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ABSTRACT

A simplified mono-dimensional model for investigating the transition to turbulence in nonisothermal and non-Newtonian pipe flows is pro-
posed. The flow stability is analyzed within the framework of such a model, showing that uniformly heating the pipe wall leads to an earlier
transition to turbulence, while differentially heating the pipe wall produces a stabilizing effect. For power-law fluids, we also demonstrate
that an increase in the power-law index, i.e., passing from shear-thinning to shear-thickening fluids, leads to a stabilization of the system.

The transition to turbulence is among the most investigated
topics in fluid mechanics as it relies on a number of complex mecha-
nisms not yet fully understood. Several studies focused on linear insta-
bilities triggering the most dangerous perturbations that lead to
laminar-to-turbulent transition in model flows such as the
Kolmogorov flow1 or in paradigmatic setups such as the Taylor–
Couette2 or the Rayleigh–Benard flows.3

On the other hand, when dealing with pipe flows, nonlinear
interactions between finite-amplitude perturbations are essential for
transition to turbulence4,5 as the Hagen–Poiseuille flow is linearly sta-
ble. Among the most interesting features of transition to turbulence in
pipe flows, there is the phenomenon of intermittent turbulence, where
small turbulent regions (puffs) grow up to larger turbulent patches
(slugs), and then they decay because of a restabilization of the mean
velocity profile. This has recently been investigated by Barkley,6 who
proposed a reduced-order model that retains only a part of the nonlin-
ear physics in the momentum equation that is essential to explain the
intermittency as well as the nonlinear interaction between turbulent
and laminar regions leading to transition.

Consistently with the experimental observations, the model pro-
posed by Barkley assumes the existence of a bi-stable flow state, i.e.,
laminar and turbulent flow states coexist. Potentially, this gives rise to
the intermittency phenomena reproduced by a mono-dimensional
Partial Differential Equation (PDE) model that couples the intensity of
turbulence q and the axial velocity of the flow perturbation u advected

by the background flow velocity U. At the core of this interaction,
Barkley introduced a power-four polynomial potential term V(q) that
admits, in general, three stationary points. When only one of them is
real, the potential has only one minimum that corresponds to pertur-
bations decaying to the laminar state q0. On the other hand, when the
V(q) admits three real stationary points, two of them are minima, i.e.,
linearly stable attractors of the system (q0 and qþ), and one of them is
a maximum, i.e., a linearly unstable repellor of the system (q�, see Fig.
1). Within the framework of Barkley’s model, the normalized
Reynolds number R controls the qualitative shape of the V(q), hence
the dynamics of the system (see Barkley et al.7 for details about the
relation between the nominal and the normalized Reynolds number).
Let us consider the dynamics of a perturbation in the ðq;RÞ� phase
diagram. For R < 0, the laminar state is a global attractor of the sys-
tem, and the turbulent perturbations will unconditionally decay, i.e., q0

is a globally stable attractor for all the possible perturbations (see blue
marker in Fig. 1). For 0 < R < 1, the laminar state reduces to a local
attractor of the system that coexists with a second attractor created in
the turbulent regime (see red marker in Fig. 1). Upon an increase in
R, i.e., for R > 1, the local attractor of the turbulent state becomes
dominant leading to a shrinkage of the manifold of attraction of the
laminar state. Such a simplified picture has been extensively validated
against experiments (see Barkley et al.7) and has provided novel
insights in the intricate dynamics of transition to turbulence in pipe
flow (see the perspective paper of Barkley8 for a comprehensive
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overview of the model). The nonlinear dynamics of the finite-
amplitude perturbation will, therefore, be determined by the transfer
of kinetic energy from the laminar regions to the turbulent ones poten-
tially leading to slugs (see the bottom panel of Fig. 2) and vice versa for
decaying finite-amplitude perturbations that relax the system to the
linearly stable laminar Hagen–Poiseuille state q0 (see the top panel of
Fig. 2). The critical case for which a puff is sustained without growing
neither decaying is termed edge state (see the middle panel of Fig. 2).

