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Abstract

Numerous efforts in the additive manufacturing literature have been made toward in-situ defect prediction for process control

and optimization. However, the current work in the literature is limited by the need for multi-sensory data in appropriate

resolution and scale to capture defects reliably and the need for systematic experimental and data-driven modeling validation

to prove utility. For the first time in literature, we propose a data-driven neural network framework capable of in-situ micro-

porosity localization for laser powder bed fusion via exclusively within hatch strip of sensory data, as opposed to a three-

dimensional neighborhood of sensory data. We further propose using prior-guided neural networks to utilize the often-abundant

nominal data in the form of a prior loss, enabling the machine learning structure to comply more with process physics. The

proposed methods are validated via rigorous experimental data sets of high-strength aluminum A205 parts, repeated k-fold

cross-validation, and prior-guided validation. Using exclusively within hatch stripe data, we detect and localize porosity with

a spherical equivalent diameter (SED) smaller than 50.00 µm with a classification accuracy of 73.13 ± 1.57% This is the first

work in the literature demonstrating in-situ localization of porosities as small as 38.12 µm SED and is more than a five-fold

improvement on the smallest SED porosity localization via spectral emissions sensory data in the literature. In-situ localizing

micro-porosity using exclusively within hatch-stripe data is a significant step towards within-layer defect mitigation, advanced

process feedback control, and compliance with the reliability certification requirements of industries such as the aerospace

industry.

Keywords Prior-guided neural network · Machine learning · Structure optimization · Metal laser powder bed fusion · Porosity
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a Hatch offset

b Layer thickness

d Number of closest PBF samples to an XCT

porosity sample

e Energy density

p LaserVIEW system photodiode measurement

q Visible light photodiode measurement
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r Infrared light photodiode measurement

t Scan duration

u Border label

v Scan speed

w Hatch spacing

[x́, ý, ź] PBF x, y, and z scan coordinates

[x̆, y̆, z̆] XCT x, y, and, z scan coordinates

C Number of XCT porosity samples

I Number of PBF samples

Introduction

Manufacturers must deliver new products to the market

across shorter time intervals due to several reasons including

globalization, the rapid introduction of new technologies, and

shorter product life cycles (Bellgran & Säfsten, 2009; Chrys-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02170-9&domain=pdf
http://orcid.org/0000-0003-2699-1415


Journal of Intelligent Manufacturing

solouris, 2013; Ishikura, 2001). The increasing demand for

rapid, flexible, and cost-effective manufacturing results in a

driving force towards novel rapid manufacturing technolo-

gies such as AM (Conner et al., 2014; Hendricks & Singhal,

2008). Academic and industrial investments in advancing the

AM technology continue to rise with the aim of revolution-

izing manufacturing.

There are currently over 20 recognized AM processes

with different layer sintering methods (Norazman & Hop-

kinson, 2014). AM technology can generally be classified

according to the raw material’s state used by the process;

liquid-based processes (e.g., Stereolithography), solid-based

processes (e.g., Fused Deposition Modeling, Robocasting),

and powder-based processes (e.g., Laser Sintering, High

Speed Sintering). Following the American Society for Test-

ing and Materials (ASTM) classification, single-step AM

technology for metallic materials include sheet lamination,

laser powder bed fusion (L-PBF), and directed energy depo-

sition (DED) (ASTM et al., 2015).

At present, AM technologies generally encounter the

same challenges regardless of the specific process employed.

The main challenges include relatively high unit costs due

to expensive raw materials and machinery, part-part and

machine-machine repeatability, and reject rates for finished

parts (Conner et al., 2014; Tofail et al., 2017). Improving the

cost-related AM limitations and ensuring repeatable suffi-

cient AM part quality (mechanical properties and geometry),

require improving both the underlying AM technology and

the quality control framework of the process (Gao et al.,

2015). In the literature, process modeling, monitoring, and

control strategies have been deployed to overcome some of

these drawbacks.

Literature review

In metal additive manufacturing, controlling the porosity

formation and microstructure is essential for dictating the

sintered part mechanical properties. Porosity is one of the

most significant concerns for part durability, where high

cycle and low cycle fatigue (LCF) properties tend to be sub-

standard compared to conventional manufacturing processes

(DebRoy et al., 2018). In-situ monitoring and controlling the

microstructure and defect formations in AM is necessary as

it dictates the mechanical properties of the sintered parts. The

microstructure and defect formation in AM processes is very

sensitive to slight deviations in process parameters (Clymer

et al., 2017). Therefore, AM processes have tight operat-

ing windows for different materials. Sintering outside the

experimentally-validated operating windows is either unex-

plored or associated with defects such as lack of fusion,

porosity, and key-holing (Dass & Moridi, 2019).

AM technologies such as DED of metal incorporate

many aspects including 3-D part design, material selec-

tion, manufacturing, and quality evaluation. Laser based AM

technologies typically form α′ martensite microstructure as

a result of fast cooling and therefore offer higher tensile

strength and lower ductility. However, EBM manufactured

parts tend to have lower tensile strength and higher ductility

due to exhibiting α–β microstructure from the slower cool-

ing in a vacuum atmosphere. Irrespective of the material,

fine-grained microstructures (columnar, mix of columnar and

equiaxed, and equiaxed) are usually observed in AM. Grains

in mixed and equiaxed microstructures are typically on the

length scale of a deposited layer. While columnar microstruc-

tures can epitaxially grow over several layers (in the build

direction).

A single AM metal part can have several microstruc-

tural features and porosity types that dictate its mechanical

properties. The microstructure and defects are formed in-

situ and primarily depend on the process parameters and

material used (Galarraga et al., 2016). For example, a higher

laser scanning speed can lead to an increase of the HAZ,

which can lead to lack of fusion porosities and the forma-

tion of larger grain sizes and more α generations (Ge et

al., 2019; Wang et al., 2021). It is possible to perform to

use design of experiment (DOE) methods to estimate the

process–property–performance (PPP) linkage and find the

optimal parameter settings that minimize defects and achieve

the desired microstructre and mechanical properties. How-

ever, AM is a multiple-input–multiple-output multi-physics

process which makes it costly and time-consuming to rely on

DOE alone. Additionally, the highly non-linear dynamics of

AM results in a large uncertainty of the DOE surface response

mapping in areas that are untested (i.e. extrapolation) (Childs

& Washburn, 2019).

In Xia et al. (2016) the authors highlight that the hatch

spacing results in different heat-transfer behaviors and a

larger hatch pacing reduces the peak temperature and temper-

ature gradient of the molten liquid. The laser power, scanning

speed, and hatch spacing, have a significant effect on the tem-

perature of the molten pool, the phase transitions, the thermal

behavior, and defect formation (Pei et al., 2017; Song et al.,

2012).

To overcome the challenges associated with DOE, numer-

ical and data-driven models can be utilized to provide insights

and allow real-time process monitoring and control of the

process parameters. Real-time process monitoring and con-

trol are desirable to achieve the desired microstructure, higher

manufacturing repeatability, reduce defects, and potentially

achieve functionally-graded AM capabilities. In the context

of AM monitoring and control, there are three primary data

collection and modeling themes in AM:

1. Thermal models and thermal data collection
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2. Melt-pool geometry models

3. Numerical and data-driven process-property-performance

linkage models

Numerical simulations vary from the metal powder to the

3-dimensional part scales, and focus on one or two char-

acteristics of the AM process due to a lack of in-depth

understanding of the AM process. In many of the published

work on laser-based AM process monitoring and control,

assumptions such as constant CNC feed-rate and powder

mass flow-rate are utilized to simplify the physics-based

modeling problem and determine the effect of laser power on

process outputs such as dilution (Boddu et al., 2001). How-

ever, in real-time application, the process variables are likely

not constant. For example, the powder flow-rate will change

depending on the volume of powder in the hopper. The CNC

feed-rate will also vary and may lead to overfills and under-

fills, due to acceleration and deceleration while cladding at

the edges of the part. The clad profile and microstructure of

AM parts change significantly with small deviations in the

powder mass flow-rate. Limited to the current physics-driven

numerical methods it is impractical to predict the whole

AM process (process parameters to resultant microstructure)

quickly and accurately (Qi et al., 2019). Therefore, data-

driven models have been widely utilized in AM to avoid the

need of knowing the entire underlying process physics and

the computational expense of running numerical simulations

in-situ.

Relying solely on numerical models to simulate in-situ

the linkage between process parameters and microstructre

formation is not practical for the following reasons:

1. Numerical models of the thermal dynamics in AM are

either accurate but computationally-expensive or inaccu-

rate and computationally-efficient and therefore can not

be used in-situ to estimate and control the melt pool shape

and temperature profile (Tan et al., 2019).

2. Thermal data acquired in-situ often suffers inaccuracies

due to sensory calibration difficulties (Tapia & Elwany,

2014).

3. Micro-scale numerical models of the microstructure are

computationally-expensive and therefore can not be used

in-situ to estimate and control the microstructure (Tan et

al., 2019).

4. Assumptions are often utilized to simplify the physics-

based modeling problem, but lead to inaccuracies (Boddu

et al., 2001).

Analytical process–property–performancemodels

In Ning et al. (2020) the authors develop a physics-based

regression model to predict part porosity evolution. The

authors define the porosity evolution as the change of vol-

ume fraction between the pre-processed powder bed void

and post-processed part porosity. The molten pool dimen-

sions were calculated by a closed-form temperature solution

considering heat transfer. A regression model is employed

finds the correlation between the molten pool dimensions

and porosity evolution. The total porosity percentage results

were validated against experimental porosity data of a 1.3

mm by 1.7 mm section of a 10 mm by 10 mm by 5 mm part.

Wang et al. (2022) developed a two-dimensional analyti-

cal model to calculate the keyhole porosity using the molten

pool geometries, average pore size, melt flow velocity, and

pore formation frequency as inputs. The 2D model is based

on the 2D explanation of the bubble formation and trapping

in the keyhole melting of LBPF. The keyhole pore average

radius and porosity percentage under various process condi-

tions were predicted and validated against the experimental

literature measurements of Ti6Al4V in LPBF. The experi-

mental average pore sizes under five different combinations

of process parameters were obtained via cross-sectional opti-

cal microscopic pictures and image analysis. Across five

combinations of process parameters (energy densities), the

predicted pore average radius and porosity percentage were

in acceptable agreement with the experimental results. Wang

et al. also found a linear regression relationship between the

average pore size and the energy density. Wang and Liang

(2022) progress the two-dimensional analytical model to a

three-dimensional analytical method and take in to account

the process of bubble emission near the bottom of vapor

depression and trapping by solidification front. From a sen-

sitivity analysis, the authors found that the keyhole porosity

percentage has a positive correlation with the laser power and

a negative correlation with the scan speed.

