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The noisy-storage model of quantum cryptography allows for information-theoretically secure two-party

computation based on the assumption that a cheating user has at most access to an imperfect, noisy quantum

memory, whereas the honest users do not need a quantum memory at all. In general, the more noisy the quantum

memory of the cheating user, the more secure the implementation of oblivious transfer, which is a primitive that

allows universal secure two-party and multiparty computation. For experimental implementations of oblivious

transfer, one has to consider that also the devices held by the honest users are lossy and noisy, and error correction

needs to be applied to correct these trusted errors. The latter are expected to reduce the security of the protocol,

since a cheating user may hide themselves in the trusted noise. Here we leverage entropic uncertainty relations

to derive tight bounds on the security of oblivious transfer with a trusted and untrusted noise. In particular, we

discuss noisy storage and bounded storage, with independent and correlated noise.

DOI: 10.1103/PhysRevResearch.5.033163

I. INTRODUCTION

Two-party computation denotes a family of problems
whose goal is to allow two users, Alice and Bob, who do
not trust each other, to evaluate a function of two arguments,
f (x, y), where Alice provides x and Bob provides y. Infor-
mally, the protocol is secure if no more information leaks to
Alice about y, or to Bob about x, than what they can infer from
the value of f (x, y). For example, x and y are n-bit strings
and f (x, y) = x · y, where · is the scalar product modulo 2.
Neither Alice nor Bob will always be able to infer both x

and y from f (x, y) and their respective inputs x or y. In a
highly influential paper [1], Kilian showed that the ability to
perform oblivious transfer (OT) securely is sufficient for two-
party computation. In OT, a receiver (Bob) of two incoming
bits sent by Alice can read out exactly one of them, thereby
making the readout of the other bit impossible. The protocol
is secure if Bob obtains no information about the other bit,
and if Alice does not know which of the two bits is learned
by Bob. Specifically, this is known as 1-out-of-2 OT (1-2 OT)
[2]. While OT has been formulated in a number of different
flavors [3–5], we focus on 1-out-of-2 randomized oblivious
string transfer (1-2 ROTℓ). Other important primitives are bit
commitment (BC) and weak string erasure (WSE). Both OT
and BC can be obtained from WSE [6].

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

Implementation of two-party computation with compu-

tational security leverages the complexity of solving some

hard mathematical problems, e.g., factoring [1,6]. Quantum

mechanics cannot help in making two-party computation

unconditionally secure [7,8]. However, information-theoretic

security can be achieved if the users have constrained capa-

bilities, for example, if they have access only to a limited

pool of quantum resources. This may happen if the users have

no quantum memory [9–11], or if they have an imperfect

quantum memory that can store only a limited number of

qubits, for a limited time [12,13], or with nonunit fidelity.

The assumption of a quantum memory with limited capacity

is known as the bounded quantum storage model [5,14,15].

In general, the memory can be bounded and noisy, in which

case one refers to the noisy-storage model [6,16–18]. Proto-

cols that achieve OT, BC, and WSE within the noisy-storage

model have been discussed in detail in Refs. [5,6,14–21]

and demonstrated experimentally [22,23]. In general, exper-

imental implementations of two-party computation are more

demanding than quantum key distribution (QKD). This is

essentially due to the fact that users of two-party computation

do not trust each other, which places limits on how they

can cooperate. However, Refs. [5,6,14–23] have shown that

primitives such as OT and BC are nevertheless feasible and

secure within the noisy-storage model. Device-independent

OT can also be achieved by invoking suitable assumptions

[24,25]. Otherwise, without imposing any constraint on the

users’ resources, two-party computation can be implemented

with partial security. In this latter case, one aims at computing

bounds on the probability of successful cheating of a dishonest

user; see, e.g., Refs. [26,27] and references therein.
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In this paper we analyze the security of OT within the
noisy-storage model. We focus on the protocol of Damgård
et al. [5], which in turn is based on the same building blocks
as the well-known BB84 protocol of QKD developed by
Bennett and Brassard in 1984 [28]. Building on previous re-
sults from Refs. [6,20], we derive tighter entropic uncertainty
relations and quantify the security of OT in terms of the
conditional min-entropy. Compared with previous works, we
extend the region of experimental parameters that allows for
secure OT, and improve the trade-off between trusted noise
(from the devices of the honest users) and noise in the quan-
tum memory of a cheating user. We show that, in order to
achieve secure OT, the overall trusted noise should be below
≃ 22%, for a noisy but unbounded quantum memory, and
that this value decreases with decreasing noise in the quantum
memory.

The paper is organized as follows. We start in Sec. II by
recalling the implementation of 1-2 ROTℓ of Ref. [5], includ-
ing measures to make it robust to loss and noise [8,16,17].
The security of this protocol in the noisy-storage model is
discussed in Sec. III. In Sec. IV we review the entropic uncer-
tainty relations derived in Refs. [5,6,20] and their application
to prove the security of OT. We leverage these results to
obtain new, tighter entropic bounds in Sec. V. In Sec. VI,
these new bounds are applied to characterize the security
of noise-resilient OT and to determine the trade-off between
trusted and untrusted noise. In Sec. VII we discuss a quantum
memory with correlated noise, showing that the new bounds
are particularly advantageous in this case. Finally, conclusions
are presented in Sec. VIII.

