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Virtual Environment Model Generation for CPS Goal

Verification using Imitation Learning
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Cyber-Physical Systems (CPS) continuously interact with their physical environments through embedded

software controllers that observe the environments and determine actions. Field Operational Tests (FOT) are

essential to verify to what extent the CPS under analysis can achieve certain CPS goals, such as satisfying

the safety and performance requirements, while interacting with the real operational environment. However,

performing many FOTs to obtain statistically significant verification results is challenging due to its high cost

and risk in practice. Simulation-based verification can be an alternative to address the challenge, but it still

requires an accurate virtual environment model that can replace the real environment interacting with the

CPS in a closed loop.

In this paper, we propose ENVI (ENVironment Imitation), a novel approach to automatically generate an

accurate virtual environment model, enabling efficient and accurate simulation-based CPS goal verification in

practice.To do this, we first formally define the problem of the virtual environment model generation and

solve it by leveraging Imitation Learning (IL), which has been actively studied in machine learning to learn

complex behaviors from expert demonstrations. The key idea behind the model generation is to leverage IL

for training a model that imitates the interactions between the CPS controller and its real environment as

recorded in (possibly very small) FOT logs. We then statistically verify the goal achievement of the CPS by

simulating it with the generated model. We empirically evaluate ENVI by applying it to the verification of two

popular autonomous driving assistant systems. The results show that ENVI can reduce the cost of CPS goal

verification while maintaining its accuracy by generating accurate environment models from only a few FOT

logs. The use of IL in virtual environment model generation opens new research directions, further discussed

at the end of the paper.

CCS Concepts: · Software and its engineering→ Empirical software validation; · Computer systems

organization→ Embedded software; · Computing methodologies→Modeling methodologies.
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1 INTRODUCTION

Cyber-Physical Systems (CPS) utilize both physical and software components deeply intertwined to
control physical actuators at runtime continuously [7]. In particular, software controllers embedded
in a CPS play a significant role in observing the CPS’s environmental states and determining
appropriate actions to achieve certain CPS goals based on the observation. For example, a lane-
keeping system of a self-driving car continuously observes the car’s current position on the lane
through sensors and controls the steering wheel angle to keep the car at the lane center. Note
that the CPS (including the software controller) and its environment interact with each other in a
closed-loop mode where a current CPS action affects the next environmental states.

As the criticality of the CPS increases, Field Operational Test (FOT) becomes essential to verify to
what extent the CPS under development can achieve its goals (e.g., the self-driving car should drive
following the center of the lane) in the real operational environment [8]. Specifically, engineers
involved in CPS software controller development could deploy a CPS equipped with the controller
into the real environment and verify the CPS’s goal achievement using the logs collected during the
FOTs. However, the FOTs often contain uncertainties (e.g., nonuniform friction with the ground),
and conducting many FOTs for achieving statistically significant verification results is expensive,
time-consuming, and even dangerous.
An alternative is to use a virtual environment model that can simulate how the CPS controller

interacts with the real environment, and repeat the simulation many times to statistically verify the
goals. This simulation-based approach can significantly reduce the cost of the CPS goal verification
compared to using FOTs [26, 28].
However, it is challenging to accurately make the virtual environment model so that the

simulation-based verification result is the same as the FOT-based verification result, mainly due
to the following three reasons. First, given the closed-loop interaction between the CPS and its
environment, the environment model must be able to generate the next environmental state (i.e.,
the input of the software controller) considering the sequence of the past environmental states and
CPS actions. Second, the environment model will be used to simulate a sequence of closed-loop
interactions with the CPS where even small errors in individual interactions can be accumulated
over time. This means that it is essential to reduce the accumulation of errors as much as possible.
Third, even the uncertainties of the real environment must be taken into account in the virtual
environment model.

To address the above challenges, we propose ENVI (ENVironment Imitation), a novel approach
that generates a virtual environment model accurately mimicking the real environment. We recast
the problem of virtual environment model generation as the problem of Imitation Learning (IL),
which has been widely studied to mimic complex behaviors (e.g., climbing stairs) from expert’s
demonstrations [17]. ENVI leverages IL to generate the environment model that mimics how the
real environmental state changes according to the CPS actions and uncertainties recorded in a set of
log data collected from small FOTs as closely as possible. The generated environment model is then
used to simulate the CPS software controller as often as needed. Using the simulation, engineers
can efficiently assess the CPS goal achievement with well-known verification methods, such as
statistical model checking [31] and model-based testing [3].

Specifically, we formally define the virtual environment model generation problem for the CPS
goal verification. We provide a systematic process and user-configurable parameters to solve the
problem by leveraging IL. We evaluate the feasibility of ENVI by verifying two popular autonomous
driving assistant systems (i.e., lane-keeping systems and adaptive cruise control systems) of a
robot vehicle. The empirical evaluation results show that software engineers can automatically and
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efficiently generate an environment model that imitates the interaction between the CPS software
controller and its real environment using our approach from small FOT logs.
In summary, below are the contributions of this paper:

(1) We shed light on the novel problem of virtual environment model generation with a formal
problem definition.

(2) We propose ENVI, a novel data-driven approach for the virtual environment model generation
utilizing IL.

(3) We assess the application of ENVI to the verification of two driving assistant systems of a robot
vehicle.

(4) We discuss the research directions for the novel problem of the virtual environment model
generation of the CPS controller.
The remainder of this paper is organized as follows. Section 2 illustrates a motivating example.

Section 3 provides background on IL. Section 4 formalizes the problem of the virtual environment
model generation. Section 5 proposes ENVI. Section 6 reports on the evaluation of ENVI. Section 7
discusses open issues with future research directions. Section 8 introduces related work. Section 9
concludes the paper.

2 MOTIVATING EXAMPLE

Consider a software engineer developing a lane-keeping system of an autonomous vehicle. The
engineer aims to develop and verify the safety of vehicle’s software controller (i.e., lane-keeping
system) that continuously monitors the distance from the center of the lane and computes the
steering angle that determines how much to turn to keep the distance as small as possible.

Once the lane-keeping controller is developed, the engineer must ensure that the vehicle equipped
with the controller follows the center of the lane while driving in the real world. This holds true
even if the controller has been tested in simulations during earlier phases of development, as
there is an unavoidable gap between a fully simulated environment and the real world. To do this,
the engineer deploys the vehicle on a safe road and collects an FOT log, including the distance
𝑑𝑡 from the lane center, which is observed by sensors, and the steering angle 𝑎𝑡 , which controls
the actuators, at time 𝑡 = 1, . . . ,𝑇 where 𝑇 is a pre-defined FOT duration. Based on the collected
data, the engineer can quantitatively assess the safety of the lane-keeping system by calculating
the maximum displacement from the lane center, i.e., max𝑡 ∈{1,...,𝑇 } |𝑑𝑡 |. The assessment is used to
precisely verify the safety goal of the system, i.e., whether max𝑡 ∈{1,...,𝑇 } |𝑑𝑡 | < 𝜖 holds or not for a
small threshold 𝜖 given from the industrial standard such as ISO 11270 [18]. Notice that, due to the
uncertainties in FOTs, such as non-uniform friction between the tires and the ground, the same
FOT and the assessment must be repeated multiple times for statistical verification of the goal.
Clearly, it takes a lot of time and resources to repeat many assessments of the FOTs to obtain

statistically significant results. To address this issue, the engineer may decide to rely on simulations
built on few FOT results. However, manually generating an accurate virtual environment model
that can replace the real environment is also very challenging and expensive, especially for software
engineers who do not have enough expertise in physics. For example, it is infeasible to manually
make rules or functions defining 𝑑𝑡+1 for all possible histories ⟨(𝑑1, 𝑎1), . . . , (𝑑𝑡 , 𝑎𝑡 )⟩. Thus, the
simulation-based goal verification results could be very different from the FOT-based results.
Our approach, ENVI, enables efficient CPS goal verification by generating the virtual environ-

ment model from a small amount of FOT data. The engineer can simply provide ENVI with the
software controller (i.e., the lane-keeping system under analysis) and a few FOT logs, which is far
less than the data required for statistically significant results using FOTs only. Then ENVI auto-
matically generates an accurate virtual environment model that imitates the behavior of the real
environment of the lane-keeping system in terms of how the real environment interacts with the
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lane-keeping system; specifically, the virtual environment model generates 𝑑𝑡+1 for given history
⟨(𝑑𝑡−𝑙+1, 𝑎𝑡−𝑙+1), . . . , (𝑑𝑡 , 𝑎𝑡 )⟩ for 𝑡 = 𝑙, . . . ,𝑇 − 1, where 𝑙 is the length of the history, such that
max𝑡 ∈{𝑙,...,𝑇 } |𝑑𝑡 | calculated by the model is almost the same as the value calculated based on the
FOTs (i.e., accurate). By utilizing the accurate virtual environment model, the engineer can verify
the safety goal of the lane-keeping system while reducing the costs of FOTs by running simulations
instead of repeating them.
The challenge for ENVI is automatically generating a virtual environment model that continu-

ously behaves as similar as possible to the real environment using a limited amount of data. To
address this, we leverage imitation learning detailed in Section 3.

3 BACKGROUND: IMITATION LEARNING

Imitation Learning (IL) is a learning method that allows an agent to mimic expert behaviors for a
specific task by observing demonstrations of the expert [17]. For example, a humanoid robot (i.e.,
an agent) can learn how to walk by observing how a human walks (i.e., the expert’s demonstration).
IL assumes that an expert decides an action depending on only the current state that the expert
encounters. Based on this assumption, an expert demonstration is a series of pairs of states and
actions, and IL aims to extract the expert’s internal decision-making function (i.e., a policy function
that maps states into actions) from the demonstration [17]. We introduce two representative
IL algorithms in the following subsections: Behavior Cloning (BC) and Generative Adversarial
Imitation Learning (GAIL).