Analytical solutions like the ones discussed do not utilize

FEM or iteration-based simulations and thus are compu-

tationally efficient. However, analytical methods tend to

make assumptions to simplify temperature-dependent mate-

rial properties and to the authors’ knowledge has not been

successfully developed to localize defects across varying pro-

cess parameters and rigorous experimental validation.

Data-driven process–property–performancemodels

In the literature, data-driven models have been applied to

the following parts of AM: design, in situ monitoring, and

the process–property–performance linkage. Machine learn-

ing NN have been applied to estimate one of following

properties at a time: dimensional accuracy, surface rough-

ens, shrinkage, density, compressive strength, and porosity

(Chen & Zhao, 2015; Garg et al., 2014; Shen et al., 2004;

Sood et al., 2010).

AM does not have any large open-source experimental

data sets since it is expensive to collect training data and data

labeling requires expertise knowledge (Qi et al., 2019). Uti-
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lizing ML NNs on physics-derived synthetic data sets without

using domain knowledge to guide the ML learning process

leads to poor extrapolation capabilities (Popova et al., 2017).

If for example the ML algorithm happens to inaccurately

extrapolate the process parameters in-situ due to data noise

or outliers then the manufacturing process is likely to fail.

Similarly, it would not be possible to use traditional ML algo-

rithms in an offline setting to explore new materials, process

parameters, and microstructures.

In Dass and Moridi (2019) the authors demonstrate AM

operating windows for different materials across a plot of

power feed rate versus linear heat input. Sintering outside

the experimentally-validated operating windows is either

unexplored or associated with defects such as lack of

fusion, porosity, and key-holing. In Clymer et al. (2017),

the authors provide a theory-based operating window within

the absorbed power versus beam scanning velocity space for

316 L stainless steel to achieve the yield strength, density, etc.

Beyond AM, other fields also function within nominal oper-

ating windows. Friction stir welding (FSW) is also bounded

by operating windows to avoid weld flaws (Kah et al., 2015;

Sattari et al., 2012). For example, Fraser et al. (2018) provides

a theory-based and experimentally-validated (AA6061-T6

butt joints) process window for FSW. However, extrapolat-

ing beyond the operating windows via physics-consistent and

interpretable ML models has the following impacts:

1. Knowledge discovery: exploring new materials, AM pro-

cess parameters, and microstructures through reliable

extrapolation and model interpretability.

2. Physics-consistency: within the process operating win-

dows (i.e. training data), theory-guided ML models would

perform more accurately than physics-based models and

data-driven models.

3. Additive manufacturing capabilities: through knowledge

discovery and physics-consistency, theory-guided ML

models can be used in real-time for process control to

facilitate achieving the desired microstructre, higher man-

ufacturing repeatability, reduce porosities, and potentially

achieve functionally-graded AM capabilities. Functionally-

graded materials have in-homogeneous mechanical prop-

erties achieved through the microstructure undergoing a

gradual change along some direction.

Notable prior-guided and data-driven Ml hybrid approaches

for microstructure predictions include Jha et al. (2018)

and Popova et al. (2017). Jha et al. (2018) look at alloy

design (rather than AM) and utilize machine learning (k-NN

algorithm) to create meta-models from computationally-

expensive CALPHAD solidification data (soft magnetic

alloys). The combined ML-CALPHAD TGDM approach

successfully captured relationships between the processing

variables (composition, temperature, annealing time) and the

alloy structure (mean radius and volume fraction).

Popova et al. (2017) employed a prior-guided data-driven

approach and used data from the SPPARKS kinetic Monte

Carlo (kMC) simulation suite to develop a multivariate

regression polynomial model that can estimate microstruc-

ture features as function of the AM process parameters. They

use the chord length distribution (CLD) algorithm along with

principal component analysis to quantify features and per-

form feature selection on the kMC generated microstructure

data. The authors note that the normalized MAE for some

of the predicted CLDs in the testing data set were signif-

icant (> 0.25 compared to roughly < 0.15 for other test

data points). They discover through a visual plot of the train-

ing/testing data that the test cases with high MAE were

outside the range of the training data set (extrapolation). The

work in Popova et al. (2017) was not validated against exper-

imental data.

Fu et al. review the applications of ML to metal laser-based

AM for defect detection (Fu et al., 2022). The authors point

out the need for methods capable of dealing with varying sen-

sor accuracy and spatio-temporal resolutions. They discuss

that defect detection should focus on detecting and evaluat-

ing the defect impact rather than just detecting it, highlighting

the importance of a complete process-property-performance

modeling framework. They highlight the importance of feed-

back control and in-situ correction systems to mitigate the

impact of the defects. In Lin et al. (2022) the authors further

argue that in order to achieve closed-loop control, it is nec-

essary to employ a hybrid physics-guided data-driven model

and give the example of physical-guided loss functions.

Guo et al. (2022) discuss the challenges for physics-

informed ML in metal AM. The challenges include limited

data availability and a data imbalance where most data is

considered compliant/defect-free. They bring attention to the

challenges of data modality and the importance of develop-

ing data preprocessing methods that can be run in an in-situ

manner. Regarding data integrity, they highlight that AM sen-

sor monitoring data is imperfect and can be corrupted with

noise, missing data, and incorrect measurements.

In another review, Meng et al. (2020) brings attention to

the lack of research on uncertainty quantification in ML for

AM. Uncertainty quantification and minimization for AM

regression and classification process-property-performance

linkage tasks are integral toward corrective feedback control

and decision making.

In Herzog et al. (2023) the authors review the application

of various ML methods towards in-situ defect detection in

laser-based AM. The authors highlight that thermal and vis-

ible light images and convolutional neural networks are the

most widely used approach for porosity classification. How-

ever, thermal and visible light process monitoring images
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create large data volumes leading to storage and transmis-

sion difficulties.

In Gaja and Liou (2018) the authors can detect and dif-

ferentiate between porosities and cracks on a per-layer basis

using feature extraction on acoustic emission (AE) data. The

porosities and cracks were generated by mixing Ti-6Al-4V

powder with H13 tool steel powder in the LMD printing pro-

cess. The data was collected from 15 mm long and 5 mm

long deposits. The AE signal was recorded during sinter-

ing, and the feature extraction was performed at the end of

the deposited layer. The data labels were acquired via unsu-

pervised learning in Gaja and Liou (2017). The experiment

resulted in 5 crack defects and 32 porosities. Using the 37

samples, the authors train a logistic regression model and a

neural network classifier to predict whether the AE signals

correspond to porosity or a crack defect. The models were

validated on a second AE signal acquired under the same

experimental conditions.

Liu et al. propose using machine learning regression with

physics-informed features to separately predict the mean

pore diameter, median pore diameter, max pore diameter,

and pore spacing (Liu et al., 2021). For each regression

task, for example, predicting the mean pore diameter, they

categorize the porosity data into pass, flag, and fail clus-

ters via domain knowledge. Per porosity cluster, they train

each model individually for improved performance. Training

models individually per porosity cluster is a means of dealing

with the data imbalance in the skewed porosity size dis-

tribution. Although the authors use k-fold cross-validation,

we raise the potential for their proposed framework to

suffer over-fitting. Over-fitting can occur due to neglect-

ing the information available in porosity-free data, splitting

the regression outputs into one per model, and splitting

each regression output into three sub-categories. Omitting

the porosity-free data and splitting the data into several

sub-categories leads to a tailored model that is less likely

to be generalizable on new data. The authors propose a

novel physics-informed pore generation explanation method.

They visualize the relationship between the physics effects

and porosity via physics-porosity correlation maps such as

power-intensity versus maximum-pore-diameter. The pore

generation explanation method provides porosity suppress-

ing regions and porosity encouraging regions.

In Gobert et al. (2018) the authors investigate the use

of high resolution digital single-lens reflex (DSLR) cam-

eras for defect detection in metal L-PBF. They collect

multiple images where images one to three are captured

following powder re-coating, and images four to eight are col-

lected following the laser fusion step. Per three-dimensional

neighborhood, they extract multi-dimensional features that

span multiple layers via 3D convolution filters. They clas-

sify neighborhoods as anomalous or nominal via linear

SVM classification and ensemble classification schemes. Via

cross-validation experiments, the results show an in situ

defect detection accuracy greater than 80% for flaws with

a spherical equivalent diameter (SED) larger than 47 µm.

The authors also highlight the importance of assessing fea-

tures through multiple layers to account for the melt pool

remelting zone and accurately identify discontinuities.

In Jafari-Marandi et al. (2019) the authors propose a cost-

driven decision-making framework which uses in-situ melt

pool images and considers the cost of the spatial distribution

of microstructural defects. The proposed framework recom-

mends correction actions based on the cost of the spatial

distribution of the defects.

Okaro et al. use a Gaussian mixture model and an

expectation-maximization algorithm in a semi-supervised

framework (Okaro et al., 2019). Photodiode data is acquired

during the L-PBF of 49 tensile test bars, and ultimate tensile

strength tests (UTS) were then used to categorize each bar as

faulty or acceptable. The authors apply feature extraction to

the photodiode data and validate the models via 2-fold cross-

validation. The results show a 77% classification success rate

on the ’acceptable’ parts. The semi-supervised approach uti-

lizes the labeled UTS data but also leverages unlabeled data.

Tain et al. develop deep learning neural networks and

a data fusion method to predict porosity in laser AM via

melt pool thermal history data (Tian et al., 2021). The first

model proposed is a convolutional NN (PyroNet) to corre-

late the in-situ pyrometry images with layer-wise porosity. A

second long-term Recurrent convolutional Network (IRNet)

is developed to correlate sequential thermal images with

layer-wise porosity. The PyroNet and IRNet predictions are

fused to improve the prediction accuracy of the layer-wise

porosity. The proposed approach is validated via 6-fold cross-

validation on Ti–6Al–4V thin-wall. The authors discuss and

analyze the results per fold of the cross-validation. The

author’s method’s are not tested on previously unseen test

data set.