II. OBLIVIOUS TRANSFER

In this paper we focus on the task of 1-2 ROTℓ, i.e., 1-out-
of-2 randomized oblivious string transfer, and on the protocol
introduced by Damgård et al. [5]. In 1-2 ROTℓ, the sender
Alice outputs two random strings, each of ℓ bits. The receiver
Bob outputs only one of these strings, chosen at random. The
task is executed securely if (sender security) Bob gets little or
no information about the other string and (receiver security)
Alice does not know which string has been obtained by Bob.
The task can be realized using BB84 operations [5], where
Alice randomly prepares states using two conjugate bases,
and Bob independently measures in either basis. Bob makes
a single choice of basis in which he measures all the physical
bits received.

Furthermore, the protocol can be made resilient to noise
by adding a layer of error correction [16]. We need to use
some care when dealing with error correction in two-party
computation since, in contrast to QKD, here Alice and Bob
do not trust each other. Therefore they cannot cooperate to
estimate the loss and noise in the communication channel and
in their devices, as they would do in QKD.

Remark 1. To implement error correction in two-party
computation, the loss and noise need to be well character-
ized before running the protocol. This includes errors in the
communication channels and in the devices held by the honest
users.

This is a nontrivial requirement. Note that if the users
exploit a trusted third party to certify the level of noise, then

they can also implement OT using said trusted third party with
a classical protocol.

In view of photonic applications, and following

Refs. [8,16,17], it makes sense to treat loss and noise in

two different ways. To deal with photon loss, Alice and Bob

first need to agree on a common time reference, which allows

them to time-tag each photon sent by Alice. If Bob is honest,

he will measure each photon as soon as he gets it, and will

confirm receipt to Alice. Only the photons that made it to

Bob will be actually used for the protocol. All the other, lost

photons will be disregarded [29]. Photons that are eventually

detected by Bob may still be subject to noise in their internal

degrees of freedom. To deal with this noise, Alice will send

an error syndrome to allow Bob to error-correct.
The error-tolerant protocol is as follows [16].

(i) Alice randomly chooses the binary values x′
j ∈ {0, 1}

and θ ′
j ∈ {0, 1}, for j = 1, 2, . . . , n′. According to the agreed

time reference, at the jth time Alice prepares and sends to

Bob the state |x′
j, θ

′
j〉 = H θ ′

j |x′
j〉, where |x′

j〉 ∈ {|0〉, |1〉} is an

element of the computational basis and H is the Hadamard

gate.

(ii) Bob randomly chooses a bit value B ∈ {0, 1} and mea-

sures all the qubits he receives in the basis {HB|0〉, HB|1〉}.

(iii) Due to photon loss and detection inefficiency, some of

the qubits are erased. Bob keeps track of the timings when

no photon is detected and communicates this information to

Alice. Only the bit values associated with the photons de-

tected are retained for the rest of the protocol. If n photons

are detected, this identifies the substrings X = x1, . . . , xn and

� = θ1, . . . , θn associated with Alice’s binary values and ba-

sis choices. On Bob’s side, he keeps track of the bit values

measured in the basis of his choice, Y = y1, . . . , yn.

(iv) The overall loss is described by an attenuation factor

η ∈ (0, 1), which is the probability that a photon is detected

by Bob. As stated above, the honest users know the expected

value of this parameter. The protocol aborts if such a value is

not compatible with the empirical loss factor n/n′ and, within

statistical errors, independent of the state prepared by Alice.
(v) The protocol pauses for a waiting time �t , counted

from when Bob is expected to receive the last photon.

(vi) Alice announces her basis choices. This corresponds to

revealing two subsets of indices I0, I1, where IC = { j | θ j =

C}. She also announces a pair of hash functions F0 and F1

from n to ℓ, and the syndrome vectors �0 = syn(X0) and

�1 = syn(X1), where XC is the substring of X restricted to the

indices in IC . Similarly, one defines Bob’s substrings Y0 and

Y1. The syndrome vectors are obtained in order to allow Bob

to correct the errors in his local string.

(vii) Alice outputs two strings of ℓ bits, S0 = F0(X0) and

S1 = F1(X1) [30].
(viii) Bob uses the syndrome �B to correct the errors in

YB and retrieve X̃B. Finally, he applies the corresponding hash
function and outputs S̃B = FB(X̃B).

Remark 2. Note the role of the waiting time �t . If Bob is

honest, he will measure as soon as he receives the photons.

