)
1

2
+𝜏

⩽ 𝐶‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])| log ‖𝑧‖0,0𝐿𝑚([𝑆,𝑇])|(𝑇 − 𝑆)

+ 𝐶(‖𝑧‖0,0𝐿𝑚([𝑆,𝑇]) + ‖𝑅‖𝜏,0𝐿𝑚([𝑆,𝑇]))(𝑇 − 𝑆)
1

2
+𝛿

, (6.20)

where 𝐶 = 𝐶(𝑇0, ‖𝑏‖𝛽
𝑞
, [𝜓]3∕4,0𝐿𝑚,∞([0,𝑇0])

, 𝜏, 𝛿) is independent of 𝑥, 𝑆, 𝑇.
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54 ATHREYA et al.

Now let us pass to the limit in (6.20) as 𝑘 → ∞. Recall the notation 𝐾ℎ;𝜎 introduced in (5.12).
Then it is easy to see that

𝑘
𝑇 −𝑘

𝑆
= 𝐾

𝑏𝑘;𝑢
𝑇 (𝑥) − 𝐾

𝑏𝑘;𝑣
𝑇 (𝑥) − 𝑃𝑇−𝑆

[
𝐾

𝑏𝑘;𝑢
𝑆

− 𝐾
𝑏𝑘;𝑣
𝑆

]
(𝑥).

Applying Lemma 5.6 and Lemma 5.5 we can conclude that

lim
𝑘→∞

𝑘
𝑇 −𝑘

𝑆
− 𝐴𝑘

𝑆,𝑇
= 𝑧𝑇(𝑥) − 𝑃𝑇−𝑆𝑧𝑆(𝑥) −

(
𝐻

𝜓
𝑆,𝑇

(𝑥) − 𝐻
𝜑
𝑆,𝑇

(𝑥)
)

= 𝑅𝑆,𝑇(𝑥),

in probability. Inequality (5.34) follows now from (6.20) by Fatou’s lemma. Inequality (5.33)
follows immediately from (5.34) and (5.30). □
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APPENDIX A: USEFUL RESULTS ON BESOV SPACES
We give a brief summary on nonhomogeneous Besov space which is sufficient for our purpose.
For a more detailed account on the topic, we refer to [2, Chapter 2]. Let 𝜍,𝜛 be the radial func-
tions which are given by [2, Proposition 2.10]. We note that 𝜍 is supported on a ball while 𝜛 is
supported on an annulus. Let ℎ−1 and ℎ respectively be the inverse Fourier transform of 𝜍 and𝜛.
The nonhomogeneous dyadic blocks Δ𝑗 are defined by

Δ−1𝑓 = ∫
ℝ

ℎ−1(𝑦)𝑓(⋅ − 𝑦)𝑑𝑦 and Δ𝑗𝑓 = ∫
ℝ

ℎ𝑗(𝑦)𝑓(⋅ − 𝑦)𝑑𝑦 for 𝑗 ⩾ 0,

where ℎ𝑗(𝑦) = 2𝑗ℎ(2𝑗𝑦), 𝑗 ⩾ 0.
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Definition A.1. Let 𝛾 ∈ ℝ and 1 ⩽ 𝑝 ⩽ ∞. The nonhomogeneous Besov space 𝛾
𝑝 = 𝛾

𝑝,∞(ℝ)

consists of all tempered distributions 𝑓 such that

‖𝑓‖𝛾
𝑝
∶= sup

𝑗⩾−1
2𝑗𝛾‖Δ𝑗𝑓‖𝐿𝑝(ℝ) < ∞.

For a distribution 𝑓 in 𝛾
𝑝, we note that Δ𝑗𝑓 is a smooth function for each 𝑗 ⩾ −1. In addition,

the Fourier transform of Δ−1𝑓 is supported on a ball  while for 𝑗 ⩾ 1 the Fourier transform of
Δ𝑗𝑓 is supported on the annulus 2𝑗 ⊂ 2𝑗 for some annulus .
To obtain various properties of Besov spaces, we will make use of the following Bernstein’s

inequalities. Let 𝑓 be a function in 𝐿𝑝(ℝ). For every integer 𝑘 ⩾ 0, every 𝜆 > 0 and 𝑡 > 0 we have

Supp𝐹𝑓 ⊂ 𝜆 ⇒ ‖∇𝑘𝑓‖𝐿𝑝(ℝ) ⩽ 𝐶𝑘+1𝜆𝑘‖𝑓‖𝐿𝑝(ℝ), (A.1)

Supp𝐹𝑓 ⊂ 𝜆 ⇒ ‖𝐺𝑡𝑓‖𝐿𝑝(ℝ) ⩽ 𝐶𝑒−𝑐𝑡𝜆2‖𝑓‖𝐿𝑝(ℝ), (A.2)

Supp𝐹𝑓 ⊂ 𝜆 ⇒ ‖𝐺𝑡𝑓 − 𝑓‖𝐿𝑝(ℝ) ⩽ 𝐶(𝑡𝜆2 ∧ 1)‖𝑓‖𝐿𝑝(ℝ), (A.3)

where 𝐹𝑓 denotes the Fourier transform of 𝑓. We refer to [2, Lemmas 2.1 and 2.4] for proofs of
(A.1) and (A.2). For a proof of (A.3), we refer to [41, Lemma 4].

LemmaA.2. Let 𝑓 be a tempered distribution onℝ, 𝛾 ∈ ℝ, 𝑝 ∈ [1,∞]. Then for any 𝑎, 𝑎1, 𝑎2, 𝑎3 ∈

ℝ, 𝛼, 𝛼1, 𝛼2 ∈ [0, 1] one has

‖𝑓(𝑎 + ⋅)‖𝛾
𝑝
= ‖𝑓‖𝛾

𝑝
, (A.4)

‖𝑓(𝑎1 + ⋅) − 𝑓(𝑎2 + ⋅)‖𝛾
𝑝
⩽ 𝐶|𝑎1 − 𝑎2|𝛼‖𝑓‖𝛾+𝛼

𝑝
, (A.5)

and

‖𝑓(𝑎1 + ⋅) −𝑓(𝑎2 + ⋅) −𝑓(𝑎3 + ⋅) +𝑓(𝑎3 + 𝑎2 − 𝑎1 + ⋅)‖𝛾
𝑝
⩽ 𝐶|𝑎1 − 𝑎2|𝛼1 |𝑎1−𝑎3|𝛼2‖𝑓‖𝛾+𝛼1+𝛼2

𝑝
.

(A.6)

Proof. Since ‖Δ𝑗𝑓(𝑎 + ⋅)‖𝐿𝑝(ℝ) = ‖Δ𝑗𝑓(⋅)‖𝐿𝑝(ℝ), (A.4) follows from Definition A.1.
For each 𝑗 ⩾ −1, applying mean value theorem and (A.1), we have

‖Δ𝑗(𝑓(𝑎1 + ⋅) − 𝑓(𝑎2 + ⋅))‖𝐿𝑝(ℝ) ⩽ 𝐶|𝑎1 − 𝑎2|2𝑗‖Δ𝑗𝑓‖𝐿𝑝(ℝ).

By triangle inequality, it is evident that

‖Δ𝑗(𝑓(𝑎1 + ⋅) − 𝑓(𝑎2 + ⋅))‖𝐿𝑝(ℝ) ⩽ 2‖Δ𝑗𝑓‖𝐿𝑝(ℝ).

Hence, by interpolation, we obtain

‖Δ𝑗(𝑓(𝑎1 + ⋅) − 𝑓(𝑎2 + ⋅))‖𝐿𝑝(ℝ) ⩽ 𝐶|𝑎1 − 𝑎2|𝛼2𝑗𝛼‖Δ𝑗𝑓‖𝐿𝑝(ℝ). (A.7)

In view of Definition A.1, we multiply both sides with 2𝑗𝛾 and take supremum over 𝑗 ⩾ −1 to
obtain (A.5).
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Similarly, using mean value theorem and (A.1), we have

‖Δ𝑗(𝑓(𝑎1+⋅) −𝑓(𝑎2+⋅) −𝑓(𝑎3 + ⋅) +𝑓(𝑎3 + 𝑎2−𝑎1 + ⋅))‖𝐿𝑝(ℝ) ⩽𝐶|𝑎1−𝑎2||𝑎1−𝑎3|22𝑗‖Δ𝑗𝑓‖𝐿𝑝(ℝ)

and

‖Δ𝑗(𝑓(𝑎1 + ⋅) − 𝑓(𝑎2 + ⋅) − 𝑓(𝑎3 + ⋅) + 𝑓(𝑎3 + 𝑎2 − 𝑎1 + ⋅))‖𝐿𝑝(ℝ)

⩽ 𝐶 min(1, |𝑎1 − 𝑎2|2𝑗, |𝑎1 − 𝑎3|2𝑗)‖Δ𝑗𝑓‖𝐿𝑝(ℝ).

