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Abstract

Einstein’s general relativity is a remarkably successful theory of space, time and
gravitation. Over a hundred years since its birth, it has been verified by all of
the experiments and observations with incredibly high accuracy. It has shown
us its power in predicting exotic objects such as gravitational waves and black
holes. Despite its great success, its predictive power has been questioned due to
the existence of the singularities which would break down the theory. This brings
out the weak cosmic censorship conjecture, suggesting that singularities are always
hidden inside black hole horizons so that they cannot cause any problem to the
outside. Whether the conjecture is true or false remains as one of the biggest open
questions in the field. Although a rigorous mathematical proof or disproof to the
conjecture is still lacking, there have been evidence against it arising from a family of
numerical studies on the Gregory-Laflamme instability. The most studied case that
has tuned our current understanding of the conjecture is about the five-dimensional
black strings. The first full numerical work done by Lehner and Pretorius suggests
a pinch-off of the horizon at the endpoint of the Gregory-Laflamme instability of
black strings, which provides solid evidence against the conjecture. However, their
study is more than ten years old and has not been reproduced independently in
any other literature. The development in numerical techniques and computer power
facilitate us to have an independent study on the black strings.

In this thesis, we revisit the previous study by Lehner and Pretorius on the endpoint
of the Gregory-Laflamme instability of the five-dimensional black strings. We not
only reproduce and confirm their results with a different and independent formalism,
but also improve the simulation with better resolution and extend the evolution
much closer to the endpoint. The simulations in the thesis are conducted by using
our own GRChombo code. Our results provide further evidence about the fractal
structure that the horizon develops into in the late-time dynamics of the black string
instability. Moreover, we investigate unstable black strings with fixed thickness
but different lengths and provide a more general picture of the development of the
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instability. In all cases, we confirm that the intermediate dynamics of the evolution
can be described by a quasi-stationary sequence of spherical black holes of various
sizes connected by string segments on different scales. In particular, with better
resolution, our results respect the particular symmetry of the problem. However,
our numerical results do not support the existence of a global timescale relating
subsequent generations as stated in the previous study. Instead, our results indicate
that, due to the non-uniform development of the string, the late-time dynamics are
governed by the joint effect from the Gregory-Laflamme instability and the local
dynamics of the bulges. Finally, we confirm that the endpoint of the instability
is the pinch off of the horizon in finite asymptotic time, which constitutes to the
violation of the weak cosmic censorship conjecture.
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Chapter 1

Introduction

General relativity (GR), postulated by Einstein in 1915, is a beautiful theory of
space, time and gravitation. It is widely appreciated for its simple and elegant
form and concepts. In GR, gravity becomes a geometric property of spacetime
so that every gravitational interactions in the universe can be described by just
one simple line of equations. Such unconventional viewpoint of space and time is
rather counterintuitive, which challenges the way in which we are used to think.
It is undeniable that the birth of GR marks as a new era of our understanding
of the universe, but the abstruse concepts of the theory make it very difficult to
understand. Probably on this account, the field of GR has been dormant for almost
half a century, until the interests in GR have been revived by the needs from the
development of other fields in physics, such as astronomy and quantum theory of
gravitation. The field of GR stays active since then. On the other side, GR has
also laid the foundation to the field of astrophysics and cosmology, which have
largely improved our understanding of the universe in large scale. Apart from
its impact on other fields in physics, GR per se is universally acknowledged as a
remarkably successful theory. Over a hundred years since its birth, it has passed
all the experimental and observational tests with extraordinary accuracy [6]. In
particular, it has shown its power in predicting exotic objects and events, such as
black holes and gravitational waves.

Lying in the core of GR is the Einstein field equations (EFE), which is acknowledged
as one of the most beautiful equations in human history. It is appreciated for
its universal ability to describe and predict any gravitational interactions in the
universe with very simple concepts and its elegant form. The majority of the current
work in the field are related to solving the EFE. Due to the high non-linearity of
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EFE, its mathematical properties are hard to analyse and the analytical solutions
are very difficult to find. So far, there are only a few exact solutions, most of
which are found in extreme conditions such as under symmetry assumptions of the
problem. Among all the solutions, black holes (BHs) are one of the most important
predictions by GR. As the simplest solutions of GR that capture the key aspects of
the theory, BHs are crucial to our understanding of gravity. The first BH solution,
the Schwarzschild solution, was found just a few months after the formulation of
general relativity, under spherical symmetry assumption [7]. Years later after the
discovery of Schwarzschild solution, a generalisation to the charged case was found,
known as the Reissner-Nordstron solution [8, 9]. After that, it took almost 50 years
for a more complicated solution, the Kerr solution to be found, which depends on
mass and angular momentum [10].

Although the existence of BHs has been predicted a hundred years ago, its astro-
physical evidence has only become available recently. The landmark event of science
happened in 2015. With the breakthrough of the accuracy of the detectors, the
first direct detection of gravitational waves have been made and announced by the
LIGO/Virgo collaboration [11, 12], from two merging BHs. It not only confirms the
existence of gravitational waves which were predicted by Einstein in 1916, but also
adds as a piece of indirect evidence for BHs. Since then, more gravitational wave
events of various types have been detected by Advanced LIGO/Virgo/KAGRA,
from mergers that involve neutron stars and BHs with huge disparity in mass
[13–21]. More recently, the first images of the event horizons of the BHs M87*
and Sgr A* have been published [22, 23]. It was the first time that we have the
direct visualisation of BHs, which brings us to a new stage of exploring black hole
physics. It is now widely accepted that BHs are ubiquitous in our universe. It is
truly remarkable that the current observational data are highly consistent with
the predictions by GR. With the improvement of techniques and sensitivity in
the detectors, it is expected that more detections would become available in the
upcoming years, which will allow us to test more aspects of the theory in the strong
gravity regime.

Despite the success of GR, its predictive power has been questioned as the theory
seems to have its own flaws: the singularities. Singularities are where the curvature
would blow up and anything bizarre could happen to the metric that describes
the spacetime at the singularities. It seems to be ubiquitous phenomena that our
universe has singularities, such as the ones at the Big Bang and in the interior of
BHs. However, the singularities predicted above are based on highly symmetric
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conditions. This makes people wonder whether singularities actually exist, as there
is a possibility that the singularities are just the product from the extreme conditions.
In 1965, Penrose proved that singularities are generic features, as he found that
the ultimate fate of a star is always a black hole [24]. He and Hawking further
postulated the singularity theorem and proved the existence of the singularities
[25]. The existence of singularities would cause the entire theory built by GR to fall
down. The reason is that due to the extreme conditions near the singularities, all
the physical laws are broken and the description of the spacetime by EFE becomes
invalid. Everything built up by GR would therefore collapse, putting into doubt the
integrity of the theory. For a theory to stand, this is not acceptable to have such
singularities that break the laws of physics. The fact that the singularities seems
always to be covered by black hole horizons motivates Penrose to postulate the weak
cosmic censorship conjecture (WCCC) [26]. The conjecture states that singularities
must be covered by BH horizons, denying the existence of naked singularities [27–29].
The modern formulation of the WCCC is presented in chapter 4. As long as the
singularity is inside the horizon, it will not cause any problem to the outside. For
decades, many efforts have been put into formulating and verifying the conjecture
[30, 29]. However, a mathematical proof or disproof is still lacking. Whether the
conjecture is true or false is still one of the most important open questions in the
field of mathematical relativity.

Another important question in GR is whether the theory stands in higher dimensions.
Recently, increasing attentions have been paid to higher dimensional GR. It is
interesting from both physical and mathematical point of view. For mathematics, it
is interesting to understand whether the dynamics of the solutions to certain systems
of PDEs (in our case, vacuum EFE) are related to the number of dimensions that
one considers. It is sensible and natural to think that the spacetime of the world we
live in has four dimensions. Therefore, most work in the field has restricted their
attention to four dimensions. However, the characteristic of EFE makes it possible
to be generalised to arbitrary dimensions. This motivates people to ask whether
its properties in four dimensions still hold for higher dimensions and what are the
structure of the solutions in higher dimensions. On the other end, from physical
point of view, physical theory requires higher dimensions. The earliest study in
higher dimensions can be traced back to the study by Kaluza and Klein about
gravitation and electromagnetism [31, 32]. More recently, the search for a quantum
theory of gravity also motivates the study on higher dimensions. Moreover, ideas
from brane-world cosmology, string theory and gauge/gravity duality rises more
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attention to study BHs in higher dimensions. In addition, the singularity theorem
proves the existence of the singularities, but it gives little information about its
properties. The nature and the structure of the singularities are still mysterious.
The study of singularities also leads to finding a unified theory that can be applied
to the singularities, which involves higher dimensions. In contrast, studies in higher
dimensions can in turn give insight to our understanding of the theory in four
dimensions.

It turns out that the dynamics of the solutions to the EFE in higher dimensions is
richer than that within the usual 3+1 dimensions. In 1993, Gregory and Laflamme
found that black strings are unstable to long wavelength perturbations [33]. With
the development of numerical relativity, in 2010, Lehner and Pretorius carried
out the first full numerical evolution of the black strings and concluded that the
endpoint of the Gregory-Laflamme (GL) instability is a naked singularity [3]. Their
study provides a concrete counterexample to the WCCC. Recent years, a family
of counterexamples in higher dimensions are found by numerical studies on the
endpoint of the GL instability in similar scenarios [34–37]. It seems the conjecture
is likely to be false in higher dimensions. The studies in higher dimensions could
give more insight to the verification of the conjecture. If the WCCC is false, then
GR will lose its predictive power. On the other hand, the extensive study in rapidly
spinning asymptotically flat BHs [38–41], black rings [42], and in anti-de Sitter BHs
[43, 44] indicates that the GL instability is a very general phenomenon in higher
dimensions. It no doubt brings up more interests in studying the physics of the
higher-dimensional BHs in different scenarios.

In this thesis, we carry out numerical simulations to explore the spacetime dynamics
in higher dimensions and the gravitational instabilities that violates the weak
cosmic censorship conjecture. We focus on a simple and fundamental object in
higher dimensions: black strings. Our goal is to reproduce the previous study on
the numerical evolution of the five-dimensional black strings with an independent
method and improve and extend the simulation with higher resolution. First, we
build up the numerical construction for evolving the spacetimes in higher dimensions
and develop numerical methods to achieve stable simulations and analyse the results
in higher dimensions. In particular, we focus on applying the numerical formulation
and techniques to the study of the black string instability in five dimensions.
Then, we carry out simulations and compare the results with the previous study
[3]. We aim to improve the simulation results with higher resolution and extend
the evolution further to explore more about the late-time dynamics of the GL
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instability. Moreover, we explore strings with different lengths to obtain a more
general picture of the development of the GL instability. In order to reduce the
cost of computational resources, the modified Cartoon method has been applied
to impose the symmetry of the problem [45, 46]. Applying symmetry reduced
the computational and memory usage associated with the problem, allowing the
researchers to obtain results on the supercomputers available at the time. The
numerical simulations in the thesis are carried out by using our own GRChombo
code [47, 48]. It is an open source library for numerical relativity, developed and
maintained by a group of researchers from Argonne National Laboratory, King’s
College London, Queen Mary University of London, the University of Cambridge
and the University of Oxford. The code is based on finite difference method and
is built on top of the Chombo framework [49], adapting CCZ4 formulation and
featured with fully adaptive mesh refinement techniques. It has many applications
in various research areas and has been published in many papers [1, 34–37, 50–82].
Based on GRChombo code, we generalised the code to work in higher dimensions
with our specific problems.

1.1 Structure of this thesis

This thesis is organised as follows. Chapter 1 gives a brief overview about the field
of GR, its great success in predicting exotic objects, its latest advances and its
limitations. Then it presents the aspects we would like to explore in the field, as
well as the motivations to work in higher dimensions by numerical relativity. More
relevant background corresponds to our studies in higher dimensions is given at the
beginning of the rest of each chapter.

Chapter 2 provides the relevant background of numerical relativity in higher di-
mensions and presents the necessary numerical construction for working in higher
dimensions. It also demonstrates the general numerical techniques used in our study,
including the modified Cartoon method. In addition, it gives an overview of the
main features and applications of the GRChombo code. The specific numerical
methods and analysis methods designed for higher dimensional BHs are introduced
in Chapter 3. In addition, we demonstrate how we monitor the dynamics and track
the geometry of the apparent horizon during the evolution.

In Chapter 4, we present in detail the numerical methods we use to reproduce the
numerical evolution on determining the endpoint of the black string instability. We
provide details about our choice of the parameters, initial conditions and the grid
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hierarchy. Then we demonstrate our simulation results and compare our results
with the previous study [3]. We also provide the key results from the convergence
tests. We confirm that the horizon will pinch off in finite asymptotic time. However,
different than what is stated in [3], we find no evidence for the universal time-scale
in terms of the time relating the subsequent generations.

In Chapter 5, we explore strings with different lengths and provide a more general
picture on the late-time dynamics of the GL instability of the black strings. In
particular, we find that the local dynamics together with the GL instability governs
the late-time evolution of the horizon. We conclude that in finite asymptotic time
there is a pinch off of the horizon in all cases. We provide more results about the
convergence tests in the Appendix B.

Finally, we summarise our results from the black string simulations in Chapter 6
and outline directions for future research, including follow-up studies about the
pinch-off and higher derivative corrections.



Chapter 2

Numerical Construction for
Higher Dimensions

The Einstein field equations (EFE) are written in generalised coordinates of space-
time. The whole system consists of ten coupled non-linear partial differential
equations, which has thousands of terms if we fully expand it. Therefore, solving
the EFE turns out to be difficult in practice. Due to its fully non-linearity and
high complexity, there are very few analytical solutions to it. Exact solutions are
only discovered under high symmetry assumptions. It is simply impossible to solve
the equations exactly for fields with less symmetry or strong dynamics. The needs
of finding these solutions brings out a new field, numerical relativity, which turns
out to be a powerful tool to study systems in highly dynamical and non-linear
regime. Indeed, numerical relativity is probably the most powerful way to reveal
the nonlinear dynamics of the spacetime, as it can help investigate scenarios that
could never be considered before which could lead to new and deeper understanding
of compact objects and their dynamics [83]. For example, gravitational waveforms
can be generated from numerical simulations of the merger of binary black hole
and neutron star system and compared with the observational data. Especially in
higher dimensions where black holes are found to have exotic geometry and unusual
dynamics, their mathematical properties are very hard to find due to the complexity
of the EFE. Hence, numerical relativity becomes one of the most important tools
to study the black hole solutions and general relativity in higher dimensions.

In this chapter, we first give an overview of the relevant numerical relativity
background for higher dimensions in Sec. 2.1. Then, we present the numerical
constructions from the EFE to CCZ4 formulation that we use to evolve systems in
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higher-dimensional scenarios in our study in Sec. 2.2. In particular, we present the
generalisation of the 3 + 1 formalism to d+ 1 dimensions. In Sec. 2.5, we introduce
the main features of the GRChombo code where we carry out the evolution. In
addition, we introduce dimension reduction by different symmetries and present
the reduced terms by modified cartoon method in Sec. 2.6 and Sec. A.

2.1 Numerical relativity for higher dimensions

In order to have an intuitive idea of the dynamical nature of the EFE, most of
the numerical studies have adapted 3 + 1 decomposition of the spacetime. In
this way, it can break the 4D covariance of the field equations and separate the
spacetime into the three spatial dimensions and the time dimension. In this way,
the EFE can be posed as a Cauchy problem which can be solved numerically
on supercomputers. Most of the current three-dimensional codes of numerical
relativity adapt the following two formulations. One famous formulation is known
as Harmonic formulation [84], which is based on a fully 4D form of the EFE in
harmonic coordinates. The other one is called the ADM formalism. It was initially
published in 1959 [85], named after its authors Richard Arnowitt, Stanley Deser,
and Charles W. Misner. Although the original ADM formalism was rarely used in
numerical simulations for technical reasons, it was considered as a starting point
of many numerical constructions. In practice, the one in use is the conformal
and traceless reformulation of the 3+1 ADM equations [85], which is also known
as the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation [86–88]. The
development of numerical relativity was very slow due to the lack of sufficient power
of computers.

Nowadays, most of the numerical relativity codes are based on the improved versions
of the above formulations: the conformal covariant formulation of Z4 system (CCZ4)
[89] and the generalised harmonic formulation (GH) [90]. Each formulation has its
own advantages and disadvantages. The GH formulation is derived from coordinates
that resemble the harmonic coordinates. It has the advantage of being well-known
for its principle part as a wave equation and thus numerical studies can benefit
from its well-known properties. However, GH formulation is unable to deal with
the physical singularity. As a result, horizon excision is needed to handle the region
inside the horizon. This means we need to get rid of the inner region inside the
horizon and evolve the system by applying some boundary conditions at the edges
of the inner region. Therefore, special numerical techniques are needed for handling
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the computational domain inside the horizon to make sure that the inside will
not pollute the physics outside. The CCZ4 formulation is an improved version
of BSSN. In contrast, CCZ4 separates the physical singularity into a conformal
factor. It has well-tested and robust gauge conditions such as the 1+log family [91].
Similarly, the spatial gauges can rely on the hyperbolic Gamma-driver condition
for the shift vector [92] (or some recent variants for unequal-mass binaries [93–95]),
which removes to a large extent, the gauge dynamics near the compact objects.
When combined, these two gauge choices eliminate the need to excise a region
of the computation domain inside the apparent horizon. Instead, we can evolve
on the whole domain which greatly simplifies the numerical infrastructure. Both
are wisely used in many studies and provide reliable results. For example, in the
numerical study of black strings [3] has used GHC. The CCZ4 formulation has
successfully evolved binary black hole and binary neutral star systems [89, 96]. The
main advantage of CCZ4 formulation over GH formulation is that there is no need
for excision. It means with CCZ4 the calculations for locating the apparent horizon
can be separated from the process of evolving the spacetime. However, in GH
formulation, apparent horizon needs to be found periodically during the evolution
in order to excise the singularity from the computational domain [84].

Most of the numerical studies based on the above two formulations have restricted
their focus on spacetimes in four dimensions, but increasingly attention has been
paid to higher spatial dimensions. Study in higher dimensions can reveal new
phenomena that are not apparent in four dimensions. With the development in
both theoretical work and numerical techniques, as well as the advances in the
power of computational resources, it has become possible to study the dynamics in
higher dimensions by numerical simulations. With the aid of numerical relativity,
the non-linear dynamics can be uncovered. On the other side, numerical study in
higher dimensions usually means higher cost of computational resources. In fact, the
cost can grow exponentially with the number of extra dimensions, especially when
there is less symmetry of the problem. When there is symmetry in the problem, it
is possible to reduce the dimension of the problem by modified Cartoon method
which can make the computations more affordable [45, 46, 97]. Due to limited
computational domain, one sometimes needs to apply some artificial boundary
conditions at the outer boundary of the computational domain. One need to be
careful about the constraint violations from the boundary, which can propagate
to the inside and sometimes affect the evolution. One usual way to fix this issue
is to put the outer boundary far away enough. The reduced equations of BSSN
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formulation by Cartoon method can be found in [46], which can be easily generalised
to CCZ4 formulation. In higher dimensions, we just need to solve the Einstein field
equations of the same form. In the rest of this chapter, we present the derivation
of the CCZ4 formalism of numerical relativity in arbitrary dimensions, which is
suitable for simulating a large variety of spacetimes in higher dimensions.

2.2 The Einstein field equations

In 1915, Einstein formulated the field equation of general relativity, known as the
Einstein field equations (EFE) [98],

Gab = 8πTab, (2.1)

where a, b = 0, 1, 2, 3 and Gab and Tab are the Einstein tensor and the stress-energy
tensor. Here Latin indices a, b, . . . denote for the spacetime indices of the tensor
components running from 0 to 3. The EFE is written in a fully covariant form,
which means there is no distinction between space and time. It is a quite natural
result from differential geometry. From this point of view, this fully covariant
form provides a better understanding of the relation between space and time. It
is so compact and simple that all gravitational interactions in the universe can
be described by this one single line of equations. However, sometimes we would
like to rewrite the equations in some other ways in order to recover the dynamical
evolution of the gravitational field, as the form that the EFE takes is not suitable for
numerical evolutions. One common way is called 3 + 1 formalism, where spacetime
is split into three-dimensional space and time, so that given certain initial data, the
subsequent evolution can be recovered in time. Thus, the problem can be turned
into an initial value problem (IVP), and can be solved numerically.

