
This is a repository copy of Tidal dissipation in rotating and evolving giant planets with 
application to exoplanet systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/205976/

Version: Accepted Version

Article:

Lazovik, Y., Barker, A. orcid.org/0000-0003-4397-7332, de Vries, N. et al. (1 more author) 
(Accepted: 2023) Tidal dissipation in rotating and evolving giant planets with application to 
exoplanet systems. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 
(In Press) 

This is an author produced version of an article accepted for publication in Monthly Notices
of the Royal Astronomical Society. Uploaded in accordance with the publisher's self-
archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



MNRAS 000, 1ś12 (2023) Preprint 27 November 2023 Compiled using MNRAS LATEX style őle v3.0

Tidal dissipation in rotating and evolving giant planets with application to

exoplanet systems

Yaroslav A. Lazovik,1,2★ Adrian J. Barker,3† Nils B. de Vries3‡ and Aurélie Astoul3§
1Lomonosov Moscow State University, Faculty of Physics, 1 Leninskie Gory, bldg.2, Moscow, 119991, Russia
2Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky pr. 13, Moscow, 119234, Russia
3 School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Accepted 2023 November 26. Received 2023 November 24; in original form 2023 August 07

ABSTRACT

We study tidal dissipation in models of rotating giant planets with masses in the range 0.1−10𝑀J throughout their evolution. Our
models incorporate a frequency-dependent turbulent effective viscosity acting on equilibrium tides (including its modiőcation by
rapid rotation consistent with hydrodynamical simulations) and inertial waves in convection zones, and internal gravity waves in
the thin radiative atmospheres. We consider a range of planetary evolutionary models for various masses and strengths of stellar
instellation. Dissipation of inertial waves is computed using a frequency-averaged formalism fully accounting for planetary
structures. Dissipation of gravity waves in the radiation zone is computed assuming these waves are launched adiabatically
and are subsequently fully damped (by wave breaking/radiative damping). We compute modiőed tidal quality factors 𝑄′ and
evolutionary timescales for these planets as a function of their ages. We őnd inertial waves to be the dominant mechanism of
tidal dissipation in giant planets whenever they are excited. Their excitation requires the tidal period (𝑃tide) to be longer than
half the planetary rotation (𝑃rot/2), and we predict inertial waves to provide a typical 𝑄′ ∼ 103 (𝑃rot/1d)2, with values between
105 and 106 for a 10-day period. We show correlations of observed exoplanet eccentricities with tidal circularisation timescale
predictions, highlighting the key role of planetary tides. A major uncertainty in planetary models is the role of stably-stratiőed
layers resulting from compositional gradients, which we do not account for here, but which could modify predictions for tidal
dissipation rates.

Key words: planet-star interactions ś planetary systems ś planets and satellites: interiors ś planets and satellites: physical
evolution

1 INTRODUCTION

Tidal interactions play a major role in the dynamics of star-planet and
stellar binary systems, leading to planetary orbital migration (e.g.
Jackson et al. 2008, 2016; Villaver & Livio 2009; Bolmont & Mathis
2016; Gallet et al. 2017; Bolmont et al. 2017; Ahuir et al. 2021;
Lazovik 2021), orbital circularization (e.g. Witte & Savonĳe 2002;
Nagasawa et al. 2008; Beaugé & Nesvorný 2012; Barker 2022), spin-
orbit re-alignment (e.g. Barker & Ogilvie 2009; Winn et al. 2010;
Lai 2012; Hamer & Schlaufman 2022), and rotational evolution (e.g.
Bolmont et al. 2012; Penev et al. 2018; Gallet et al. 2018; Gallet
& Delorme 2019; Barker 2022). Indeed, tidal interactions alter the
architectures of exoplanetary systems, and the rotations of stars and
planets. However, theoretical predictions for tidal evolution are cur-
rently uncertain, and they highly depend on the speciőc prescriptions
employed in the aforementioned papers. This motivates us to work
towards developing more realistic treatments of tidal ŕows in stars
and planets.

Some early steps towards a theory of tides were made long before
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the discovery of the őrst exoplanet from studying the Earth-Moon
system (Darwin 1879). More than a hundred years of research has
substantially reőned our knowledge of tidal interactions in ŕuid bod-
ies such as stars and giant planets. Motivated by binary stars, some
crucial steps were made by Zahn (1975, 1977, 1989), who sepa-
rated the contributions of equilibrium (non-wavelike) and dynamical
(wavelike) tides in linear theory. Dynamical tides can be further di-
vided into inertial waves (hereafter IWs, or magneto-inertial) and
internal gravity waves (hereafter GWs, or magneto-gravito-inertial),
propagating in the convective and radiative regions, respectively (e.g.
Terquem et al. 1998; Goodman & Dickson 1998; Ogilvie & Lin 2004;
Wu 2005b; Ogilvie & Lin 2007; Goodman & Lackner 2009; Wein-
berg et al. 2012; Ivanov et al. 2013; Lin & Ogilvie 2018). Recently,
Barker (2020, hereafter B20) applied the latest tidal theory to com-
pute modiőed tidal quality factors 𝑄′ (essentially the ratio of the
maximum tidal energy stored to the energy dissipated in one tidal
period ś a quantity essential for tidal modelling) and tidal evolution-
ary timescales in a range of stellar models, developing prescriptions
for the dissipation of tides of various types (i.e. equilibrium tides,
IWs and GWs). These were implemented in Lazovik (2021, 2023)
to explore the secular evolution of hot Jupiter systems over a wide
parameter space, and employed to provide an explanation for close
solar-type binary circularization in Barker (2022).

© 2023 The Authors



2 Lazovik et al.

Even after the őrst exoplanet detection, attention has primarily fo-
cused on computing tidal dissipation inside stars, while dissipation
in planetary interiors has typically been restricted to Solar System
objects. A comprehensive application of tidal theory to rotating plan-
etary models was performed in Ogilvie & Lin (2004) (see also Wu
2005b and Ivanov & Papaloizou 2007), which opened the doors to
a new direction of research. Giant planets share many similarities in
structure with stars. They are both primarily multi-layer ŕuid bodies
containing both convective and radiative regions, albeit planets may
also have solid cores. But there are important differences: planets tend
to rotate faster (compared with both their dynamical and convective
frequencies) such that IWs are almost always likely to be important
and hot Jupiters also have larger tidal amplitudes than planet-hosting
stars, thereby requiring consideration of nonlinear tidal mechanisms
like the elliptical instability (that excites IWs in convection zones,
e.g. Barker 2016; de Vries et al. 2023) or other nonlinear IW in-
teractions (e.g. Favier et al. 2014; Astoul & Barker 2022, 2023).
The interaction between equilibrium tides and turbulent convection
is also expected to be far into the regime of fast tides (where tidal
frequencies exceed convective turnover frequencies) because con-
vection is typically much slower in planets than in stars (Goldreich
& Nicholson 1977; de Vries et al. 2023). Hence, the reduction in
the turbulent viscosity for fast tides must be accounted for (e.g. Gol-
dreich & Nicholson 1977; Ogilvie & Lesur 2012; Vidal & Barker
2020a; Duguid et al. 2020b). Furthermore, convection is likely to be
inŕuenced by rapid rotation, which can modify this interaction (e.g.
Stevenson 1979; Barker et al. 2014; Mathis et al. 2016; Currie et al.
2020; Dandoy et al. 2023; de Vries et al. 2023).

The role of IWs for planetary tidal dissipation has been explored
in prior work (e.g. Ogilvie & Lin 2004; Wu 2005a,b; Ogilvie 2009;
Ivanov & Papaloizou 2007; Goodman & Lackner 2009; Ivanov &
Papaloizou 2010; Papaloizou & Ivanov 2010; Ogilvie 2013; de Vries
et al. 2023). However, a detailed study of the evolution of tidal
dissipation rates and tidal quality factors 𝑄′ from equilibrium and
dynamical tides following planetary evolution has never been per-
formed previously to our knowledge, though Terquem & Martin
(2021) performed computations for just the equilibrium tide, as-
suming a different mechanism dissipates the tidal ŕow to what we
consider. We use new models of giant planet interiors with masses in
the range from 0.1 to 10𝑀J computed with the MESA code (Paxton
et al. 2011, 2013, 2015, 2018, 2019), with various strengths of stellar
instellation so as to model both hot and cold planets, to theoretically
calculate tidal dissipation rates (thereby extending Barker 2020, for
low-mass stars). In Sec. 2, we describe our model. Our results are
presented in Sec. 3 and applied to exoplanet eccentricities in Sec. 4.