Interpolating between these inequalities, we obtain

‖Δ𝑗(𝑓(𝑎1 + ⋅) − 𝑓(𝑎2 + ⋅) − 𝑓(𝑎3 + ⋅) + 𝑓(𝑎3 + 𝑎2 − 𝑎1 + ⋅))‖𝐿𝑝(ℝ)

⩽ 𝐶|𝑎1 − 𝑎2|𝛼1 |𝑎1 − 𝑎3|𝛼22𝑗(𝛼1+𝛼2)‖Δ𝑗𝑓‖𝐿𝑝(ℝ).

We multiply both sides with 2𝑗𝛾 and take supremum over 𝑗 ⩾ −1 to obtain (A.6). □

Lemma A.3. For every 𝑓 in 𝛾
𝑝, 𝛾 ∈ ℝ, 𝑝 ∈ [1,∞], we have

(i) provided that 𝛾 < 0, ‖𝐺𝑡𝑓‖𝐿𝑝(ℝ) ⩽ 𝐶𝛾‖𝑓‖𝛾
𝑝
𝑡
𝛾

2 for all 𝑡 > 0;

(ii) lim𝑡→0 𝐺𝑡𝑓 = 𝑓 in 𝛾̄
𝑝 for every 𝛾̄ < 𝛾;

(iii) sup𝑡>0 ‖𝐺𝑡𝑓‖𝛾
𝑝
⩽ ‖𝑓‖𝛾

𝑝
and

(iv) provided that 𝛾 −
1

𝑝
< 0, ‖𝐺𝑡𝑓‖1 ⩽ 𝐶‖𝑓‖𝛾

𝑝
𝑡
1

2
(𝛾−

1

𝑝
−1)

for all 𝑡 > 0.

Proof. (i) Fix 𝛾 < 0. We have by (A.2) that there exists some constant 𝑐 > 0 such that for every
𝑗 ⩾ 0

‖𝐺𝑡(Δ𝑗𝑓)‖𝐿𝑝(ℝ) ⩽ 𝐶𝑒−𝑐𝑡22𝑗‖Δ𝑗𝑓‖𝐿𝑝(ℝ) ⩽ 𝐶𝑒−𝑐𝑡22𝑗 2−𝑗𝛾‖𝑓‖𝛾
𝑝
.

For 𝑗 = −1, we use the trivial bounds

‖𝐺𝑡(Δ−1𝑓)‖𝐿𝑝(ℝ) ⩽ ‖Δ−1𝑓‖𝐿𝑝(ℝ) ⩽ 𝐶‖𝑓‖𝛾
𝑝
.

Since 𝐺𝑡(Δ𝑗𝑓) = Δ𝑗(𝐺𝑡𝑓), we have∑
𝑗⩾−1

‖Δ𝑗(𝐺𝑡𝑓)‖𝐿𝑝(ℝ) ⩽ 𝐶‖𝑓‖𝛾
𝑝

∑
𝑗⩾−1

𝑒−𝑐𝑡22𝑗 2−𝑗𝛾. (A.8)

Clearly, if 𝑗 ⩽ 𝑥 ⩽ 𝑗 + 1, 𝑗 ⩾ −1, then 𝑒−𝑐𝑡22𝑗 2−𝑗𝛾 ⩽ 𝑒−𝑐𝑡22𝑥2−(𝑥+1)𝛾. Therefore,∑
𝑗⩾−1

𝑒−𝑐𝑡22𝑗 2−𝑗𝛾 ⩽ ∫
∞

−1

𝑒−𝑐𝑡22𝑥2−𝑥𝛾 𝑑𝑥 ⩽ 𝐶𝑡
𝛾

2 ∫
∞

0

𝑒−𝑐𝑦𝑦
−

𝛾

2
−1

𝑑𝑦 ⩽ 𝐶𝑡
𝛾

2 ,

thanks to the assumption 𝛾 < 0. Using this and the fact that Δ𝑗(𝐺𝑡𝑓) = 𝐺𝑡(Δ𝑗𝑓), we derive from
(A.8) ∑

𝑗⩾−1

‖Δ𝑗(𝐺𝑡𝑓)‖𝐿𝑝(ℝ) ⩽ 𝐶‖𝑓‖𝛾
𝑝
𝑡
𝛾

2 .
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 59

On the other hand, the identity 𝐼𝑑 =
∑

𝑗⩾−1
Δ𝑗 holds in distribution ([2, Proposition 2.12]). The

above estimate shows that it also holds in 𝐿𝑝(ℝ) and hence,

‖𝐺𝑡𝑓‖𝐿𝑝(ℝ) ⩽
∑
𝑗⩾−1

‖Δ𝑗(𝐺𝑡𝑓)‖𝐿𝑝(ℝ) ⩽ 𝐶‖𝑓‖𝛾
𝑝
𝑡
𝛾

2

which implies (i).
(ii) From (A.3), we derive that for every 𝑗 ⩾ −1 and 𝜖 ∈ (0, 1]

‖𝐺𝑡(Δ𝑗𝑓) − Δ𝑗𝑓‖𝐿𝑝(ℝ) ⩽ 𝑐(𝑡22𝑗)𝜀‖Δ𝑗𝑓‖𝐿𝑝(ℝ).

This yields

2𝑗(𝛾−2𝜀)‖Δ𝑗(𝐺𝑡𝑓 − 𝑓)‖𝐿𝑝(ℝ) ⩽ 𝑐𝑡𝜀2𝑗𝛾‖Δ𝑗𝑓‖𝐿𝑝(ℝ) ⩽ 𝑐𝑡𝜀‖𝑓‖𝛾
𝑝
.

By taking supremum over all 𝑗 ⩾ −1 in the above inequality, we see that lim𝑡↓0 𝐺𝑡𝑓 = 𝑓 in 𝛾−2𝜀
𝑝 .

Since 𝜀 is arbitrary in (0,1], this implies (ii) when 𝛾̄ ∈ [𝛾 − 2, 𝛾). If 𝛾̄ < 𝛾 − 2, then

‖𝐺𝑡𝑓 − 𝑓‖𝛾̄
𝑝
⩽ ‖𝐺𝑡𝑓 − 𝑓‖𝛾−2

𝑝
→ 0 as 𝑡 → 0.

This proves (ii).
(iii) follows immediately from the inequality ‖𝐺𝑡(Δ𝑗𝑓)‖𝐿𝑝(ℝ) ⩽ ‖Δ𝑗𝑓‖𝐿𝑝(ℝ) and Definition A.1.
(iv) We write 𝐺𝑡𝑓 = 𝐺𝑡∕2𝐺𝑡∕2𝑓, apply standard heat kernel bounds and part (i) to get

‖𝐺𝑡𝑓‖1 ⩽ 𝐶𝑡
−

1

2 ‖𝐺𝑡∕2𝑓‖𝐿∞(ℝ) ⩽ 𝐶𝑡
−

1

2 𝑡
1

2
(𝛾−

1

𝑝
)‖𝑓‖𝛾−1∕𝑝

∞
⩽ 𝐶𝑡

−
1

2 𝑡
1

2
(𝛾−

1

𝑝
)‖𝑓‖𝛾

𝑝
,

where the last inequality follows from the embedding 𝛾
𝑝 ↪ 𝛾−1∕𝑝

∞ . This proves (iv). □

Recall that Schwarz distribution 𝜁−1 is defined in (2.9) and 𝜁𝛼
+, 𝜁𝛼

− are defined in (2.10).

Lemma A.4. Let 𝛼 ∈ (−1, 0). Then we have

𝜁−1 ∈ −1+
1

𝑝

𝑝 (ℝ) ∀𝑝 ∈ (1,∞] and 𝜁𝛼
+, 𝜁

𝛼
− ∈ 𝛼+

1

𝑝

𝑝 (ℝ) ∀𝑝 ∈ (|𝛼|−1,∞].

Proof. By homogeneity, for every 𝑗 ⩾ 0, Δ𝑗𝜁
−1(𝑥) = 2𝑗Δ0𝜁

−1(2𝑗𝑥) so that

‖Δ𝑗𝜁
−1‖𝐿𝑝(ℝ) = 2

𝑗(1−
1

𝑝
)‖Δ0𝜁

−1‖𝐿𝑝(ℝ).

