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Abstract

Large-scale thematic structure—the organisation of material within a musical
composition—holds an important position in the Western classical music tra-
dition and has subsequently been incorporated into many influential models
of music cognition. Whether, and if so, how, these structures may be per-
ceived provides an interesting psychological problem, combining many aspects
of memory, pattern recognition, and similarity judgement. However, strong
experimental evidence supporting the perception of large-scale thematic struc-
tures remains limited, often arising from difficulties in measuring and disrupt-
ing their perception.

To provide a basis for experimental research, this thesis develops a probab-
ilistic computational model that characterises the possible cognitive processes
underlying the perception of thematic structure. This modelling is founded
on the hypothesis that thematic structures are perceptible through the statist-
ical regularities they form, arising from the repetition and learning of material.
Through the formalisation of this hypothesis, features were generated charac-
terising compositions’ intra-opus predictability, stylistic predictability, and the
amounts of repetition and variation of identified thematicmaterial in both pitch
and rhythmic domains.

A series of behavioural experiments examined the ability of these mod-
elled features to predict participant responses to important indicators of them-
atic structure. Namely, similarity between thematic elements, identification of
large-scale repetitions, perceived structural unity, sensitivity to thematic con-
tinuation, and large-scale ordering. Taken together, the results of these experi-
ments provide converging evidence that the perception of large-scale thematic
structures can be accounted for by the dynamic learning of statistical regularit-
ies within musical compositions.
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Chapter 1

Introduction

Sensory input from the environment is rarely uniform but contains patterns
that recur both exactly and approximately at a range of scales, allowing observ-
ers to learn and anticipate structural regularities. The same is true of human
cultural domains such as language andmusic where large-scale temporal organ-
isation has an impact on the meaning conveyed by an utterance or piece of mu-
sic. In language, the emphasis is usually on communicating specific referential
semantic content, which places strict requirements on word order and compos-
itional hierarchy prescribed by syntactic considerations. In music, where the
semantic content is usually much less specifically referential and stylistic syn-
tax less prescriptive, more emphasis is often placed on the (often approximate)
repetition of musical material throughout a piece of music, in general accord-
ance with the schematic norms of a musical style. Examples of exact repetition
are the literal reoccurrence of a chorus or re-entry of a principal theme, whereas
approximate repetition often arises through progressive development and vari-
ation of a theme, reflecting an incremental process of change or developments
upon successive reoccurrences.

Collectively, this general organisation of material within musical compos-
itions are referred to as thematic structure (as opposed to other kinds of large-
scale structures that can be present in music, such as tonal structures). From
a philosophical perspective, Kivy (2017) argued that thematic structure arising
from repetition of musical material constitutes the most distinctive character-
istic of music, and an essential ingredient to its aesthetic experience. However,
the perception of thematic structure in music is currently poorly understood to
the extent that we cannot even be sure that such large-scale thematic structure
can be perceived consistently by listeners.

Traditionally, composers and music theorists have argued in favour of
the existence and importance of thematic structures in music, and have gone
to great lengths to create, label and analyse them (Epstein, 1980; Galeazzi,
1796/2012; Meyer, 1989; Reti, 1978; R. Reynolds, 2002). Thematic struc-
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ture is also—even when not explicitly stated—of importance to several highly-
influential cognitive theories of music perception. This includes theories that
involve structured representations of musical knowledge (for example, Lerdahl
& Jackendoff, 1983; Temperley, 2007) and others that focus more on psycho-
logical processes of expectation (for example, Huron, 2006; Meyer, 1956; Nar-
mour, 1990). However, despite this prevalent position in theoretical research
on music perception, there is limited experimental research, and a resultant
lack of empirical evidence, in support of the perception of large-scale thematic
structure in music.

The research presented in this thesis constitutes an effort to rectify this situ-
ation. A probabilistic understanding of human cognition is used as the basis for
the consideration of possible cognitive mechanisms most likely to allow large-
scale thematic structure inmusic to be perceived. The research of this thesis has
the underlying hypothesis that the perception of thematic structure is based on
psychological mechanisms of statistical learning and probabilistic prediction of
repeated structure in music—that such structures can be perceived through the
statistical regularities that they form.

The approach taken by this thesis mixed computational modelling of cog-
nition with empirical experimentation. The thesis hypothesis was used in the
construction of a computational model that could provide a concrete specifica-
tion of the cognitive processes involved in the perception of large-scale thematic
structure. Through this formalisation of the hypothesis, featureswere generated
characterising compositions based on their intra-opus predictability, stylistic
predictability, and the amounts of repetition and variation of identified them-
atic material in both pitch and rhythmic domains.

A series of behavioural experiments examined the ability of these modelled
features to predict listener responses to important indicators of thematic struc-
ture. Namely, similarity between thematic elements, identification of large-
scale repetitions, perceived structural unity, sensitivity to thematic continu-
ation, and large-scale ordering.

1.1 Research objectives and scope

Given this hypothesis and its motivation, this thesis has the following three gen-
eral objectives:

1. To empirically investigate whether listeners can perceive large-scale
thematic structures through the use of behavioural experiments.

2. To develop computational methods that can characterise the features of a
given composition that are of hypothesised importance to the perception
of thematic structure, based on the thesis hypothesis that the perception
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of large-scale thematic structures can be accounted for by the dynamic
learning of statistical regularities within musical compositions.

3. To examine whether these computational methods can predict listen-
ers’ behavioural responses to thematic structures, providing some insight
into cognitive mechanisms underlying the perception of thematic struc-
ture.

In order to reduce the complexity of meeting these objectives, several prac-
tical constrains are introduced on the scope of this research. First, the study of
thematic structure, in this research, is limited to the domain of western-classical
tonal music. While the perception of thematic structure, and the proposed cog-
nitive processes by which it may operate, are not considered to be culturally-
constrained—indeed, many of the components contributing to the hypothes-
ised processes, such as repetition, have evidence of being musically universal
(Nettl, 2010)—the focus of the preceding literature and computational tools
are overwhelmingly focused on this domain (largely based on their strong un-
derpinnings in western music theory and its terminology). Second, music is
considered at the symbolic level, in which compositions consist of a finite num-
ber of discrete features representing pitch or temporal properties of notes; this
provides the assumption that the cognitive processing of thematic material and
structure takes place at a higher level to the processing of auditory input. Third,
the present research is limited to monophonic representations of melody, or
polyphonic material containing a small number of independent voices under
certain assumptions (see Chapter 3, Section 3.3).1 Fourth, all pieces of music
are considered from the perspective of a novel listener; it is outside the scope
of this investigation to consider elements perception over repeated exposure to
the same composition. Finally, the modelling of thematic structure presented
in this thesis is aimed at the formalisation of plausible cognitive mechanisms
leading to the perception of thematic structure; while this model does provide
practical methods for processes such as repetition and theme detection, these
are envisaged in their purely cognitive setting—the more general application of
these processes is outside of the scope of this investigation.

1.2 Thesis outline

Background and related work

Chapter 2 contains a summary of the existing psychological and computational
research relevant to examining the perception of large-scale thematic structure
inmusic. The chapter, firstly, reviews the research fromwithin the field ofmusic

1Music in which voices can be considered as separate auditory streams.
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perception that explicitly investigates the abilities of listeners to perceive large-
scale structures, and that has produced such inconclusive findings, before sum-
marising research into the perception of thematically-relevant properties and
the computational techniques used to characterise them.

Statistical modelling of thematic structure

Chapter 3 presents the probabilistic computational model of the perception of
thematic structure, based on the hypothesis that thematic structures can be
perceived through the statistical regularities they form over the course of a
composition. This chapter introduces IDyOM (Pearce, 2005), a computational
model of auditory expectation, which provided a platform for the modelling
of thematic structure, summarises the main components of the model itself,
and presents four model-based measures of thematic structure to characterise
properties of thematic structure for any given composition and to provide the
foundation for empirical research.

Empirical experiments

Chapter 4 provides the first step in the testing of the thesis hypotheses through
the analysis of the computational measures of thematic structure, when applied
to a corpus of 623 full-length monophonic compositions. As there are no
existing annotated corpora of large-scale structure, this analysis aimed to
demonstrate that measures of hypothesised importance to the perception of
thematic structure vary systematically when applied to the corpus, reflecting
the inherent variation in structure present within the corpus itself.

Chapter 5 presents the first behavioural experiment testing the ability of
computational measures derived from those of the model to predict listeners’
perception of relationships on a small time-scale. This experiment aimed
to understand how modelled features interacted and influenced responses
is isolation as an important first step to understanding their effects when
integrated into compositions over far longer timespans.

Chapter 6 presents a behavioural experiment testing listeners’ perception
of two highly-important indicators of large-scale thematic structure—
identification of large-scale repetition and the perception of structural unity
within compositions—over compositions of 2 minutes in duration. This
experiment aimed to test how modelled statistical features could predict
listeners’ performance in these two tasks.
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Chapter 7 presents an experiment that tested listeners’ judgements of large-
scale continuation. Through this task, the experiment aimed to investigate the
relative importance of statistically learned features, informed by the model, on
the perception of structure over entire compositions.

Chapter 8 presents a final behavioural experiment in which a puzzle-based task
was used to test listeners’ sensitivity to large-scale ordering of material. This
experiment aimed to evaluate the performance measures of thematic and tonal
structure as predictors of participants’ orderings. The chapter additionally pre-
sents a computational equivalent experiment identifying patterns of ordering
within existing compositions.

Summary and conclusions

Chapter 9 includes a summary of the research presented in this thesis, a discus-
sion of the key findings across all of the experimental research, the limitations
and scope of the research, and a discussion of promising directions for develop-
ing the contributions and addressing the limitations in future research.

1.3 Research contributions

Following the objectives presented in this introduction, and the interdisciplin-
ary nature of this topic, the research reported in this thesis makes original con-
tributionswithin the field ofmusic perception and cognition and several related
areas. The model presented in Chapter 3, and evaluated and expanded upon
in the later empirical experiments, provides the key theoretical output of this
thesis. The model brings together theories from traditional music theory and
analysis, experimental psychology, and computer science in the development of
cognitively appropriate methods for characterising thematic properties of com-
positions.

The behavioural experiments presented in Chapters 5, 6, 7 and 8 contain
the key empirical contributions of this research. Through these experiments,
this research builds on, and contributes to, a growing existing understanding of
statistically learned elements of perception, extending it to psychological pro-
cessing of large-scale thematic structure in music perception.
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Chapter 2

Background and Related Work

2.1 Overview

In this chapter, a summary is given of psychological and computational re-
search relevant to examining the perception of large-scale thematic structure
in music. The chapter, firstly, reviews research from within the field of music
perception that explicitly investigates the abilities of listeners to perceive large-
scale structures. These studies are divided into two broad subcategories, those
concerning thematic structures—the topic of this thesis—and those chiefly con-
cerned with tonal structure, however, that still have some bearing on thematic
elements. This limited body of behavioural experiments provides the closest
background to the behavioural research presented in this thesis.

Secondly within this chapter, psychological research investigating the per-
ception of musical features that relate to how large-scale thematic structures
may be perceived is reviewed. Work is considered that tests the abilities of listen-
ers to perceive similarity between excepts taken from within compositions, and
examines listeners’ abilities to perceive repetition.

Thirdly, computational methods are considered that seek to provide tech-
niques for the modelling of similarity, categorisation, theme and repetition de-
tection, and phrase boundary detection. These methods, while not directly
providing cognitively-relevant or complete accounts of thematic structure, are
useful tools for comparison and in forming the cognitive model of thematic
structure in Chapter 3. Finally, in anticipation of this model, research that con-
siders elements of structure in the context of statistical learning is summarised.

2.2 Structure in music

Theterm structure, when applied tomusic, is often used to describe a huge range
of different features existing across a whole spectrum of varying magnitudes of
scale. At its heart, it is the organisation of musical material that is taken as the
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structure; this may be on the level of the arrangement of pitches in a chord,
local harmonic features, voice leading, patterns in melodic phrases, metre, or
grouping structures, and can span all the way up to global musical systems such
as form, tonality and style.1

The concept of structure that is of principal concern to the research presen-
ted in this thesis is that most akin to musical form—a composition’s large-scale
organisation of material, made up from any of melodic, rhythmic or harmonic
elements (Whittall, 2001). Form, however, is heavily imbued with the ideas of
western-classical music, often implying a relationship between the construction
of awork and certain tonal and stylistic conventions (for example, both ofwhich
are embodied in sonata form); indeed, for the purposes of the present research,
it may be better to consider any individual piece as having its own unique form.
It is structure (on a large-scale), therefore, that can be more generally applied,
particularly with an emphasis on structural unity—the extent to which all ele-
ments of a piece can be considered to form a coherent unified whole. Form
becomes the discrete sectioning of the large-scale structure, and the relations
between such divisions (Salzer, 1962, p. 223).

Further distinctionwithin large-scale structures can bemade between them-
atic and tonal structures, both relating strongly to their own notions of closure.
It is the properties of thematic structure that this research plans to explore—the
perception that each component of a composition’s thematic material relates
convincingly to the others and to the whole, that every part ‘belongs where it is’
(Aschenbrenner, 1985, p. 159).

The primitive concepts of the structuring of music are ancient in their ori-
gin, being a fundamental part of any composition process; in producing a com-
positional work, certain levels of organisation and strategy must be put in place
(Reti, 1978; R. Reynolds, 2002). Musical analysis has long sought to understand
these structural elements and develop theories of music that follow accordingly.
The feedback loop created between the analysis of monumental works and the
pedagogy of composition results inmarked conventions emerging. Some theor-
ies of analysismay prove to be cogent arguments for theworkings of cognition—
the creation of music and its analysis are tightly entwined—however, it should
be used to act more as an informant of the areas on which to focus, rather than
as creating a ‘folk psychology’ of music (Cross, 1998).

2.3 The perception of large-scale musical structures

While the perception of structures in music covers a huge span of music cogni-
tion research, those specific to the large-scale thematic structures that are the

1And even beyond, rising to the level of cyclic forms in which thematic material is repeated
and developed across movements in symphonies or across entire operas.
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target of this thesis are relatively scarce. The origins of the studies that do ad-
dress this kind of structure often stemmed from a wish to test the empirical
validity of long-heldmusic-theoretical convictions: do examples following such
highly-prized concepts perform better in behavioural tests of perception than
those in violation?

At their simplest, early studies into the importance of large-scale structure
in music sought to understand any perceived change in enjoyment or sense of
overall unity if the structural elements of a work were presented in different
orderings—some simply on the level of cyclic form between movements or dis-
crete variations. This often resulted in binary conclusions being made on the
ability of listeners to perceive large-scale structures, providing no intermediate
detail or insight to the cognitive mechanisms at work.

Following a study in which movements of Beethoven piano sonatas and
string quartets were rearranged with little effect on enjoyment (Konečni, 1984),
Gotlieb and Konečni (1985) tested the abilities of listeners to perceive differ-
ences in arrangements of the variations in J. S. Bach’sGoldberg Variations,2 with
three versions rated on 15 subjective feature scales (for example, pleasing/not-
pleasing, surprising/not-surprising, emotional/not-emotional). Out of the dif-
ferent factors for all three versions, only one significant effect was found—the
original ordering had a significant preference on the warm/cold scale. Overall,
they concluded that changing the order of the variations in this piece had only
a minimal effect on the composition’s impact.

However, this result may possibly have been influenced by the small sample
size used in the experiment; only 14 participants of mixed musical abilities
(however, mostly non-musicians) were tested. The nature of the work chosen
could also provide some grounds to question whether any strong preference
for the original should be hypothesised on the basis of music theory; the indi-
vidual movements of the Goldberg Variations can function individually as com-
plete works in their own right3—there is no line of thematic developments or
continuation between movements.

Some criticism of these conclusions was drawn from the musicological side
of the aisle—contesting that altering the structure of a highly well-known work,
such as the first movement of Mozart’s Symphony No. 40 (so testing intra-opus,
rather than cyclical structure), for musically-trained listeners, would surely de-
crease enjoyment of it (Batt, 1987). Karno and Konečni (1992) conducted a
more rigorous experiment in response, making structural interventions to the
symphony movement as suggested. Five versions (including the original) were
created following rearrangements of the sections of its sonata form. Three rat-

2Bach’s Goldberg Variations differ significantly to the later ideas of classical or romantic ‘theme
and variations’ form. The concept of a theme reoccurring and being constantly developed in
each subsequent variation does not exist here.

3And are often performed as such.
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ings of pleasure, the wish to own a recording, and interest were recorded for
each, as well as an explicit question as to which version they perceived had the
best structure.

Again, only a small sample size is used—11 musician participants—for
whom no significant effect of version on the scales measured was found. How-
ever, for the untrained listeners, with a much larger sample size of 42, some
minimal effects were reported. For these participants, when the original version
was played first it was rated higher on all scales. However, overall the original
was not the most preferred, it was only preferred over three of the five versions.
It is interesting to note that, for all three stimuli order groups, the first version
heard scored highest in all factors, indicating primacy effect biasing listeners
towards the first version heard.