If Bob is dishonest, and is storing the received qubits in a

quantum memory, the waiting time will give some guarantees

to Alice that Bob’s quantum memory has at least partially

decohered.
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Remark 3. If the users are honest, then the protocol imple-
ments 1-2 ROTℓ correctly, up to a probability ǫEC that error
correction fails. Successful error correction means X̃B = XB

and S̃B = SB.

III. SECURITY OF THE PROTOCOL

The security analysis can be found in the literature [5,16]
and is based on the following assumptions.

(1) Users have full knowledge and control of their own
devices.

(2) Users have access to a noisy quantum memory. (The
security analysis relies on modeling the noise in the quantum
memory. Below we make use of a few explicit models.).

(3) Loss and noise in the communication line and in the
devices held by honest users are known publicly.

Assumption 1 puts this protocol in the framework of
device-dependent cryptography. Assumption 2 is the core
assumption of the noisy-storage model. Assumption 3 is
necessary to allow for error correction. Furthermore, when
analyzing the security we need to consider that only one user
is cheating (either Alice or Bob) and the other is honest, since
the OT protocol is designed to protect at least one honest user.
Receiver security is for Bob when Alice is cheating. Sender
security is for Alice when Bob is cheating.

Receiver security follows from the fact that physical qubits
only travel from Alice to Bob. Note that there is some informa-
tion flowing from Bob to Alice, due to the fact that Bob needs
to confirm which photons have arrived. However, if Bob has
full control over his device (from assumption 1) and behaves
honestly (here we are considering the case where it is Alice
who may cheat), this information cannot be used by Alice to
guess the value of B. In fact, the data sent from Bob to Alice
are only to confirm receipt of a photon, and do not convey any
information about its internal degrees of freedom. Information
about the state of the received photons may leak to Alice only
if Bob’s device is compromised.

Sender security relies on the noisy-storage assumption.
The parameter ℓ depends on the amount of noise that affects
dishonest Bob’s quantum storage during the waiting time �t .
It also depends on the trusted noise, as some information will
leak through the error syndromes. Consider first the ideal case
where error correction is not needed (i.e., there is no noise for
honest users); ℓ is estimated from the leftover hash lemma and
expressed in terms of the smooth min-entropy [31]

ℓ � H
ǫs

min(X1−B|F (Q)�B) − 2 log2

1

ǫh

+ 1, (1)

where Q is the quantum information stored in the memory
and F is the map that describes the noisy storage for time
�t . Such a value for ℓ, if larger than zero, would ensure that
the dishonest receiver cannot do much more than a random
guess to determine the value of the complementary string
X1−B. Quantitatively, the probability that the string remains
unknown is given by the sum of the smoothing and hashing
parameters, ǫs + ǫh. However, noise also affects the honest
users; therefore we need to employ error correction. In turn,
this reduces the value of ℓ, as a cheating receiver can in
principle leverage the syndrome �1−B to acquire more infor-

mation about the complementary bit string,

ℓ � H
ǫs

min(X1−B|F (Q)�B�1−B) − 2 log2

1

ǫh

+ 1 (2)

� H
ǫs

min(X1−B|F (Q)�B) − |�1−B| − 2 log2

1

ǫh

+ 1, (3)

where in the second line we have applied a chain rule and
|�1−B| is the size of the syndrome in bits. In principle, security
is achieved whenever ℓ > 0, for sufficiently small values of
ǫs + ǫh. Note that F (Q) is the quantum information in the
noisy quantum memory, at the time when the basis informa-
tion �n is obtained by Bob.

Both the min-entropy and the length of the syndromes can
be computed given a suitable model for the noisy storage. This
will be discussed in detail in the next section.

Remark 4. Alice needs to run a statistical test to check that
empirical attenuation factors are compatible with the expected
value. Such a test is probabilistic and can fail with a proba-
bility ǫtest, which contributes to the security parameter of the
protocol.

In conclusion, if the protocol does not abort, it correctly
implements 1-2 ROTℓ up to a failure probability ǫEC. The
implementation is secure against a dishonest receiver with
noisy storage up to a probability ǫs + ǫh + ǫtest.

IV. REVIEW OF ENTROPIC BOUNDS

In this section we review a few entropic uncertainty rela-

tions that have been used in the literature to prove the security
of 1-2 ROTℓ [5,6,20], in particular to establish sender security.
In fact, an entropic uncertainty relation can be applied to
obtain a lower bound on the uncertainty of Bob in guessing
the other string.