Note that

Δ0𝜁
−1(𝑥) = ∫

∞

0

ℎ(𝑥 + 𝑦) − ℎ(𝑥 − 𝑦)

𝑦
𝑑𝑦

which is the Hilbert transform of ℎ. It is known that Hilbert transform is bounded on 𝐿𝑝(ℝ) for
every 𝑝 ∈ (1,∞). Hence, we have ‖Δ0𝜁

−1‖𝐿𝑝(ℝ) ⩽ 𝐶‖ℎ‖𝐿𝑝(ℝ) which is finite. Similarly, we see that
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60 ATHREYA et al.

‖Δ−1𝜁
−1‖𝐿𝑝(ℝ) is finite. This shows that 𝜁−1 belong to −1+

1

𝑝

𝑝 (ℝ) for every 𝑝 ∈ (1,∞). That 𝜁−1

belongs to −1
∞ (ℝ) follows from the Besov embedding −1+

1

𝑝

𝑝 (ℝ) ↪ −1
∞ (ℝ).

Similarly, we see that ‖Δ𝑗𝜁
𝛼
±‖𝐿𝑝(ℝ) = 2

−𝑗(𝛼+
1

𝑝
)‖Δ0𝜁

𝛼
±‖𝐿𝑝(ℝ). Let 𝑞 ∈ [1,∞] be such that

1 +
1

𝑝
= 𝛾 +

1

𝑞
. Applying the refined Young convolution inequality ([2, Theorem 1.5]), we see

that ‖Δ0𝜁
𝛼
±‖𝐿𝑝(ℝ) ⩽ 𝐶‖ℎ‖𝐿𝑞(ℝ), which is finite. That ‖Δ−1𝜁

𝛼
±‖𝐿𝑝(ℝ) is finite follows from the same

argument. □

LemmaA.5. Let 𝑓 and 𝑐, 𝑐0 be as in Theorem 2.12(i). For each 𝜆 > 0, define 𝑓𝜆(𝑥) = 𝜆𝑓(𝜆𝑥). Then

𝑓𝜆 converges in (−1+
1

𝑝
)−

𝑝 (ℝ) to the distribution 𝑐𝜁−1 + 𝑐0𝛿0 for every 𝑝 ∈ (1,∞].

Proof. By Besov embedding, it suffices to obtain the convergence in (−1+
1

𝑝
)−

𝑝 (ℝ) for finite 𝑝. Fix
𝑝 ∈ (1,∞), 𝛽 > 0. Define a distribution

𝜒 ∶= 𝑐𝜁−1 + 𝑐0𝛿0

and put 𝑅(𝑥) ∶= 𝑓(𝑥) − 𝑐∕𝑥. Fix arbitrary 𝜀 > 0. Choose 𝑁 > 0 large enough so that

∫|𝑥|>𝑁

|𝑅(𝑥)|𝑑𝑥 < 𝜀 and
|||||𝑐0 − ∫|𝑥|<𝑁

𝑓(𝑥) 𝑑𝑥
||||| < 𝜀. (A.9)

This is possible thanks to the assumptions of the theorem.
For each 𝑗 ⩾ −1, we write

Δ𝑗(𝑓𝜆 − 𝜒)(𝑦) = ∫
ℝ

𝑓𝜆(𝑥)ℎ𝑗(𝑦 − 𝑥)𝑑𝑥 − 𝑐 ∫
ℝ+

ℎ𝑗(𝑦 − 𝑥) − ℎ𝑗(𝑦 + 𝑥)

𝑥
𝑑𝑥 − 𝑐0ℎ𝑗(𝑦)

= 𝜆 ∫|𝑥|>𝑁∕𝜆

𝑅(𝜆𝑥)ℎ𝑗(𝑦 − 𝑥) 𝑑𝑥 − 𝑐 ∫
𝑁∕𝜆

0

ℎ𝑗(𝑦 − 𝑥) − ℎ𝑗(𝑦 + 𝑥)

𝑥
𝑑𝑥

+ 𝜆 ∫|𝑥|<𝑁∕𝜆

𝑓(𝜆𝑥)(ℎ𝑗(𝑦 − 𝑥) − ℎ𝑗(𝑦)) 𝑑𝑥 −
(
𝑐0 − ∫|𝑥|<𝑁

𝑓(𝑥) 𝑑𝑥
)
ℎ𝑗(𝑦)

=∶ 𝐼1,𝑗(𝑦) + 𝐼2,𝑗(𝑦) + 𝐼3,𝑗(𝑦) + 𝐼4,𝑗(𝑦). (A.10)

Webeginwith 𝐼1,𝑗 . Applying the integralMinkowski inequality, the change of variables𝑥′ = 𝜆𝑥,
and recalling (A.9), we deduce

‖𝐼1,𝑗‖𝐿𝑝(ℝ) ⩽ 𝜆‖ℎ𝑗‖𝐿𝑝(ℝ) ∫|𝑥|>𝑁∕𝜆

|𝑅(𝜆𝑥)|𝑑𝑥 = ‖ℎ𝑗‖𝐿𝑝(ℝ) ∫|𝑥|>𝑁

|𝑅(𝑥)|𝑑𝑥
⩽ 2

𝑗(1−
1

𝑝
)
(‖ℎ‖𝐿𝑝(ℝ) + ‖ℎ−1‖𝐿𝑝(ℝ))𝜀. (A.11)
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 61

To bound 𝐼2,𝑗 , we note that for 𝑗 ⩾ 1

‖𝐼2,𝑗‖𝑝

𝐿𝑝(ℝ)
= 2𝑗(𝑝−1) ∫

ℝ

(
∫

2𝑗𝑁∕𝜆

0

ℎ(𝑦 − 𝑥) − ℎ(𝑦 + 𝑥)

𝑥
𝑑𝑥

)𝑝

𝑑𝑦. (A.12)

Introduce the following notation. For fixed 𝛿 > 0 define the truncated Hilbert, Hilbert, and
maximal Hilbert operators 𝐻𝛿,𝐻, and𝐻∗, correspondingly, by

𝐻𝛿(𝜑)(𝑦) = ∫
+∞

𝛿

𝜑(𝑦 − 𝑥) − 𝜑(𝑦 − 𝑥)

𝑥
𝑑𝑥, 𝐻(𝜑) = 𝐻0(𝜑),𝐻∗(𝜑)(𝑦) = sup

𝛿>0
|𝐻𝛿(𝜑)(𝑦)|,

for each Schwarz function 𝜑. With this notation in hand, we continue (A.12) in the following way

‖𝐼2,𝑗‖𝐿𝑝(ℝ) = 2𝑗(1−1∕𝑝)‖𝐻0ℎ − 𝐻2𝑗𝑁∕𝜆ℎ‖𝐿𝑝(ℝ). (A.13)

Note also that the following bound holds:

‖𝐼2,𝑗‖𝐿𝑝(ℝ) = 2𝑗(1−1∕𝑝)(‖𝐻0ℎ‖𝐿𝑝(ℝ) + ‖𝐻2𝑗𝑁∕𝜆ℎ‖𝐿𝑝(ℝ)) ⩽ 2𝑗(1−1∕𝑝)(‖𝐻0ℎ‖𝐿𝑝(ℝ) + ‖𝐻∗(ℎ)‖𝐿𝑝(ℝ)).

(A.14)

Similarly,

‖𝐼2,−1‖𝐿𝑝(ℝ) = ‖𝐻0ℎ−1 − 𝐻𝑁∕𝜆ℎ−1‖𝐿𝑝(ℝ). (A.15)

To treat 𝐼3,𝑗 we apply the integral Minkowski inequality and (A.7) with 𝑓 = 𝛿0. We get for any
𝛽 > 0

‖𝐼3,𝑗‖𝐿𝑝(ℝ) ⩽ 𝜆 ∫|𝑥|⩽𝑁∕𝜆

|𝑓(𝜆𝑥)|‖ℎ𝑗(⋅ − 𝑥) − ℎ𝑗(⋅)‖𝐿𝑝(ℝ)𝑑𝑥

⩽ 𝜆 ∫|𝑥|⩽𝑁∕𝜆

|𝑓(𝜆𝑥)||𝑥|𝛽2𝑗𝛽‖ℎ𝑗‖𝐿𝑝(ℝ) 𝑑𝑥

= 𝜆−𝛽2𝑗𝛽‖ℎ𝑗‖𝐿𝑝(ℝ) ∫|𝑥|⩽𝑁

|𝑓(𝑥)||𝑥|𝛽 𝑑𝑥

⩽ 𝜆−𝛽2𝑗(𝛽+1−1∕𝑝)(‖ℎ‖𝐿𝑝(ℝ) + ‖ℎ−1‖𝐿𝑝(ℝ))𝐶𝑁, (A.16)

where 𝐶𝑁 ∶= 𝑁𝛽 ∫|𝑥|⩽𝑁
|𝑓(𝑥)|𝑑𝑥. Finally, it is easy to treat 𝐼4,𝑗 . Using (A.9), we get
‖𝐼4,𝑗‖𝐿𝑝(ℝ) ⩽ 2𝑗(1−1∕𝑝)(‖ℎ‖𝐿𝑝(ℝ) + ‖ℎ−1‖𝐿𝑝(ℝ))𝜀.