The form that the EFE takes makes it possible to be generalised to higher dimensions.
We define the number of spacetime dimensions as D and the number of spatial
dimension as d = D − 1. In D dimensions, the equations we want to solve is

(D)Gµν = 8πTµν , (2.2)

where (D)Gµν and Tµν are the D-dimensional Einstein tensor and the stress-energy
tensor. Here we use Greek letters for spacetime dimensions, i.e. µ, ν, ... = 0, 1, 2, ...d.
Then, to turn the problem into an IVP, we need the generalisation of the 3+1
formalism to d+ 1 dimensions accordingly.
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2.3 The d+1 split of spacetime

First, by splitting the D-dimensional spacetime into d dimensions in space and
one dimension in time, we can obtain a simple generalisation of the usual 3+1
formalism [2] to arbitrary dimensions, i.e. the d+1 decomposition of spacetime.
In d+ 1 decomposition, the spacetime M is foliated into d-dimensional spacelike
hypersurfaces Σt, such that M = ∪t∈RΣt. On each hypersurface Σt, there is a
coordinate system (t, xi), where xi is a chart for each hypersurface. We define two
functions to relate the coordinates in two adjacent slices: the lapse function α and
the shift vector βi, as shown in Fig. 2.1.

time

Σ1

Σ2

Σ3

xi
t

αnµ tµ

βµ

Σt

Σt+δt

Fig. 2.1 The foliation of spacetime and the definitions for lapse and shift. (regener-
ated from [2])

The lapse measures the proper time between two adjacent hypersurfaces:

dτ = αdt,

and the shift measures the changes in the spatial coordinate systems:

xi
t+dt = xi

t − βi(t, xj)dt.

So we can construct a time vector that is tangent to the time lines as

tµ := αnµ + βµ.

Evidently, the components of the normal vector can be found as

nµ = (−α, 0), nµ = ( 1
α
,−βi

α
).
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On each hypersurface, the spatial metric γij is simply defined as the metric induced
on each hypersurface by the full spacetime metric gµν as

γµν = gµν + nµnν , γ
µν = gµν − nµnν .

In terms of {α, βi, γij}, the metric takes the following form:

ds2 =
(
−α2 + βiβ

i
)
dt2 + 2βidtdx

i + γijdx
idxj. (2.3)

More explicitly, the components of the spatial metric are found to be

γij =
 −α2 + βmβ

m βi

βj γij

 , γij =
 −1/α2 βj/α2

−βi/α2 γij − βiβj/α2

 . (2.4)

After we have the above definitions, we are now ready to reformulate the EFE.

2.4 From EFE to CCZ4 formalism

In this section, we will illustrate how we reconstruct the EFE to the CCZ4 formu-
lation that we use for numerical evolutions. We start with the ADM equations,
which is the first and most popular way to the reformulate the EFE to be conformal
and traceless. To reformulate it to the d + 1 ADM equations, we need to write
the Einstein equations in d + 1 language. First, we need to rewrite the EFE in
terms of the extrinsic curvature and the d-dimensional Rienmann curvature of the
hypersurface, before we can derive from ADM to CCZ4 formalism.

The extrinsic curvature Kµν is defined as

Kµν := − ⊥α
µ ∇αnν = −(∇µnν + nµn

α∇αnν). (2.5)

where ⊥α
β is the projection operator onto the spatial hypersurface, i.e. ⊥α

β :=
δα

β + nαnβ.

The full projection of the Riemann tensor onto the hypersurfaces is given by the
Gauss-Codazzi equations

⊥δ
α⊥κ

β⊥λ
µ⊥σ

ν Rδκλσ =(d) Rαβµν +KαµKβν −KανKβµ. (2.6)
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The projection of the Riemann tensor onto the hypersurfaces contracted with the
normal vector is given by the Codazzi-Mainardi equations

⊥δ
α⊥κ

β⊥λ
µ n

νRδκλσ = DβKαµ −DαKβµ, (2.7)

where Di is the d-dimensional covariant derivative. It is in fact the projection of
the full D-dimensional covariant derivative: Dµ =⊥α

µ ∇α. The full derivation can
be found in [99].

2.4.1 The ADM formulation

After we have the definitions in the previous section, the Einstein equations can
then be decomposed into evolution equations and constraint equations, which gives
rise to the Arnowitt-Deser-Misner (ADM) formulation [85]. Let K denote the trace
of the extrinsic curvature and (d)Rµ

νρσ is the d-dimensional Riemann tensor. The
ADM formulation is given below (with i, j running over spatial dimensions only):

∂tγij − Lβγij = −2αKij

∂tKij − LβKij = −DiDjα + α
(

(d)Rij +KKij − 2KikK
k

j

)
(d)R +K2 −KijK

ij = 16πρ

Dj

(
Kij − γijK

)
= 8πji (2.8)

where ρ := Tijn
inj, ji := −Tjkn

jγk
i , Sij := Tklγ

k
i γ

l
j. It is a system of evolution

equations for the spatial metric γij, the extrinsic curvature Kij and equations for
energy and momentum constraints. The evolution equation of the metric γij is
derived from the definition of the extrinsic curvature and the evolution equation of
the extrinsic curvature is derived from the Ricci equation, an equivalent form of
EFE. The Hamiltonian constraint is derived from the Gauss-Codazzi equation and
the momentum constraint is derived from the Codacci-Mainardi equation. This
construction of evolution equations are by no means unique as we can always add
arbitrary constraints to obtain new equations. Since the ADM formulation was later
proven to be unstable in long-term numerical simulations, alternative formulations
such BSSN which are more robust have been proposed. The crucial difference of
BSSN from AMD is the introduction of the auxiliary variable. Beyond that, CCZ4
formulation has been presented in [89] which leads to a better behavior of the
constraint equations. It combines the advantages of the conformal decomposition
used in BSSN formulation and the advantages of the constraint-damped formulation.
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It was shown to have better control of the constraint violations than BSSN. The
derivation of CCZ4 formulation is presented in the next section.

2.4.2 The ADM version of Z4 system

The CCZ4 formalism is derived from Z4 formulation, a covariant extension of the
field equations [100]:

Rµν + ∇µZν + ∇νZµ = 8πTµν , (2.9)

where Zµ measures the derivation from EFE, Tµν is the stress-energy tensor. The
solutions to the Einstein equations thus can be extracted from the extended solu-
tion set {gµν , Zµ} where Zµ = 0 according to the energy-momentum constraints.
Therefore, the damping terms are added into the covariant extension of the Einstein
equation in order to control the constraints, yielding the Z4 damped formalism:

Rµν+∇µZν+∇νZµ+κ1 [nµZν + nνZµ − (1 + κ2)gµνnσZ
σ] = 8π

(
Tµν − 1

D − 2gµνT
)
.

(2.10)
where nµ is the timelike unit normal to the slice and κ1 and κ2 are free damping
parameters. Note that Zµ = 0 reduces (2.10) to the Einstein equations. In order to
use Gauss-Codazzi-Mainardi equations, we need to get rid of the trace reversal of
the Z4 damped formalism by Contracting (2.10) with gµν , which gives

R + 2∇µZµ + κ1[2nµZµ + (1 + κ2DnµZ
µ)] = − 16πT

D − 2 . (2.11)

Recall that Bianchi identities gives

∇aRab = 1
2∇bR. (2.12)

The Bianchi identities leads to the following constraint-propagation system by
assuming the conservation of the energy momentum,

∇ν∇νZµ +RµνZµ = −κ1∇ν [nµZν + nνZµ + κ2gµνnσZ
σ]. (2.13)

where the free parameters are found to have the constraints κ1 > 0 and κ2 > −1
for all the constraint-related modes to be damped [101, 89].

In order to express the equations in d + 1 language, we need to consider the
decomposition of the Z4 vector Zµ. Let us define the time and spatial projections
of Z4 vector as
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Θ := nµZ
µ, Θµ :=⊥ Zµ :=⊥ρ

µ Zρ ⇔ Zµ = Θnµ + Θµ (2.14)

where Θ is the projection of the Z4 vector along the normal direction. Combining
the results with (2.4), it is not hard to find that the components of Z4 vector are

Zµ = (−αΘ + βjΘj, Θi), Zµ = (Θ
α
, Θi − βi

α
Θ). (2.15)

The evolution equation for the spatial metric γij remains unchanged as in the
original ADM formalism. The equation for Kij is derived from the projection of the
Riemann tensor and the projection of the energy momentum tensor, as well as the
Gauss-Codazzi-Mainardi equations. The evolution equation for Θ can be obtained
from (2.9) and (2.11), along with the decomposition of the covariant derivative of
the Z4 vector. The equation for Θi is derived from (2.9) and the Codazzi-Mainardi
equations. The ADM version of Z4 equations is summarised as below.

(∂t − Lβ)γij = −2αKij, (2.16)

(∂t − Lβ)Kij = −Di∂jα + α
{

Rij +Kij(K − 2Θ) − 2KikK
k
j +DiΘj +DjΘi

−κ1(1 + κ2)γijΘ − 8π
[
Sij − 1

D − 2γij(S − ρ)
]}
, (2.17)

(∂t − Lβ)Θ = α

2

{
R +K(K − 2Θ) −KµνK

µν − 2γijΘi
∂jα

α
− κ1[D + (D − 2)κ2]Θ

+2DmΘm − 16πρ
}
, (2.18)

(∂t − Lβ)Θi = α
(
DjK

j
i −DiK − 2KijΘj +DiΘ − Θai − κ1Θi − 8πji

)
. (2.19)

This d+ 1 decomposition of the Z4 formulation with the damping terms must be
complemented with suitable gauge conditions. The 1 + log slicing and Gamma-
Driver shift condition are typically used to determine the coordinate system during
the evolution in the numerical simulations in 4 dimensions. The choice of gauge
conditions will be discussed later.

After we obtain the ADM version of the Z4 system, conformal decomposition is
applied to separate the potential singular terms in the conformal factor. Combined
with the two gauge choices, it can help eliminate the need for excision. The metric
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is first transformed by a conformal factor χ as

γ̃ij := χγij ⇔ γ̃ij := 1
χ
γij (2.20)

where the conformal factor is defined as χ = γ−1/d. The extrinsic curvature is then
decomposed into its trace-free part and then transformed as

Aij := Kij − K

d
γij, Ãij := χAij ⇔ Kij := 1

χ

(
Ãij + K

d
γ̃ij

)
. (2.21)

The auxiliary variables are introduced as

Γ̃i := γ̃jkΓ̃i
jk = γ̃ij γ̃kl∂lγ̃jk, (2.22)

where Γ̃i
jk is the conformal Christoffel symbol computed from γ̃ij. Then, the

d-dimensional Ricci tensor can be splited into two parts:

Rij = R̃ij + Rχ
ij (2.23)

where R̃ij = ∂kΓ̃k
ij + Γ̃m

ij Γ̃k
mk − Γ̃m

ikΓ̃k
mj. It is a bit lengthy to find the following

expressions.

R̃ij = −1
2 γ̃

km∂k∂mγ̃ij + γ̃m(i∂j)Γ̃m + Γ̃mΓ̃(ij)m + γ̃mn
[
2Γ̃k

m(iΓ̃j)kn + Γ̃k
imΓ̃kjn

]
, (2.24)

Rχ
ij = D − 3

2χ

[
D̃i∂jχ− 1

2χ∂iχ∂jχ

]
+ γ̃ij

2χ

[
γ̃mnD̃m∂nχ− D − 1

2χ γ̃mn∂mχ∂nχ

]
,

(2.25)

Therefore, the evolution equations for CCZ4 system under d+1 decomposition can
be found as the following:

∂tχ = βk∂kχ+ 2
d
χ(αK − ∂kβ

k), (2.26)

∂tγ̃ij = βk∂kγ̃ij − 2αÃij − 2
d
γ̃ij∂kβ

k + 2γ̃k(i∂j)β
k, (2.27)

∂tÃij = βk∂kÃij + Ãij

(
α(K − 2Θ) − 2

d
∂kβ

k
)

+χ
(

−∇i∇jα+α(Rij −8πSij +2 D(i Θj))
)T F

−2αÃl
iÃ

l
j +2Ãk(i∂j)β

k (2.28)
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∂tK = βk∂kK−∇i∇iα+α
(
R+2∇iZ

i+K(K−2Θ)−κ1d(1+κ2)Θ+ 8π
d− 1(S−dρ)

)
,

(2.29)

∂tΘ = βk∂kΘ+1
2α
(

R+2DiΘi−ÃijÃ
ij+d− 1

d
K2−2ΘK−Θκ1(D+κ2(d−1))−16πρ

)
− Θi∂iα, (2.30)

∂tΓ̂i = βk∂kΓ̂i + 2
d

(
∂kβ

k(Γ̃i + 2κ3
Zi

χ
) − 2ακ1

Zi

χ

)
+ 2γ̃ij(α∂jΘ − Θ∂jα) − 2Ãij∂jα

+γ̃jk∂j∂kβ
i −(Γ̃j +2κ3

Zj

χ
)∂jβ

i −α(2(d− 1)
d

γ̃ij∂jK−dγ̃ij ∂jχ

χ
)+2αΓ̃i

jkÃ
jk

+ d− 2
d

γ̃ij∂j∂kβ
k − 16παγ̃imjm, (2.31)

∂tα = −2α(K − 2Θ) + βk∂kα, (2.32)

∂tβ
i = fBi + βk∂kβ

i, (2.33)

∂tB
i = ∂tΓ̂i + βk∂kB

i − βk∂kΓ̂i − ηBi. (2.34)

where Θ := nµZ
µ = αZ0 and Γ̂i := Γ̃i + 2γ̃ijZj and Zj is the spatial component of

the Z4 vector. Noted if we set Zµ and κ1 to zeros, the system will reduce to the
standard BSSN system. The last three equations are gauge conditions corresponding
to the 1 + log slicing condition and the original gamma-driver shift condition used
in [96]. The generic gauge parameter f is an arbitrary positive function of α nd
K0 = K(t = 0) as introduced in [92] and η is typically set to be 2/M [92, 96].
Moreover, κ3 is introduced to stablize the simulation and the constraints are added
to the evolution equation for Γ̃i in CCZ4. In four-dimenional spacetimes, with f

chosen to be 0.75 and κ3 chosen to be 0.5, stable simulations of binary black holes
have been obtained. It has been shown that κ1 > 0, κ2 > −1 all the constraint-
related modes are damped. In our study of higher-dimensional black holes, we use
a modified gamma-driver shift condition. In higher dimensional cases, the values
and gradients due to the existence of the singularity could be more extreme. Hence
in our code we have introduced a lower bound on α and χ so that their existences
in the denominators will not cause problem. The dynamical variables for evolution
are therefore

{χ, γ̃ij, Ãij, K, Θ, Γ̂i, α, βi, Bi},

and so far the free parameters in the evolution equations are

{κ1, κ2, κ3, f}.
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Additionally, following the notations in d+1 decomposition, the constraint violations
introduced in numerical evolution in vacuum case can be computed by

H = (d)R + d− 1
d

K2 − ÃijÃ
ij (2.35)

Mi = ∂jÃ
ij + Γ̃i

jkÃ
jk − d− 1

d
γ̃ij∂jK − d

2
∂jχ

χ
Ãij. (2.36)

During the evolution, we monitor the values of both constraints and check whether
they remain zero outside the horizon.

2.5 Evolving with GRChombo

In our study, we carry out simulations by using our own GRChombo code, which
is a new numerical relativity code designed for gravitational simulations [47, 48]. It
is an open source C++ library and featured by the fully adaptive mesh refinement
and the standardised output for visualisation. This section gives an introduction to
the code and its main features.

2.5.1 Code design

The underlying code of GRChombo is the Chombo code, which are developed
for solving general partial differential equations with the finite difference method
[49]. On top of it, GRChombo specifies more common actions to GR relevant
problems. Within GRChombo, there are more specific examples, which contain
more specific functions to work with particular problems. Provided suitable initial
conditions, GRChombo solves the Einstein equations of general relativity in terms
of the time evolution of the metric components. It evolves the Einstein equations
with the standard BSSN formalism, with an option to turn on CCZ4 constraint
damping if required.

The CCZ4 system is a set of coupled PDEs with first order in time and up to second
order in space. It is integrated in GRChombo by discretising the time based on
explicit 4th order Runge-Kutta method. The values in spatial direction are stored
as cell-centred. The time intervals of the evolution depends on the resolution and
the Courant factor as

∆t
∆x ≤ Cmax

where Cmax is the maximum stable Courant factor. Time steps has to be small
enough to ensure stable simulations. In fact, the Courant factor largely depends on
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numerical experiments. In our study, we initially set Cmax to be 0.04 and reduce it
to 0.01 at the later stage of the evolution to guarantee that the time step is small
enough to resolve the rapid dynamics.

2.5.2 Mesh refinement

Mesh refinement is usually required in simulations to improve the computational
efficiency. There are several ways to refine the mesh in NR. For example, the
moving box refinement is to increase the resolution around specified points which
are moving dynamically [2, 83]. It has been particularly successful applied in
simulating gravitational waveforms to provide templates for GW detections [18, 102–
105]. In GRChombo we use fully adaptive mesh refinement, which is more practical
for the topology of the system we want to evolve. The advantage of AMR is that it
can help increase the resolution in the regions which are selected by user specified
criteria. There is no restrictions to the shape of the regions, i.e. the regions can be
of arbitrary shape and topology.

The AMR used in GRChombo is based on the mesh refinement algorithm from
Chombo. Initially, grid points are on level 0 everywhere. The mesh can be refined
by putting another level of higher solution grid with smaller spacing on the regions
where require the refinement. Then, the finer level would overwrite the data of the
coarse level. In GRChombo, Different parts on the mesh are labeled with levels
according to their resolutions and one level can only be adjacent by one level higher
or lower. Each level is processing in serial. There could be more than one level
evolving at the same time, but the coarser levels have to wait for the computation
on the finer ones to finish.

2.5.3 Tagging Criteria

Cells are tagged before regridding happens on a given level. It has its own advantages
and disadvantages. On the one hand, AMR can be applied to regions of almost
arbitrary shape or size, at any point in time and anywhere is box. As a result, small
emergent features of the evolving system can be captured and well-solved. It cost
little unnecessary regridding. The grid spacing between levels in GRChombo is 2.
However, on the other hand, interpolation error can be introduced where adding
one more level. Reflections at refinement boundary. Hence, we need to keep in mind
that we always keep the refinement boundaries away from the regions of physical
interest.
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The mesh hierarchy is set up according to the tagged cells by tagging criteria. In
our simulations, we used a tagging criterion based on the gradient of χ−1:

∆x

√
δij∂iχ∂jχ

χ2 > σχ,

where ∆x is the spatial grid spacing and σχ is the refinement threshold. In order to
take derivatives at the boundary of each region, ghost cells are added to the edges.
These ghost cells are not evolved over time, but are given certain values according
to the position. If the cell is at the boundary of the computational domain, the
value of it is give by the user-specified boundary conditions. If the cell is covered
by another level, then it takes value from that level or from interpolation.

GRChombo generates checkpoint files at regular spaces. When all the levels are
synchronised, the data including the level structure will be written into a checkpoint
file, so that it is easy to restart the simulation from any checkpoint file. However,
sometimes it takes a large amount of time for levels to be synchronised. In order
to maximise the information stored and to restart calculation at any step without
information lost, GRChombo stores extra coefficients to compute on any levels
behind in order until all levels are synchronised again. The outputs are stored in
hdf5 files, which can be easily read and visualised by an academic visualisation
software, VisIt 1.