2 METHODS

2.1 Tidal dissipation mechanisms

We consider a giant planet of mass 𝑀pl and radius 𝑅pl and employ
spherical coordinates centred on the body with radial coordinate 𝑟 .
The intensity of tidal dissipation is often quantiőed by the (mod-
iőed) tidal quality factor 𝑄′, which is proportional to the ratio of
the maximum energy stored in the tide to the amount dissipated
in one period (e.g. Goldreich 1963; Ogilvie 2014). More effective
dissipation corresponds to lower 𝑄′. Here we consider three mecha-
nisms of tidal dissipation: equilibrium (non-wavelike) tides damped
by their interaction with turbulent (rotating) convection, IWs, and
GWs. Each mechanism is characterized by its corresponding tidal
quality factor (𝑄′

eq, 𝑄′
iw, and 𝑄′

gw for equilibrium tides, IWs, and

GWs, respectively), and these are calculated within the formalism of
B20 (building upon many prior works) with a few modiőcations that
we will describe below. We focus on tides with spherical harmonic
degree 𝑙 = 2 and azimuthal wavenumber 𝑚 = 2, which is usually the
dominant component in systems with low obliquities. This is likely
to be the dominant component of tidal forcing in asynchronously
rotating bodies, as well as for eccentricity tides in weakly eccentric
but spin-synchronised bodies ś see e.g. Eqs. 4 and 5 in Ogilvie &
Lin (2007) or Table 1 in Ogilvie (2014).

The equilibrium tide is a quasi-static ŕuid response of a perturbed
body that is thought to be dissipated through the action of łturbulent
viscosity" in convective zones. The corresponding tidal quality factor
is obtained via the expression:

1

𝑄′
eq

=
16𝜋𝐺

3(2𝑙 + 1)𝑅2𝑙+1
pl

|𝐴|2

𝐷v

|𝜔t |
, (1)

where 𝐺 is the gravitational constant, 𝐷v is the rate of viscous
dissipation of the equilibrium tide, and 𝐴 is the amplitude of the tidal
potential component (this will not be speciőed further as it cancels
because 𝐷v ∝ |𝐴|2 in linear theory). The tidal forcing frequency
is 𝜔t = 2𝜋/𝑃tide (where 𝑃tide is the tidal period), which is 𝜔t =

2(𝑛−Ωpl) for a circular, aligned orbit, where 𝑛 andΩpl are the orbital
mean motion and planetary spin, respectively. For an eccentric orbit
with synchronised1 (and aligned) spin we instead have |𝜔t | = 𝑛.

The viscous dissipation rate 𝐷v is computed using Eqs. (20) to
(22) in B20. This quantity depends on the equilibrium tidal displace-
ment vector (deőned in section 2 of B20) and the turbulent effective
viscosity 𝜈E at each radius. The latter is assumed to be a function of
radius and to act like an isotropic shear viscosity, linked to the crude
mixing-length theory expectation 𝜈MLT ∝ 𝑢c𝑙c, with 𝑢c the convec-
tive velocity and 𝑙c = 𝛼𝐻𝑝 the mixing-length (𝛼 is mixing-length
parameter and 𝐻𝑝 is pressure scale height). As demonstrated in hy-
drodynamical simulations (e.g. Ogilvie & Lesur 2012; Duguid et al.
2020b; Vidal & Barker 2020a) and as previously hypothesised using
phenomenological arguments (Zahn 1966; Goldreich & Nicholson
1977, even if the arguments of both are not supported by simulations,
despite agreement regarding the őnal result with the latter), 𝜈E is re-
duced for fast tides (where 𝜔t > 𝜔𝑐 , with the convective frequency
𝜔c = 𝑢c/𝑙c) in a frequency-dependent manner. This can be accounted
for using a piece-wise continuous correction factor depending on the
ratio 𝜔t/𝜔c (for which we employ Eq. (27) of B20, inferred from de-
tailed numerical simulations) at each radius in the planet. Moreover,
the rapid rotation expected for giant planets stabilizes convection on
large length scales, and a steeper temperature gradient is required to
sustain a given heat ŕux (e.g. Stevenson 1979; Barker et al. 2014;
Currie et al. 2020). Mathis et al. (2016) and de Vries et al. (2023)
have shown that such rapid rotation reduces 𝜈E even further (though
interestingly the regime with 𝜔t ≫ 𝜔c is not modiőed by rotation).
Following these works, and as conőrmed by their simulations, we
take into account rapid rotation according to rotating mixing-length
theory (RMLT), by multiplying 𝑙c and 𝑢c at each radius by Ro3/5

and Ro1/5, respectively, where Ro is the convective Rossby number
(Ro = 𝜔c/Ωpl, based on the non-rotating convective frequency). We
demonstrate in Sec. 3 that the dissipation of equilibrium tides is in-
sufficient to provide signiőcant orbital or spin evolution compared
with wavelike tides.

1 Perhaps the spin should instead be pseudo-synchronised for an eccentric
orbit, but it is not clear that the classical formula of Hut (1981) is valid since
it is derived by assuming equilibrium tide damping with a constant time-lag
(see also Ivanov & Papaloizou 2004).

MNRAS 000, 1ś12 (2023)



Tidal dissipation in planets 3

Motivated by results from the (albeit very idealised), numeri-
cal simulations described above, we assume equilibrium tides are
damped by their interaction with convection in a way that can be
modelled as a local (frequency-dependent) effective viscosity that
is positive at each radial location in the planet (and is isotropic for
simplicity). Negative values for 𝜈𝐸 ś corresponding to tidal anti-
dissipation ś have been found to occur, particularly at very high tidal
frequencies (Ogilvie & Lesur 2012; Duguid et al. 2020a; Vidal &
Barker 2020a), but these are typically negligibly small in magnitude
so we neglect their contribution here. On the other hand, we ignore
possible contributions to the tidal energy transfer from Reynolds
stresses involving tide-tide correlations and gradients of the con-
vective ŕow (as proposed to be the only important term for fast
tides by Terquem 2021, even if this interpretation is a drastic over-
simpliőcation). This is because we believe that it is not currently
possible to estimate contributions from this term without detailed
numerical simulations (e.g. Barker & Astoul 2021, suggesting our
overall conclusions regarding the ineffectiveness of equilibrium tides
are likely to hold).

Turning to wavelike tides, the tidal quality factor representing
inertial wave dissipation is computed following the (low frequency)
frequency-averaged formalism of Ogilvie (2013), and is calculated
according to:

1

𝑄′
iw

=
32𝜋2𝐺

3(2𝑙 + 1)𝑅2𝑙+1
pl

|𝐴|2
(𝐸l + 𝐸l−1 + 𝐸l+1), (2)

where the parameters 𝐸l, 𝐸l−1, and 𝐸l+1, are speciőed by Eqs. (31)ś
(33) in B20, fully accounting for the planetary structure. These coeffi-
cients are proportional to the squared spin rate, implying that inertial
wave dissipation is more efficient in rapidly rotating bodies. Note
that 𝐸l and 𝐸l±1 involve radial integrals that depend to some extent
on the assumed core size (inner boundary of the ŕuid envelope). This
dependence on core size is found to be weak in our realistic models
though (which is consistent with Fig. 10 of Ogilvie 2013, notably
showing compressible polytropic models with indices between 1 and
1.5), unlike results obtained for incompressible models. We adopt
impenetrable boundary conditions (with vanishing radial velocity)
for inertial waves (not the total tide) at the core-envelope boundary
and planetary surface, which is appropriate at low frequencies, and
follows Ogilvie 2013 and Barker 2020. We do neglect the possibility
of very large stably-stratiőed cores in this work though due to the
uncertainties in such planetary models.