Now we substitute this, (A.11) and (A.16) into (A.10). To bound 𝐼2,𝑗 we use (A.15) for 𝑗 = −1,
(A.13) for 𝑗 ∈ [1, 𝐽], and (A.14) for 𝑗 ⩾ 𝐽; here 𝐽 is a parameter to be fixed later. We finally obtain

sup
𝑗⩾−1

2
𝑗(−1+

1

𝑝
−𝛽)‖Δ𝑗(𝑓𝜆 − 𝜒)‖𝐿𝑝(ℝ)

⩽ 𝐶(‖ℎ‖𝐿𝑝(ℝ) + ‖ℎ−1‖𝐿𝑝(ℝ))(𝜀 + 𝜆−𝛽𝐶𝑁) + ‖𝐻0ℎ−1 − 𝐻𝑁∕𝜆ℎ−1‖𝐿𝑝(ℝ)
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62 ATHREYA et al.

+ sup
𝛿⩽2𝐽𝑁∕𝜆

‖𝐻0ℎ − 𝐻𝛿ℎ‖𝐿𝑝(ℝ) + 2−𝐽𝛽(‖𝐻0ℎ‖𝐿𝑝(ℝ) + ‖𝐻∗(ℎ)‖𝐿𝑝(ℝ)).

Sending first 𝜆 → ∞, then 𝐽 → ∞, then 𝜀 ↓ 0, we see that the left-hand side of the above
inequality converges to 0. Here we used the facts that ‖𝐻0ℎ‖𝐿𝑝(ℝ) < ∞, ‖𝐻∗(ℎ)‖𝐿𝑝(ℝ) < ∞,‖𝐻0ℎ − 𝐻𝛿ℎ‖𝐿𝑝(ℝ) → 0, ‖𝐻0ℎ−1 − 𝐻𝛿ℎ−1‖𝐿𝑝(ℝ) → 0 as 𝛿 → 0; all of them are established in [23,
Theorem 5.1.12].

Hence, lim𝜆→∞ 𝑓𝜆 = 𝑐𝜁−1 + 𝑐0𝛿0 in −1+
1

𝑝
−𝛽

𝑝 . Since 𝛽 is arbitrary in (0,1), this implies the

convergence in (−1+
1

𝑝
)−

𝑝 . □

Lemma A.6. Let 𝑓 be a continuous function ℝ → ℝ. Suppose that for some 𝛼 ∈ (0, 1), 𝑐+, 𝑐− ∈ ℝ

one has

lim
𝑥→+∞

𝑓(𝑥)𝑥𝛼 = 𝑐+ and lim
𝑥→−∞

𝑓(𝑥)|𝑥|𝛼 = 𝑐−. (A.17)

Let 𝑓𝜆(𝑥) ∶= 𝜆𝛼𝑓(𝜆𝑥), where 𝜆 > 0, 𝑥 ∈ ℝ. Then 𝑓𝜆 converges to 𝑐−𝜁
−𝛼
− + 𝑐+𝜁

−𝛼
+ as 𝜆 → ∞ in

(−𝛼+
1

𝑝
)−

𝑝 (ℝ) for every 𝑝 ∈ (𝛼−1,∞].

Proof. The proof is in the same spirit as the proof of Lemma A.5. Again, by the Besov embedding
it is sufficient to consider the case of finite 𝑝. Fix 𝑝 ∈ (𝛼−1,∞). Denote

𝜒(𝑥) ∶= 𝑐−𝜁
−𝛼
− + 𝑐+𝜁

−𝛼
+ , 𝑥 ∈ ℝ

and put 𝑅(𝑥) ∶= 𝑓(𝑥) − 𝜒(𝑥).
Take arbitrary 𝜀 > 0. It follows from (A.17), that there exists 𝑁 > 0 such that

|𝑅(𝑥)||𝑥|𝛼 < 𝜀 whenever |𝑥| > 𝑁. (A.18)

For each 𝑗 ⩾ −1, we write

Δ𝑗(𝑓𝜆 − 𝜒)(𝑦) = ∫
ℝ

(𝑓𝜆(𝑥) − 𝜒(𝑥))ℎ𝑗(𝑦 − 𝑥) 𝑑𝑥 = 𝜆𝛼 ∫
ℝ

𝑅(𝜆𝑥)ℎ𝑗(𝑦 − 𝑥) 𝑑𝑥

= 𝜆𝛼

(
∫|𝑥|<𝑁∕𝜆

+∫|𝑥|>𝑁∕𝜆

)
𝑅(𝜆𝑥)ℎ𝑗(𝑦 − 𝑥)𝑑𝑥 =∶ 𝐼1(𝑦) + 𝐼2(𝑦). (A.19)

Fix 𝛽 ∈ (0, 1 − 𝛼). To bound 𝐼1 we apply Young inequality with 𝑝′, 𝑞′ > 1 such that 1∕𝑝′ + 1∕𝑞′ =

1 + 1∕𝑝 and the change of variables 𝑥′ ∶= 𝜆𝑥. We get

‖𝐼1‖𝐿𝑝(ℝ) ⩽ 𝜆𝛼‖ℎ𝑗‖𝐿𝑝′ (ℝ)

(
∫|𝑥|<𝑁∕𝜆

|𝑅(𝜆𝑥)|𝑞′
𝑑𝑥

)1∕𝑞′

= 𝜆
−

1

𝑞′
+𝛼‖ℎ𝑗‖𝐿𝑝′ (ℝ)

(
∫|𝑥|<𝑁

|𝑅(𝑥)|𝑞′
𝑑𝑥

)1∕𝑞′

⩽ 𝐶𝑁𝜆
−

1

𝑞′
+𝛼

2
𝑗(1−

1

𝑝′ )(‖ℎ‖𝐿𝑝′ (ℝ) + ‖ℎ−1‖𝐿𝑝′ (ℝ))
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 63

where 𝐶𝑁 ∶= 𝐶𝑁(1 + sup|𝑥|⩽𝑁 |𝑓(𝑥)|). By choosing now 1∕𝑞′ = 𝛼 + 𝛽 < 1, we get 1∕𝑝′ = 1 +

1∕𝑝 − 𝛼 − 𝛽 < 1 and thus

‖𝐼1‖𝐿𝑝(ℝ) ⩽ 𝐶𝑁𝜆−𝛽2𝑗(𝛼+𝛽−1∕𝑝)(‖ℎ‖𝐿𝑝′ (ℝ) + ‖ℎ−1‖𝐿𝑝′ (ℝ)) (A.20)

To deal with 𝐼2 we apply (A.18) to deduce

|𝐼2(𝑦)| ⩽ 𝜀 ∫|𝑥|>𝑁∕𝜆

|𝑥|−𝛼|ℎ𝑗(𝑦 − 𝑥)|𝑑𝑥 ⩽ 𝜀 ∫
ℝ

|𝑥|−𝛼|ℎ𝑗(𝑦 − 𝑥)|𝑑𝑥.
Thus, the Hardy-Littlewood-Sobolev inequality on ℝ with 1∕𝑝′′ = 1 + 1∕𝑝 − 𝛼 [2, Theorem 1.7]
implies

‖𝐼2‖𝐿𝑝(ℝ) ⩽ 𝜀‖ℎ𝑗‖𝐿𝑝′′ (ℝ) ⩽ 𝜀2𝑗(𝛼−1∕𝑝)(‖ℎ‖𝐿𝑝′′ (ℝ) + ‖ℎ−1‖𝐿𝑝′′ (ℝ)).