Numerical simulations of higher-dimensional black holes can be really costly. If N
mesh points are needed in each dimension, the minimum computational resources
required is of the scale ND. As pointed out in [46], the corresponding computational
requirements for simulations in four dimensions could be of order O(102) cores and
O(102) Gb memory. With the addition of the extra dimension, it could multiple
with another factor of order O(102) or more. There is impossible to solve the black
string instability problems with current computer clusters. This could put a barrier
for further achievements. A solution to this is to reduce the dimensions by imposing
symmetries. For SO(n) symmetry, this can be done by applying Cartoon method
[45]. The modification of Cartoon is presented in [46].

1https://visit-dav.github.io/visit-website/
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2.6 Dimension reduction in numerical relativity

Numerical simulations can be really expensive, especially for higher dimensions
where more resources are required. The cost of the numerical simulation depends
on the complexity of the problem. If there are N points on each direction of the
computational domain, then the complexity of the problem in D dimension can be
proportional to ND without any symmetry assumption of the problem. For code
with adaptive mesh refinement, the cost grows exponentially with the number of
finer levels. One way to reduce the cost is to apply dimension reduction. Fortunately,
in the problem we want to solve, there are usually different symmetries. With
the symmetric nature of the problem, the computation can be compressed. The
most commonly seen symmetry is spherical symmetry and axial symmetry. For
example, in the case of a simple Schwarzschild BH where SO(3) applies. Due to
the spherical symmetric of the problem, as long as we know the solution on one
ray, we can deduct the full solution on the whole sphere. Therefore, the evolution
of the spacetimes can be simplified from 3 + 1 to 1 + 1. Likewise, for an axially
symmetric problem, the problem can be simplified to the revolution surface. And
thus the computation can be compressed from d+1 to 2+1 as well. In the following
sections, we will introduce how the dimension is reduced by different symmetries.

2.6.1 Dimension reduction by SO(D − 1) symmetry

Let us start with a D-dimensional system with SO(D − 1) symmetry. Assume
it consists of a manifold M with metric gµν , where µ, ν = 0, 1, . . . , d. Consider
the Cartesian coordinates system in a (D − 1)-dimensional space with SO(D − 1)
symmetry

Xµ = (t, x1, . . . , xD−1) =: (t, xa) = (t,x),

where x = xa and a, b, c are indices ranging over 1, . . . , d.

For a scalar function Φ(x) to satisfy SO(D− 1) symmetry, it must satisfy Φ = Φ(r),
where r =

√∑(xa)2. For a vector field v(x) to satisfy SO(D − 1) symmetry, it
must only have components in the radial direction. It cannot have components that
are orthogonal to the radial direction, because the vector field need to be invariant
when it rotates along the radial direction, i.e. the line passing through the origin
and x. Given such a D-dimensional system, we only need to know the vector field
along the half of one axis, e.g. the non-negative part of xi axis, in the Cartesian
coordinates. For a symmetric tensor (Tx)ij to satisfy SO(d) symmetry, it must be
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invariant for all rotations around the origin. If we fix x then again we can rotate
the system along the line passing through the origin and x. After some calculation,
it turns out that (Tx)ij is of the form diag(b, . . . , b, a).

Without loss of generality, in a 3-dimensional system, we only need to know the
scalar field and vector field along the half of one axis, e.g. the non-negative part of
z axis, in the Cartesian coordinates, as shown in Fig. 2.2. The components of any
tensor at any point in the spacetime can be obtained by rotating the data from the
non-negative part of xi axis.

x

y
zz

Φ(r)
Φ(r)

x

y
zz

v(x)

v(x)
x

y
zz

(Tx)ij

Fig. 2.2 Imposing SO(3) to a scalar field v(r), vector field v(x) and tensor (Tx)ij

in Cartesian coordinates.

2.6.2 Dimension reduction by SO(D − n) symmetry

Now let us consider a D-dimensional spacetime with SO(D−n) symmetry. Assume
it consists of a manifold with metric gµν , where µ, ν = 0, 1, . . . , d− 1. Consider the
coordinate system in a (D − 1)-dimensional space

XA = (x1, x2, . . . , xn−1, z, wn+1, wn+2, . . . , wD−1) =: (xi, z, wa),

where D − n ≥ 3 with SO(D − n) symmetry in the last D − n components, i.e. in
(z, wa). Here we use capital letters A,B,C, . . . for the full dimension ranging over
1, 2, . . . , D − 1, i, j, k, . . . for indices ranging over 1, 2, . . . , n− 1 and a, b, c, . . . for
indices ranging over n+ 1, . . . , D − 1.

As discussed above in D-dimensional space with SO(D) symmetry, the whole space
can be generated by symmetry if we know the system at one single ray. Similarly,
here it is sufficient to know the system on the plane satisfying (xi, z, 0) and z ≥ 0
to generate the whole space. A vector must have the form (xi, z, 0), and a tensor
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TAB must have the form (2.37).

TAB =


Txx Txz 0 0
Tzx Tzz 0 0
0 0 Tww 0
0 0 0 Tww

 . (2.37)

For simplicity we assume it is a 4 × 4 matrix, as the general form will be likewise.

To compute the derivatives of these scalar, vectors and tensors are straightforward
since we only need to compare points on the plane (xi, z, 0) and z ≥ 0 and partially
differentiate the expressions for the scalars, vectors and tensors on the plane. By
symmetry, a scalar field satisfies ∂aΨ = 0 on the plane (xi, z, 0) and z ≥ 0. For
vectors, we have ∂aV

A = δA
a

V z

z
, i.e. ∂aV

i = 0 and ∂aV
b = δb

a
V z

z
.

In summary, the expressions for an arbitrary scalar and its derivatives are

∂aΨ = ∂i∂aΨ = 0, ∂a∂bΨ = δab
∂zΨ
z
. (2.38)

The expressions for an arbitrary vector field and its derivatives are

V a = ∂iV
a = ∂aV

i = ∂a∂bV
c = 0, ∂aV

b = δb
a

V z

z
(2.39)

∂i∂aV
b = δb

a(∂iV
z

z
− δiz

V z

z2 ), ∂a∂bV
i = δab(

∂zV
i

z
− δi

z

V z

z2 ). (2.40)

Furthermore, the expressions for an arbitrary tensor and its derivatives are

Tia = ∂aTbc = ∂i∂aTbc = ∂aTij = ∂i∂aTjk = 0, (2.41)

Tab = δabTww, ∂a∂bTcd = (δacδbd + δadδbc)
Tzz − Tww

z
+ δabδcd

∂zTww

z
, (2.42)

∂aTib = δab
Tiz − δizTww

z
(2.43)

∂i∂aTib = δab(∂i
Tjz − δjz∂iTww

z
− δiz

Tjz − δjzTww

z2 ). (2.44)

∂a∂bTib = δab(
∂zTij

z
− δizTjz + δjzTiz − 2δizδjzTww

z2 ). (2.45)

We apply the above expressions to the problem of black string which has SO(3)
symmetry. Then the 3 + 1 dimensionality of the problem can be reduced to 1 + 1
dimension. In the evolution we have Cartesian coordinates (t, x, z, w) so that we
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only need to solve the problem in x− z plane. We use the Cartoon expressions for
derivatives from the last section to derive the dimension reduction version of the
CCZ4 equations. In our code, the CCZ4 equations have been modified to include
the extra symmetry reduction terms. As an example, the spatial derivative term
∂kβ

k becomes ∂Iβ
I +N βz

z
, where I runs over the simulated spatial dimensions, i.e.

I = 1, 2, . . . , n and N is the number of the rest spatial dimensions, i.e. N = D−n−1.
The additional term to the evolution equation of the conformal factor comes from
the spatial derivative term ∂kβ

k. As a results, the evolution equation is modified to

∂tχ = βI∂Iχ+ 2
d
χ(αK − ∂Iβ

I −N
βz

z
), (2.46)

The full list of the additional terms added to the right hand side of the CCZ4
equations can be found in Appendix A.



Chapter 3

Analysis Methods for Higher
Dimensional Black Holes

Most studies of black holes have restricted their focus to four dimensions, i.e.
3+1 dimensions. It is indeed intuitive to think that the world we live in has
four dimensions. However, the form that the EFE takes makes it possible to be
generalised to arbitrary number of dimensions. This makes people wonder whether
the properties of black hole solutions in four dimensions are characteristics in general
or they are just results of four dimensions. Back to 1920s, Kaluza and Klein first
attempted to unify general relativity and electromagnetism [31, 32]. More recently,
increasing interests have also risen on black holes in higher dimensions from the
development of other theories in the field. For example, ideas from brane-word
suggest that our familiar three spatial dimensions might just be a surface of a higher-
dimensional space. Black holes extended into the extra dimensions forms the point
of view that gravity is higher dimensional in these theories. Furthermore, on the
way to find a quantum theory of gravity, string theory predicts that there are more
than four dimensions for spacetime. It incorporates the idea that extra dimensions
are curled up into a small ball from the older ideas of unification. Therefore,
higher-dimensional black holes must be considered in string theory. Furthermore,
gauge/gravity duality, merged from string theory, relates certain strongly coupled
non-gravitational theories to higher-dimensional theories with gravity [106–108].
Under this duality thermal equilibrium in some (3+1)-dimensional non-gravitational
systems is described by a higher-dimensional black hole. In addition, the study of
the GL instability and its possible endpoints, together with the discovery of the
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asymptotically flat black ring in five dimensions were largely responsible for the
intrinsic interest in understanding the physics of higher dimensional black holes.

This chapter begins with an overview of black holes in higher dimensions in Sec. 3.1.
Then it presents the numerical methods and techniques designed for simulations
of higher dimensional BHs. Sec. 3.3 introduces the numerical methods for finding
the apparent horizon. Sec. 3.4 and Sec. 3.5 present the embedding diagram and
curvature invariant that we track during the evolution. Black hole thermodynamics
are introduced in Sec. 3.6.

3.1 Black holes in higher dimensions

In higher dimensions, black holes could have much richer characteristics. They
are not necessary to be spherical and stable, or uniquely determined by mass
and angular momentum as they are in four dimensions. In 4+1 dimensions, we
have the asymptotic solutions, such as Myers-Perry S3 and black rings [109, 110].
Multi-black holes also exist, such as black Saturn [111]. For 4+1 dimensions,
there is a failure of rigidity, which implies there exist multiple explicit families of
stationary, asymptotically flat black hole solutions. Some of them has analogue
in 3+1 dimensions, such as Schwarzschild solution and Myers-Perry solution. The
latter is the high-dimensional analogue of the Kerr family of BH [10]. Some of them
are dynamically unstable to gravitational waves. The rest of this section will focus
more on vacuum solutions in KK theory. Without loss of generality, let us start
with black hole solutions in five dimensions, i.e. the usual four dimensions plus one
extra spatial dimension.

The vacuum EFE in four dimensions is simply

Rab = 0, (3.1)

where a, b = 0, 1, 2, 3. The only possible solution to it in four dimensions must be
spherically symmetric. The Schwarzschild solution, one of the simplest solutions to
EFE, has the following form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2, f(r) = 1 − 2M

r
. (3.2)

where r = 2M is the Schwarzschild radius.
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To extend to higher dimensions, we usually assume the extra dimensions to be
spatial. In higher dimensions, we just need to solve the same equations,

Rµν = 0. (3.3)

where µ, ν = 0, 1, 2, ..., d, and d is the number of spatial dimensions.

We first consider adding one extra dimension. Starting from the Schwarzschild
solution, there are a few ways to add the extra dimension. By treating the extra
dimension the same as the usual three space dimensions, we obtain the hyper-
spherically symmetric solution in five dimensions,

ds2 = −f4(r)dt2 + f4(r)−1dr2 + r2dΩ2
3, f4(r) = 1 − r2

h

r2 . (3.4)

where rh is the Schwarzschild radius.

3.1.1 The Schwarzschild-Tangherlini solution

A simple generalisation of the Schwarzschild solution into D dimensions gives rise
to a hyperspherically symmetric solution:

ds2 = −fd(r)dt2 + fd(r)−1dr2 + r2dΩ2
d−1, fd(r) = 1 −

(
rh

r

)d−2
. (3.5)

where rh is the Schwarzschild radius, fd(r) is the generalisation of the four-
dimensional Schwarzschild potential and dΩ2

d−1 is the line element of the d-dimensional
unit sphere. The numerical study for five-dimensional Schwarzschild solution has
been done in [112] by using BSSN formulation.

3.1.2 The Black string solution

Another simple solution can be obtained by adding one extra dimension to the
Schwarzschild solution, assuming the components corresonding to the extra dimen-
sion of the Riemann tensor are zeros. This solution is know as the black string.
The black string solution is obtained by extending the 4-dimensional Schwarzschild
solution into the extra dimension in a uniform way, assuming that the Riemann
tensor does not depend on the extra dimension. It is distinguished from the five-
dimensional Schwarzschild solution (which has a hyperspherical symmetry) that
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the black string solution takes the following form

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dΩ2

2 + dx2, (3.6)

where M is the total mass in units, r is the radial coordinate, x is the extra
dimension corresponding to a coordinate on an S1 and dΩ2

2 is the standard metric
on a unit radius 2-sphere. If the extra dimension is compact with length L, the black
string has finite mass and corresponds to the basic Kaluza-Klein black hole. Black
holes in four dimensions are unique and are always spherical. However, in higher
dimensions they can have totally different horizon topology. While the generalised
Schwarzschild solution has spherical horizon, black string has a cylindrical horizon.
It is much less constrained so that some stationary black holes can be unstable,
leading to interesting dynamics.

If the extra dimension is compact with length L, the black string will have finite
mass, corresponding to the basic Kaluza-Klein black hole. When introducing a
small perturbation in the x direction (string-like direction), the black string are
proven to be unstable [33]. This instability results in a pinch-off of the horizon
in finite time and produces a singularity that is visible from infinity, i.e. a naked
singularity. This phenomenon has only been discovered in higher dimension, while
in four dimensions, evidence suggests that a naked singularity are not likely to
form generically although it has not been fully proven yet. If the mass of such BH
increases further and it no longer fit in the extra dimension, we can obtain caged
BHs [33].

Generalised to arbitrary D dimensions, the black string solution has the line element:

ds2 = −
(

1 − 2m
rd−3

)
dt2 +

(
1 − 2m

rd−3

)−1
dr2 + r2dΩ2

d−2 + dx2, (3.7)

where d = D − 1, m is a constant that fixes the black hole mass, and Ω2
d−2 denotes

the line element of the unit (d-2)-sphere. The first three terms form the generalised
d-dimensional Schwarzschild solution. Black hole dynamics can be really different
in higher dimensional settings. In our study we focus on the five-dimensional black
string with the extra dimension of compact length.
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3.2 Initial conditions

In this section, we introduce the initial conditions of the black hole spacetime to
evolve with CCZ4 formalism without excising any region from the computational
domain.

3.2.1 The Schwarzschild-Tangherlini solution

For the D-dimensional Schwarzschild solution, the isotropic metric is typically used
as the initial conditions for its spacetime evolution. The isotropic coordinates
were adopted to deal with the coordinate singularity at 0 (in the non-string like
coordinate). Let r = ρ(1 + m

2ρD−3 )
2

D−3 . Then the metric becomes

ds2 = −

1 − 2m
ρD−3(1 + m

2ρD−3 )2

 dt2 +
(

1 + m

2ρD−3

) 4
D−3

(dx2 + dy2 + dz2).

Compared with (d + 1)-decomposition of spacetime, the spatial metric γij is an
d× d matrix:

γij =


(1 + m

2ρD−3 )
4

D−3 0 0
0 . . . 0
0 0 (1 + m

2ρD−3 )
4

D−3

 . (3.8)

Let χ = γ−1/d = (1 + m
2ρD−3 )− 4

D−3 . The conformal metric γ̃ij is therefore

γ̃ij =


1 0 0 0
0 1 0 0
0 0 . . . 0
0 0 0 1

 . (3.9)

With this initial condition, the black hole spacetime can be evolved by CCZ4
formalism without excising any region from the computational domain.

3.2.2 The black string solution

For black strings, one naturally would first think of writing it in isotropic coordinates.
Because of this extra dimension here, the coordinates is cannot be exactly isotropic.
We can only call it isotropic-like coordinates.
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ds2 = −(1 − 2m
r

)dt2 + 2
√

2m
r
dtdr + dr2 + r2dΩ2

2 + dx2. (3.10)

However, due to the compact extra direction, we find that the conformal factor
cannot fully absorb the singularity from the metric. No matter how we write the
conformal factor, there is still singular terms in the spatial metric. There are two
ways to deal with the singularity. One is turducken and the other is excision. With
turducken method, we smooth out the quantities around the singularity. With
excision, we first need to locate the horizon and then excise a small region inside the
horizon, which covers the singularity, with suitable boundary condition. In practice
we are not able to achieve stable simulations with this coordinates. Moreover
implementing excision would lose the point of using CCZ4. We hope by using
CCZ4 we can evolve the whole domain with out excision. To achieve this, we need
horizon-penetrating coordinates.

Therefore, for black string evolution, we instead consider Gullstrand–Painlevé
coordinates (GP coordinates) in four dimensions plus one extra dimension:

ds2 = −(1 − 2m
r

)dt2 + 2
√

2m
r
dtdr + dr2 + r2dΩ2

2 + dx2. (3.11)

As we can see, the spatial dimensions are totally isotropic. Re-writing it in Cartesian
coordinates and comparing with the d+1 decomposition gives:

ds2 = −(1−2m
r

)dt2+2
√

2m
r3 ydtdy+2

√
2m
r3 zdtdz+2

√
2m
r3 wdtdw+dx2+dy2+dz2+dw2

(3.12)

where r is supposed as
√
y2 + z2 + w2.

We find α = 1 and βa = βa = (0,
√

2m
r3 y,

√
2m
r3 z,

√
2m
r3 w). The conformal factor is

just 1 and the conformal metric is simply an 4 × 4 identity matrix, i.e.

χ = 1, γ̃ij =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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In GP coordinates, Γ̃i is also found to be trivial. The only non-trivial parts contain
in the extrinsic curvature Kij. Aij is found to be
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. (3.13)

One advantage of using GP coordinate is that the spatial metric γij and conformal
factor now become non-singular and the four spatial dimensions are treated equally.
In addition, the perturbation can be added to the conformal factor, while the other
terms remained unchanged. This can make it easy to construct the perturbed
initial date and minimise the initial constraint violations. In isotropic-Schwarzschild
coordinates, the extrinsic curvature is just zero. In GP coordinates the non-trivial
terms contain in the extrinsic curvature. It becomes singular when r goes to 0. The
initial data is regularised by turducken method as introduced in [113, 114].

3.3 Apparent Horizon

Being able to achieve stable evolution of the black string spacetime is not enough
for us to locate where the black string is and understand the dynamics of the
horizon. Apparent horizon (AH) is defined locally as the outmost surface on a
spacial hypersurface such that the expansion of outgoing null geodesic is zero. It
can be found on each spatial hypersurface during the evolution. Thus, it can be
used as an ideal indicator of the existence and location of an evolving black hole. In
some numerical approaches such as the GH coordinates where singularity excision
is needed, locating the apparent horizon is essential.

3.3.1 Introduction

To find the apparent horizon, we need to derive the equation that characterises it.
In a (D − 1) dimensional spatial hypersurface Σ, the apparent horizon is a (D − 2)
dimensional surface S immersed in it. Let −→s denotes the outwards unit normal
vector to S, and −→n be the future-pointing unit normal to Σ. Therefore, the induced
metric hµν on the (D − 2) dimensional surface S can be written as

hµν = gµν + nµnν − sµsν (3.14)
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Then, the outgoing null vector −→
l can be constructed as

−→
l = −→n + −→s (3.15)

The expansion H of the outgoing null geodesic is defined as

H = −1
2h

µν£−→
l
hµν = −1

2h
µν(£−→n hµν + £−→s hµν) (3.16)

By definition, the extrinsic curvature Xµν of the (D − 2) dimensional surface S is
Xµν = −1

2£−→s hµν , and the extrinsic curvature Kµν of Σ is Kµν = −1
2£−→n gµν , the

expansion is then

H = −1
2h

µν(£−→n hµν + £−→s (gµν + nµnν − sµsν))

= −1
2h

µν£−→n hµν − 1
2h

µν£−→s gµν − 1
2h

µν£−→s nµnν + 1
2h

µν£−→s sµsν (3.17)

Here, the last two terms are both zeros due to the fact that nµn
µ = −1, sµs

µ = 1
and sµn

µ = 0. Hence,

H = −Dms
m +K −Kmns

msn = −(γmn − smsn)(Dmsn −Kmn) (3.18)

where X = −Dms
m, D is the (D-1) dimensional covariant derivative in Σ, X and

K are the traces of Xµν and Kµν .

