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A B S T R A C T

The rapid emergence of 5G technology brings new cybersecurity challenges that hold significant implications
for our economy, society, and environment. Among these challenges, ensuring the effectiveness of Intrusion
Detection Mechanisms (IDMs) in monitoring networks and detecting 5G-related cyberattacks is of utmost
importance. However, optimizing cybersecurity levels and selecting appropriate IDMs remain as critical and
ongoing challenges. This work considers multiple pre-deployed distributed Security Agents (SAs) across the
network, each capable of running various IDMs, where they differ by their effectiveness in detecting the
attacks (referred to as security term) and the consumption of resources (referred to as Quality of Service
(QoS) costs). We formulate a joint security and QoS utility function leveraging the Cobb–Douglas production
utility function. There are several parameters that impact the joint objective problem, including the set of
elasticity parameters, that reflect the importance of the two objectives. We derive an optimal set of elasticity
parameters in closed form to identify the balancing point where both objectives have equal utility values.
Through comprehensive simulations, we demonstrate that increasing the detection level of SAs enhances the
security utility while simultaneously diminishing the QoS utility, as more computational, bandwidth, and
monetary resources are utilized for IDM processing. After optimization, our mechanism can strike an effective
balance between cybersecurity and QoS overhead while demonstrating the importance of different parameters
in the joint problem.
1. Introduction

The advent of 5G has enabled various types of services, such as
smart homes, Vehicle-to-Vehicle (V2V) communication, and industry
4.0, through the blending of different technologies and advances [1].
However, the evolution of security in telecommunications networks
from ensuring proper billing system functionality to protecting against
physical attacks and privacy concerns has resulted in increased security
challenges with the introduction of 5G and beyond. These challenges
stem from the larger number of users, heterogeneity of devices, new ser-
vices, and the utilization of new technologies [2]. Therefore, addressing
security in 5G has become crucial to maintaining the integrity of the
network and preserving the user experience.
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Network-based Intrusion Detection Systems (IDSs) are designed to
detect and signal potential attacks or suspicious activity that could
threaten the integrity, confidentiality, or availability of a network. IDSs
are designed to ensure network and data security by analyzing the char-
acteristics of the network traffic data, identifying malicious network
behavior, generating alerts, and formulating reasonable defense strate-
gies [3,4]. Security Agents (SA), enabled to execute the IDS techniques,
are deployed strategically and inspect encrypted traffic and extract key
features for identifying potential security breaches. Once the agents
detect any suspicious activity, they alert the orchestrator, which can
then take appropriate mitigation actions. Even though the terms IDSs
and Intrusion Detection Mechanisms (IDMs) are interchangeably used
in the literature, it is important to differentiate them since the former
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may incorporate multiple techniques (or IDMs) for detecting attacks.
SAs can monitor the system at different levels of detection exploit-
ing different IDMs, with higher levels leading to greater accuracy in
identifying potential intrusions. However, monitoring the system at
higher detection levels corresponds to more sophisticated IDMs, which
consume more resources, including network bandwidth, computational
resources, and monetary costs, resulting in an increased monitoring
overhead. Ensuring a high level of Quality of Service (QoS) is crucial
for preserving the 5G user experience, especially when a significant
amount of data is generated in the network. However, a classic dilemma
arises since high-security services provided by IDMs can often lead to
decreased QoS performance due to the additional network resources
required for IDM processing. [5]. Therefore, the system needs to bal-
ance the trade-off between maximizing the IDM detection performance
(i.e., keeping the network secure) and minimizing the resource costs
(i.e., preserving the user QoS). This brings the challenge to determine
which IDM is the most efficient in a system to compromise the security
and QoS objectives at different time instances. Please note that in the
rest of the paper, the term QoS refers to resource consumption or
monitoring overhead.

We note a large body of literature investigating the problem of
intrusion detection in 5G networks, in-vehicle networks, vehicular com-
munication, Internet of Things (IoT), and small-cells [6–10]. Moreover,
there have been numerous works studying how to secure the system by
providing countermeasures considering the security and QoS [11–15].
These efforts rely on either multi-objective Genetic Algorithm optimiza-
tion or game-theoretic methods to provide cybersecurity remediation.
However, except our previous work in [16], there is no attempt to
address the problem of IDM selection problem as intended in this work.

Motivated by the above, we first study how we can incorporate
security with QoS in final formulas reflecting the nature of the problem
by adopting the production function theory. We formulate the joint
security-vs-QoS problem for the IDM selection problem and provide
analytical studies that how we can balance between the two objectives
by introducing multiple parameters. The significance of such a trade-
off stands paramount to realizing and optimizing the cybersecurity
network because it accounts for the network’s states/conditions and
system preferences at different time instances toward selecting the
IDMs for the SAs.

The rest of the paper is organized as follows. Section 2 lists the liter-
ature review of the most related papers and highlights our contribution.
In Section 3, we describe the system model, formulate the problem, and
present the optimal solution for obtaining the balancing point of the
two objectives. In Section 4, we present the simulation results. Section 5
concludes the paper.

2. Related works

In this section, we first review the most relevant studies and then
provide our observations of the problem and contributions.

2.1. The literature review

Intrusion detection is an integral part of network security and has
become a research hotspot in recent years. A large body of works
dedicated their research to the problem of IDS design for various
scenarios. A taxonomy and a review of the significant research work on
IDSs can be found in [17–20]. One particular study [21] introduced a
framework for a network IDS that utilizes image processing techniques.
Additionally, the authors in [22] developed an IDS tailored explicitly
for IoT applications, leveraging the message queuing telemetry trans-
port Protocol. These works, among many others, highlight the ongoing
efforts to enhance IDS capabilities and adapt them to various domains
and technologies.

Progress in the field of Machine Learning (ML) is paving the way for
improving and developing intelligent and effective IDSs. To achieve a
2

high detection rate, data normalization plays an important role in ML-
based IDSs. In [23], the authors proposed a statistical method that can
identify the most suitable normalization method for IoT and traditional
network environments datasets that gives the highest accuracy for an
IDS. Over the past few years, there has been a proliferation of efficient
deep learning models like deep belief networks, deep convolutional
neural networks, recurrent neural networks, and deep generative net-
works. These models have found application in the development of
network IDSs [3,24]. [25] introduced a deep learning model using
stacked non-symmetric deep auto-encoders for accurate network in-
trusion detection. In [26], deep convolutional neural networks and
weight-dropped long short-term memory networks are combined in
big data environments to improve detection accuracy. Authors in [27]
developed a hybrid deep learning framework with convolutional and
recurrent neural networks for predicting and classifying malicious net-
work attacks. [28] proposed a model that combines a convolutional
neural network and a gated recurrent unit to address accuracy and class
imbalance issues in intrusion detection. [29] implemented an IDS using
different recurrent neural networks. As for privacy reasons many users
opt not to share their device-generated dataset with other devices. For
this reason, the authors in [30] propose a Federated Learning-based
approach for IoT intrusion detection problems. The imbalance between
the attack and normal traffic has motivated the authors in [31] to
propose an IDS called pretraining Wasserstein generative adversarial
network.