In a similar experimental paradigm, Tillmann and Bigand (1996) opted for
the division of compositions into chunks of around 6 seconds in length, using
piano works by Bach, Mozart and Schoenberg. These chunks were either ar-
ranged in a forwards order (i.e., the original) or in a retrograde version, with the
intention that that small-scale structures could remain intact and still makemu-
sical sense while those on the large-scale would be disrupted completely. Forty
participants with minimal musical experience were used—half listened to the
original three compositions, rating their expressiveness on 27 scales—the other
half completed the same task for the retrograde stimuli. The findings showed
little difference between perceived expressiveness in the original and retrograde
versions. Only in the Schoenberg was some significant effect observed, with the
modified version being deemed less expressive. Tillmann and Bigand (1996)
therefore concluded that the perception of expressiveness was strongest within
the short, local chunks but became much weaker beyond that.4

An interesting addition to this field of study is that of Tan and Spackman
(2005), in which a particular focus is made specifically on structural unity. The
paradigm of the previous studies was modified to include more comprehens-
ive disruptions of musical works and a large range of compositions. Fifteen
short piano solos were used: five intact; five with one section from a composi-
tion repeated thrice; and five made by the combination of three sections from
three different works.5 A rating of each piece’s ‘unity’ was given by 20 parti-
cipants who were additionally asked qualitative questions as to the features that
they thought created unity, and those that disrupted it. The ratings did show
some sensitivity (albeit within the small sample size) to the varying degrees of
repetition and variety in the stimuli. Musically-trained participants (half of the

4Further review of the perception of musical structure—comparing both large and small—
to this point is given in Tillmann and Bigand (2004).

5Works were used by Bach, Blitzstein, Bowles, Chopin, Copland, Godowsky, Hofmann,
Liebermann, Liszt, Ravel, Ravina, Rogers, Schumann, Shostakovitch, Tausig and Tchaikovsky.
Participants were not made aware that any of the works had been altered.
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participants) had a focus on repetition, themes and motifs when answering the
descriptive questions showing some influence of music theory—at least in the
language used. A later experiment of Tan et al. (2006) replicated this effect for
original versus patchwork versions of compositions, but found that the effect
diminished over repeated hearings

Relatedly, expanding the styles of music studied outside that of western-
classical tonal music, Lalitte and Bigand (2006) found significantly higher co-
herence ratings for original over reorganised versions of contemporary and pop-
ular music and McAdams et al. (2004) found an influence of large-scale organ-
isation on listeners’ continuous ratings of intra-opus familiarity between two
differently-structured versions of a contemporary composition.

Looking more specifically at ‘inner form’, Eitan and Granot (2008) used
stimuli of the intact opening movements of two Mozart piano sonatas and a
hybrid that mixed corresponding sonata form sections of the two movements.
Participants rated examples on aesthetic scales, mostly relating to the works’
perceived interest, whether ‘the version is a masterpiece’, but also one of coher-
ence. One hundred and sixteen participants were used—54 musically trained.
No significant preference for the original versions was found.

The lack of any statistically significant evidence for the ability for listeners
to perceive structures on this scale may indicate that the kind of experimental
paradigm used up to this point is unable (at least for the participant sample
sizes used) to properly account for effects of large-scale thematic structures and
their ability to create a sense of unity. There is also the additional problem-
atic assumption in many of these studies that the original ordering of the piece
is indeed the absolute best possible in terms of unity and structure; that the
composer is infallible and lack of preference for original version equates to no
preference for large-scale structure at all. When combined with the fact that
relatively small groups of participants were used in many of the studies, these
issues may account for the difficulty in finding a difference in the perception
of modified and original structures—differences in structure that may be too
subtle to give a large enough effect. Similar problems can also be found in the
application of this paradigm to the perception of song form in popular music
(Rolison & Edworthy, 2012).

Two linked studies by Granot and Jacoby (2011) and Granot and Jacoby
(2012) employed a different paradigm, partly in response to some of the prob-
lems arising in the prior research, particularly removing the focus on the com-
poser’s original. The task took the form of a musical puzzle—ten disordered
sections from a Mozart piano sonata first movement (2011) and eight from a
Haydn sonata first movement (2012) were presented to 87 and 82 participants,
respectively, who were tasked with creating an order that best made a coher-
ent whole. The analysis of the participants’ orderings was not focused on their
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relation to the original, instead seeking patterns between participants. The ap-
proach of Granot and Jacoby (2011) yielded encouraging implications for listen-
ers’ abilities to perceive large-scale structure, and the importance of thematic
considerations; results indicated sensitivity to (form-like) structure, grouping
and placement of developmental material, and placement of opening and clos-
ing gestures. Distance score measures of Levenshtein (1966) edit distance and
‘arrow of time distance’ were applied between participant orders and revealed
some sensitivity to ‘directionality’; there was agreement as to the relative posi-
tioning of sections, even if not in the exact order.

Further to these behavioural findings, Farbood et al. (2015) found evidence
of differences in neural processing in musicians listening to an excerpt of a
Brahms piano concerto in its original form and versions scrambled at measure,
phrase, and section levels. Functional magnetic resonance imaging responses
showed a hierarchy of auditory processing within the brain, with only the ori-
ginal version giving reliable responses at the top-most level. The work gives
evidence as to the ability of listeners to make structural connections over larger
musical sections.

2.3.1 The perception of tonal structures

Although it is large-scale thematic structure that this research is primarily con-
cerned with, it has been customary in the study of the perception of large mu-
sical structures to combine both elements of thematic and tonal structure. In
many cases, the respective differences and properties of the two are never satis-
factorily disentangled. For many, their emergence from western-classical mu-
sical theory and analysis—in particular, those with a desire to test long-held
theoretical concepts by empirical behavioural testing—creates an emphasis on
notions of form. In form, the conventions dictating the ordering of thematic
material and its development go hand-in-hand with an ordered progression of
related tonal areas; sonata form, being one of the most prescriptive in terms of
material content and key, and revered in traditional music theory, is habitually
used as the large-scale structure in question. However, work in this area can
still inform our current research; information on non-tonal large structure can
be revealed in this body of literature, and the effects of tonal structure should
be considered as requiring experimental control for experiments investigating
thematic structures over the same timescales.

Cook (1987) was one of the first such studies looking at large-scale intra-
opus structure, and one that became quite influential, giving rise tomuch of the
work in a similar vein. In this experiment, the modification of the tonal struc-
ture of a work was reported to have little significant impact on listeners’ prefer-
ences. Cook particularly led with the idea that there could be a maximum time
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scale in which the structure could have an influence on a listener’s perception—
particularly for tonal closure. Criticism of both conception and of execution
were levelled at Cook (1987), particularly by Gjerdingen (1999). Among such
issues are some largely applicable to much of the similar literature—the insub-
stantial participant sample size (here 19), and the importance placed on the sub-
sequent failure to reject the null hypothesis (that structure is not perceptible at
this timescale) through a lack of significance.

Subsequent studies that primarily intended to examine tonal closure, but
were implemented through themanipulation of formalmusical units, produced
similar findings. The second experiment in Marvin and Brinkman (1999) ap-
plied structural variations to six keyboard works by Handel, disrupting both
thematic structure and key progressions. Thirty-three participants performed
no better than chance when identifying beginning and ending key as the same.
This study has much in common with the previously discussed early work on
non-tonal structure and faced many similar problems.

More recently, research into global tonal and harmonic structure—and that
also involves non-tonal structures—have reported significant evidence in sup-
port of perception of organisation on this scale. Koelsch et al. (2013) harmon-
ically impeded the hierarchical structure of Bach chorales while leaving local
structure intact. EEG brain responses differed between regular hierarchical and
disrupted stimuli, indicating cognitive processes are present that can deal with
dependencies over the large time spans needed. This finding is supported by the
probe-cadence study of Woolhouse et al. (2016) over temporally non-adjacent
keys; listeners could hold non-adjacent keys in memory ‘globally’ (for over ten
seconds). However, similar work by Farbood (2016) and Spyra et al. (2021)
found little evidence that such effects of tonal memory persisted after around
20 seconds.

2.3.2 Summary

In summary, existing empirical research into large-scale structures in music
has produced conflicting evidence in support of their perception. The work of
McAdams et al. (2004), Tan and Spackman (2005), Tan et al. (2006), Lalitte and
Bigand (2006), Granot and Jacoby (2011), Granot and Jacoby (2012), and Far-
bood et al. (2015), all provided results that suggest that listeners could perceive
differences between musical stimuli in terms of large-scale structure. The work
of Karno and Konečni (1992), Tillmann and Bigand (1996), Eitan and Granot
(2008), and Rolison and Edworthy (2012) all found no evidence to suggest such
structures can be perceived. Although the collection of studies that found evid-
ence in support of the perception of specifically thematic structure is smaller
still, several of the more recent approaches are among them. Even so, the un-
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derlying mechanisms that may facilitate the perception of thematic structure
are still little researched.

2.4 Structural similarity and repetition

The lack ofmuch substantial research into the properties of large-scale thematic
structure and its ability to create a sense of unity is the target of the research
presented in this thesis. Due to the difficulties that studies encountered and that
have hampered the field’s development, reviewed above, this research aimed to
provide a new approach that could provide the apparent nuance needed for the
potential effects of these structures to be understood. Instead of attempting
to disrupt thematic structures through the scrambling of example pieces, this
research aimed to investigate the possible psychological processes that could
facilitate a perception of thematic structure.

Aside from composition-wide measures, such as those used in many of the
behavioural experiments reported in the previous section, the effects of struc-
ture can be examined within the composition itself, in the form of the internal
relationships that underlie the perception of thematic structure. Two such rela-
tionships have received attention: perception of similarity and direct repetition
of musical material. Both repetition and similarity are widely thought to under-
lie perception of thematic structure in music and contribute to properties such
as unity in both hierarchical and linear theories of musical structure (Deliège,
2007; Kivy, 1993; Schoenberg, 1967; Smyth, 1993).

2.4.1 Similarity and categorisation

Similarity is considered a fundamental process in psychology and cognitive sci-
ence as it allows for the classifying of perceptual phenomena into useful cat-
egories (Goldstone & Son, 2005; Shepard, 1987). Similarity and categorisation
in the music perception literature encompass a vast field, and one that has in-
dispensable elements when considering repetition and structure. Similarity can
help to explain how thematic repetitions can be subjected to variation yet still
retain their connection to an original, integrating into such theories of structure.
Studies of similarity are wide-ranging and, in some cases, quite disparate. This
may be due partly to the highly context-specific nature of similarity in music,
particularly when judging between material arising from the same work (Ahl-
bäck, 2007; Cambouropoulos, 2009). However, several offerings of similarity
research provide noteworthy perspectives on themes, repetition and structure.

To investigate similarity as an indicator of thematic structure, research
has attempted to uncover the importance of different types of musical feature
when making similarity judgements, using the following experimental logic. If
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the evidence suggests that similarity judgements are made purely on the basis
of surface properties of the music—such as its general dynamics or texture—
compared with deeper comparisons of its thematic material, the case for listen-
ers’ perception of large-scale thematic structure would be weakened. The res-
ults of experiments following this approach are ambiguous and require further
research.

One particular study that is of relevance to the ability of listeners to perceive
connections between themes and their repetitions is that of Welker (1982). Us-
ing a set of transformations, based on five rules, a set of variants of a melody
was created. Without being presented the original, participants were tasked
with recreating the melodic contour of the central tendency of the variant set.
Participants were found to be able to recreate the contour of the originalmelody
successfully.

Lamont and Dibben (2001) conducted an investigation into the ways in
which similarity relationships are perceived in different kinds ofmusic, and how
these relate tomotivic structure. Participants (of bothmusically trained and un-
trained backgrounds) were asked to rate the similarity of pairs of extracts taken
from two pianoworks—by Beethoven and Schoenberg—and provided descript-
ive adjective ratings for each. Both trained and untrained listeners’ similarity
ratings were roughly equal but were context specific. Similarity ratings were
primarily found to be based on surface-level features—such as dynamics, artic-
ulation, texture and contour. For Lamont and Dibben (2001), however, motivic
relations belong to the ‘deeper’ features and so were not among those perceived
by listeners. While this may be true for some of the views of motifs based in
more traditional musical analysis and theory, if motifs are seen more as salient
cues that are extracted then they operate more on the musical surface (Deliège
et al., 1996). Lamont and Dibben (2001) do suggest that a lack of significant
evidence to support judgments based on thematic and motivic similarity may
have been due to the short-term nature of the stimuli used; with greater ex-
posure to repetition, affording a stronger thematic structure and development,
valuable contexts for judging similarity may be learned. The context-specific
nature of intra-opus similarity is highlighted here by the results from pieces of
highly contrasting styles—in many cases, the two works create their own simil-
arity criteria.

Similar conclusions of the use of musical surface features in the judgment
of similarity were made by Mélen and Wachsmann (2001) and Koniari et al.
(2001), testing the abilities of infants from 6 to 10 months and children aged
10 to 11, respectively, to categorise musical motifs in compositions by Schubert
and Diabelli. They concluded that categorisations primarily used musical sur-
face features, such as melodic line, register or dynamics, however, counter to
Lamont and Dibben (2001), also used elements related to the underlying har-
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monic structure, such as harmonic properties.
Counter to the findings of Lamont andDibben (2001), Ziv and Eitan (2007)

likewise conducted an experiment of similarity perception using the same stim-
uli. Participants, for each composition individually, were tasked with categor-
ising and rating extracts as belonging to one of the given compositions two prin-
cipal themes. By comparing listeners’ responses to those collected by Lamont
andDibben (2001) and to publishedmusicological thematic analyses by experts,
significant agreement was found for excerpts from the Beethoven composition,
but not for the Schoenberg. Characteristic musical features for Beethoven’s two
themes—such as phrase structure, melodic intervals, voice-leading, melodic
schemas, and rhythmic features, and Schoenberg’s—tone-row structures—were
gathered. Correlations between ranked combinations of these features and
those provided by participants’ thematic categorisation ratings were tested for,
with features of texture, rhythm, melodic contour and dynamics correspond-
ing best to listeners’ results. These results corroborate other findings within
research of the perception of musical similarity, that established the relative im-
portance ofmode, contour, and rhythmic elements (in descending order) in the
judgment of melodic similarity (Bartlett & Dowling, 1980, 1988; Halpern et al.,
1998). These findings provide an alternative explanation for the findings of La-
mont and Dibben (2001); surface features were the most important in the sim-
ilarity and categorisation judgements tested, however, it is possible that these
surface features could also facilitate the necessary thematic categorisation.

Volk and van Kranenburg (2012) investigated the musical features used by
experts in their categorisation of Dutch folk melodies (theMeertens tune collec-
tion) into tune families. As the precise historical contexts of the melodies are
lost, experts formed tune families based on their expert intuition of similarity
between melodies. In an annotation study, experts provided annotations of fea-
ture categories used and ratings of the strength of these judgements. Analysis
of annotations found that, in general, short characteristic motifs were the most
relevant to experts’ judgements—more so than features such as global melodic
contour, often used in the description of melodies. These findings provide evid-
ence that motif-like repeated patterns are highly important for similarity judge-
ments in music.

2.4.2 Repetition

The idea that the structure of a work is built up by a listener throughout a com-
position by the repetition and reaffirmation of certain salient fragments has
been suggested several times in music perception in a few different manifest-
ations. Here, these salient features or landmarks will be described as thematic
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material, or motifs.6 While the basis of this theory—that it is the repetition of
material that builds up the structure—has been suggested constantly, the theor-
etic reasoning as to the precise nature of how variation and development actu-
ally can exist often is disputed.

Adam Ockelford’s extensively developed Zygonic7 theory of music (Ock-
elford, 1991, 2004, 2005, 2006, 2009, 2010) proposed that: ‘the cognition of
structure stems from a sense of derivation arising from the presence of repe-
tition in certain contexts’ (Ockelford, 2006, p. 81). The repeated instances of
material are related by similarity judgements of the listener and can be classed
as one imitating, or deriving from, the other. ‘Zygonic relationships’ can be
used to connect similarities in pitch and rhythm, as well as larger distributions
of pitches and auditory qualities such as loudness. The most useful and convin-
cing examples of strong similarity relationships are those given by material that
may be consideredmotivic landmarks—a perspective informed, and supported,
by work in cue abstraction by Deliège et al. (1996).

Although this theory sets out howmotifs can generate a larger structure, the
nature of, and contexts needed for similarity tend to be purely a descriptive list
of operations taken to translate from one motif to another—noting the removal
or addition of notes and their pitches, transposition, and manipulations such as
retrograde. The supposed similarity is primarily identified by the analyst, often
conforming to previously held notions of music theory; while some attempt is
made to consider the cognitive processing of structure, Zygonic Theory only
really succeeds as a method of formal analysis.