For convenience, the apparent horizon is parameterised as a level set of some scalar
function F such that:

F (xi) = 0. (3.19)

Then the unit normal vector si can be written as

si = DiF

u
, (3.20)

where u := |DF | = (γmnDmFDnF )1/2. Substituting this into the expansion
equation (3.18).

H = −(γmn − DmFDnF

u2 )(DmDnF

u
−Kmn) = 0. (3.21)

In the case of black string spacetime and the dynamical variables of the evolution,
we need to work out the equation in Cartesian coordinates, where the apparent
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horizon can be parameterised as a level set of some scalar function F :

F (x, y) = y − h(x). (3.22)

This is by no means the general parameterisation, but it has been typically used
as a simplification when finding apparent horizons. This means apparent horizon
with very complicated form will not be found. According to the results from both
theoretical analysis [33] and numerical work [3], the horizon should be well-defined
by such function.

Therefore, the expansion becomes

H = −Dm(∂
mF

u
) +K − 1

u2∂
mF∂nFKmn

= −∂m(∂
mF

u
) − Γm

mn

∂nF

u
+K − 1

u2∂
mF∂nFKmn

= −∂m∂
mF

u
+∂

mF∂nF∂m∂nF

u3 + ∂mF∂nF∂kF∂mγ
kn

2u3 − 1
2γ

mk∂nγmk
∂nF

u
(3.23)

+K − ∂mF∂nF

u2 Kmn (3.24)

According to modified Cartoon method [46], for i, j = x, y, a, b, c = z, w

∂a∂
aF = δa

a

∂yF

y
= (D − 3)∂

yF

y
, ∂aF = ∂a∂iF = 0,

γia = ∂aγbc = ∂aγij = 0, γab = δabγww. (3.25)

Hence, the expansion can be written as

H = −∂i∂
iF

u
− (D − 3)∂

yF

yu
+∂

iF∂jF∂i∂jF

u3 + ∂iF∂jF∂kF∂iγ
kj

2u3 (3.26)

− ∂iF

2u
(
γjk∂iγjk + (D − 3)∂i ln γww

)
+K − ∂iF∂jF

u2 Kij (3.27)

By the definition of having an apparent horizon, we set H = 0.

3.3.2 Numerical methods

In the previous study by Lehner and Pretorius [3], they have used flow method
to find the apparent horizon numerically. They restricted their research on simply
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connected apparent horizons that are periodic in the string direction x, which means
such an apparent horizon can be described by a function R(x).

3.3.3 Flow method

In order to implement flow method, let us define the level surface F = 0 of the
function

F (x, y) = y −R(x).

By constructing the outgoing null geodesic −→
l and the expansion H, they solved the

equation of zero expansion, i.e. H = 0, by point-wise relaxation method (or flow
method) to determine R(x). Given an initial guess R0(x) for the unknown function
R(x), then keep iterating the following equation until the norm of the expansion
function is below some desired threshold (in our runs we have typically set it to
10−3h, where h is the basic scale of discretization):

∆Rn(x) := Rn+1(x) −Rn(x) = −H(x)∆τ, (3.28)

where Rn(z) is the solution after the nth iteration.

Given suitable initial conditions, the solution Rn(x) will flow to the true solution,
i.e. the apparent horizon. If Rn(x) is outside the apparent horizon, the expansion
H will be positive so that the value of Rn+1(x) will be reduced according to (3.28).
On the other hand, if Rn(x) is inside the apparent horizon, the expansion H will
be negative so that the value of Rn+1(x) will be increasing.

We have the flow method implemented in Mathematica. According to [3], the
apparent horizon finder will become extremely time-consuming at the later time of
evolution due to thousands of iterations are needed for unstable black string. In
consideration of this, we write a new code with Newton-Raphson method to find
the apparent horizon more efficiently.

3.3.4 Newton-Raphson method

Newton-Raphson method is a root-finding algorithm which successively produces
better approximations to the roots. Given an initial guess x0 that is close to the
root of a function g(x), then it generates a better approximation by computing the
x intercept of its tangent. That is, x1 will be obtained by x1 = x0 − g(x0)/g′(x1).
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The process will be repeated by

xn+1 = xn − g(xn)
g′(xn) , (3.29)

until it finds an approximation that is close enough to the root. Given appropriate
initial guess that is close enough to the unknown solution, this method usually has
a quadratic convergence. Generalised to higher dimensions, to find the zeros for a
function g on Rn, we repeat the iteration process by

xn+1 = xn − [J(xn)]−1g(xn), (3.30)

where x ∈ Rn and J(xn) is the Jacobian matrix. Given a differential equation
D(x, g(x), ∂g(x), . . . ). A better approximation can be obtained by

gn+1(x) = gn(x) − [D′(x, g(x), ∂g(x), . . . )]−1D(x, g(x), ∂g(x), . . . ). (3.31)

Therefore, it can be written as

D′(x, g(x), ∂g(x), . . . )δgn = −D(x, g(x), ∂g(x), . . . ), (3.32)

where δgn = gn+1(x) − gn(x).

In order to use Newton-Raphson method, we need to derive the equation of the
second derivative of h. Substituting these definitions into (3.21), the non-linear
second order differential equation for h can be obtained as

d2h

dx2 = −1
γxxγyy − (γxy)2

(
u2γmn − ∂mF∂nF

) (
Γk

mn∂kF + uKmn

)
(3.33)

where u = (γmn Dm F Dn F )1/2, thus u2 = γxx
(

dh
dx

)2
− 2γxy dh

dx
+ γyy, and

∂iF =
(

−dh

dx
, 1, 0, 0

)
, ∂iF = γij∂jF = −γxxdh

dx
+ γxy

Substituting the definitions of ∂iF and ∂iF , and after some algebra, by the definition
of having the apparent horizon, i.e. setting H = 0, it gives

d2h

dx2 = −1
γxxγyy − (γxy)2

(
u2γmnΓk

mn∂kF + u3γmnKmn − ∂mF∂nFΓk
mn∂kF − u∂mF∂nFKmn

)
.
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In terms of dynamical variables {χ, γ̃ij, Ãij, K, Θ, Γ̂i}, the equation becomes

d2h

dx2 = −1
χ2(γ̃xxγ̃yy − (γ̃xy)2)

(
u2∂kF (χΓ̃k + D − 3

2 γ̃kj∂jχ) + u3(γ̃mnÃmn +K)

−∂mF∂nF∂kF (Γ̃k
mn− 1

2χ(δk
n∂mχ+δk

m∂nχ−γ̃mnγ̃
ki∂iχ))−u∂mF∂nF

1
χ

(Ãmn+ 1
D − 1 γ̃mnK)

)
where Γ̃k

mn = 1
2 γ̃

kl(∂nγ̃lm + ∂mγ̃ln − ∂lγ̃mn).

According to modified Cartoon method, in the case of SO(D − d) symmetry, the
expressions for a scalar, vector and tensor Ψ, V a, Tab are

0 = ∂aΨ, 0 = V a = ∂iV
a = ∂aV

i, 0 = Tia = ∂aTbc = ∂aTij

Tab = δabTww, ∂aTib = δab
Tiz − δizTww

z

where a, b = d+ 1, ..., D − 1 and i, j = 1, ...d.

Hence the equation becomes,

d2h

dx2 = −1
χ2(γ̃xxγ̃yy − (γ̃xy)2)

(
u2∂kF (χΓ̃k+D − 3

2 ∂lχγ̃
kl)+u3(γ̃mnÃmn+(D−3)γ̃wwÃww

+K) − ∂mF∂nF∂kF (1
2 γ̃

kl(∂nγ̃lm + ∂mγ̃ln − ∂lγ̃mn)

− 1
2χ(δk

n∂mχ+ δk
m∂nχ− γ̃mnγ̃

kl∂lχ)) − u∂mF∂nF
1
χ

(Ãmn + 1
D − 1 γ̃mnK)

)
where k, l,m, n = x, y.

d2h

dx2 = −1
χ2detγ̃xy

(
χD2F∂kF Γ̃k + χ

D − 3
2 D2F∂mF∂m lnχ+ (D2F )3/2K

−∂mF∂nF∂lF
1
χ

(∂nγ̃lm − 1
2∂lγ̃mn) −D2F∂mF (∂m lnχ− 1

2∂m lnχ)

−(D2F )1/2∂mF∂nF
1
χ

(Ãmn + 1
D − 1 γ̃mnK)

)
where k, l,m, n = x, y and D2F = ∂k∂

kF .

d2h

dx2 = −1
detγ̃xy

(
D2F ( 1

χ
∂kF Γ̃k + 1

χ2
D − 2

2 ∂mF∂m lnχ) − 1
χ

D − 2
D − 1(D2F )3/2K
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− ∂mF∂nF∂lF
1

2χ3∂lγ̃mn + (D2F )1/2∂mF∂nF
1
χ3 Ãmn

)
(3.34)

where k, l,m, n = x, y and D2F = ∂k∂
kF .

The equations are implemented in the code and are solved by PETSc libraries
[115]. At the beginning of the evolution, we use the solution of the uniform black
string as the initial guess for the AH of the initial slightly-perturbed string. During
the evolution, we typically use the previous solution as the initial guess for finding
the AH at every full time step of the coarsest level. In later stage of the evolution
when there are rapid dynamics, we had to keep the time step small enough so that
the AH can be tracked.

3.4 Embedding diagram

To obtain some intuitive idea about the shape of the AH during the evolution, we
define the embedding diagram of the horizon. After we solve the equation for the
zero expansion, the embedding diagram can be found as following. The metric can
be written in terms of the dynamical variables as,

ds2
H = γ̃zzdz

2 + 2γ̃zxdzdx+ γ̃xxdx
2 + γ̃wwz

2dw2 (3.35)

where w denotes any of the Cartesian cartoon directions along the S2.

By the definition of the apparent horizon x = h(z), we can write γ̃zz = γ̃zz(y, h(z)).
Substituting back into (3.35) gives

ds2
H = (γ̃zz + 2γ̃zxh

′(z) + γ̃xxh
′(z)2)dz2 + γ̃wwz

2dw2. (3.36)

Since in flat space, it can be written as

ds2
H = dR2 + dZ2 +R2dΩ(2)2 (3.37)

where Z = Z(z) and R = R(z). As a result,

ds2
H = (R′2 + Z ′2)dz2 +R2dΩ(2)2, (3.38)

Comparing it with (3.36), it is not hard to find that

R(z) =
√
γ̃wwh(z). (3.39)
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For the embedding diagram, coordinate R is the areal radius R(z) =
√
γ̃wwh(z),

and coordinate Z is defined to satisfy that the proper length in the string direction
z is the same as the Euclidean length of R(Z) in the embedding diagram, i.e.

Z(z) =
∫ z

0
dz̄

√
γ̃zz + 2γ̃zxh′(z̄) + γ̃xxh′(z̄)2√

h′(z̄)2 + 1
. (3.40)

3.5 Curvature invariant

The Kretschmann scalar is invariant for different coordinates. It is an impor-
tant quantity to verify whether the spacetimes contains a real singularity. The
Kretschmann should be finite. If there is a singularity, the Kretschmann scalar is
not defined there. The Kretschmann scalar is defined as

K̄s = (D)Rabcd
(D)Rabcd , (3.41)

where Rabcd is Riemann curvature tensor. It can be obtained by calculating the
"square" of the Riemann curvature tensor. It is useful to normalize it as the induced
Kretschmann invariant as

K̄s = 1
12 Rabcd R

abcd R4
AH . (3.42)

where RAH is the areal radius of the string. The invariant kretschmann evaluates
to be 1 for an exact black string, and 6 for an asymptotically flat 5D Schwarzschild
black hole.

3.6 Black hole thermodynamics

The other quantities that are useful to monitor the dynamics of the system are the
mass and the horizon area.

The mass of a 5D BH is
Mbh = 3πr2

5
8 , (3.43)

and its horizon area is
Abh = 2π2r3

5. (3.44)
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The mass of a 5D black string is

Mbs = r0

2 L (3.45)

and its horizon area is
Abs = 4πr2

0L, (3.46)

where L is the length of the compact dimension.

For 5D BH with the same mass of a black string

Mbh = 3πr2
5

8 = r0

2 L, (3.47)

it has radius

r5 =
√

4r0L

3π . (3.48)

Therefore, the area becomes

Abs = 2π2r3
5 = 16r0L

√
r0Lπ

27 . (3.49)

The horizon area ratio between them is

Abh

Abs

=
16r0L

√
r0Lπ

27

4πr2
0L

=
√

16L
27πr0

(3.50)

In our study, we monitor this ratio over time to check how close the evolution of
the black string is to a 5D BH.

3.6.1 The corrected thermodynamics

In this section, we present the corrected thermodynamics in first order.

The corrected mass M and area S on d-dimensional cylinder RD−1 × S1 to first
order in the total mass are [4]

M = (d− 1)Ωd−1

16πGN

ρd−2
0

(
1 + ζ(d− 2)

2(2π)d−2ρ
d−2
0 + O(ρ2(d−2))

)
, (3.51)

S = Ωd−1

4GN

ρd−1
0

(
1 + (d− 1)ζ(d− 2)

(d− 2)(2π)d−2 ρ
d−2
0 + O(ρ2(d−2))

)
(3.52)
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According to [5], the entropy S for multi-black holes is

S(µ;κ) = S1(µ;κ) + S1(µ; −κ) (3.53)

S(µ;κ) = (2π)d−1

4Ω
1

d−2
d−1(d− 1)

d−1
d−2GN

[(1
2 + κ

)
µ
] d−1

d−2

×
[
1 + ζ(d− 2)

(d− 2)Ωd−1

(
2d−4 + 2κ(1 − κ)(1 − 2d−3)

)
µ+ O(µ2)

]
(3.54)

where S1 and S2 are entropies for two black holes, and

S2(µ;κ) = S1(µ; −κ). (3.55)

We use this expression to calculate the total entropy of the first and second genera-
tions of the blobs in black string evolution.



Chapter 4

Endpoint of Black String
Instability

The seminal paper [3] about the endpoint of the GL instability on the five-
dimensional black string is an important piece of work in the field. Its numerical
results from the fully nonlinear evolution of the black string constitutes a violation
to the WCCC, which has tuned our understanding of the conjecture. The simulation
in the paper is the only full numerical study about black strings at present. The
simulation results are more than ten years old and have not been independently
reproduced or verified in the literature. Moreover, it seems that the late-time
dynamics of the evolution might be affected by the accumulating numerical errors.
Higher quality numerics are needed in the late stage of the simulations. Therefore,
the first goal of our study is to re-conduct the simulation with a different method,
and reproduce the GL instability on 5D black strings by using completely indepen-
dent methods and a different code. In particular, simulations by [3] used harmonic
coordinates with the PAMR/AMRD libraries to solve the EFEs and used excision
to get rid of the singularities. In our study, we use a different formulation, the
CCZ4 formulation [89, 96], to conduct the simulations, with singularity avoiding
coordinates and by using our own GRChombo code [47, 48]. We reproduce the
main results of [3] and confirm the late-time development of the GL instability of
an unstable black string is s sequence of black holes connected by black strings in
different scales. This process results in a pinch off of the horizon in finite asymptotic
time, and thus yielding a naked singularity. However, our numerical results do
not support for a global timescale that relates two subsequent generations, like
what was stated in [3]. Therefore, the pinch off time is not simply determined by a
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geometric series as stated in [3]. In fact, the late-time dynamics depends on two
factors: the local dynamics of the bulges and the local GL instability. This leads to
a faster approach to the singularity according to our simulation results. Our study
provides further evidence against the WCCC.

This chapter starts with an overview of the weak cosmic censorship conjecture, the
Gregory-Laflamme instability and a summary of the main results of the previous
numerical study on the five-dimensional black strings in [3]. Then, we demonstrate
the numerical approach and technical details that we adapt to achieve stable
evolution of the black string spacetimes in our study in Sec. 4.2. In Sec. 4.3, we
present the particular analysis methods we developed for black string simulations.
In Sec. 4.4, we present our simulation results and its numerical interpretations
about the GL instability of the black strings, as well as a comparison of our results
with [3]. We improve simulation results with higher resolutions and extend the
evolution further to get closer to the singularity of the GL instability. We analyse
and give interpretations of our results and discuss the possible reasons that cause the
differences between our results with [3]. Results from numerical tests are presented
in Sec. 4.5. To obtain a more general picture of the evolution, we explore black
strings with different lengths in Chapter 5.

4.1 Introduction

The existence of the singularities limits the predictive power of GR. The reason is
simply that the theory does not apply at the spacetime singularities. However, to
date there is no potential candidate found for the singularities in four-dimensional
astrophysical settings. It seems that singularities resulting from the gravitational
collapse are always hidden inside black holes. Based on the fact that no information
can escape a black hole, it seems to be possible to formulate a global existence
result for the spacetime outside of black holes. Motivated by this, in 1969, Penrose
proposed the weak cosmic censorship conjecture [26] to address this issue, where
singularities are conjectured to be always cloaked by black hole horizons. As long
as no information can escape from black holes, it is safe. Later the theory has been
formulated more precisely by [27, 28, 116]. The validity of the conjecture remains
an important open question in the field for decades and until now. It has only been
proven for some special cases. A rigorous mathematical proof or disproof to it still
lacks. Thus, it remains as one of the biggest open questions in GR. In next section,
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we introduce this conjecture and give an overview of the relevant studies in the way
towards proof or disproof the weak cosmic censorship conjecture [26, 28, 29, 99].

4.1.1 The weak cosmic censorship conjecture

The Weak cosmic censorship conjecture (WCCC) says that

No singularity is visible from future null infinity and singularities
must be cloaked by an event horizon from an observer at infinity.

It basically tells us that singularities must be hidden inside the black hole horizon
and cannot be visible. In other words, there does not exist naked singularities.
Whether the conjecture stands or not remains open for decades, and until now a
rigorous mathematical proof is still lacking. If WCCC is true, naked singularities do
not form generically from smooth initial data so that general relativity is sufficient
to describe all gravitational phenomena outside the black holes. The physics near
a singularity is now govern by quantum gravity but not by general relativity any
more. In particular, quantum gravity effects are restricted to the region inside the
black holes. If WCCC fails, then it is possible to observe the effects of quantum
gravity directly.

There have been many attempts to proof or disproof the conjecture. The effort to
proof or disproof the conjecture evolves both theoretical and numerical work. In
four dimensions, there does not seem to have any counterexamples in astrophysical
settings so far. Choptuik has proven that a naked singularity would form at the
gravitational collapse of a spherical body when it has sufficiently large initial
amplitude [30]. However, Choptuik’s critical collapse is non-generic. Christodoulou
has shown that within the Einstein-Scalar model, a singularity has to contain
inside a BH or it does not exit for spherically symmetric case in four-dimensional
asymptotically flat spacetimes [29]. In their work, a zero mass singularity, which
could have been a potential counterexample to the conjecture, has been constructed
numerically, but it turns out to be unstable and non-generic. Moreover, there
has been works on constructing a trapped surface in full generality with generic
initial data [117]. In four dimensions, the WCCC has been partially proven for the
spherically symmetric case [29], but the proof to the general case are still open.
The general proof without symmetry assumptions or counterexamples which are
generic is still lacking. Recent progress about it can be found in [118].
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However, in higher dimensions, there have been some evidence found against the
WCCC. The first counterexample was found in the case of the five-dimensional
black strings in 1993 [33]. Gregory and Laflamme (GL) found that the black string
can be unstable to the long wavelength perturbations and it develops into ripples
along the compact direction, which would possibly lead to a singularity in the
end [33]. The endpoint of the GL instability of black strings was determined by
Lehner and Pretorius [3] by carrying out the full numerical evolution of the unstable
black string. The horizon of the black string would pinch off in finite asymptotic
time, thus yielding a naked singularity. The numerical results from the endpoint
of the instability indicates the formation of a naked singularity. More recently, a
family of counterexamples to the WCCC have been found from numerical studies
on the endpoint of the Gregory-Laflamme instability in similar scenarios in higher
dimensions, such as black rings [34], ultra-spinning black holes [35] and black hole
collisions [36, 48], as well as in the large D limit of GR [57, 89, 96]. There are also
potential counterexamples in AdS [119, 120]. The discovery of the GL instability
point us new directions towards verifying the WCCC.