Studies have shown that running an IDS in a mobile device is energy
and time-consuming and takes memory capacity. In [32] the authors
propose a vehicular-edge computing fog-enabled approach enabling
offloading intrusion detection tasks to federated vehicle nodes to be
cooperatively executed with minimal latency.

There are also several papers studying IDS evaluation. [33] presents
a framework for the evaluation of IDSs. The framework studies the
advantages and disadvantages of multiple evaluation criteria, including
the Bayesian detection rate, the expected cost, and the sensitivity. The
authors in [34] present an IDM and a performance reliability evaluation
model that analyzes the performance and hardware dependability of
IDMs. The proposed evaluation model considers imbalanced sample
ratios and provides a comparative analysis of IDMs.

There are also many papers studying feature selection to improve
the performance of IDSs. [35] proposed an approach for generating
optimized ensemble IDS by employing feature selection techniques. Six
feature selection methods are compared, and the selected features are
used in combination with different classification algorithms to create
ensemble IDSs. [36] presents an IDS that utilizes feature selection
and clustering algorithms based on filter and wrapper methods. The
filter method employed is the feature grouping based on the linear
correlation coefficient algorithm, while the wrapper method utilized
is the cuttlefish algorithm. The proposed method employs a decision
tree classifier. [37] proposes two models for intrusion detection and
classification in secure networks. The first one reduces feature dimen-
sionality using a novel algorithm and incorporates trust relationships
between nodes. The second one introduces dynamic node cleansing
and restricts exposure time. Both models utilize ML and past node
behavior for classification. In [38] the authors propose a detection
model based on normalized mutual antibodies information feature
selection and adaptive quantum artificial immune. In a similar work
in [39], the authors propose a detection model using normalized mutual
information feature selection and cooperative evolution of multiple
operators based on an adaptive parallel quantum genetic algorithm.

While there have been numerous papers focusing on designing
IDSs, conducting feature selection on IDMs, and evaluating IDSs, there
remains a notable gap in the research regarding the selection of IDMs
for a specific system or operator. Specifically, the task of selecting the
most suitable IDM at any given time requires considering the detection
efficiency of each IDM and the associated costs in terms of QoS impact.

In our previous work in [16], we made progress in addressing this issue.
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Fig. 1. Indicative comparison between existing works on cybersecurity function modeling.
However, our current work distinguishes itself from [16] in several key
aspects. First and foremost, we provide a more detailed formulation for
the security and QoS utility function. Unlike the previous work which
demonstrated a linear relationship between the two objectives, we
introduce a non-linear function leveraging the Cobb–Douglas produc-
tion utility function. This enhanced formulation captures the intricate
dynamics between security and QoS more accurately. Moreover, we
exploit estimated values obtained from a 5G monitoring tool in the
simulation results. This enables us to incorporate realistic data into our
analysis and further enhance the validity and relevance of our findings.
Furthermore, our current study includes analytical studies that allow us
to derive the balancing point between the two objectives in closed form.
This analytical approach provides valuable insights and facilitates a
deeper understanding of the trade-offs between cybersecurity and QoS.

2.2. Our observations and contributions

We have observed a lack of relevant studies that have attempted to
elucidate the impact of system costs or monitoring resource utilization
on detection performance. System monitoring entails the consumption
of resources and effort, such as CPU utilization, bandwidth usage, and
monetary expenses, among others. Moreover, different IDMs operate
in distinct manners and require varying resources. Thus, it is crucial to
incorporate this relationship into the final formulas.

Several potential Key Performance Indicators (KPIs) can be defined
to illustrate this correlation, including (1) linear KPI functions, (2)
exponential KPI functions, and (3) logarithmic KPI functions. However,
we argue that such cases fail to adequately capture the true nature of
the problem due to the following reasons. Using linear functions does
not accurately represent the relationship between resource utilization
and detection performance for different types of attacks. It assumes
an equal and fixed increase or decrease in detection pace with each
resource allocated, regardless of the attack type. This oversimplification
does not capture the varying complexities associated with different
attack types. Although exponential functions can demonstrate a rapid
increase or decrease in detection performance with resource utilization,
they fail to incorporate an upper bound for the process. Additionally,
they do not adapt the pace of the graph with respect to resource
utilization, thereby, overlooking the need for flexibility in optimizing
resource allocation. Logarithmic functions come closer to describing
the phenomenon by providing an upper bound and flexibility in the
pace of detection performance with resource utilization. However, they
still lack the necessary degrees of freedom to adjust the pace over
resource utilization for all types of attacks. Different attack types may
require different levels of resource allocation to achieve optimal detec-
tion performance. Therefore, while linear, exponential, and logarithmic
KPI functions have their merits, they do not adequately capture the
intricacies and varying complexities associated with different types of
attacks and the corresponding resource utilization in IDSs. A more
nuanced approach is required to accurately model and optimize the
detection performance in relation to resource utilization.
3

We define detection performance by considering the above KPIs in
relation to changes in resource utilization, while also accounting for
the varying complexities associated with detecting different types of
attacks. To illustrate this concept, we classify attacks into three primary
categories:

1. Category 1: These attacks are relatively easy to detect since
their detection relies on known signatures or patterns in the
packets, e.g., poisoning attacks with malformed packets. With
limited resources, we can effectively detect these attacks, which
constitute the majority of the incidents detected. The detection
performance for these attacks exhibits more exponential behav-
ior, indicating that with each additional resource allocated, the
detection capability significantly improves.

2. Category 2: These attacks may involve correlating at least two
or three events to identify them. Examples of these attacks
include multi-faced attacks or Advanced Persistent Attacks. The
complexity of detection for these attacks is moderate. By allo-
cating additional resources, we can improve our ability to detect
attacks falling into this category in a linear manner.