In Taherkhani et al. (2022) the authors take on an unsuper-

vised self-organizing map (SOM) learning method to detect

defects from co-axial data emitted from the melt pool dur-

ing L-PBF. They test the proposed methods on samples

with different process parameters, intentional micro-voids,

and normally occurring porosities. The predicted defects’

position and size are compared to computed tomography

scans via a volumetric segmentation method and a confusion

matrix. The prediction algorithm achieved a 61% to 94% sen-

sitivity rate and a 69% to 93% specificity rate. The authors

note that the sensitivity and specificity depend highly on the

process parameters. The SOM algorithm detected intentional

defects ranging from 100 to 320 µm in diameter.

In Jayasinghe et al. (2022) the authors apply unsupervised

clustering methods on features extracted from photodiode

data to classify the build density of L-PBF sintered cubes with
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an accuracy of 93.54%. They also use supervised regression

to predict build density with a RMS error of 3.65%.

In Snow et al. (2022) the authors collect layer-wise

imagery, multi-spectral emissions, and laser scan vector data

of cylindrical L-PBF builds. X-ray computed tomography

(XCT) and an automated defect recognition software were

utilized to identify internal porosities. To create a balanced

ML data set, a random nominal sample was selected for each

flaw from the same part. Given a porosity/nominal coordi-

nate, a local neighborhood of sensor data is extracted for each

data sample. Each neighborhood corresponded to roughly

940.00×940.00×660.00 µm (11 layers in the z coordinate).

Convolutional neural networks were trained to discriminate

porosities from nominal through a 70% training and 30%

validation data split. The proposed approach is tested on a

previously unseen data set collected from an independent

build. The authors’ methods can detect porosities with a SED

of 200.00 µm and larger with a 93.90% classification accu-

racy.

In Mao et al. (2023), the authors propose a porosity

detection-prediction framework based on CNNs and convo-

lutional recurrent neural network (ConvLSTM) that predicts

artificial porosity in the next layer based on the thermal sig-

natures of the previous layers. The proposed methods are

validated on Ti6Al4V parts with six artificially introduced

porosities per region distributed in a hexagonal pattern and

varying in diameter across regions. The porosity diame-

ters examined range from 0.10 to 1.10 mm. The proposed

approach successfully predicts the artificial porosity using

computerized tomography scans with an F1-score of 0.75.

One limitation of this work is that the artificial porosities

re-occur at the exact locations within the part across the lay-

ers. Varying the porosity locations across layers would be a

valuable test to examine the generalisability of the proposed

methods.

In Oster et al. (2023), the authors propose a supervised

CNN architecture for predicting porosity in local clusters via

thermogram features. The proposed methods are validated on

AISI 316 L stainless steel parts where the volumetric energy

density was increased at three distinct build heights to force

the formation of pores. The proposed approach is validated

via computerized tomography scans and successfully pre-

dicts the porosity with an F1-score of 0.86 for the porosity

above a threshold of 0.10% in clusters with the dimension

of (700.00 × 700.00 × 50.00) µm3. The authors report one

drawback of the proposed approach is the limited real-time

capability of the framework, which is dependent on the num-

ber of included subsequent layers.

We summarize the gaps in the literature of L-PBF data-

driven in-situ porosity localization:

1. The limiting need for three-dimensional neighborhoods of

sensory data from multiple sintered layers before making

porosity predictions. Three-dimensional neighborhoods

of data require collecting sensory data across several lay-

ers before making a porosity localization prediction which

prohibits within-layer porosity detection and mitigation.

Detecting and localizing porosity after multiple sintered

layers have succeeded may hinder the possibility and qual-

ity of mitigating porosities.

2. Abundant information-rich porosity-free sensory data is

often omitted to avoid an imbalanced data set.

3. Porosities are often simulated via mixing different pow-

ders and are larger than or equal to 100µm SED. However,

the porosity formation heat dynamics that occur by mixing

powders are not necessarily the same porosity formation

heat dynamics that occur when using a single powder.

Gas porosities in L-PBF are typically smaller than 100

µm, and as small 10 µm SED (Choo et al., 2019; King

et al., 2014). Higher gas porosity counts result in crack

initiation and propagation paths, resulting in a decrease

of impact strength (Girelli et al., 2019; Kan et al., 2022).

Research should address the challenge of localizing nat-

urally occurring micro-porosities (< 100 µm).

We address the gaps discussed in metal AM porosity

localization via proposing a framework with the following

contributions:

1. For the first time in literature, the capability to in-situ

detect and localize porosities via a local neighborhood

of within hatch stripe sensory data as opposed to a local

3-dimensional neighborhood of inter-layer sensory data.

2. A framework based on prior-guided neural networks

to utilize the often abundant PBF nominal data to (1)

improve the detection and localization of micro-porosities

with a SED smaller than 50.00 µm and (2) increases

confidence in the model predictions via reducing the clas-

sification log loss error standard deviation. The often

abundant PBF nominal data is utilized in the form of a

prior training loss and a prior validation error.

3. To the author’s knowledge, this is the first work in the lit-

erature capable of the localization of naturally occurring

porosities as small as 38.118 µm SED (0.029 × 10−3

mm3), smaller than 47 µm SED in Gobert et al. (2018).

To the author’s knowledge, the proposed methods local-

ization of porosities as small as 38.118 µm SED is also a

more than a five-fold improvement on the smallest SED

porosity localization via photodiode sensory data (Snow

et al., 2022).

Our contributions are further supported via:

1. The proposed porosity detection and localization is done

on the bulk core of the part and the border of the part

which is often unused in the literature.
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2. Decreasing the classification log loss error standard devia-

tion via utilizing a portion of the excess porosity-free data

in the form of prior loss function under the framework of

prior-guided neural networks.

3. Thorough experimental validation and testing on single-

material cubes sintered using various process parameters

via a randomized Box Behnken design with 3 factors and

3 replicates.

4. Thorough model validation and testing via repeated k-

fold cross-validation and multiple random model weight

initialization.

The remainder of the paper is organized as follows.

Section “Methodology” presents the problem formulation

and methodology, including the data preprocessing, feature

extraction, and machine learning. The Evaluation Section in

“Evaluation” covers the machine learning model variants and

the training, validation, and testing. In section “Results and

analysis” we present the results and analysis. Finally, in the

Conclusion section “Conclusion” we discuss the proposed

methods’ findings, strengths, and limitations.

Methodology

Problem formulation and preliminaries

In this work we use the RenishawTM AM 500M PBF

machine which uses a 500.00 W ytterbium fiber laser for

sintering and the Renishaw InfiniAM spectral emissions

systems for monitoring. The Renishaw InfiniAM spectral

emissions systems includes three high precision co-axial

single-channel photodiodes. The LaserVIEW system pho-

todiode monitors the laser power. The MeltVIEW infrared

light photodiode (1080.00 to 1700.00 nm) and the MeltVIEW

visible light photodiode (700.00 to 1050.00 nm) monitor the

melt-pool plume characteristics.

The part design is a cube with a 10.00 mm edge length and

includes three smaller cubes at the top surface with a 2.00

edge length (Fig. 1). The three smaller cubes are geometric

markers designed to facilitate alignment between the PBF

and the XCT data.

A total of 45 cubes were sintered using high strength alu-

minum A205. The hatch spacing H and layer thickness Lt

are a constant 0.05 mm across the cubes. The border power,

border speed, and hatch offset Ho were varied following

a randomized Box Behnken design with 3 factors and 3

replicates. The values utilized for the independent process

parameter variables are:

1. Border power: 100.00, 300.00, and 500.00 W

2. Border hatch Offset (a): 0.00, 0.05, and 0.10 mm

3. Border speed: 50.00, 175.00, 300.00 mm/s

10

1
2

2

SIDE VIEW TOP VIEW

2

10

1
0

Fig. 1 The part design and dimensions (mm unit) examined in this work

X-ray computed tomography data

In Fig. 2 we see a visualization of the XCT porosities in cube

three. The raw XCT data for each cube includes x coordinate,

y coordinate, z coordinate, and porosity volume. The coor-

dinates are in inches, and the porosity volume is in mm3. We

combine the text files into one matrix and label each sample

with its respective cube index. The x, y, and z coordinates are

converted from inches to mm. The porosity volume across

the 44 cubes is right-skewed as seen in Fig. 3. Below is a list

of the porosity volume statistics across the 44 cubes.

1. Number of porosities: 4733

2. Total porosity volume: 1.977 mm3

3. Porosity volume mean: 4.177e−04 mm3 (layer thickness:

500.00e−04 mm)

4. Porosity volume standard deviation: 6.099e−04 mm3

5. Porosity volume median: 2.02e−04 mm3

6. Porosity volume IQR [0.25, 0.75]: [0.094e−03, 0.475e−

03 ] mm3

7. Minimum porosity volume (SED): 23.00e−04 mm3

(35.28 µm)

8. Maximum porosity volume (SED): 83.00e−04 mm3

(251.00 µm)

After sintering, the cubes were sawed off the base print-

ing plate via an automatic bandsaw. The automatic bandsaw

removed approximately 2 mm from each cube (saw kerf).

After sawing, the bandsaw leaves a diagonal pattern of

porosities/saw marks on the base of the cubes. We remove

1 mm of the XCT data from the bottom of the cube along the

z-pane to omit the saw marks. A total of 3.00 mm from the

bottom of each cube along the z-plane are omitted from the

study. Seven large artifact porosity samples from the XCT

scans were outside the cubes’ edges in the three-dimensional
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Fig. 2 Porosity visualization of

cube three: a The raw X-ray

computed tomography data

showing the porosity shape and

volume and b the pre-processed

dichotomous classification data

{0, 1} data after removing 3.00

mm from the bottom of the cube

along the z-plane to omit the

bandsaw porosities/saw marks

Fig. 3 The XCT porosity

spherical equivalent diameter

distribution across the 44 cubes

in a and b a zoom in on the

distribution of spherical

equivalent diameters smaller

than 50.00 µm

scan images (cubes 30, 35, 37, and 38). The seven artifact

samples were omitted from the study.