Huron (2013) explores hypothetical strategies of composition, based on bal-
ances between repetition leading to processing fluency (and so positive pleas-
ure) and habituation (resulting in a reduction in responsiveness). Three such
strategies were derived from these principles: (1) a ‘trance’ strategy involving
high levels of repetition that can fully exploit pleasure induced from processing
fluency, with the habituation causing an inward focus of a trance-like state (the
effectiveness of this strategy may be highly-dependant on the listener and their
cultural context); (2) a ‘variation’ strategy in which material is repeated with
constant slight modification; and (3) a ‘rondo’ strategy involving sequences of
(more exact) repetition that shorten throughout a composition, with new ma-
terial introduced to limit effects of habituation. Due to the heavy reliance on
the disposition of the listener for the trance strategy, the latter two were con-
sideredmore likely to produce reliable psychological effects (with combinations
of strategies possible). Huron (2013) identified that a characteristic feature of
this final strategy would be that compositions would favour ‘early repetition’—

6Borrowing the terms frommusic theory and analysis where they are often used to describe
the structuring of a work in the composition process (Drabkin, 2001a, 2001b; Reti, 1978).

7A term derived from the Ancient Greek for ‘yoke’—a union between two similar things
(Ockelford, 1991).
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repeating thematic material to a large extent in the beginning portions of the
composition while processing fluency still outweighs habituation. An analyt-
ical study of a cross-cultural sample of music found evidence supporting the
prevalence of early repetition.

In addition to these predominantly theoretical discussions, behavioural
studies have also explored the repetition of thematic material and its contribu-
tion to structure. Pollard-Gott (1983) used an approach centred on the change
in listeners’ conceptions of a composition—how they are altered through re-
peated presentation of short passages taken from one single work. Experiments
were devised to observe any variation in a listener’s appreciation of harmonic,
melodic, rhythmic and contrapuntal thematic categories. Musically-trained
and non-trained participants were played passages and were asked to rate their
similarity. Repeated listenings were conducted over three sessions. After the
similarity test was completed, participants were informed of two themes in the
extracts. A mixture of old and new stimuli were then played and listeners were
to identify to which theme they belonged. A final task asked the participants
to rate the excerpts on 15 bipolar adjective scales. The repeated testing found
that listeners perceived the relationships among passages corresponding with
more global thematic structures after repeated exposure. However, this failed
to manifest with any significance after only a single exposure to the music.

In a study by Margulis (2012) (with further discussion in Margulis, 2014)
that investigated the repetition of short musical stimuli, listeners were asked
to detect—by the press of a button—exact repetitions of material within ex-
cerpts of between one and two-minutes long, taken from four classical record-
ings. Responses indicated that participants found it difficult to actively identify
repetitions on a first listening, with the likelihood that participants would cor-
rectly identify a given repetition only marginally above chance for the best-
performing excerpt. However, not all types of repetition were equally salient;
shorter repeating units were more easily identified, with an optimal duration of
units of approximately 6 seconds. Additionally, within-phrase repetition was
identifiedmore often than repetition of material across phrases, while complete
phrases were more easily identified than fragments. It was also found that extra
exposures facilitated better repetition detection for longer units; conversely, de-
tection for shorter units became impaired.8 These additional exposures had the
effect of shifting attention towards larger time spans, possibly indicating how a
motif could be established by frequent repetition over short time periods. After
the initial exposure, the motif would no longer need to be repeated on such a
small scale.

As a study into the basic features of repetition in music, Margulis (2012)
8While this research focuses particularly on intra-opus repetition, Margulis (2014) continues

the with further in-depth discussion and review of repeated playing of individual pieces.
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uncovers several interesting aspects that could be useful for the study of how
repeated material could contribute the perception of thematic structures. The
results for an optimal repetitive unit size could help to show the types of repe-
tition that would be most successful in creating a sense of structural unity (al-
though motifs are usually much shorter than the 6 seconds found to be optimal
in this study). As Margulis (2012) identified, there were potential issues with
this study, such as the limited repertoire. It was also discussed that similarity
has a large part to play in the study of musical repetition and motifs. The task
presented to participants— that of identifying when a repeat in material was
heard—does not necessarily require the repetition to be exact; it may, therefore,
be much more likely that some judgement of similarity needed to be used on
the part of the participant.

However, despite the apparent difficulty of explicitly identifying repetitions
in real time, there is evidence that repetition can implicitly influence the ways
in which listeners perceive music. Margulis (2013) demonstrated a signific-
ant implicit effect of repetition on listeners’ aesthetic responses to contempor-
ary music—increasing enjoyment, interest, and judgements of artistic ability.
Though not addressed directly in that study, repetition may also influence per-
ception of thematic structure in a similarly implicit manner. Indeed, it is pos-
sible that the enhanced aesthetic experience of themusic with increasing repeti-
tion actually depended on perception of increased thematic unity or coherence.

Outside of the purely musical context, research into the learning of repeti-
tions in auditory stimuli provides strong evidence that listeners are both highly
sensitive to auditory repetition and that repetitions are implicitly learned (Agus
& Pressnitzer, 2013; Bianco et al., 2020). In a series of experiments, Bianco et al.
(2020) tested the speeds with which participants could identify emerging repeti-
tions in sequences of otherwise random tones. Reaction times significantly de-
creased after each reoccurrence of a repeated pattern. Of particular importance
to the perception of music are the timescales over which these effects were ob-
served. Repetitions were sparsely spaced within stimuli, occurring at intervals
of approximately three minutes, with faster reaction times to repeated stimuli
persisting for weeks after the initial trial. In the context of music, this spacing
indicates that even a little repetition should be able to influence perception of
structures at the level of a musical composition. Similar to the findings of Mar-
gulis (2013), Bianco et al. (2020) found these effects of repetition to be implicit,
with participants being largely unaware of having any memory for the repeated
stimuli.
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2.4.3 Summary

In this section, empirical research into the perception of musical similarity and
repetition in music was reviewed. Both similarity and repetition play import-
ant roles in the thematic structuring of music; if thematic structures are to be
perceived, listeners must be sensitive to patterns of repetitions and internal re-
lationships within musical compositions. This body of work provides evidence
supporting the perception of similarity and repetition inmusic (Margulis, 2012;
Ziv & Eitan, 2007), and gives some indications as to the musical properties that
can best facilitate them. In particular, for repetition, the presence of early repe-
tition (Huron, 2013), and repetition of whole phrase units (Margulis, 2012).

2.5 Computational modelling of musical properties

Due to the usefulness of some of the musical properties, discussed so far in
this chapter, to a wide range of applications, computationalmethods attempting
to replicate these properties have been developed across a number of different
fields.

2.5.1 Similarity

The computational modelling of musical similarity, due to its importance to
many sub-disciplines of the study of music, its usefulness in allowing for the
classification of material, and its highly complex nature, has produced a wide
range of different approaches. Similarity modelling has been the topic of spe-
cific journal issues (Toiviainen, 2007; Volk et al., 2016) and specialised work-
shops (Benetos, 2015).

It has generated a particularly large output of methods in the field of Music
Information Retrieval (MIR), thanks, in part, to the ‘symbolic melodic similar-
ity’ category of the Music Information Retrieval Evaluation Exchange (MIREX)
competition (Downie, 2008; Downie et al., 2010), which provided the neces-
sary ‘ground truths’ against which models could be evaluated. Broadly, these
approaches can be categorised (based on the model taxonomy of Velardo et al.,
2016) into: those based on cognitive constraints (de Carvalho Jr &Batista, 2012;
Roig et al., 2013; Vempala & Russo, 2015); those based on music-theoretical
principles—often using elements of Lerdahl and Jackendoff (1983), Narmour
(1992), or Schenkerian analyses (Grachten et al., 2004; Orio & Rodà, 2009;
Yazawa et al., 2013); those based on mathematical concepts (that were more ab-
stract from the computationalmathematics used by other approaches) (Aloupis
et al., 2006; Bohak & Marolt, 2009; Frieler, 2006; Laitinen & Lemström, 2010;
Lemström, 2010; Urbano, 2013; Wolkowicz & Kešelj, 2011); and those employ-
ing hybrid approaches, combining several different techniques (Frieler & Mül-
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lensiefen, 2005; Müllensiefen & Frieler, 2004; Rizo & Inesta, 2010; Suyoto &
Uitdenbogerd, 2010).

Of particular relevance to the approach taken to modelling thematic struc-
ture in this thesis are those, firstly, that can function as parallels to cognitive pro-
cesses and, secondly, those based on a probabilistic understanding of music—
such as those based on information theory-derived models (Laney et al., 2015;
Pearce & Müllensiefen, 2017).

Pearce and Müllensiefen (2017) used an implementation of a ‘compres-
sion distance’ between two sequences—a string similarity metric based on the
shortest program needed to compute one string, given another (Li et al., 2003).9

The statistical model of IDyOM (Pearce, 2005) was employed to estimate the
compressed length of musical sequences through the use of the Prediction by
Partial Matching algorithm (Bell et al., 1990; Bunton, 1997; Cleary & Teahan,
1997; Cleary & Witten, 1984; Moffat, 1990). Pearce and Müllensiefen (2017)
found that the compression distancemetric provided a good fit to listeners’ sim-
ilarity judgments over three experiments. Themetric also showed a comparable
performance to the best-performing algorithms from the MIREX competition
(Grachten et al., 2004; Orio & Rodà, 2009; Suyoto & Uitdenbogerd, 2010), with
one configuration of the model achieving a higher average dynamic recall than
these algorithms (Typke et al., 2005).

2.5.2 Theme and repetition identification

The ability to computationally identify patterns within music (more specific-
ally, within symbolic representations of music) is an important task, with ap-
plications in computational musical analysis and MIR. The classes of patterns
that the present research is chiefly concerned with are the detection of the prin-
cipal themes within a composition and the identification of repeated material
(or motifs).

The use of theme, where it is used in the research reviewed in this chapter
(Pollard-Gott, 1983; Ziv & Eitan, 2007)—and in music theory in general—
overlaps in many properties with that of motif, but the two may be distin-
guished in several ways. Whilemotifs, in the context of this research, can be any
small piece of salient material, theme can be something considerably lengthier;
themes are customarily complete in their own right and, classically at least (and
certainly in the previous research reviewed above), the original memorable ma-
terial from which later repetitions, or motifs, are derived. Theme is quite often
taken for granted in much of the research it is used—particularly in music per-
ception. For example, in both Pollard-Gott (1983) and Ziv and Eitan (2007),
principal themes were given, to which the connection of further material was

9This process is given in greater detail in Chapter 3.
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to be judged. Themeswere identified by traditional analyses or by ear; the actual
cognitive mechanisms behind the process of theme detection are little studied.

Computational identification of themes in music is a task of some difficulty.
Existing theme detection methods are themselves derived as specific cases of
string-matching repetition detection; different selection criteria are used to
identify themes from repetitions, often using the longest matching substring
or the most frequent substantial repetition. Explicit methods for theme detec-
tion using the exact matching of substrings are given by Hsu et al. (2001), Meek
and Birmingham (2001) (with some deviations in rhythm allowed), Wang et al.
(2006), and Karydis et al. (2007).

Approximate matching methods also exist that find themes based on re-
peated similar material. Uitdenbogerd and Zobel (1999) used an approach to
theme detection that produced a melodic string, against which theme queries
could be compared. With the acknowledgement that melody queries may be in-
exact, several similarity measures were employed. Variations on edit distance
(Levenshtein, 1966) were used: ‘longest common substring’—the length of the
longest contiguous string identified was used to rank the pieces—and using
n-gram measures to count the matches of a certain length; ‘longest common
subsequence’—the queries were matched with no penalty for gaps of any size;
and ‘local alignment’—‘dynamic programming’ determinedmatching of strings
on a local basis. Uitdenbogerd andZobel (1999) found someof these techniques
largely unsuccessful—in particular the longest common subsequence similarity
function, and with problems caused by rests—when applied to a large MIDI
database. For theme extraction based on repetition and similarity, local align-
ment performed best, followed by n-gram counting.

Methods for repetition detection in general for symbolic music have been
produced for an array of purposeswithinMIR, and theMIREX category ‘discov-
ery of repeated sections and themes’ (2013–17) provided an outlet for the testing
ofmany approaches, given ‘ground-truths’ for five pieces (with summaries given
of submissions and related approaches given in Janssen et al., 2014 andRen et al.,
2017 as well as the more recent work of Melkonian et al., 2019 and Laaksonen
and Lemström, 2019, 2021). The task required models to output a list of pat-
terns repeated within musical pieces—any subsequence of pitch and time that
appeared at least twice—and accounting for patterns shifted in time or trans-
posed. Approaches used in the symbolic version of the task covered geometric
approaches, that treated melodies as a set of points in a multidimensional space
(Chen & Su, 2017; Collins et al., 2013; Meredith, 2015); approaches using self-
similarity matrices (Nieto & Farbood, 2014); those using underlying sequential
representations (Lartillot, 2014); wavelets (Velarde et al., 2016); and machine
learning (Pesek et al., 2017). Based on the evaluation metrics, the algorithms
performed well in precision, recall, and F1-scores, however, none could fully
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reproduce human-annotated patterns. Lartillot (2014) is notable among these
approaches as being the only algorithm to operate sequentially along pieces.

Using the annotations ofVolk and vanKranenburg (2012), Boot et al. (2016)
employed a MIR approach to compare six pattern discovery methods (Collins
et al., 2013; Conklin, 2010; Lartillot, 2014; Meredith et al., 2002; Nieto & Far-
bood, 2014) for identifying the repeated motifs that were the most relevant fea-
tures used by experts. Melodies were then compressed so as to contain only
the repeated identified material. Similarity metrics were then used to compare
between compressed melodies and categories them into tune families, compar-
ing their classification accuracy to the experts’ annotations. Using their pro-
posed framework for information compression based on pattern categorisation,
expert annotations allowed for a compression of up to 60% with minimal loss
in accuracy; this outstripped that of any of the computational algorithms, sug-
gesting suchmethods still are not capable of competing with expert human clas-
sifications.

For the purposes of the research of this thesis, while these methods of com-
putational pattern detection provide a useful background, they were not inten-
ded as simulations of possible cognitivemechanisms behind the perceptual task
of theme and repeated-pattern identification. In particular, for those identify-
ing themes, they operate offline, first identifying repetitions throughout a com-
position, then selecting the most likely theme. By contrast, in real-world listen-
ing to music, this process occurs online and dynamically during a single hear-
ing. For a cognitive model simulating perception of thematic material on first
listening, detection of themes must precede detection of thematic repetitions,
and both must be achieved dynamically on a single passing of the composition.
As it is beyond their original scope, some MIR theme detection methods have
additional limitations for use in a cognitive model—many only consider find-
ing a single primary theme for each composition in which many may exist, and
there is also a significant difficulty in determining a theme’s length.

2.5.3 Segmentation and phrase detection

A consistent problem in theme detection is identifying a musically meaning-
ful theme length. In the case of repetition and similarity matching methods—
particularly those searching for theme fragments—the start of a theme is found
but its duration and endpoint are often unclear. To try to rectify this problem,
these theme detectionmethods have been combinedwith some form ofmusical
phrase-based boundary detection (Lu & Zhang, 2003; Takasu et al., 1999).

Melodic segmentation has been targeted in music cognition and MIR as a
modelling task, subdividing melodies into small musically meaningful sections.
While it is often the case that segmentation has no one exact correct answer—
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listenersmay disagree on the location of these boundaries—a formal rule-based
criteria were presented by Lerdahl and Jackendoff (1983) inAGenerativeTheory
of Tonal Music, deriving a set of rules from ideas of proximity and similarity in
Gestalt psychology (‘Grouping Preference Rules’ orGPR). GPR 2 considers tem-
poral proximity, with large rests of inter-onset intervals, relative to surrounding
events, indicators of boundaries. GPR 3 considers similar large relative changes
in register, dynamics, duration and articulation. These rules have formed the
basis for some of the best-performing phrase detection models created.

The Local Boundary Detection Model created by Cambouropoulos (2001)
uses local changes in IOI, rests and pitch, quantified to follow the GPRs. The
Change Rule places a boundary strength that is proportional to the degree of
change between any two consecutive non-identical intervals—with respect to
IOI, rests, and pitch. A Proximity Rule gives a greater boundary strength for
the larger interval between any two consecutive non-identical intervals. Peak
detection, or a threshold, needs then to be applied to produce segmentations.

The Grouper algorithm given by Temperley (2001) segments a melody ac-
cording to three Phrase Structure Preference Rules (PSPRs): the gap rule, PSPR
1, tries to locate boundaries at large IOIs or large offset–onset intervals; the
phrase length rule, PSPR 2, favours phrases of a predetermined length—usually
10 notes; and the metrical parallelism rule, PSPR 3, favours boundaries occur-
ring on the same position within a bar. In Cenkerová et al. (2018), Grouper and
LBDM were compared to each other and a combined model of the two. While
the compound model provided the most accurate detections, the accuracy of
Grouper was not substantially lower.