3. Category 3: These attacks are highly complex to detect and
necessitate advanced techniques such as statistical analysis and
ML techniques, e.g., low Distributed Denial of Service attacks.
These attacks are less common than those in Categories 1 and
2. To effectively detect new attacks within Category 3, a signif-
icant allocation of resources is required, given their complexity
and rarity. The detection performance of these attacks exhibits
logarithmic behavior.

In light of the above considerations, we conceptualize the detection
performance of IDSs with respect to resource utilization as a multi-
dimensional space, which can be characterized by the properties of
an S-Type function. In this context, the problem can be described as
having an explicit configurable upper bound, as well as a configurable
rate of increase or decrease in relation to the utilization of resources
and efforts. Fig. 1 exhibits the three KPI functions along with our pro-
posed KPI function that combines these three functions to account for
the complexities associated with detecting different attack types. The
incorporation of these functions results in an S-shaped curve, offering a
greater range of flexibility to accurately model various threat types and
their severity. This S-shaped curve allows for a more comprehensive
representation of the detection performance and resource utilization
relationship.

This is a significant research finding that has not yet been provided
previously, to our knowledge, which can be approached based on
well-known Theorems coming from the Production Function Theory
called Cobb–Douglas functions, which have been used extensively in
Finance Sciences [40]. Adopting Production Function Theory and Util-
ity Theory, we can blend performance dynamics related to QoS and
security within the S-Type Cybersecurity function, to finally produce a
multi-performance KPI toward balancing all these performances jointly.
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This work introduces, for the first time, the means to approach the
IDM selection problem explicitly based on specific standard Theorems,
thereby opening new ways for existing and future studies to extend
their findings over mathematically precise Cybersecurity solutions for
system automation, optimization, and management. Our contributions
are summarized in the following:

1. Design of a new utility function to correlate security with the
QoS of the network for the IDM selection problem by adopting
the Cobb–Douglas production function, which, to our knowl-
edge, has not been attempted by relevant studies;

2. Formulation of the IDM selection problem as an optimization
problem considering the security and QoS constraints, which is
unique on its kind;

3. Derivation of optimal elasticity parameters, which correlate the
importance of security and QoS, allowing to finding the balanc-
ing point between the two objectives;

4. Demonstration via simulations to showcase the performance of
the system under various preference settings.

3. System model and problem formulation

Let us consider a heterogeneous architecture, comprising IoT de-
vices, base stations, servers, and various core-level network functions,
all of which are susceptible to cyberattacks. To ensure the security of
the network, we have deployed some SAs in the network to monitor
the system. Each SA can perform system monitoring with a specific
security detection level. Each of these security detection levels enables
the SA to identify certain attack types in the system. For instance,
one security level may be used for signature-based intrusion detection,
while another may be used for anomaly-based intrusion detection and
another one for complex event processing or hybrid intrusion detection
methods. Higher detection levels increase the efficiency and accuracy of
the SA in detecting attack types but at a higher system cost. Therefore,
there is a trade-off to consider in selecting the security detection level
for each SA, which is the focus of this paper. Please note that in the
rest of the paper, we might refer IDMs as security detection levels.

Let us define the set of 𝑀 SAs with  = {𝑎1,… , 𝑎𝑚,… 𝑎𝑀}. We
denote the security detection level of a SA as 𝐿𝑚 which equals 𝑛, where
𝑛 ∈ {1,… , 𝑁}, representing different detection levels. The problem
involves determining the appropriate detection level to assign to each
SA to detect attacks in the system effectively while maximizing the
system utility function. The system utility function is composed of
security, 𝛶 Sec

𝑚 and QoS, 𝛶QoS
𝑚 utility functions.

To evaluate the efficiency of a security detection level, we measure
the number of attacks the SA can detect out of the total number
of known attacks by incorporating the possibility of the existence of
unknown attacks in the system similar to [16]. Let us define 𝐻 , 𝐻 ′, and
�̄� as the number of detected attacks based on the selected detection
level, the total number of known attacks, and the number of unknown
attacks.2 The number of unknown attacks is also a portion of the known
attacks, i.e., �̄� ∈ [0 %𝜄] × 𝐻 ′. We define the efficiency of detection
at a specific level as 𝜌𝑚(𝐿𝑚) =

(

𝐻(𝐿𝑚)
𝐻 ′+�̄�

)

, where 𝐻(𝐿𝑚) = 𝜁 (𝐿𝑚) × 𝐻 ′

nd 𝜁 (𝐿𝑚) is the % of detected cyberattacks at a detection level. By
ncorporating the impact of the number of detected attacks with the
fficiency of a security detection level, we define the security utility
unction of the security level 𝐿𝑚 of SA 𝑚 as

Sec
𝑚 (𝐿𝑚) = 𝜌(𝐿𝑚) ×𝐻(𝐿𝑚) (1)

On the other hand, achieving high security detection accuracy
equires a system to allocate resources to enable this functionality for

2 The evolution of malicious software poses a critical challenge to the design
f IDSs, which is why we consider a small portion of attacks not to be known
o the IDSs.
4

the SAs. The cost associated with deploying a specific SA within the
network is not solely determined by the number of SAs but also by
the inclusion of IDMs, categorized in our paper as Levels 1 to 3. Each
of these levels exhibits unique resource consumption profiles, and this
variance in resource utilization directly impacts the overall cost of SA
deployment. In our model, we consider that different IDMs running on
SAs consume different network bandwidth and computational resources
and they also incur some monetary costs for performing the system
monitoring. In order to model bandwidth, computational resources, and
monetary costs we rely on the observations made on our monitoring
tools during experimentation. More precisely, let us suppose that the
system is initially purified from threats and at time instance 𝑇1 a single
attack 𝐴 is detected, for which, the system consumes 𝜗 computational
resources (RAM, CPU, HDD, etc. for implementing the necessary se-
curity process for threat monitoring), which has an impact on the
overall system bandwidth, i.e., the 𝜗 computational resources impose
a 𝑏 system overhead. Supposing that we detect a second threat at the
second time instance 𝑇2, the computational resources, and bandwidth
do not increase linearly, but logarithmically, i.e., for 2 threats, the
system does not consume 2 × 𝜗 and 2 × 𝑏, but slightly fewer resources.
Hence, we define bandwidth, 𝐵(𝐿𝑚), and computational consumption,
𝜂(𝐿𝑚), for the detection level 𝐿𝑚 as

𝐵(𝐿𝑚) = log
(

1 +𝐻(𝐿𝑚) × 𝑏
)

(2)

𝜂(𝐿𝑚) = log
(

1 +𝐻(𝐿𝑚) × 𝜗
)

(3)