This is a simple measure to represent the typical level of dissipa-
tion due to inertial waves over the full range of propagation of these
waves, which is straightforward to compute in a given planetary or
stellar model (e.g. Mathis 2015). Note that this quantity is indepen-
dent of the speciőc damping mechanism, and is computed in a model
assuming an impulsive encounter to excite all inertial waves, which
are then assumed to be subsequently fully dissipated. Modelling tidal
evolution of nearly circular or aligned orbits using this quantity in-
volves making assumptions, since this is not rigorously valid (despite
its wide usage in this context e.g. Bolmont & Mathis 2016), but it
is believed to be a representative value for inertial wave dissipation.
We choose to adopt this approach (following Mathis 2015; Bolmont
& Mathis 2016; Barker 2020, 2022, and many others) because this
measure is both simpler and much faster to compute (hence amenable
to evolutionary studies), and it is also much more robust to the incor-
poration of additional (or variation in) model physics than the direct
linear (or nonlinear) response at a particular frequency.

It should be remembered however that the actual dissipation due
to inertial waves at a given 𝜔t could differ substantially from this
value (e.g. Ogilvie 2013; Astoul & Barker 2022, 2023). In particular,

predictions for inertial wave dissipation őnd substantial deviations
(potentially by orders of magnitude, either larger or smaller) at a par-
ticular frequency ś and between the frequency-averaged measure and
the response at a particular frequency ś depending on the degree of
density stratiőcation (Ogilvie 2013), the presence of magnetic őelds
(Lin & Ogilvie 2018; Wei 2018), differential rotation (Baruteau &
Rieutord 2013; Guenel et al. 2016; Astoul & Barker 2022, 2023),
nonlinearity (Favier et al. 2014; Barker 2016; Astoul & Barker 2022,
2023), convection, varying the microscopic diffusivities (Ogilvie &
Lin 2004; Ogilvie 2009), and the presence of stably-stratiőed (or dif-
ferent density) inner ŕuid layers (as opposed to a rigid core) (Ogilvie
2013; Pontin 2022; Lin 2023; Dewberry 2023; Pontin et al. 2023a).
However, the frequency-averaged measure has been found to be much
more robust regarding the incorporation of magnetic őelds (Lin &
Ogilvie 2018), nonlinearity, and to a limited extent differential rota-
tion (Astoul & Barker 2023). It is an open question how reliable this
approach will be at modelling a population of individual systems that
are each forced at a particular tidal frequency (or range of these) at a
given epoch.

We assume that upward propagating gravity waves are excited
(adiabatically) at the base of the radiative envelope and are fully
damped (e.g. by radiative diffusion or wave breaking) before prop-
agating back to their launching sites (e.g. Zahn 1975; Lubow et al.
1997; Goodman & Dickson 1998). The corresponding tidal quality
factor is then given by (B20):

1

𝑄′
gw

=

2
[

Γ

(

1
3

)]2

3
1
3 (2𝑙 + 1) (𝑙 (𝑙 + 1))

4
3

𝑅pl

𝐺𝑀2
pl

G|𝜔t |
8
3 . (3)

The quantity G depends on the planetary conditions at the radiative/-
convective interface:

G = 𝜎2
b 𝜌b𝑟

5
b

�

�

�

�

dN2

d ln 𝑟

�

�

�

�

− 1
3

𝑟=𝑟b

. (4)

Subscript b denotes the base of the radiative envelope, so 𝑟b and 𝜌b
are the corresponding radius and density, respectively,N is the Brunt-
Väisälä frequency, and the parameter𝜎b is determined numerically by
the derivative of the dynamical tide radial displacement (see Eq.(43)
in B20). This is the simplest measure of gravity wave dissipation
that applies if the waves are fully damped ś regardless of the speciőc
damping mechanism. Whether or not this is valid is an open question.
This estimate is the simplest one to estimate the effects of gravity
waves and was the one adopted in many prior works (e.g. Lubow
et al. 1997; Ogilvie & Lin 2004) but future work should explore
in detail the validity of this assumption in thin envelopes. We omit
the inŕuence of Coriolis forces here, partly for simplicity, and partly
because the typical level of dissipation due to gravity (or gravito-
inertial) waves is unlikely to differ substantially in this fully damped
regime (e.g. Ogilvie & Lin 2004; Ivanov et al. 2013, though will
likely differ to a greater extent for certain tidal frequencies involving
resonances with inertial modes in neighbouring convective regions).

When a planet possesses multiple radiative and convective en-
velopes, the total dissipation rates (not tidal quality factors) are de-
rived by summing up the contribution from each layer where the
dissipation takes place.

2.2 Planetary model

We compute planetary models using the MESA code (version
r11701; Paxton et al. 2011, 2013, 2015, 2018, 2019). Most param-
eters in our inlist őles are adopted from the make planets test
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suit. We set initial Y and initial Z to 0.2804 and 0.02131, re-
spectively, to reproduce the high average metallicity of hot Jupiter
hosts (<[Fe/H]> = +0.19 dex, see Petigura et al. 2018). According to
our exploration of parameter space, the tidal quality factors obtained
with metallicities in the range between -0.5 and +0.5 dex are simi-
lar within an order of magnitude for any given age (consistent with
őndings for the lowest mass stars considered in Bolmont et al. 2017).
Given that abundances do not seem to play a major role in any of
our results, the effects of chemical composition will not be reported
further in this paper. The planetary mass is varied between 0.1 and
10 𝑀J, where 𝑀J is the mass of Jupiter and we őx the initial radius
to 2𝑅J (increasing to 4𝑅J for łhot-start" models with higher initial
entropy does produce substantial differences in 𝑄′). The core mass
is 10 𝑀⊕ , where the subscript ⊕ refers to Earth units, and its density
is 5 g cm−3, giving a őxed core radius of approximately 0.2𝑅J. Note
that the core radius, when normalised by 𝑅pl, varies because the
planetary radius (rather than the core size) evolves in time. The ődu-
cial value of the incident ŕux is 1000 𝐹⊕ and we use the canonical
mixing length value 𝛼 = 2, though we have explored smaller 𝛼 val-
ues and found minimal differences in our results. The column depth
for irradiation is őxed at 330 g cm−2 to reproduce the mean opacity
from Guillot (2010). The control use dedt form of energy eqn
is set to .false. to avoid convergence issues at late ages. We found
that, for lower planetary masses, the default spatial resolution is too
low to provide accurate solutions for the tidal response. Therefore,
we choose a higher resolution by setting max dq = 1d-3 if there are
no convergence issues at the beginning of the MESA run. Otherwise,
the parameter max dq is gradually increased until convergence issues
are avoided.

Our planetary models generate a neutrally (adiabatically) stratiőed
interior, as we might expect in convective regions, with only the sur-
face layers being stably stratiőed (radiative). However, observational
inferences from the Solar System’s gas giants suggest this assump-
tion may not be valid due to interior compositional gradients, and
Jupiter or Saturn could possess extended dilute stably stratiőed ŕuid
cores (e.g. Mankovich & Fuller 2021; Howard et al. 2023). The con-
sequences of interior stably stratiőed layers are outside the scope of
the present paper, and are currently a major uncertainty in planetary
models (but see e.g. Pontin et al. 2023b; Lin 2023; Dewberry 2023;
Dhouib et al. 2023; Pontin et al. 2023a).

3 RESULTS

3.1 Evolution of tidal quality factors

We now turn to present our results for 𝑄′ computed in planetary
models. We begin by showing the dependence of the tidal quality
factors for each mechanism on the tidal forcing period 𝑃tide in Fig. 1
for a range of planetary masses, ages, and instellations. Here, the top,
middle, and bottom rows show planets with 𝑀pl = 0.3, 1.0, and 10
𝑀J, respectively. The left column corresponds to models of young
Jupiters (𝑡 = 10 Myr), and the right column represents models of old
Jupiters (𝑡 = 3 Gyr). The őducial hot planets (𝐹 = 1000 𝐹⊕) are shown
with solid lines and cold planets (𝐹 = 𝐹⊕) are shown with dashed
lines. These panels show a wide range of tidal frequencies, and hence
our results can be applied to model spin-orbit synchronisation, the
dominant component driving orbital circularisation, and aspects of
tidal obliquity evolution.