The zero position of the XCT data is in the cube’s center

with respect to the x, y, and z planes, excluding the three

upper features. We shift the x, y, and z coordinates by adding

[5, 5, 8] mm, such that x and y span [0, 10] and z spans

[0, 9]. Due to the cube base unevenness and the non-smooth

border surface, there are 1 or 2-dimensional geometric trans-

lational errors in the XCT centering of some cubes. Cubes

with translational errors can be visually and computation-

ally detected via searching for porosity locations outside the

cube edge ranges of [0, 10] for the x and y plane and [0, 9]

for the z plane. Note that the search for translational error in

the XCT data must also separately consider the three smaller

feature cubes. The cubes with translational error identified

are cubes number 2, 3, 5, 10, 17, 18, 19, 20, 23, 30, 33,

37, and 40. Cubes with a translational error are shifted and

centered around [5.0, 5.0, 4.5] along the x, y, and z planes,

respectively. The number of porosities per cube is shown in

Fig. 4.

Fig. 4 The X-ray computed tomography porosity count distribution per

cube

PBF sensor data

The raw data acquired from the RenishawTM AM 500M

machine and the Renishaw InfiniAM spectral emissions

systems are 241 files containing the following features in

columns: Time stamp in us, duration in us (t), x and y coor-
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dinates of the laser in mm (x́ and ý), laserVIEW normalized

photodiode laser power (p), MeltVIEW photodiode inten-

sities (q and r ). The 241 files correspond to the 241 layers

sintered. The raw files are compiled into one matrix, and

the z coordinate data is added as a feature (ź). Each sample

(row-wise) is assigned its corresponding cube number for

reference.

We remove the [0.00, 3.00] mm range of the machine/

sensor data from the bottom of the cube along the z-pane to

match the XCT. For ease of data readability, we shift each

cube’s x, y, and z coordinates, such that x and y span the [0.00,

10.00] mm range and z coordinates span the [0.00, 9.00] mm

range. Note that the x and y coordinate data for layers 101 and

102 have a geometry translation error and have been shifted

to match the other layers. The geometry translation error is

expected to be due to the acquisition system.

Due to the sensor acquisition rate, there are occasions

where multiple consecutive samples are acquired at the same

x and y coordinates. For example, if a given x and y coor-

dinate is sintered for 40 us, two sensor readings spanning

20 us each could be acquired. Consecutive samples per cube

per z-axis layer with the same x and y coordinates are com-

bined into one sample. The duration feature is summed, and

the three sensor data features are averaged. The cube index

feature is also updated accordingly. After combining sam-

ples with repeated x and Y coordinates, the total number of

samples is reduced by 1,758,037 samples from 267,867,956

to 266,109,919. The mean number of samples per cube is

5.953e+06 and the mean number of samples per 1.00 mm3

is 8.222e+03.

Feature addition

To improve the the models’ prediction accuracy we com-

pute/create additional features including a border label, hatch

offset, scan speed, and the energy density.

The core of the 45 cubes is sintered with the same param-

eters, but the border sintering parameters vary. It is necessary

to have a border label for each sample to avoid a data imbal-

ance when training the NN models. We clarify that border

labels are only needed when training and would not be needed

when running a trained model in-site. The border labeling

procedure per PBF sample is discussed in Appendix A. In

Fig. 5 we demonstrate the border labels for cube 5 across all

the 180 layers.

The hatch spacing feature, w, in meters is created via the

cube number and border label. The hatch spacing for the

cube cores is set as 0.050 mm. The hatch spacing for the

cube border is set as the hatch offset value, a, depending on

the cube number. The border samples of cubes with a null

hatch offset, a = 0, are assigned a hatch spacing of the single

track border spot size 0.080 mm.

Fig. 5 A visualization of cube five showing the result of the border

labeling procedure

Fig. 6 The unitless energy density distribution across the core and bor-

der samples

The scan speed, v, in meters per second is calculated via

the duration and the x and y coordinates (Eq. 1).

vi =

√

�ý
i

2 + �x́ i
2

t
, i ∈ {1, . . . , I − 1}, (1)

where v is the scan speed (m/s) and t is the scan duration (s).

A unitless energy density, e, is calculated via the scan

speed, hatch spacing, LaserVIEW system photodiode fea-

ture, and the layer thickness (Eq. 2). The energy density

distribution across the core and border samples is shown in

Fig. 6 and clarifies why border labeling is important to avoid

a data imbalance when training NN models. The assump-

tions made in the calculation of the energy density via Eq. 2

are covered in Prashanth et al. (2017). Although used widely

in the literature, the energy density calculation in Eq. 2 may

be miss-representative when used for PBF process parame-

ter optimization. In this work, the assumptions made for the

energy density calculation in Eq. 2 are less relevant in terms

of porosity detection and localization. Albeit a more accurate

energy density measure may improve porosity detection and

localization.
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ei =

{

0 f or vi = 0
p

i

b vi wi
f or vi �= 0

i ∈ {1, . . . , I } (2)

where e is a unitless energy density.

Porosity-free coordinates

The PBF data is imbalanced with most of the samples being

porosity-free. To create a balanced Bernoulli distributed clas-

sification data set, we need to identify 4733 porosity-free

coordinates in the 45 cubes to match the C = 4733 XCT

porosity samples. Additionally, we note the data imbalance

in the porosity locations where most of the porosities are

in the cube core relative to the cube borders. The porosity

location imbalance is significant since the core samples have

the same sintering settings while the border sintering settings

vary across cubes. For a balanced data set, it is necessary to

ensure an equal number of core and border samples between

the porosity and porosity-free coordinates.

We partition the PBF data of each cube into 0.25 mm3

blocks. A block is identified and handled via its center coordi-

nates. We use the XCT porosity locations [x̆, y̆, z̆] to identify

the porosity and porosity-free blocks. The border label u is

used to identify the border blocks relative to core blocks.

According to the 0.25 mm3 block boundaries, the XCT sam-

ples can be divided into 3304 core and 1429 border porosities.

A block is considered a border block if it contains one or

more border samples according to u. Similarly, according

to the 0.25 mm3 block boundaries, we identify 4050 and

4212 core and border block coordinates that are porosity-

free across all 45 cubes. Therefore, there are 182,250 and

189,540 porosity-free core and border block coordinates and

cube number combinations.

We randomly pick 3304 core and 1429 border porosity-

free block coordinates and cube numbers to represent

the porosity-free data. We define matrix BBB including the

porosity-free block coordinates and cube numbers and the

porosity XCT coordinates and cube numbers. The matrix BBB,

therefore, has 9466 rows and 4 columns containing the x,

y, and z coordinates and cube numbers. We randomly pick

an additional 3304 core and 1429 border porosity-free block

coordinates and cube numbers (CCC) to represent a prior data-

set. The prior data set use is discussed in section 4.7. When

populating the prior data set CCC , we ensure that non of the

samples in BBB are repeated in CCC to avoid data leakage. For

matrices BBB and CCC we define vectors y ∈ {0, 1} and z ∈ {0, 1}

where porosities are assigned value 1 and porosity-free coor-

dinates are assigned 0.

Ideally, a balanced data set would have an equal amount

of porosity and porosity-free samples per combination of

process parameters. As seen in Fig. 4 the porosity count distri-

bution varies between the cubes, and some process parameter

combinations result in more XCT porosity samples. Repeat-

ing the experiments several times to have an approximately

equal number of porosity samples per combination of pro-

cess parameters is time costly and requires expert knowledge.

However, we note the choice taken here to have an approx-

imately equal number of porosity-free samples across the

cubes to improve the data imbalance.

Feature extraction

Feature extraction is a process of dimensionality reduc-

tion which reduces a set of raw or pre-processed data to a

more manageable groups for processing and modeling tasks

(Atwya & Panoutsos, 2019). The objective of this subsec-

tion is to determine which PBF samples should be used to

represent the 9466 porosity and porosity-free coordinates

and cube numbers (BBB). The number of PBF samples is

I = 266,109,919. Given that the largest porosity volume

is 83.00e−04 mm3 and the layer thickness and hatch spacing

are 500.00e−04 mm, the largest porosity is smaller than the

Renishaw PBF data resolution. Assuming that each sample

in BBB corresponds to the nearest PBF sample in terms of the

x, y, and z three-dimensional euclidean distance creates two

challenges. The first challenge is correctly identifying the

PBF sample closest to the XCT sample due to geometric and

dimensional errors when mapping the XCT scans on the PBF

data. The second challenge is that the sintered part properties

and presence of porosity at a specific coordinate are affected

by the surrounding hatch paths and the preceding and suc-

ceeding layers due to the laser spot overlapping and the melt

pool remelting zone (section 2).

Instead of using the pre-processed PBF data set (I =

266,109,919 samples), we propose a framework where we

use feature extraction measures on the five closest PBF sam-

ples to each XCT sample and porosity-free coordinate in

terms of the three-dimensional euclidean distance. We note

that using only the nearest five PBF samples results in in-situ

porosity localization via exclusively one-dimensional hatch

stripe and two-dimensional surrounding hatch stripes (laser

spot overlap) data. The proposed framework does not uti-

lize a three-dimensional neighborhood of data (i.e. does not

make use of preceding/succeeding layers). Given a porosity

or porosity-free coordinate, the five closest PBF samples are

extracted from an equivalent 0.04 ± 0.01 hatch stripe length

Fig. 7c.

In Eq. 3 we define the matrix AAAic the three-dimensional

euclidean distance between each XCT sample (c) and every

PBF sample (i). We find the five closest PBF samples to

each XCT sample in terms of the euclidean distance AAAic.

Accordingly, for each sample in BBB we have five representative

PBF samples. The same procedure is repeated for the prior

matrix CCC porosity-free block coordinates and cube numbers.

We note that utilizing the a pre-defined three-dimensional
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Fig. 7 A visualization of the

X-ray computed tomography

porosities in cube three and the

sensory data surrounding one

porosity a the porosity in cube

three, b the sensory samples

surrounding one porosity, and c

the within-hatch stripe sensory

samples (five samples) utilized

in the feature extraction

sized neighborhood of PBF samples is flawed in terms of a

ML framework as it would lead to a different number of PBF

samples per neighborhood due to the scan speed and hatch

spacing/offset varying between cubes.