On the other hand, monetary costs include both fixed and variable
prices. Let us assume the detection process costs 𝑐1 fixed and 𝑐2 variable
monetary resources to the operator. The first part can be the system
costs and the second part the marginal costs. We assume upon detection
of a second attack, the fixed part increases linearly, while the variable
part logarithmically. Hence, we define the monetary costs as

𝛹 (𝐿𝑚) = 𝐻(𝐿𝑚) × 𝑐1(𝐿𝑚) + log
(

1 +𝐻(𝐿𝑚) × 𝑐2(𝐿𝑚)
)

(4)

where 𝑐1 and 𝑐2 represent the fixed and variable monetary costs for
the given detection level, respectively. Hence, the overall QoS Utility
function for a specific security level can be defined as

𝛶QoS
𝑚 = 𝐵(𝐿𝑚) + 𝜂(𝐿𝑚) + 𝛹 (𝐿𝑚) (5)

In our model, we assume that the bandwidth, computational resources,
and monetary costs are shared among the 𝑀 SAs because SAs are
deployed as containers/pods over physical servers and the allocated
resources are virtualized. As the graph of the attack detection exhibits
an S-shaped behavior w.r.t. attack types and utilized resources, we
adopt the Cobb–Douglas production function to define our joint multi-
objective problem. The Cobb–Douglas utility function is defined as

𝑄(𝐾,𝐿) = 𝐴𝐾𝛼𝐿𝛽 (6)

where 𝐴, 𝐾 and 𝐿 represent the total factor productivity, Capital, and
Labor inputs, and 𝛼 and 𝛽 are the output elasticities of capital and labor
where 𝛼 + 𝛽 = 1. Let us map 𝐾 and 𝐿 to security and QoS utilities
and write the joint security and QoS function using the Cobb–Douglas
function as

𝑄(𝛶 Sec
𝑚 , 𝛶QoS

𝑚 ) = 𝐴
(

𝛶 Sec
𝑚

)𝛼 ×

(

𝜈
𝛶QoS
𝑚

)𝛽

(7)

The above equation represents that the Security is the Capital and
the QoS is the labor required to achieve that Capital. Please note
that the QoS term, as stated earlier, is the system costs/monitoring
overhead, which is why it is inversely proportional to the security term.
Moreover, 𝜈 > (𝐵𝑚𝑛 + 𝜂𝑚𝑛 + 𝛹𝑚𝑛) is a parameter to adjust the value of
QoS term in the overall utility function. In its generalized form, the
Cobb–Douglas function can be written as

�̃�(𝑥) = 𝐴
𝑃
∏

𝑥𝜆𝑖𝑖 (8)

𝑖=1
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where 𝑥1,… , 𝑥𝑃 are the non-negative quantities of goods consumed or
produced and 𝜆𝑖 is an elasticity parameter for good 𝑖. It should be noted
that 𝜆 =

∑𝑃
𝑖=1 𝜆𝑖, 𝛼𝑖 =

𝜆𝑖
𝜆 and 𝛼 =

∑𝑃
𝑖=1 𝛼𝑖. Hence, we rewrite (8) as

𝑄(𝑥) = 𝐴
𝑃
∏

𝑖=1
𝑥𝛼𝑖𝑖 (9)

Here we recall a feature of Cobb–Douglas production function prop-
erties that allows us (or the operator) the degrees of freedom to define
𝛼𝑖 according to the parameters of the problem at hand. In order to
incorporate elasticity in 𝛼𝑖 we define

𝛼′𝑖 =
𝛼𝑖

1 − 𝛼𝑖
(10)

So, (9) integrates elasticity as

𝑄(𝑥) = 𝐴
𝑃
∏

𝑖=1
𝑥
𝛼′𝑖
𝑖 (11)

Considering (7) and (11), the joint security and QoS utility func-
tion, where QoS utility function includes bandwidth, computational
resources and monetary cost, for a detection level 𝐿𝑚 can be defined as

𝑄(𝐿𝑚) = 𝐴×

(

𝜌(𝐿𝑚) ×𝐻(𝐿𝑚)
)𝛼′1 ×

(

𝜈
𝐵(𝐿𝑚) + 𝜂(𝐿𝑚) + 𝛹 (𝐿𝑚)

)𝛼′2
(12)

where the first term represents the security function and the second
term represents the QoS function.

3.1. The joint optimization problem

The optimization problem for all SAs can be written as

max
𝐋𝑚

{ 𝑀
∑

𝑚=1
𝑄(𝐿𝑚)

}

(13)

where 𝐋𝑚 ∈ R𝑀 represents the detection level decision vector for the
SAs. After removing the total factor productivity parameter,3 let us
rewrite the above problem for finding the decision matrix 𝐗 as

𝐏𝟏 ∶max
𝐗

{ 𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
(

(

𝜌𝑚𝑛 ×𝐻𝑚𝑛

)𝛼′1
×
( 𝜈
𝐵𝑚𝑛 + 𝜂𝑚𝑛 + 𝛹𝑚𝑛

)𝛼′2
)

𝑥𝑚𝑛

}

(14)

ubject to

𝟏.𝟏 ∶
𝑁
∑

𝑛=1
𝑥𝑚𝑛 = 1, ∀𝑚, (15)

𝟏.𝟐 ∶
𝑁
∑

𝑛=1
𝜌𝑚𝑥𝑚𝑛 ≥ 𝛿𝑠, ∀𝑚, (16)

𝟏.𝟑 ∶
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝐵𝑚𝑛𝑥𝑚𝑛 ≤ 𝛿𝑏, (17)

𝟏.𝟒 ∶
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝜂𝑚𝑛𝑥𝑚𝑛 ≤ 𝛿𝜂 , (18)

𝟏.𝟓 ∶
𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
𝛹𝑚𝑛𝑥𝑚𝑛 ≤ 𝛿𝛹 , (19)

𝟏.𝟔 ∶ 𝑥𝑚𝑛 ∈ {0, 1}, ∀𝑚, 𝑛 (20)

here 𝐗 ∈ R𝑀×𝑁 is the decision matrix where each element is binary
i.e., 𝑥𝑚𝑛 ∈ {0, 1}) representing if the 𝑛th detection level is selected

3 It does not change the IDM selection output while only changing the value
f the joint utility function.
5

for the 𝑚th SA. Constraint (15) assures each SA is assigned only one
detection level. Constraint (16) denotes that the security level for each
SA should be selected such that it guarantees detection of 𝛿𝑠% of the
cyberattacks. Constraints (17)–(19) ensure that the aggregated band-
width, computational consumption, and monetary costs, respectively,
of the selected levels among the SAs, do not exceed the maximum
available network resources.