As a first step, consider a simplified scenario where Bob
does not have any quantum memory. Therefore he is forced to
measure the quantum states as soon as he obtains them. If the
protocol passes the statistical test, we focus on the n photons
that have been tagged as received. Alice has encoded the vari-
ables X into their quantum states, using the BB84 encoding
scheme with two conjugate bases. After the waiting time �t ,
Alice has announced her basis choices �. It is crucial, in this
scenario, that Bob has already measured his quantum states
when this basis information is revealed. For example, this
could happen because Bob has no quantum memory at all, or a
quantum memory that is completely decohered after the wait-
ing time �t . In either case, Bob is expected to have already
measured the states when he receives the basis information,
that is, he has no quantum side information to rely upon. In
this scenario, the following entropic bound applies [5]:

H ǫ
min(X |�) �

(
1
2

− 2λ
)
n, (4)

where the parameter λ can be chosen in the open interval
(0, 1/2) such that

ǫ = exp

[
−

λ2n

32( log2(4/λ))

]
. (5)

To make things more interesting, consider that a cheat-
ing receiver, when obtaining the basis information, still has
q = νn qubits stored in its quantum memory Q, which he has
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not measured yet. In this case we have

H ǫ
min(X |Q�) � H ǫ

min(X |�) − q (6)

�
(

1
2

− 2λ
)
n − q (7)

=
(

1
2

− ν − 2λ
)
n, (8)

where the first inequality follows from the chain rule. The
parameter ν ∈ (0, 1) represents the quantum storage rate.
Asymptotically in n, the bound in Eq. (8) is nontrivial for
ν < 1/2, i.e., when a cheating receiver can store no more that
one-half of the qubits [32].

A. Noisy storage

In the case of noisy storage, the qubits stored in the quan-
tum memory are partially degraded. To analyze the security
of OT in this scenario, we need to specify a model for the
noisy quantum memory, described by the quantum channel
F . Consider a quantum memory where each qubit is subject
to independent and identically distributed (i.i.d.) noise. For
example, each qubit undergoes depolarizing noise

ρ → rρ + (1 − r)I/2, (9)

which maps ρ into the maximally mixed state with probability
1 − r and leaves it untouched with probability r.

Note that a cheating receiver does not know if a particular
qubit has been depolarized or not. However, if we give him
this additional information, we are making his quantum mem-
ory less noisy. In turn, this means that his uncertainty about
the string can only decrease [6,33]. On average, if q = νn

are stored in the quantum memory, about rνn of them are
preserved without noise, whereas the remaining (1 − r)νn

are completely depolarized. Therefore, starting from (8), we
obtain the following lower bound on the min-entropy (asymp-
totically in n):

H ǫ
min(X |F (Q)�) �

(
1
2

− rν − 2λ
)
n. (10)

For large n, this is a nontrivial bound as long as rν < 1/2 [32].
The bound can be improved using the notion of the strong

converse of a quantum channel for sending classical informa-
tion [6,34]. Given that the noisy quantum memory is described
by a map F applied to the qubits stored in the quantum
memory, the ability of this channel to preserve (classical)
information is quantified by

PF
succ(nR) = max

{ρx,Dx}x

1

2nR

∑

x∈{0,1}nR

Tr[DxF (ρx )], (11)

which is the maximum achievable (average) guessing proba-
bility, where the maximization is over encoding states ρx and
decoding positive operator-valued measure (POVM) Dx, given
a bit rate of R bits per qubit. The bound of König et al. [6]
reads

H ǫ+ǫ′

min (X |F (Q)�) � − log2 PF
succ

(
H ǫ

min(X |�) − log2

1

ǫ′

)
.

(12)

If the channel F = N⊗n is i.i.d., then the entropic bound
can be written explicitly for any R > CN , where CN is the
strong-converse capacity of the channel N , and if the error

FIG. 1. Min-entropy rate vs the depolarizing channel parameter.

Dashed blue line, computed from Eq. (10) with ν = 1; solid orange

line, computed from Eq. (19); dotted green line, computed from

Eq. (29).

exponent γ (R) is known such that

PN⊗n

succ (nR) � 2−nγ (R). (13)

Note that, if a strong converse exists, then γ (R) > 0 for any
R > CN .

For N being the depolarizing channel in Eq. (9), the
strong-converse capacity is [34]

CN = 1 − h

(
1 + r

2

)
, (14)

where

h(x) := −x log2 x − (1 − x) log2 (1 − x) (15)

is the binary Shannon entropy, and the error exponent is

γr (R) = 1 + max
α>1

×
(α − 1)(R − 1) − log2 [(1 + r)α + (1 − r)α]

α
.

(16)

This yields the entropy bound

H ǫ+ǫ′

min (X |F (Q)�) � nγr

(
H ǫ

min(X |�) − log2 (1/ǫ′)

n

)
. (17)

Using Eq. (4), we obtain

H ǫ+ǫ′

min (X |F (Q)�) � nγr

(
1

2
− 2λ −

1

n
log2

1

ǫ′

)
. (18)

For n that is sufficiently large, we obtain a bound on the
asymptotic entropy rate (note that this rate, as well as all the
entropy rates computed in this paper, is expressed in bits per
photon received)

hmin = lim
n→∞

1

n
H ǫ+ǫ′

min (X |F (Q)�) � γr (1/2), (19)

which is a nontrivial bound for all values of r such that CN <

1/2.
Figure 1 shows a comparison of the asymptotic entropy

rate hmin for the depolarizing channel, computed from Eq. (10)
with ν = 1 (dashed blue line) and from Eq. (19) (solid orange
line). This shows that Eq. (19) is generally tighter for the
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depolarizing-noise channel but Eq. (10) is tighter for small
values of the depolarizing parameter r, though with a rela-
tively small gap.