As reported previously, equilibrium tide dissipation is very weak
in all cases displayed according to our assumptions outlined in
ğ 2, with the minimum 𝑄′

eq ∼ 109. At low tidal periods, the

rotationally-modiőed tidal quality factor 𝑄′
eq,RMLT,FIT, shown in

blue, is the same as the one obtained based on non-rotating con-
vection 𝑄′

eq,FIT (black, where subscript FIT refers to a őt from nu-

merical simulations). This is because, in the high-frequency regime,

𝜈E ∝ 𝜈MLT

(

𝜔c
𝜔t

)2
∝

𝑢3
c
𝑙c

1
𝜔2

t
, and the adopted rotationally-induced

scalings for the convective velocity and length scale counteract each
other (de Vries et al. 2023). In the fast tides regime (with or without
rotational inhibition of convection) ś which is typically the most rel-
evant one in giant planets (see e.g. de Vries et al. 2023) ś we thus
have 𝑄′

eq ∝ 𝑃−1
tide because |𝜔t |/𝑄

′
eq ∝ 𝐷v ∝ 𝜔2

t 𝜈𝐸 ∝ 𝜔0
𝑡 . Thus,

the slowness of convective ŕows relative to tides leads to substantial
reductions in equilibrium tide damping.

With our chosen rotation period of 10 hr adopted for illustration
(results for different 𝑃rot can be obtained simply by re-scaling since
𝑄′

iw ∝ 𝑃2
rot, so if 𝑃rot = 1 day, 𝑄′

iw should be a factor of 5.76 larger),
inertial wave dissipation is the dominant tidal mechanism (𝑄′

iw is
smallest) over the full range of tidal periods considered, except for
the ‘old’ model of 0.3 𝑀J planet, for which gravity waves begin to
prevail at low 𝑃tide (i.e., 𝑄′

gw < 𝑄′
iw). Note that 𝑄′

iw only strictly
operates if the tidal period 𝑃tide > 𝑃rot/2, otherwise inertial waves
are not (linearly) excited and we should not employ 𝑄′

iw to model
tidal evolution. This is independent of frequency because we have
adopted the frequency-averaged measure here ś in reality, inertial
wave dissipation is expected to be strongly frequency-dependent,
though this value is thought to be a representative one for tidal
modelling of planetary populations as discussed in ğ 2. In this short
tidal period regime (left region compared to the dotted line), 𝑄′

gw
should be used instead according to Fig. 1.

The prediction for 𝑄′
iw is similar in all models since they have

the same rotation period and a similar internal structure. Indeed,
each model has a structure for all ages that is very similar to a
polytrope with a polytropic index ranging from 𝑛 = 1 (commonly
thought to be appropriate for Jupiter) to 1.5 (thought to apply to
fully convective low-mass stars). As shown in Fig. 2, where we plot
density normalised by the mean density and radius normalised by
the planetary radius, our models are well described by Lane-Emden
polytropes with such a range of 𝑛, where 𝑛 = 1 and 𝑛 = 1.5 are
represented by black dotted and dashed lines, respectively. The only
exception is the models of young low-mass planets displayed in red
in the top panel. Nevertheless, as these planets cool down with age,
they approach the proőle of the 𝑛 = 1 polytrope. Accordingly, the
models at 3 Gyr, depicted in green, yield ŕatter density proőles.
In contrast to the ‘cold’ models, shown with solid lines, highly-
irradiated planets, represented by dash-dotted lines, are characterized
by a steeper density gradient. At the same time, one can see that the
internal structure of more massive planets, displayed in the bottom
panel, is closer to the 𝑛 = 1 polytrope and less sensitive to age and
instellation. We, therefore, conclude that most of our models can be
approximated by polytropic solutions with 𝑛 = 1 or 𝑛 = 1.5 with
sufficient accuracy.

Adopting a polytropic model with index 𝑛 = 1 (1.5), we őnd𝑄′
iw =

230.22𝜔2
dyn/Ω

2
pl (or 130.83𝜔2

dyn/Ω
2
pl), where 𝜔2

dyn = 𝐺𝑀pl/𝑅
3
pl

is

the squared dynamical frequency, implying a value approximately
2558 (1454) for a Jupiter-like model/rotation, similar to the values
shown in Fig. 1. Hence 𝑄′

iw (for a őxed 𝑃rot) varies only modestly
with planetary mass, age, and instellation within the ranges we con-
sider, ultimately because planetary structures always remain very
similar (and similar to polytropes) in our models.

Internal gravity waves become more dissipative (smaller 𝑄′
gw)

in planets with thicker radiative envelopes, typically corresponding
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Figure 1. Tidal quality factors 𝑄′ for each mechanism as a function of tidal period 𝑃tide. Solid and dashed lines correspond to the hot (𝐹 = 1000 𝐹⊕) and cold
(𝐹 = 𝐹⊕) models, respectively. The planetary mass, rotation period (őxed here to 𝑃rot = 10 hr), and age are shown on the top of each plot. Black and blue lines
represent tidal quality factors due to equilibrium tide damping without and with rotational modiőcation, respectively. Red and magenta lines display tidal quality
factors due to inertial and gravity waves, respectively. Grey dotted line illustrates the minimal tidal period required for inertial wave excitation (𝑃tide = 𝑃rot/2).

to higher stellar instellations (solid purple lines), lower planetary
masses, and older ages (where planets have had time to develop

thicker envelopes). In all cases 𝑄′
gw ∝ 𝑃

8/3
tide

under the assumptions
of our model, and thus shorter tidal periods imply more efficient
dissipation.

In Fig. 3, we show the evolution with planetary age of the tidal
quality factors corresponding to equilibrium tides (őrst panel), iner-
tial waves (second panel), and gravity waves (third panel) for a set
of ‘hot’ planetary models with different masses. We now őx both the
tidal and rotation periods at 𝑃tide = 1 day and 𝑃rot = 10 hr, respec-
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Figure 2. Density proőles as a function of radius for the planetary gaseous
envelopes of the models displayed in Fig. 1. Density is normalised by the
mean density, and radius is normalised by the planetary radius. Solid (dash-
dotted) lines correspond to the ‘cold’ (‘hot’) models; the red (green) color
refers to the age of 10 Myr (3 Gyr). Black dotted and dashed lines correspond
to the polytropic model with indices 𝑛 = 1 and 𝑛 = 1.5, respectively.

tively, to focus on the age and mass dependence here. The choice of
𝑃rot = 10 hr is made for comparison with Jupiter, but we note that
for inertial waves, we predict 𝑄′

iw ∝ 𝑃2
rot in general, so our results

can be easily scaled for different rotation rates.
According to the prescriptions we have adopted, the equilibrium

tide is characterized by negligible damping inside the convective
envelope (using 𝑄′

eq,RMLT,FIT), insufficient to cause a signiőcant

change in orbital or spin parameters. The relevant tidal quality factor
𝑄′

eq > 1010 throughout the evolution of each of these planets. This is
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Figure 3. Evolution of tidal quality factors with planetary age in a range of
models due to equilibrium tides (őrst panel), inertial waves (second panel),
and gravity waves (third panel). In the fourth panel, the evolution of the
planetary radius is shown. Here, we őx tidal period 𝑃tide = 1 day, rotation
period 𝑃rot = 10 hr, and incident ŕux 𝐹 = 1000 𝐹⊕ (i.e. these are ‘hot’
planets).

MNRAS 000, 1ś12 (2023)



Tidal dissipation in planets 7

100

101
σ b

σb from Eq.(43) in Barker (2020)

106 107 108 109 1010

Age (yrs)

10−5

10−4

10−3

10−2

10−1

100

dN
2 /d

 ln
r

N2 gradient

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R b
/R

J

Base of radiative envelope
0.1 MJ

1 MJ

10 MJ

106 107 108 109 1010

Age (yrs)

10−5

10−4

10−3

10−2

10−1

ρ b
, g

 c
m

−3
 

Base density

Figure 4. Evolution of various quantities that are important in computing tidal quality factor due to gravity waves 𝑄′
gw according to (3) and (4) in hot planetary

models with 𝑃tide = 1 day.

similar to the conclusions in B20 regarding the inefficiency of equi-
librium tide dissipation in stellar interiors. Note that 𝑄′

eq increases
with age because the planet cools, thus convection slows down as the
planet evolves, and because the planet shrinks.