The optimization problem assigns the detection level to the SAs such
that the trade-off between maximizing the security detection efficiency
and the QoS is addressed while also ensuring that the constraints are
respected. 𝐏𝟏 is a Binary Linear Programming problem. Although in
large dimensions it is NP-hard, due to the large coverage of SAs, and
even for several hundred SAs it can be solved by using standard solvers
such as CPLEX with low execution time on modest hardware [41,42].

3.2. Optimizing elasticity parameters for balancing security and QoS objec-
tives

In mathematical optimization problems, finding the sweet spot or
optimal solution is crucial for identifying the best possible solution
among a range of alternatives. In our context, we are interested in
optimizing elasticity parameters for balancing the security and QoS
terms in the joint objective function. This (a) helps in optimizing the
system efficiency in allocating different QoS resources (bandwidth,
computational and monetary costs) to different SAs by the selection of
a proper detection level, (b) ensures that the system operates in a cost-
effective manner while meeting the required security objectives, and (c)
provides an understanding of the point from which higher security/QoS
utility can be obtained by slightly increasing/decreasing the optimal
elasticity parameter.

However, in our problem, the security and QoS values are selected
based on observations from monitoring tools, and they are not gener-
ated randomly or according to a uniform distribution. Therefore, we
cannot simply assume that the point 𝛼1 = 𝛼2 = 0.5 is the balancing
point, as this point varies across different levels and SAs depending
on the security and QoS values. To address this issue, we derive the
optimal set of elasticity parameters that balance the security and QoS
objectives.

The 𝛼∗′1 and 𝛼∗′2 aim to identify the optimal values of 𝛼′1 and 𝛼′2 in
the joint objective function where both objectives are equally satisfied.
This can be seen as a game-theoretical approach where the two sides
of the game try to maximize their own utility function, however, the
equilibrium is where both sides are equally satisfied. To determine such
values for 𝛼′1 and 𝛼′2, we need to minimize the joint objective function as
this is the point where no objective has a higher utility than the other,
i.e., the balancing point.

Fig. 2 is a graphical analysis of the joint objective value of three
detection levels of an SA using (12). As seen, when 𝛼2 = 0.9, Level 1 and
3 have the highest and the lowest utility, respectively, and when 𝛼1 =
0.9, Level 3 and 1 have the highest and the lowest utility, respectively.
That is, when the QoS is prioritized (i.e., 𝛼2 = 0.9), Level 1 is preferred
more than the rest and when security is prioritized (i.e., 𝛼1 = 0.9), Level
3 is preferred more than the rest. The minimum points of each of these
three curves are encircled in the figure, and the respective elasticity
parameters represent the optimal values that allow for balancing the
security and QoS objectives. If a higher QoS is desired, we can move
left to a certain percentage (i.e., 𝛼∗′1 − 𝛿), and if a higher level of
security is desired, we can move right (i.e., 𝛼∗′1 + 𝛿). In order to find
the optimal elasticity parameters to reach the balancing point for one
SA, we calculate the balancing point for each of the detection levels by
taking the First-Order Optimality Conditions of P1 with respect to each
of the elasticity parameters and finally select the detection level with
the highest joint utility function. Hence, we rewrite (14) as

𝜶∗′,𝜶∗′ =
1 2
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Fig. 2. Optimal elasticity parameters for balancing the objectives.

argmin
𝜶′
1 ,𝜶

′
2

{ 𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

(

(𝛶 Sec
𝑚 )𝛼

′
1,𝑚𝑛 × (𝜈∕𝛶QoS

𝑚 )𝛼
′
2,𝑚𝑛

)

}

(21)

where 𝜶∗′
1 and 𝜶∗′

2 ∈ R𝑀×𝑁 . 𝜶∗′
1 can be defined as

𝜶∗′
1 =

⎛

⎜

⎜

⎜

⎝

𝛼∗′1,(1,1) 𝛼
∗′
1,(1,2) 𝛼

∗′
1,(1,3)

⋮ ⋮ ⋮
𝛼∗′1,(3,1) 𝛼

∗′
1,(3,2) 𝛼

∗′
1,(3,3)

⋮ ⋮ ⋮
𝛼∗′1,(5,1) 𝛼

∗′
1,(5,2) 𝛼

∗′
1,(5,3)

⎞

⎟

⎟

⎟

⎠

, where 𝛼∗1,(𝑚,𝑛) ∈ (0, 1) (22)

𝛼∗′1,(𝑚,𝑛) represents the security elasticity parameter for the 𝑛th level
of the 𝑚th SA, where the lower index 1 refers to the security elasticity
(similarly, 2 in 𝜶∗′

2 refers to the QoS elasticity parameter). In Eq. (22),
the indices of the level and agent are written in parentheses to avoid
confusion with the first index, which represents the objective index.
Please note that the elements in the matrix are the elasticity parameters
converted from their respective 𝛼∗1,(𝑚,𝑛) and as stated before 𝛼∗1,(𝑚,𝑛) +
𝛼∗2,(𝑚,𝑛) = 1. Similar to (22), we can also define 𝜶∗′

2 .

Proposition 1. The optimal value of 𝛼1,(𝑚,𝑛), which balances the objectives
in 𝐏𝟏, is

𝛼∗1,(𝑚,𝑛) =

√

ln
(

𝜈
𝐵𝑚𝑛+𝜂𝑚𝑛+𝛹𝑚𝑛

)

∕ln(𝜌𝑚𝑛×𝐻𝑚𝑛)

1 +

√

ln
(

𝜈
𝐵𝑚𝑛+𝜂𝑚𝑛+𝛹𝑚𝑛

)

∕ln(𝜌𝑚𝑛×𝐻𝑚𝑛)

(23)

Proof. The proof is given in Appendix □

𝛼∗2,(𝑚,𝑛) can be calculated as 𝛼∗2 = 1−𝛼∗1 . Considering Eq. (23) and by
using (10), we can obtain the optimal 𝛼∗′𝑖 as

𝛼∗′1,(𝑚,𝑛) =

√

√

√

√

√

ln
(

𝜈
𝐵𝑚𝑛+𝜂𝑚𝑛+𝛹𝑚𝑛

)

ln
(

𝜌𝑚𝑛 ×𝐻𝑚𝑛
) (24)