Moreover, starting with the pioneering work by Scheele and
Greene,9 laminar-to-turbulent transition in simple pipes has been con-
sidered for nonisothermal flows. More recent studies focused on the
effect of (i) the curvature parameter for annular pipes,10 (ii) the incli-
nation angle for annular and simple pipes, hence the buoyancy forces
opposing the pressure gradient that drives the flow,11 and (iii) the sup-
pression of turbulence for heated vertical pipe flows.12

Building upon the model of Barkley, we propose a novel generali-
zation of such a reduced-order approach by adding the energy equa-
tion and the thermal effect on the dynamic viscosity. We aim,
therefore, at investigating the impact of temperature variations on the
local and average Reynolds number considering either uniformly or
differentially heated pipe walls for horizontal pipes. Finally, as
observed by Bahrani and Nouar,13 the effect of shear-thinning on the
dynamics of turbulent slugs is significant. Hence, a further generaliza-
tion of the model of Barkley is proposed considering a power-law
fluid. To generalize the constitutive equation of the stress tensor, we
consider the power-law model, i.e., s ¼ Kj _cjn, where s and _c are the
shear stress and the shear rate, respectively, K is the consistency index,
and n denotes the power-law index. Upon a variation of the flow index
n, we will then investigate shear-thinning (n< 1) and shear-
thickening (n> 1) fluids.

Building on the model of Barkley,6 we generalize it by including
the effects of nonisothermal conditions on the dynamic viscosity lðTÞ
and the density qðTÞ of the fluid. We consider the normalized
Reynolds numberR intended as a control parameter for the dynamics
of a turbulent perturbation surrounded by the pipe mean flow �U . The
impact of temperature onR is included in the model equation for the
turbulent kinetic energy q,

@q
@t
þ ðu� fÞ @q

@x
¼ q
�
RðTÞ þ u� U0ð Þ

� RðTÞ þ d½ � q� 1ð Þ2
�
þ D

@2q
@x2

; (1)

where t and x denote the time and space coordinate (along the pipe
axis), respectively, T and u are the centerline temperature and turbu-
lent velocity, respectively, U0 and d are parameters that model the
potential forcing of the kinetic energy; the advection velocity for a tur-
bulent perturbation is ðu� fÞ, where f is another model parameter
and D is a diffusion coefficient included to characterize the dynamics
of q by means of a nonlinear reaction-advection–diffusion equation.

In terms of the centerline turbulent velocity, our generalization to
the model of Barkley6 reads
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where the convective velocity is ðU0 þ cÞ, �1 and �2 are two model
parameters related to the turbulent dissipation, �ðTÞ ¼ lðTÞ=qðTÞ,
and �T is the reference temperature. Our model includes the thermal
effect on the local Reynolds number (last term of the RHS) as well as
on the shear stress tensor (second last term of the RHS).

Finally, as the two equations are coupled with the temperature at
the pipe centerline, the energy equation is included in the model,
assuming the same convective velocity of u and including a normal-
ized Prandtl number, P, which is the counterpart ofR,

FIG. 1. Phase diagram in terms of the intensity of the turbulence q and of the nor-
malized Reynolds numberR. The two green lines show the trace of one of the line-
arly stable minima of the potential qþ and of the linearly unstable maximum of the
potential q�, while q0 denotes the second linearly stable minimum of the potential
that corresponds to laminar state, i.e., to the Hagen–Poiseuille flow. The three
insets show three representative configurations of the potential term V(q) depending
on the normalized Reynolds number. The blue markers denote the laminar state q0,
while the turbulent attractor is shown by a red marker. Between the red and the
blue markers, there is always a white dot with two arrows that shows a linearly
unstable point of the potential V(q).

FIG. 2. Schematics of the considered transition problem. A finite-amplitude pertur-
bation q (magenta) is injected in a pipe with average background flow velocity U
(light-blue). For low-enough Reynolds numbers, small finite-amplitude perturbations
decay, and the background flow remains laminar (top figure). Upon an increase in
the Reynolds number, the background flow can transfer energy to the finite-
amplitude perturbation q, leading to a slug perturbation (bottom figure). When the
Reynolds number is critical to small finite-amplitude perturbations, the edge state is
recovered and q neither grows nor decays (middle figure).
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@T
@t
þ ðU0 þ cÞ @T

@x
¼ P @

2T
@x2
þ QheatðxÞ; (3)

where for simplicity, P is assumed as a constant. The term QheatðxÞ
denotes a nonconstant heat source distributed along the pipe axis.