These two phrase detection models, although no-longer recent, have been
extensively tested and compared, both to each other and to newer competing
models. More recent approaches to automatic segmentation have sought to pro-
duce models that are not based on meeting rules defined by Gestalt principles.
Of particular interest to this research project are those taking information-
theoretic approaches. Juhász (2004) uses a memory-based maximum entropy
model to segment compositions, inferring a boundary either before an unex-
pected melodic event or after an event for which the continuation is hard to
predict. Likelihood estimates generated by IDyOM have been demonstrated to
be effective at melodic segmentation, marking boundaries at peaks in inform-
ation content (Pearce, Müllensiefen & Wiggins, 2010). However, a compar-
ison of IDyOM, Grouper and LBDM favoured the older rule-based approaches,
Grouper in particular. Similarly, the model of Lattner et al. (2015) also takes an
information-theoretic approach, using a restricted Boltzmanmachine tomodel
the probability of melodic events, identifying boundaries at peaks. This model
provided some small improvement over the IDyOM based approach.

Other approaches to segmentation have employed repetition identification
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in compositions, based on the assumption that the start and end points of re-
petitions form section boundaries. Several of these approaches based on the
identification of repetitions in musical sequences (Cambouropoulos, 2006; Ra-
fael et al., 2009; Rafael & Oertl, 2010) but segmentation based on repetition has
played an important role in segmentation and musical structure analysis using
self-similarity matrices. A self-similarity matrix represents the similarity or dis-
similarity between different segments or frames of amusic piece, with respect to
itself. Each element of the square matrix corresponds to a comparison between
two time frames in the piece. In the audio domain, matrices can be computed
based on the comparison of chroma and timbral features, and more success-
fully with compacted spectral representations such as constant-Q transforms
and log-mel spectrograms (Müller, 2015; Nieto & Bello, 2016). Symbolic ap-
proaches have applied similarity measures between pairs of fragments exhaust-
ively across a composition (Rodríguez-López and Volk, 2015, which used co-
sine similarity between vectors of pitch interval and duration ratios). Using
these matrices, segments can be determined based on the combination of dif-
ferent properties (Nieto et al., 2020): (1) homogeneous regions found in blocks
of high similarity (Ullrich et al., 2014); (2) repetition found in high-similarity
diagonal paths (Rodríguez-López & Volk, 2015); and (3) the regularity of struc-
tures identified.

However, by the nature of their construction—the pairwise comparison of
all time frames in a composition—these methods can not be considered to be
analogous to the cognitive processes involved in the detection of repetition.
Identification of structure and repetition from these matrices takes place after
their construction, rather than dynamically throughout a piece.

2.5.4 Summary

This section provides a brief overview of computational research in awide range
of fields related to thematic structure. These include methods for character-
ising musical similarity, identifying repeated patterns, and detecting structural
boundaries. While each of these topics hasmany different approaches—with all
three being active areas of research in the field of music information retrieval—
for the purposes of the research in this thesis, particular importance needs to be
placed on those methods that can provide a convincing simulation of human
cognition. For this to be the case, methodsmust be applicable to a first listening
to a piece of music; theymust be able to be applied linearly as a work progresses.
Chapter 3 makes use of some of the methods introduced here—the similarity
metric of Pearce and Müllensiefen (2017) and the phrase detection model of
Temperley (2001).

Chapter 2. Background and Related Work 39



2.6 Statistical learning of structural elements

The problems experienced in much of the literature exploring large-scale struc-
ture and its related properties of repetition and similarity mean that no convin-
cing cognitivemodel of thematic structure has been produced. Much of this gap
can be addressed by a probabilistic model; motivic salience and repetition can
be understood in terms of predictions made by a listener as a piece progresses,
their development can be viewed as variation according to intra-opus thematic
rules or extra-opus stylistic congruity. The repetition, and so strengthening,
of salient material in a statistical model can be considered as a mechanism by
which large-scale structure and coherence is achieved. A model aiming to fulfil
these processes is described in detail in Chapter 3.

As was found in the similarity literature, many of the features important for
the perception of large-scale structure are highly context dependant. These de-
pendencies could be categorised in two ways: the first as stylistic conventions—
some variation is made in ways that are stylistically predictable, such as ca-
dential embellishments in classical-era music, and so may still be judged as
highly similar in the context of style; the second involves piece-specific rules—
particularly how the work’s motifs produce a sense of thematic development.

The application of statistical modelling to music has proved itself to be suc-
cessful in creating predictions for pitch likelihoods based on style (Pearce, 2005,
2018). While the accurate modelling of statistical properties of style is not
needed to achieve the aims of this research—all that is required for stylistic ele-
ments to be accounted for, rather than distinguishing between disparate styles—
the contextual information it can provide is valuable. This can prove highly use-
ful for determining the stylistic variation ofmotifs, allowing us to find the extent
to which motivic embellishments can be predicted by a piece’s style. The idea of
style in this way is proposed by (Meyer, 1989) as the cultural constraints dictat-
ing compositional decisions—giving rise to notions of harmony and tonality, as
well as motivic features in melody. The transformation of these constraints into
grammatical probabilities through exposure to a music generates the syntax we
consider to be the style (Pearce & Rohrmeier, 2018; Rohrmeier & Pearce, 2018).

Aside from stylistically-congruent embellishment of thematic material, ma-
terial can also vary in terms of the individual thematic development of a com-
position. This aspect provides the key to examining structure in this research,
with little previous work tackling this concept. Temperley (2014) looks at them-
atic development in music, characterising its variation in terms of ‘information
flow’. A corpus analysis of folk song themes with intra-opus repetition shows
an expansion in complexity of material upon repeat—often withmore chromat-
icism and expanded interval sizes. Temperley (2014) reasons this development
is in order to maintain an optimal information density (negative log of prob-
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ability), maintaining interest at a suitable level; he does not, however, take into
account properties of stylistic variation.

2.7 Summary

This chapter presented a review of the elements of psychological and computa-
tional researchmost relevant to the topic of this thesis. The relatively small num-
ber of studies that specifically investigate the perception of large-scale structures
in music prove to be rather inconclusive in their outcomes; as discussed, many
face problems in sample size and assumptions in methodology, thus reporting
no significant indication for listeners’ understanding of structure in this way.
Thework ofMcAdams et al. (2004), Tan and Spackman (2005), Tan et al. (2006),
Lalitte and Bigand (2006), Granot and Jacoby (2011), Granot and Jacoby (2012),
and Farbood et al. (2015), all provided results that suggest that listeners could
perceive differences between musical stimuli in terms of large-scale structure.
The work of Karno and Konečni (1992), Tillmann and Bigand (1996), Eitan
and Granot (2008), and Rolison and Edworthy (2012) all found no evidence to
suggest such structures can be perceived. Although a small collection, smaller
still when considering a focus on thematic structure, more recent approaches
to this field have produced encouraging evidence to the contrary. Even so, the
underlyingmechanisms that may facilitate the perception of thematic structure
are still little researched.

Research into the perception of musical similarity and repetition in music,
when combined, provided some insight into the ways in which thematic struc-
tures may be perceived, and also uncovered additional concerns for this topic;
the nature of similarity is highly context dependant. By creating a probabilistic
model informed by statistical learning, large-scale thematic structure in music
can be examined though repetition of salient material, provision of similarity
contexts through stylistic congruity and thematic development, and emergence
of large-scale hierarchical structure. Such a model can provide a foundation
against which hypotheses of the cognitive mechanisms underlying the percep-
tion of thematic structures can be tested.

The following Chapter 3 aims to develop such a model, making use of some
of the computational models summarised here in characterising similarity and
identifying phrase boundaries. The behavioural experiments of the later part of
this thesis aimed to test the model with reference to the behavioural studies of
structure perception discussed in this chapter.
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Chapter 3

Modelling Thematic Structure

3.1 Overview

This chapter sought to provide a concrete specification of the cognitive pro-
cesses involved in the perception of large-scale thematic structure. In this chap-
ter, it is proposed that statistical learning provides a plausible underlying mech-
anism for the perception of thematic structure. According to this proposal,
large-scale thematic structures are perceived through implicit recognition of
statistical regularities learned through both exact and inexact repetition and
variation of material. Based on this proposal, a probabilistic computational
model of the perception of thematic structure was implemented.

Within this chapter, first, the case for an understanding of thematic struc-
ture based on the learning of intra-opus statistical regularities is given, provid-
ing the motivation for the modelling presented here. Second, the chapter intro-
duces IDyOM (Pearce, 2005), a computational model of auditory expectation
which provides a platform onwhich themodelling of thematic structure is built,
and discusses its relevant features and the ways in which this base is extended
through the research of this thesis. Third, themain components of themodel of
thematic structure itself are summarised, includingmethods for the detection of
thematic candidates and repeated thematic material, based on their intra-opus
statistical regularities. Finally, the chapter presents a series of four measures of
thematic structure, based on this model, that provide a foundation to underpin
the empirical research of this thesis.

3.2 Statistical learning of thematic structure

Repetition and structure are intrinsically linked inmusic; the idea that, through
the repetition and variation ofmaterial, large-scale structures can be created has
a long history in music theory (Epstein, 1980; Meyer, 1989). The basic building
blocks of this repeated material are small salient landmarks—or motifs—the
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combination and variation of which create thematic development. The motivic
structuring of music in this way is certainly no recent idea; the concept of the
motif as the building block of a musical work can be found in many manuals of
composition (even as early as Galeazzi, 1796/2012). Through such inclusion of
repeated motifs, sections of a composition are explicitly linked, and a coherent
sense of large-scale unity can be achieved across the work. It is also consist-
ent with the implications of cognitively informed models of music, such as the
hierarchical structures of Lerdahl and Jackendoff ’s (1983) Generative Theory of
Tonal Music.1

Large-scale structure—the global organisation of a work’s material—
encompasses several different concepts. First, a distinction can be made
between thematic and tonal structures, the first concerning the structuring of re-
peated musical material, the second the hierarchical organisation of harmonies
relating to key. The effects of large-scale structures over a composition can be
summarised by the term unity (or coherence)—the extent to which all elements
of a piece can be considered to form a unified coherent whole—the perception
of which, on the part of a listener, requires that a work’s material is sufficiently
closely related to be experienced as belonging to the same entity.2 For both
thematic and tonal structures, repetition of material plausibly leads to an in-
crease in its perceived salience and a greater sense of unity. It is large-scale
thematic structure with which the current research is concerned.

Repetition seems very likely to play an important role in the perception of
large-scale thematic structure but has received relatively little attention in em-
pirical research on music perception, producing limited convincing evidence
(as reviewed in the previous chapter). In part, this may reflect the lack of a
formalised model characterising the cognitive processes involved in perceiving
thematic structure. The present chapter presents an outline of such a formalised
model. The model was based on statistical learning (Saffran et al., 1999) and
probabilistic prediction, since repetition plays to the strengths of such accounts
of music perception. The model is based on the premise that motivic salience
and repetition can be understood in terms of the positive effect they have on
predictions made by a listener as a composition progresses, while motivic de-
velopment could be viewed as variation according to learned regularities, based
either on intra-opus (within a composition) thematic or extra-opus (between
compositions) stylistic models.

The goal of the present research was to understand the perception of them-
1The Generative Theory of Tonal Music’s Time-Span Reduction Preference Rule of parallelism

(TSRPR 4)—to assign parallel heads in the hierarchy to time spans if their material is similar—
when applied on the scale of a complete composition, gives some account of large-scale struc-
ture created through repetition.

2Form, from music theory, is a specific manifestation of large-scale structure, often implying
a relationship between the construction of a work and certain stylistic thematic and tonal
conventions—such as in sonata form (Whittall, 2001).
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atic structure by breaking-down the overall process into its component parts;
to logically sequence how this process may function in cognition—and, equally
importantly, where it fails, leading to the weak results of past behavioural stud-
ies (as previously reviewed). For this to be fulfilled, a probabilistic model
of the cognitive mechanisms hypothesised to underlie perception of thematic
structure in music was developed based on the Information Dynamics of Music
(IDyOM) framework (Pearce, 2005, 2018). Through this model, a set of fun-
damental components were developed, with which thematic structures may be
measured.

3.3 Modelling statistical learning

Cognitivemodelling of thematic structure in real-worldmusic provides advant-
ages over the stimulus manipulations used in existing experimental work. We
can avoid artificially manipulating a composition’s structure—decisions that
have to be motivated by some prior knowledge or expectation about the func-
tioning of form—and compositions can be used in their original entity, greatly
aiding ecological validity. In modelling large-scale thematic structure, it is pos-
sible to propose explicitly and testmultiple hypothesised cognitivemechanisms,
rather than trying to interpret the implications of one ormore experimentalma-
nipulations for underlying cognitive mechanisms.

A probabilistic interpretation ofmusic, founded in statistical learning, lends
itself particularly well to this task. Using such a conception, we can construct
a model of large-scale thematic structure from small base-units of repetition.
Repetition can function as it does in practice, allowing for the inclusion of
variation and embellishment. Employing statistical learning in this way also
provides a fruitful way of operationalising perceived coherence or unity—high
intra-opus predictability would indicate greater structural unity.

3.3.1 IDyOM

The present implementation of a model of thematic structure uses as its basis
the InformationDynamics ofMusic, or IDyOM, framework to represent the stat-
istical learning of musical material (Pearce, 2005, 2018). As a computational
model, IDyOM aims to simulate the cognitive processes of statistical learn-
ing for symbolic representations of auditory sequences, generating conditional
probabilities for sequential events.

Specifically, given a sequence ek1 of symbolic events with total length k,
IDyOM can be used to obtain the conditional probability of each event, given
the preceding context and the prior experience of the modelm. This likelihood
can be estimated using a finite context of the n preceding events.
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pm(ei|ei−1
1 ) ≈ pm(ei|ei−1

(i−n)+1), ∀i ∈ {1, . . . , k}

These distributions are computed using the Prediction by Partial Matching
(PPM*) algorithm, a variable-order Markov model that tallies the occurrences
of subsequences (or n-grams) of varying length within a training sequence,
smoothing between predictions of different orders (Bunton, 1997; Cleary &
Teahan, 1997). Due to this smoothing, the contexts used for prediction need
not have a fixed maximum length.

Given the conditional distributions of estimated likelihoods returned for
each note-event, a value of information content, h (measured in bits), provides a
measure of unpredictability, or surprisal, of the note that actually occurs (where
p is the estimated probability for the occurring event in the distribution), given
the context and the prior experience of the model.

hm(ei|ei−1
1 ) = − log2 pm(ei|ei−1

1 )

Low information content indicates a predictable note-event—one where
much of the information provided is redundant—whereas high information
content indicates an unexpected note-event.

IDyOMmay be configured as a short-termmodel (STM)which learns incre-
mentally from an initially empty state within a given musical sequence—such
as the pitches of notes in amelody—representing a listener’s short-term acquisi-
tion of statistical knowledge about repeated structure within an individual piece
of music (i.e., mx = ei−1

1 ). It may also be configured as a long-term model
(LTM), in which case it is trained on a separate set of musical sequences, repres-
enting long-term learning of the statistical structure of a musical style, before
being applied to predicting the notes of a musical composition.

To date, IDyOM has been used to model perceptual expectation and un-
certainty (Egermann et al., 2013; Hansen & Pearce, 2014; Hansen et al., 2016;
Omigie et al., 2012; Omigie et al., 2013; Pearce, 2005; Pearce, Ruiz et al., 2010;
Sauvé, 2018), boundary perception (Pearce, Müllensiefen & Wiggins, 2010),
metre induction (van der Weij et al., 2017), similarity (Pearce & Müllensiefen,
2017), memory (Agres et al., 2018), emotional response (Egermann et al., 2013;
Gingras et al., 2016) and aesthetic experience (Cheung et al., 2019; Gold et al.,
2019).

While the hypotheses underlying the present approach are sufficiently gen-
eralisable that any statistical predictive framework for symbolic music could
be applied, IDyOM (and, more broadly PPM) provides certain features that
make it particularly advantageous. Firstly, the ability to configure separately
an LTM, trained on the entire corpus, and STM, constructed only for an indi-
vidual composition, allow a distinction to be made between predictions deriv-
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ing from inter-opus stylistic (including tonal) knowledge, and predictions based
on thematic structure within a work (reflecting its internal unpredictability).
Secondly, the dynamic nature of IDyOMSTMs provides an onlinemodel ofmu-
sic listening—all predictions are made sequentially as a work progresses—that
can be used to simulate online continuous perception of music; a feature that
precludes many techniques from Music Information Retrieval (see Chapter 2).
Finally, models generated using different representations of the musical surface
(detailed below) can be directly compared, providing insight into the specific
representations that are most relevant to the perception of thematic structure.