𝛼∗′2,(𝑚,𝑛) =

√

√

√

√

√

ln
(

𝜌𝑚𝑛 ×𝐻𝑚𝑛
)

ln
(

𝜈
𝐵𝑚𝑛+𝜂𝑚𝑛+𝛹𝑚𝑛

) (25)

Using (24) and (25), we can obtain 𝜶∗′
1 and 𝜶∗′

2 , and by replacing
them into 𝐏𝟏, we obtain (26) (see Box I), subject to 𝐂𝟏.𝟏 − 𝐂𝟏.𝟔. 𝐏𝟐 in
its simpler form can also be rewritten as

max
𝐗

{ 𝑀
∑

𝑚=1

𝑁
∑

𝑛=1

(

(𝛶 Sec
𝑚 )

√

√

√

√ln

(

𝜈

𝛶QoS
𝑚

)

∕ ln(𝛶 Sec
𝑚 )

×

(𝜈∕𝛶QoS
𝑚 )

√

√

√

√ln(𝛶 Sec
𝑚 )∕ ln

(

𝜈

𝛶QoS
𝑚

)

)

𝑥𝑚𝑛

}
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Please note that 𝐏𝟏 allows the operator/admin to adjust the im-
portance of the security and QoS objectives, while 𝐏𝟐 automates this
process by setting the optimal elasticity parameters such that the
balancing point between the two objectives are found.

Our proposed mechanism effectively manages dynamic changes in
network conditions and cyber threats for several reasons. These include
its consideration of security-related dynamics denoted as 𝐻(𝐿𝑚), QoS-
related dynamics represented by 𝐵(𝐿𝑚), 𝜂(𝐿𝑚) and 𝛹 (𝐿𝑚), as well as the
utilization of system-defined security and QoS-related thresholds to reg-
ulate detection efficiency and resource management. Furthermore, its
adaptability is supported by the properties of the S-type Cobb–Douglas
function. The mechanism provides continuous protection under various
settings, whether manually configured or automated with regard to
security and QoS priorities, all while making real-time decisions.

4. Simulation results

In this section, we present the numerical results obtained through
computer simulations, which are performed in Python. Notably, simu-
lations have been handled based on a wide range of attacks and threats
relevant to 5G networks and 5G-specific protocols (as identified by
the EU project SANCUS [43,44]), including NAS-5G SMC Replay at-
tacks, PFCP fraudulent session establishment, deletion or modification
requests, SUCI attacks, HTTP2 poisoning attacks, 5G protocol-related
denial of service attacks, to name some. To address these threats, sev-
eral IDMs are implemented specifically designed to detect attacks that
primarily target 5G-specific protocols like NGAP, PFCP, and HTTP2. To
effectively detect these attacks, our IDMs are equipped with the ability
to parse 5G-specific protocols, allowing them to extract relevant fields
for analysis. Additionally, our approach incorporates AI/ML-based de-
tection techniques and employs distributed events correlation methods
to enhance detection capabilities. These advanced techniques supple-
ment traditional rule-based detection, enabling us to identify more
sophisticated attacks, particularly those occurring within encrypted
traffic or involving multi-layered attacks.

We have relied on the Montimage Monitoring Tools (MMT)[45]4

intrusion detection system that is built to detect intrusions in close-to-
real-time by performing soft- and deep-inspection threat analysis and
identifying their type and severity. To evaluate the performance of our
solution for the IDM selection in a system, we have considered our
observations from MMT and have provided a range of values in Table 1
based on expert knowledge of three types of IDMs:

• Level 1 (L1): This level employs a rule-based detection approach,
relying on attack signatures’ bit-level patterns found in one or
more packets. L1 is particularly effective when the attack’s sig-
nature is well-known, making it a straightforward and efficient
mechanism for identifying most common attacks.

• Level 2 (L2): At L2, we harness ML/AI techniques to detect
anomalies within the network. These anomalies may be indicative
of various attack types, including Distributed Denial of Service
(DDoS) attacks. While effective, L2 can be resource-intensive and
is primarily geared toward identifying a broader range of attacks.

• Level 3 (L3): L3 is tailored to address complex, multi-faced, and
multi-layered attacks. It necessitates the aggregation of data from
multiple probes and employs correlation techniques to detect such
intricate attacks. L3 is resource-intensive and primarily focuses
on a specific set of attacks. However, resource allocation is jus-
tified when dealing with high-risk attacks where the potential
consequences warrant the investment.

4 MMT has been used in various metrics (fix/mobile network,
home/enterprise/operator, IoT/5G/Cloud, etc.). MMT-5G classifies and
weights each detected threat according to the MITRE classification framework
and computes the KPI(s) for each threat in the form of a multi-dimensional
matrix. The provided values in Table 1 rely on more than 10 years of expertise
in network security monitoring.
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× 𝑥𝑚𝑛

}

(26)

Box I.
Table 1
SA security and QoS parameters setting.

Levels 𝜁 (𝐿𝑚) 𝑏(𝐿𝑚) (per attack) 𝜗(𝐿𝑚) (per attack) 𝑐1 (per attack) 𝑐2 (per attack)

L1 (signature-based) [86 90]% 0.001 (0 0.1] [0.05 0.3] [0.003 0.007]
L2 (anomaly-based) [91 93]% 0.001 [0.8 0.9] [0.15 0.7] [0.008 0.02]
L3 (hybrid) [94 95]% (0 0.1] [0.9 1] [0.7 0.99] [0.008 0.02]
Our algorithm’s deployment can be achieved by the following
scheme structure compatible with the 5G setting:

1. the algorithm is encoded as a Python program and it is container-
ized as a Virtual Machine (VM) using Docker/Kubernetes,

2. the VM is conducted within the Management and Orchestration
(MANO) framework of the 5G Core,

3. the VM receives (A) security-related data by providing inputs to
connect to other VMs situated at the MANO system for security-
scanning, threat analysis, etc., (like MMT-5G), and (B) service-
related data through a user interface,

4. the VM realizes the changes at the input data via time- or
event-triggering modules (dockerized in the MANO),

5. upon triggering, the VM performs the Security-vs-QoS optimiza-
tion (i.e number and levels of SAs to be allocated in the under-
lying 5G system),

6. the VM provides the output to the Security Orchestrator as a
multi-dimensional matrix with elements for each threat detected
and each user requirement changed,

7. the Security Orchestrator decodes the matrix and communicates
with the MANO Orchestrator,

8. the MANO deploys the optimal result in the underlying 5G
system network via REST API.