3.1 Behavior Cloning

Behavior Cloning (BC) infers the policy function of the expert using supervised learning [39].
Training data can be organized by pairing states and corresponding actions in the expert’s demon-
stration. Then existing supervised learning algorithms can train the policy function that returns
expert-like actions for given states. Due to the simplicity of the BC algorithm, BC can create a good
policy function that mimics the expert quickly if there are sufficiently much demonstration data.
However, if the training data (i.e., expert demonstration) does not fully cover the input state space
or is biased, the policy function may not mimic the expert behavior correctly.

3.2 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) evolves the policy function using iterative
competitions with a discriminator that evaluates the policy function [15]. Therefore, both the policy
function and the discriminator are trained in parallel.

The policy function gets states in the expert demonstration and produces simulated actions. The
discriminator then gets the policy function’s input (i.e., states) and output (i.e., simulated actions)
and evaluates how the policy function behaves like the real expert, as shown in the demonstration.
The more similar the policy function’s simulation is to the expert demonstration, the more rewarded
the policy function is by the discriminator. The policy function is trained to maximize the reward
from the discriminator. On the other hand, the discriminator is trained to discriminate the policy
function’s behavior as fake (i.e., the unreal expert) returning a low reward.
After numerous learning iterations of the policy function and the discriminator, the policy

function finally mimics the expert well to deceive the advanced discriminator. GAIL uses both
the expert demonstration data and the simulation trace data of the policy function generated
internally, so it works well even with small demonstration data [15]. However, because of the
internal simulation of the policy function, its learning speed is relatively slow [21].
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Fig. 1. Formal framework for CPS goal verification

4 PROBLEM DEFINITION

This section introduces a new mathematical framework for modeling how the CPS software
controller under analysis interacts with its environment to achieve its goals. Based on the formal
framework, we then define the environment model generation problem for CPS goal verification.

4.1 A Formal Framework for CPS Goal Verification

A CPS achieves its goals by interacting with its physical environment. Specifically, the CPS software
controller first obtains the CPS’s current state by observing the environment, and decides an
appropriate action to maximize the likelihood of achieving the goals. Then, taking action causes
a change in the environment for the next step, which the CPS will observe again to decide an
action for the next step. We assume the CPS and the environment interact in a closed loop without
interference by a third factor. To formalize this process, we present a novel CPS-ENV interaction

model inspired by Markov Decision Process [48] that models an agent’s sequential decision-making
process under observation over its environmental states.
Specifically, a CPS-ENV interaction model is a tuple𝑀 = (𝑆,𝐴, 𝜋, 𝛿, 𝜎0), as shown in the top of

Figure 1, where 𝑆 is a set of observable environmental states, 𝐴 is a set of possible CPS actions,
𝜋 : 𝑆 → 𝐴 is a policy function that captures the software controller of the CPS, 𝛿 : 𝑆 ×𝐴→ 𝑆 is
a transition function that captures the transitions of environmental states over time as a result
of CPS actions and its previous states1, and 𝜎0 is an initial input of 𝛿 . For example, starting from
𝜎0 = (𝑠0, 𝑎0), the controller observes its next state 𝑠1 = 𝛿 (𝑠0, 𝑎0), and decides a responding action
𝑎1 = 𝜋 (𝑠1). Then the CPS again senses the changed environment 𝑠2 = 𝛿 (𝑠1, 𝑎1), and so on.

Note that𝑀 is under Markov assumption, which may not hold in practice, especially when an
environmental state is partially observable due to the CPS’s limited sensing capability. To address
this, we extend the CPS-ENV interaction model 𝑀 to consider the history of states and actions.
Specifically, 𝜋 : 𝑆𝑙 → 𝐴, 𝛿 : 𝑆𝑙 ×𝐴𝑙 → 𝑆 , and 𝜎0 = ⟨(𝑠0, 𝑎0), . . . , (𝑠𝑙−1, 𝑎𝑙−1)⟩, where 𝑙 is the length
of history. Hereafter, we use the extended model to define the problem.

For a CPS-ENV interaction model𝑀 = (𝑆,𝐴, 𝜋, 𝛿, 𝜎0), we can think of a sequence of transitions

𝑠0
𝑎0
−→ 𝑠1

𝑎1
−→ 𝑠2

𝑎2
−→ ...

𝑎𝑛−1
−−−→ 𝑠𝑛 over 𝑛 steps where 𝑠𝑡−1

𝑎𝑡−1
−−−→ 𝑠𝑡 denotes a transition from a state

𝑠𝑡−1 to another state 𝑠𝑡 of the environment by taking an action 𝑎𝑡−1 of the CPS. More formally, we
define a trajectory of𝑀 over 𝑇 time ticks as a sequence of tuples tr (𝑀,𝑇 ) = ⟨(𝑠0, 𝑎0), . . . , (𝑠𝑇 , 𝑎𝑇 )⟩.

Since a trajectory of a CPS-ENV interaction model concisely captures the sequential interaction
between the CPS software controller under analysis and its environment, one can easily assess a
CPS goal achievement on a trajectory either quantitatively or qualitatively. Due to the uncertainties
of the physical environment, the assessment of the CPS goal on different trajectories of the same
model𝑀 may differ. Therefore, the CPS goal achievement is verified by statistically analyzing the
multiple trajectories. Note that multiple trajectories are collected by independent executions of

1Though we use deterministic policy and transition functions for simplicity, they can be easily extended in terms of

probability density, i.e., 𝜋 : 𝑆 × 𝐴→ [0, 1] and 𝛿 : 𝑆 × 𝐴 × 𝑆 → [0, 1], to represent stochastic behaviors if needed.
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the CPS-ENV interaction model, and thus, individual trajectories are independent of each other.
Figure 1 visualizes the CPS goal verification process. Specifically, let 𝜙 be a requirement that
precisely specifies a goal under verification. For a CPS-ENV interaction model𝑀 , the verification
result of 𝜙 for 𝑀 , denoted by 𝜓 (𝑀,𝜙), is computed by statistically evaluating the achievement
of 𝜙 on the trajectories of 𝑀 . 𝜓 (𝑀,𝜙) can be a probability distribution of assessments of 𝜙 or a
statistical test result. For example, the safety verification result of the lane-keeping system can be a
distribution of the maximum displacements from the lane center obtained from many tests or a
hypothesis test result based on a certain threshold of the maximum displacement.

4.2 Problem Statement

The problem of virtual environment model generation for simulation-based CPS goal verification
is to find an accurate environment model that can replace the real environment while making the
simulated verification result be same as the result achieved in the real environment. Specifically,
for the same CPS controller under analysis, let a CPS-ENV interaction model𝑀𝑟 = (𝑆,𝐴, 𝜋, 𝛿𝑟 , 𝜎0)

representing the interaction between the controller and its real environment (in FOT) and another
model𝑀𝑣 = (𝑆,𝐴, 𝜋, 𝛿𝑣, 𝜎0) representing the interaction between the same controller and its virtual
environment (in simulations). Notice that we have the same 𝑆 , 𝐴, 𝜋 , and 𝜎𝑜 for both 𝑀𝑟 and 𝑀𝑣

since they are about the same CPS controller2, whereas 𝛿𝑟 and 𝛿𝑣 are different since they represent
how the corresponding environments react to the actions performed by the CPS. For a requirement
𝜙 , we aim to have 𝛿𝑣 that minimizes the difference between𝜓 (𝑀𝑟 , 𝜙) and𝜓 (𝑀𝑣, 𝜙). Therefore, the
problem of virtual environment model generation for CPS goal verification is to find 𝛿𝑣 such that
|𝜓 (𝑀𝑟 , 𝜙) −𝜓 (𝑀𝑣, 𝜙) | is the minimum.
The virtual environment model generation problem has four major challenges. First, the number

of possible states and actions is often very large, making it infeasible to build a virtual environment
model (i.e., represented by a transition function 𝛿𝑣 : 𝑆𝑙 × 𝐴𝑙 → 𝑆) by exhaustively analyzing
individual states and actions. Second, since the virtual environment model continuously interacts
with the CPS under analysis in a closed-loop, even a small difference between the virtual and real
environments can significantly differ in verification results as it accumulates over time, the so-called
compounding error problem. Therefore, simply having a transition function 𝛿𝑣 that mimics the
behavior of 𝛿𝑟 in terms of individual input and output pairs, without considering the accumulation
of errors for sequential inputs, is not enough. Third, the real CPS-ENV interaction with 𝛿𝑟 is
nondeterministic, even if 𝜋 under analysis is deterministic. Defining 𝛿𝑣 addressing various sources
of 𝛿𝑟 ’s uncertainty, so that𝜓 (𝑀𝑣, 𝜙) is identical to𝜓 (𝑀𝑟 , 𝜙), is challenging. Finally, generating 𝛿𝑣
should not be as expensive as using many FOTs; otherwise, there is no point in using simulation-
based CPS goal verification. Recall that manually crafting virtual environment models requires a
lot of expertise, which could take longer than doing FOTs many times for the verification.

To address the challenges mentioned above, we suggest leveraging IL to automatically generate
virtual environment models from only a small amount of data. The data is the partial trajectory of
𝑀𝑟 , which can be collected from a few FOTs for the CPS controller under test in its real application
environment. Since IL can efficiently extract how experts make sequential actions for given states
from a limited amount of demonstrations while minimizing the compounding errors, it is expected
to be an excellent match to our problem. Therefore for our problem, IL will extract 𝛿𝑣 , instead of 𝜋
(which is the original goal of IL), that can best reproduce given trajectories of𝑀𝑟 (i.e., FOT logs).

2Note that 𝑆 and𝐴 can be the same for𝑀𝑟 and𝑀𝑣 because they are sets of observable environmental states and CPS actions

from the perspective of the CPS software controller under analysis.
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5 ENVIRONMENT IMITATION

This section provides ENVI, a novel approach to address the virtual environment model generation
problem for CPS goal verification, defined in Section 4, by leveraging IL. The original IL aims to
generate (train) the system’s policy function 𝜋 in a given environment, but we leverage IL for
ENVI with the aim of generating the environment 𝛿𝑣 of the CPS software controller under analysis.
Therefore, in our context, the real environment is considered an łexpertž, and FOT logs represent
the expert’s demonstrations.