Combining this with (A.19) and (A.20), we finally get

‖𝑓𝜆 − 𝜒‖−𝛼−𝛽+1∕𝑝
𝑝

⩽ 𝐶𝑁𝜆−𝛽(‖ℎ‖𝐿𝑝′ (ℝ) + ‖ℎ−1‖𝐿𝑝′ (ℝ)) + 𝜀(‖ℎ‖𝐿𝑝′′ (ℝ) + ‖ℎ−1‖𝐿𝑝′′ (ℝ)).

Taking now first 𝜆 → ∞, and recalling then that 𝜀 was arbitrary completes the proof. □

APPENDIX B: OTHER AUXILIARY RESULTS

Proposition B.1. Let Λ be a set and let (𝑋𝑛,𝜆)𝑛∈ℤ+,𝜆∈Λ be a collection of random elements taking
values in ametric space 𝐸. Let (𝑌𝑛)𝑛∈ℤ+

be a collection of random elements taking values in ametric
space 𝐸. Suppose that for each fixed 𝑛 the random element 𝑌𝑛 is independent of (𝑋𝑛,𝜆)𝜆∈Λ. Further-
more, assume that for each fixed 𝜆 ∈ Λ one has 𝑋𝑛,𝜆 → 𝑋𝜆 and 𝑌𝑛 → 𝑌 in probability as 𝑛 → ∞.
Then 𝑌 is independent of (𝑋𝜆)𝜆∈Λ.

Proof. Consider a collection of 𝜆1, 𝜆2, … , 𝜆𝑛 for some 𝑛 ≥ 1. Then we can construct a common
subsequence such that

𝑋𝑛𝑘,𝜆𝑗
→ 𝑋𝜆𝑗

and 𝑌𝑛𝑘
→ 𝑌 almost surely as 𝑘 → ∞ for all 1 ≤ 𝑗 ≤ 𝑛.

Let ℎ1, ℎ2 …ℎ𝑛 ∶ 𝐸 → ℝ, 𝑔 ∶ 𝐸̃ → ℝ be bounded continuous functions. Then by the Lebesgue
dominated convergence theorem,

𝖤

(
𝑛∏

𝑗=1

ℎ𝑗(𝑋𝑛𝑘,𝜆𝑗
)𝑔(𝑌𝑛𝑘

)

)
→ 𝖤

(
𝑛∏

𝑗=1

ℎ𝑗(𝑋𝜆𝑗
)𝑔(𝑌)

)
as 𝑘 → ∞

and also

𝑛∏
𝑗=1

𝖤(ℎ𝑗(𝑋𝑛𝑘,𝜆𝑗
))𝖤𝑔(𝑌𝑛𝑘

) →

𝑛∏
𝑗=1

𝖤(ℎ𝑗(𝑋𝜆𝑗
))𝖤(𝑔(𝑌)) as 𝑘 → ∞.
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64 ATHREYA et al.

We have assumed for each 𝑘 the random element 𝑌𝑛𝑘
is independent of (𝑋𝑛𝑘,𝜆𝑗

)1≤𝑗≤𝑛. Therefore
from the above it is immediate that

𝖤

𝑛∏
𝑗=1

(ℎ𝑗(𝑋𝜆𝑗
))𝑔(𝑌)) =

𝑛∏
𝑗=1

𝖤(ℎ𝑗(𝑋𝜆𝑗
))𝖤(𝑔(𝑌))

As, 𝑛 ≥ 1, 𝜆1, 𝜆2, … , 𝜆𝑛 and ℎ1, ℎ2 …ℎ𝑛, 𝑔 were arbitrary, the result follows. □

Lemma B.2 (Gaussian process representation). Let (Ω̃, ̃ , 𝖯̃) be a filtered probability space. Let
𝑉 ∶ [0, 𝑇0] × 𝐷 × Ω̃ → ℝ be a measurable function with the same law as𝑉. Then on the same space
there exists a white noise𝑊 such that identity (2.4) holds with 𝑉 in place of 𝑉 and𝑊 in place of𝑊.
Furthermore,

(i) 𝑊
𝑡 = 𝑉

𝑡 for any 𝑡 ∈ [0, 𝑇0];
(ii) suppose additionally that there exists a filtration (̃𝑡)𝑡∈[0,𝑇0] such that 𝑉

𝑡 ⊂ ̃𝑡 and for any
(𝑠, 𝑡) ∈ Δ0,𝑇0

, 𝜑 ∈ ∞
𝑐 the random variable ∫

𝐷
(𝑉𝑡(𝑥) − 𝑃𝑡−𝑠𝑉𝑠(𝑥))𝜑(𝑥) 𝑑𝑥 is independent of ̃𝑠.

Then𝑊 is (̃𝑡)-white noise.

Proof. The result is probably well-known. However, we give a proof for the sake of completeness.
In what follows we will use the following notation:

⟨𝑓, 𝑔⟩ ∶= ∫
𝐷

𝑓(𝑦)𝑔(𝑦) 𝑑𝑦,

for measurable functions 𝑓, 𝑔 ∶ 𝐷 → ℝ for which the above integral is well-defined. It is well-
known that (2.4) is equivalent (see, e.g., [45, Theorem 2.1]) to representing 𝑉 as a solution to the
additive stochastic heat equation in a distributional form:

⟨𝑉𝑡, 𝜑⟩ =
1

2 ∫
𝑡

0

⟨
𝑉𝑠, 𝜕

2
𝑦𝑦𝜑

⟩
𝑑𝑠 + 𝑊𝑡(𝜑), for any 𝑡 ≥ 0, 𝜑 ∈ ∞

𝑐 . (B.1)

Since 𝑉 has the same law as 𝑉, we immediately get that the functional

𝑊𝑡(𝜑) ∶= ⟨𝑉𝑡, 𝜑⟩ −
1

2 ∫
𝑡

0

⟨
𝑉𝑠, 𝜕

2
𝑦𝑦𝜑

⟩
𝑑𝑠, 𝑡 ≥ 0, 𝜑 ∈ ∞

𝑐 (B.2)

has the same distributional properties as 𝑊. That is, for any 𝜑 ∈ ∞
𝑐 , the process (𝑊𝑡(𝜑))𝑡∈[0,𝑇0]

is an (𝑉
𝑡 )-Brownian motion with 𝖤𝑊1(𝜑)2 = ‖𝜑‖2

𝐿2(𝐷,𝑑𝑥)
and clearly this also holds for any

𝜑 ∈ 𝐿2(𝐷, 𝑑𝑥) since ∞
𝑐 is dense in 𝐿2(𝐷, 𝑑𝑥). Also 𝑊𝑡(𝜑) and 𝑊𝑡(𝜓) are independent when-

ever 𝜑, 𝜓 ∈ ∞
𝑐 with ∫

𝐷
𝜑(𝑥)𝜓(𝑥) 𝑑𝑥 = 0, and again since ∞

𝑐 is dense in 𝐿2(𝐷, 𝑑𝑥), this holds for
any 𝜑, 𝜓 ∈ 𝐿2(𝐷, 𝑑𝑥)with ∫

𝐷
𝜑(𝑥)𝜓(𝑥) 𝑑𝑥 = 0. This immediately implies that𝑊 is an (𝑉

𝑡 )-white
noise. Thus, 𝑉 is a solution to

⟨𝑉𝑡, 𝜑⟩ =
1

2 ∫
𝑡

0

⟨
𝑉𝑠, 𝜕

2
𝑦𝑦𝜑

⟩
𝑑𝑠 + 𝑊𝑡(𝜑), for any 𝑡 ≥ 0, 𝜑 ∈ ∞

𝑐 , (B.3)

with white noise 𝑊. Using again [45, Theorem 2.1], we get that (2.4) holds with 𝑉 in place of 𝑉
and𝑊 in place of𝑊.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 65

To prove (i) note that

𝑉𝑡(𝑥) = ∫
𝑡

0
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑊(𝑑𝑟, 𝑑𝑦), 𝑡 ⩾ 0, 𝑥 ∈ 𝐷, (B.4)

and thus for any 𝑡 ∈ [0, 𝑇0], 𝑉
𝑡 ⊂ 𝑊

𝑡 . On the other hand, from (B.2) we also immediately get
that 𝑊

𝑡 ⊂ 𝑉
𝑡 for any 𝑡 ∈ [0, 𝑇0], and (i) follows.

Let us prove part (ii) of the proposition. We need just to show that for any (𝑠, 𝑡) ∈ Δ0,𝑇0
, 𝜑 ∈

𝐿2(𝐷, 𝑑𝑥)

𝑊𝑡(𝜑) − 𝑊𝑠(𝜑) is independent of ̃𝑠.