An outline as to IDyOM can form the basis of a model of large-scale them-
atic structure is as follows. A composition with a large amount of repeated
material will have a low average internal unpredictability (mean information
content for the STM), indicating that it has high thematic unity. Thus, IDyOM
usefully embodies the hypothesised links between repetition, prediction and
thematic structure. Furthermore, inexact repetitions still have some degree of
increased predictability by virtue of the variable-order smoothed Markov mod-
elling of PPM*, and the multiple levels of abstraction provided by the use of
different viewpoint representations. Embellishment of repeated material in ac-
cordance with stylistic conventions3 can be accounted for by searching for ma-
terial possessing a low information content for the LTM, making it stylistically
coherent (with respect to the corpus), but relatively high information content
in the STM, making it thematically less coherent.

3.3.2 Representations of the musical surface

IDyOM takes as its input musical sequences—as initially used here, mono-
phonic melodies. Through its implementation of a multiple-viewpoint frame-
work (Conklin & Witten, 1995), IDyOM has the ability to generate probabilit-
ies based on different representations of the musical surface. As the present
research aimed to tease apart the musical features that have the most pro-
nounced effect on perception of thematic structure, an initial selection of six
pitch-domain and four rhythm-domain representations was made to best cover
important features in these domains.4

In the pitch domain, the selection covered several different levels of abstrac-
tion:

• Pitch, the exact MIDI chromatic pitch number—unable to account for
transpositional invariance

3An example is given by material becoming increasingly scalic when approaching a cadence
in a work from the Classical era. Variation not due to this stylistic embellishment could be
considered thematic development, taking place over the course of the piece.

4A complete list of the representations available to IDyOM is given at https://github.com/
mtpearce/idyom/wiki/List-of-viewpoints.
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• Pitch interval, the number of (directional) steps between pitch values—
that is transposition invariant (i.e., does not distinguish between the same
material at different transpositions)

• Pitch contour, whether the pitch ascends, descends, or remains the same

• Scale degree’, representing pitch relative to a tonal centre

The final two pitch representations used were linked representations that
assume alphabets corresponding to the Cartesian product of the alphabets of
their two respective components:

• Pitch linked with pitch interval

• Pitch interval linked with scale degree

Likewise, the representations of rhythm consisted of different levels of ab-
straction:

• Inter-onset interval (IOI), the time interval between event onsets

• IOI ratio, the relative size of an IOI compared to the previous IOI

• IOI contour, whether the IOI lengthens, lessens, or remains constant

• Event position in bar linked with bar length, the placement of events re-
lative to the start of the current bar distinguishing metres with different
bar lengths

This set of representations allowed for models to be used in competition
with each other, comparing the ability of each to predict elements of thematic
structure using a series of metrics generated within the model. All of these
representations were used in examining the modelling of thematic structure
when applied to a large corpus of western-classical melodies (Chapter 4), with
single representations for pitch and rhythmic domains selected (pitch interval
and inter-onset interval, respectively) for use in the modelling of behavioural
data (Chapters 5, 6, 7 and 8).

While representations in both pitch and rhythmic domains were used here,
it should be noted that rhythmic representations of music behave substantially
differently to those of pitch. Specifically, it is perfectly viable in the rhythmic do-
main to have only a single note duration (or perhaps a single rhythmic pattern)
for the vast majority of a composition, with the useful structure lying wholly in
the pitch domain in these instances.5 The effects of these isochronous or iso-
rhythmic compositions have the ability to mask other effects of repetition and

5Such an effect is particularly common in the music of J. S. Bach, for example, the first
prelude of The Well-Tempered Clavier or as can be found in his Cello Suites.
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structure when using a rhythmic representation. More generally, for the styles
of western-classical music used in the analyses of this thesis, it seems likely that
pitch structure offers stronger influence on thematic structure than rhythmic
structure.

3.3.3 Modelling polyphony

The PPM algorithm models sequences of symbolic events, providing event-
by-event estimations of unpredictability. Likewise, when modelling music,
IDyOM makes its estimations based on sequences formed from discrete sym-
bolic representations of the musical surface; primarily, these representations
consist of melodic pitch or rhythmic features (for example, modelling patterns
in the pitch of note-events). As PPM models a single sequence at one time,
IDyOM, when modelling melodic content, is applied to monophonic mater-
ial.6,7 While the syntactic structures of musical melody that IDyOM is con-
cerned with, and the thematic structures hypothesised in the current research,
exist in the musical surface (as the large amount of research using the frame-
work has demonstrated), they are not necessarily limited to it. Monophonic
music only forms a small portion of the music in the Western-classical canon,
with polyphonic works being widespread—often incorporating multiple simul-
taneous melodically-relevant lines. For behavioural applications of such mod-
els, as the length of the musical sequences of interest increases (reaching the
large-scale structures that are the focus of this thesis), and so retaining listener
engagement and attention becomes a greater consideration, the ability tomodel
polyphonicmaterial would provide an important step towards even greater eco-
logical validity.

The modelling of polyphonic music presents many complex challenges; the
individual note-events that make up polyphonic material can be organised in
multiple combinations in different dimensions. The music could be considered
in its ‘vertical’ dimension—taking slices of all note-events occurring at a given
point in time (which provides a harmonic representation, to varying degrees
of abstraction)—or in a ‘horizontal’ dimension of multiple perceptually inde-
pendent voices (Cambouropoulos, 2008). For the task of modelling thematic
features in music, it is this horizontal aspect of music that is of chief interest.

For an example of the importance of the horizontal aspect in perceiving
thematic elements, we can consider the processes needed in a composition con-

6Under the multiple-viewpoint framework used by IDyOM (Conklin &Witten, 1995; Pearce,
2005) multiple representations of the surface may be used to estimate likelihoods for events at
any one time; however, crucially, while each event is represented multiple times with different
representations, only a single sequence of events occurs.

7Polyphonic material can still be modelled by its harmonic content if all parts are reduced
to a single sequence of symbols (i.e., chords) representing the harmonic attributes at a given
point (Harrison et al., 2020).
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sisting of two perceptually-distinct voices. For a given repetition of material
occurring in either of the voices, we are interested in how predictable the repeti-
tion is in the context of the composition up to that point—the context provided
by both voices. This predictability, therefore, should not be dependent on the
voice in which the original material occurred, but rather, each voice should be
able to contribute equally to predictability of material in either voice.

This concept can be implemented by expanding the use of PPM modelling.
Given N multiple streams, each of which may contain a different number of
events, (sN1 )

kj
1 , events can be modelled based on their preceding context in the

same sequence.

pm
(
sj,i|(sj)i−1

1

)
≈ pm

(
sj,i|(sj)i−1

(i−n)+1

)
, ∀i ∈ {1, . . . , kj}, ∀j ∈ {1, . . . , N}

In applications in which no dynamic learning is needed—such as in the ex-
ample given above, should we only be concerned with modelling the predictab-
ility of a single point in the composition—all of the distinct streams in the train-
ing material can be used as independent sequences in the training of a single
model that is then used to predict the note-events of the target material, given
its context (the preceding n-grams) in its specific voice (for example, this could
be achieved using an IDyOM LTM, trained on sequences from within the com-
position, rather than from a stylistic corpus). To dynamically train and predict
events in multiple parallel sequences or streams (as IDyOM’s STM does using
single-voice sequences), a variant of PPMcan be implemented inwhich amodel
learns incrementally from all sequence streams, adding n-gram subsequences
of different orders in individual sequences to a shared representation, then pre-
dicts events in each sequence given the context provided in that stream. As the
model proceeds through the composition, events are added to their respective
n-grams as they occur.8 As illustrated in Figure 3.1), for the event sj,i (event i
in voice j), the experience of the STM is given by:

mx =
[
(s1)

max{l | t1,l < tj,i}
1 , ..., (sN )

max{l | tN,l < tj,i}
1

]
This technique relies on being able to access the perceptually independent

streams within a polyphonic composition. The processes by which listeners
are able to perceive multiple parallel streams, and how these streams may be
computationally identified, are the focus of the large body of voice separation
and auditory stream analysis research (Bregman, 1990; Cambouropoulos, 2008;
Sauvé, 2018; Temperley, 2009). While the modelling of this process is beyond

8Estimations of likelihood are made for all events at a given time-point, before updating the
training model. This prevents voice ordering from influencing predictions, as may otherwise be
the case when events in multiple voices occur at the same time-point.
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Figure 3.1: Illustrative example of a polyphonic PPM STM, J. S. Bach, Invention
in F minor, No. 9, BWV 780. For a given note-event for which a likelihood is to
be estimated (bar 5, lower voice, marked with asterisk), the context for prediction
is bounded by a solid box (i.e., in this case with an order of six), and the model’s
experience bounded by dashed boxes. As can be seen, material useful for predicting
the target note occurs in both voices, particularly in the opening of the upper voice

the scope of this thesis, horizontal thematic structures can still be modelled
in a limited selection of real-world polyphonic compositions, under specific
assumptions. Compositions with multiple voices need to contain:

1. Only a small number of distinct voices to reduce the cognitive load that
may lead to voices being combined into a smaller number of streams

2. Limited unison, octave, or other parallel movement between voices (prin-
ciple of tonal fusion and pitch co-modulation principle, Huron, 2001)

3. Limited homorhythmic passages (onset synchrony principle and synchron-
ous note principle, Cambouropoulos, 2008; Huron, 2001)

4. Limited possibility ofmaterial possessing ‘implied polyphony’, whenmul-
tiple perceptual streams can outlined by a single monophonic line (Davis,
2006)

5. Substantially melodic material in each voice (i.e., a voice should not only
contain accompanying material).

Due to the exploratory nature of the horizontal probabilistic modelling de-
scribed here, the implementation and use of these techniques were limited to
the later behavioural experiments presented in this thesis (Chapters 7 and 8).
Compositions of two voices (meeting the other assumptions above) were used
as stimuli, alongside the monophonic stimuli used throughout.

3.4 Modelling thematic structure

The purpose of the computational model outlined in this chapter is to imple-
ment an integrated collection of hypothesised cognitive processes that produce
a set of quantitative measures of thematic structure, such that a given composi-
tion can be described in a multidimensional space. Within this space, the com-
position can be defined as a point, representing the extent to which it possesses
various features of hypothesised importance to the perception of thematic struc-
ture. To achieve this, themodel also needs to be able to extract potential themes
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Figure 3.2: Outline of the statistical model of large-scale thematic structure using
the IDyOM framework.

and repeated thematic material from the works of the corpus. For a given com-
position, multiple IDyOM models were applied, based on different training
material, representations of its musical surface and LTM/STM configurations.
These statistical models were combined and used to simulate listeners’ percep-
tions of repetition and variation as it varies dynamically throughout listening
to the composition.

An overview of themodelling process for a given composition from a larger
corpus is as follows (and illustrated schematically in Figure 3.2). The symbolic
music data of the large corpus of compositions was first used to train an LTM;
this corpus-trained LTM was used to calculate information content values for
each note-event in the target composition. Training on the entirety of the cor-
pusmade these LTMsmodels of stylistic structure, generating predictions based
on learned stylistic conventions (thus yielding measures of stylistic unpredictab-
ility).

The training of the LTMs over the whole corpus also provided the full alpha-
bet covered in that representation—for example, the complete list of absolute
pitch values or the entire collection of note durations used in the corpus. Since
PPM* produces non-zero probabilities over the entire alphabet defined for the
model, information content is sensitive to alphabet size; by maintaining the use
of these full alphabets in the subsequent creation ofmodels that are trained only
on subsets of the corpus, these information content values are directly compar-
able between all works for a given representation.

A short-term model for the composition was then implemented. Once
again, an information content value was generated for each note-event, based
on the online accumulation of context data within that composition. These in-
formation contents provided a measure of the internal unpredictability of each
note-event in a composition.
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In addition to the extra-opus LTMs and intra-opus STMs, a third IDyOM
model type was implemented and used in this analysis. Using a theme-
detection model based on the patterns present in the STM (see Figure 3.2; de-
scribed fully below), thematic candidates were identified within the composi-
tions. For each composition, these thematic candidates were then used as the
training material for new models, one for each candidate. These models pro-
duce information content for each note-event giving the predictability of that
event relative to the chosen thematic parent.

3.4.1 Large-scale structure of internal unpredictability

Based on the principles of statistical learning, repetitions of material become
more predictable as they occur successively. In the information content values
of internal unpredictability, estimated by the IDyOM STM, improved predic-
tion of these later repetitions results in a reduction of information content. The
dynamic online processing of the STM means that all repeated material in a
composition is subject to this effect. If material is repeated a greater number
of times, its information content will continue to be lowered. Figure 3.3 dis-
plays the internal unpredictability (information content) for each note-event
modelled using the pitch interval representation in the upper-most voice of
the first movement of Mozart’s Piano Sonata No. 12, K. 332 (serving as an ex-
ample throughout this chapter). Visually, the prediction set provided by the
STM for this composition contains several prominent areas of densely pop-
ulated low-information-content (highly predictable) events, with a complete
absence of more unpredictable material. These correspond to the exact repe-
titions of sections in the movement. The first, between 280 and 558 quarter-
notes from the start of the piece, is identifiable as the repeat of the sonata
form exposition section—compressing the same patterns as the first exposition
into a lower range of information content. Across the piece, repeated mater-
ial with high internal predictability (low information content) is interspersed
with higher-information-content, more unexpected, pitch intervals; however,
repeated thematic material can still be distinguished. The visibly different sec-
tion at 559 quarter-notes corresponds to the start of the development section.
Here patterns of thematic statements—not necessarily in their exact form—
intersperse regions of more distantly-related material.

The clear identification of repetition patterns in the STM is undoubtedly ob-
scured by other factors contributing to these information contents; even over
the duration of a single composition, the model is beginning to learn other stat-
istical regularities present—forming a basis for tonality and style that is inde-
pendent of thematic repetition. Were our perception of thematically-salient
material to function solely in this manner, it would take many repetitions of a
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Figure 3.3: Information contents generated by a pitch interval interval short-term
model predicting each note in Mozart’s Piano Sonata No. 12, K. 332, first movement.
The histogram in the right subplot shows the overall distribution of information con-
tent.

theme for reliable identification—while possible, this is not a wholly convincing
representation of our cognitive processes. More likely, this statistical salience is
reinforced by other mechanisms and prior knowledge of stylistic convention—
phrasing, positioning, local melodic structure, and others. We assume, as a first
approximation, that these conventions manifest themselves together under the
concept of theme, in a way more imminent and meaningful than mere thematic
repetition; our perceived salience through repetition may be bolstered through
the identification of one or more themes, patterns that play a particularly im-
portant role in perception of thematic structure. In the rather noisy STM, the
identification of possible thematic candidates allows repetitions of derived ma-
terial to be prominently predictable.

3.4.2 Theme-detection model

The computational identification of themes in music is an extremely challen-
ging task. As summarised in Chapter 2, Methods for general repetition detec-
tion in symbolic music have been produced for a wide range of purposes (a
summary of this body of research is given in Janssen et al., 2014). However, all
of these methods operate in a manner contrary to that needed for our model
of large-scale thematic structure—they first identify repetitions throughout a
composition, then select the most likely theme. For a cognitive model simulat-
ing perception of thematic material on first listening, detection of themes must
precede detection of thematic repetitions, and both must be achieved dynamic-
ally on a single passing of the composition. For many computational methods,
there is also a significant difficulty in determining a theme’s length.

This chapter presents a method by which values of internal unpredictability
generated by the IDyOM STM can be employed to find potential themes—or
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Figure 3.4: Theme detection for Mozart K. 332, first movement, exposition. Four
onsets were identified at 0, 60, 121 and 253 quarter-notes, based on pitch interval
internal unpredictability. Thematic candidates were identified by phrase mean inform-
ation contents being greater than a threshold of a 0.5 SD above the cumulative mean
(subplot 2), and having a difference in phrase minimums greater than 1 SD (subplot 3).

thematic candidates—in an incremental online manner, avoiding the need for
exact repetition matching. While the level of definition in the STM informa-
tion contents is not, in practice, great enough to allow for direct identification
of thematically-derived material (as exemplified above), it can clearly identify
the locations of multiple new thematic candidates by the presence of sudden in-
creases in information content. If a composition were to contain a single them-
atic candidate—presented at the beginning—from which all subsequent mater-
ial derived in some way, the information contents of the STM would show a
decrease in overall information content as the composition progressed. The in-
troduction of a subsequent new thematic candidate in the composition would
present unrelated, and so unpredictable, material—causing an increase in in-
formation content (as illustrated in Figure 3.4). A similar approach in MIR has
been found to be successful in the identification of segment boundaries in au-
dio self-similarity matrices based on novelty and repetition (Nieto et al., 2020;
Serra et al., 2012).