A second generalization of the original model consists of includ-
ing non-Newtonian effects for power-law fluids in (2). It yields
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(4)

where n is the power-law index. The other two equations of the model
remain unchanged. We stress that such a generalization is consistent
with the one-dimensional with of the original model of Barkley and
makes use of a simplification hypothesis: only the axial stretching
component of the strain-rate tensor norm is retained, i.e.,

j _cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
~~D : ~~D

q
� @xu, where ~~D is the deformation rate tensor. This

has a significant impact especially at the fronts of the perturbations,
where @xu is high. Retaining such a non-Newtonian feature provides a
leading-order effect for understanding the dynamics of puffs and
slugs.

We validate the model as follows. The three-equation model is
discretized by finite differences in time and space. The explicit Euler
method is used, in combination with the first-order upwind scheme
for the first-order derivatives, and the second-order centered scheme
for the second-order derivatives, i.e.,
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where A is a placeholder that either denotes q, u, or T, the superscript
k denotes the current time t ¼ tk, while the superscript i refers to the
collocated node at x ¼ xi. The time step Dt ¼ tkþ1 � tk;8k; is kept
constant as well as the grid size Dx ¼ xiþ1 � xi;8i. This same
approach has been used by Barkley,6 and a comparison with his model
results (for a Newtonian isothermal flow) is presented in Fig. 3. The
top figure depicts the (u, q) phase-space, while the perturbation at final
time t¼ 100 is shown in the bottom panels. The marker denotes the
results of Barkley,8 while the solid lines are ours. Three normalized
Reynolds numbers are considered, i.e., R ¼ 0:6, 0.9, and 1.8. Such
three Reynolds numbers lead to two different perturbation shapes
(puff for R ¼ 0:6 and slug for R ¼ 0:9 and 1.8), and they relate to
two qualitatively different potentials, i.e., the laminar state is the

dominant attractor for R ¼ 0:6 and R ¼ 0:9, while the turbulent
state becomes the strongest attractor for R ¼ 1:8. The satisfactory
comparison with literature results concludes the validation of our
solver.

As the effect of temperature is considered on the thermophysical
properties, we assumed that the fluid flowing in the pipe is water,
hence,

lðTÞ ¼ 2:414� 10�5 � 10247:8=ðT K½ ��140Þ; (6a)

qðTÞ ¼ qð�T Þ þ bðT � �T Þ; (6b)

where T½K� is the dimensional temperature in kelvin, and a linear
approximation of the water density variation is considered for simplic-
ity, with b being the corresponding thermal expansion factor. Within
the framework of our model, the term QheatðxÞ in Eq. (3) is used to
include heat sources. Two heat flow configurations have been consid-
ered to investigate the effect of nonisothermal walls on the transition
to turbulence.

The first case we consider models a uniformly heated pipe, i.e.,
we set QheatðxÞ ¼ �Qheat . The constant heat source intensity applied all
over the pipe wall �Qheat is assumed as parameter of our first investiga-
tion, together with the reduced Reynolds number at reference temper-
ature, Rð�T Þ. The reduced Prandtl number at reference temperature,

FIG. 3. Validation of our numerical model (lines) with the literature results for a
Newtonian isothermal flow (markers).8 Three normalized Reynolds numbers are
considered, i.e., R ¼ 0:6, 0.9, and 1.8, and the comparison is carried out in the
(u, q) phase-space (top figure) and in terms of the final shape of the perturbation
(bottom panels).
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Pð�T Þ, is kept constant to Pð�T Þ ¼ 1, and the other parameters are set
as in previous works that employ the model of Barkley, see Table I.
Periodic boundary conditions are applied, and the length of the pipe
domain always equals L¼ 1000 in our simulations, i.e., x 2 ½0; L�.
As initial conditions, we set the reference values for temperature
Tðt ¼ 0Þ ¼ 1 and velocity uðt ¼ 0Þ ¼ 1 at start, while q is initiated as
a square wave of amplitude qmaxðt ¼ 0Þ ¼ 0:5 between x¼ 1 and
x¼ 3 and zero everywhere else. Figure 4 depicts the phase diagram of
a fully developed initially small perturbation for three reference
Reynolds numbers, i.e., Rð�T Þ ¼ 0:6, 0.9, and 1.3, corresponding to
the three panels of the figure. In each panel, the effect of six constant
heat sources is considered within the range �Qheat 2 ½0; 0:05�.
Uniformly heating the horizontal pipe always destabilizes the flow
playing in favor of transition to turbulence. This is especially evident
forRð�T Þ ¼ 0:6, where a small perturbation decays for �Qheat ¼ 0 (see
gray marker, leading to the laminar state q0), whereas even a weak uni-
form heat source, �Qheat ¼ 0:01, changes the character of the pipe flow
leading the same initially small perturbation to grow. The reported
destabilization is an interplay of two main effects: (i) an increase in the
average temperature leads to an increase in the average Reynolds num-
ber and (ii) owing to the differential effects of the temperature gradient
along the pipe axis, the convective effects of transport are reduced.
Within the model framework, the first effect is related to the factor
Rð�T Þ present in (1) and (2), while the latter effect is rather induced by
the second last term of the right-hand side of (2), which brought on
the left-hand side leads to an effective convective velocity Uconv