Fix arbitrary (𝑠, 𝑡) ∈ Δ0,𝑇0
and 𝜑 ∈ ∞

𝑐 . By (2.4) and stochastic Fubini theorem we get that

∫
𝐷

(𝑉𝑡(𝑥) − 𝑃𝑡−𝑠𝑉𝑠(𝑥))𝜑(𝑥) 𝑑𝑥 = ∫
𝑡

𝑠
∫
𝐷

𝑃𝑡−𝑟𝜑(𝑦)𝑊(𝑑𝑟, 𝑑𝑦).

By our assumptions, we get that the above stochastic integral is independent of ̃𝑠. Clearly, since̃𝑠 ⊂ ̃𝑟 for any 𝑠 ⩽ 𝑟, we get that for any (𝑠1, 𝑠2) ∈ Δ𝑠,𝑡,

𝑌𝑠1,𝑠2 ∶= ∫
𝑠2

𝑠1
∫
𝐷

𝑃𝑠2−𝑟𝜑(𝑦)𝑊(𝑑𝑟, 𝑑𝑦) is independent of ̃𝑠. (B.5)

For any 𝑛 ≥ 1 define 𝑠𝑛
𝑘
∶= 𝑠 +

(𝑡−𝑠)𝑘

𝑛
for 𝑘 = 0,… , 𝑛 and a function 𝑓𝑛 on [𝑠, 𝑡] × 𝐷 such that

𝑓𝑛(𝑟, 𝑦) =

𝑛∑
𝑘=1

𝟙𝑠𝑛
𝑘−1

≤𝑟<𝑠𝑛
𝑘
𝑃𝑠𝑛

𝑘
−𝑟𝜑(𝑦), 𝑠 ≤ 𝑟 ≤ 𝑡, 𝑦 ∈ 𝐷.

Now we are ready to define the sequence of random variables

𝑌𝑛 ∶=

𝑛∑
𝑘=1

𝑌𝑠𝑛
𝑘−1

,𝑠𝑛
𝑘
= ∫

𝑡

𝑠
∫
𝐷

𝑓𝑛(𝑟, 𝑦)𝑊(𝑑𝑟, 𝑑𝑦).

It is trivial to check that

𝑓𝑛 → 𝜑, in 𝐿2([𝑠, 𝑡] × 𝐷), as 𝑛 → ∞,

and hence

𝑌𝑛 → ∫
𝑡

𝑠
∫
𝐷

𝜑(𝑦)𝑊(𝑑𝑟, 𝑑𝑦) = 𝑊𝑡(𝜑) − 𝑊𝑠(𝜑), as 𝑛 → ∞,

where convergence is in 𝐿2(Ω). By (B.5) and properties of the white noise we get that 𝑌𝑛 is inde-
pendent of ̃𝑠 for all 𝑛, and hence the limit in 𝐿2(Ω) of this sequence, is also independent of ̃𝑠.
Thus we get that 𝑊𝑡(𝜑) − 𝑊𝑠(𝜑) is independent of ̃𝑠, for any 𝜑 ∈ ∞

𝑐 . We can easily get the
same property for any 𝜑 ∈ 𝐿2(𝐷, 𝑑𝑥), by approximating such 𝜑 in 𝐿2(𝐷, 𝑑𝑥) by a sequence of
functions 𝜑𝑛 ∈ ∞

𝑐 and again passing to the limit of corresponding sequence of random variables
𝑊𝑡(𝜑𝑛) − 𝑊𝑠(𝜑𝑛). □
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66 ATHREYA et al.

Lemma B.3. For every 𝛼, 𝛽 ∈ [0, 1), (𝑠, 𝑡) ∈ Δ𝑆,𝑇 and 𝑢 = (𝑠 + 𝑡)∕2, we have

(𝑢 − 𝑆)−𝛼(𝑇 − 𝑢)−𝛽(𝑡 − 𝑠) ⩽ 21+𝛼 ∫
𝑡

𝑠

(𝑟 − 𝑆)−𝛼(𝑇 − 𝑟)−𝛽𝑑𝑟 (B.6)

and

∫
𝑡

𝑠

(𝑇 − 𝑟)−𝛽(𝑟 − 𝑠)−𝛼 𝑑𝑟 ⩽ 𝐶(𝑇 − 𝑠)−𝛽(𝑡 − 𝑠)1−𝛼. (B.7)

Proof. We have

∫
𝑡

𝑠

(𝑟 − 𝑆)−𝛼(𝑇 − 𝑟)−𝛽𝑑𝑟 ⩾ ∫
𝑡

𝑢

(𝑟 − 𝑆)−𝛼(𝑇 − 𝑟)−𝛽𝑑𝑟 ⩾ (𝑡 − 𝑆)−𝛼(𝑇 − 𝑢)−𝛽(𝑡 − 𝑢).

Since 𝑢 = (𝑠 + 𝑡)∕2, 𝑡 − 𝑆 ⩽ 2(𝑢 − 𝑆), we obtain (B.6) from the above inequalities.
For fixed 𝑠 ⩽ 𝑡, the function 𝑞(𝑇) ∶= ∫ 𝑡

𝑠
(
𝑇−𝑠

𝑇−𝑟
)𝛽(𝑟 − 𝑠)−𝛼𝑑𝑟 is decreasing on 𝑇 ∈ [𝑡,∞). Hence

we have 𝑞(𝑇) ⩽ 𝑞(𝑡) = (∫ 1

0
(1 − 𝑟)−𝛽𝑟−𝛼𝑑𝑟)(𝑡 − 𝑠)1−𝛼. This yields (B.7). □

Lemma B.4. Let 𝑓 ∶ Ω × 𝐷 → ℝ be a measurable function. Then for any 𝑠, 𝑡 ⩾ 0, 𝑃𝑡𝑓 ∶ Ω ×

𝐷 → ℝ is measurable. Further for any 𝑥 ∈ 𝐷,𝑚 ∈ [1,∞], 𝑛 ∈ [1,∞], and a 𝜎-algebra 𝒢 we have

‖‖𝑃𝑡𝑓(𝑥)‖𝐿𝑚|𝒢‖𝐿𝑛
⩽ sup

𝑦∈𝐷
‖ ‖𝑓(𝑦)‖𝐿𝑚|𝒢‖𝐿𝑛

and ‖𝑃𝑡𝑓(𝑥)‖𝐿𝑚
⩽ sup

𝑦∈𝐷
‖𝑓(𝑦)‖𝐿𝑚

. (B.8)

In addition, if 𝑓 ∈ 𝐁𝐿𝑚, there exists a setΩ′ ⊂ Ω of full measure such that for any 𝜔 ∈ Ω′

𝑃𝑡𝑓(𝑥, 𝜔) < ∞ for Lebesgue almost every (𝑡, 𝑥) ∈ [0, 𝑇0] × 𝐷. (B.9)

Proof. It suffices to show the result assuming that 𝑓 is non-negative. In such case, it is evident
that 𝑃𝑡𝑓 ∶ Ω × ℝ → ℝ is measurable. Applying the conditional integralMinkowski inequality, we
obtain that

‖𝑃𝑡𝑓(𝑥)‖𝐿𝑚|𝒢 ⩽ ∫
𝐷

𝑝𝑡(𝑥, 𝑦)‖𝑓(𝑦)‖𝐿𝑚|𝒢 𝑑𝑦.