Fig. 2. ENVI: Overall process and parameters

Figure 2 shows the overview of the environment model generation and simulation-based CPS
goal verification process using our approach. It is composed of five main stages: (1) collecting seed
logs from FOTs, (2) defining an environment model structure based on environment characteristics,
(3) training environment models from the seed logs using an IL algorithm, (4) validating the
environment models and selecting the best one, and (5) verifying the given CPS goals using the
best environment model. Each of the stages is detailed in the following subsections.

5.1 Stage 1: Collecting Seed Logs

The first stage of ENVI is to collect the interaction data between the CPS controller and its real
environment, which will be used as the łdemonstrationsž for IL to generate the virtual environment
later. For a CPS-ENV interaction model𝑀𝑟 = (𝑆,𝐴, 𝜋, 𝛿𝑟 , 𝑠0) defined in Section 4, the data collected
over time𝑇 can be represented as the trajectory of𝑀𝑟 over𝑇 steps, i.e., ⟨(𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , (𝑠𝑇 , 𝑎𝑇 )⟩
where 𝑠𝑡+1 = 𝛿𝑟 (𝑠𝑡 , 𝑎𝑡 ) and 𝑎𝑡 = 𝜋 (𝑠𝑡 ) for 𝑡 ∈ {0, 1, . . . ,𝑇 − 1}. The trajectory can be easily collected
from an FOT, since it is common to record the interaction between the CPS controller and its
real environment as an FOT log [55]. The environmental state 𝑠𝑡 and CPS action 𝑎𝑡 are vectors of
observable environmental state features and CPS action features, respectively, recorded at 𝑡 . For
example, the lane-keeping system records time-series data of the distances the vehicle deviated
from the center of the lane 𝑑𝑡 and the steering angles 𝑎𝑡 over 𝑡 = 0, 1, . . . ,𝑇 during an FOT.

In practice, the trajectories of the same𝑀𝑟 are not necessarily the same due to the uncertainty of
the physical environment, such as the non-uniform surface friction. Therefore, it is recommended
to collect a few FOT logs for the same𝑀𝑟 . Since the virtual environment model generated by IL will
mimic the given trajectories as much as possible, the uncertainty of the real environment recorded
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(a) Deterministic environment model (b) Nondeterministic environment model

Fig. 3. The neural network structure of environment model

in the trajectories will also be imitated. A set of collected FOT logs is then divided into training
and validation sets, which are used for Stages 3 and 4, respectively.

5.2 Stage 2: Defining Environment Model Structure

Before we train a virtual environment model 𝛿𝑣 , implemented as a neural network, using an IL
algorithm and the seed logs collected in the previous stage, it is required to define the structure
of 𝛿𝑣 in the following aspects: the input history length 𝑙 , the hidden layer design of 𝛿𝑣 , and the
determinism of 𝛿𝑣 (i.e., either deterministic or not).
The history length 𝑙 affects the information captured in environmental states; the larger 𝑙 , the

more information. However, having more information decreases the training and execution time
of 𝛿𝑣 . To better balance between the amount of information and the computation cost, one can
investigate the seed logs to obtain environment characteristics; for example, if there is a cyclic
pattern in the seed logs, 𝑙 can be the length of the cycle.

The design of hidden layers in 𝛿𝑣 specifies how the output variables of 𝛿𝑣 are calculated from the
input variables of 𝛿𝑣 . It is specific to a domain, but general guidelines of the neural network design
exist for practitioners [37, 40].

The determinism of 𝛿𝑣 is about the choice between simplicity and realism; a deterministic model,
which returns the same output for a given input deterministically, is simpler than a nondeterministic
model, which may return different outputs for the same input, whereas the latter is more realistic
than the former considering the uncertainty of real environments. Specifically, Figure 3 shows the
structures of (a) deterministic and (b) nondeterministic models, respectively. As defined in Section 4,
𝛿𝑣 : 𝑆𝑙 × 𝐴𝑙 → 𝑆 takes as input ⟨(𝑠𝑡−𝑙+1, 𝑎𝑡−𝑙+1), . . . , (𝑠𝑡 , 𝑎𝑡 )⟩ and returns 𝑠𝑡+1 in both structures.
However, the deterministic model shown in Figure 3a is trained to predict 𝑠𝑡+1 directly, whereas
the nondeterministic model shown in Figure 3b is trained to predict 𝑠𝑡+1 by inferring parameter
values for a given probability distribution of 𝑠𝑡+1.

For example, if we assume that 𝑠𝑡+1 follows a normal distributionN(𝜇, 𝜎) with unknown 𝜇 (mean)
and 𝜎 (standard deviation) values, a nondeterministic model is trained to predict 𝑠𝑡+1 by inferring 𝜇

and �̂� , which are internally utilized by a sampler to generate a sample (i.e., 𝑠𝑡+1) following N(𝜇, �̂�).
Figure 3b illustrates this process. Note that a sampler is essential in a nondeterministic model
to mimic the randomness of the real environment. Users can select an appropriate probability
distribution (e.g., uniform distribution, normal distribution, and Bernoulli distribution) based on
their observations in the real environment. This makes a nondeterministic model more realistic but
also more complex than a deterministic model.

ACM Trans. Embedd. Comput. Syst., Vol. 0, No. 0, Article 0. Publication date: 2023.



Virtual Environment Model Generation for CPS Goal Verification using Imitation Learning 0:9

5.3 Stage 3: Training Environment Model using IL

Once the structure of 𝛿𝑣 is determined, we can train 𝛿𝑣 using an IL algorithm with the train-
ing part of seed logs. The seed logs for training are used as a proper set of training data 𝐷 =

{(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}, where 𝑛 is the number of FOT logs for training, 𝑋𝑖 = ⟨𝑥1, 𝑥2, . . . ⟩ is the
sequence of 𝛿𝑣 ’s inputs collected from 𝑖-th FOT log, and 𝑌𝑖 = ⟨𝑦1, 𝑦2, . . . ⟩ is the corresponding
sequence of outputs (i.e., the expected value of 𝛿𝑣 (𝑥 𝑗 ) is 𝑦 𝑗 for all 𝑗 ∈ {1, . . . , |𝑋𝑖 |} and |𝑋𝑖 | = |𝑌𝑖 |
for 𝑖 ∈ {1, . . . , 𝑛})3. Since 𝑥 ∈ 𝑋 is an 𝑙-length sequence of state-action pairs, we can generate
𝑋 = ⟨𝑥1, 𝑥2, . . . ⟩ from an FOT log using a sliding window of length 𝑙 . Specifically, for an FOT
log ⟨(𝑠0, 𝑎0), (𝑠1, 𝑎1), . . . , (𝑠𝑇 , 𝑎𝑇 )⟩, we generate 𝑥 𝑗 = ⟨(𝑠 𝑗 , 𝑎 𝑗 ), . . . , (𝑠 𝑗+𝑙−1, 𝑎 𝑗+𝑙−1)⟩ (i.e., a sequence
of pairs of the previous environment states and CPS actions) and 𝑦 𝑗 = 𝑠 𝑗+𝑙 (i.e., the subsequent
environment state) for 𝑗 ∈ {0, . . . ,𝑇 − 𝑙 − 1}. This allows us to directly train 𝛿𝑣 to mimic (the state
transition of) the real environment, as recorded in seed logs using IL algorithms.
We leverage specific IL algorithms for the environment model generation problem and run the

algorithm to train 𝛿𝑣 using𝐷 . In the following subsections, we explain how each of the representative
IL algorithms, i.e., BC, GAIL, and the combination of BC and GAIL (BCGAIL), can be used for
training 𝛿𝑣 .

Note that we only present how BC, GAIL, and BCGAIL can be extended for ENVI as representative
examples since they are the most widely used IL algorithms. Nevertheless, all IL algorithms can be
extended for ENVI in general, as long as an IL algorithm is modified for training the environmental
state transition function 𝛿 : 𝑆 ×𝐴→ 𝑆 from training policy function 𝜋 : 𝑆 → 𝐴, as described in the
following.

5.3.1 Algorithm 1: BC. As described in Section 3.1, BC trains an environment model 𝛿𝑣 using
supervised learning. Pairs of the input and output of the real environment recorded in FOT logs are
given to 𝛿𝑣 as training data, and 𝛿𝑣 is trained to learn the real environment state transition shown
in the training data.
Specifically, the BC algorithm (whose pseudocode is shown in Algorithm 1) takes as input a

randomly initialized environment model 𝛿𝑣 and a training dataset 𝐷 ; it returns a set of trained
environment models𝑀 .

Algorithm 1: ENVI BC algorithm

Input :ENV model (randomly initialized) 𝛿𝑣 ,

Training data 𝐷 = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}

Output :Set of trained ENV models𝑀

1 Set of trained ENV models𝑀 ← ∅

2 while not (stoping_condition) do

3 foreach (𝑋,𝑌 ) ∈ 𝐷 do

4 Sequence of model outputs 𝑌 ′ ← 𝛿𝑣 (𝑋 )

5 Float lossBC ← getLoss(𝑌,𝑌 ′)

6 𝛿𝑣 ← update(𝛿𝑣, lossBC)

7 end

8 𝑀 ← append (𝑀,𝛿𝑣)

9 end

10 return𝑀

3In 𝐷 , the data from the 𝑖-th FOT log (i.e., 𝑋𝑖 = ⟨𝑥1, 𝑥2, . . . ⟩ and 𝑌𝑖 = ⟨𝑦1, 𝑦2, . . . ⟩) is kept separated from the other data

from the other FOT logs, since the specific IL algorithms (e.g., GAIL) need to process a sequential demonstration collected

in a single log (e.g., see lines 9-15 in Algorithm 2).
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The algorithm initializes a set of trained environment models 𝑀 (line 1). The algorithm then
iteratively trains 𝛿𝑣 using 𝐷 until a stopping condition (e.g., a fixed number of iterations) is met
(lines 2ś9). For each (𝑋,𝑌 ) ∈ 𝐷 , the algorithm repeats the following (lines 3ś7): (1) executing 𝛿𝑣
on 𝑋 to predict a sequence of outputs 𝑌 ′ (line 4), (2) calculating the training loss lossBC based on
the difference between 𝑌 ′ and 𝑌 (line 5), and (3) updating 𝛿𝑣 to minimize lossBC using optimization
algorithms such as well-known Adam [24] (line 6). For every iteration of the training the copy of
current 𝛿𝑣 is saved in𝑀 (line 8). The algorithm ends by returning the trained 𝛿𝑣s collected in𝑀

(line 10). Notice that this algorithm explicitly guides 𝛿𝑣 to closely resemble the real environment
based on lossBC , i.e., the difference between the real (𝑌 ) and virtual (𝑌 ′) environment states, i.e., the
real and virtual environment states.
Algorithm 1 is intuitive and easy to implement. In addition, the model’s loss converges fast

because it is a supervised learning approach. However, if the training data does not fully cover the
input space or is biased, the model may not accurately imitate the real environment.