Yet, we stress that the deployment of such schemes and the coordi-
nation mechanism between the SAs are out of the scope of this work,
which focuses on the design and math-based solution of the proposed
trade-off problem. In order to study the IDM selection problem, we
have considered a pre-deployment of SAs in a given area. The primary
objective is to comprehensively cover the relevant network paths. This
allows each SA to monitor the network elements within their respective
coverage zone.

Each SA has 3 detection levels corresponding to signature-based,
anomaly-based, and hybrid IDMs. Moreover, 5% of the cyberattacks are
considered unknown (i.e., 𝜄 = 5). All Sec and QoS terms are normalized
to fall within the (0 1) range, as provided in the table. On one hand,
constraint (16) enforces the selection of higher detection levels, on the
other hand, the (17)–(19) QoS constraints set budget limitations on the
selection of higher levels, creating a trade-off that must be addressed.
In the following, we perform several experiments to demonstrate the
impact of different parameters on the IDM selection process.

4.1. Impact of 𝛿𝑠 on the selected IDM

This experiment examines the impact of various 𝛿𝑠 values on the se-
lection of detection levels and the number of feasible solutions (i.e., the
7

Fig. 3. Impact of 𝛿𝑠 on IDM selection of SAs and the number of feasible solutions.

number of detection levels satisfying the security constraint), with a
generous amount of QoS resources. To accomplish this, we relax the
total number of attacks to 𝐻 ′ = 30, assume the number of agents is
𝑀 = 5, 𝛼1 = 0.7, 𝛼1 = 0.3, and randomly select QoS values within
the ranges provided in Table 1. The maximum QoS values are used
to calculate the QoS budget ensuring it never restricts the detection
level selection process. The average of 100 simulation runs for 5 SAs is
depicted in Fig. 3.

The figure indicates that when 𝛿𝑠 is small, all three levels are
feasible. However, since the objective considers both security and QoS,
lower-level IDMs are preferred (for higher security selection, the 𝛼1
needs to be set higher). Conversely, when the 𝛿𝑠 constraint is set to
0.89, only one level is feasible (only the highest level guarantees a
security detection level higher than 0.89), which is always selected.
Thus, the 𝛿𝑠 value can determine the number of feasible solutions, with
a tighter value limiting the feasibility to only the highest levels, and a
more generous value resulting in all IDM being feasible, with selection
dependent on the importance of security and QoS.

4.2. Impact of 𝛿𝑏, 𝛿𝜂 , 𝛿𝜓 on the selected IDM

In this experiment, we relax the security constraint while consider-
ing various QoS values to see the impact of QoS metrics on the selection
of detection levels. To this end, we relax the number of attacks to
𝐻 ′ = 30, the number of agents to 𝑀 = 5, and the security and QoS
values are randomly selected from the ranges given in Table 1. A low
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Fig. 4. Impact of 𝛿𝑏, 𝛿𝜂 and 𝛿𝛹 on IDM selection of SAs.

security requirement is used ensuring it never restricts the detection
selection process. The average of 100 simulation runs5 for 5 SAs with
different 𝛼1 values is depicted in Fig. 4.

The results show that when 𝛿∗ is small the lowest levels are selected.
This is because, with a low QoS budget, only the lowest detection
level is feasible. However, as the QoS budget increases (i.e., higher
𝛿∗), higher detection levels become feasible as they consume more QoS
resources, and the curves rise. It is important to note the selection of a
detection level with high QoS budgets also depends on the 𝛼1 and 𝛼2.
For instance, even if a large QoS budget is available but 𝛼1 = 0.6, lower
detection levels are selected as QoS is prioritized over the security in
the joint objective function. On the other hand, for 𝛼1 = 0.9, higher
detection levels are preferred as security is prioritized more. Please
note as the bandwidth values in all three levels, as given in Table 1,
are small, a bandwidth budget of 𝛿𝑏 = 0.1 does not result in a feasible
solution and for the values of 𝛿𝑏 > 0.1 nearly all levels become feasible.

4.3. Impact of 𝛼𝑖 on the selected IDM

In this experiment, we relax the security and QoS constraints while
various 𝛼𝑖 values to see the impact of elasticity parameters on the
selection of detection levels. Please note that the values of elasticity
parameters are calculated by inserting 𝛼1 and 𝛼2 into (10). We also
relax the number of attacks to be 𝐻 ′ = 30, the number of agents to be
𝑀 = 5, and the security and QoS values are randomly selected from the
ranges given in Table 1. Low security and high QoS requirements are
used ensuring they are not restricting the detection selection process.
The average of 100 simulation runs for 5 SAs is depicted in Fig. 5.

It is worth noting that both security and QoS are considered in the
objective function of the above curves, however, different importance is
given in the joint objective function. It can be seen as the 𝛼1 increases,
indicating a higher priority for security, higher detection levels are

5 Please note the values are an average of 100 runs for 5 SAs; hence, the
selected level values of smaller than level 1, indicate that in some of the runs,
no feasible solution was found.
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Fig. 5. Impact of 𝛼𝑖 on IDM selection of SAs.

Fig. 6. Impact of number of cyberattacks on the selection of IDMs.

selected. It is important to highlight that, based on the current IDMs
and their corresponding security and QoS values, setting 𝛼1 > 0.7 is
necessary to prioritize security over QoS.

4.4. Impact of number of cyberattacks on the selected IDM

This experiment aims to investigate the impact of the number of
cyberattacks on the selection of IDMs while automating security and
QoS constraint boundary values. We begin with stringent security and
QoS constraints and test the feasibility of finding a solution. If a
feasible solution is found, we return it; otherwise, we slightly loosen the
constraints. This iterative process of relaxing the constraints continues
until a feasible solution is obtained. The average of 100 simulation runs
for 5 SAs is depicted in Fig. 6.

The impact of the number of cyberattacks is observed on the in-
crease of the QoS costs and therefore, on the feasible solution sets. As
seen, by the increase in the number of cyberattacks, the lower IDMs
are selected more often. This is because as more attacks are detected,
the associated QoS costs also increase. As a result, only the lower-
level IDMs that meet the QoS requirements remain as feasible solutions.
Additionally, we can also see that when 𝛼1 = 0.9, it tends to favor the
selection of higher-level IDMs.

4.5. Impact of number of SAs on the time complexity of the solution

This experiment aims to investigate the impact of the number of SAs
on the time complexity of the solution while automating security and
QoS constraint values as explained in Section 4.4. The average of 50
simulation runs is depicted in Fig. 7. Please note, different values of 𝛼
1
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Fig. 7. Impact of number of SAs on the time complexity of the solution.