We then apply Minkowski inequality, to get

‖‖𝑃𝑡𝑓(𝑥)‖𝐿𝑚|𝒢‖𝐿𝑛
⩽ ∫

𝐷

𝑝𝑡(𝑥, 𝑦)‖‖𝑓(𝑦)‖𝐿𝑚|𝒢‖𝐿𝑛
⩽ sup

𝑦∈𝐷
‖‖𝑓(𝑦)‖𝐿𝑚|𝒢‖𝐿𝑛

𝑑𝑦

which implies the former estimate in (B.8). The later one in (B.8) follows from the former by
setting 𝑛 = 𝑚.
Finally, (B.9) follows from (B.8) and the Fubini theorem. □

LemmaB.5. Let (𝜑𝑛)𝑛∈ℤ+
be a sequence of continuous random fields on𝐷 such that𝜑𝑛 converges to

0 in uc(𝐷) in probability and that sup𝑛∈ℤ+,𝑥∈𝐷 𝖤|𝜑𝑛(𝑥)| < ∞. Then for every (𝑡, 𝑥) ∈ [0, 𝑇0] × 𝐷,
𝑃𝑡𝜑

𝑛(𝑥) converges to 0 in probability as 𝑛 → ∞.
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 67

Proof. For every𝑀 > 0, we have

|𝑃𝑡𝜑
𝑛(𝑥)| ⩽ ∫|𝑦|⩽𝑀

𝑝𝑡(𝑥, 𝑦)|𝜑𝑛(𝑦)|𝑑𝑦 + ∫|𝑦|>𝑀

𝑝𝑡(𝑥, 𝑦)|𝜑𝑛(𝑦)|𝑑𝑦
⩽ sup|𝑦|⩽𝑀

|𝜑𝑛(𝑦)| + ∫|𝑦|>𝑀

𝑝𝑡(𝑥, 𝑦)|𝜑𝑛(𝑦)|𝑑𝑦.
Hence, for every 𝜀 > 0, we have by Chebyshev inequality,

𝖯(|𝑃𝑡𝜑
𝑛(𝑥)| > 2𝜀) ⩽ 𝖯( sup|𝑦|⩽𝑀

|𝜑𝑛(𝑦)| > 𝜀) + 𝜀−1 sup
𝑛,𝑧

𝖤|𝜑𝑛(𝑧)|(∫|𝑦|>𝑀

𝑝𝑡(𝑥, 𝑦)𝑑𝑦

)
.

We send 𝑛 → ∞ then 𝑀 → ∞ to see that lim𝑛→∞ 𝖯(|𝑃𝑡𝜑
𝑛(𝑥)| > 2𝜀) = 0. This implies the

result. □

APPENDIX C: HEAT KERNEL ESTIMATES
In this sectionweprovide anumber of standard simple statements characterizing smoothing prop-
erties of the heat kernel. Recall that 𝐺 and 𝑃 are the heat semigroups on ℝ and 𝐷 defined in (2.1)
and Convention 2.1, correspondingly.

Lemma C.1. For (𝐷, 𝑝) ∈ {(ℝ, 𝑔), ([0, 1], 𝑝𝑝𝑒𝑟), ([0, 1], 𝑝𝑁𝑒𝑢)}, any 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷 we have

1√
2𝜋

𝑡−1∕2 ⩽ 𝑝𝑡(𝑥, 𝑥) ⩽ 𝐶(𝑇0) +
2√
2𝜋

𝑡−1∕2. (C.1)

Proof. Since 𝑔𝑡(0) =
1√
2𝜋𝑡

, and 𝑝𝑡(𝑥, 𝑥) ⩾ 𝑔𝑡(0) for 𝑝 ∈ {𝑔, 𝑝𝑝𝑒𝑟, 𝑝𝑁𝑒𝑢}, the lower bound in (C.1) is

trivial. We apply the elementary inequality 𝑒−|𝑧| ⩽ 𝑐|𝑧|−1 to get

𝑝
𝑝𝑒𝑟
𝑡 (𝑥, 𝑥) = 𝑔𝑡(0) +

∑
𝑛∈ℤ∶|𝑛|⩾1

𝑔𝑡(𝑛) ⩽ 𝑔𝑡(0) + 𝑐
∑

𝑛∈ℤ∶|𝑛|⩾1

𝑡
1

2 𝑛−2

which shows the upper bound in (C.1) for 𝑝 = 𝑝𝑝𝑒𝑟. For 𝑝𝑁𝑒𝑢, using the estimate 𝑔𝑡(2𝑥 + 2𝑛) ⩽

𝑔𝑡(2𝑛) for 𝑥 ∈ [0, 1], we have

𝑝𝑁𝑒𝑢
𝑡 (𝑥, 𝑥) ⩽ 2𝑔𝑡(0) + 2

∑
𝑛∈ℤ∶|𝑛|⩾1

𝑔𝑡(2𝑛).

From here, using the same argument as above, we obtain the upper bound in (C.1) for 𝑝 =

𝑝𝑁𝑒𝑢. □

Lemma C.2. For every 𝛼 ∈ [0, 1], there exists a constant 𝐶 = 𝐶(𝛼, 𝑇0) > 0 such that for any 𝑠, 𝑡 ∈

(0, 𝑇0], 𝑠 ⩽ 𝑡, 𝑥, 𝑥1, 𝑥2 ∈ 𝐷 we have

∫
𝐷

|𝑝𝑡(𝑥1, 𝑦) − 𝑝𝑡(𝑥2, 𝑦)|𝑑𝑦 ⩽ 𝐶|𝑥1 − 𝑥2|𝛼𝑡−𝛼∕2, (C.2)
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68 ATHREYA et al.

∫
𝐷

𝑝𝑡(𝑥, 𝑦)|𝑦 − 𝑥|𝛼 𝑑𝑦 ⩽ 𝐶𝑡𝛼∕2, (C.3)

∫
𝐷

|𝑝𝑡(𝑥, 𝑦) − 𝑝𝑠(𝑥, 𝑦)|𝑑𝑦 ⩽ 𝐶𝑠−𝛼∕2(𝑡 − 𝑠)𝛼∕2. (C.4)

Proof. From the elementary estimate

|𝑔𝑡(𝑥1 − 𝑦) − 𝑔𝑡(𝑥2 − 𝑦)| ⩽ 𝐶|𝑥1 − 𝑥2|𝛼𝑡−𝛼∕2(𝑔2𝑡(𝑥1 − 𝑦) + 𝑔2𝑡(𝑥2 − 𝑦))

and (2.2) and (2.3), we obtain that

|𝑝𝑡(𝑥1, 𝑦) − 𝑝𝑡(𝑥2, 𝑦)| ⩽ 𝐶|𝑥1 − 𝑥2|𝛼𝑡−𝛼∕2(𝑝2𝑡(𝑥1, 𝑦) + 𝑝2𝑡(𝑥2, 𝑦))

for 𝑝 ∈ {𝑔, 𝑝𝑝𝑒𝑟, 𝑝𝑁𝑒𝑢}. Integrating over 𝑦 ∈ 𝐷 and note that ∫
𝐷
𝑝2𝑡(𝑥, 𝑦)𝑑𝑦 = 1 for each 𝑥 ∈ 𝐷,

we obtain (C.2) for 𝑝 ∈ {𝑔, 𝑝𝑝𝑒𝑟, 𝑝𝑁𝑒𝑢}.
The estimate (C.3) for 𝑝𝑡(𝑥, 𝑦) = 𝑔𝑡(𝑥 − 𝑦) follows easily by a change of variable. For the other

cases, we note that 𝑔𝑡(𝑧 + 𝑘) ⩽ 𝑐𝑔𝑡(𝑧)𝑒
−2

|𝑘|
𝑡 for every |𝑧| ⩽ 2 and every 𝑘 ∈ ℝ. Since

∑
𝑛∈ℤ

𝑒
−2

|𝑛|
𝑡 ⩽

𝐶(𝑇0), we see that from (2.2) and (2.3) that

∫
𝐷

𝑝𝑡(𝑥, 𝑦)|𝑦 − 𝑥|𝛼𝑑𝑦 ⩽ 𝐶(𝑇0)∫
ℝ

𝑔𝑡(𝑥 − 𝑦)|𝑥 − 𝑦|𝛼𝑑𝑦.
From here, we obtain (C.3) for 𝑝 ∈ {𝑝𝑝𝑒𝑟, 𝑝𝑁𝑒𝑢} by a change of variable.
To show (C.4), we use the estimate

∫
𝐷

|𝑝𝑡(𝑥, 𝑦) − 𝑝𝑠(𝑥, 𝑦)|𝑑𝑦 ⩽ ∫
𝐷
∫
𝐷

𝑝𝑡−𝑠(𝑥, 𝑧)|𝑝𝑠(𝑧, 𝑦) − 𝑝𝑠(𝑥, 𝑦)|𝑑𝑦𝑑𝑧
and (C.2) to obtain that

∫
𝐷

|𝑝𝑡(𝑥, 𝑦) − 𝑝𝑠(𝑥, 𝑦)|𝑑𝑦 ⩽ 𝐶𝑠−𝛼∕2 ∫
𝐷

𝑝𝑡−𝑠(𝑥, 𝑧)|𝑧 − 𝑥|𝛼𝑑𝑧.
Taking into account (C.3), we obtain (C.4) from the above inequality. □

Recall that 𝑉 is defined in (2.4). For 𝑡 > 0, 𝑥 ∈ 𝐷 put

𝜌𝑡(𝑥) ∶= Var(𝑉𝑡(𝑥)). (C.5)

Lemma C.3. For any 𝑡 ∈ [0, 𝑇0], 𝑥 ∈ 𝐷 we have√
𝑡√
𝜋

⩽ 𝜌𝑡(𝑥) ⩽ 𝐶(𝑇0)
√

𝑡. (C.6)

Proof. We have from (C.1)

𝜌𝑡(𝑥) = Var(𝑉(𝑡, 𝑥)) = ∫
𝑡

0

𝑝2(𝑡−𝑟)(𝑥, 𝑥) 𝑑𝑟 ⩾ ∫
𝑡

0

1

2
√

𝜋(𝑡 − 𝑟)
𝑑𝑟 =

√
𝑡√
𝜋
.