4.1.2 The Gregory-Laflamme instability

In this session, we introduce the Gregory-Laflamme (GL) instability and summarise
the results from previous studies about the endpoint of the GL instability which
constitutes a violation to the WCCC.

As the most important solutions of the EFE, BHs are known to be stable in
four dimensions and can only have spherically symmetric geometry. However, the
situation can be very different in higher dimensions where black holes can have
different kinds of topology and can be unstable to gravitational perturbations. For
example, black strings are found to be unstable to linear perturbations when it is
thin enough. The discovery of the GL instability point us new directions towards
verifying the WCCC. It was first shown by Gregory and Laflamme that the black
string solution is unstable to small perturbations in 1993 [33]. They found that if
there is a linear perturbation of the black string solution, it will grow exponentially
in time and the horizon will begin to ripple (see Fig. 4.1). Moreover, they predicted
that the endpoint of the instability would be a 5D localised BH. As by the theory of
entropy, a BH would have the largest entropy among all. The singularity that forms
at the endpoint of the black string instability potentially constitutes a violation to
the WCCC. It takes years for the initial numerical simulations to run. In 2003, the
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first numerical study was carried out on the black string confirms the ripples in the
GL instability [121].

Fig. 4.1 A demonstration of the unstable black string that induces ripples along the
compact string direction.

However, the development of the instability is not determined, until the seminal
study of full evolution of black string was carried out by Lehner and Pretorius in
2010 [3]. The study shows that the unstable black string develops into a fractal
structure. The late-time development of the horizon can be described by a sequence
of spherical BHs connected by shrinking string segments in different scales. Each
string segment itself is unstable, subject to the GL instability. They argued that
the dynamics of the GL instability is (global) self-similar so that the pinch off time
can be estimated by a geometry series and thus finite. According to Proposition
9.2.5 in [122], horizon cannot bifurcate smoothly. Therefore, the horizon would
finally pinch off somewhere on the string in finite asymptotic time, yielding a naked
singularity. Their simulation results support this point as the curvature invariant
would blow up at the horizon when the development of the instability is close to
the pinch off. They also predict that the endpoint of the black string instability is a
5D Schwarzschild BH as this is an entropy-favoured solution. Since no fine tuning
is needed for the simulation, their results constitute to a generic counterexample to
the WCCC.

More recently, there has been a family of further studies that also suffer from the
GL instability on black rings, ultra-spinning BHs and BH collisions [34–36]. The
results from these numerical studies contribution to concrete counterexamples of
the WCCC from the perspective of numerical relativity.
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4.1.3 Previous numerical evolution on the black string

The existence of the black string instability in five dimensions has been proven
by Gregory and Laflamme in 1993 [33]. They concluded that when the horizon
pinches off there will form a naked singularity, suggesting a violation to the WCCC.
However, it took twenty years for the first numerical evolution of black string to run,
which confirms the ripples of the unstable black string [121]. The full numerical
evolution of black string spacetime was successfully carried out by Lehner and
Pretorius in 2011, where the endpoint of the perturbed black string was determined
[3]. In their numerical study, the spacetime was evolved by Generalised Harmonic
(GH) formulation of the Einstein equations. Constraint damping terms have been
added to the Harmonic Decomposition of EFE to cure the problem causing by the
truncation errors. It has been found that the development of black string instability
develops to self-similar structure where the black string keeps shrinking over time,
increasing number of the segments of it turns to various sizes of hyper-spherical
black holes. This shrinking process will continue until a zero-mass naked singularity
is formed within a finite amount of time. Their numerical study provides a concrete
evidence against the WCCC. In this section, we summarise the key results from the
previous study [3].

In [3], the simulation was carried out on a computational domain with dimension
(r, w) ∈ ([0, 320M ]× [0, L]), where r refers to the radial direction and w refers to the
compact string direction in the computational coordinates. Each direction initially
has (Nr, Nw) = (1025, 9) points on the grid that uniformly covers the entire domain.
They started the simulation of an initial black string which has compact length
L = 20M and radius at r0 = 2M . The perturbation in [3] was introduced to the
physical metric along the string direction x by

γΩ = 1 + A sin
(
x

2πq
L

)
e−(r−r0)2/δ2

r . (4.1)

where A is a parameter that determines the amplitude of the perturbation, q controls
the spatial frequency of the perturbation, and r0 and δr control the region of the
perturbation in the radial direction. In their simulation, they used A = 0.1, q = 1,
r0 = 2.5 and δr = 0.5. The other variables are then found numerically by solving
the Hamiltonian and momentum constraints. The spacing is 0.3/M at the coarsest
level in the low resolution run. The simulation starts with 3 additional levels and
ends up with 16 additional levels, which are added by AMR algorithm that based
on their specific maximum truncation error tolerance [3].
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The shape of the initial perturbed black string and the evolution of the horizon
can be found in Fig. 4.2 (or Fig.1.2 in 4.2). The excision region was chosen to
follow the shape of the AH, but 10 and 50% smaller in radius [3]. In the first
200M in time, the perturbation added has been growing over time and the first
generation is gradually forming. By time 220-220M, we can clearly see there has
formed the second generation the the middle of the string segment. In the later
time of evolution, from t = 220 − 226M , the horizon can be described as black
holes connected by black string segments. This is also supported from the evolution
of the intrinsic geometry over time (Fig.1.3 in [3]). The invariant Kretschmann
along the string segment is nearly 1 which corresponds to the value for an exact
black string, and is nearly 6 near each generation, which corresponds to an exact
spherical black hole.

∆T ≈ T0 +
∞∑

i=0
T1X

i = T0 + T1

1 −X
. (4.2)

Moreover, they pointed out that the time scale that relates the formation time
of the subsequent generations is X ≈ 1/4 times that of the preceding one. They
think that the time scale is expected to be proportional to the string radius if the
local instability is qualitatively like the GL instability of an exact black string. As
a result of (4.2), they concluded that the time to pinch off is ∆T/M ≈ 231. At
this time, the string segment will have zero radius so that the self-similar cascade
will terminate. This indicates the formation of a naked singularity and therefore
constitutes a violation to the WCCC.

They found more evidence to support the above conclusion based on the following
observations. Firstly, the simulation results support that the radius of the some
selected position on the AH is decreasing linearly over shifted-logarithmic time
(Fig.1.4 in [3]). It is consistent with the self-similar scaling to zero radius at the
corresponding finite asymptotic time. This observation is qualitatively the same as
that observed in the case of fluids, where the scaling law is known as [123, 124]

R ∝ (tc − t). (4.3)

where R is the radius of the fluid column, which decreases with time t linearly
until the breakup time tc. Secondly, they claimed that the self-similar nature of
the instability will give rise to a fractal structure before the pinch-off. This implies
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Fig. 4.2 The embedding diagram of the apparent horizon from [3].

that the proper length Lp(t) of the string will grow with the development of each
subsequent generation. By assuming that the scaling law takes the form of 4.25
and the properties of the string radius follows the scaling suggested by Table1.1 in
[3]), they measured the slope in the logarithmic plot of the evolution of the proper
length (Fig.1.5 in [3]) by

Lp(t) ∝ (tc − t)(1−d), (4.4)

They found the slope of the linear fit to the late-time dynamics is ∼ 0.048. As a
result, the Hausdorff dimension d ≃ 1.05, which is greater than 1 as expected.

To quantitatively understand the late-time behaviour of the horizon, [3] analyse the
mode behaviour of the string segment by decompose the horizon RAH(t, w) between
w ∈ [0, 10M ] from t ∈ (175M, 205M) by the following expansion

RAH(t, w) = c0 −
∞∑

l=1
cl sin(lπw), (4.5)
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where up to l = 6 coefficients cl have been extracted. They found that only the
l = 1 mode displays the growing behaviour (see Fig.1.6 in [3]), which is somehow
expected as at this stage of the highly dynamical evolution.

The numerical study on the black string, as the most studied case in higher
dimensions, provides us an insight into the dynamics of higher-dimensional black
holes. However, many aspects of the simulation can be improved and there are
still many questions and concerns about the black string instability. In their study,
excision technique is necessary to remove the geometric singularity inside the horizon
from the computational domain. As a result, the apparent horizon has to be found
periodically during the simulation. However, in their study finding the apparent
horizon became rather costly in the later time of the evolution. One reason is that
the algorithm, i.e. flow method, to find the apparent horizon in their study is not
very efficient. On the other hand, in the case of GH formulation, the apparent
horizon needs to be found periodically for excision purpose. Particularly in the
later time when the dynamics of the horizon becomes rapid and vivid, it has to be
found more frequently, which makes the time for the overall evolution extremely
increased. Moreover, the rules governing the evolution of the horizon remain unclear
and more details are desired about and the dynamics of the spacetime in the later
time of evolution. Therefore, in our study we use a different formulation, i.e. CCZ4
formulation, in order to verify whether the development of horizon follows a self-
similar structure and to discover the rules governing it. With CCZ4 formulation, it
is possible to evolve the spacetime without excision. Another advantage of using
this formulation is that we can separate the process of finding the horizon from
evolving the spacetime. As a starting point, we focus on the black string solution
in five dimensions with the same settings as [3]. Based on that, we will be able to
investigate black strings with different lengths in higher dimensions.

4.2 Numerical methods

In our study, we conduct the fully non-linear numerical evolution of the black
string in five dimensions. In this section, we present the numerical methods we use
to achieve stable evolution of black string spacetimes, including the initial data,
gauge conditions and singularity diffusion. In particular, we show the specific grid
hierarchy we choose. We give in detail our simulation results and its numerical
interpretation. In addition, we present the results from numerical tests.
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We start with the black string which has the same radius and length ratio as in
[3], so that we can directly compare our simulation results with theirs. We aim to
push the evolution as close to the singularity as possible. In our work, we follow
the conventions G = c = 1.

The five-dimensional black string we work on takes the following metric:

ds2 = −
(

1 − r0

r

)
dt2 +

(
1 − r0

r

)−1
dr2 + r2dΩ2

(2) + dz2, (4.6)

where r is the Schwarzschild radius, r0 is the mass parameter of the black string
and dΩ2

(2) is the line element of the 2-dimensional unit sphere. With the extra
dimension of compact length L, the mass of a black string is hence

MBS = 1
2Lr0. (4.7)

When L = 10, the black string has the same radius and length ratio as in [3], where
this specific ratio was chosen as it corresponds to the fastest growth rate of the
instability. With L = 10, in theory, our simulation results should be quantitatively
the same as [3].

4.2.1 The evolution

For the evolution, we solve the vacuum EFE in 4+1 dimensions with U(1) × SO(3)
isometry imposed. We employ the CCZ4 formulation [89, 96] on a Cartesian grid
by using our own GRChombo code [47, 48]. The symmetry are reduced by the
modified cartoon method [46]. We set the whole computational domain to be
[z, x] = [0, 10] × [0, 256]. That is to say, the string direction z has length L = 10,
where we apply periodic boundary. And the outer boundary is at 256r0 in the
Minkowski directions. We apply either Sommerfeld or periodic boundary conditions
at the outer boundary. Note that it does not really matter which boundary condition
to use. As long as the outer boundary is put far away from the region, it will
not have any causal contact with the black string physics. Typically we set the
grid spacing to be dx = 0.25r0 at the coarsest level. In total there are 13 levels of
refinement that we have on the computational domain, with a refinement ratio of
2 : 1. This means the resolution at the finest level is ∼ 6 × 10−5r0. We evolve the
lapse and shift vector by the CCZ4 (1 + log) slicing with an advection term and the
modified Gamma-Driver shift condition. We reduce the dimension of the problem
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to 2+1 by applying the modified cartoon method [46]. The generalised equations of
CCZ4 formulation can be found in Chapter 2.

To discretise the spatial derivatives, we use 6th order finite differences method. As
for time derivatives, we use the standard RK4 time integrator. Since the overall
convergence order is not greater than four, we use 6th order Kreiss-Oliger dissipation.
In Sec. 4.5, we show that the order of convergence in our simulation is roughly three.
This is what one would expect for a typical AMR code like GRChombo . Similar
to [34–36], we add diffusion terms to the right hand side of the equations well inside
the apparent horizon, which helps to control the gradients near the coordinate
singularity in the computational domain inside the black hole. We only add those
terms to the variables which have second order spatial derivative terms. To achieve
stable simulation of the black string spacetimes, we redefine the constraint damping
parameter κ1 → κ1/α as in [89], where α is the lapse function. For the damping
parameters we use κ1 = 0.37, κ2 = −0.8, and κ3 = 1.0.

4.2.2 Gauge conditions

The lapse function we use is the standard 1 + log slicing condition,

(∂t − βi∂i)α = cαα(K − 2Θ), (4.8)

where we set cα = 1.3, K is the trace of the extrinsic curvature and Θ is one
of the CCZ4 evolution variables. The shift condition we use is the integrated
Gamma-driver,

(∂t − βj∂j)βi = cβΓ̂i − ηβi, (4.9)

where cβ = 0.6 and Γ̂i is the CCZ4 evolution variable. Note that the extra term
that relates to the constracted Christoffel symbols of the conformally rescaled initial
spatial metric as in [34–36] are not included here. The particular reason is that
those terms are vanished according to our initial conditions.
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4.2.3 Modified Gamma-Driver

We evolve the shift by following the condition in [35] that

∂tβ
i = F (Γi − f(t)Γi

t=0) − η(βi − βi
t=0) + βk∂kβ

i, (4.10)

where f(t) is a function decays in time, F and η are free gauge parameters. The
gauge parameters cα and cβ are typically chosen to be cα = 2 and cβ = 0.75 in other
cases such as black holes binary mergers in astrophysical settings. In our simulation,
we choose F = 0.6 and η = 1. In the case of black string evolution, since in GP
coordinates Γi

t=0 = 0, the conditions we actually implement in the code are

∂tβ
0 = F ∗ Γ0 − ηdβ

0 + µββ
k∂kβ

0, (4.11)

∂tβ
1 = F ∗ Γ1 − ηd(β1 − β1

Ref ) + µββ
k∂kβ

1, (4.12)

where β1
Ref is chosen to be half value of the initial shift, that is β1

Ref = 0.5 ∗ β1
t=0 =

0.5
√

1/y , µβ is 1, and ηd is 1 for y < 1012 and it decays when y > 1012.

4.2.4 Initial data

We start the evolution with the unperturbed black string solution in five dimensions
in Gullstrand-Painleve coordinates [125, 126],

ds2 = −
(

1 − r0

r

)
dt2 + 2

√
r0

r
dr2 + dr2 + r2dΩ2

(2) + dz2. (4.13)

where r0 is the usual Schwarzschild mass parameter, z ∼ z + L is the compact
direction with period length L, and dΩ2

(2) is the standard metric on the unit round
two-sphere. The ADM mass of the metric in our case is therefore

M = 1
2Lr0. (4.14)

The advantage of using this coordinate is that it is horizon-penetrating and in GP
coordinates, the spatial metric is flat. The only non-trivial part contains in the
conformal factor χ. Therefore, it makes it particularly convenient to construct
perturbed initial data. The only physical singularity can be removed by turducken
method [113, 114]. We cut off by hand the range of in the radial direction. That is,
we let r = ϵ and evolve the initial data quantities of (4.13) for r < ϵ. We typically
use ϵ = 0.1r0. Note that we only employ this regularisation procedure at the level of
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the initial data; at the later stages in the evolution, the x coordinates takes values
in 0 < x < xmax. Note that in [3], they use MSchw = r0/2 = 1 so that our results
are related to theirs by a rescaling factor of 1/2. Then, we can read off the 4 + 1
quantities from the initial data (4.13). In Cartesian coordinates det γ = 1 and hence
the unperturbed conformal factor satisfies χ ≡ (det γ) 1

4 = 1. Furthermore, the
Christoffel symbols associated to the spatial conformal metric γ̃ij trivially vanish.
To trigger the GL instability, the perturbation is added to the conformal factor χ
by

χ = χ
[
1 + ϵ sin

(2πqz
L

)]
e

−
(

x
r0

− r0
x

)2

, (4.15)

where ϵ is the amplitude of the perturbation and q ∈ N is the frequency that selects
which GL harmonic to be excited. This is constraint-violating. The exponential
part ensures that the perturbation is added only to the region near the horizon.
In our simulations, we set ϵ to be 0.01 and n to be 1. During the simulation, we
keep track of the constraint violations introduced by our perturbation and ensure
that for they are exponentially suppressed by the damping terms. The remaining
4 + 1 quantities are left unperturbed; for the initial lapse α and the shift vector
βi, we set α = 1 and βi = 0. Our choice of the lapse and shift implies that there
is a strong initial gauge adjustment superposed with the physical evolution of the
GL instability. This period of gauge adjustment happens at the beginning of the
evolution and typically lasts for t/r0 ∼ 10. On the contrast, the GL instability
appears at time t/r0 ∼ 70 − 100 or even later in our simulations with the initial
perturbed data we choose.

4.2.5 Singularity Diffusion

In higher dimensions, the gradients can be really steep near the singularity. These
large gradients comes from the coordinate singularity in the conformal metric as the
conformal factor cannot fully absorb the singularity. The diffusion terms introduced
in [35] was inspired from the techniques in dealing with the shock problem in the
context of computational fluid dynamics [127–129]. Based on the diffusion terms in
[35], we add a term in addition to the evolution equation for γ̃ij. It is of the form

cL∆x2g(χ, |∂γ̃ij|(∇2γ̃ij)T F ) (4.16)
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where cL is a dimensionless parameter, ∆x is the grid spacing and g(χ, |∂γ̃ij) is
a function to ensure this term is only added to the inside of the horizon and is
nonzero when the gradients in γ̃ij becomes large. It is in the form

g(χ, |∂γ̃ij|) = H(χc − χ)
√√√√ 2
D(D − 1)

∑
i,j,k

(∂kγ̃ij)2, (4.17)

where H is the Heaviside step function, χc is the cut-off value to ensure that the
diffusion term stays inside the apparent horizon.

4.2.6 Localised perturbation

It is also possible to introduce a small perturbation to χ after achieving stable
simulations for the unperturbed black string. The perturbation can be added only
locally to the region near the horizon:

χ → χ
(

1 + A sin
(2πqx

L

))
ψ(x, y).

where we set A = 0.25, the frequency q = 1 and ψ(x, y) is a function to localise the
perturbation. It is defined as ψ(x, y) = ψ1(y)ψ2(y)ψ3(x)ψ4(x), where

ψ1(y) =



0 y ≤ y1

e
− y2−y1

y−y1

e
− y2−y1

y−y1 +e
− y2−y1

y2−y

y1 < y < y2,

1 y ≥ y2

ψ2(y) =



1 y ≤ y3

e
− y4−y3

y4−y

e
− y4−y3

y−y3 +e
− y4−y3

y4−y

y3 < y < y4

0 y ≥ y4

ψ3(x) =



0 x ≤ x1

e
− x2−x1

x−x1

e
− x2−x1

x−x1 +e
− x2−x1

x2−x

x1 < x < x2,

1 x ≥ x2

ψ4(x) =



1 x ≤ x3

e
− x4−x3

x4−x

e
− x4−x3

x−x3 +e
− x4−x3

x4−x

x3 < x < x4

0 x ≥ x4

where x1, x2, x3, x4, y1, y2, y3, y4 are parameters to help localize the perturbation.
Therefore, the function ψ(x, y) is well-defined on the (x, y) plane and the perturba-
tion is smoothly localized to a region near the horizon and centered in the string
direction.
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4.2.7 Grid hierarchy

The location where the first generation would form along the string depends on the
initial conditions. Apart from that, the problem should respect Z2 symmetry about
the centre of the first generation, since the initial data which has zero momentum as
in our case and in [3]. This is because the n = 1 GL harmonic governs the subsequent
universal evolution of the strings has this symmetry. So in perfect conditions, we
should expect to see the subsequent generations to appear symmetrically about
the first generation along the string. However, in [3] the generation beyond the
third one is not symmetric any more. We believe it is due to the accumulating
numerical errors that have different impacts on different sides of the string segments
that eventually affects the development of the instability. This effect can be visible
from the third generation onwards during the evolution of the instability shown
in Fig. 2 of [3]. This also happens in our simulations, that when the finer levels
are automatically added as the evolution of the instability unfolds, it becomes
problematic. The asymmetry of various refinement levels can subtly add truncation
errors to the whole system, which could accumulate over time and break the physical
symmetry of the problem in the end. In this section, we provide details of the
grid hierarchy that we use in our simulations to ensure that our numerical method
respects the Z2 symmetry.