AAAic =
√

(x́ i − BBBc1)
2 + (ý

i
− BBBc2)

2 + (ź
i
− BBBc3)

2,

i ∈ {1, . . . , I }, c ∈ {1, . . . , 2C},
(3)

where C is the number of XCT porosity samples and AAAic is

the three-dimensional euclidean distance between each PBF

and XCT sample x, y, and z coordinates.

We choose to set the three spectral emission sensors, scan

speed, hatch spacing, and energy density as the machine

learning input variables of interest. For each five representa-

tive PBF samples per coordinate in BBB and CCC we utilize the

mean, variance and skewness as feature extraction methods

on the spectral emission sensors, scan speed, hatch spacing,

and energy density. The supervised machine learning input

data set consists of 15 columns including (1) the mean, vari-

ance, and skewness of the three spectral emission sensors (p,

q , and r ) and (2) the mean and variance of the scan speed,

hatch spacing, and energy density (v, w, and e).

Supervisedmachine learning

The input (extracted features) and target labeled data presents

a Bernoulli distributed classification problem with a nominal

dichotomous target [0, 1] where 0 indicates porosity-free and

1 indicates a porosity. To model the non-linear relationship

between the input and target we use the universal approx-

imator non-linear in the parameter two-layer feed-forward

multi-layer perceptron (MLP) model within the framework

of prior-guided neural networks. The MLP in this work con-

sists of 15 input neurons, one hidden layer, and an output

layer with one neuron. We use non-linear rectified linear unit

activation function for the hidden layer and a logistic acti-

vation function for the output layer. The NN cost function

in this work consists of an empirical loss function Le and a

regularization loss function Lr (Eq. 4).

To utilize the prior dataset, we use a prior-guided neu-

ral network as in Atwya and Panoutsos (2022), Liu and

Wang (2019), Muralidhar et al. (2018), Jagtap et al. (2020).

The class of prior-guided neural networks in Atwya and

Panoutsos (2022), Liu and Wang (2019), Muralidhar et al.

(2018), Jagtap et al. (2020) incorporate prior-based loss func-

tions to the cost function of a vanilla NN. We add the prior

knowledge-based loss function Lp to the cost function in

Eq. 5. Paper (Atwya & Panoutsos, 2022) covers the structure
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optimization of prior-knowledge guided neural networks and

the impact of data complexity, hyperparameters, and the data

set size.

The prior-guided framework utilized leads to three hyper-

parameters: regularization loss weight (ρr ≥ 0), prior-based

loss weight (ρp ≥ 0), and the hidden unit number (Eqs. 4

and 5). The work in Atwya and Panoutsos (2022) shows

that structure-optimized prior-guided neural networks are not

affected by non-adaptive regularization and prior-based loss

weights. In this work, we utilize the structure-optimization

methods in Atwya and Panoutsos (2022) and set the regular-

ization and prior-based loss weights as constants. We discuss

the benchmark and prior-guided model variants examined in

section 5.1.

LN N = Le + ρrLr (4)

where Le is the empirical loss, Lr is the regularization loss,

and ρr is the regularization loss weight.

LPG N N = Le + ρrLr + ρpLp, (5)

where Lp is the prior loss and ρp is the prior-based loss

weight.

Evaluation

In this Section, we discuss the benchmark models, prior-

guided model variants and the model training, validation,

and testing framework.

Model variants

To benchmark the proposed prior-guided neural network

approach, we test a support vector machine (SVM), a ran-

dom forest (RF), and a vanilla multi-layer perceptron neural

network (NN). Below is a list of the prior-guided and bench-

mark models:

• PGNN: A prior-guided neural network with a prior loss

and one hidden layer with 100 hidden units.

• PGNN1: A prior-guided neural network with a prior loss

and one hidden layer where the number of hidden units

is optimized via a line search.

• NN: A vanilla multi-layer perceptron NN with 100 hid-

den units (no prior usage).

• SVM: A support vector machine model with a radial basis

function (RBF) kernel (no prior usage).

• RF: A random forest model with 500 trees and one min-

imum observation per leaf (no prior usage).

Model training

We split the data set (9466 samples) where half of the data set

is used to train and validate the models and the second half is

used to test the models. The second half of the data is referred

to as the out-of-sample-data is reserved and only used to test

the model performance after training and validation. Before

splitting the data, the input and target row order is random-

ized. The minimum and maximum porosity volumes in the

training/validation and testing data splits are provided below.

Note that the minimum porosity volumes provided below are

for reference and exclude the porosity-free samples.

• Training/validation data minimum porosity volume

(SED): 23.00e−04 mm3 (35.28 µm)

• Training/validation data maximum porosity volume

(SED): 62.72e−04 mm3 (228.81 µm)

• Testing data minimum porosity volume (SED): 29.00e

−04 mm3 (38.12 µm)

• Testing data maximum porosity volume (SED): 82.80e

−04 mm3 (251.00 µm)

The empirical Le and prior Lp loss were computed via the

cross-entropy cost function (Eqs. 6 and 7. The regularization

loss Lr was computed via L2 regularization (Eq. 8). The reg-

ularization weight was set as 1e − 3 for the NN model. The

regularization and prior weights were set as 1e−3 and 1e−3

for the PGNN models. Each input feature was transformed

via z-score standardization (i.e. zero mean and unit standard

deviation). The NN and PGNN model weights were initial-

ized via the He initialization method (He et al., 2015). The

loss functions in Eqs. 5 and 4 were minimized via the scaled

conjugate gradient optimization algorithm (SCG) to find the

optimal model weights. The SCG algorithm was allowed a

maximum of 1e3 iterations to find the solution. Note that the

mean and standard deviation of the input features in the train-

ing data set were used to normalize (z-score standardization)

the input features in the prior data sets.

The SVM model was trained by minimizing the L1-norm

of the slack variables via the Sequential Minimal Optimiza-

tion algorithm (Fan et al., 2005). The Sequential Minimal

Optimization algorithm was allowed 1e8 iterations to find

the solution.

In the RF ensemble model, each tree was created via boot-

strap samples of the input data. Note that for each tree, data

samples not included in the bootstrap sample are considered

the out-of-bag samples. Breiman’s random forest algorithm

(Breiman, 2001) is utilized to train the RF ensemble via the

CART algorithm (Breiman, 2017) and Gini’s diversity index.

Le = −

I
∑

i=1

(

ŷ
i

ln
(

y
i

)

+
(

1 − ŷ
i

)

ln
(

1 − y
i

)

)

, (6)
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where I is the number of data points and ŷi and yi are the

prediction and target for the i th input vector.

Lp = −

I
∑

i=1

(

ẑ
i

ln
(

z
i

)

+
(

1 − ẑ
i

)

ln
(

1 − z
i

)

)

, (7)

where I is the number of data points and ẑi and zi are the

prediction and target for the i th input vector of the prior data

set.

Lr =
1

2
wT w, (8)

where w is a vector of the model weights.

Model validation

The number of hidden units optimization and use of the prior

loss (PGNN and PGNN1) is performed as in Atwya and

Panoutsos (2022). The number of hidden unit coarse search

was performed across a linearly spaced vector of 8 values

within [30, 100]. The coarse search is followed by a fine

search with a vector of 10 linearly spaced points in the range

of ±10 of the coarse best-estimated number of hidden units

value. We use the same model training, validation, and testing

framework as in

Atwya and Panoutsos (2022).

To validate the NN and PGNN models, we use three-

time-repeated 5-fold cross-validation (CV). The 5-fold CV

is repeated three times for every randomly initialized set of

weights using re-divided data subsets. The empirical and

prior-based CV errors were measured via the cross-entropy

function.

The RBF Kernel scale and the box constraint penalty

hyperparameters of the SVM model are optimized via a

grid-search. The hyperparameter search is performed over

a log-scaled grid in the range [1e −3, 1e3]. The SVM model

was validated via 5-fold CV and the L1-norm of the slack

variables as empirical CV performance index.

The RF model was validated via the out-of-bag data.

Roughly two thirds of the input data is selected for train-

ing for every tree and the remaining one third is used as

out-of-bag validation data set.

Each NN/PGNN model was trained and validated 64 times

using randomly initialized weights, and the mean/median

results are provided in section 6. The SVM model was trained

and validated 64 times using randomly re-partitioned data in

the CV framework. The RF model was also trained and val-

idated 64 times using randomly re-partitioned data in the

out-of-bag framework.

Model testing

Following training and validation, the mean and standard

deviation of the input features in the training data set were

used to normalize (z-score standardization) the input features

in the testing OOS data set. The classification performance

of each model is tested on the OOS data set. Note that the

OOS data set were not used in the training/validation steps.

Results and analysis

Due to the log-loss cross entropy activation function, the

NN and PGNN variants predict the probability of a sample

belonging to a class along the interval [0, 1]. Across the 64

randomized solutions of the NN and PGNN model variants

we apply Youden’s Index cutoff threshold to the model pre-

dictions providing a trade-off between the hit and false-alarm

rates. Youden’s Index cutoff threshold is a decision-making

step where a decision is made on the porosity status of a

sintered coordinate based on the classifier’s predicted proba-

bility. Utilizing the standard Youden’s Index cutoff threshold

is also a decision that sensitivity and specificity are equally

important when making classifications. In this work, the

SVM and RF models output a binary value of either 0 for

predicted nominal samples or 1 for predicted porosity sam-

ples.

Using raw model predictions {0, 1}, the NN, PGNN, and

PGNN1 achieve an area under the curve of 0.77 ± 0.01,

0.77 ± 0.01, and 0.79 ± 0.00, respectively. The NN, PGNN,

and PGNN1 Youden’s Index values are 0.35 ± 0.01, 0.36 ±

0.02, and 0.37 ± 0.03, respectively. Using Youden’s Index

cutoff threshold results for the NN and PGNN variants,

we assess the mean and standard deviation of the classi-

fication accuracy. We report the median and interquartile

ranges for the true positive count, true negative count, false

positive count, false negative count, precision, recall, and F-

score. The structurally optimized prior guided neural network

(PGNN1) achieved the best cross entropy error at the median

and interquartile hidden unit values of 20.00[20.00, 22.00].