In order to give some estimation as to the length of a thematic candidate,
it is useful to take into account the sequential grouping of material in music
perception. Here, grouping boundaries between phrases were identified using
the Grouper algorithm of Temperley (2001).9 As summarised in the previous
chapter,Grouper segments amelody according to three Phrase Structure Prefer-
ence Rules (PSPRs) (Temperley, 2001, pp. 68–71): the ‘gap rule’, PSPR 1, tries to

9Grouper was used via the implementation available in The Melisma Music Analyzer (Sleator
& Temperley, 2003) accessible at https://www.link.cs.cmu.edu/music-analysis/.
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locate boundaries at large IOIs or large offset–onset intervals; the ‘phrase length
rule’, PSPR 2, favours phrases that are close to a predetermined length—here,
ten notes;10 and the ‘metrical parallelism rule’, PSPR 3, favours boundaries oc-
curring on the same position within a bar. Although it has been demonstrated
that IDyOM can be extended to provide a probabilistic method of boundary
segmentation (Pearce, Müllensiefen & Wiggins, 2010),Grouper continues to be
one of the best performing andmost robustmethods available (Cenkerová et al.,
2018). Its relative simplicity allows for it to be adapted and implemented incre-
mentally note-by-note—rather than offline, as originally intended—producing
similar boundary locations.

The theme-detection model defined thematic candidates based on sequen-
tial comparisons of Grouper-segmented phrases to the cumulative body of all
preceding material (i.e., all of the composition before a given phrase). The first
event in the composition was considered an implicit beginning of a thematic
candidate. Otherwise, a candidate was declared at the start of a phrase based
on two conditions.

1. The mean internal unpredictability of the phrase was greater than the cu-
mulative mean of the preceding material by at least one-half the standard
deviation. For a sequence of n segmented phrases, sn1 , with ln1 denoting
the number of note-events in each phrase, this condition for phrase si

was met when:

1

li

li∑
j=1

si,j <
1∑i−1

k=1 lk
[s1,1 + ...+ si−1,li−1

] + 0.5σ[s1,1, ..., si−1,li−1
]

2. There was a complete absence of low internal unpredictability material
in the STM, indicated by the phrase minimum information content (i.e.,
the note with the lowest information content in the phrase) rising by
more than one standard deviation over the minimum of the preceding
phrase.11 This condition for phrase si was met when:

min{(si)li1 } > min{(si−1)
li−1

1 }+ σ[s1,1, ..., si−1,li−1
]

The values of these thresholds were chosen through manual optimisation
with the intention of providing a robust identification of significantly novel ma-
terial within all compositions. Figure 3.4 illustrates this process in the detection

10This value was arrived at by Temperley through an optimisation of the algorithm to an
annotated subset of the Essen Folk Song Collection (Temperley, 2001, p. 74).

11This process is the same when modelling polyphonic compositions as it is described here.
For polyphonic compositions, an initial thematic candidate was selected at the beginning of each
voice and a dynamically-trained STM was used to identify novel material in all voices based on
information content.
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of thematic candidates in the Mozart K. 332 movement’s exposition section,
where, in this instance, all the detected candidates lie. Four thematic candid-
ates were identified with onsets at 0, 60, 121 and 253 quarter-notes.

The precise length of thematic candidates, once a start point is detected, is
still unknown. Using the phrase boundary segmentation, this length can be
considered a free parameter, defined in terms of a given number of phrases.
A length of two phrases, for example, functions well to account for the ante-
cedent/consequent phrase pattern in much music of the Classical period and
is used in the present analysis. To limit the number of models, theme detec-
tion was run using a single representation for each domain: the pitch interval
(transposition insensitive) representation for the pitch domain, the inter-onset
interval representation for the rhythmic domain. Thematic candidates were re-
turned as symbolically notated fragments, used in the training of a new set of
statistical models for the composition.

It should be stressed again that the thematic candidates extracted by the
model do not necessarily possess all the properties traditionally associated with
the concept of theme in music analysis. True themes possess additional percep-
tual salience. In many cases this salience may occur through the repetition of
the theme’s material, but also through other influences—such as form, where
there is often a strong tonal element not covered at all here. This process is not,
therefore, intended as a tool by which a new analysis can be performed. Them-
atic candidates here should be considered simply as regions within the piece at
which novel material is introduced. The extent to which thematic candidates
actually contribute to the model’s output—and are likely to be considered as
actual themes—is determined through the identification of repetition of their
material.

The four, two-phrase thematic candidates extracted from the example K.
332 movement using the pitch interval representation are shown in Figure 3.5.
As with many of the opening movements of Mozart piano sonatas, copious
analyses for this work exist belonging to numerous different schools (Allan-
brook, 1992; Beach, 1994; Beghin, 2014; Caplin, 2001; Galand, 2014; Hatten,
2014; Hepokoski & Darcy, 2006; Irving, 2010; Kinderman, 2006; Rumph, 2014;
Schenker, 1994). It is perhaps unusual in that it contains more unique them-
atic material than may otherwise be expected in a sonata form exposition, and,
although a direct alignment with any of these is not intended, the comparison
belowof the extracted thematic candidates to those identified bymusic theorists
provides a concrete illustration of how the theme-detection model performs.

A brief summary of a formal analysis of this sonata form exposition section,
based on those of Beach (1994) and Kinderman (2006), is as follows: there is
an opening theme that (slightly unusually) is three phrases long (bars 1–12);
this is followed by a new thematic idea (bars 13–22) in the second half of this

Chapter 3. Modelling Thematic Structure 56



2 3 4 5 6 7

21 22 23 24 25

42 43 44

86 87 88

34& b1
8

& b2

& b3

& b4

˙ œ ˙ œ ˙ œ œ œ œ Œ œ œ œ œ œ ™ œj ˙ ™ ˙ ™
œ œ Œ œ œ Œ œ# œ ™ œœœ œœ œ œœœ œ œ œ œ ™

œJ ‰ œJ ‰ œJ ‰ œ ™ œJ œ œ œ œ ™ œJ ˙ œ

≈ œ œ œ ≈ œ œ œ ≈ œ œn œ œ Œ œ ™ œœ ˙ œn ™ œœ ˙

Figure 3.5: Extracted thematic candidates from Mozart K. 332, first movement.

first thematic group (Beach, 1994); a dramatically different transition passage
in bars 23–40 occurs in the relative minor (Kinderman, 2006, p. 52); then, the
second thematic group is presented in the dominant (bars 41–48)—variations
of thismaterial alternate with darker syncopated passages (bars 56–66) until the
closing codetta of the exposition in bars 86–93 (Kinderman, 2006, p. 52). The
components of this analysis are shown in the annotated score in Appendix A,
alongside the four detected thematic candidates and modelling values.

In themodel’s detection of thematic candidates, we can see, in Figure 3, that
many of these inner thematic ideas within the wider groups were not found to
be distinct-enough for separate classification (at least in part due to many of
their distinguishing features being lost in the removal of texture, harmony and
rhythm). Instead, whatwas identified (in Figure 3.5) was (1) the opening theme;
(2) the start of the transition section, prepended by a small amount of material
leading into it;12 (3) the second subject; and (4) material leading into, and the
beginning of, the codetta. After the initial theme, the thematic candidate of
the transition section was found to be highly prominent, even more so than
the second subject which only just qualified above the threshold for mean in-
formation content. The codetta material presented the possibility of a spurious
classification—the material was novel in the STM, but it might be considered
to contain purely stylistic content that not directly relevant to thematic organ-
isation.

When compared to the traditional analyses, these thematic candidates did
not completely cover all the themes of the original. In particular, the second
theme in the first thematic group (bars 13–22) was not identified; the pitch con-

12This premature thematic-candidate identification could likely be attributed to a small differ-
ence in phrase boundary placement by Grouper, when compared with those made in the analyses
described above. The inclusion of the C-sharp (bar 22, beat 3) in the preceding phrase, rather
than the following, altered the phrase in which novel pitch content occurs.
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tent of these phrases was not sufficiently novel for a candidate to be detected.
However, using the counterpart rhythmic theme detection (using inter-onset
interval) a candidate was located at this position in the music.

The detection using inter-onset interval identified a different set of them-
atic candidates. Aside from the opening candidate, thematic candidates were
identified beginning at bar 12, beat 3 and at bar 86, beat 3. The latter two
candidates were notably different from those identified using the pitch inter-
val representation. The placement of the second candidate matched that of the
second theme of the first thematic group in the traditional musical analyses of
the work. This candidate was not identified using pitch interval as the majority
of its novelty only exists in the rhythmic domain. The third inter-onset inter-
val thematic candidate overlapped with the fourth identified by pitch interval,
the latter occurring in the preceding phrase. Both versions identify material at
the start of the codetta, however, that of inter-onset interval more accurately
identified its starting point. The identification of these two thematic candidates
indicates that—for non-isorhythmic compositions—addition of the rhythmic
domain can better inform how thematic material is identified.

3.4.3 Repetition-detection model

By pre-training an IDyOM model on the data for a single thematic candid-
ate (creating theme-trained models—TTMs), models were created that could
provide a predictive probability for each note-event in a composition, based on
the thematic candidate; using these models, the noise in the STM internal un-
predictability was largely reduced as the models are not incrementally updated
with every new note-event in the composition. When multiple thematic can-
didates were identified in a composition, TTMs were constructed for each one,
creating separate models for each candidate beginning at that candidate’s on-
set. Figure 3.6 shows the note-event information contents generated for the
first movement of Mozart K. 332 when a model was trained on each of the four
thematic candidates extracted using the pitch interval representation (shown
in Figure 4). The resulting note information contents can then be classified as
to whether or not they constitute thematically-derived repetitions (or ‘motivic’
material). Once again, this process needed to function incrementally within the
work’s progression.

Models generated in this way have the property of producing clearly strati-
fied patterns of information content, reflected in a degree of bimodality in their
distribution. The information content of each note-event can be considered as
either belonging to a low-information-content thematic distribution, or to the
high-information distribution of the remainder.

To perform this classification, clustering with Gaussian Mixture Models
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Figure 3.6: Prediction sets and their distributions for the four theme-trainedmodels
of Mozart K. 332, first movement. A thematic threshold was generated by increment-
ally updated GMMs at the phrase level—material below this boundary was classified
as thematic.

(GMM) was applied to the distributions (D. Reynolds, 2009). Two Gaussians
were fitted to the information content data using expectation–maximisation
(Dempster et al., 1977). The starting parameters of the GMM were calculated
so that the intended distributions were identified—for example, so that the
two Gaussians avoid favouring some other multimodal components in the re-
mainder distribution, or at other local minima—and to ensure consistent res-
ults. To provide the best chance of finding the correct thematic distribution and
the remainder, starting means of the lowest value and the median (respectively)
were used. Gaussians were initially equally weighted and the standard devi-
ation of the remainder was specified as double that of the thematic. After the
initial occurrence of a thematic candidate, for which the question of thematic
association is not needed, this GMM could categorise each note as thematic
or remainder (i.e., non-thematic) based on the cumulative previous distribu-
tion, updated at the phrase level. This is shown in Figure 3.7 for a TTM trained
on the first thematic-candidate and applied to remainder Mozart K. 332, first
movement—i.e., the right-most classification made for theme 1 in Figure 3.6.

The categorisation of thematic material on an individual note basis, as de-
scribed above, provides rather a harsh and exacting process; the local context of
each note is not taken into account and the resultingmaterial extracted is highly
fragmented. Performing the same operationwith smoothing on a phrase-based
level allowed larger—still low-information-content and salient—sections to be
extracted, following perceived sequential groupings of material, providing a
larger-scale output more akin to motifs. For this purpose, Temperley’s Grouper
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Figure 3.7: Note internal unpredictability and Gaussian Mixture Model Clustering for
a TTM trained on thematic-candidate 1 and applied to Mozart K. 332, first movement.
A lower cluster is identified as the thematic material and the upper the remainder. The
vertical dashed line indicates the threshold identified.

was once more applied. The threshold information content was still computed
on the note-event level; the mean information content for each phrase was then
categorised based on this threshold.

3.4.4 Compression Distance

The repetitions of thematic candidates identified by the repetition-detection
model can be used to simulate the degree of intra-opus variation of thematic
material. A computational measure of similarity between each phrase categor-
ised as being thematic and its parent thematic candidate (i.e.,the candidate used
in the identification of the phrase) can describe how much variation thematic
material undergoes. As with all the steps of this model so far described, the
similarity metric should be well-motivated in terms of representing actual cog-
nitive processes. The information-theoretic measure of compression distance
was used, having previously shown promise in simulating perceived melodic
similarity (Pearce & Müllensiefen, 2017).

A similarity metric based on normalised compression distance was intro-
duced by Li et al. (2003). The dissimilarity between two sequences, x and y was
taken as a function of the predictability (or compressed length) of one sequence,
given a model trained on the other. Pearce and Müllensiefen (2017) employed
IDyOM to estimate dissimilarity between two musical sequences, D(x|y), as
the normalised summed information content of the latter sequence (of length
k), given a PPM model trained on the former.

D(x|y) = 1

k

k∑
i=1

hmy(xi)

In the same way, the dissimilarity between an identified thematic fragment
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and its parent thematic candidate could be modelled as the sum total of the in-
formation contents for each note in the thematic fragment, given the IDyOM
model trained on the parent thematic candidate. The sum of the information
contents was then normalised with respect to the longest sequence—the can-
didate. This asymmetric measure of compression distance was appropriate for
the currentmodel of thematic structure, given that it is only concerned with the
amount of variation moving forward through the composition.

3.5 Measures of thematic structure

The process of modelling thematic structure described above extracts thematic
candidates and thematic repetitions for a given composition. In the research
presented in this thesis, we are particularly interested in the application of these
methods to produce quantitative measures that can characterise features of hy-
pothesised importance to the perception of thematic structure. By applying
the measures to a large corpus, we can describe quantitatively how real-world
musical compositions differ in a number of key dimensions relating to large-
scale thematic structure. Of thesemeasures, we are primarily interested in those
characterising intra-opus features of compositions, or directly arising from re-
petition, as the main parameters hypothesised to influence the perception of
structural structure. The primary four measures are summarised below.

Internal unpredictability. The STM (using IDyOM or other PPM equivalent)
information content of a composition. For note-events, this measure provides
the internal unpredictability of each event, in its representation, given a model
training andpredicting dynamically throughout the composition. Thismeasure
is also used to refer to the internal unpredictability of an entire composition, in
which case the mean is taken for individual note-event values. This measure
uses the information-theoretic unit of bits. For a composition, ek1 of k events
long, where hstm is the STM information content:

U(ek1) =
1

k

k∑
i=1

hstm(ei|ei−1
1 )

Thematic repetition. Using the theme and repetition-detection processes de-
scribed above, repetitions of potential thematic material were identified in a
given composition. The measure of thematic repetition quantifies the propor-
tion of note-events out of the whole composition that were identified as being
thematically repeated material—i.e., the proportion of notes that were below a
threshold inwN

1 , found when using GMM clustering on amodel trained on the
corresponding theme in TN

1 , where N is the number of themes.
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R(ek1) =
1

k
counti∈k

{
any

{
(hT1(ei|ei−1

1 ) < w1), ..., (hTN
(ei|ei−1

1 ) < wN )
}}

Thematic variation. Using the dissimilarity measure of compression distance,
the amount of thematic variation within a composition was characterised by
the mean dissimilarity between all thematic phrases (material identified using
repetition detection, smoothed over detected phrases) and their closest parent
theme. As this measure was implemented using dissimilarity, low thematic vari-
ation indicated that identified repetitions did not vary far from their original
instances. Specifically, for a list of N themes, TN

1 , each with a list of phrases
identified as belonging to that theme, (sT )m1 :

V (TN
1 ) =

1

Nm

N∑
i=1

D(Ti|x)∀x ∈ sTi

Stylistic unpredictability. The repeated thematic material identified (at the
phrase level) was modelled using an LTM trained on a large corpus of western-
classical tonal music (presented in the following chapter). The mean LTM in-
formation content for thematic note-events (their individual stylistic unpredict-
ability) was used to provide a measure of the stylistic unpredictability of them-
atic material. For a composition, ek1 of k events long, where, hltm is the LTM
information content:

S(ek1) =
1

k

k∑
i=1

hltm(ei|ei−1
1 )

when

any
{
(hT1(ei|ei−1

1 ) < w1), ..., (hTN
(ei|ei−1

1 ) < wN )
}

These model-based measures, as presented here, are designed to apply to
complete pieces of music. In their use and evaluation throughout this thesis,
these four primary measures were divided into corresponding experimental
measures that reflect the precise paradigms to which they were applied, within
the context of their respective experiments. The mappings of these measures
on to their experiment-specific variants are laid-out in Table 3.1 (entries in par-
entheses indicate experiment measures that are not directly related to model
measures, but still partly fulfil their purpose).
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3.6 Summary

This chapter presented an overview of how large-scale thematic structure inmu-
sic can be computationally modelled, based on the underlying theory that the
perception of such structures is facilitated by the statistical regularities caused
by repetition, and variation, of material within a composition. While structure
is considered important in music theory and in theoretical models of music
cognition, past psychological work in search of evidence for the ability of listen-
ers to perceive large-scale thematic structure has often proved inconclusive (see
Chapter 2). The statistical model is presented as the beginnings of a concrete
specification of the cognitive processes involved in the perception of such struc-
tures. The model expresses explicitly a plausible computational account of how
large-scale thematic structure might be perceived and allows us to derive a set
of formal, quantitative measures of thematic structure.