5.3.2 Algorithm 2: GAIL. As described in Section 3.2, GAIL iteratively trains not only 𝛿𝑣 but also
the discriminator 𝜁 that evaluates 𝛿𝑣 in terms of the CPS controller 𝜋 . Specifically, for a state 𝑠 ,
𝜁 evaluates 𝛿𝑣 with respect to 𝛿𝑟 (captured by 𝐷) by comparing 𝛿𝑣 (𝑠, 𝜋 (𝑠)) and 𝛿𝑟 (𝑠, 𝜋 (𝑠)). The
evaluation result is given to 𝛿𝑣 as a reward; the better 𝛿𝑣 mimics the sequence of states starting from
𝑠 recorded in 𝐷 , the higher the reward. To do this, 𝜁 is trained using 𝐷 by supervised learning4,
and 𝛿𝑣 is trained using the rewards calculated by 𝜁 .

Algorithm 2 shows the pseudocode of GAIL. Similar to Algorithm 1, it takes as input a randomly
initialized environment model 𝛿𝑣 and a training dataset 𝐷 = (𝑋,𝑌 ); however, it additionally takes
as input a randomly initialized discriminator 𝜁 and the CPS controller under analysis 𝜋 . It returns a
set of trained virtual environment models𝑀 .

A set of trained environment models𝑀 is first initialized (line 1). The algorithm then iteratively
trains both 𝛿𝑣 and 𝜁 using 𝐷 and 𝜋 until a stopping condition is met (lines 2ś20). To train 𝜁 , for
each (𝑋,𝑌 ) ∈ 𝐷 (lines 3ś18), the algorithm executes 𝛿𝑣 on 𝑋 to predict a sequence of outputs 𝑌 ′

(line 4), calculates the discriminator loss loss𝑑 indicating how well 𝜁 can distinguish 𝑌 and 𝑌 ′ for
𝑋 (line 5), and updates 𝜁 using loss𝑑 (line 6). Once 𝜁 is updated, the algorithm trains 𝛿𝑣 using 𝜁

and 𝜋 (lines 7ś17). Specifically, the algorithm initializes a sequence of rewards 𝑅 (line 7) and a
model input 𝑥 ′ (line 8), collects 𝑟 ∈ 𝑅 for each 𝑥 ′ using 𝛿𝑣 , 𝜋 , and 𝜁 (lines 9ś15), calculates the
environment model loss 𝑙𝑜𝑠𝑠𝐺𝐴𝐼𝐿 by aggregating 𝑅 (line 16), and updates 𝛿𝑣 using 𝑙𝑜𝑠𝑠𝐺𝐴𝐼𝐿 using
optimization algorithms in reinforcement learning [41, 49] (line 17). To collect 𝑟 ∈ 𝑅 for each 𝑥 ′

(lines 9ś15), the algorithm executes 𝛿𝑣 on 𝑥 ′ to predict an output 𝑦′ (line 10), executes 𝜁 on 𝑥 ′ and
𝑦′ to get a reward 𝑟 (line 11), appends 𝑟 at the end of 𝑅 (line 12), executes 𝜋 on 𝑦′ to decide a CPS
action 𝑎 (line 13), and updates 𝑥 ′ = ⟨(𝑠1, 𝑎1), (𝑠2, 𝑎2) . . . , (𝑠𝑙 , 𝑎𝑙 )⟩ as 𝑥

′
= ⟨(𝑠2, 𝑎2) . . . , (𝑠𝑙 , 𝑎𝑙 ), (𝑦

′, 𝑎)⟩

by removing (𝑠1, 𝑎1) and appending (𝑦′, 𝑎) (line 14). A copy of 𝛿𝑣 is temporarily saved in 𝑀 for
each iteration (line 19) and the algorithm ends by returning𝑀 , the set of trained 𝛿𝑣s (line 21).

Notice that, to train 𝛿𝑣 , GAIL uses the input-output pair (𝑥 ′, 𝑦′) simulated by 𝜋 and 𝜁 , in addition
to the real input-output pair (𝑥,𝑦) in 𝐷 . This is why it is known to work well even with a small
amount of training data [15, 21]. However, the algorithm is more complex to implement than
BC, and the environment model converges slowly or sometimes fails to converge depending on
hyperparameter values.

5.3.3 Algorithm 3: Combination of BC and GAIL (BCGAIL). Notice that BC trains 𝛿𝑣 using the
training data only, but GAIL trains 𝛿𝑣 using the simulated data as well; BC and GAIL can be combined
to use both training and simulated data without algorithmic conflict. This idea is suggested by Ho

4The structure of 𝜁 is similar to 𝛿𝑣 , but the input of 𝜁 is (𝑠, 𝛿𝑣 (𝑠, 𝜋 (𝑠 ) ) and the output of 𝜁 is a reward value 𝑟 .
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Algorithm 2: ENVI GAIL algorithm

Input :ENV model (randomly initialized) 𝛿𝑣 ,

Discriminator (randomly initialized) 𝜁 ,

Function of CPS decision-making logic 𝜋 ,

Training data 𝐷 = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)}

Output :Set of trained ENV models𝑀

1 Set of trained ENV models𝑀 ← ∅

2 while not (stoping_condition) do

3 foreach (𝑋,𝑌 ) ∈ 𝐷 do

// Discriminator training

4 Sequence of model outputs 𝑌 ′ ← 𝛿𝑣 (𝑋 )

5 Float loss𝑑 ← getDisLoss(𝜁 , 𝑋,𝑌,𝑌 ′)

6 𝜁 ← update(𝜁 , loss𝑑 )

// Environment model training

7 Sequence of model rewards 𝑅 ← ∅

8 Model input 𝑥 ′ ← 𝑋 [0]

9 for |𝑋 | − 1 do

10 Model output 𝑦′ ← 𝛿𝑣 (𝑥
′)

11 Reward 𝑟 ← 𝜁 (𝑥 ′, 𝑦′)

12 𝑅 ← append (𝑅, 𝑟 )

13 CPS action 𝑎 ← 𝜋 (𝑦′)

14 𝑥 ′ ← updateInput (𝑥 ′, 𝑦′, 𝑎)

15 end

16 Float lossGAIL ← aggregate(𝑅)

17 𝛿𝑣 ← update(𝛿𝑣, lossGAIL)

18 end

19 𝑀 ← append (𝑀,𝛿𝑣)

20 end

21 return𝑀

and Ermon [15] to improve learning performance, and Jena et al. [21] later implemented the idea
as an algorithm BCGAIL.
The BCGAIL algorithm is the same as GAIL in terms of its input and output, and it also trains

both 𝛿𝑣 and 𝜁 similar to GAIL. In particular, 𝜁 is updated as the same as in GAIL. However, 𝛿𝑣 is
updated using both lossBC (line 4 in Algorithm 1) and lossGAIL (line 15 in Algorithm 2). By doing so,
BCGAIL can converge fast (similar to BC) with a small amount of training data (similar to GAIL).

5.4 Stage 4: Validating Environment Models

The IL algorithms return a set of trained environment models, and ENVI’s validation stage validates
the performance of the models and selects the best environment model that mimics the actual
environment state transition well using seed logs that were left unused for training. This is because
many IL algorithms, especially those based on GAIL, suffer from the convergence difficulty problem;
the model’s loss slowly converges or fails to converge [13]. Thus, we cannot guarantee the latest
model to be the best model, and validation is required to evaluate and select the best model from
candidate models stored during the training procedure. In original IL, human experts usually
observe the simulation traces of the trained model for validation [34]. However, the physical
environment is the target of imitation of ENVI, so it is challenging to validate environment models
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manually. To address this and automatically evaluate trained models, we suggest using three
domain-agnostic metrics: (1) 1-tick loss, (2) Euclidean distance, and (3) Dynamic Time Warping
(DTW). The key idea behind the validation metrics is to assess the similarity between the virtual
and real environments using the validation part (i.e., not used for training) of the seed logs. If
needed, domain experts are also allowed to define domain-specific metrics (e.g., safety and passenger
comfort for autonomous driving systems; see Section 6.1 for more details) to ensure the performance
of the models additionally. Using the metrics, the best model can be automatically selected from the
candidate models generated by the IL algorithm from the previous stage. The following paragraphs
detail the three domain-agnostic metrics.

1-tick loss (exact matching of the 1-step execution). The first metric evaluates the 1-step execution
of 𝛿𝑣 . This expects that if a single environmental state transition mimics the real environment well,
the simulation result, which is the sum of accumulated state transitions, will also be realistic [39].
This rationale is the same as that of the BC algorithm. Therefore, the same loss function is also
used here. Specifically, all possible model inputs collected from the validation FOT logs are given
to 𝛿𝑣 , and 𝛿𝑣 ’s outputs are compared to the expected outputs collected from the validation dataset
to calculate the environment model’s validation loss.

Euclidean Distance (exact matching of the T-step executions). The second metric verifies that the
model’s T-step simulation results exactly match the FOT logs. It expects that given the same starting
point, FOT and simulation will proceed the same. Specifically, the model is simulated from the initial
states extracted from validation FOT logs, as described in the GAIL algorithm. The simulation logs
are compared to the validation FOT logs by the Euclidean distance. Euclidean distance compares 𝑖th
point of simulation log to the 𝑖th point of FOT log (so-called lock-step alignment) [1], so it captures
whether the 𝛿𝑣 ’s simulations are precisely the same with FOTs well.