In contrast, dissipation of inertial waves appears to be the most
important mechanism in almost all cases when they are excited, with
𝑄′

iw (for this𝑃rot) ranging between 102 and 2×104, with higher values
corresponding to higher-mass objects. As shown in the second panel
of Fig. 3, planets gradually become less dissipative with age. We have
explored the reason for this, and found that it is primarily not related
to structural changes (consistent with Fig. 4 of B20 for low mass fully
convective objects), but is instead explained by the shrinking radius
as the planet cools for a őxed 𝑃rot because 𝑄′

iw ∝ 𝜔2
dyn/Ω

2
pl ∝ 𝑅−3

pl
.

The evolution of planetary radius is displayed in the bottom panel.
Furthermore, given that planetary spin-down is typically the natural
outcome of long-term tidal and planetary evolution (unless, e.g., the
planet is spiralling into its star while remaining tidally locked), we
expect inertial wave damping to become less efficient at later epochs.

On the other hand, the tidal quality factor due to gravity waves𝑄′
gw

does not exhibit substantial evolution during the planetary lifetime,
and its variation for each planetary model is within approximately an
order of magnitude for a őxed 𝑃tide and planetary mass. In addition to

its strong dependence on 𝑃tide (𝑄′
gw ∝ 𝑃

8/3
tide

), gravity wave damping

also strongly depends on the planetary mass, spanning over six orders
of magnitude for our mass range characteristic of gas giants. This is
illustrated in the third panel of Fig. 3. Similar to inertial waves, gravity
waves dissipate more efficiently (smaller𝑄′

gw) in lower-mass objects,

with values as small as𝑄′
gw ≈ 104, whereas the most massive objects

we consider are much less dissipative. These values are sensitive
to the radius 𝑟b and density 𝜌b at the launching region, which is
manifested through the factor G being proportional to 𝑟5

b
(Eq. 4).

In Fig. 4 we explore in more detail the reasons for the substan-
tial variation of 𝑄′

gw with planetary mass in our models. Here, we
illustrate the evolution of the quantities involved in the expression
for 𝑄′

gw, given by Eqs. (3) and (4), for the models with 𝑀pl = 0.1,
1, and 10 𝑀J, depicted in red, green, and blue, respectively. The
top left and bottom left panels display

�

� dN2/d ln 𝑟
�

�

𝑟=𝑟b
and 𝜎b,

while the top right and bottom right panels display 𝑟b and 𝜌b as a
function of age, respectively. The value of 𝑄′

gw obtained for planets
with 𝑀pl = 10𝑀J is, on average, 3.5 orders of a magnitude higher
than for Jupiter-mass planets. These two planets are characterized
by similar values of 𝜎b and 𝑟b, but there is an order of magnitude
difference attributable to

�

� dN2/d ln 𝑟
�

�

𝑟=𝑟b
(note that this quantity

is raised to the power -1/3 in Eq.(3)), and half an order of magnitude
from the variation in 𝜌b. The remaining factor of 102 results from
the presence of 𝑀2

pl in Eq. (3). At the same time, decreasing the plan-
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etary mass from 1 to 0.1 𝑀J reduces 𝑄′
gw by a factor of ∼ 50 − 102.

A factor of ∼ 4 arises due to differences in
�

� dN2/d ln 𝑟
�

�

𝑟=𝑟b
. One

can see that 𝜎b is substantially smaller in the case of a lower-mass
planet, leading to a factor of ∼ 3 in 𝑄′

gw. An additional factor of
∼ 4 (at t ∼ 1 Gyr) comes from differences in 𝜌b, and one of ∼ 1.5
arises from the combination 𝑟5

b
𝑅pl/𝑀

2
pl. Combining these (crude)

factors results in a total reduction of ∼ 50 − 102 from 1 to 0.1 𝑀J,
in agreement with the overall differences outlined above. Therefore,
we conclude that differences in several parameters come into play to
produce the strong dependence on planetary mass exhibited by 𝑄′

gw
in our models, rather than any one of these parameters.

3.2 Impact of the incident flux

The strength of external irradiation affects the locations of the in-
terfaces between convective and radiative regions near the surface,
thereby altering the conditions inside the layers where gravity waves
are excited and propagate. This is demonstrated with the example of
a Jupiter-mass planet in Fig. 5. The top and middle panels display
the evolution of the tidal quality factors of inertial and gravity waves,
respectively. In the following plots, blue circles correspond to the
low incident ŕux, characteristic of a ‘cold’ Jupiter (𝐹 = 𝐹⊕), and the
red triangles represent a typical ‘hot’ Jupiter irradiation (𝐹 = 1000
𝐹⊕). One can see that the enhancement of stellar ŕux received by a
planet slightly increases the inertial wave dissipation rate, which is
most noticeable at early ages, which is primarily because these plan-
ets have slightly inŕated radii (see discussion above). Nonetheless,
differences between the two models are always within an order of
magnitude. On the contrary, the incident ŕux plays a crucial role in
modifying gravity wave damping for most of the planetary lifetime.
According to our ‘cold’ model, 𝑄′

gw rises by almost two orders of

magnitude up to 109 after 30 Myrs. Eventually, the dissipation rates
are ampliőed to the values obtained for hot Jupiters after 6 Gyrs.

As we show in the bottom panel of Fig. 5, these dramatic changes
in 𝑄′

gw are directly linked to the location and number of radiative
zones near the surface that arise in these models. Here, we display
the separation of the base of each radiative zone from the planetary
surface. Note that the lower the point is, the closer the corresponding
interface is to the planetary surface. The prominent feature in the
cold planetary model is the emergence of a second radiative region
after 3 Myr. Thus, the bottom base is depicted by the blue circles,
while the top base, when present, is illustrated by the black circles.
As a result of the above, both envelopes could contribute to the dissi-
pation of gravity waves. The overall tidal quality factor due to gravity
waves is computed (crudely) by summing up the dissipation rates as-
sociated with each radiative region. As we mentioned previously, the
efficiency of gravity wave damping is determined by the conditions
at their launching sites, including the local density, characterized by
a steep gradient in the vicinity of the planetary surface. Thereby, the
occurrence of the outer radiative layer does not signiőcantly alter
the evolution of the tidal quality factor as long as the bottom layer
exists. However, at the planetary age of 30 Myrs, two convective
envelopes merge into one, leaving the top radiative region as the only
contributor to gravity wave damping, which immediately manifests
in a sharp increase in 𝑄′

gw, as shown in the middle panel. Finally, af-
ter 6 Gyrs, the radiative envelope becomes divided into two separate
regions again, allowing the dissipation rates obtained for cold and hot
Jupiters to converge. We have found that the appearance of multiple
radiative layers is insensitive to initial-Y and initial-Z in the
ranges [0.25, 0.28] and [0.004, 0.03], respectively, and the resulting
values of 𝑄′

gw do not differ substantially. It is possible that the emer-

gence of these layers would differ with different equations of state to
those used in our version of MESA.

The comparison between models with different incident ŕuxes was
also provided in Fig. 1, where solid and dashed lines represent hot
and cold Jupiters, respectively. Contrary to the earlier epoch, at late
ages, planets with 𝑀pl = 1 and 10 𝑀J reveal substantial variation
in gravity wave dissipation rate with the amount of irradiation, with
hot Jupiters being more dissipative. For 0.3 𝑀J planets, however, the
changes in 𝑄′

gw between cold and hot models are manifested at early
times. In addition, for lower-mass planets, tidal quality factors due to
equilibrium tides are also sensitive to the incident ŕux. In contrast to
gravity waves, the dissipation of equilibrium tides is somewhat more
effective in such low mass cold planets, which have smaller 𝑄′

eq.
We have assumed gravity waves are launched in each layer and

are then fully damped before returning to their launching sites, even
when there multiple radiative regions. It is uncertain whether this is
justiőed, as is the emergence of a second radiative region, which may
either be the natural outcome of planetary evolution for low incident
ŕuxes, or it could be an artifact caused by uncertainties in the equa-
tion of state ś or various neglected physics ś in current versions of
MESA. We have discovered that this feature can be eliminated with
the introduction of additional interior heating, which may arise due
to tidal heating or Ohmic dissipation. The fully damped assumption
can potentially be justiőed by linear radiative damping, though this
might only be effective in the outer zone, but there are alternative
possibilities (including differential rotation, non-linearity, and mag-
netic őelds). These should be explored further in future work, but for
now we caution that there are potentially large uncertainties in 𝑄′

gw,
particularly in our cold models.