The model used the IDyOM framework (Pearce, 2005) to create extra-opus
models of style—in which a large corpus of compositions can be used to cal-
culate the stylistic unexpectedness of the notes in each, given the context—
intra-opusmodels of composition interrelatedness—where the training context
is provided dynamically as a music progresses—and theme models trained on
the extracted thematic candidates of a composition. Not only does this model
provide novel techniques for extracting thematic candidates and thematic re-
petitions (or motifs) from a composition, it also produces a multidimensional
set of measures, with which the variation of structurally important elements
present in music can be captured.

The model presented in this chapter presents some of the key theoretical
contributions of this thesis. The subsequent chapters of this thesis are con-
cerned with the empirical evaluation of this model, and the overarching hypo-
thesis on which it is based.
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Chapter 4

A Corpus Analysis

4.1 Overview

In this chapter, the first steps in testing the theory behind our modelling of
thematic structure are taken. This chapter presents a corpus analysis that ex-
plores the output of the computational measures when applied to an assembled
corpus of full-lengthmonophonic compositions. As there is a lack of music cor-
pora annotated with thematic structure (either perceived or analysed) against
which the performance of measures can be tested, this analysis takes a explorat-
ory approach that aimed to demonstrate that measures of hypothesised import-
ance to the perception of thematic structure vary systematically when applied
to the corpus, reflecting the inherent variation in structure present within the
corpus itself.

The chapter, firstly, gives a summary of the computational measures used in
the analysis, including the four primary model measures introduced at the end
of the previous chapter, and several additional measures characterising general
composition properties and elements of the theme detection process. Secondly,
a description is given of a corpus of 623 complete monophonic compositions,
assembled for use in this analysis—and also providing ecologically-valid stim-
uli for stimulus selection in subsequent behavioural experiments. The analysis
of the model output when applied to the corpus is then explored in two stages,
tackling separately the output when applied using pitch and rhythmic repres-
entations, respectively. For both representations, the analysis first considers the
relative performance of different representations of the musical surface within
its respective domain, then examines the ability of measures to explain variance
inherent in the corpus, and finally, explores the function of measures through
example compositions selected from the extremes of the model output.
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4.2 Modelling

The model of thematic structure, introduced in the previous chapter, was foun-
ded on the idea that repetition is the principal enabler for the perception of
thematic structure in music. More specifically, according to the probabilistic
conception of music espoused, through learning, this repetition increases the
intra-opus predictability of a given composition, giving rise to perceived struc-
tural unity. Repetition of thematic material strengthens its salience—the more
material is repeated, the greater its perceived prominence. By following stylistic
or work-specific structural regularities, such repetitions can undergo embellish-
ment and variation and still reinforce future predictions. The purpose of the
analysis presented in this chapter was to examine the ways in which four meas-
ures that were the model’s principal output contributed to systematic variation
of thematic structure within a corpus of western-classical melodies.

4.2.1 Measures

The four primary model measures of thematic structure described at the end of
the previous chapter were used to quantify compositions in a corpus of western-
classical melodies. Alongside these measures hypothesised to be predictors of
thematic structure, additional measures characterisingmore general properties
of compositions and the theme-detection process were also included in the ana-
lysis presented in this chapter. The measures of this analysis belonged to four
categories: (1) those concerned with general properties of the compositions;
(2) those describing features of a given composition’s thematic candidates (as
detected by themodel); (3) those characterising the properties of repeated them-
atic material (again, as detected by themodel); and (4) internal unpredictability.

General composition properties

Composition year. The year in which the work was composed.

Composition length. The number of note-events in a composition.

Properties of thematic candidates

Number of themes. The number of thematic candidates that were identified
in a composition, using the theme-detection method described in Chapter 3.

Length of themes. Themean number of note-events for the identified themes
within a composition.
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Strength of theme prominence. The difference in mean internal unpredictab-
ility of note-events between the first phrase of a detected theme and the mean
internal unpredictability of the portion of the composition that preceded it—
averaged across all themes identified in a single composition. For N themes in
TN
1 , where T1,start and T1,end denote the indices of events within a composition

where the first phrase of T1 starts and ends:

G(TN
1 ) =

1

N

N∑
j=1

( 1

Tj,length

Tj,end∑
i=Tj,end

hstm(ei|ei−1
1 )− 1

Tj,start − 1

Tj,start−1∑
i=1

hstm(ei|ei−1
1 )

)

Stylistic unpredictability of themes. The mean stylistic unpredictability of
thematic candidates identified in a composition.

S(TN
1 ) =

1

N

N∑
j=1

( 1

Tj,length

Tj,length∑
i=1

hltm(Tj,i|(Tj)
i−1
1 )

)

Properties of thematic material

The threemodelmeasures of thematic repetition, thematic variation, and stylistic
unpredictability (of thematic material) fall into this category.

Thematic/stylistic balance. The proportion of note-events identified as them-
atic repetitions that were more internally than stylistically predictable.

B(ek1) = counti∈k
{
hstm(ei|ei−1

1 ) < hltm(ei|ei−1
1 )

}
when

any
{
(hT1(ei|ei−1

1 ) < w1), ..., (hTN
(ei|ei−1

1 ) < wN )
}

4.3 The corpus

A corpus was constructed to provide an application domain for the compu-
tational model of thematic structure presented in the previous chapter.1 The
spread of this corpus was intended to provide a broad representative sample of
western-classical tonal music. Corpus items were included or excluded subject
to certain constraints: (1) compositions were completely monophonic—the fo-
cus on monophonic melodic structures in this initial analysis was chosen to

1The corpus, along with information on the individual works, can be found at https://osf.io/
dg7ms/.
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avoid the numerous obstacles posed by tracking interrelating thematic mater-
ial through multiple polyphonic layers; (2) compositions were used in their en-
tirety (or the entirety of a movement)—the model was intended to simulate
perception of large-scale structure, so the full structures were required; and
(3) compositions were of sufficient length that such structures could be con-
sidered unambiguously present. Therefore, melodies were only included if they
contained in excess of one hundred notes.

The nature of corpus needed for this analysis falls in a somewhat limited
area of focus for current digital symbolic music databases; datasets in music
perception research tend towards smaller, segmented stimuli, while digitised
collections of full compositions are largely polyphonic (with a particular bias
towards compositions for the piano). Themonophonic constraint, in particular,
provided a significantly limiting factor in gathering the corpus; compositions
were needed either to be originally composed as such, or—as was the case for
the majority—manipulated to produce a monophonic line. Therefore, in order
to create a corpus of sufficient size and breadth, manipulations to the original
sources were made to extract melodic lines. These monophonic extractions,
while certainly not the composers’ original compositions, still providedmelodic
lines that could arguably present comprehensible works of music in their own
right and, importantly, retained a large proportion of their thematic structures.

Original compositions were gathered from online databases of existing di-
gitised symbolic scores, primarily from KernScores2 MuseScore3, and the Clas-
sical Archives MIDI4 collections. Composition-selection aimed at providing
the broadest-possible spread of composition date, balanced with the considera-
tions of selecting types ofwork forwhich the process of extracting amelodic line
would be appropriate. The corpus consisted of three categories of composition:
(1) those (a relatively small number) originally composed for a single-stave in-
strument and so already monophonic in nature; (2) piano works to which a
skyline algorithm (Uitdenbogerd & Zobel, 1998) was applied to extract the up-
permost line; and (3) works for solo instrument with accompaniment—from
which the solo part was used and any large gaps were filled by a skyline of the up-
per accompanying line.5 While the skyline algorithm could not be guaranteed
to always find the optimal melody line—melody by no means appears univer-

2https://kern.ccarh.org
3https://musescore.com
4https://classicalarchives.com/midi.html
5 Certain genres of vocal music, such as songs with a single voice and piano accompani-

ment, could also be considered to fit in this category, however, they were not included in this
corpus. Firstly, many songs that fit into this category (for example, the lieder of composers
such as Schumann) exist as part of a larger song cycle and are often too short to meet the
length requirements. Secondly, the stylistic period of these songs is one well covered by other
instrumental works with accompaniment. Thirdly, the presence of text within songs allows for
variation to take place outside of the domains studied this thesis. For example, many songs are
written in a strophic form with no variation between verses other than in the lyrics.
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Figure 4.1: Distribution of corpus items by composition year, number of note-
events and instrumentation type.

sally in the uppermost voice—it provided a robust technique for extracting the
vast majority of melodic material. The chance of these errors occurring was, in
part, mitigated by the use of compositions formonophonic instruments, with or
without accompaniment, so giving an indication of where the primary melodic
material is to be found.

It should be noted that, due to the nature of the constraints on the cura-
tion of the corpus, the database contains some inherent biases. A bias existed
towards particular instrumentations, and so influences towards certain genres.
As a result of the selection process, all works includedwere originally composed
for either one or two instruments, no pieces for larger ensembles were present;
the corpus, therefore, was confined to chamber music genres.

The resulting corpus contained 623 works—or self-contained work move-
ments—with composition dates spanning from 1703 to 1934, encompassing
western styles from Baroque to Early Twentieth-Century.6 The works were dis-
tributed with a mean of 124.60 pieces for each of the five half-century divisions.
The distribution of corpus items by composition year, length and instrument-
ation is shown in Figure 4.1, alongside the types of instrumentation requiring
different techniques for extracting a monophonic line (further descriptive stat-
istics for the corpus are given in the analysis in Table 4.1).

6All composition description labels and genre/style classifications were taken from the In-
ternational Music Score Library Project (IMSLP, https://imslp.org).

Chapter 4. A Corpus Analysis 69

https://imslp.org


4.4 The analysis

4.4.1 The pitch domain

In addition to the comparison of measures, the analysis contained the added
dimension of representation of the musical surface used (applicable to all meas-
ures but those describing general composition properties). The IDyOM long-
term, short-term and theme-trained models were all produced for each of the
six chosen representations of musical pitch (described in the previous chapter).
While it is acknowledged that, as listeners, we likely use a combination of mul-
tiple different representations ofmusic at any one time, the precise way inwhich
these representations are weighted and combined is unknown. However, to ex-
plore the output of the model, it is preferable to do so with only a single rep-
resentation. Given that there is a great deal of overlap between representations,
and for conciseness when exploring themultidimensional set of measures, only
the notionally best-performing representation in each domain was selected for
further analysis.

There is no globally-optimal method by which the best-performing repres-
entations within the model can be chosen; there is a lack of music corpora an-
notated with thematic structure (either perceived or analysed) against which
representations could be tested. However, a comparison between the measures
produced by the model allows for an exploration of the importance of differ-
ent representations, relative to each other. Therefore, in the absence of a more
explicit criteria, a comparison of the amounts of thematic repetition captured
when using each representation was used—being a measure central to the hy-
pothesis that thematic structures can be statistically learned, and one reliant on
all theme and repetition-detection processes of the model. This comparison re-
vealed that the pitch interval representation captured the highest proportion of
thematic material, averaged across the corpus (see Figure 4.2).

For the selected representation of pitch interval, summary statistics of the
measures of thematic structure and their respective pairwise correlations are
given in Table 4.1. Measures derived directly from information content values—
namely internal unpredictability, stylistic unpredictability of themes, and them-
atic material’s stylistic unpredictability—have a scale that is lower for greater
predictability/expectedness. For strength of theme prominence, higher values
indicate more prominent thematic candidates in the STM. The compression
distance-based measure of thematic variation gives a lower score when mater-
ial is more closely related.

Due to the similarities between somemeasures, not allmeasureswere found
to be independent of each other. Those correlations with a coefficient r > 0.5 are
displayed in bold in Table 4.1. Composition length and number of themes were
found to be highly correlated—if a composition was longer, thematic-candidate
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Figure 4.2: Distributions for the measure of thematic repetition across the corpus
for all pitch representations, ranked in order of median value.

extraction was more likely to identify a greater number of candidates. Styl-
istic unpredictability of themes and thematic material’s stylistic unpredictability
were both derived from the same LTM, with the former limited just to the par-
ent thematic candidate(s) and the latter calculated for thematic material identi-
fied by the repetition-detection model as being related to the parent candidates.
Thematic repetition and thematic variationwere highly correlated—for compos-
itions in which a greater amounts of thematic repetition was found, there was
an increased opportunity for repetitions to be embellished further from their
original.7 Finally, the correlation between internal unpredictability and compos-
ition length indicated that longer compositions, through their greater opportun-
ity for repetition, were more predictable.

While examining the correlations betweenmeasures gives some insight into
their relationships, the relative importance of these measures in actually ex-
plaining the variance of structure observed in the corpus still needs to be es-
tablished. This variation was explored in greater depth by performing Principal
Component Analysis and Independent Component Analysis on the set ofmeas-
ures applied to the corpus, providing dimensionality-reduction and importance
exploration techniques.

Principal Component Analysis

Principal Component Analysis (PCA) allowed for the geometric reduction of
the original measures into a smaller set of orthogonal components (Abdi &Wil-
liams, 2010). These new components consisted of linear combinations of the
original measures, attempting to account for the maximum amount of variance

7No corresponding correlation was found between composition length and thematic repetition,
as there was with thematic candidate measure. This is likely due to the latter being computed
as a proportion of composition length.

Chapter 4. A Corpus Analysis 72



0.00 0.05 0.10 0.15 0.20 0.25
Component explained varianceYe

ar

Com
po

sit
ion

 le
ng

th

Num
be

r o
f th

em
es

Le
ng

th 
of 

the
mes

Stre
ng

th 
of 

the
me p

rom
ine

nc
e

Styl
ist

ic 
un

pre
dic

tab
ilit

y o
f th

em
es

The
mati

c r
ep

eti
tio

n

The
mati

c v
ari

ati
on

Styl
ist

ic 
un

pre
dic

tab
ilit

y

Styl
ist

ic/
the

mati
c b

ala
nc

e

Int
ern

al 
un

pre
dic

tab
ilit

y

1

2

3

4

5

6

7

8

9

10

11

Pr
in

ci
pa

l c
om

po
ne

nt

0.00 0.01 0.02 0.03 0.04
Feature explained variance

Figure 4.3: Overall explained variances for each measure using pitch interval and
total explained variance for each output component in PCA.

in the structure of the data by the smallest number of components. While the
output components do not correspond directly to the input measures, perform-
ing a PCA with equal numbers of each will produce components that account
for all variance, and—importantly for its use here—the proportion of explained
variance for which each component was responsible. The ordering of the prin-
cipal components in a PCA is such that the first accounts for the largest pro-
portion of variation in the set, the next attempts to explain additional variance
while remaining orthogonal to the first, repeated for the number of compon-
ents.

The purpose of using PCA in the present analysis was to assess the import-
ance of each of the measures in terms of their ability to account for inherent
variance within the corpus. Figure 4.3 displays the output of a PCA conducted
with the 11 input measures, using the pitch interval representation (when ap-
propriate). The first six components alone account for 88% of the total variance.
The inner weightings of measures for each component are shown.

The first component was dominated by four measures—composition length,
number of themes, thematic repetition and thematic variation, with a lesser influ-
ence of internal unpredictability. Based on this first component, and the signi-
ficant correlations discussed for Table 4.1, these findings suggest that one of the
biggest differences in thematic structure between compositions in the corpus
can be attributed to the number of thematic candidates (which is constrained
by the length of the piece), amount of thematically repeated material (normal-
ised against the effects of length) and how much that material is varied within
the composition.
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Thesecond and third principal componentswere dominated bymeasures in
which stylistic congruence had the greatest influence—stylistic unpredictability
of themes, thematic material’s stylistic unpredictability and thematic/stylistic bal-
ance (with the balance favouring the LTM). Noticeably, though not a measure
of style, internal unpredictability was also strongly weighted in these compon-
ents; the presence of this measure in the second component was likely due to
the strong (but opposite) relationship between it and thematic/stylistic balance,
and in the third component, due to an element of stylistic learning occurring
over these substantially-sized compositions. Component four was dominated
by length of themes, and, while the fifth had no clear interpretation, the sixth
accounted for variation in composition year.

Overall, the PCAprovided insight into the relative importance of themodel-
based measures in their ability to explain the inherent variation in thematic
structure within the corpus. However, we still know little about the relations
between them. An Independent Component Analysis was employed to exam-
ine the independence of measures by isolating ‘noise’ present within each meas-
ure from similarity with others.