Dynamic TimeWarping (pattern matching of the T-step executions). The third metric quantifies the
similarity of the patterns of T-step simulations and FOTs. This assumes that it is almost impossible
for the simulation to be exactly the same as the FOT in the multi-step simulation, so it at least
seeks to find an environmental model whose simulation pattern is similar to the FOT. Specifically,
it compares the simulation logs and FOT logs by Dynamic Time Warping (DTW). DTW is a time-
series distance metric that compares a point in a source series to many points in a target series
(so-called elastic alignment) and finally quantifies the similarity of the patterns of two time-series [1].
Therefore, it measures how similar the behavior pattern of the virtual environment is to the real
environment.

5.5 Stage 5: Verifying CPS Goals

The last stage of ENVI is to verify the CPS controller under analysis using the simulation with
the virtual environment model 𝛿𝑣 generated from the previous stages. This is decoupled from the
previous stages that leverage IL, so engineers can use any simulation-based methods with 𝛿𝑣 to get
the CPS goal verification result𝜓 (𝑀𝑣, 𝜙) for a given goal 𝜙 . Specifically, an engineer can test the
controller 𝜋 based on 𝛿𝑣 that provides realistic inputs (i.e., observable states) to 𝜋 by simulating
the virtual CPS-ENV interaction model𝑀𝑣 = (𝑆,𝐴, 𝜋, 𝛿𝑣, 𝜎0) to collect many execution trajectories
instead of FOTs. The simulation can be repeated to accumulate as many assessments of 𝜙 as needed
by statistical verification methods, such as statistical model checking (SMC) [25]. Indeed, an SMC
algorithm (e.g., Sequential Probability Ratio Test [25]) may require thousands of trajectories to
verify the CPS goal depending on the given confidence interval. Therefore, the simulation using
generated 𝛿𝑣 allows engineers to perform the CPS goal verification with little cost in such cases.
Although the initial input 𝜎0 is required for simulating𝑀𝑣 , having 𝜎0 is much cheaper than having
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Fig. 4. Case study subject CPS: an autonomous robot vehicle

full FOT logs for FOT-based CPS goal verification since 𝑙 (i.e., the length of 𝜎0) is much shorter than
𝑇 (i.e., the entire FOT duration). Furthermore, only one 𝜎0 would be enough for a nondeterministic
𝛿𝑣 since it returns different simulation results for the same 𝜎0.

It is worth noting the differences between ENVI and (statistical) model checking. While both
model checking and ENVI serve verification purposes, they have different scopes and focuses.
Model checking, as a formal verification approach, can accommodate various formal specifications
for any systems that can be modelled. On the other hand, ENVI is designed explicitly for CPS goal
verification, focusing on the interaction between the CPS and its environment. Model checking
does not involve an automated model generation, whereas ENVI proposes an automated method to
create an accurate (virtual) environment model that can interact with the CPS. Last but not least,
ENVI internally incorporates statistical model checking [25, 44], as mentioned above, to provide
statistical results based on sampling (i.e., generating execution logs in our context). Therefore,
ENVI mainly serves as a tool for building virtual environment models, while model checking is
aimed at the formal verification of system specifications.

6 EMPIRICAL EVALUATION

This section is to evaluate the accuracy and efficiency of ENVI-based verification applied to the
real CPS software controller. We will call the simulation-based CPS goal verification using ENVI-
generated models ENVI-based verification in this section. Specifically, we first investigate the impact
of using different ENVI parameters (i.e., model determinism, IL algorithms, and model validation
criteria) on CPS goal verification and obtain a guide for setting optimal ENVI. We then analyze how
similar the environment models generated by the optimized ENVI are to the real environment and
how accurate the CPS goal verification results using the models are. Last but not least, we analyze
ENVI’s environment model generation efficiency for efficient CPS goal verification in terms of the
cost of collecting FOT logs for the model generation. To summarize, we answer the following three
research questions:

RQ1: What is the impact of ENVI parameters on the simulation-based CPS goal verification
accuracy?

RQ2: How accurate is the simulation-based CPS goal verification using ENVI?
RQ3: Can ENVI efficiently generate environment models with a small amount of FOTs?

6.1 Evaluation Subjects

We implement a simplified autonomous vehicle equipped with autonomous driving assistant
systems (ADAS) to answer the research questions in the context of a real CPS goal verification. We
utilize our open physical experimental environment [45] that abstracts an autonomous vehicle as a
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programmable LEGO robot and a road as a white and black paper lane, as shown in Figure 4. Like
many other CPS, the autonomous robot vehicle comprises three parts: sensors, controllers, and
actuators. Sensors (e.g., the color and ultrasonic sensors) give data observing the CPS environment
to the controllers. Controllers (e.g., a Python program in a LEGO brick) control actuators (e.g.,
motors of the wheels) that make CPS act. The robot is capable of making 20 actions in a second. As
the controllers under analysis, we develop two popular ADAS, a lane-keeping system (LKS), and an
adaptive cruise control system (ACCS), for the robot vehicle and verify their goals using ENVI. The
following subsections introduce the two software controllers and their goals under verification.

Case Study 1: Lane-keeping System (LKS). The goal of the LKS is to keep the center of the lane,
indicated by the border between white and black areas while driving. As already described in
Section 2, the LKS observes the distance from the center of the lane and decides the steering angle
for turning to the lane center. Our LEGO-lized robot vehicle monitors how far the vehicle deviated
from the lane center through a color sensor facing down. The observed color indicates the vehicle’s
displacement from the lane center because the lane’s left/center/right is sensed as white/gray/black
by the color sensor. The color value ranges from 0, meaning the darkest, to 100, meaning the
brightest. The LKS returns the vehicle’s turning rate (degree per second), given the observed color
value. Positive/negative rate means turning right/left, respectively. In this case study, we developed
three different versions of the LKS showing different performances and verified them using ENVI.
The LKS controller is verified in terms of passenger comfort and safety. The controller shall

maximize passenger comfort. The comfort is measured by a jerk, the rate of acceleration change of
the vehicle. The LKS’s jerk is calculated as the rate of acceleration change in the vertical directions
of the vehicle. Simultaneously, the controller shall maximize the degree of safety. It is measured by
the maximum displacement from the lane center.

Case Study 2: Adaptive Cruise Control System (ACCS). The ACCS aims to keep the distance from a
moving front vehicle. The system observes the front distance using an ultrasonic sensor and decides
the driving speed to keep the distance between cars set by users (200𝑚𝑚 in our experiments).
An input of the system is the distance to the front vehicle (𝑚𝑚), and an output is a driving speed
(𝑚𝑚/𝑠). If the front vehicle is far, the system accelerates, and the system decelerates if the front
vehicle is close. We also develop and verify three versions with different performances.

Like the LKS, the ACCS is also verified in terms of passenger comfort and safety. A jerk also
measures the comfort of the ACCS by the rate of acceleration change in the horizontal directions
of the vehicle, and the minimum displacement from the target safe distance to the front vehicle
measures the safety.

6.2 Evaluation metric

It is essential to assess the accuracy of the ENVI-based verification for all RQs. To do this, we
measure the (dis)similarity between the FOT-based verification and ENVI-based verification results.
The more similar the ENVI-based and FOT-based verification results, the better ENVI accurately
mimics the real environment, when the same CPS controller is verified.

Specifically, we define an imitation score (i.e., the smaller the better) of an environment model 𝛿𝑣
as

ImitationScore(𝛿𝑣) = 𝐷𝐾𝐿 (𝜓 (𝑀𝑣, 𝜙)∥𝜓 (𝑀𝑟 , 𝜙))

where𝜓 (𝑀𝑣, 𝜙) is a simulation-based verification result of CPS controller goals 𝜙 using 𝛿𝑣 generated
by the environment model generation method under analysis (e.g., ENVI), and𝜓 (𝑀𝑟 , 𝜙) is an FOT-
based verification result on the same goals as a reference. Note that executions of𝑀𝑣 and𝑀𝑟 are
nondeterministic as discussed in Section 4, so we define𝜓 (𝑀𝑣, 𝜙) and𝜓 (𝑀𝑟 , 𝜙) as joint distributions
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of the passenger comfort and safety assessments obtained from multiple simulation and FOT logs,
respectively. Though the distributions of goal assessment results can be further analyzed to get a
boolean or numeric verification result by statistical verification methods (e.g., SMC) as described in
Section 5.5, the distributions of the goal assessment results are directly compared to evaluate ENVI
more rigorously at a lower level in our experiments. The dissimilarity of𝜓 (𝑀𝑣, 𝜙) and𝜓 (𝑀𝑟 , 𝜙) is
quantified by KullbackśLeibler divergence (KL divergence, 𝐷𝐾𝐿) [23]. 𝐷𝐾𝐿 (𝑃 ∥𝑄) is a measure of
divergence (i.e., relative entropy) of a probability distribution 𝑃 from a reference distribution 𝑄 ,
widely used in imitation learning [52, 60]. If 𝑃 is identical to 𝑄 , 𝐷𝐾𝐿 (𝑃 ∥𝑄) is zero; the divergence
increases as their dissimilarity increases. Thus, the better ENVI mimics the real environment so that
𝜓 (𝑀𝑣, 𝜙) is identical to𝜓 (𝑀𝑟 , 𝜙), the smaller the KL divergence 𝐷𝐾𝐿 (𝜓 (𝑀𝑣, 𝜙)∥𝜓 (𝑀𝑟 , 𝜙)), which is
the imitation score.
We interpret the experiment results based on the imitation score to answer the three research

questions. In RQ1, we compare different ENVI configurations based on the imitation score. In RQ2,
we evaluate the accuracy of ENVI-based verification based on the imitation score. In RQ3, we also
analyze the change of the imitation score according to the number of training FOT logs to evaluate
how efficient the data-driven model generation is.
Note that, since KL divergence (𝐷KL) measures the relative entropy of a probability distribution

from a reference distribution, directly interpreting its values or establishing łacceptablež threshold
values for specific case studies is inappropriate due to its restiveness. To address this issue, many
IL studies [15, 16] additionally define domain-specific metrics for evaluating the performance
of trained models, and we did the same (i.e., the mean verification errors in terms of safety and
passenger comfort, as described in Section 6.1). This allows us to interpret the verification errors
directly. Although we cannot define acceptable thresholds for the verification errors in terms of
safety and passenger comfort due to a lack of domain knowledge, defining such a threshold value
for domain experts would be straightforward as long as the AV specifications and metrics, such as
safety and passenger comfort, are clearly defined.