For simplicity, for most of the rest of this paper we assume
ν = 1. The general case of bounded storage (ν < 1) will be
discussed in Sec. VI.

B. Uncertainty relations for any amount of noise

As we have seen for the depolarizing channel, the entropic
bounds we have obtained become trivial if the channel is not
sufficiently noisy. This goes against our physical intuition,
which suggests that even a relatively weak noise may wipe at
least some information. In this section we review an entropy
bound, obtained by Dupuis et al. [20], which is nontrivial even
for low-noise quantum memory.

To write down this entropic bound explicitly, first consider
a purification of the BB84-like protocol where Alice prepares
n copies of the maximally entangled two-qubit states �, and
sends to Bob one qubit from each pair. To these states, which
are stored in cheating Bob’s quantum memory, a certain noisy
channel is applied, yielding the 2n-qubit state

σAE = id ⊗ F (�⊗n), (20)

where id is the identity channel acting on the first qubit of
each pair. The qubits on Alice’s side are collectively indicated
as A, and those stored in the quantum memory are indicated
as E = F (Q).

The entropic bound is written in terms of the collision

entropy rate of such a state:

h2(σ ) :=
1

n
H2(A|E )σ . (21)

Recall that the collision entropy of the bipartite state σ is
defined as

H2(A|E )σ = − log2 Tr
[(

σ
−1/4
E σAE σ

−1/4
E

)2]
, (22)

where σE = TrAσAE is the reduced state obtained by partial
tracing.

The following min-entropy bound is proven in Ref. [20]:

H ǫ
min(X |E�) � nŴ(h2(σ )) − 1 − log2

2

ǫ2
, (23)

where the function Ŵ is defined as

Ŵ(x) =

{
x if x � 1/2

g−1(x) if x < 1/2
(24)

and

g(y) = −y log2 y − (1 − y) log2 (1 − y) + y − 1. (25)

If the noisy quantum memory is described by an i.i.d.
depolarizing channel, then the state σ is a direct product, i.e.,
σ = τ⊗n, with

τ = r� + (1 − r)I/2 ⊗ I/2, (26)

and the collision entropy reads

h2(σ ) = − log2 2Tr(τ 2) = 1 − log2 (1 + 3r2). (27)

This yields

H ǫ
min(X |F (Q)�) � nŴ[1 − log2 (1 + 3r2)] − 1 − log2

2

ǫ2
.

(28)

Note that, at least for n that is large enough, this bound
remains nontrivial even when r is arbitrarily close to 1, with
the asymptotic entropy rate

hmin � Ŵ[1 − log2 (1 + 3r2)]. (29)

This is plotted in Figure 1 (dotted green line), showing that
this latter bound supersedes those obtained in the previous
sections.

V. IMPROVED MIN-ENTROPY BOUNDS

In this section we derive a new min-entropy bound us-
ing the uncertainty relation of Ref. [20]. The argument is
analogous to the one used in Sec. IV A to obtain Eq. (10).
The difference is that (10) was obtained from the uncertainty
relation (4), whereas here our starting point is the uncertainty
relation in Eq. (23). To obtain this bound, we assume that each
qubit received by Bob is affected by identical and independent
noise. As above, this qubit noise is modeled as a depolarizing
channel.

Consider the depolarizing channel of Eq. (26), which
preserves the state with probability r and completely depo-
larizes it with probability 1 − r. Cheating Bob does not know
whether a given qubit has been depolarized or not while stored
in his quantum memory. However, if we give him this addi-
tional information, the depolarizing channel is replaced by the
erasure channel:

τ ′ = r� + (1 − r)I/2 ⊗ ω, (30)

where ω is the erasure flag, which allows Bob to know if the
state has been stored without error by applying a nondestruc-
tive measurement. Given that n1 qubits have been preserved
without error, and n − n1 have been erased, the overall n-qubit
state reads

σ ′ = �⊗n1 ⊗ (I/2 ⊗ ω)⊗(n−n1 ). (31)

Assume Bob is given knowledge of which qubits have been
erased. Denote by X n1 the substring of bits corresponding
to the qubit that have been preserved without noise, and by
X n−n1 the substring corresponding to the qubits that have been
erased, with X = X n1 X n−n1 . We can then write a lower bound
on the min-entropy:

H ǫ
min(X |E�) � H ǫ

min(X n−n1 |E�) (32)

� (n − n1)Ŵ(h2(σ ′′)) − 1 − log2

2

ǫ2
, (33)

where the first inequality comes from the fact that the entropy
of a bit string is always larger than the entropy of a substring,
the second inequality is an application of Eq. (23), and σ ′′ =

(I/2 ⊗ ω)⊗(n−n1 ). Noting that h2(I/2 ⊗ ω) = 1 and Ŵ(1) = 1,
we obtain

H ǫ
min(X |E�) � n − n1 − 1 − log2

2

ǫ2
. (34)
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FIG. 2. Min-entropy rate vs the depolarizing noise parameter.