There are several ways to control the grid hierarchy during the evolution. Previously,
the usual refinement criterion is based on the gradients of the conformal factor χ,
as the χ could be a good estimate of location of the horizon. So χ tagging χ is used
in similar problems using GRChombo [34–36, 130]. This type of criterion thus
provides a level hierarchy that roughly follows the shape of the horizon. Hence it
can potentially save the computational cost of the simulations. Whereas, there is no
underlying symmetry is assumed in the previous problems considered in [34–36, 130],
so that one does not have to worry about any potential symmetries that might be
affects by the numerical method one uses. Therefore, using χ tagging χ is the most
convenient and efficient choice in the above cases. However, in our case, we do not
find an efficient way to enforce the Z2 symmetry on the levels dynamically based on
the conformal factor χ or something similar. There are mainly two reasons. First,
the dynamical variables such as the conformal factor χ could change dynamically
during the evolution (especially when a new generation is forming), so that the
levels could not well capture the shape of the horizon based on the conformal factor
χ. Figure 4.3 gives an example that using this criterion, extra levels are added to
the region above the horizon. Thus, the finer level does not well capture the shape
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of the horizon as we want. Moreover, the truncation error would lead to asymmetric
levels as well (see Fig 4.3). At the boundary value we set to decide to whether add
a box or not, tiny numerical errors could lead to opposite answers. This is almost
unavoidable due to the way we add the boxes in numerical simulations. In one
simulation we run using chi criterion, we get asymmetric horizon at the two side of
the big blob in Fig 4.3. Hence, criterion based on the chi are not stable, as it would
be hard to enforce Z2 symmetry based on the chi.

The left one in Fig. 4.3 gives an example of the hierarchy of the innermost
refinement levels that result from using the χ tagging criterion. As we can see from
this figure, the levels are not fully symmetric about the first generation. This leads
to accumulating errors from the level boundaries that causes unphysical effects
in the late time. In our simulations, the effects typically show up beyond the
third generation, unless very high resolution is used. Another issue about using
chi criterion in the black string simulation is that, the finest levels inside the big
blob (Fig 4.3) take a large portion of the total computational resources. It seems
to a huge waste to compute the inside with so much resolution. We have tried to
remove or minimise the finest levels inside, but the numerical error from the inside
and from the extra level boundaries accumulates and could grow out of control
and contaminate the evolution in practice. Furthermore, when there are lots of
dynamics e.g. when new generations appear, the variable χ changes very rapidly in
some regions so that more regridding is needed. This could not only add potential
burden to the computational costs, but also causes higher levels of numerical errors
due to the need of highly frequent regridding. In addition, we also tried other
dynamical refinement criteria based on the trace of the extrinsic curvature trK or
the CCZ4 variable Γi but the results were qualitatively the same as the χ tagging
criterion.

Therefore, we use a rather simple criteria, rectangular levels. With this criterion
we can ensure that the truncation errors do not interfere with the dynamics of the
unstable black strings, we enforce that all refinement levels are rectangular-shaped.
The right figure in Fig 4.3 gives an example of the innermost levels of such level
hierarchy. In this case, Z2 symmetry is fully respected, and we only need to ensure
enough resolution at the thinnest part of the horizon. Note that this shape of the
refinement levels ensures that our numerical method respect the symmetry but does
not enforce it. As a result, the not-so-thin part of the horizon are overly resolved.
The consequence is it would potentially cost more computational resources, but on
the other hand, the finest levels inside the big blob are much smaller than that using
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Fig. 4.3 Examples of the grid hierarchy from two different refinement criteria from a
black string with length L = 16. Left: grid hierarchy from χ tagging criterion. The
grid structure is dynamically changing with the evolution based on the gradients of
the evolution variable χ; Right: grid hierarchy from rectangular tagging criterion.
The location of each level depends on the resolution at the AH. The actual location
of the AH is depicted in a red curve.

chi criterion. Furthermore, the levels are fixed once they have been added. Thus, no
regridding is required using this criterion. This could reduce the numerical errors
from regridding. Therefore, the computational cost of the simulations with this
criteria is comparable to that with |∂χ|-based refinement criterion. The thinnest
parts of the AH of the black string determine the necessary resolution of the finest
level, which in turn essentially determines the computational cost of the simulation.

In our simulations, we require at the apparent horizon is covered by as least 40 grid
points. (Note that because of the reflection symmetry about x = 0, our criterion
actually ensures that the apparent horizon is covered by at least 80 points). In
practice, we typically have more than 60 grid points covering it. (This corresponds
to 120 points covering the apparent horizon). Whenever there is no enough grid
points during the evolution, we add another finer level. With rectangular refinement
levels, there are some of the not-so-thin parts of the AH that are overly resolved.
However, since the finest refinement level only covers a small portion of the interior
of the big blob, it will not add much extra computational cost in all. Furthermore,
once a new level is added, we fix it and we do not regrid anymore. This could in
turn reduce the frequent interpolation and extrapolation process that are required
by the other criteria at the level boundaries. Therefore, it can help save some
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computational cost, as well as control the numerical errors and speeds up the overall
simulation.

4.3 Analysis methods

We monitor several quantities during the evolution to have a better insight of the
dynamics: the overall geometry of the apparent horizon and its embedding, the
curvature invariant and the horizon area.

4.3.1 Apparent horizon

The apparent horizon is tracked by the apparent horizon finder in GRChombo
which applies Newton method. We assume that the AH can be found by a level set
F = 0 of the function

F (x, z) = x− h(z). (4.18)

Following [3, 121], we produce the embedding diagrams of the geometry into R4:

ds2 = dR2 +R2dΩ2
(2) + dZ2, (4.19)

This could help us to obtain some intuitive idea about the shape of the AH during
the evolution. In the equation above, Z is periodic. For the embedding diagram,
coordinate R is the areal radius of the horizon S2. In GRChombo coordinates, it
is,

R(z) = √
gwwh(z), (4.20)

and coordinate Z is defined to satisfy that the proper length in the string direction
z is the same as the Euclidean length of R(Z) in the embedding.

Z(z) =
∫ z

0
dz̄

√
gzz + 2gzxh′(z̄) + gxxh′(z̄)2√

h′2(z̄) + 1
, (4.21)

In addition, we also monitor the normalised spacetime Kretschmann invariant,
which is evaluated on the AH by

K = 1
12 Rabcd R

abcd R4
AH , (4.22)
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where RAH is the location of the apparent horizon. The normalisation has been
chosen so that K = 1 at the horizon of a stationary uniform black string, and K = 6
at the horizon of an asymptotically flat 5D Schwarzschild black hole. The horizon
area can be found by

A =
∫ z

0
dz′
√
gzz + 2gzxh′(z′) + gxxh′(z′)2√gwwh(z′). (4.23)

which should be non-decreasing during the evolution.

4.4 Results

In our simulations, we fix the mass parameter of the parent 4D Schwarzschild black
hole to r0 = 1 and the asymptotic length of the compact circle L = 10r0 = 10.
We evolve the black string with the same mass/length ratio as [3] so that we can
directly compare our results with theirs. We aim at pushing the run as long as
possible. Note that [3] present their results in units of initial 4D Schwarzschild
mass MSchw = r0/2 = 1 so that their results are related by an overall rescaling of
factor 2 with ours. In the simulation, we fix the mass parameter of the parent 4D
Schwarzschild black hole to r0 = 1 and the length of the compact circle L = 10. This
corresponds to the same mass length ratio in [3] and it is chosen because it leads
to approximately the fastest growth rate for the shortest wavelength instability.
We evolve on the perturbed black string and aim at evolving the system as far as
possible. Similar to [3], we find that the GL instability of a uniform black string
develops into a fractal structure. That is the system can be described by a sequence
of spherical BHs connected by string segments on different scales. In the following,
we present our results in detail for the L = 10 run.

4.4.1 The geometry of the AH

In Fig 4.4, we display the embedding diagram from the last stage of out simulations
for L = 10. We superpose the normalised Kretschmann invariant K imposed on
the horizon as in the red curves. Our values of Kretschmann are similar to [3].
As already described in [3], the blobs has Kretschmann value close to 6 which
corresponds to a 5D BH, and the string has value close to 1 which corresponds to
a black string. Indeed, the horizon can be described by black holes connected by
black strings in various scales. It is clear from Fig 4.4 that the distribution of the



4.4 Results 60

bulges are fully symmetric about the first generation. This is due to the initial data
we chose.

Fig. 4.4 Embedding of the AH, with induced Kretschmann invariant (in red curve)
imposed on the AH.

Near the third generation, the fourth generation has already formed on one side of
the third generation and it is still accreting mass from the string segments near it.
The fifth and the sixth generation are also forming on different string parts. And we
can see that the string segments connecting different generations are non-uniform
at the late stage of the evolution. The thinnest part of the string is at somewhere
between the third generation and the fourth one (see Fig 4.5).

Fig. 4.5 Zoom-in of the region near the 3rd generation on the embedding of the AH.
The induced Kretschmann invariant is imposed on the AH in red curve.

4.4.2 Horizon dynamics

To have a better idea of how the horizon develops over time, we plot the snapshots
of the horizons at several times on the same plot in Fig. 4.6. The first three panels
in Fig. 4.6 correspond to Fig. 4.2 in [3]. It has been deliberately plotted in a similar
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style as that in [3] (see Fig. 4.2), so that we can directly compare our results of the
AHs at different stages of the evolution with theirs.

Fig. 4.6 Snapshots of the embedding diagrams of the AHs in our simulation at
different stages. The length in the Z direction extends to 13.69 in the L = 10 case.

From our simulation results, we confirm that the black string instability develops
into a series of hyperspherical black holes of various sizes connected by string
segments in different scales. Each string segment itself, as it is sufficient long and
thin, is unstable to the GL instability. This determines the fate of the subsequent
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development of the instability. Up until t = 122r0, our evolution results agree
with [3] very well. The second generation forms exctly at the middle of the string
segment. Furthermore, in our case we also see the satellite black holes beyond the
third generation are moving towards the former generation, stretching the string
segments connecting them. This is consistent with [3] that the satellites have some
non-zero velocity in the string direction so that they will merge eventually.

However, the generations beyond the third one are not fully symmetric any more in
[3] (see the third panel in Fig. 4.2), whilst in our case we can see clearly the third
generations are symmetric about the first and the second generations (see last panel
in Fig. 4.6). In particular, in the third generation, there is only one satellite black
hole forming on each piece of the string segment connecting the first and the second
generations in our case. The dynamics beyond the third generation becomes more
chaotic. As we can see from the last panel in Fig. 4.6, the formation of the fourth
generation and beyond are not at the centre of the corresponding string segment
any more. Moreover, the movement of the satellites increase the non-uniformness
of the string segment and thus speed up the dynamical process at the late stage of
the evolution (see last panel in Fig. 4.6).

4.4.3 Dynamics beyond the third generation

In each of the first three generation, there is only one satellite black hole forming at
each string segment. However, the dynamics beyond the third generation are more
chaotic.

In Fig. 4.7, we plot the embedding diagrams of the AH where the second and the
third generation form. As we can see, the second generation forms at exactly the
middle of the string segment. When the second generation has formed, the string
segment connecting it and the first generation are not uniform. This non-uniformness
of the string triggers the formation of the next generation.

Fig. 4.8 shows the formation of the third generation and beyond. Each string
segment in the top panel has formed one third generation. In the beginning, the
third generation is forming at the middle of the string segment. Then it is moving
towards the first generation and this movement continues and speeds up after it
has formed. The same thing happens to the following generations as well. At late
time, the local GL instability and the movement of the generation together control
the future development of the dynamics. Therefore, the dynamics beyond the third
generation are more chaotic.
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Fig. 4.7 Embedding diagrams of the AH. After the second generation has formed,
the string connecting the first and the second generations become non-uniform,
which triggers the formation of the third generation.

As we can see from the last panel in Fig. 4.8, the formation of the generations
beyond the third are not symmetric about any former generation at all. Moreover,
due to the asymmetry of the string segments near both sides of the third generation,
the fourth generation has only formed on one side the third generation, but not on
the other side. It is also the case that only one satellite is forming for the fifth and
the sixth generation. The fifth generation is only forming at the segment between
the first generation and the third generation. And the sixth generation is forming
at the segment between the second generation and the fourth generation. It is not
clear which one will be fully formed at the last stage of our simulation. They are
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Fig. 4.8 Embedding diagrams of the AH at the late stages. We can see the third
generations has fully formed, and the fourth and fifth one are coming up.

all moving towards one of the former generation, which depends on their relative
locations. Hence, we can foresee that the satellites will eventually merge with each
other.

4.4.4 The evolution of horizon area

It is claimed in [3] that the evolution of the total AH area can be seen as a reasonable
approximation to the event horizon and it is non-decreasing over time. By the end
of their simulation, the final area A = 1.369A0 saturates the value of an exact 5D
BH of the same mass 1.374A0, where A0 is the initial area of the black string. (We
recalculate and find that the value of an exact 5D BH of the same mass is actually
1.373A0). The horizon area of the unstable black string asymptotes to the area
of an asymptotically flat 5D Schwarzschild black hole with the same initial mass.
Since this is the entropically favoured solution, they claim that the endpoint of the
GL instability is a 5D localised BH in the compact cylinder.

In Fig. 4.9 we display the evolution of the AH area of the L = 10 run, which is
normalised by the horizon area of the initial unperturbed black string of the length
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L and mass parameter r0. As we can see from the plot, the ratio is around 1 at
the early stage of the simulation. Then it grows rapidly after t = 80r0 when the
instability kicks in. This is consistent with the evolution of the horizon in the first
two panels of Fig. 4.6 where we observe the rapid expanding of the first blob in its
size. After t = 120r0, the growth in the area slows down. This is expected as the
further development of the instability has a much smaller scale compared to the
first blob. In our simulations, the final area we obtain at the end of our simulation
is A = 1.369A0. It seems to tend to the value of an exact 5D BH of the same
mass, which is 1.373A0. However, we believe that the similarity in the two areas
is just coincidence. The black dashed line in Fig. 4.9 is the horizon area for a 5D
Schwarzschild BH. The red curve is the corrected area of a 5D Schwarzschild BH in
KK space. It indicates the relative area of a slightly deformed single black hole on
a circle with the same mass as the unperturbed black string with the same length
L. The KK corrections are around 4%, which means it can not be neglected. The
AH area is still far away from the corrected area (in red). This suggests that either
there is a mass loss during the evolution process or there is a meta-state before it
ultimately forms a spherical BH.
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Fig. 4.9 Evolution of the AH area for the unstable black string in 5D with 4D
mass parameter r0 = 1 and L = 10. The black dashed line is the area for a
5D Schwarzschild BH. And the red dashed line is the corrected area for a 5D
Schwarzschild BH in KK space.

From the embedding diagram in Fig 4.4, the 1st generation and 2nd generation are
located at an opposite position on the string. The 3rd generations are beyond are
moving towards the 1st or the 2nd generation. If the process continues, they will
finally join the 1st or the 2nd generation. And it will reach an unstable equilibrium.
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The horizon area of two BHs in equilibrium can be found by (3.6.1). By assuming
the total mass does not change and approximating the mass ratio from the last
stage of the simulation, we obtain A/A0 = 1.400. As shown in Fig 4.4, this provides
a better estimate of the final horizon area. There exists an meta-state where there
are two BHs located at an opposite position on the cylinder. It is an unstable
equilibrium, even A small perturbation would cause the two BHs to merge with
each other.
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Fig. 4.10 Evolution of the AH area for the unstable black string in 5D with 4D mass
parameter r0 = 1 and L = 10. The red dashed line is the total area for two BHs.

4.4.5 Properties of the horizon

In this section, we consider in detail the dynamics of the formation of the various
generations. The definition of when the various generations have formed is somewhat
arbitrary because the unstable black string is continuing to evolve and no portion of
the AH is genuinely stationary. Refs. [3] defined the formation of a new generation
as the time when a newly forming bulge has a radius which is 1.5 times the radius
of the surrounding string segment. In order to get the same table as Tab. 1.1 in [3],
we track the following quantities as defined in [3]:

• ti: the onset of the newly forming ith generation when local instability has
reached an "observable level", defined as the time when a nascent spherical
region researches an areal radius 1.5 times the surrounding string radius;

• ns: number of satellite black holes that form per string-segment;

• RAH,f : the radii of the ith black holes at the final stage of the simulation;
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• Rs,i: the radii of the corresponding segments;

• Ls,i: lengths of the corresponding segments.

Using these definitions, we summarise the results from our simulation for the L = 10
case in Table 4.1. This table can be directly compared with Table I in [3]. We find
our results have good agreement with [3] up to the second generation, although
there is an apparent disagreement in the thickness of the string segment Rs,2/r0. It
may due to the ambiguous definition of Rs,2 since the string segment has slightly
non-uniform thickness between the first generation and the second one (see Fig.
4.7). Beyond the second generation, our results have apparent discrepancies with
those in [3]. One reason is that [3] mention large errors in their simulations at this
point.

Gen t0,i/r0 ti/r0 ns Rs,i/r0 RAH,f/r0 Ls,i/Rs,i

1 0 69 1 1 2.04 10
2 98 117 1 0.0586 0.299 136
3 120 122.8 1 0.0343 0.124 109
4 125.95 126.47 ≥1 0.01 ? 264

Table 4.1 Properties of the black string apparent horizon (by 1.5 radius of the
surrounding string segment)

With the above definitions of the generations and their data, [3] discovered a time
scale between the subsequent generations of the instability beyond the second one,
which is approximately 1/4. However, in our data, we do not find evidence of
such a global time scale relating the subsequent generations in Table 4.1 for the
L = 10 run. Specifically, our results show that the time for the first generation to
be observed is T0/r0 ≈ 69. The time for the second generation and third generation
to form is T1/r0 ≈ 48, T2/r0 ≈ 6, T3/r0 ≈ 3.7, respectively. The time-scale for each
subsequent instability to form varies. In fact, we believe that there can not be such
a global time scale. The reason is that that the development of the instabilities
beyond the second generation is a rather chaotic process, which we have already
seen in previous section. Our simulation results indicate that the late-time dynamics
is not only controlled by the GL instability but also the local dynamics of the bulges
and the string segments.

To better discuss our results, we find it useful to define a set of different quantities.
First, we plot the time derivative of the logarithm of the radius of the bulges
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Fig. 4.11 Time derivative of the logarithm of the equatorial radius for each of the
generations for the L = 10 case as a function of time.

corresponding to the first four generations as functions of time for the L = 10 black
string in Fig. 4.11. We define the following quantities.

• tp,i: time at which the growth of the i-th generation is the fastest compared
to its size, corresponding to the absolute maxima in Fig. 4.11 (marked with a
dot);

• tn,i: time of formation of the i-th generation by the local minimum in Fig.
4.11 (also marked with a dot);

• RAH,i: the radii of the ith black holes by the end our simulation.