To summarise, we őnd gravity wave damping can be effective
for highly-irradiated planets with extended stable layers near their
surfaces that are deeper than one percent of their radii. Otherwise,
inertial waves are predicted to be the most important tidal mechanism
when they are excited (i.e. for 𝑃tide > 𝑃rot/2) in almost all models,
except perhaps for the latest ages for low masses when 𝑄′

iw > 𝑄′
gw.

4 APPLICATION TO STAR-PLANET AND PLANET-MOON

SYSTEMS

The dissipation of planetary tides can potentially explain an important
aspect of the eccentricity distribution in star-planet systems, which
is that hot Jupiters tend to have smaller eccentricities (and a stronger
preference for circularity) than warm and cold Jupiters. To explore
this scenario, we collect data from the NASA Exoplanet Archive
(https://exoplanetarchive.ipac.caltech.edu/) represent-
ing massive close-in planets (0.1 𝑀J < 𝑀pl < 10 𝑀J, 𝑃orb <

20 days; 𝑃orb is the orbital period). In addition, we őlter out systems
containing another planet with 𝑃orb < 100 days to avoid scenar-
ios where eccentricity excitation due to planet-planet interactions
may be competing with tidal eccentricity damping. Our main sample
consists of 162 systems with a known eccentricity, stellar effective
temperature, stellar and planetary mass, and planetary radius. This
sample has been further extended by eight systems, namely HAT-
P-2, HAT-P-4, HD 118203, HD 149026, HD 189733, HD 209458,
Kepler-91, and WASP-8, with no accessible data on the planetary
radii. The radii of the corresponding planets have been derived using
the mass-radius-ŕux parametrization from Lazovik (2023) given by
his Eqs. (16)Ð(18), which encompasses the relations from Valsecchi
et al. (2014) and Thorngren et al. (2021). We also consider 136 ad-
ditional planets with an upper bound on the eccentricity below 0.1.
We assume that these planets are on circular orbits (𝑒 = 0) when
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Figure 5. Evolution of 𝑄′ due to inertial waves (top panel) and gravity
waves (middle panel) for a Jupiter-mass planet irradiated by low (𝐹 = 𝐹⊕)
and high (𝐹 = 1000 𝐹⊕) incident ŕuxes (blue and red colors, respectively).
Bottom panel: radius of the base of each radiative envelope with respect to
the planetary surface. Blue and black circles represent the base of the bottom
and top envelopes of a cold Jupiter, respectively. Red triangles represent the
only radiative envelope of a hot Jupiter.
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Figure 6. Top panel: eccentricity distribution for observed planets as a func-
tion of predicted tidal circularization timescale from planetary tides due to
dissipation of inertial waves. Systems with the star above (below) the Kraft
break are displayed in black (light blue). Blue dashed and black dotted lines
illustrate the mean eccentricity among the planets with 𝑒 > 0.1 (i.e., ec-
centric planets) orbiting stars below and above the Kraft break, respectively.
Histogram in the middle panel shows the average eccentricity of the eccentric
planets. Histogram in the bottom panel shows the ratio of the number 𝑁e>0.1

of eccentric planets to the number 𝑁 of planets within each bin.

calculating the relative number of eccentric planets (i.e., the planets
with 𝑒 > 0.1).

For every system in our sample, we calculate a corresponding
circularization timescale due to planetary tides, 𝜏e,pl, following the
equation (e.g. Goldreich & Soter 1966):

𝜏e,pl =
4

63

𝑄′
pl

𝑛

𝑀pl

𝑀∗

(

𝑎

𝑅pl

)5

. (5)

Here, the tidal quality factor 𝑄′
pl is set equal to 𝑄′

iw since, as shown

in Sec. 3, inertial waves provide the main contribution to the overall
tidal dissipation inside the planets in almost all cases in our mod-
els. 𝑄′

iw may be represented as the product of two components,
namely the structural tidal quality factor 𝑄′

iw,s and the parameter

𝜖−2
Ω

≡
(

Ωpl/
√︃

𝐺𝑀pl/𝑅
3
pl

)−2
. The őrst component, 𝑄′

iw,s, is com-

puted via linear interpolation between our models of hot planets with
the adjacent masses and ages plotted in Fig. 3 (note the large ob-
servational uncertainties in ages does not lead to large differences
according to this őgure), while 𝜖Ω is inferred using observational
data, assuming spin-orbit synchronization (Ωpl = 𝑛, since this is
expected to occur more rapidly than circularization).
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Our sample is illustrated in the top panel of Fig. 6. One can see
that eccentricities tend to increase with the predicted circularization
timescale. This is especially true for planets orbiting stars above the
Kraft break (𝑇eff > 6250 K, Kraft 1967), as shown in black. Hot
stars have thin convective envelopes, leading to weaker tidal dissipa-
tion in stellar interiors (see B20), suggesting planetary tides may be
even more important for eccentricity evolution in these systems. This
weaker stellar tidal dissipation may have several observational man-
ifestations. In particular, star-planet systems with a hot star typically
sustain higher obliquities, as shown in Spalding & Winn (2022); At-
tia et al. (2023). Here, we draw similar conclusions concerning the
eccentricity distribution, which reveals the same trend, albeit with
caution due to the low numbers involved. Indeed, among the sys-
tems with 𝑒 > 0.1, planets orbiting stars above (below) the Kraft
break have an average eccentricity of 0.33 (0.24). Apart from this
trend, a correlation between eccentricity and eccentricity damping
timescale appears to be more pronounced in hot stars, which may
imply that stellar tides also contribute to the orbital circularization
of hot Jupiters, or it could be related to the shorter main-sequence
ages of hotter stars.

As reviewed in Dawson & Johnson (2018), hot Jupiters might
have formed via two channels, namely disc migration and high-
eccentricity migration (e.g. triggered by planet-planet scattering or
secular/Kozai migration). In contrast to the former channel, the lat-
ter allows the formation of highly eccentric hot planets. It is still
unknown which channel (if any) dominates within the overall hot
Jupiter population. The presence of almost circular systems with
𝜏e,pl a few orders of magnitude higher than the age of the universe,
seen in Fig. 6, suggests that disc migration/low eccentricity formation
is likely to be a favorable scenario for some fraction of our sample.
To avoid the planets which might have formed with low initial eccen-
tricities, we separate the planets with 𝑒 > 0.1 (łeccentric planets")
and 𝑒 < 0.1 (łnon-eccentric planets"). We select bin sizes along the
𝑥-axis to have roughly equal numbers of eccentric planets in each
one. For every bin, we calculate the average eccentricity of the ec-
centric planets and plot it in the middle panel of Fig. 6. In addition,
we derive the fraction of planets per bin with 𝑒 > 0.1, and we display
this in the bottom panel. Both quantities are found to increase with
our predicted tidal circularization timescale. There is only a handful
of eccentric planets with 𝜏e,pl < 108 yrs. This might be expected
if planetary tides have acted here given that the average age of the
observed systems is on the order of a few Gyr. Another prominent
detail is that the mean eccentricity of the eccentric sub-sample in-
creases when 𝜏e,pl ∼ 1 Gyr, i.e., when 𝜏e,pl becomes comparable
with the systems’ mean age. The above features strongly suggest that
tidal dissipation due to inertial waves can play an important role in
shaping the orbital architectures of star-planet systems containing gi-
ant planets. On the other hand, under the assumptions of our models,
neither equilibrium tides nor gravity waves can explain tidal circu-
larisation timescales consistent with observations (that are shorter
than or comparable to the ages of the systems). Gravity waves could
circularise only the very closest planets under the assumptions we
have made to model them (neglecting the possibility of resonance
locking, e.g. Fuller et al. 2016).