The upper bound on 𝜌𝑡 is established in exactly the same way. □
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STOCHASTIC HEAT EQUATIONWITH DISTRIBUTIONAL DRIFT 69

Lemma C.4. Let 0 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡 ⩽ 𝑇0. Let 𝑓 ∶ ℝ × Ω → ℝ be a bounded ℬ(ℝ) ⊗ 𝑠-measurable
function. Then

𝖤𝑢𝑓(𝑉𝑡(𝑥)) = 𝐺𝜌𝑡−𝑢(𝑥)𝑓(𝑃𝑡−𝑢𝑉𝑢(𝑥)). (C.7)

In addition, there exists a universal constant 𝐶 = 𝐶(𝑇0) > 0 such that for every 𝑥 ∈ 𝐷, 𝛾 < 0, 𝑛 ∈

[1,∞] and 𝑝 ∈ [𝑛,∞]

‖𝖤𝑢𝑓(𝑉𝑡(𝑥))‖𝐿𝑛
⩽ 𝐶‖ ‖𝑓‖𝛾

𝑝
‖𝐿𝑛

(𝑡 − 𝑢)
𝛾

4 (𝑢 − 𝑠)
−

1

2𝑝 (𝑡 − 𝑠)
1

4𝑝 , (C.8)

|𝖤𝑠𝑓(𝑉𝑡(𝑥))| ⩽ 𝐶‖𝑓‖𝛾
𝑝
(𝑡 − 𝑠)

𝛾

4
−

1

4𝑝 . (C.9)

Proof. For 𝑠 ⩽ 𝑡 introduce the process

𝑍𝑠,𝑡(𝑥) ∶= 𝑉𝑡(𝑥) − 𝑃𝑡−𝑠𝑉𝑠(𝑥) = ∫
𝑡

𝑠
∫
𝐷

𝑝𝑡−𝑟(𝑥, 𝑦)𝑊(𝑑𝑟, 𝑑𝑦), 𝑥 ∈ 𝐷, 0 ⩽ 𝑠 ⩽ 𝑡.

By definition of 𝑍, we have for any 0 ⩽ 𝑠 ⩽ 𝑢 ⩽ 𝑡, 𝑥 ∈ 𝐷

𝑉𝑡(𝑥) = 𝑃𝑡−𝑢𝑉𝑢(𝑥) + 𝑍𝑢,𝑡(𝑥). (C.10)

It is immediate to see that 𝑍𝑢,𝑡(𝑥) is independent of 𝑠 and is Gaussian with zero mean and
variance

Var(𝑍𝑢,𝑡(𝑥)) = ∫
𝑡

𝑢

𝑝2(𝑡−𝑟)(𝑥, 𝑥)𝑑𝑟 = 𝜌𝑡−𝑢(𝑥). (C.11)

Using (C.10), this yields

𝖤𝑢𝑓(𝑉𝑡(𝑥))(𝜔) = [𝐺𝜌𝑡−𝑢(𝑥)𝑓(⋅, 𝜔)](𝑃𝑡−𝑢𝑉𝑢(𝑥)),

which is (C.7).
Next, we show (C.8). To proceed, we further decompose 𝑃𝑡−𝑢𝑉𝑢(𝑥) = 𝑃𝑡−𝑠𝑉𝑠(𝑥) + 𝑃𝑡−𝑢𝑍𝑠,𝑢(𝑥).

The random variable 𝑃𝑡−𝑢𝑍𝑠,𝑢(𝑥) = ∫ 𝑢

𝑠
∫
𝐷
𝑝𝑡−𝑟(𝑥, 𝑦)𝑊(𝑑𝑟, 𝑑𝑦) is independent of 𝑠 and has a

Gaussian law with mean zero and variance

𝜌𝑠,𝑢,𝑡(𝑥) ∶= Var[𝑃𝑡−𝑢𝑍𝑠,𝑢(𝑥)] = ∫
𝑢

𝑠

𝑝2(𝑡−𝑟)(𝑥, 𝑥) 𝑑𝑟 ⩾ 𝐶(
√

𝑡 − 𝑠 −
√

𝑡 − 𝑢)

⩾ 𝐶(𝑢 − 𝑠)(𝑡 − 𝑠)−1∕2, (C.12)

where the first inequality follows from (C.1). Hence, using (C.7) and the fact that 𝑓 is
𝑠-measurable, we have

𝖤𝑠|𝖤𝑢𝑓(𝑉𝑡(𝑥))|𝑛 = 𝖤𝑠
[|𝐺𝜌𝑡−𝑢(𝑥)𝑓(𝑃𝑡−𝑢𝑉𝑢(𝑥))|𝑛] = ∫

ℝ

𝑔𝜌𝑠,𝑢,𝑡(𝑥)(𝑧)|𝐺𝜌𝑡−𝑢(𝑥)𝑓(𝑃𝑡−𝑠𝑉𝑠(𝑥) + 𝑧)|𝑛 𝑑𝑧,

(C.13)
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70 ATHREYA et al.

where 𝑔 is the standard Gaussian density (2.1). Now we put 𝑞 =
𝑝

𝑛
⩾ 1, 1

𝑞
+

1

𝑞′
= 1 and apply

Hölder inequality and (C.12) to estimate the above integral from above by[
∫
ℝ

||𝐺𝜌𝑡−𝑢(𝑥)𝑓(𝑃𝑡−𝑠𝑉𝑠(𝑥) + 𝑧)||𝑝 𝑑𝑧

]𝑛∕𝑝 ‖𝑔𝜌𝑠,𝑢,𝑡(𝑥)(⋅)‖𝐿𝑞′ , (C.14)

The first factor in the above expression equals ‖𝐺𝜌𝑡−𝑢(𝑥)𝑓(⋅, 𝜔)‖𝑛
𝐿𝑝(ℝ)

and thus is bounded above
by

𝐶‖𝑓(⋅, 𝜔)‖𝑛

𝛾
𝑝

𝜌𝑡−𝑢(𝑥)
𝛾𝑛

2

by LemmaA.3(i). The second factor in (C.14) is bounded by𝐶𝜌𝑠,𝑢,𝑡(𝑥)
−

𝑛

2𝑝 for some constant𝐶 > 0,
where we again used Lemma A.3(i) for Dirac delta. Taking into account (C.6), the lower bound
for 𝜌𝑠,𝑢,𝑡(𝑥) in (C.12), we continue (C.13) as follows:

𝖤𝑠|𝖤𝑢𝑓(𝑉𝑡(𝑥))|𝑛 ⩽ 𝐶‖𝑓(⋅, 𝜔)‖𝑛

𝛾
𝑝

𝜌𝑡−𝑢(𝑥)
𝛾𝑛

2 𝜌𝑠,𝑢,𝑡(𝑥)
−

𝑛

2𝑝

⩽ 𝐶(𝑇0)‖𝑓(⋅, 𝜔)‖𝑛

𝛾
𝑝

(𝑡 − 𝑢)
𝛾𝑛

4 (𝑢 − 𝑠)
−

𝑛

2𝑝 (𝑡 − 𝑠)
𝑛

4𝑝 .

Taking expectation, we get (C.8).
To show (C.9), we use (C.7) with 𝑢 = 𝑠. Applying Lemma A.3(i) and the Besov embedding

𝛾
𝑝 ↪ 𝛾−1∕𝑝

∞ (see (3.6)), we deduce

|𝖤𝑠𝑓(𝑉𝑡(𝑥))| ⩽ 𝐶‖𝑓‖𝛾−1∕𝑝
∞

𝜌𝑡−𝑠(𝑥)
𝛾

2
−

1

2𝑝 ⩽ 𝐶‖𝑓‖𝛾
𝑝
(𝑡 − 𝑠)

𝛾

4
−

1

4𝑝 ,

where we also used (C.6). This implies (C.9). □
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