Dotted green line, computed from Eq. (29) (same as shown in Fig. 1);

dash-dotted red line, computed from Eq. (35). The best entropy rate

for each value of r is obtained by taking the maximum of the two

curves, as in Eq. (36). Solid blue line, min-entropy for the honest

receiver, obtained from Eq. (4) in the limit of large n. If the receiver

behaves rationally, his entropy rate is always above the shadowed

region.

In the limit of large n, the number of virtually erased qubits
is expected to be n − n1 ≃ (1 − r)n. Therefore we obtain the
bound on the asymptotic min-entropy rate

hmin � 1 − r. (35)

This new bound is shown together with the previous one in
Fig. 2. In conclusion, for the depolarizing channel, the best
bound on the entropic rate obtained so far is

hmin � max{γ [1 − log2 (1 + 3r2)], 1 − r}. (36)

As shown in the figure, for smaller values of r (noisier quan-
tum memory) the best bound is hmin = γ [1 − log2 (1 + 3r2)],
whereas for higher values of r (less noisy quantum memory)
the best bound is hmin = 1 − r.

Optimal strategies for a dishonest receiver

The entropic bounds obtained so far allow us to estimate
the uncertainty of the dishonest receiver in guessing Alice’s
string, as a function of the noise affecting the quantum mem-
ory. Recall that this is the noise describing the state of the
qubits stored in the quantum memory when Bob obtains the
basis information �. We suppose that Bob is not acting hon-
estly, as according to the protocol he should measure the
qubits as soon as he receives them. Equation (36) shows that
the uncertainty increases with increasing noise in the quantum
memory. Eventually, if the memory is too noisy, crime does
not pay anymore, and being dishonest (i.e., Bob waiting for
the basis announcement before measuring) is no longer the
rational choice.

In fact, we know from Eq. (4) that the min-entropy rate
for the honest receiver is hmin � 1/2. Therefore dishonest
behavior is no longer rational if the value on the right-hand
side of Eq. (36) is larger than 1/2. When the receiver acts

rationally and applies the best strategy, the entropy rate is

hmin � min{1/2, max{γ [1 − log2 (1 + 3r2)], 1 − r}} (37)

= min {1/2, 1 − r}. (38)

In conclusion, for a rational receiver the entropy rate is always
above the shadowed region in Fig. 2.

This result is indeed intuitive. Since the honest receiver
can measure without error about 50% of the qubits, behaving
honestly is the rational choice whenever the quantum memory
corrupts more than 50% of the qubits. Therefore we expect
the bound (38) to be tight if the memory is modeled as an
erasure channel (with a flag), where 1 − r is the probability of
erasing the qubit. However, for the depolarizing channel this
bound is not expected to be tight, and there might be room for
improvement.

VI. ERROR-TOLERANT OT

The entropic uncertainty relations of the previous sec-
tions can be directly applied to bound the uncertainty of the
receiver Bob about the string X . Note, however, that for ap-
plication to OT, we are interested in bounding the uncertainty
of a cheating receiver, not about the whole string X , but only
about the substring X1−B. Therefore we need a lower bound
on the min-entropy of X1−B, as in Eq. (1). For large enough
n, the substring X1−B is expected to have size of about n/2
bits, which are randomly sampled from X . According to the
min-entropy sampling discussed in Ref. [6], the min-entropy
rate of a randomly chosen substring is the same as X , if n is
large enough, up to finite-size corrections. Therefore in the
asymptotic limit of large n we can use the min-entropy rates
as obtained in the previous sections. To account for noise in
their devices, Alice and Bob will also apply error correction,
which further reduces the min-entropy as in Eq. (3).

We consider two scenarios, depicted in Figs. 3(a) and 3(b).
In both scenarios, Alice’s device introduces some noise dur-
ing the phase of state preparation, and photon loss occurs
in the transmission from Alice to Bob. In scenario 1, Bob’s
device is noisy and lossy, for example, due to nonunit detec-
tor efficiency. In scenario 2, Bob’s devices is noiseless, and
only affected by loss. In both cases, to simplify the analy-
sis, we model all noises (in preparation and measurement)
as depolarizing noise. Also, loss during state preparation
and measurement is (with no loss of generality) associated
with the communication channel. This is consistent as loss
commutes with depolarizing noise. Let η indicate the total
attenuation factor, accounting for loss in state preparation,
transmission, and measurement (nonunit detection efficiency).
As discussed above, to deal with loss, Alice needs to know
the expected value of η, and she will abort the protocol if the
empirical value is too different from the expected one given
the statistical fluctuations.