From the detailed analysis of astrometric observations of Jupiter’s
and Saturn’s satellites, Lainey et al. (2009, 2017) constrained tidal
dissipation rates in our Solar System’s giants. They inferred 𝑘2/𝑄 =

(1.102±0.203) ×10−5 for Jupiter and 𝑘2/𝑄 = (1.59±0.54) ×10−4

for Saturn, giving approximately 𝑄′
= (1.59 ± 0.25) × 105 and

𝑄′
= (9.43 ± 4.39) × 103 for these planets, respectively. According

to our models for evolved planets at the Solar System’s age (Figs. 1
and 3), we őnd 103

≲ 𝑄′
iw ≲ 104 for 𝑃rot ≈ 10 hr. Hence, iner-

tial waves are sufficiently dissipative ś according to the frequency-
averaged measure we have computed ś to explain observations. Given
that the actual dissipation rate, and hence 𝑄′ value, due to inertial
waves at a given tidal frequency can vary by orders of magnitude
from this łtypical value" represented by the frequency-average (e.g.
Ogilvie 2013; Astoul & Barker 2022, in both linear and nonlinear
calculations), this suggests that the orbital evolution of Jupiter’s and
Saturn’s moons can be explained by inertial waves (see also Pontin
2022; Lin 2023; Dewberry 2023; de Vries et al. 2023; Pontin et al.
2023a; Dhouib et al. 2023). However further work is required to ex-
plore this scenario in more detail, and to determine the validity of
the frequency-averaged formalism in modelling tidal evolution.

According to Fig. 3, the above constraints on Jupiter and Saturn
can also be obtained via gravity wave damping in the envelope.
For the rotation period of Saturn (𝑃rot = 0.44 days) and the orbital
period of Enceladus (𝑃orb = 1.37 days), our Saturn model predicts
𝑄′

gw ∼ 3×103 (not strongly depending on instellation for the relevant
mass and age). In turn, the present-epoch gravity wave dissipation
rate calculated for the Jupiter model strongly depends on the incident
ŕux. Adopting 𝑃rot = 0.41 and 𝑃orb = 1.77 days (Jupiter’s rotation
period and Io’s orbital period, respectively) yields 𝑄′

gw ∼ 4×104 for

a hot Jupiter model and 𝑄′
gw ∼ 2 × 106 for a cold model. Thus, our

crude gravity wave dissipation estimates are also (surprisingly) in
reasonable agreement with the observations. It would be interesting
to explore the role of interior stably-stratiőed layers in future work,
which we have neglected in our models due to the large uncertainties
involved (i.e., to build upon Fuller et al. 2016; André et al. 2017,
2019; Pontin 2022; Pontin et al. 2023b,a; Lin 2023; Dewberry 2023;
Dhouib et al. 2023).

5 CONCLUSIONS

We have studied theoretically the evolution of tidal dissipation rates
and modiőed quality factors 𝑄′ in rotating giant planets following
their evolution using MESA interior models with masses ranging
from 0.1 to 10𝑀J, for various incident stellar ŕuxes. We compute
the dissipation of equilibrium tides by rotating turbulent convection
(assuming an effective viscosity consistent with hydrodynamical sim-
ulations), dissipation of gravity waves in the thin radiative envelope,
and inertial waves in the convective interior.

Our models indicate that inertial waves are almost always likely
to be the dominant mechanism of tidal dissipation in giant planets
whenever they are excited2 ś i.e., when the tidal period 𝑃tide > 𝑃rot/2
ś and are capable of providing 𝑄′

iw ∼ 103 (𝑃rot/10hr)2. This implies

𝑄′
iw ∼ 105 −106 for orbital periods of order 10 days (assuming spin-

orbit synchronism). Note that the frequency-averaged measure we
have adopted can differ by orders of magnitude from the predictions
at a speciőc tidal frequency according to linear and nonlinear calcula-
tions (e.g. Ogilvie 2013; Lin & Ogilvie 2018; Astoul & Barker 2022,
2023, and can depend on magnetic őelds and differential rotation),
but is likely to represent a rather robust łtypical value" of dissipation
due to these waves.

In hot low-mass planets (approx 0.1𝑀J), our models also predict
efficient dissipation of gravity waves in the radiative envelope with
𝑄′

gw ∼ 104 (𝑃tide/1 d)8/3 (see also Lubow et al. 1997; Ogilvie & Lin
2004). This indicates efficient dissipation via this mechanism is also

2 These waves can also be excited łnonlinearly" by the elliptical instability
for the hottest (very shortest period) planets, which we do not study here (e.g.
de Vries et al. 2023).
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possible, though 𝑄′
gw values ranging up to six orders of magnitude

larger are found in the more massive planets we modelled.
We have shown that our predicted circularization timescales from

the dissipation of inertial waves correlate well with observed plane-
tary eccentricities. This provides evidence that inertial wave dissipa-
tion may have played an important role in planetary tidal evolution.

The values of 𝑄′ we have obtained can be compared with the
latest statistical inferences from modelling exoplanetary eccentricity
damping in Mahmud et al. (2023). They found 𝑄′

= 105±0.5 for hot
Jupiters with 𝑃tide ∈ [0.8, 7] days, with no strong evidence of any
tidal period dependence. For eccentricity tides, assuming spin-orbit
synchronism (hence 𝑃tide = 𝑃orb = 𝑃rot), we predict 𝑄′

iw ≈ 103.5

for 𝑃tide = 0.8 days, and 𝑄′
iw ≈ 105.5 for 𝑃tide = 7 days, with a

value of 𝑄′
iw ≈ 104.5 for 𝑃tide = 2.4 days. Our results are therefore

consistent with the range they obtained for tidal periods longer than
about 2.4 days, and thus we argue that inertial waves are likely to
be able to explain their results in these cases. For the shortest tidal
periods, we őnd more effective dissipation than they do, though this
may be mitigated when considering the frequency-dependent tidal
dissipation. It is also unclear whether their assumption of a constant
planetary radius affects their results.

Convective damping of equilibrium tides is estimated to be neg-
ligible in giant planets compared with wavelike tides because of the
strong frequency-reduction of the effective turbulent viscosity due to
the slow convection (relative to the tide) in these bodies (Goldreich &
Nicholson 1977; Ogilvie & Lesur 2012; Duguid et al. 2020b; Vidal
& Barker 2020b), ś though see Terquem (2021) for an alternative
viewpoint. Rapid rotation minimally affects the resulting convective
turbulent viscosities in the fast tides regime (e.g. de Vries et al. 2023),
though it reduces the effective viscosity even further for slow tides.
Further work should explore the interaction between tidal ŕows and
convection in more realistic numerical models.

It is essential in future work to study whether the frequency-
averaged formalism for inertial wave dissipation is appropriate to
model tidal interactions when global inertial modes are excited in re-
alistic density-stratiőed models of planets, and whether it faithfully
reproduces overall trends resulting from the dynamical evolution in a
population of planetary systems. The role of interior stably-stratiőed
layers such as inferred for the dilute cores of Jupiter & Saturn should
also be explored further, as should the effects of differential rotation
and magnetic őelds.

ACKNOWLEDGEMENTS

We would like to thank the initial referee, Caroline Terquem, for
reading two versions of our manuscript and for providing critical
comments each time, even if we disagree with many of them, and our
second referee, Jim Fuller, for a constructive report that helped us to
improve the paper. AJB was supported by STFC grants ST/S000275/1
and ST/W000873/1. NBV was supported by EPSRC studentship
2528559. AA was supported by a Leverhulme Trust Early Career
Fellowship (ECF-2022-362).

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request
to the corresponding author.