Figure 8 shows the classification accuracy mean and stan-

dard deviation across the entire OOS data set (combined) and

different porosity volume ranges within the OOS data. Over

the entire OOS data (combined), the RF model achieves the

highest classification accuracy (72.4 ± 0.04%) followed by

PGNN1 (70.66 ± 0.19). The NN and PGNN variants out-

perform the SVM and RF models at detecting the porosity

samples as opposed to the porosity-free samples. For porosi-

ties with a SED < 50.00µm, PGNN1 outperforms NN, RF,

and SVM by 2.68%, 21.22%, and 49.83%, relatively. The RF

and SVM models outperform the PGNN1 model by 19.97%

and 16.49%. The classification results show that the NN

and PGNN variants have a higher recall but lower preci-
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Fig. 8 The classification

accuracy mean and 95.00%

confidence interval across the 64

solutions of each model type.

The results are color coded and

labeled according to the porosity

spherical equivalent diameter

range (Color figure online) 7
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Fig. 9 The precision, recall, and F-score box plot across the 64 solutions

of each model type. The box plot shows the median, interquartile range,

minimum, and maximum values. Outliers are marked as black dot, and

an outlier is a value that is more than 1.5 times the interquartile range

away from the bottom or top of the box (Color figure online)

sion than the SVM and RF models. As the porosity volume

increases, the classification accuracy discrepancy between

the NN/PGNN models and the SVM/RF models decreases.

As expected, the classification accuracy saturation at larger

porosity volumes shows that larger porosities are easier to

detect. The precision and recall discrepancy between the

SVM/RF and NN/PGNN models is likely due to (1) the

large data set size being more suited to NN/PGNN rela-

tive to SVM and (2) The porosity input sample features or

characteristics may be more difficult to detect or maybe less

well-represented in the data. Generally, the RF model would

seem to be the best option due to its classification accuracy.

However, in additive manufacturing applications, detecting

porosities is more important than detecting nominal samples,

and PGNN1 is a more suitable choice for porosity localiza-

tion.

The precision and recall results in Fig. 9 confirm the clas-

sification accuracy results. the NN and PGNN variants have a

higher recall but lower precision relative to the SVM and RF

models. The F-score [0, 1] is defined as the harmonic mean

of the model’s precision and recall. In this study, we use the

standard F-score where the precision and recall are equally

weighted. The F-score provides a more balanced view of the

models’ performance relative to the classification accuracy
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Fig. 10 The true positive (TP), true negative (TN), false positive (FP),

and false negative (FN) box plot across the 64 solutions of each model

type.The box plot shows the median, interquartile range, minimum, and

maximum values. Outliers are marked as black dot, and an outlier is a

value that is more than 1.5 times the interquartile range away from the

bottom or top of the box (Color figure online)

which only considers the number of correct classifications.

An F-score of 1 implies a perfect model. The SVM model has

the lowest F-score median and interquartile ranges of 0.687

[0.687, 0.688]. The PGNN1 model has the largest F-score

median and interquartile ranges of 0.735 [0.731, 0.737]. In

AM porosity detection and localization, especially for safety

critical applications such as aerospace, false negatives (miss-

classifying porosities) are more costly than false positives

and a higher recall is more important. Since PGNN1 has the

highest recall and F-score performance, it is a more suitable

choice for porosity localization. As our data set is balanced,

the F-score results and findings are in agreement with the

classification accuracy results. The true positive (TP), true

negative (TN), false positive (FP), and false negative (FN)

results in Fig. 10 further demonstrate that the NN and PGNN

variants are less likely to miss-classify porosity samples.

Figure 11 demonstrates the SVM, RF, and NN classifica-

tion accuracy and 95.00% confidence interval for different

porosity volumes across the 64 solutions of each model type.

The SVM model has no standard deviation in its predictions

across the 64 solutions where for each solution the data was

re-partitioned randomly. This is likely due to the SVM model

failing to capture the variation in the data (under-fitting) and
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Fig. 11 The classification

accuracy mean and 95.00%

confidence interval of the SVM,

RF, and NN models across the

64 solutions of each model type;

a porosities SED < 60.00 µm

and b porosities SED ≥ 60.00

µm

Fig. 12 The classification

accuracy mean and 95.00%

confidence interval of the NN

and PGNN models across the 64

solutions of each model type; a

porosities SED < 60.00 µm and

b ≥ 60.00 µm

making the same predictions for the porosity class. The NN

has a wider confidence interval relative to the RF model, but is

still likely to outperform the RF model with a 95.00% level

of confidence. In Fig. 11a and 11b we can also observe an

increase in the classification accuracy as the porosities SED

value increases, indicating as expected that larger porosities

are easier to detect. Figure 12 demonstrates the NN, PGNN,

and PGNN1 classification accuracy and 95.00% confidence

interval for different porosity volumes across the 64 solutions

of each model type. The NN, PGNN, and PGNN1 models

have a similar confidence interval across the porosity vol-

ume range.

Tables 3 and 4 in Appendix B, show the classification

accuracy and log loss error average and standard deviation

on the testing OOS data across a finer porosity spheri-

cal equivalent diameter range. We utilize the two-sample

Hotelling’s T2 for independent samples to determine if the

classification accuracy percentage change and log loss error

change is statically significant. To decide whether to per-

form a homoscedastic or a heteroscedastic T2 test, we use

the multivariate statistical test Box’s M to check the equality

of multiple covariance matrices. The Box’s M test assumes

multivariate normality (Schumacker, 2015). The classifica-

tion accuracy and log loss errors in Tables 3 and 4 mostly

have a univariate and multivariate (relative to the NN model

results) normal distribution according to quantile-quantile

plots with an exception to the [200, 250] and 251.002 SED

results (quantile-quantile plots omitted). The [200, 250] and

251.002 SED results are omitted from the T2 test analysis.

The SVM model is omitted from T2 test analysis as it lacks

variance in its predictions across the 64 solutions with ran-

domized cross-validation re-partitioning. In this work, Box’s

M takes on a Chi2 approximation which is accurate for group

sample sizes larger than or equal to 20.

A non-significant Box’s M test result (P > 0.05) indi-

cates that the covariance matrices are equal. If the covariance

matrices are not significantly different (homoscedastic) and

the groups’ sample size is at least 50, Hotelling’s T2 test

takes a Chi2 approximation, otherwise it takes an F approxi-

mation. If the covariance matrices are significantly different,

Hotelling’s T2 test takes a Chi2 approximation. We perform

the Box’s M and two-sample Hotelling’s T2 tests to assess if

the prior-guided neural networks have a statically significant

(P > 0.05) effect on the classification accuracy and the log

loss error relative to the NN model (Tables 6, 7). We also

perform the Box’s M and two-sample Hotelling’s T2 tests to

assess if the RF model has a statically significant (P > 0.05)

effect on the classification accuracy relative to the NN model

(Table 5).
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Table 1 The classification

accuracy average percentage

change of each model type

relative to the neural network

model

Porosity No. of [NN, SVM]a [NN, RF] [NN, PGNN] [NN, PGNN1]

SED (µm) samples

0 2316 19.21 22.76 0.60 2.33

[38, 40] 5 −100.00 −16.67 0.00 5.56

[40, 42] 16 −52.17 −26.16 0.75 −2.09

[42, 44] 35 −58.84 −18.26 −0.32 −3.15

[44, 46] 49 −28.80 −1.33 −0.13 4.62

[46, 48] 101 −20.43 −23.21 −0.18 4.61

[48, 50] 87 −28.23 −11.83 −0.33 2.36

[50, 60] 454 −21.47 −11.89 −0.41 0.97

[60, 70] 360 −13.02 −10.25 −0.59 1.58

[70, 80] 297 −8.14 −5.91 −0.32 2.22

[80, 90] 228 −17.84 −11.49 −0.79 0.04

[90, 100] 220 −4.59 −4.39 −0.28 0.98

[100, 150] 467 −10.72 −7.65 −0.22 0.78

[150, 200] 89 −5.00 −7.58 0.12 1.32

[200, 250]b 8 −4.68 −18.30 0.85 2.55

251.002b 1 3.23 3.23 0.00 1.61

Overall 4733 −0.25 4.31 0.05 1.74

The cells italics indicate a statistically significant percentage change (P< 0.05) based on an independent

two-sample multivariate Hotelling’s test
aThe SVM model is omitted from T2 test analysis as it lacks variance in its predictions across the 64 solutions

with randomized cross-validation re-partitioning
bThe [200, 250] and 251.002 SED results are omitted from the T2 test analysis as they violate the univariate

and multivariate (relative to the NN model) normality assumption

Table 1 shows the classification accuracy percentage

change of the SVM, RF, PGNN, and PGNN1 models relative

to the NN model. The cells highlighted indicate a statisti-

cally significant percentage change (P < 0.05) based on

Hotelling’s test. The RF model has a positive statistically

significant effect on the porosity-free samples relative to the

NN model. However, the RF model has a negative statisti-

cally significant impact on the porosity samples relative to

the NN model. Overall, across the OOS data set, the PGNN

model have no statistically significant change in the classi-

fication accuracy relative to the NN model. The RF model

has a 4.31% classification accuracy percentage improvement

relative to the NN model. However, as noted earlier, the NN

outperforms the RF model in terms of the recall and F-score

and is more suited to AM applications. The PGNN model

has no statically significant performance change in the clas-

sification accuracy relative to the NN model. The PGNN1

model has an overall statistically significant classification

accuracy percentage improvement of 1.74%, relative to the

NN model. Specifically, relative to the NN model, the PGNN1

model statistically significantly improves the classification

accuracy of the porosity-free class, and the porosity SED

ranges [44.00, 48.00], [60.00, 80.00], and [150.00, 200.00].

PGNN1 classification accuracy improvement and relatively

balanced recall and precision, show the benefits of utilizing

the nominal abundant data in the framework of structurally

optimized prior-guided neural networks (Atwya & Panout-

sos, 2022).

Table 2 shows the log loss error percentage change of

the PGNN and PGNN1 models relative to the NN model.

The cells highlighted indicate a statistically significant per-

centage change (P < 0.05) based on Hotelling’s test. The

PGNN model has no statistically significant impact on the

log loss error relative to the NN model. The PGNN1 statis-

tically significantly reduces the log loss error over the OOS

data set by 11.63% relative to the NN model. Specifically,

PGNN1 statistically significantly reduces the log loss error

for the porosity-free class and for the porosity SED range

[40.00, 200.00]µm. PGNN1 improvement of the log loss

error increases the likelihood of the prediction being cor-

rect. An improved log loss error is significant for porosity

mitigation control applications where the control action can

be proportionate to the model’s prediction.