Fig. 8. The security and QoS objective values and the balancing point obtained through
the optimal elasticity parameters.

and 𝐻 ′ do not have any impact on the time complexity of the solution
but on the IDM selection.

As seen, as the number of SAs increases the average time complexity
of obtaining the optimal solution with feasible security and QoS bounds
rises, which is expected. It is important to highlight that each SA covers
the monitoring of a certain area, and therefore, 300 SAs may represent
the coverage of several states in a country, which is a large area. The
time complexity presented in the above results is obtained by running
the code on modest hardware. However, when executed on a server
with higher computational complexity, the optimal solution for all
SAs can be obtained in much less than 0.5 s. This demonstrates that
the optimal solution can be found quickly, considering both time and
energy consumption, even for a large number of SAs.

4.6. Optimal elasticity parameters for obtaining the balancing point

In this experiment, we relax the Security and QoS constraints to
observe the impact of different [𝛼1, 𝛼2] values on the security and
QoS utility terms individually. The average of 100 simulation runs is
depicted in Fig. 8. The elasticity values in this figure are converted to
their corresponding [𝛼1, 𝛼2] values in the 𝑋-axis.

The figure6 confirms that a high 𝛼2 value leads to a very high QoS
utility but a low security utility, which explains the selection of level 1

6 Please note that a high value of 𝜈 is selected for plotting this figure, which
is why the QoS utility for the case 𝛼2 = 0.9 has a higher value than the security
utility for the case of 𝛼1 = 0.9. Decreasing the value of 𝜈 results in a higher
value of security utility. However, regardless of the value of 𝜈, the selection of
IDM is the same, i.e., it changes the joint objective value, but not the selected
IDM as it is present in all the detection levels.
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in Fig. 5. In contrast, a high security power value, i.e., 𝛼1 = 0.9, results
in the highest achievable security utility and explains the selection of
Level 3 in Fig. 5. However, the most balanced outcome can be achieved
by solving (26) in Box I using (22), where both objectives have the same
utility value. This demonstrates that 𝜶′

1 and 𝜶′
2 can find the balancing

point.
The study leads to the following conclusions: (a) when 𝛼′1 is very

close to zero, the optimal objective is achieved, but security will have
a low impact in such cases; (b) the most balanced objective can be
achieved by utilizing the derived [𝜶′

1,𝜶
′
2]; and (c) to encourage the

selection of level 3, an 𝛼1 ≥ 0.8 is needed. It should be noted that these
conclusions are specific to the case study analyzed in this paper.

5. Conclusion

In this study, we addressed the problem of SA detection level
selection where the SAs perform the system monitoring for intrusion
detection. We considered a scenario where multiple SAs can monitor
the system at different detection levels, with higher levels offering
better accuracy but at a higher cost. We formulated the joint security
and QoS optimization problem using the Cobb–Douglas production
function, which is a unique approach in this field. We conducted
simulations and analyzed the impact of various parameters on the IDM
selection. Our findings show that certain elasticity parameter values al-
low for the selection of higher and lower detection levels. Additionally,
we analytically determined the optimal elasticity parameter values to
strike a balance between the two objectives. We also illustrated how the
number of attacks, as well as various security and QoS budget values,
affect the selection of the IDMs.

In the future, we aim to study the problem of SA deployment in a 5G
environment and examine the ramifications of multiple SAs operating
in overlapping regions. Moreover, we target exploring a more complex
scenario by investigating the impact of increasing the number of IDMs
for network monitoring, while also integrating additional QoS factors
into the utility function.
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Appendix. Optimal 𝜶𝟏

For the sake of simplicity in the notation, the indices of 𝑛 and 𝑚 are
removed from the 𝛼𝑖 in this section. From (10), we have 𝛼′1 =

𝛼1
1−𝛼1

and
𝛼′2 = 𝛼2

1−𝛼2
= 1−𝛼1

𝛼1
. Let us, for the sake of simplicity in notation, write

𝑆 = 𝜌𝑚𝑛 ×𝐻𝑚𝑛 and 𝑄 = 𝜈
𝐵𝑚𝑛+𝜂𝑚𝑛+𝛹𝑚𝑛

. We can rewrite the security and
QoS terms as a function of 𝛼𝑖 as

𝑠(𝛼1) = 𝑆
𝛼1

1−𝛼1 (A.1)

and

𝑞(𝛼 ) = 𝑄
1−𝛼1
𝛼1 (A.2)
1
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𝑠

The derivation for the above functions with respect to 𝛼1 are

′(𝛼1) = 𝑆
𝛼1

1−𝛼1 ⋅
ln𝑆

(1 − 𝛼1)2
(A.3)

and

𝑞′(𝛼1) = −𝑄
1−𝛼1
𝛼1

𝛼21
⋅ ln𝑄 (A.4)

Substituting (A.1) and (A.2) in 𝐏𝟏 yields

𝑓 (𝛼1) = 𝑆
𝛼1

1−𝛼1 ×𝑄
1−𝛼1
𝛼1 (A.5)

Applying the chain rule for the derivation of 𝑓 (𝛼1) considering (A.3)
and (A.4) yields

𝜕𝑓 (𝛼1)
𝜕𝛼1

=

(

𝑆
𝛼1

1−𝛼1 ⋅ 𝑞′(𝛼1)

)

+

(

𝑄
1−𝛼1
𝛼1 ⋅ 𝑠′(𝛼1)

)

=

(

−𝑆
𝛼1

1−𝛼1 𝑄
1−𝛼1
𝛼1

𝛼21
⋅ ln𝑄

)

+

(

𝑆
𝛼1

1−𝛼1 𝑄
1−𝛼1
𝛼1

(1 − 𝛼1)2
⋅ ln𝑆

)

(A.6)

To find the minimum value of 𝑓 (𝛼1) we set 𝜕𝑓 (𝛼1)
𝜕𝛼1

= 0, which yields

𝑆
𝛼1

1−𝛼1 𝑄
1−𝛼1
𝛼1

(1 − 𝛼1)2
⋅ ln𝑆 = 𝑆

𝛼1
1−𝛼1 𝑄

1−𝛼1
𝛼1

𝛼21
⋅ ln𝑄 (A.7)

ln𝑆
(1 − 𝛼1)2

= ln𝑄
𝛼21

(A.8)

After some algebraic calculations the optimal 𝛼1 equals

𝛼1 =

√

ln𝑄
ln𝑆

(

1 +
√

ln𝑄
ln𝑆

)

(A.9)

This completes the proof.
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