• Rs,i : the radii of the corresponding segments;

We summarise the properties of different generations that we have managed to
observe from the above definitions for L = 10 run in Table 4.2.

With these new definitions, we find that the time for the each generation to be
observed is T0/r0 ≈ 107, T1/r0 ≈ 17, T2/r0 ≈ 2, T3/r0 ≈ 2, respectively. There is
no global time scale relating the subsequent generations. The formation time for
each generation, i.e. Tf,i ≡ tn,i − tp,i, is approximately Tf,1/r0 ≈ 14, Tf,2/r0 ≈ 2.5
and Tf,3/r0 ≈ 1.6, respectively. The whole process is speeding up.
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Gen. tp,i/r0 tn,i/r0 ns Rs,i/r0 RAH,f/r0 Rs,i/Ls,i

1 93 107 1 1 2.04 0.1
2 121.3 123.8 1 0.0162 0.299 0.023
3 124.0 125.6 1 0.0539 0.124 0.016
4 126.8 ? ≥1/1 0.0185/0.0165 ? 0.0076/0.012

Table 4.2 Properties of the black string apparent horizon (by first negative peak of
the radial velocity)

The overall dynamics fully respects the Z2 symmetry of the problem. When the first
generation has fully formed, the string segments surrounding it becomes uniform.
This piece of uniform string segment is shrinking over time and eventually become
unstable, resulting in the formation of the next generation of the GL instability.
The location where the first bulge appears depends on the initial data we choose.
Since the initial data we choose has no net momentum along the string direction,
the second generation would form exactly at the centre of the string segment, which
is indeed the case from our simulation results.

4.4.6 Velocity profile

To obtain a qualitative idea of the movement of different bulges, we consider a
particular null ray that is comoving with the AH,

V = ∂t + ż∂z + (ẋ+ h′ż)∂x, (4.24)

where the dot ˙ denotes the derivative with respect to the parameter t and ẋ and ż

correspond to the tangential velocity (v∥) and orthogonal velocity (v⊥) of the null
ray with respect to asymptotic observers at rest.

We plot the tangential velocity and the orthogonal velocity at the last stage of
our simulation in Fig. 4.12. The velocity profile provides us some measure of the
motion of different portions on the AH with respect to a frame that is at rest with
respect to asymptotic infinity. First, the velocity profile shows that the tangential
velocities are much larger than the orthogonal ones. In addition, it also shows
that the newly forming generations are accreting mass from the surrounding string
segments. Meanwhile, they are moving towards one of the previous generations, as
the orthogonal velocities are non-zero. These results are consistent with the local
dynamics of the blobs described in previous section.
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Fig. 4.12 The tangential velocity and radial velocity at the final stage of the evolution
of the L = 10 run.

The development of the late-time dynamics is not only govern by the local thicknesses
of the string segments but also affected by the motion and growth of the bulges.
As a result, some string segment becomes thinner than the others, which means it
has larger growth rate of the local GL instability. Therefore, the local motion of
the bulges accelerates the approach to the pinch off in finite asymptotic time.

4.4.7 Approach to the singularity

In [3], it is demonstrated that the horizon of the black string will pinch off in finite
asymptotic time. First, they claim that there exists a (global) time scale relating
subsequent generations so that the time to endpoint can be found by (4.2). Second,
the minimum of the areal radius of the black string follows an approximate scaling
law (4.25) as described in previous section. Third, the slope of the evolution of
the proper length in the logarithmic plot indicates that the late time dynamics
develops into a fractal structure. This is a consequence from the self-similarity in
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the horizon dynamics. Although we do not find such a global time scale supporting
the self-similar nature of the instability, we do find the minimal radius of the string
follows a similar scaling law and the proper length has a similar slope in the late
time. Therefore, our simulation results support that the pinch off is govern by
some scaling law. In this section, we present our results in detail about the horizon
properties close to the pinch off.

By fitting our data into the scaling law,

Rmin = α(tc − t), (4.25)

we can extract the values of α and tc/r0. For the L = 10 case, α = 0.0052 and
tc/r0 = 127.9. This is more or less consistent with the slope found in [3]. By using
the values found for α and tc, we display the minimum areal radius of the string in
the logarithm plot in Fig. 4.13. This figure can be directly compared with Fig. 1.4
in [3].

Fig. 4.13 Logarithm plot of the areal radius R of the AH vs the time to the pinch off
for the L = 10 run. We also display the evolution of the radius of several generations
and the minimal radius on the string.
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Fig. 4.14 Plot of the proper length vs. time in logarithmic coordinates for L =
10 run. The slope of the dotted line, which is a linear fit to the late-time data, is
∼ 0.053.

We also display the evolution of the proper length of the string on a logarithmic
scale in Fig. 4.14, where the slope is ∼ 0.053 at the late-time dynamics. This figure
can be directly compared with Fig. 1.5 in [3].

4.4.8 Mode behaviour

To better understand what dominates the dynamics at different times, we analyse
the mode behaviour of different string segments at the late stage of each generation.
Following [3], we decompose the string radius Ri

AH(t, x) around the ith generation
in the coordinate region covering the corresponding string segment for the L = 10
case by the following expansion

Ri
AH(t, z) = c0 +

∞∑
k=1

ck sin(kπz
Ls,i

), (4.26)

where Ls,i is the length of the interested domain corresponding to the ith generation.
We extract the Fourier coefficients ck that capture the "strength" of the various GL
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harmonics. We display the values of ck/c0 as functions of time for k = 1, 3, 5 in Fig.
4.16, 4.18 and 4.20 for the different string segments between each generations. We
only display the odd coefficients as the even coefficients are several orders smaller
than the odd ones.

For the first generation, which is triggered by the initial data and numerical
errors, we decompose the areal radius R1

AH(t, x) in the whole domain x ∈ [0, 10M ]
at t ∈ (0M, 68M). It is the period right before the first generation becomes
distinguishable (see Fig. 4.15). We extract the coefficients ck up to k = 6. In
Fig. 4.16, we only plot the odd coefficients c1, c3, c5 as the even ones are a couple
of orders smaller. There is a tweak at the beginning resulting from the initial
perturbation we use. As we can see from Fig. 4.16, the first coefficient dominates
the other ones at the initial stage during the formation of the first generation.
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Fig. 4.15 The evolution of the AHs at t=0, 50, 68. This is the period before the
first generation is about to form.
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Fig. 4.16 Values of the expansion coefficients for the whole string.

For the second generation, we decompose R2
AH(t, x) in z ∈ [0, 5r0] which covers

the second string segment and look at the areal radius at t ∈ (100M, 117M) (see
Fig. 4.17). We plot the odd coefficients c1, c3, c5 in Fig. 4.18. This figure can be
compared with Fig. 1.6 in [3]. In this case, the first coefficient also dominates the
other ones at the initial stage during the formation of the second generation.
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Fig. 4.17 The evolution of the AHs at t=100, 110, 117, when it is at last stage of
the formation of the first generation, but before the second generation has fully
formed.
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Fig. 4.18 Values of the expansion coefficients for the string segment corresponding
to the 1st generation.

In late time dynamics, the string segments are not uniform any more. The fitting
results are not as good as previous ones by expansion with sine series. We find it is
better to decompose the string radius with cosine series (4.27).

Ri
AH(t, x) = c0 +

∞∑
k=1

ck cos(kπz
Ls,i

), (4.27)

Cosine series work quite well, especially when the string segments are non-uniform
(see Fig. 4.19).
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Fig. 4.19 The evolution of the AHs at t=120, 121, 122, when it is at last stage of
the formation of the second generation, but before the third generation has fully
formed. The fitted curves are plotted in red.

For the third generation, we decompose R3
AH(t, x) in the region around z ∈

[3r0, 5.5r0] and extract the coefficients ck up to k = 7. We plot the coefficients in
t ∈ (120M, 122.8M) in Fig. 4.18. The first coefficient also dominates the other
ones at the initial stage during the formation of the third generation, but it soon
drops below all the other coefficients. Meanwhile, the other coefficients, c2 and c4

in particular, are growing over time and the even modes become larger than the
odd ones. Several modes are growing at the same time is what expected, as at this
stage of the evolution, the dynamics become more chaotic.
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Fig. 4.20 Values of the expansion coefficients for the string segment corresponding
to the 3rd generation.

When the third generation has formed, the string segments on the left and right of
it are not symmetric any more (see Fig. 4.21). As a result, it is better to analyse
them separately.
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Fig. 4.21 The AH at t=126 (in red).

We decompose R4
AH(t, x) in z ∈ [2.8r0, 4.6r0] with cosine series and plot the coeffi-

cients in t ∈ (125.9M, 126.4M) in Fig. 4.23. The first coefficient also dominates the
other ones at the initial stage during the formation of the fourth generation, but it
soon drops while the other coefficients, c2, c3 and c4 in particular, are growing over
time. At this stage of the evolution, several even and odd modes are growing at the
same time. This is what expected, as at this stage of the evolution, the dynamics
become even more chaotic.
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Fig. 4.22 The evolution of the AHs at t=125.9, 126.1 and 126.4 for z in [2.8, 4.6].
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Fig. 4.23 Values of the expansion coefficients for the string segment on the left
corresponding to the 4th generation.

We decompose R4
AH(t, x) in z ∈ [5r0, 5.7r0] with cosine series as the segment is

non-uniform. We plot the coefficients in t ∈ (125.9M, 126.4M) in Fig. 4.25. The
first coefficient also dominates the other ones and is growing over time. This is
because the string segment becomes less uniform over time. The third coefficient is
growing over time. This is expected as there is likely to form only one blob, i.e. the
fifth generation, on this piece of string segment (see Fig 4.24).
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Fig. 4.24 The evolution of the AHs at t=125.9, 126.1 and 126.4 for z in [5, 5.7].
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Fig. 4.25 Values of the expansion coefficients for the string segment on the right
corresponding to the 4th generation.

4.5 Numerical tests

In this section we present the main test results that we have done in order to achieve
stable simulations of the black strings.

First, we need to ensure that the outer boundary does not affect the inside physics.
This is usually made possible by putting the outer boundary far away enough,
with the consequence of increasing computational cost. We start by simulating the
unperturbed black string on a domain that has lengths Louter in the radial direction
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and periodic length L = 10r0. At the coarsest level the mesh spacing is 1/4. This
means we have 40 points in the string direction at the coarsest level initially. We
use in total 5 additional levels initially, each of which is refined by 2 : 1 ratio in
both string and spatial direction. This is to guarantee that there are at least 40
grid points in the radial direction at the horizon. We keep the resolution while
range Louter from 80r0, 160r0 to 256r0 and run the simulations up to t = 250r0. The
simulation results indicate that for the 80r0 and 160r0 runs, the outer boundary
would have some effects at t ∼ 80r0 and t ∼ 150r0. Whilst for the 256r0 run,
the effects appears at t ∼ 240r0. Hence, 256r0 would be enough for our purposes,
considering that the pinch off of the horizon happens before t = 200r0.
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Fig. 4.26 Test results for the outer boundary at 80, 160 and 256, respectively. The
glitch indicates that the outer boundary starts to have some effects on the inside
physics.

Then, we test with medium and high resolutions with Louter = 80. The glitch
happens at the same time, which indicates that increasing the resolution does not
change the time for the outer boundary to take effects in the above settings.

amp=0.01, L=80

amp=0, L=80

amp=0, L=80, high resolution

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t/r0

R
/r
0

Fig. 4.27 Test results from the medium and high resolution respectively. The glitch
indicates when the outer boundary starts to have some effects on the inside physics.
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In theory, the horizon area should be non-decreasing. In our simulations, it turns
out to be slight decreasing at the final stage of the evolution due to numerical
error. To minimise this effect, we have test different combinations of parameters
including dissipation factor (Sigma), the kappa’s. We find two sets of parameters
(σ = 0.8, κ1 = 0.1, κ2 = 0 and σ = 1.5, κ1 = 0.37, κ2 = −0.8 ) that has the minimal
decrease in the horizon area, ∼ 0.05% and ∼ 0.002%, which is within tolerance. We
typically use the latter in our simulations.

For the L = 10 case, we carry out runs with different resolutions and monitor the
AH area. In our simulation, we typically use the medium resolution which has
coarsest grid spacing of h = 0.25r0. Then we run two extra runs with lower and
higher resolutions of ∆low = 10

7 h and ∆high = 2
3h, respectively. We have tried other

even lower or higher resolutions. However, the higher ones, e.g. ∆low = 1/2h, could
cost too much computational resources and thus is not feasible. The low resolution
cannot be too low, e.g. ∆low = 2h, because the numerical error would be soon out
of control and the simulation would crash shortly after the formation of the first
generation.

The convergence test results are illustrated in Fig. 4.28. Due to the limitation
of computational cost, we only evolve the low and the high resolution runs for a
limited time. This plot shows that the order of convergence during the evolution is
roughly 3. This is what we would expected.
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Fig. 4.28 Convergence test for the AH area for the r0 = 1, L = 10 black string. The
medium resolution run has spacing h = 0.25r0 in the coarsest grid level. This plot
shows that the order of convergence is roughly three. The computational cost of
the high resolution run limited the time of the tests.
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We will provide more detailed results of the numerical tests in the Appendix B.

4.6 Discussion

In our study, we not only reproduce the main results of [3] with a different and inde-
pendent formulation, but also extend the simulations further with better resolution.
We confirm that in the development of the GL instability, the horizon at the late
stage can be described by a sequence of black holes connected by string segments
of various sizes. The string segment connecting two black holes is itself unstable to
GL instability. Thus the process is repeating itself in different scales. Up to the
second generation our results agree quite well with the results in [3]. Moreover,
we improve the simulation results for the late-time dynamics. In particular, our
results respect Z2 symmetry of the problem during the whole evolution. That is,
the dynamics are fully symmetric about the first generation.

However, we do not find any evidence to support the global time scale that relates
the subsequent generations as claimed in [3]. Instead, we argue that there does
not exist such a time scale. The reason is that the string segments beyond the
second generation become non-uniform, which gives rise to unequal tension along
the string, causing the local movement of the future generations. In fact, the
late-time dynamics depend on two factors: the local GL instability and the local
dynamics of the bulges. Although we do not find the time scale, the basic picture
of the instability still holds. We find the minimal string radius follows a similar
scaling law and we confirm the pinch off of the horizon in finite asymptotic time.
This provides further evidence against the WCCC. Eventually, we evolve the system
with higher resolution up until the full formation of the fourth generation. The fifth
and sixth generations are also about to form. Due to the exponentially increasing
computational cost, we were not able to continue the simulation further within the
allocated resources we had. If in the future, given more computational resources,
we should be able to continue the simulation and push it even closer to the pinch
off. This helps to understand the nature of the singularity. In summary, our results
provide a better picture of the late-time dynamics of the GL instability and more
details about the late-time dynamics close to the pinch off.

The above conclusions are made from the simulation results of the L = 10 run,
where the particular length was chosen for a direct comparison of our results with
[3]. Therefore, it would be interesting to see whether they are universal properties
for strings with different thickness. In the next chapter we will explore strings
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with different lengths and masses, in order to obtain a more general picture of the
development of the GL instability.



Chapter 5

Results from Strings with
Different Lengths

In the previous chapter, we have presented the simulation results for the L = 10
string with the GRChombo code. With this particular length, we have seen that the
horizon dynamics develops into a self-similar structure, which leads to the pinch off
of the horizon in finite asymptotic time. Furthermore, we discover that the minimal
string radius follows a scaling law. To determine whether these properties hold in
general, we extend the simulations to strings with different lengths and masses. In
this chapter, we present the results from the numerical simulations of strings with
various lengths that we have explored and provide a more general picture of the
development of the GL instability.

To extend the simulations to strings with different lengths, we fix the mass parameter
of the parent 4D Schwarzschild black hole to r0 = 1 and vary the initial string
length L. We consider four different runs with L = 8, 10, 12, 16 respectively. We
solve the EFE using the CCZ4 formulation as described in the previous chapter.
The computational cost increases with the initial length of the string, as for larger
L, the computational domain are larger. We aim to push each run as close to the
singularity as possible.

Our simulation results support that, for all the cases we have considered, the GL
instability of a perturbed black string evolves into a dynamical process that can be
described as a quasi-stationary sequence of spherical BHs connected by thin and
black string segments on different scales. Each string segment itself is thin and
unstable to the GL instability. The position and the time of the formation of the
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first generation is sensitive to the choice of initial conditions but the subsequent
evolution is universal for all runs. Hence, in this chapter, we will concentrate more
on describing the dynamics of the unstable black strings and the evolution of the
AH beyond the first generation.

In Sec. 5.1, we present the horizons from the last step of our simulations for all
the four runs. The evolution of the horizon areas over time for different runs is
presented in Sec. 5.2. Sec. 5.3 gives a summary of the horizon properties, including
the formation time and the number of satellite black holes for each generation in
different runs. In Sec. 5.4, we provide more details about the satellite formation.
We discusses the approach to the singularity in Sec. 5.5.

5.1 The geometry of the horizons

In Fig. 5.1 we display the embedding diagrams of the AHs taken at the last stage
of our four simulations, for the L = 8, 10, 12, 16 runs from top to bottom. The
normalised Kretschmann invariant K are superposed on the horizon (in red). The
relative position of the formation of the first generation is sensitive to the choice of
initial conditions. For all the four cases we considered, we confirm that the local
structure of the horizon can be described by sequence of spherical BHs connected
by black strings in different scales. The string segments connecting the blobs are
themselves unstable to the GL instability. This results in a self-similar process of
the development of the GL instabilities on different scales. The main results are
consistent with that in the L = 10 case described in [3]. Hence, we can conclude
that this self-similar process is universal during the evolution of the GL instability
of black strings. Moreover, we confirm that the values of K is essentially 1 along
the string segments of the AH. And it is approximately 6 near the centre of the
blobs. This is the case for all the simulations of different L’s that we have explored.

An animation of the evolution of the AH for the r0 = 1 and L = 10 black string
can be found here 1; other animations corresponding to strings off different lengths
and thickness can be found in the GRChombo YouTube channel 2.

1youtu.be/Mc-jzvn_hto
2youtube.com/playlist?list=PLSkfizpQDrcbUn2JNjkL0LKcy9k_oGQ_-

https://youtu.be/Mc-jzvn_hto
https://youtube.com/playlist?list=PLSkfizpQDrcbUn2JNjkL0LKcy9k_oGQ_-
youtu.be/Mc-jzvn_hto
youtube.com/playlist?list=PLSkfizpQDrcbUn2JNjkL0LKcy9k_oGQ_-
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Fig. 5.1 Top: Embeddings of the geometry of the AH at the last stage of our
simulations for L = 8, 10, 12, 16, from top to bottom; the corresponding length
along the Z direction is 11.32, 13.69, 15.90 and 21.03 in units of r0, respectively.
For better visualisation, we have rescaled the height of the plots so that all of them
have the same width while maintaining the proportions of the embeddings. The
induced Kretschmann invariant is superposed to the AH in red. Bottom: zoom in
of the thinnest part near the second generation on the string in the L = 10 case,
where we can see the third and fourth generations are obviously visible. The fourth
is growing and moving towards the first blob. The fifth generation is about to form
as well.
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5.2 The AH area

During the evolution, we track the AH area for each simulation by the method that
has described in the previous chapter. For the different values of L and masses
we consider, the leading KK corrections are all non-negligible. In fact, the leading
KK corrections to a 5D Schwarzschild black hole [4] are approximately 6%, 5%, 4%
and 3% of their respective asymptotically flat values, corresponding to the L = 8,
L = 10, L = 12, and L = 16 cases respectively.