REFERENCES

Ahuir J., Strugarek A., Brun A.-S., Mathis S., 2021, arXiv e-prints, p.
arXiv:2104.01004

André Q., Barker A. J., Mathis S., 2017, A&A, 605, A117
André Q., Mathis S., Barker A. J., 2019, A&A, 626, A82
Astoul A., Barker A. J., 2022, MNRAS, 516, 2913
Astoul A., Barker A. J., 2023, arXiv e-prints, p. arXiv:2309.02520
Attia O., Bourrier V., Delisle J. B., Eggenberger P., 2023, A&A, 674, A120
Barker A. J., 2016, MNRAS, 459, 939
Barker A. J., 2020, MNRAS, 498, 2270
Barker A. J., 2022, ApJ, 927, L36
Barker A. J., Astoul A. A. V., 2021, MNRAS, 506, L69
Barker A. J., Ogilvie G. I., 2009, MNRAS, 395, 2268
Barker A. J., Dempsey A. M., Lithwick Y., 2014, ApJ, 791, 13
Baruteau C., Rieutord M., 2013, Journal of Fluid Mechanics, 719, 47
Beaugé C., Nesvorný D., 2012, ApJ, 751, 119
Bolmont E., Mathis S., 2016, Celestial Mechanics and Dynamical Astronomy,

126, 275
Bolmont E., Raymond S. N., Leconte J., Matt S. P., 2012, A&A, 544, A124
Bolmont E., Gallet F., Mathis S., Charbonnel C., Amard L., Alibert Y., 2017,

A&A, 604, A113
Currie L. K., Barker A. J., Lithwick Y., Browning M. K., 2020, MNRAS,

493, 5233
Dandoy V., Park J., Augustson K., Astoul A., Mathis S., 2023, A&A, 673, A6
Darwin G. H., 1879, Philosophical Transactions of the Royal Society of

London Series I, 170, 1
Dawson R. I., Johnson J. A., 2018, ARA&A, 56, 175
Dewberry J. W., 2023, MNRAS, 521, 5991
Dhouib H., Baruteau C., Mathis S., Debras F., Astoul A., Rieutord M., 2023,

arXiv e-prints, p. arXiv:2311.03288
Duguid C. D., Barker A. J., Jones C. A., 2020a, MNRAS, 491, 923
Duguid C. D., Barker A. J., Jones C. A., 2020b, MNRAS, 497, 3400
Favier B., Barker A. J., Baruteau C., Ogilvie G. I., 2014, MNRAS, 439, 845
Fuller J., Luan J., Quataert E., 2016, MNRAS, 458, 3867
Gallet F., Delorme P., 2019, A&A, 626, A120
Gallet F., Bolmont E., Mathis S., Charbonnel C., Amard L., 2017, A&A, 604,

A112
Gallet F., Bolmont E., Bouvier J., Mathis S., Charbonnel C., 2018, A&A,

619, A80
Goldreich P., 1963, MNRAS, 126, 257
Goldreich P., Nicholson P. D., 1977, Icarus, 30, 301
Goldreich P., Soter S., 1966, Icarus, 5, 375
Goodman J., Dickson E. S., 1998, ApJ, 507, 938
Goodman J., Lackner C., 2009, ApJ, 696, 2054
Guenel M., Baruteau C., Mathis S., Rieutord M., 2016, A&A, 589, A22
Guillot T., 2010, A&A, 520, A27
Hamer J. H., Schlaufman K. C., 2022, AJ, 164, 26
Howard S., et al., 2023, A&A, 672, A33
Hut P., 1981, A&A, 99, 126
Ivanov P. B., Papaloizou J. C. B., 2004, MNRAS, 353, 1161
Ivanov P. B., Papaloizou J. C. B., 2007, MNRAS, 376, 682
Ivanov P. B., Papaloizou J. C. B., 2010, MNRAS, 407, 1609
Ivanov P. B., Papaloizou J. C. B., Chernov S. V., 2013, MNRAS, 432, 2339
Jackson B., Greenberg R., Barnes R., 2008, ApJ, 678, 1396
Jackson B., Jensen E., Peacock S., Arras P., Penev K., 2016, Celestial Me-

chanics and Dynamical Astronomy, 126, 227
Kraft R. P., 1967, ApJ, 150, 551
Lai D., 2012, MNRAS, 423, 486
Lainey V., Arlot J.-E., Karatekin Ö., van Hoolst T., 2009, Nature, 459, 957
Lainey V., et al., 2017, Icarus, 281, 286
Lazovik Y. A., 2021, MNRAS, 508, 3408
Lazovik Y. A., 2023, MNRAS, 520, 3749
Lin Y., 2023, A&A, 671, A37
Lin Y., Ogilvie G. I., 2018, MNRAS, 474, 1644
Lubow S. H., Tout C. A., Livio M., 1997, ApJ, 484, 866
Mahmud M. M., Penev K. M., Schussler J. A., 2023, Monthly Notices of the

Royal Astronomical Society, p. stad2298

MNRAS 000, 1ś12 (2023)



12 Lazovik et al.

Mankovich C. R., Fuller J., 2021, Nature Astronomy, 5, 1103
Mathis S., 2015, A&A, 580, L3
Mathis S., Auclair-Desrotour P., Guenel M., Gallet F., Le Poncin-Laőtte C.,

2016, A&A, 592, A33
Nagasawa M., Ida S., Bessho T., 2008, ApJ, 678, 498
Ogilvie G. I., 2009, MNRAS, 396, 794
Ogilvie G. I., 2013, MNRAS, 429, 613
Ogilvie G. I., 2014, ARA&A, 52, 171
Ogilvie G. I., Lesur G., 2012, MNRAS, 422, 1975
Ogilvie G. I., Lin D. N. C., 2004, ApJ, 610, 477
Ogilvie G. I., Lin D. N. C., 2007, ApJ, 661, 1180
Papaloizou J. C. B., Ivanov P. B., 2010, MNRAS, 407, 1631
Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011,

ApJS, 192, 3
Paxton B., et al., 2013, ApJS, 208, 4
Paxton B., et al., 2015, ApJS, 220, 15
Paxton B., et al., 2018, ApJS, 234, 34
Paxton B., et al., 2019, ApJS, 243, 10
Penev K., Bouma L. G., Winn J. N., Hartman J. D., 2018, AJ, 155, 165
Petigura E. A., et al., 2018, AJ, 155, 89
Pontin C. M., 2022, Wave propagation and tidal dissipation in giant

planets containing regions of stable stratiőcation, https://etheses.
whiterose.ac.uk/31119/

Pontin C. M., Barker A. J., Hollerbach R., 2023a, arXiv e-prints, p.
arXiv:2311.03273

Pontin C. M., Barker A. J., Hollerbach R., 2023b, ApJ, 950, 176
Spalding C., Winn J. N., 2022, ApJ, 927, 22
Stevenson D. J., 1979, Geophysical and Astrophysical Fluid Dynamics, 12,

139
Terquem C., 2021, MNRAS, 503, 5789
Terquem C., Martin S., 2021, MNRAS, 507, 4165
Terquem C., Papaloizou J. C. B., Nelson R. P., Lin D. N. C., 1998, ApJ, 502,

788
Thorngren D. P., Fortney J. J., Lopez E. D., Berger T. A., Huber D., 2021,

ApJ, 909, L16
Valsecchi F., Rasio F. A., Steffen J. H., 2014, ApJ, 793, L3
Vidal J., Barker A. J., 2020a, MNRAS, 497, 4472
Vidal J., Barker A. J., 2020b, ApJ, 888, L31
Villaver E., Livio M., 2009, ApJ, 705, L81
Wei X., 2018, ApJ, 854, 34
Weinberg N. N., Arras P., Quataert E., Burkart J., 2012, ApJ, 751, 136
Winn J. N., Fabrycky D., Albrecht S., Johnson J. A., 2010, ApJ, 718, L145
Witte M. G., Savonĳe G. J., 2002, A&A, 386, 222
Wu Y., 2005a, ApJ, 635, 674
Wu Y., 2005b, ApJ, 635, 688
Zahn J. P., 1966, Annales d’Astrophysique, 29, 313
Zahn J. P., 1975, A&A, 41, 329
Zahn J. P., 1977, A&A, 500, 121
Zahn J. P., 1989, A&A, 220, 112
de Vries N. B., Barker A. J., Hollerbach R., 2023, MNRAS, 524, 2661

This paper has been typeset from a TEX/LATEX őle prepared by the author.

MNRAS 000, 1ś12 (2023)


	Introduction
	Methods
	Tidal dissipation mechanisms
	Planetary model

	Results
	Evolution of tidal quality factors
	Impact of the incident flux

	Application to star-planet and planet-moon systems
	Conclusions