Conclusion

This work examines the use of photodiode sensory data

in a machine learning framework for PBF in-situ porosity

detection and localization. We propose for the first time in
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Table 2 The log loss error average percentage change of each model

type relative to the neural network model

Porosity No. of [NN, PGNN] [NN, PGNN1]

SED (µm) Samples

0 2316 0.08 −11.81

[38, 40] 5 0.33 1.85

[40, 42] 16 −1.43 −7.68

[42, 44] 35 0.24 −14.65

[44, 46] 49 1.84 −7.48

[46, 48] 101 0.46 −11.27

[48, 50] 87 1.05 −6.45

[50, 60] 454 1.16 −10.99

[60, 70] 360 −0.03 −8.62

[70, 80] 297 0.61 −10.69

[80, 90] 228 0.33 −14.45

[90, 100] 220 0.42 −9.97

[100, 150] 467 −0.21 −12.03

[150, 200] 89 0.59 −12.89

[200, 250]a 8 1.45 −3.25

251.002a 1 2.67 22.68

Overall 4733 0.43 −11.63

The cells italics indicate a statistically significant percentage change

(P< 0.05) based on an independent two-sample multivariate Hotelling’s

test
aThe [200, 250] and 251.002 SED results are omitted from the T2 test

analysis as they violate the univariate and multivariate (relative to the

NN model) normality assumption

literature, a framework that can make in-situ porosity local-

ization predictions via a neighborhood of within hatch stripe

data. In-situ porosity localization via within hatch stripe

sensory data achieves quicker predictions without the need

for surrounding hatch stripes or preceding/succeeding layer

data. The capability to make porosity localization predic-

tions exclusively within stripe data potentially facilitates

quicker within-layer defect mitigation via altering the sin-

tering process settings of the surrounding hatch stripes.

The capability of within-layer defect localization and mit-

igation can improve the quality of AM parts and improve

AM compliance with the reliability and safety certification

requirements of industries such as the aerospace industry

(Blakey-Milner et al., 2021).

As proposed in this work, utilizing the abundant information-

rich nominal PBF data in the form of a prior loss (PGNN1)

statistically significantly reduces the log loss score standard

deviation and results in higher confidence in the model’s pre-

dictions. An improved log loss error is significant for porosity

mitigation control applications where the control action can

be proportionate to the model’s prediction.

In-situ porosity localization via within-hatch stripe sen-

sory data also significantly reduces the amount of sensory

data stored in-situ (towards making predictions) and offline.

In our work, only five sensory samples from the current

hatch-stripe are utilized in making a prediction rather than

a three-dimensional neighborhood of data from preced-

ing/succeeding layers, reducing data storage. In this work, the

InfiniAM sensory data is 18.80 GB for a total sinter volume

of 46.08 cm3. In an industrial reliability and safety certifica-

tion setting where the data associated with the porosities and

an equal amount of porosity-free data is stored for reference,

our methods reduce the amount of data stored to 0.33 GB,

reducing data storage costs.

To the author’s knowledge, this is the first work in the lit-

erature capable of the localization of micro-porosities with

a SED ≤ 50.00 µm and as small as 38.118 µm SED with

an average classification accuracy and 95.00% confidence

interval of 73.13±1.57. The proposed method’s localization

of porosities as small as 38.118 µm SED is also a more than

a five-fold improvement on the smallest SED porosity local-

ization via photodiode sensory data in the literature (Snow

et al., 2022).

This work has demonstrated the potential of utilizing

prior-guided neural networks and spectral emissions sen-

sors towards in-situ porosity localization in LPBF. Further

research may investigate applying the proposed methods in

an in-situ manner to monitor the build’s quality and facilitate

the early stopping/correction of builds.

A research question yet to be addressed in the literature

is determining sensory samples’ informativeness within a

three-dimensional porosity neighborhood. Typically, in the

literature, the porosity status for a given coordinate within a

layer is predicted via all the data from the layer in question

and a given number of preceding and succeeding layers. In

our work, we proposed utilizing the closest five sensory sam-

ples to a given coordinate in terms of the three-dimensional

euclidean distance. However, future research can focus on

quantifying the importance of a given sensory sample within

a three-dimensional porosity neighborhood towards mak-

ing a porosity prediction. A greater focus on data fidelity

could significantly improve the empirical accuracy of poros-

ity localization and shed light on the porosity formation

mechanism. A better understanding of data fidelity could also

enable the detection of porosities before they occur and con-

tribute towards Right First Time manufacturing.

A general shortcoming of NNs and PGNNs is inter-

pretability. With AM porosity detection and quantification as

a motivator, further research might explore developing new

prior incorporation frameworks to combine physics-based

computational fluid dynamics models and PGNNs towards

more interpretable modeling solutions. Further research

might also explore whether ML frameworks could be stan-

dardized across materials, varying part geometry, and sin-

tering machines for porosity detection and localization. The

question is where to draw the line between ML frameworks
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for generalizable applications of low-quantity/high-variety

products and tailored high-quantity/low-variety products.

An over-arching major limitation in additive manufactur-

ing research and application is the variations in the sensory

systems across different sintering machines and the limited

open-source data available. An open-source multi-material

platform with open-source data collation and an online repos-

itory is necessary and would significantly speed up progress

in industrial applications, standardization, and research.
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Appendix A: PBF data border labeling

This appendix details the border labeling procedure of the

PBF sensory data. We demonstrate the sintering path, a 0.10

mm and null hatch offset in Figs. 13 and 14. Core samples

can have a 0.00 gradient scan path, border samples can have

a non-zero gradient, and due to the hatch offset, the last core

and first border samples are not differentiable. As can be seen

in Figs. 13, 14, and 15 finding the border samples is not as

simple as searching for 0 gradient scan path.

Fig. 13 Cross-sectional view of cube two at layer 140 showing the 0.10

mm hatch offset and the scan path

Fig. 14 Cross-sectional view of cube three at layer 140 showing the

null hatch offset and the scan path

Fig. 15 Cross-sectional view of cube 41 at layer 140 showing the null

hatch offset and the overlap between core and border samples

To differentiate border samples from core samples, we

split the procedure into four parts corresponding to the main

cube and the three feature cubes. When searching for the bor-

der samples, we assess each layer per cube separately. The

x and y coordinates per layer per cube are extracted via the

z coordinate and cube number. In the scan path, the border

is sintered after the core. The border samples are, therefore,

chronologically at the end of the data set of each layer per

cube. Therefore, the challenge is finding the first border sam-

ple per cube per layer since all the samples following are

border samples.

We define the scan path absolute gradient per cube per

layer in Eqs. A1, A2, and A3. We define the three-sample
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moving average mean of the scan path absolute gradient in

Eq. A4.

�x́ i ( j, k) = |x́ i+1( j, k) − x́ i ( j, k)|,

i ∈ {1, . . . , I − 1}, j ∈ {1, . . . , J }, k ∈ {1, . . . , K },
(A1)

where x́ is the PBF scan path x coordinates, J ∈ N1 is the

number of layers, K ∈ N1 is the number of cubes, I ∈ N1 is

the number of samples in layer j cube k.

�ý
i
( j, k) = |ý

i+1
( j, k) − ý

i
( j, k)|,

i ∈ {1, . . . , I − 1}, k ∈ {1, . . . , K }, j ∈ {1, . . . , J },
(A2)

where ý is the PBF scan path y coordinates.

f ′
i
=

{

0 for �x́ i = 0 ∨ �ý
i
= 0

�ý
i

�x́ i
for �x́ i �= 0 ∧ �ý

i
�= 0,

(A3)

where f ′
i

is the scan path gradient.

g
i
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
3

∑i+2
j=i f ′

j
for i = 1

1
3

∑i+1
j=i−1 f ′

j
for i ∈ {2, . . . , I − 2}

1
3

∑i
j=i−2 f ′

j
for i = I − 1

(A4)

where g
i

is the moving average mean of the scan path abso-

lute gradient.

Let u ∈ {0, 1}c be a logical label for each PBF sample

where 1 represents a border sample, 0 represents a core sam-

ple, and c ∈ N1 is the number of PBF samples. The strategy

proposed to find the first border sample per cube per layer is:

1. Find u∗
m , where m ∈ N1 is the index of a core sample

sufficiently close to the border samples.

2. Find u∗
n , where n ∈ N1 is the index of a border sample

(not necessarily the first border sample).

3. Search between u∗
m and u∗

n for u∗
p, where p ∈ N1 is the

index of the sample most likely to be the first border sam-

ple.

On average, cubes with the same scan speed have the same

number of border samples. The faster the scan speed, the

fewer border samples, and vice versa. Through empirical

testing, cubes with 300.00 mm/s scan speed have at least

98.00% core samples per layer per cube. Cubes with 175.00

mm/s scan speed have at least 97.00% core samples per layer

per cube. Cubes with 50.00 mm/s scan speed have at least

92.00% core samples per layer per cube. We define the core

sample as sufficiently close to the border samples accord-

ing to these core sample percentages. For example, for cubes

with a 300.00 mm/s scan, we consider the first sample after

98.00% of the samples to be the core sample sufficiently

Fig. 16 Cross-sectional view of cube five at layer one showing the

border labeling steps and the final border labels in red (Color figure

online)

Fig. 17 Cross-sectional view of cube 41 at layer 140 showing the border

labeling steps and the final border labels in red (Color figure online)

close to the border samples u∗
m . The proposed strategy elim-

inates the majority of the core samples and the possibility of

incorrectly selecting a core sample with a 0.00 gradient scan

path as the first border sample. For the feature cubes, u∗
m is

chronologically after 90.00%, 85.00%, and 60.00% of the

samples per cube per layer for the scan speeds 300.00 mm/s,

175.00 mm/s, and 50.00 mm/s, respectively.

The first scan path moving-average-mean absolute gradi-

ent ui = 0.000 is considered a border sample u∗
n , but not

necessarily the first border sample. We find u∗
p the sam-

ple most likely to be the first border sample in Eq. A5. If

u j <

(

μu j
− 3σu j

)

does not exist then, u∗
p = u∗

n .

u∗
p = arg min

j∈h

j | u j <

(

μu j
− 3σu j

)

subject to h ∈ {m, m + 1, · · · , n}.