For each run, we plot the AH area during the evolution in Fig. 5.2, along with the
area for the 5D KK black hole with the same mass as the unperturbed black string.
As we can see, the difference is smaller for the L = 8 case, but for larger values of the
L, the final area of A/A0 are even further away from the area of a single KK black
hole with the same initial mass. In particular, for L = 16 the difference is more
than 9%. The reason for this huge disagreement is that we only consider the area
for a single 5D KK black hole but ignore the fact that there is a meta-state of the
evolution, where the second generation also takes a considerable amount of the total
mass of the system. Indeed, the second generation takes a considerable amount of
the total mass. Fig. 5.3 indicates that the radius of the second generation bulge has
10% ∼ 30% of the radius of the first generation bulge for different L’s. Especially
for larger L’s, the second generation has larger radius/mass ratio compared with
the first blob. Hence, its contribution to the final area should also be taken into
account. Therefore, we could get a more accurate estimate by calculating the total
area contributed by both the first generation and the second one.

We estimate the total area of the two KK black holes using the same radii as the
first and second generation bulges at the end of our simulations by (5.1). The total
mass of them maintains the same as the initial unperturbed black string. In Fig.
5.2, the total areas normalised by the initial mass are shown in the dotted lines. It
indeed is a better estimate, and the agreement gets better when L increases.

Atotal = A1 + A2, Ai = 2π2r3
i (1 + 3ζ(2)

8π2 r3
i ), i = 1, 2, (5.1)

where ri is the radius of the ith generation at the last stage of the simulation.

The radius/mass ratio of the second generation with respect to the first blob
increases with L. The reason for it is that the size of the first generation bulge
compared to the thickness of the parent string decreases as L increases, as shown
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Fig. 5.2 Evolution of the AH area for the unstable black string in 5D with 4D mass
parameter r0 = 1 and different L’s. The dashed lines indicate the area for a slightly
deformed 5D KK black hole with the same mass as the unperturbed black string [4];
The dotted lines are the areas of two black holes on a circle [5] with the same total
mass as the unperturbed black string and the same radii as the first and second
generation blobs measured at the end of the simulation.

in Fig. 5.3. As a result, the first generation of the string segment is thicker, which
leads to larger second generation bulges compared to the first generation blob. This
is expected that the second GL harmonic increases with L, keeping the radius of
the string r0 fixed. For L that is sufficiently large, GL harmonic would dominate
the dynamics and one would expect the formation of two blobs with equal sizes.
This phenomenon is observed in the third generation in the L = 8 run. Additionally,
we notice that the size of the third generation compared to the second one also
increases with L (see Fig. 5.1). Therefore, the estimated total area by only two KK
BHs would be less accurate for smaller L.

It is likely that when the first generation forms there is a strong burst of gravitational
waves emitted. In other cases of the GL instability, such a burst of emission is
observed and its waveforms have been computed [35, 130]. After the formation of
the first generation, the emission of the gravitational waves decreases over time, as
the dynamics happens on ever decreasing scales where less and less mass is evolved.
Near the pinch off the emission should be almost negligible. Right after the pinch
off, there would be another strong emission of gravitational waves, as at that time
the dynamics is approximately a head-on collision of two BHs, i.e. the first and the
second generation blobs. The fact that the final AH area approaches the total area
of two KK BHs implies that the emission of the gravitational radiation during the
evolution of the GL instability is small by the end of our simulations. From the
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Fig. 5.3 Radius ratio of the first and second generations.

embedding diagrams in Fig. 5.1, we can see that the size of the second generation
blob with respect to the first one increases with L. As a result, the mass ratio
between the two BHs in the collision would decrease with L. In [131], they shown
that in the 5D AF case the energy radiated in gravitational waves for the head-on
collisions of black holes for different mass ratios is less than 0.1% of the initial total
mass. Therefore, we expect that the total radiated energy via the gravitational
wave emission during the GL instability of black strings, including the pinch off
and final state should also be small. We hope to report on this in future work.

5.3 Horizon properties

As the computational cost for different L’s are different, we are not able to push the
runs equally close to the singularities for all values of L due to the limitation of the
computational resources. In particular, the L = 10 case corresponds to the fastest
growth rate of the shortest wavelength instability and we have shown the results in
the previous chapter. So we expect that in the other cases the dynamics would enter
the non-linear regime later than the L = 10 case. From our data, the times that
the first generation appears are ∆T0/r0 = 163.1, 93, 78, 91 for L = 8, 10, 12, 16. As
we expected, it takes a bit longer to enter the non-linear regime for the L = 8 case,
which corresponds to a fatter string. In practice, we find that with our perturbations
and the values of L we consider, the time that it takes for the first GL instability
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to appear is more or less the same in all cases. The times for the second generation
to appear after the first generation has formed are ∆T1/r0 = 10.6, 14.3, 15.3, 15.9
for L = 8, 10, 12, 16, which increases with L.

From Table 5.1, we can obtain that the time for the first generation to form increases
with L. Specifically, (tp,1 − tn,1)/r0 = 11.6, 14, 18.4, 21.7 for L = 8, 10, 12, 16, respec-
tively. The time for the second generation to form (tp,2 − tn,2)/r0 = 1.3, 2.5, 3.65, 5.1
which also increases with L.

L Gen. tp,i/r0 tn,i/r0 ns Rs,i/r0 Rh,f /r0 Rs,i/Ls,i

8
1 163.1 174.7 1 1 1.846 0.125
2 185.3 186.6 1 0.106 0.145 0.019
3 188.1/188.1 188.63/188.62 2 0.0230 0.0657/0.0585 0.0078

10

1 93 107 1 1 2.04 0.1
2 121.3 123.8 1 0.162 0.299 0.023
3 124.0 125.6 1 0.0539 0.124 0.016
4 126.8 ? ≥ 1/1 0.0185/0.0165 ? 0.0076/0.012

12
1 78 96.4 1 1 2.221 0.0833
2 111.7 115.35 1 0.209 0.457 0.025
3 chaotic ? ≥ 1 0.0452 ? 0.010

16
1 91 112.7 1 1 2.51 0.0625
2 128.6 133.7 1 0.351 0.723 0.034
3 chaotic ? ≥ 1 0.0263 ? 0.0039

Table 5.1 Properties of the various generations according to our definitions for the
time of formation.

Moreover, the formation time for each generation to form and the way it evolves
varies for different strings. As a result, in some runs we have seen the formation
of more generations than the other runs. For example, we see that the forming of
the sixth generation in the L = 12 run, while in the L = 16 run, we only see the
third generation that are about to form. In Table 5.1, we summarise the time of
formation for each generation in simulations with different L’s. In all the cases we
have explored we do not find any evidence for a universal time scale relating the
subsequent generations.

5.4 Satellite formation

Although the late-time dynamics of the horizons develop into a self-similar structure
for all the cases we have considered, the formation details of the satellite BHs are
different for different runs. We have already seen the AH evolution at different
stages of the dynamics for the L = 10 case in Fig. 4.6. Apart from the relative
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location of the first two generations and the time for each generation to appear, the
dynamics up to the second generation are quantitatively the same for different L’s.
That is, after the first generation has formed, the second generation forms in the
middle of the first string segment. The size of the second generation with respect
to the first one depends on the thickness of the initial string.

Fig. 5.4 Snapshots of the embedding diagrams of the AHs in our simulation at
different stages. The length in the Z direction extends to 11.32 in the L = 8 case.

However, the further formation of the third generation and beyond are quite different
for different runs. We observe that in some cases there are more than one blob
forming at each string segment. We display the evolution process for the L = 8
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run in Fig. 5.4. As we can see from the last panel in Fig. 5.4, there are two blobs
forming at the same time at each string segment as the third generation. Moreover,
in the L = 10 case two generations are forming at different string segments but at
almost the same time, i.e. the fourth generation and the fifth one. In addition, in
the case of L = 12, the third and fourth generations are eaten by the second one
before it has time to fully form.

Fig. 5.5 Local dynamics of the bulges for the L = 12 case. The third and fourth
generation bulges do not have enough time to fully form before being absorbed
by the existing second generation bulge on the left. On the other hand, the fifth
generation bulge fully forms and by the end of our simulation it is moving towards
the second generation bulge. From the last panel we can see the sixth generation is
about to form.
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In the following we give more details about the local dynamics of the bulges for
the L = 12 case. The local dynamics of the bulges is displayed in Fig. 5.5 about
the string segment between the first and the second generations. After the second
generation has formed, the third generation bulge starts to gather mass and its
moving towards the second blob (see first panel in the figure). However, as it moves
towards and is absorbed by the second blob before it fully forms (see second and
third panels). Then a would-be fourth generation bulge starts to form near the
third generation. It is also moving towards the second blob. The same situation
happens here that it is also absorbed by the second generation bulge before it full
forms. Then forming the fifth generation (fourth, fifth and sixth panels). This time
it has enough time to fully form and it is still moving towards the second generation.
Meanwhile, the sixth generation is about to form.

5.5 Approach to the singularity

In [3] the results indicate that the black string would pinch off in finite asymptotic
time. They stated that the minimum of the areal radius of the black string follows
an approximate scaling law

Rmin = α(t− tc), (5.2)

where α is a dimensionless constant and tc is defined as the time for pinch off. We
extract the values of α and tc by fitting our simulation data to the scaling law (5.2).
In Fig. 5.6 we display the logarithm plots for the minimum areal radius of the
string as a function of the logarithm of the time to the singularity. Although we
did not manage to get as close as the L = 10, 12 case to the singularity for the
L = 8, 16 runs due to short of computational resources, we still extract the values
in the scaling law based on the data we have. We collect the results of the fits for
the various L’s in Table 5.2.

Although the development of the future generations for different runs towards the
singularity are different, the results in Table 5.2 suggest that the slope of the scaling
law (5.2) seems independent of L at least within errors. Hence, this suggests that
there exists a universal scaling law that governs the pinch off of the black string
horizon. Interestingly, the values of the slope for black string are essentially half of
that found in the case of the ultraspinning instability of Myers-Perry black holes
in six spacetime dimensions in [35], where the local geometry of the AH is that of
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a black membrane. It would be interesting to explore the underlying factor that
determines the difference between the slopes of the scaling laws.

L/r0 a tc/r0

8 0.0058 189.6
10 0.0052 127.9
12 0.0048 123.5
16 0.0045 148.2

Table 5.2 Slope of the scaling law (5.2) and the estimated pinch off time for the
different L’s.

5.5.1 The pinch off

Fig. 5.6 The areal radius R of the AH as a function of the time to the singularity
in the logarithmic coordinates, for the L = 8, 10, 12, 16 cases, from left to right and
top to bottom, respectively. We display the evolution of the minimum string radius
Rmin as well as the equatorial radii of several generations. The grey dashed line is
a visual add of the linear fit to the late-time minimal radius.
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In Fig. 5.6 we display the logarithm of the minimum areal radius of the string as a
function of the logarithm of the time to the singularity. Moreover, we also display
the equatorial radii of several generations. The grey dashed line is a visual add of
the linear fit to the late-time minimal radius. We can conclude that for all the cases
we have considered, the minimal radius of the string follows a universal scaling law
that is independent of the value of L. Therefore the horizon is expected to pinch
off in finite asymptotic time in general.

5.5.2 Evolution of the proper length

In Fig. 5.7 we display the logarithm of the proper length of the string as a function
of the logarithm of the time to the singularity. The slope for the L = 8, 10, 12, 16
cases is 0.053, 0.053, 0.049, 0.049, respectively. This is consistent with the value in
[3].

Fig. 5.7 The proper length of the string as a function of the logarithm of the time to
the singularity in the logarithmic coordinates, for the L = 8, 10, 12, 16 cases, from
left to right and top to bottom, respectively. The dashed line is linear fit to the
late-time development of the proper length. The slop is 0.053, 0.053, 0.049, 0.049
for the L = 8, 10, 12, 16 cases, respectively.
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5.5.3 Velocity profile
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Fig. 5.8 Velocity profile at the last stage of the simulations for L = 8, 10, 12, 16, from
top to bottom, respectively. The tangential and orthogonal velocities are shown in
red and blue curves respectively.
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In order to track the motion of the bulges qualitatively we plot the tangential
and orthogonal velocities in Fig. 5.8. In all the cases, the motion of the blobs is
slow compared to the development of the local GL instabilities on smaller scales.
The smaller blobs are accreting matter from the surrounding segments of string,
as shown by the non-zero orthogonal velocities, while they are collectively being
dragged towards the second or first generation blobs.

5.5.4 Mode behaviour

In this section, we display the evolution of the expansion coefficients at different
stages for different runs. In Fig. 5.9, we display the mode behaviour of the first
string segment for different L’s, from tn,1 to tp,2.

In Fig. 5.10, we display the mode behaviour of the second string segment for
different L’s, from tn,2 to tp,3.
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Fig. 5.9 Mode behaviour of the first string segment for different L’s, from tn,1 to tp,2
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Fig. 5.10 Mode behaviour of the second string segment for different L’s, from tn,2
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5.6 Discussion

In this chapter, we summarised the simulations results from the black strings of
the various lengths we have explored. We find that the general picture of the
development of the GL instability are the same for all cases. That is, the horizon
develops into a fractal structure of satellite BHs and black strings on different scales.
Although the details of the late-time dynamics of the generations are different for
different L’s, the way the horizon approaches to the singularity is the same. In
particular, we discover the the minimal radius of the string is governed by a scaling
law that is independent of the value of L. Furthermore, the late-time development
of the proper length also grows in a similar way. Therefore, it is a universal feature
that the horizon will eventually pinch off in finite asymptotic time, thus it provides
further evidence against the WCCC.

Our study extended the results of [3] in the following aspects. First, we have
independently reproduced the simulation of black string that has the same initial
setting as [3] and confirmed their main results. Second, we improved their simulation
results and extended the evolution much closer to the pinch off to reveal more
detailed and accurate late-time dynamics. Third, we have explored strings with
different lengths to provide a more general picture of the GL instability on black
strings. However, due to the limitation in the computational resources, we could
not get each run equally close to the singularity. For future work, we aim to push
the L = 10 run further as L = 10 corresponds to the fastest growth rate of the
instability. It would be interesting to learn more about the nature of the singularity
at the pinch off.



Chapter 6

Conclusion and Outlook

In this thesis, we have studied the gravitational instabilities in black string space-
times and the violation to the Weak Cosmic Censorship conjecture by numerical
simulations. We presented the numerical construction and analysis methods for
working in higher dimensions. In particular, we have derived the CCZ4 formulation
in arbitrary dimensions and implemented the equations in our own GRChombo code
with the symmetry reduction terms by the modified Cartoon method. Appropriate
initial conditions for the evolution has been derived which guarantees that the sim-
ulation does not crash in the very beginning. We used the Modified Gamma-driver
shift conditions to help achieve stable simulations in higher-dimensional settings.
Additionally, we have added singularity diffusion terms to damp the large gradi-
ent near the singularity. Equipped with these techniques and methods for higher
dimensions, we managed to reproduce the previous study on the GL instability
of the five-dimensional black strings. We have illustrated the numerical methods
we used for achieving stable simulations and presented our simulation results and
compared with the previous study. Furthermore, we have explored strings with
different lengths to provide a more general picture of the development of the GL
instability on black strings.

We have revisited the famous previous study on the GL instability on the five-
dimensional black strings by Lehner and Pretorius [3]. We reproduced their results
with a different and independent method and improved the simulation results with
higher resolution. In particular, we extended the study to provide further evidence
of the late-time dynamics of the GL instability. Our results agree with [3] very well
up to the second generation. We have confirmed that the late-time dynamics of
the unstable black string can be described by a sequence of black holes of various



102

sizes connected by string segments. Each of the string segment itself is consistently
shrinking and is unstable to the GL instability on different scales, resulting in
a pinch off in finite asymptotic time. Therefore, this process leads to a naked
singularity that violates the WCCC.

Furthermore, we have explored strings with different lengths and masses. Our
simulations have allowed us to get closer to the singularities than ever before so
that we have provided a more general picture of the late-time development of the
GL instability of the black strings. We have confirmed that the pinch off of the
horizon in finite time is the fate for all the cases, but we do not find a universal time
scale as stated in previous study in all cases we have considered. The reason for
that in the late time of the development of the GL instability, the higher generation
bulges are not only controlled by the local GL instability but also affected by
the movement and tensions of the nearby bulges and strings. Besides, the string
segments connecting the higher generations are not uniform any more beyond the
third generation. So the bulges are not always appearing in the middle of the
string segment and they are usually moving towards the previous generation, which
depends on their relative locations and sizes. However, the minimum thickness of
the string follows a scaling law (5.2) which leads to the pinch off of the horizon.

In our study, we carried out four runs in total for black strings with different lengths.
Although L = 10 corresponds to the fastest growth rate of the GL instability, we
did not observe the kick-in time of the GL instability in other runs significantly
later. For future work, one can explore strings with a boarder range of the lengths
to verify the theory about the growth rate of the GL instability. The set of the
parameters in our study can be applied directly, as they were tested to work well
regardless the length of the string. In addition, different initial perturbations can
be tested to check whether the initial mode affects the development of the GL
instability. We expect that the symmetry in the dynamics will still agree with the
symmetry of the initial perturbation. Moreover, the evolution equations and the
reduction terms in this work are derived in arbitrary dimension. They can be use
to study problems in different dimensions in the future. It would be interesting to
see whether the GL instability develops in the same way for problems in higher
dimensions.

In our study, we have pushed the evolution of the GL instability of the black string
closer than ever to the pinch off. One of the most interesting open questions about
the evolution of the GL instability of the black string is to understand the nature
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of the singularity at the pinch off. As the black string is probably the simplest and
cleanest system of GR, it has profound implications for the physical consequences of
certain violations of the WCCC, which has significant effects to the predictivity of
the theory of GR. It is conjectured in [132] that the pinch off of the GL instability
of black strings would have a similar picture to that in the case of non-relativistic
incompressible fluids. In [123], they found that there is a universal scale invariant
attractor solution of the Navier-Stokes equations that governs the pinch off of an
axisymmetric column of fluid. Moreover, [123] also shows that the region that is
involved in the pinch off is basically only a microscopic part of the fluid, and this
region is insensitive to the evolution of the fluid on macroscopic scales. These
indicate that the loss of predictivity of the classical hydrodynamic equations at the
pinch off is minimal and the development of the pinch off is not affected by the
macroscopic evolution of the fluid. Therefore, it would be interesting to see whether
black strings have the same nature close to the pinch off. Another interesting
question is before the pinch off whether there are an infinite amount of generations
or there are only a finite number of generations. In the former case, the horizon
will develop into a fractal structure, while in the latter case this structure would
break down at some point. In the future, we will continue the run to get closer to
the singularity and explore what governs the pinch off and understand its nature.

Another interesting direction is to explore the GL instability with higher derivative
corrections to the Einstein-Hilbert Lagrangian. The higher derivative corrections
are expected to become important when the evolution of the black string approaches
the pinch off [82]. Recent studies have shown that certain higher derivative theories
of gravity in higher dimensions are well-posed in reasonably straightforward modi-
fications of the gauges that are commonly used in numerical relativity [133–135].
Therefore, it would be interesting to check whether this is also the case in the
regime that can be probed by numerical simulations and quantify the effects of such
corrections on the dynamics during the evolution of the GL instability.
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Appendix A

Symmetry reduction terms
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+ αÃww(K − 2γ̃wwÃww
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Ãzi − δziÃ
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where i, j,m, n = 1, 2.



Appendix B

Numerical test

The typical resolution of our simulations has the coarsest grid spacing of h = 0.25r0.
In addition, we carry out several extra runs with lower or higher resolutions for the
L = 10 case. Specifically, we have ∆low = 10

7 h, ∆medium = 7
5h and ∆high = 2

3h. We
monitor the evolution of the AH area and present the convergence results in Fig.
B.1 and Fig. B.2 as a supplement to the convergence results in Chapter 4.5.

A10/7 h/A0- Ah/A0
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Fig. B.1 Convergence test for the AH area for the r0 = 1, L = 10 black string. This
plot shows that the order of convergence is roughly three. The computational cost
of the high resolution run limited the time of the tests.
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Fig. B.2 Convergence test for the AH area for the r0 = 1, L = 10 black string. This
plot shows that the order of convergence is roughly three. The computational cost
of the high resolution run limited the time of the tests.

Due to limited computational cost, we only evolve the low and the high resolution
runs for a limited amount of time, but in all the cases, the order of convergence
during the evolution is roughly 3. This is what we would expected.
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