In scenario 1, the total noise is obtained by combining two
depolarizing channels (modeling preparation noise and mea-
surement noise), yielding to an overall depolarizing channel
with parameter

r1 = rprermea. (39)
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FIG. 3. Preparation noise is associated with the sender (Alice) station. Losses, including those occurring during the preparation phase

and due to detector inefficiencies, are associated with the communication channel between Alice and Bob. (a) In scenario 1, honest receiver

Bob measures the quantum states as soon as he gets them, using a noisy measurement apparatus. (b) In scenario 2, the honest receiver’s

measurement apparatus has negligible noise. (c) A cheating receiver holds the quantum states in a noisy quantum memory until he receives the

basis information from Alice.

Scenario 2 is less noisy, and depolarization is only due to the
preparation phase,

r2 = rpre. (40)

These relations hold for the honest receiver in the two sce-
narios. If the receiver is dishonest and stores the qubits in
a quantum memory, from his point of view the noise in the
quantum memory combines with the noise in the preparation
phase, as shown in Fig. 3(c). As above, we model the noisy
storage as a depolarizing channel with parameter rmem. This
means that the dishonest receiver will experience a total depo-
larizing noise with parameter

rdis = rprermem. (41)

Note that rdis = r2rmem � r2, and scenario 2 is more advan-
tageous for the honest users, as the noise experienced by the
cheating receiver is always larger than that experienced by the
honest one.

For each scenario, the amount of error-correcting informa-
tion per channel use is asymptotically equal to

hEC = h

(
1 + r j

2

)
, (42)

for j = 1, 2 according to the scenario considered. From this
we can compute the asymptotic communication rates, mea-
sured in bits per channel use, using Eq. (3). For scenario 1 we

obtain

b := lim
n→∞

ℓ/n = min {1/2, 1 − rdis} − h

(
1 + r1

2

)
. (43)

The top panel of Fig. 4 shows the contour plot of the bit
rate. The protocol is secure for values of rdis and r1 above
the shadowed region. The figure also shows how this result
improves on existing literature. The green dotted line and the
orange dashed line are the boundaries between the regions of
secure and nonsecure OT obtained from Eq. (19) and Eq. (29),
respectively. In particular, for a rational receiver we obtain
from Eq. (19) the bit rate

min {1/2, γrdis
(1/2)} − h

(
1 + r1

2

)
. (44)

Similarly, from Eq. (29) we obtain

min
{
1/2, Ŵ

[
1 − log2

(
1 + 3r2

dis

)]}
− h

(
1 + r1

2

)
. (45)

For scenario 2, we can use rmem as an independent variable,
and the asymptotic rate is

b = min {1/2, 1 − r2rmem} − h

(
1 + r2

2

)
. (46)

The contour plot for this bound is shown in the bottom panel
of Fig. 4, where secure OT is achieved above the shadowed

033163-7



LUPO, PEAT, ANDERSSON, AND KOK PHYSICAL REVIEW RESEARCH 5, 033163 (2023)

FIG. 4. Top: scenario 1. Secure OT can be achieved above the

shadowed region in the rdis-r1 plane. Bottom: scenario 2. Secure OT

can be achieved above the shadowed region in the rmem-r2 plane.

For comparison with previous results from Refs. [6,20], the dotted

green line shows the boundary between secure and nonsecure regions

that would be obtained using the min-entropy bound of Eq. (19)

[see Eqs. (44) and (47)]. The orange dashed line is the boundary

that would be obtained from the min-entropy rate in Eq. (29) [see

Eqs. (45) and (48)].

region in the rmem-r2 plane. The figure also shows the bound-
ary between regions corresponding to secure and nonsecure
OT that would be obtained using the min-entropy bounds in
Eqs. (19) and (29). The latter are computed from the bit rates

min {1/2, γr2rmem
(1/2)} − h

(
1 + r2

2

)
, (47)

min{1/2, Ŵ[1 − log2 (1 + 3(r2rmem)2)]} − h

(
1 + r2

2

)
.

(48)

Note that scenario 2 is always more advantageous for the
honest users, but in both cases secure OT is possible only if
the trusted noise parameter r j is such that h((1 + r j )/2) �

FIG. 5. Scenario 2, for rmem = 0. This refers to a noiseless yet

bounded quantum memory, with storage rate ν. The shadowed region

corresponds to where the protocol is not secure in the ν-r2 plane,

where r2 is the trusted noise parameter.

1/2, i.e., r j � 0.78. This corresponds to a maximum tolerable
trusted noise of about 22%.