6.3 ENVI Experimental Setup

As described in Section 5, the CPS goal verification using ENVI follows five main stages. Remind
the second, third, and fourth stages have user-configurable parameters, so we make total 18 ENVI
versions for all possible combinations (2 model structures, 3 IL algorithms, and 3 validation criteria)
for empirical analysis. In the following subsections, we explain our experimental setup for each
stage in detail.

6.3.1 Stage 1: Collecting Seed Logs. For case study 1, we run a robot vehicle with an LKS on a
straight road for about 5 seconds for an FOT. At 20 Hz, the following information is recorded in the
logs: (1) a lane color value 𝑐𝑡 as an environmental state observed by the vehicle’s color sensor and
(2) a turning rate 𝑟𝑡 as a CPS action decided by the vehicle’s controller. Therefore, an FOT log is a
sequence of state-action pairs ⟨(𝑐0, 𝑟0), . . . , (𝑐𝑇 , 𝑟𝑇 )⟩ where 𝑇 is the FOT duration.
For case study 2, we run an ego vehicle equipped with an ACCS and another moving front

vehicle, one meter apart at the beginning, on a three-meter straight road until the front vehicle
reaches the end of the road. One FOT takes about 10 seconds. The ego vehicle records (1) a distance
to the front vehicle 𝑑𝑡 observed by the distance sensor and (2) a driving speed 𝑠𝑡 as a CPS action at
20 Hz. Therefore, an FOT log is a sequence ⟨(𝑑0, 𝑠0), . . . , (𝑑𝑇 , 𝑠𝑇 )⟩ where 𝑇 is the FOT duration.
For each of the three versions of the two systems, we conduct 50 FOTs, so we collect a total

of 150 logs (3 software versions and 50 FOTs) for each subject system. Using the 50 FOT logs for
each version of the controllers, we conduct a 5-fold cross-validation to evaluate ENVI’s CPS goal
verification accuracy. Specifically, the 50 logs are randomly partitioned into 5 non-overlapping
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Table 1. Deterministic environment model structure

id input id layer output shape

0 input (2, 10)
1 0 1D convolution layer (16, 8)
2 1 Max pooling layer (16, 4)
3 2 Flatten layer (64)
4 3 Fully connected layer (512)
5 4 Fully connected layer (512)
6 5 Fully connected layer (1)

Table 2. Nondeterministic environment model structure

id input id layer output shape

0 input (2, 10)
1 0 1D convolution layer (16, 8)
2 1 Max pooling layer (16, 4)
3 2 Flatten layer (64)
4 3 Fully connected layer (512)
5 4 Fully connected layer (512)
6 5 Fully connected layer (𝜇) (1)
7 5 Fully connected layer (𝜎) (1)
8 6, 7 Normal distribution sampler (1)

folds, so each fold (10 logs) is used for evaluating the accuracy while the remaining folds (40 logs)
are used as seed logs (20 randomly selected logs for training in Stage 3 and the remaining 20 logs
for validating in Stage 4). The procedure is repeated five times until all folds have been considered
precisely once as the evaluation set.

6.3.2 Stage 2: Defining Environment Model Structure. As for the model structure, we set the length
of history 𝑙 as 10, meaning that the input of a virtual environment model is a 20-dimensional vector
(i.e., a sequence of 10 state-action pairs). Tables 1 and 2 summarizes structures of the deterministic
and nondeterministic environment model structures, respectively. We tried to design the hidden
layers straightforward. We decided to use a 1D convolution layer for reducing noise and selecting
important features of the time series data and fully connected layers for forward propagation. The
deterministic model directly calculates the next environmental state from the historical data. On
the other hand, the nondeterministic model calculates a mean and standard deviation of the next
state and randomly selects a state based on the normal distribution. We used a normal distribution
since it best represents the uncertainties appearing in the seed logs.

6.3.3 Stage 3: Training Environment Model. We implement IL algorithms using PyTorch library [32].
BC uses the ADAM optimizer [24] to update environment models. Since GAIL needs a policy
gradient algorithm to update models, we use a state-of-the-art Proximal Policy Optimization (PPO)
algorithm [41]. As for the hyperparameters of the IL algorithms, we use default values from the
original papers [15, 41]. Table 3 shows the hyperparameter values used in our evaluation.
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Table 3. Hyperparameter values for IL algorithms

Algorithm Hyperparameter Value

BC
Number of training iteration 500
Learning rate 0.00005

GAIL

Number of training iteration 500
Model & discriminator learning rate 0.00005
PPO num. policy iteration 10
PPO num. discriminator iteration 10
PPO reward discount 𝛾 0.99
PPO GAE parameter 𝜆 0.95
PPO clipping 𝜖 0.2

6.3.4 Stage 4: Validating Environment Models. When the IL algorithm is finished, trained environ-
ment models are evaluated based on the validation logs. For each validation log, only the initial
environment state is given to the models to generate a following sequence of environmental state
transitions by interacting with the CPS controller. The generated transitions are compared with the
rest of the validation log to measure the accuracy of the models in replicating the real environment.
Based on the validation results, the best environment model is chosen for each metric proposed in
Section 5.4.
6.3.5 Stage 5: Verifying CPS Goals. Each version of LKS and ACCS is simulated multiple times
with the environment models. For the simulation, the initial inputs of the environment models
are given from the testing dataset described in Section 6.3.1. Each simulation log is then used to
assess both passenger comfort and safety. As described in Section 6.2, the joint distribution of
the passenger comfort and safety assessment results based on the multiple simulation logs is the
verification result𝜓 (𝑀𝑣, 𝜙). In contrast, the verification result based on the full testing FOT logs is
𝜓 (𝑀𝑟 , 𝜙).

6.4 Comparison Baseline

In RQ2 and RQ3, we compare ENVI with two alternative data-driven environment model generation
approaches using Machine Learning (ML) techniques other than IL. In terms of ML, the environment
model generation problem defined in this paper can be seen as a regression problem that infers the
future based on the past data. Therefore, engineers can generate the environment model 𝛿𝑣 using
regression models without IL. We consider two well-known regression models, i.e., Polynomial
Regression (PR) [29] and Random Forest regression (RF) [42]. We used pre-defined PR and RF APIs
in Scikit-learn library [33]. All experimental settings except for the parts related to the learning
method (e.g., the volume of training data) are the same as ENVI.
In addition to PR and RF, we make a random environment model. The random environment

model does not require data or domain knowledge for modeling but changes the environmental
state randomly regardless of the previous CPS actions. Injecting random environmental state
observation to CPS controllers is often used to verify the possibility of unknown malfunctions
of the controllers [12, 56]. However, it does not represent the continuous interaction of the CPS
and its operational environment, making the verification result imprecise or rarely reproduced in
reality [56]. Therefore, we use the random environment model as another baseline ignoring the
CPS-ENV interaction defined in Section 4.
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(a) Case study 1

(b) Case study 2

Fig. 5. Imitation scores of all possible configurations of ENVI. The asterisk (*) highlights a set of optimal

configurations with no statistically significant differences.

6.5 Experiment Results

6.5.1 RQ1: ENVI Parameters. RQ1 aims to investigate the effect of ENVI parameters on the im-
itation score and suggest optimal configurations of ENVI. To answer RQ1, we make all possible
configurations of ENVI parameter settings and compare them statistically in the imitation score.
Figure 5 shows the comparison of 18 ENVI configurations in terms of the imitation score in

the verification of LKSs (Figure 5a) and ACCSs (Figure 5b). ENVI is configured by an IL algorithm
(BC, GAIL, or BCGAIL), a model structure (deterministic (det) or nondeterministic (nondet)), and
a model validation criterion (1-tick loss (loss), Euclidean distance (eucl), or DTW ). For each case
study, an ENVI configuration is evaluated 15 times (3 different controller versions and 5-fold cross-
validation). The spread of imitation scores of the ENVI configurations is shown on the boxplot
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(a) Case study 1 (b) Case study 2

Fig. 6. Comparison of imitation scores achieved by different ENVI parameter settings. The asterisk (*)

highlights parameter settings that are statistically significantly better than the others.

Table 4. Confidence level (p-value) of effect of the ENVI parameters on the imitation score and rank of the

influence. p-value is highlighted in bold when it is smaller than 0.05.

ENVI parameter Case study 1 Case study 2 Rank of the influence on the imitation score

Model determinism 3.201𝒆-10 4.661𝑒-01 2
IL algorithm 3.770𝒆-16 5.192𝒆-12 1
Validation criteria 3.823𝒆-04 4.688𝑒-01 3

in the log scale. For each case study, the ENVI configurations are sorted by the average imitation
score. A configuration achieving the smallest imitation score is the optimal.

Figure 5 highlights optimal configurations with asterisks (*) that outperform the others in each

case study. The Kruskal test selects a set of best configurations that do not have a statistically

significant difference in terms of the imitation score. BCGAIL_nondet_loss and BCGAIL_nondet_dtw

are optimal configurations in case study 1. In case study 2, three configurations using BCGAIL

and nondeterministic model structure are optimal regardless of model validation criteria (loss, eucl,

and dtw). BCGAIL_nondet_loss and BCGAIL_nondet_dtw configurations are common optimal in

both case studies. It means that ENVI with these configurations could generate the most accurate

environment models in both cases. Interesting is that ENVI versions that train nondeterministic

environment model structure using BCGAIL algorithm are the common top-3 configurations in

both case studies. It seems that the environment model structures and the IL algorithms greatly

influence accuracy of the model, but the model validation criteria have less impact on the score.