¼U0þc�Rð�T Þ@T�@xT=�ð�T Þ. The increase in the average Reynolds
number hRðTÞi over the reference Reynolds numberRð�T Þ is a desta-
bilizing effect; on the other hand, the effect of the kinematic viscosity
rate of change with the temperature is more complex. As @T�<0, the
effective convective velocity Uconv increases. To isolate the effect of an
enhanced convective velocity, we compute the ðu;qÞ�phase diagram
for c¼1 and c¼1.5 and remove thermal effects (not shown). Upon an
increase in the convective velocity, a higher turbulent kinetic energy is
observed for u’0:55. On the other hand, when u/0:55, q is larger
for perturbations transported at a slower convective velocity.

This same trend is further confirmed by the results presented in
Fig. 5, where a linear heat source is considered, i.e., QheatðxÞp
¼ DQheatð2 x=L� 1Þ, where L is the pipe length and DQheat is the
amplitude of cooling and heating at x¼ 0 and x¼ L, respectively. The
differential heat load considered has, therefore, average equal to zero,
hence no net energy is injected into the system. This leads to an aver-
age Reynolds number almost equal to the reference Reynolds number
hRðTÞi � Rð�T Þ. The difference among the two of them is only due
to the convective effect of (3) on the temperature, hence to the deriva-
tive of the kinematic viscosity with respect to T. As depicted in Fig. 5,
upon an increase in DQheat , the turbulent kinetic energy increases at
high velocities u, and it decreases at lower velocities. The net effect on
the flow is that the turbulent perturbation is narrower, faster, and

locally more energetic when DQheat is increased. This leads to a non-
trivial stabilizing effect quantified by the shrinkage of the phase dia-
gram (u, q), such that for DQheat � 4, the turbulent perturbation
decays even forRð�T Þ ¼ 0:9.

In order to relate our model parameters to actual heat loads, we
identify the range of dimensional parameters our study applies to.

TABLE I. Summary of the model parameters employed for all the results of this
study.

d �1 �2 f U0 c D �T (K) qð�T Þ (g/cm3) b

0.1 0.04 0.2 0.8 1 1 1 298 1000 0.0002

FIG. 4. Dynamics of the perturbation in the ðu; qÞ-phase space for R ¼ 0.6, 0.9,
and 1.3 and �Qheat 2 ½0; 0:05�. The ðu; qÞ-phase diagrams are colored from black
to light-red, i.e., from the weakest (�Qheat ¼ 0) to the strongest uniform heat load
(�Qheat ¼ 0:05).
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As we consider water, i.e., �ðT ¼ 298KÞ ¼ 8:93� 10�6 Pa s, and
R 2 ½0:6; 1:3�, i.e., Re ¼ �UD=� 2 ½1380; 2990�, the product of �U
and D must be within the range �UD 2 ½0:0123; 0:0267� m2/s. Since
�Qheat 2 ½0; 0:05�, i.e., �U=D 2 ½0; 14:9� s�1, that leads to minimum
pipe diameters D 2 ½0:0287; 0:0423� m for the hottest uniform heat
load. Similar considerations apply to the differential heat load, for

which we find minimum pipe diameters D 2 ½0:002 87; 0:004 23� m.
Hence, our heat load parameters apply to pipe diameters larger than
0.0287m for uniform heat loads and to diameters larger than
0.002 87m for differential heat loads.