(A5)

For each sample per cube per layer in u( j, k) we use the

identified index p from Eq. A5 to define whether a sample is a

core or a border sample. Indices greater than or equal to p are

considered the border. The same process is repeated per cube
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per layer for the three small feature cubes. An example of the

border labeling process for cube five layer one (hatch offset

0.05 mm) is shown in Fig. 16. Figure 17 shows the border

labeling process for cube 41 layer 140 (null hatch offset),

which has a different scan path relative to cube five.

Appendix B: Extended results

Tables 3 and 4 show the classification accuracy and log

loss error average and standard deviation on the testing

out-of-samples data across the porosity spherical equiva-

lent diameter. Table 5 shows the Box’s M and two-sample

Hotelling’s T2 test results to assess if the random forest model

Table 3 The classification

accuracy average and standard

deviation on the testing data

across the porosity spherical

equivalent diameter

Porosity No. of RF NN PGNN PGNN1

SED (µm) samples

0 2316 74.66 ± 0.26 60.81 ± 3.29 61.18 ± 03.53 62.23 ± 4.16

[38, 40] 5 46.88 ± 11.94 56.25 ± 21.34 56.25 ± 20.74 59.38 ± 17.81

[40, 42] 16 48.24 ± 4.09 65.33 ± 11.41 65.82 ± 11.68 63.96 ± 15.09

[42, 44] 35 56.74 ± 2.96 69.42 ± 8.16 69.20 ± 7.96 67.23 ± 10.22

[44, 46] 49 73.53 ± 1.62 74.52 ± 6.34 74.43 ± 6.99 77.97 ± 7.88

[46, 48] 101 52.55 ± 1.45 68.44 ± 6.00 68.32 ± 5.67 71.60 ± 5.87

[48, 50] 87 66.36 ± 1.48 75.27 ± 4.39 75.02 ± 4.95 77.05 ± 5.96

[50, 60] 454 65.73 ± 0.75 74.60 ± 2.10 74.30 ± 2.27 75.33 ± 3.30

[60, 70] 360 68.50 ± 0.79 76.32 ± 3.00 75.88 ± 2.75 77.53 ± 3.55

[70, 80] 297 74.49 ± 0.87 79.17 ± 3.88 78.92 ± 3.70 80.93 ± 3.48

[80, 90] 228 71.35 ± 0.82 80.61 ± 2.50 79.98 ± 2.55 80.65 ± 2.87

[90, 100] 220 75.98 ± 0.78 79.47 ± 4.37 79.25 ± 4.56 80.25 ± 4.46

[100, 150] 467 74.65 ± 0.54 80.83 ± 2.54 80.65 ± 2.42 81.46 ± 2.39

[150, 200] 89 79.79 ± 1.03 86.34 ± 3.85 86.45 ± 3.73 87.48 ± 2.57

[200, 250] 8 75.00 ± 0.00 91.80 ± 9.76 92.58 ± 8.83 94.14 ± 7.71

251.002 1 100.00 ± 0.00 96.88 ± 17.54 96.88 ± 17.54 98.44 ± 12.50

Overall 4733 72.44 ± 0.18 69.45 ± 1.03 69.48 ± 1.07 70.66 ± 0.76

The average and standard deviation are across the 64 solutions of each model type

Table 4 The log loss error

average and standard deviation

on the testing data across the

porosity spherical equivalent

diameter

Porosity No. of NN PGNN PGNN1

SED (µm) samples

0 2316 0.62 ± 0.03 0.62 ± 0.04 0.55 ± 0.01

[38, 40] 5 0.61 ± 0.12 0.61 ± 0.12 0.62 ± 0.09

[40, 42] 16 0.69 ± 0.11 0.68 ± 0.11 0.64 ± 0.06

[42, 44] 35 0.94 ± 0.17 0.95 ± 0.17 0.80 ± 0.09

[44, 46] 49 0.57 ± 0.07 0.58 ± 0.08 0.53 ± 0.04

[46, 48] 101 0.59 ± 0.05 0.59 ± 0.05 0.52 ± 0.04

[48, 50] 87 0.62 ± 0.05 0.63 ± 0.06 0.58 ± 0.02

[50, 60] 454 0.66 ± 0.07 0.67 ± 0.08 0.59 ± 0.06

[60, 70] 360 0.64 ± 0.04 0.64 ± 0.05 0.58 ± 0.02

[70, 80] 297 0.71 ± 0.06 0.71 ± 0.07 0.63 ± 0.05

[80, 90] 228 0.66 ± 0.05 0.66 ± 0.05 0.57 ± 0.03

[90, 100] 220 0.62 ± 0.05 0.62 ± 0.05 0.56 ± 0.03

[100, 150] 467 0.68 ± 0.05 0.68 ± 0.05 0.60 ± 0.03

[150, 200] 89 0.71 ± 0.07 0.72 ± 0.07 0.62 ± 0.04

[200, 250] 8 0.49 ± 0.09 0.50 ± 0.10 0.48 ± 0.08

251.002 1 0.16 ± 0.12 0.17 ± 0.12 0.20 ± 0.11

Overall 4733 0.66 ± 0.03 0.66 ± 0.04 0.58 ± 0.01

The average and standard deviation are across the 64 solutions of each model type
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Table 5 Independent

two-sample multivariate

Hotelling’s of the NN and RF

classification accuracy across

the 64 solutions of each model

type

Porosity [NN,RF]

SED (µm) Classification accuracy

s Chi2 P T2 P

0 233.67 0.00 1125.73 0.00

[38, 40] 20.02 0.00 9.41 0.00

[40, 42] 56.76 0.00 127.31 0.00

[42, 44] 55.43 0.00 136.63 0.00

[44, 46] 91.49 0.00 1.46 0.23

[46, 48] 98.22 0.00 423.84 0.00

[48, 50] 62.76 0.00 236.39 0.00

[50, 60] 56.92 0.00 1016.99 0.00

[60, 70] 88.45 0.00 406.02 0.00

[70, 80] 106.39 0.00 88.65 0.00

[80, 90] 65.47 0.00 794.25 0.00

[90, 100] 132.41 0.00 39.48 0.00

[100, 150] 113.02 0.00 364.17 0.00

[150, 200] 86.82 0.00 172.61 0.00

Overall 135.08 0.00 525.77 0.00

The cells italics indicate a statistically significant (P< 0.05) result

Table 6 Independent

two-sample multivariate

Hotelling’s of the NN and

PGNN classification accuracy

and log loss error across the 64

solutions of each model type

Porosity [NN,PGNN]

SED (µm) Classification accuracy Log Loss Error

Chi2 P T2 P Chi2 P T2 P

0 0.31 0.58 0.37 0.55 2.54 0.11 0.01 0.94

[38, 40] 0.05 0.82 0.00 1.00 0.05 0.81 0.01 0.93

[40, 42] 0.03 0.85 0.06 0.81 0.10 0.75 0.27 0.61

[42, 44] 0.04 0.85 0.02 0.88 0.04 0.84 0.01 0.94

[44, 46] 0.60 0.44 0.01 0.94 1.35 0.25 0.57 0.45

[46, 468 0.20 0.66 0.01 0.90 0.18 0.67 0.08 0.77

[48, 50] 0.88 0.35 0.09 0.76 0.67 0.41 0.47 0.49

[50, 60] 0.40 0.53 0.61 0.43 1.61 0.20 0.34 0.56

[60, 70] 0.47 0.49 0.77 0.38 0.61 0.43 0.00 0.98

[70, 80] 0.14 0.71 0.14 0.71 0.23 0.63 0.14 0.71

[80, 90] 0.03 0.86 2.04 0.15 0.81 0.37 0.05 0.81

[90, 100] 0.11 0.74 0.08 0.78 0.01 0.94 0.09 0.76

[100, 150] 0.14 0.71 0.16 0.69 0.08 0.78 0.03 0.86

[150, 200] 0.07 0.80 0.02 0.88 0.03 0.85 0.11 0.74

Overall 0.09 0.77 0.04 0.84 1.07 0.30 0.20 0.65

The cells italics indicate a statistically significant (P < 0.05) result
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Table 7 Independent

two-sample multivariate

Hotelling’s of the NN and

PGNN1 classification accuracy

and log loss error across the 64

solutions of each model type

Porosity [NN,PGNN1]

SED (µm) Classification accuracy Log Loss Error

Chi2 P T2 P Chi2 P T2 P

0 3.43 0.06 4.55 0.03 33.96 0.00 313.23 0.00

[38, 40] 2.04 0.15 0.81 0.37 7.14 0.01 0.37 0.54

[40, 42] 4.84 0.03 0.33 0.56 20.26 0.00 12.16 0.00

[42, 44] 3.15 0.08 1.79 0.18 19.45 0.00 32.86 0.00

[44, 46] 2.95 0.09 7.42 0.01 23.78 0.00 17.19 0.00

[46, 48] 0.03 0.87 9.04 0.00 9.18 0.00 71.91 0.00

[48, 50] 5.71 0.02 3.69 0.05 31.19 0.00 32.03 0.00

[50, 60] 12.43 0.00 2.21 0.14 1.01 0.31 41.45 0.00

[60, 70] 1.76 0.18 4.31 0.04 22.84 0.00 78.55 0.00

[70, 80] 0.72 0.40 7.28 0.01 2.04 0.15 55.65 0.00

[80, 90] 1.22 0.27 0.01 0.94 9.65 0.00 168.07 0.00

[90, 100] 0.03 0.87 1.00 0.32 23.65 0.00 80.81 0.00

[100, 150] 0.22 0.64 2.08 0.15 18.30 0.00 138.10 0.00

[150, 200] 9.96 0.00 3.89 0.05 25.54 0.00 85.66 0.00

Overall 5.53 0.02 57.10 0.00 61.11 0.00 302.43 0.00

The cells italics indicate a statistically significant (P < 0.05) result

has a statically significant (P> 0.05) effect on the classifi-

cation accuracy relative to the vanilla neural network model.

Tables 6 and 7 show the Box’s M and two-sample Hotelling’s

T2 test results to assess if the prior-guided neural networks

have a statically significant (P > 0.05) effect on the classi-

fication accuracy and the log loss error relative to the NN

model.
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