To further analyze the effect of each ENVI parameter on the model generation, we analyzed the

variance of each parameter’s imitation score. Figure 6 shows the spreads of the imitation score

achieved by each ENVI parameter setting, and Table 4 summarizes the statistical test (Kruskal test)

results of the ENVI parameters’ effects on the imitation score. The test’s null hypothesis is that the

distributions of the imitation score achieved by different ENVI parameter settings are identical.

Suppose the p-value of the test is smaller than 0.05. In that case, we can reject the null hypothesis,

so the imitation score is highly affected by different ENVI parameter settings. It means that users

should carefully configure the ENVI parameter.
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Both Figure 6 and Table 4 show magnitude of the effect of ENVI parameters on the imitation

score and the optimal parameter settings. First, the IL algorithm affects the imitation score most

significantly in both case studies. Especially, the BCGAIL algorithm generates the environment

model most accurately. Following the IL algorithm, the model structure influences the imitation

score. In particular, it is generally better to train the nondeterministic environment model in case

study 1. In case study 2, the two model structures do not have a significant difference in the average

imitation score, but the nondeterministic environment model could achieve a much lower minimum

imitation score than the deterministic model. The validation criteria have the smallest effect on

the imitation score in both case studies. All three criteria do not make a difference in the ENVI’s

performance in case study 2, while using DTW is slightly better in case study 1. This seems to be

because DTW can most flexibly compare the noisy FOT and the simulation logs [1].

The RQ1 results first show that the IL algorithm significantly impacts the performance of ENVI.

We found BCGAIL algorithm outperforms the other algorithms to generate accurate environment

models. Indeed, the BCGAIL algorithm is known to mimic expert behavior better than BC and

GAIL [21]. We also confirm that it effectively solves the virtual environment model generation

problem. In addition, the nondeterministic environment model structure is more suitable for

mimicking the real FOT environment. The real environment state transition is also nondeterministic

because CPS FOTs suffer from uncertainties such as sensor noise or non-static road friction.

Therefore, the nondeterministic environment model seems appropriate to mimic the uncertain

environment. Finally, we can say that the three validation criteria introduced in Section 5.4 have

little impact on ENVI’s performance, while DTW is recommended in case study 1. However, it also

implies that the rationales behind the three criteria are all reasonable.

In RQ1, we empirically suggest a guide to optimize ENVI regarding the imitation score based on

two case studies. Although the guide is based on our limited case studies and all the parameters

introduced in Section 5 are still meaningful in IL, we provide a starting point for the novel use of IL

in the environment model generation for CPS goal verification. The following subsections examine

how accurate and efficient CPS goal verification using ENVI optimized by BCGAIL_nondet_dtw is.

The answer to RQ1 is that ENVI’s imitation score is most influenced by the IL algorithms,

followed by the model structures and validation criteria in both case studies. Statistically,

BCGAIL algorithm, the nondeterministic model structure, and DTW validation criterion are

first recommended, based on our empirical evaluation.

6.5.2 RQ2: Accuracy. RQ2 aims to investigate how well environment models generated by ENVI

mimic the real environments and how accurate the ENVI-based verification is. To answer RQ2,

ENVI is configured by an optimal setting found in RQ1 (BCGAIL_nondet_dtw). We analyze the

ENVI-based verification compared to the baselines.

The accuracy of the models can be compared in terms of the imitation score considering the two

verification goals together. The more the simulation-based verification result accurately resembles

the FOT-based result, the lower the imitation score. Figure 7 shows the log scale spreads of the

imitation score of ENVI and the baselines. The theoretically lowest (best) imitation score is zero.

As already confirmed in the previous results, ENVI achieves the best imitation scores in overall

in both case studies. PR and RF are better than the random model but not as effective as ENVI to

mimic the real environment well.

Althoughwe can compare different model generationmethods in terms of their imitation scores, it

is difficult to interpret the absolute value of the imitation scores. To supplement this, we additionally

analyze the CPS goal verification accuracy in terms of safety and passenger comfort. Figure 8
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(a) Case study 1 (b) Case study 2

Fig. 7. Comparison of the verification accuracy of ENVI and baselines in terms of imitation score

(a) Case study 1

(b) Case study 2

Fig. 8. Comparison of FOT-based and simulation-based passenger comfort and safety verification results

visualizes multiple passenger comfort and safety assessment results obtained from simulations

and FOTs. The x-axis of a scatter diagram is the safety measure (i.e., maximum displacement (𝑚𝑚)
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Table 5. Comparison of mean verification errors of ENVI and baselines. The lowest error for each case study

and verification goal is highlighted in bold.

Mean verification error

safety (𝑚𝑚) passenger comfort (𝑚𝑚/𝑚𝑠3)
C
as
e
1

Random 6.04010 0.00055

PR 2.36947 0.00005

RF 1.66293 0.00003

ENVI 1.18543 0.00002

C
as
e
2

Random 86.06980 0.04900

PR 28.33626 0.00233

RF 18.76562 0.00159

ENVI 10.49110 0.00121

from the lane center for the LKS and minimum displacement (𝑚𝑚) from the front safety distance

for the ACCS), and the y-axis is the passenger comfort measure (i.e., maximum jerk (𝑚𝑚/𝑚𝑠3) for

both case studies). A FOT/simulation-based verification result is visualized as X/O-shaped dots,

respectively. As already described in Section 6.3.1, 10 FOT logs for each controller version are used

for testing, so there are 10 X-shaped dots of the same color distinguishing the controller version in

each scatter diagram. Based on the testing FOT logs, the environment models under comparison

simulate the CPS controllers, marked as 10 O-shaped dots of each color. However, ENVI, used

here, trains the nondeterministic environment model, so we repeat the simulation five times using

the same testing FOT logs to show the results mitigating the nondeterminism, 50 O-shaped dots

are shown in the ENVI diagrams. Remind the virtual environment model generation goal is to

make the simulation-based verification result similar to the FOT-based results. Therefore, the closer

the distributions of the O-shaped dots and the X-shaped dots, the more accurate and realistic the

simulation-based verification.

In Figure 8, we can see that the distribution of ENVI’s verification results more overlapped

with the distribution of FOT verification results than the baselines. This shows that ENVI-made

environment models mimics the real environment well, so the verification results based on the

simulations using the model are also realistic compared to the baselines. On the other hand, the

vehicle was evaluated as unrealistically unsafe and uncomfortable by the random model, since the

environmental state oscillates randomly regardless of the CPS actions. PR and RF models change the

verification results depending on the controller versions. However, the distribution of verification

results of the two models rarely overlap with the FOT-based results. In particular, the PR and RF

models do not properly imitate the uncertainty that emerges in the real world, so even if the test is

repeated, many simulation results are mostly the same, which is not the case in reality.

Table 5 shows the mean verification error of the simulation-based verification to interpret the

accuracy of the simulation-based verification. Simulation-based comfort and safety assessment

results, O-shaped dots in Figure 8, are compared with corresponding FOT-based assessment results,

X-shaped dots in Figure 8. As already visually confirmed in Figure 8, Table 5 shows that ENVI’s

verification errors are smaller than the baselines for all CPS goals and case studies; it means that the

ENVI-based verification is the most accurate. For example, it shows that ENVI’s mean verification

error of safety distance between two robot vehicles in Case Study 2 is about 10𝑚𝑚. Considering the

noise of the ultrasonic distance sensor mounted on the robot, this verification error is acceptably

small. In other words, the verification results obtained through simulation using ENVI accurately
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(a) Case study 1 (b) Case study 2

Fig. 9. Comparison of training data efficiency of ENVI and baselines

replicated the results obtained by repeating many FOTs with small errors in safety and passenger

comfort evaluation metrics.

RQ2 results show ENVI can generate virtual environment models that can perform accurate

simulation-based verification. When verifying the passenger comfort and safety of the two ADAS

using the ENVI-made environment model, the simulation-based verification results were similar to

the FOT-based results visually and quantitatively compared to the baselines. Therefore, engineers

can accurately verify CPS controllers at a low cost with simulation using ENVI instead of FOT.

The answer to RQ2 is that ENVI can generate accurate environment models from the seed

logs. Specifically, the ENVI-based verification results achieves smaller verification error

and lower imitation scores than the baselines for all case studies and verification goals.

Thus, ENVI makes CPS goal verification efficient by replacing the real environment with

the virtual environment model while keeping the verification result similar to reality.

6.5.3 RQ3: Efficiency. RQ3 aims to investigate the efficiency of ENVI in terms of the number of

FOTs required for collecting the training data for environment model generation. Collecting seed

logs is a bottleneck in the ENVI process, which is laborious and challenging to accelerate. Therefore

ENVI aims to generate an environment model with as small seed logs as possible. To answer RQ3,

we reduce the number of FOT logs given to ENVI as training data from 20 to 1 and analyze the

change of imitation score compared to the baselines. Remind 20 training and validation FOT logs

of each controller version were given in RQ1 and RQ2 as described in Section 6.3.1. However, the

number of FOT logs for training the environment models varies in RQ3, while the testing logs are

the same. ENVI in RQ3 also uses the optimal configuration found in RQ1.

Figure 9 shows the change in the average imitation score according to the number of FOT logs

for training and validation in two case studies. Since the random environment model does not

require training data, the score does not vary depending on the number of training FOT logs.

In both case studies, ENVI achieves smaller imitation scores than baselines even when the number

of training FOT logs is small overall. In addition, even if ENVI uses only one FOT log for the model

generation, it achieves the imitation scores similar to the baselines with 20 FOT logs. It means
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that the verification accuracy of ENVI with only one FOT log could be similar to the accuracy of

PR and RF shown in RQ2. It implies that IL is very efficient in inferring the real environmental

behavior from the small data. From this, we can see that even when small FOT logs are available,

ENVI can mimic the real environment well. However, using PR- or RF-made environment models

is still better than using random models for verifying CPS controllers.