Bounded storage

In case of noisy and bounded storage, suppose that the
cheating receiver can at most store a fraction of the received
qubits, quantified by the quantum storage rate ν. Equation (36)
is thus replaced by

hmin �
1 − ν

2
+ ν max{γ [1 − log2 (1 + 3r2)], 1 − r}. (49)

For a rational receiver, Eq. (38) is replaced by

hmin �
1 − ν

2
(50)

+ ν min{1/2, max{γ [1 − log2 (1 + 3r2)], 1 − r}}

=
1 − ν

2
+ ν(1 − r) = 1/2 + ν(1/2 − r). (51)

Finally, the asymptotic rate for scenario 1 becomes

b = min {1/2, 1/2 + ν(1/2 − rdis)} − h

(
1 + r1

2

)
. (52)

Similarly for scenario 2 we obtain

b = min {1/2, 1/2 + ν(1/2 − r2rmem)} − h

(
1 + r2

2

)
. (53)

Let us consider in more detail scenario 2. In the case of
noiseless but bounded quantum memory, we put rmem = 1,
and the bit rate becomes

b = min {1/2, 1/2 + ν(1/2 − r2)} − h

(
1 + r2

2

)
. (54)

Figure 5 shows the region where the rate vanishes in the
ν-r2 plane. For ν approaching zero we recover the threshold
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FIG. 6. Min-entropy bound in Eq. (57) plotted vs the noise pa-

rameter r. Shown for different values of the correlation parameter m.

From top to bottom, the curves are obtained for m = 1, 2, 5.

of 22% trusted noise. This threshold value decreases nearly
linearly with increasing ν.

VII. CORRELATED NOISE

In this section we discuss the case of quantum memory
affected by correlated noise [35]. We consider a model of burst
errors where m > 1 neighbor qubits are collectively depolar-
ized. The integer m plays the role of a correlation parameter.
Given m copies of the maximally entangled two-qubit states
�, this model is represented by the map

�⊗m → σAE = r�⊗m + 2−2m(1 − r)I⊗2m, (55)

which replaces (26). To compute the bound in Eq. (23), we
first need to compute the collision entropy of the state σAE ;
we obtain

h2 = 1 −
1

m
log2[1 + (22m − 1)r2], (56)

which extends Eq. (27) to any m > 1. From this we obtain the
min-entropy rate for the correlated-noise quantum memory:

hmin � Ŵ

[
1 −

1

m
log2[1 + (22m − 1)r2]

]
. (57)

As shown in Fig. 6 this bound decreases with increasing m.
As we did in Sec. V, we now improve this bound by

introducing a virtual erasure channel. This time the erasure
channel acts on m qubits. A collection of m neighbor qubits
is erased with probability (1 − r). If erased, we obtain the
erasure flag ω. To see the action on the whole set of n qubits,
we may split them in groups of m neighbors. Each group is
erased with probability (1 − r). Overall, for large n, we expect
about ne = (1 − r)n qubits to be erased. This corresponds to
the n-qubit state

σ ′ = �⊗(n−ne ) ⊗ (I/2 ⊗ ω)⊗ne (58)

= �⊗rn ⊗ (I/2 ⊗ ω)⊗(1−r)n. (59)

From this state we compute the min-entropy rate

hmin � 1 − r, (60)

which is independent of m and equal to the bound obtained in
the case of i.i.d. noise.

In conclusion, our new bound is always tighter, and the gap
with the previous bound increases with increasing value of the
correlation parameter m.

VIII. CONCLUSIONS

Quantum mechanics allows for information-theoretically
secure two-party computation. Unlike quantum key distribu-
tion, however, two-party computation is not unconditionally
secure, but requires additional assumptions as to the capability
of a cheating party. In particular, one can achieve provably
secure OT from Alice to Bob if the receiver Bob is limited in
the amount or quality of his quantum memory, known as the
noisy-storage model of quantum cryptography.

Experimental implementations of OT are particularly chal-
lenging, and much more challenging than QKD, because in
two-party computation the users do not trust each other. This
requires attention because Alice and Bob cannot cooperate,
as they would do in QKD, in order to estimate the noise
in the communication channel and apply error correction. In
two-party computation, the honest users need to know in ad-
vance the noise and loss characteristics of the communication
channel and of their trusted devices.

Intuitively, the more noisy the devices of the honest users
are, the easier it is for a cheating user to hide in this trusted
noise. This induces a trade-off between trusted noise (in
the devices of the trusted users) and untrusted noise (in the
quantum memory of a cheating receiver). This trade-off is
ultimately quantified by the uncertainty relation used to assess
the security of the OT protocol.

In this paper we have introduced improved entropic uncer-
tainty relations and applied them to characterize the trade-off
between trusted noise and quantum memory noise. We have
also noted that cheating is not a rational behavior if the
quantum memory is too noisy. We have shown that, even if
the quantum memory is arbitrarily noisy, yet unbounded, the
trusted noise, modeled as depolarizing noise, cannot surpass
22%. For low-noise quantum memory, secure OT can be
achieved only if the trusted noise is also low, with an improved
trade-off as shown in Fig. 4, or in the case of limited storage.

We have discussed depolarizing noise, but our results di-
rectly apply to a more general noise model of the form

ρ → rρ + (1 − r)ρ0, (61)

where ρ0 is a fixed point independent of ρ. For simplicity and
clarity of exposition, here we have focused on the asymptotic
limit of many channel uses. However, our approach can be
applied to the finite-size regime as well.
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