FIG. 5. Dynamics of the perturbation in the u; qð Þ-phase space for R ¼ 0.9, 1.1,
and 1.3 and DQheat 2 ½0; 5�. The ðu; qÞ-phase diagrams are colored from black to
light-red, i.e., from the weakest (DQheat ¼ 0) to the strongest differential heat load
(DQheat ¼ 5).

FIG. 6. Dynamics of the perturbation in the ðu; qÞ-phase space for R ¼ 0.9, 1.1,
and 1.3 and n 2 ½0:85; 1:5�. The ðu; qÞ-phase diagrams are colored from black to
light-purple for increasingly shear-thinning fluids (n � 1, with black for n¼ 1, i.e.,
Newtonian) and from black to light-magenta for increasingly shear-thickening fluids
(n � 1, with black for n¼ 1, i.e., Newtonian).
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Finally, the third thermally related parameter considered in our
study is the normalized Prandtl number P. We find that, for a hori-
zontal differentially heated pipe with DQheat ¼ 1, upon a variation of
the normalized Prandtl number within the range P 2 ½0:1; 5�, a negli-
gible effect on the perturbation dynamics is observed. For figures plot-
ted with the same layout of Fig. 5, no significant difference between
the curves corresponding to P 2 ½0:1; 5� is observed in the (u, q)-
phase space. We, therefore, conclude that the stabilizing/destabilizing
effects due to differential/constant heating do not depend significantly
on the diffusion term of the energy equation. Hence, our results are
robust with respect to the considered fluid. This, therefore, confirms
that the simplifying hypothesis of constant Prandtl number P done in
(3) is reliable.

The last generalization of our study consists of including non-
Newtonian effects by assuming a power-law fluid inside the pipe. In
this case, the power-law index n is taken as control parameter, and no
thermal effects are considered. Figure 6 depicts the impact of n on the
perturbation in the (u, q)-phase space for shear-thinning (n< 1, i.e.,
n¼ 0.87, 0.9, and 0.95) and shear-thickening (n> 1, i.e., n¼ 1.1, 1.2,
1.3, 1.4, and 1.5) fluids. A consistent trend is demonstrated upon an
increase in the power-law index n, leading to a stabilization of the
finite-size amplitude perturbation by a corresponding reduction of the
area of the perturbation diagram. This same trend is preserved upon
an increase in the normalized Reynolds number. For understanding
this effect, we can refer to the impact of the power-law index on the
deformation rate, i.e., to j@xujn�1. This term has a net effect on the
flow as it multiplies the normalized Reynolds number. When n< 1,
the average of j@xujn�1 is larger than 1; hence, the effective Reynolds

number given by Reff ¼ j@xujn
�1R increases. On the other hand,

when n> 1, the average of j@xujn�1 is smaller than 1, and the pertur-
bation gets stabilized asReff decreases.

A generalization of the model of Barkley6 has been proposed to
study the effect of thermal loads and non-Newtonian (power-law)
constitutive laws on the transition to turbulence in pipe flows. Two
thermal loads have been considered, i.e., a uniformly (�Qheat) and a dif-
ferentially (DQheat) heated wall. For uniformly heated walls, a net
destabilization effect (i.e., a transition to turbulence for lower reference
Reynolds numbers) is demonstrated for all the considered parameters,
and it is mainly due to an increase in the average Reynolds number.
This is consistent with the experimental results by Everts and Meyer,14

who consider a horizontal pipe flow and found that increasing
the constant heat flux applied to the pipe wall shifts the laminar-to-
turbulence transition to lower Reynolds numbers. On the other hand,
for differentially heated walls, the convective effect related to the spa-
tial variation of the local Reynolds number led to higher levels of tur-
bulent intensity for slower perturbations when increasing DQheat . As a

result, we found this convective term to represent a nontrivial stabiliz-
ing effect. Moreover, considering power-law fluids, we found that a
clear stabilization is induced by an increase in the power-law index n.
This means that by increasing the degree of shear thinning (n # for
n< 1), the system tends to destabilize, while increasing the shear
thickening (n " for n> 1), the pipe flow becomes more stable. A last
consideration is dedicated to the impact of our generalized model, as it
proposes a simplified framework for predicting potential stabilization/
destabilization trends. We, therefore, expect that our generalized
model could serve to test heat control protocols applied to Newtonian
and non-Newtonian pipe flows.
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