RQ3 results show that ENVI can generate more accurate environment models with a small

amount of seed log data than the baselines. Therefore, ENVI is promising to perform accurate

simulation-based CPS goal verification using only a small amount of data when the FOT is costly.

It will significantly reduce the cost of CPS goal verification. In addition, the baselines are not

as efficient as ENVI, even in our simplified case studies, so ENVI is more applicable in practice.

However, applying ENVI to the verification of more complex CPS is still one significant future

work.

The answer to RQ3 is that ENVI can generate environment models with a small number

of seed logs compared to the alternative data-driven environment model generation tech-

niques. Therefore, engineers can reduce the cost of FOTs for collecting training data for the

environment model by using ENVI.

6.6 Threats to Validity

In terms of external validity, our LEGO-lized autonomous vehicle and two driving assistance

systems under verification are simplified for representing the real CPS and software controllers. To

mitigate the threat, our case studies were carefully designed to incorporate real CPS controllers,

reflecting real-world scenarios. Moreover, these studies vary in their CPS goals, with Case Study

1 focusing on single-vehicle lane-keeping and Case Study 2 addressing adaptive cruise control

between two moving vehicles. Although they may differ from the real CPS (e.g., autonomous

vehicle), it represents CPS software controllers in practice in terms of continuous interaction

with the environment. Applying ENVI to more complex CPS could show different results, but the

applicability of ENVI for the simulation-based verification shown in this paper is still valid for

CPSs with such software controllers. However, additional case studies with more complex CPS are

required to improve our results’ generalizability.

In terms of internal validity, the goal verification results based on specific autonomous driving

goals (e.g., passenger comfort and safety) could be a potential threat since the evaluation of the

driving assistance controller’s goal could be biased to a specific aspect of driving. To mitigate

this threat, in our evaluation, we chose two popular and important goals motivated by industrial

standards such as ISO 11270 for LKS [18] and ISO 15622 for ACCS [19] specifying acceptable safety

and comfort. We then aggregated the results on both goals to comprehensively understand whether

the subject controllers work well or not. Hyperparameter value settings for IL (e.g., number of

iterations, learning rates, Etc.) could be another potential threat to the internal validity since the

performance of machine learning can largely depend on hyperparameter values. We used the values

recommended in the original studies [15, 41]. Nevertheless, hyperparameter tuning is an important

research field, so it remains an interesting future work.

7 DISCUSSION

One of our main contributions is bringing attention to the novel problem of virtual environment

model generation using imitation learning in CPS goal verification. This section discusses various

characteristics and limitations of ENVI, as well as open challenges and future research directions.
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Efficiency. Sample efficiency is essential to ENVI. This is because conducting FOTs to collect

logs is the most expensive task in the data-driven approach. As the cost of generating accurate

virtual environment models increases, the incentive to replace field operational testing (FOT) with

simulation diminishes. In our experiments, ENVI, especially using BCGAIL algorithm, was the most

efficient environment model generation approach than the other baselines in most cases. Using

state-of-the-art IL algorithms for increasing sample efficiency [21, 59] could further help.

Scalability. The scalability of ENVI also largely depends on the IL algorithms used. Recent studies

have demonstrated that IL algorithms can handle input variables with dimensions of up to 30, 000

(i.e., three channels of images size of 100 × 100) [46]. Generative IL algorithms, such as GAIL,

have also proven effective in generating high-dimensional data (e.g., images and videos) from

demonstration examples [22]. Therefore, ENVI can handle a much larger number of environment

variables. It is important to note that ENVI does not prescribe any specific IL algorithm to use;

instead, it is a general approach, as shown in Figure 2, that aims to address the problem of virtual

environment model generation.

Generalizability. ENVI is domain-agnostic by serving formal problem definition of the virtual

environment model generation for CPS goal verification and a multifaceted solution using imitation

learning. Therefore, ENVI approach is deliberately designed to be agnostic to CPS specifics, making

it suitable for broader CPS goal verification applications. While we have validated our idea in the

automotive domain, optimizing ENVI for specific domains is an interesting future work.

Explainability. As with any deep learning-based approach, ENVI also lacks explainability for

trained environment models. However, ENVI includes a validation stage (Stage 4; Section 5.4),

where trained models are evaluated using a portion of seed logs collected in Stage 1 (Section 5.1)

before being used for CPS verification in Stage 5 (Section 5.5). In addition, domain experts can

further validate the performance of virtual environment models meet certain pre-defined criteria.

Furthermore, with the recent advances in explainable IL algorithms [9, 30, 58], the explainability of

ENVI would also be explicitly improved.

Robustness. ENVI should be robust to noise in FOT logs. Many IL studies assume the correctness

of the expert demonstration [2, 34]. However, the expert in our problem is the real environment,

so some level of noise is inevitable in the demonstration data (e.g., due to sensor noise). Though

we used noisy data collected by the real CPSs in the experiments, systematically investigating

the impact of noise was not in the scope of our work. Nevertheless, as many studies have already

considered the noise issue in machine learning [14, 57], they could better guide how to address

noisy FOT logs in ENVI.

Environment Abstraction. Finding a proper level of abstraction for the complex environment is

important. We abstracted the environment as a state-transition function in a closed-loop simulation

and recast the model generation problem as the IL problem (see Section 4). This is a typical level of

abstraction for the environment modeling [36, 38, 43]. However, this simple representation may not

be sufficient for some domains. Therefore, an extension of the environment model is an interesting

future work, and we can also refer to some IL studies that imitate complex expert behaviors (e.g.,

multi-task or concurrent behavior) [4, 46].

Data-Driven vs. Knowledge-Based. A hybrid of data-driven and knowledge-based environment

modeling can make the model further effective. If a high-fidelity simulation engine is based on

well-known principles in the CPS domain, engineers could manually create an accurate virtual

environment in the simulator. In contrast to such knowledge-based environment modeling, ENVI

is a data-driven approach in which only a few seed logs are required to generate an accurate virtual
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environment model automatically. This is a huge advantage in inferring complex environmental

behavior from data. Therefore, ENVI can complement the knowledge-based approach depending

on the application domain.

8 RELATED WORK

Modeling the change of observable environment according to the CPS operation is widely used to

verify to what extent the CPS (controller) under analysis can achieve its goals or requirements.

In the formal verification perspective, the dynamics of the environmental state affected by the

controller actions are embedded in the system model under verification [20, 53]. For example,

Ding et al. [11] modeled the continuous environmental state transition as a continuous place in an

extension of Petri nets, and model checking verified the system properties. Tran et al. [51] specified

the vehicle’s dynamics according to the control actions and performed safety verification. Wang

et al. [54] modeled the system and its environmental dynamics as a probabilistic model and verified

the model using statistical model checking. On the other hand, Cámara et al. [10] and Moreno

et al. [27] modeled the environment decoupled from the system model in Markov Decision Process

(MDP) and verified the combination of the system and the environment models. Our work is close

to [10, 27, 54] in terms of using statistical verification and generating decoupled environment model,

but it is differentiated in focusing on automated model generation.

The environment model also guides the CPS testing on simulation. For example, Püschel et al. [35]

modeled the environment configuration (e.g., location of the obstacle) variability under analysis in

the CPS simulation. Qin et al. [36] and Reichstaller and Knapp [38] explicitly modeled the interaction

between the CPS and environment as a closed-loop similar to our CPS-ENV interaction model

for test case generation. Sood et al. [47] recently also proposed a testing and validation approach

with a closed-loop model of the controller and its surrounding dynamics of the CPS. Arrieta et al.

[6] optimized the CPS test suite that manipulates the virtual environment to improve CPS testing

coverages. These are close to our work in terms that the virtual environment models specify the

environmental situations under analysis that the CPS may encounter in the real world. Still, the

simulation-based analysis result could be inconsistent with the real CPS operation depending on

engineer knowledge. Our work attempts to reduce the inconsistency of the simulation and field

test as much as possible based on the data.

Several studies have also proposed data-driven environment modeling. Ding et al. [11] learned

the environment state variables in the Petri net model from the runtime data. Aizawa et al. [5]

and Sykes et al. [50] inferred the environment model as a labeled transition system (LTS), and

a logic program from the CPS execution traces, respectively. Moreno et al. [27] forecasted the

future environmental change and represented the change in a probability tree model. Unfortunately,

the existing approaches revise the initial environment model made by an expert or infer some

part of the environment model from data, so sufficient domain knowledge is still necessary for

the accurate environment-model-based analysis of the CPS. However, our work automatically

generates the virtual environment model from small CPS FOT logs without significant domain

knowledge by abstracting the environment model as a black-box function. In addition, to the best of

our knowledge, this is the first work to formally define the problem of virtual environment model

generation and propose a solution leveraging IL.

9 CONCLUSION

This paper presents ENVI, a novel data-driven environment imitation approach that efficiently

generates accurate virtual environment models for CPS goal verification. Instead of conducting

expensive FOTs many times, ENVI requires only a few FOTs to train a virtual environment model.

By leveraging IL, an accurate virtual environment model can be generated automatically from the

ACM Trans. Embedd. Comput. Syst., Vol. 0, No. 0, Article 0. Publication date: 2023.



Virtual Environment Model Generation for CPS Goal Verification using Imitation Learning 0:27

collected seed logs. Specifically, we provided (1) the formal framework of the CPS goal verification

and problem definition of the virtual environment model generation, (2) the process of ENVI with

user-configurable parameters, (3) an empirical evaluation of the ENVI with two case studies using

robot vehicles, and (4) discussions on the research direction on the virtual environment model gen-

eration. We suggested optimal configurations of the ENVI based on the empirical evaluations. The

evaluation results finally show that ENVI can generate the virtual environment models efficiently

with a few seed logs, and the simulation-based CPS goal verification using ENVI was more accurate

than the alternative techniques.

In future work, we plan to apply ENVI in the evolutionary development and verification of the

CPS software controller. By this, ENVI can further reduce the need for laborious FOTs for the CPS

goal verification. In addition, we expect that ENVI is not limited to the purpose of CPS controller

verification, so we also plan to suggest a new application of ENVI, such as an optimal CPS control

predicting the environmental reaction.
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