Independent Component Analysis

Independent Component Analysis (ICA) can be considered an extension of
the previous PCA in its application to the data generated for these measures—
instead of optimising components according to first- and second-order statist-
ics in the covariance matrix, for an ICA, features with the ability to expose non-
gaussian structures are optimised (Tharwat, 2018). While PCA aims to find
orthogonal and uncorrelated components that could account for the maximum
amount of variance in the data, ICA aims to find statistically-independent com-
ponents, but that are not necessarily orthogonal. When the number of com-
ponents matches the number of input features, ICA will effectively try to ex-
tract ‘original’ sources from the multivariate features—attempting to minimise
the mutual information between components. ICA first performs ‘whitening’
of the data, so that it is centred and uncorrelated. Whitened data is then ro-
tated so as to minimise Gaussianity in all dimensions, resulting in statistically
independent components.8

When applied to the measures generated across the corpus, an ICA had the
effect of isolating a component for each measure, in which any of the ‘noise’ re-
lated to other measures was effectively removed. In this analysis, the ordering
of components does not carry any significantmeaning, and there is no ordering
the relative weight of each component in accounting for the data. The ICA mix-
ings for each component were used to indicate how much each input measure

8Due to the Central Limit Theorem, the sum of independent random variables will fit the
normal distribution more closely than the parent distributions.
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Figure 4.4: Independent mixings for pitch interval measures in output components
of ICA.

influenced each independent component, as shown in Figure 4.4.
Five of the statistically independent components produced had only one

main contributor, indicating that they were largely ‘noise-free’, with limited
interaction with any of the other measures. These were: (3) composition
year, (5) composition length, (7) length of themes, (4) stylistic unpredictability
of themes, and (8) stylistic unpredictability (although the latter was not quite
as independent as the others, sharing a relationship with the other measure of
style). Number of themes maintained its connection with composition length,
but with some degree of independence, shown in the fourth component. The
first component listed strongly linked together thematic repetition and thematic
variation. Internal unpredictability and strength of theme prominence (that used
the same STM to identify themes) both contributed to component six.

Aside from knowing that several of our measures are independent of all
others, the case of the connection between thematic repetition and thematic
variation suggests that if there is more repetition within a work, it will tend
to undergo embellishment and variation (at least in the case of pitch and for the
works in this corpus).

Example compositions

The performance of the model measures in capturing appropriate structural
variation can be illustrated by example compositions taken from the extremes
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of the measures thematic repetition, thematic variation, the stylistic unpredict-
ability of thematic material, and the internal unpredictability of each compos-
ition. Based on the underlying hypotheses of this thesis—that thematic struc-
tures are perceptible through the statistical regularities that they form, these
four measures hold a particular importance when capturing the effects of large-
scale thematic structure; these repetition-based measures were also found to
explain the largest amount of variance in the PCA. The five compositions at the
extremes of each of these measures are listed in Table 4.2.

The greater extreme end of the thematic repetitionmeasure can be character-
ised well by the bourrée of Bach Cello Suite No. 4 (one of the shortest works in
the dataset), that contained two detected thematic candidates and several exact
repetitions of them, and the far more substantial Schubert Impromptu, in which
seven thematic candidates were detected, each of which repeated frequently and
exactly throughout the composition. Such compositions have clear statements
of theme—produced by rigid structural blocks, between which there is little
sharing of material—as well as containing highly frequent repetition of mater-
ial with little variation. Example compositions at the lower end of this scale had
little repeated material detected. For some compositions, this lack of repeated
thematic material may be a feature of their style; for example, the ‘impression-
istic’ compositional style used by Debussy in the Arabesque frequently involved
the introduction of thematic material not necessarily closely related to that pre-
ceding it—and revisits little (Potter, 2003, p. 144; Grout et al., 2010, p. 792). In
other cases, a low proportion of repeatedmaterial may have been due to the loss
of information that can occur with the necessary monophonic manipulation of
compositions—for example, affecting the Beethoven Piano Sonata listed.

The measure of thematic variation aimed to capture how far repeated ma-
terial within a composition strayed from the original thematic candidates iden-
tified. A continuation of the effects of simple theme-statement and exact repe-
tition compositions (as described for the measure of thematic repetition) was
also seen at the lower end of this measure—little actual variation of material oc-
curs. At the end of greater variation, example compositions were, for the most
part, those that contained substantial development sections, providing greater
opportunity to embellish upon previously stated themes, and those of a more
fantasy-like composition style.

The works that obtained the lowest values for stylistic unpredictability, and
so were the most stylistically predictable or congruent, were those in which re-
peated material mostly followed the conventions of style, as taken from the cor-
pus.9 This is illustrated very clearly in the Chopin Etude, a composition that

9The Bartók Bagatelle may seem to be something of an anomaly in this high stylistic predict-
ability category as it is one of the compositions in the corpus that strays furthest from tonality.
However, for the purpose of completeness it is included in this list. Its appearance can be ac-
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Table 4.2: Example Compositions From the Extremes (Top and Bottom Five) of
Thematic Repetition, Thematic Variation, Stylistic Unpredictability, and Internal Unpredictab-
ility for the Pitch Interval Representation

Composition Movt. Composer Yeara Length Value

Thematic repetition
String Quartet in C major, Op.50 No.2 2 Haydn, Joseph 1787 417 .06
Deux Arabesques, L.66 1 Debussy, Claude 1890 615 .07
Piano Sonata No.29, Op.106 3 Beethoven, Ludwig van 1817 1259 .08
String Quartet in E-flat major, Op.76 No.6 1 Haydn, Joseph 1796 372 .08
Recorder Sonata in F major, HWV 369 2 Handel, George Frideric 1712 574 .09

String Quartet in E-flat major, Op.33 No.2 4 Haydn, Joseph 1781 758 .84
Violin Sonata No.3, Op.45 1 Grieg, Edvard 1887 1239 .85
String Quartet in D major, Op.71 No.2 4 Haydn, Joseph 1793 731 .85
Vier Impromptus, D.899 1 Schubert, Franz 1827 1197 .86
Cello Suite No.4, BWV 1010 6 Bach, Johann Sebastian 1717 104 .89

Thematic variation
Cello Suite No.1, BWV 1007 1 Bach, Johann Sebastian 1717 654 0.29
String Quartet in B-flat major, Op.1 No.1 1 Haydn, Joseph 1757 302 0.30
Piano Sonata No.29, Op.106 3 Beethoven, Ludwig van 1817 1259 0.30
Ballade, Op.24 – Grieg, Edvard 1900 2524 0.30
Violin Sonata No.2 in A major, Op.12 2 Beethoven, Ludwig van 1797 400 0.30

Piano Sonata in C minor, D.958 4 Schubert, Franz 1828 2583 1.28
Cello Sonata, Op.5 No.1 2 Beethoven, Ludwig van 1796 2178 1.29
Legends, Op.59 6 Dvořák, Antonín 1881 472 1.31
Violin Sonata No.1 in D major, Op.12 1 Beethoven, Ludwig van 1797 1644 1.34
Piano Sonata No.23, Op.57 1 Beethoven, Ludwig van 1804 2212 1.46

Stylistic unpredictability
Piano Sonata No.13, Op.27 No.1 3 Beethoven, Ludwig van 1800 226 1.54
Piano Sonata No.12, Op.26 3 Beethoven, Ludwig van 1800 443 1.63
Etudes, Op.10 2 Chopin, Frédéric 1829 766 1.76
14 Bagatelles, Op.6 14 Bartók, Béla 1908 647 1.79
String Quartet in C major, Op.33 No.3 4 Haydn, Joseph 1781 636 1.82

Cello Suite No.5, BWV 1011 4 Bach, Johann Sebastian 1717 216 4.56
Cello Suite No.1, BWV 1007 6 Bach, Johann Sebastian 1717 252 4.74
Piano Sonata, Op.7 4 Grieg, Edvard 1865 1360 5.30
6 Klavierstücke, Op.118 1 Brahms, Johannes 1893 224 5.31
5 Morceaux de fantaisie, Op.3 2 Rachmaninoff, Sergei 1892 459 5.39

Internal unpredictability
Vier Impromptus, D.899 4 Schubert, Franz 1827 2300 1.07
Mazurkas, Op.30 5 Chopin, Frédéric 1835 276 1.23
Piano Sonata No.20, Op.49 No.2 1 Beethoven, Ludwig van 1795 1528 1.38
Recueil d’Impromptus, Op.32 1 Alkan, Charles-Valentin 1849 621 1.41
Mazurkas, Op.30 1 Chopin, Frédéric 1835 468 1.48

8 Klavierstücke, Op.76 1 Brahms, Johannes 1871 339 4.35
String Quartet in D major, Op.1 No.3 3 Haydn, Joseph 1757 159 4.48
Préludes, Book 1 10 Debussy, Claude 1909 112 4.64
Nocturne No.10, Op.99 – Fauré, Gabriel 1908 383 4.64
Violin Concerto, Op.61 2 Elgar, Edward 1905 139 5.24
aWhere only a range of composition dates are known, earliest years in range are given.
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almost entirely consists of chromatic scale passages. At the opposite end of this
measure, example compositions were all still tonal (the entire corpus was)—
possibly the biggest factor of style in the model. For this measure, it does not
necessarily follow that the entire compositions themselves were stylistically un-
predictable, it is simply that the thematic material and its derived repetitions
were stylistically novel in the context of the corpus.

The final measure for which example compositions were explored was that
of internal unpredictability. Unlike the three previous measures discussed, this
measure applies to all material within a composition, rather than that identi-
fied through the repetition-detection process. In some ways, the output of this
measure can be seen as similar to that of a combination of thematic repetition
and thematic variation (with a closer relationship to the former); by examining
the examples at the lesser extreme of this measure, it can be seen that composi-
tions contain large amounts of repetition. However, this repetition has a slightly
different nature to that identified for thematic repetition. The size of material re-
peated differed dramatically, often repeating short passages varied enough not
to explicitly belong to a thematic candidate, but not novel enough to constitute
new themes themselves (this effect was only a subtle one, compositions at this
extreme still scored highly in thematic repetition).

4.4.2 The rhythmic domain

It is apparent that the rhythmic representations of the musical surface behave
substantially differently to those of pitch with respect to thematic structure.
The nature of rhythm, particularly within the compositions of this corpus of
western-classical tonal music, is such that temporal representations face a num-
ber of challenges in capturing this type of musical structure. The effects of this
were limited in the pitch-based analysis presented in the preceding portion of
this chapter because, in many cases within the corpus, it is evident that pitch
takes precedence over rhythm in this particular matter.

There are two fundamental problems for the model of thematic structure
when trying to capture large-scale structure in the rhythmic domain: firstly,
it is quite possible for pieces to be rhythmically-isochronous (or isorhythmic),
such that an entire composition can consists only of notes of a single duration
(or a single rhythmic pattern). For such compositions (for example, many of
the Bach Cello Suites), the entirety of the structurally-important thematic in-
formation must, therefore, belong to the pitch domain, leaving no structure to
model. While the level of rhythmic isochrony is variable across the corpus, it

counted for by three reasons: (1) due to the skylining process, a fair proportion of stylistically
unconventional material is lost—opposing pitch classes are often used simultaneously in the
two hands; (2) the resulting main thematic candidate detected is relatively stylistically predict-
able; and (3) it has a low level of repeated material detected which undergoes little variation,
meaning all thematic material detected is still predictable.
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Figure 4.5: Distributions for the measure of thematic repetition across the corpus
for all rhythmic representations, ranked in order of median value.

is present to such an extent as to mask rhythmic effects of thematic structure.
The second problem leads on from the first—how should the best performing
rhythmic representation be chosen? The heuristic of choosing the representa-
tion that captures the most repetition (i.e., that used when selecting the pitch
interval representation) is no longer productive; when a single duration is re-
peated relentlessly, rhythmically-isochronous works contain a maximum of re-
petition while containing the minimum of structural content.

Despite these limitations, some effects of large-scale thematic structure in
the rhythmic domain can be observed tentatively in the following analysis.

In this rhythmic domain, thematic repetition was still used to inform the
choice of representation. Compositions with isochronous rhythms have the
same potential to influence all three of the representations based on inter-onset
interval (those using position-in-bar capture fewer repetitions for this material,
only allowing repeats at the bar level, rather than every note); any differences in
the amounts of thematic repetition between compositions must be due to the
more desirable complex rhythmic structure. Figure 4.5 shows the distributions
of thematic repetition across the corpus for these rhythmic viewpoints. It can be
seen for all representations that a large number of works appear to have been
composed almost entirely of repeated rhythmicmaterial, these cases were those
with only one note duration repeated. As its distribution shows, the inter-onset
interval representation contained the fewest works with low repetition, making
it a reasonable choice of viewpoint for further analysis.

The respective pairwise correlations for measure results for using the inter-
onset interval representation are given in Table 4.3. Summary statistics for these
measures, alongside those using interval, and the correlations between the two
representations are given in Table 4.4. Differing particularly from the results for
interval were the mean amounts of thematic repetition, which, due to isochron-
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Figure 4.6: Overall explained variances for each measure using inter-onset interval
and total explained variance for each output component in PCA.

ous material, was higher for inter-onset interval, and both the stylistic unpre-
dictability of thematic material and internal unpredictability, which were lower
(i.e., more predictable), also likely due to the large amount of rhythmically-
isochronous material.

Principal Component Analysis

As with the analysis of measures using the pitch interval representation, the
amounts of variance in compositions that could be explained when using the
inter-onset interval representation was explored using a PCA. For this PCA, the
analysis had as its input all 11 measures (representation-independent measures
of composition year and composition length included), to output 11 principal
components. Figure 4.6 displays the output of this PCA; the first five compon-
ents alone account for 80% of the total variance. The inner weightings of meas-
ures for each component are shown.

The results of this analysis showed that far fewer of themeasures were ortho-
gonal to each otherwhenusing this rhythmic representation, compared to those
for pitch in Figure 4.3. The first three components contained large amounts
of the explained variance, with the first two containing mixtures across sev-
eral measures. The first identified principal component contained the strongest
weightings from the stylistic unpredictability of themes, thematic material’s styl-
istic unpredictability, thematic/stylistic balance, and to a lesser extent, compos-
ition year and internal unpredictability. The combination of these measures
would suggest a grouping based on the stylistic properties of compositions. In-
ternal unpredictability, though included here was more strongly-weighted in
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Table 4.4: Summary Statistics and Correlations for Measures of Thematic Structure
Between Representations. Pearson’s r, n = 623

Pitch interval Inter-onset interval

Measure M SD M SD r

Number of themes 2.48 1.98 4.01 2.80 .66
Length of themes 17.00 3.52 17.59 3.05 .61
Strength of theme prominence 1.85 0.86 0.92 0.42 .12
Stylistic unpredictability of themes 3.64 0.64 2.13 0.90 .16
Thematic repetition 0.42 0.19 0.61 0.22 .08
Thematic variation 0.64 0.28 0.85 0.31 .37
Stylistic unpredictability 2.91 0.53 1.08 0.58 .13
Thematic/stylistic balance 0.65 0.12 0.28 0.15 .22
Internal unpredictability 2.77 0.63 1.68 0.42 .59

the third component, its partial inclusion in the first may be due to the STMs
accruing stylistic knowledge within each composition, an effect that may be
increased by (highly-stylistic) rhythmic isochrony.

The second principal component identified contained weightings of meas-
ures of theme-detection and variation (with a notable absence of thematic re-
petition), and the third solely that of internal unpredictability. The grouping
together of these measures, alongside the absences of explained variance attrib-
utable only to individual measures (as seen in the pitch PCA in Figure 4.3), was
likely due to the effects of rhythmically isochronous material. The presence of
this material reduces the amounts of variance available in these measures; this
was particularly true in the case of thematic repetition, which did not substan-
tially weight any of the components.

Independent Component Analysis

Again, as with the analysis of pitch interval measures, an ICA was used to ex-
amine the statistical independence between measures using the inter-onset in-
terval representation. The output of this analysis is shown in Figure 4.7. Un-
like the corresponding analysis for the pitch representation, the output of the
inter-onset interval ICA shows far fewer independent measures. Instead, there
was an apparent overlapping of pairs of measures: strength of theme prominence
and stylistic unpredictability of themes; composition length and number of themes;
length of themes and strength of theme prominence; thematic repetition and them-
atic variation (twice); and stylistic unpredictability and thematic/stylistic bal-
ance. The pattern of this output suggests that there was a lack of independence
between all of these measures; again, this may be due to the common effect of
isochrony across measures.
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Figure 4.7: Independent mixings for inter-onset interval measures in output com-
ponents of ICA.

Example compositions

The example works taken from the extremes of the measures of thematic repe-
tition, thematic variation, stylistic unpredictability, and internal unpredictability
are given in Table 4.5. The effects of rhythmically-isochronous compositions
can be seen to dominate one half of each of these measures. For thematic repeti-
tion, these works appear as those consisting entirely of repetition (all five of the
high-repetition compositions contain greater than 98% repeatedmaterial when
using a rhythmic representation). For thematic variation, it was those with a
lower value—those that underwent little variation due to all material appearing
identical in this representation. For stylistic unpredictability, it was those at the
lower end (more stylistically predictable). For internal unpredictability, it was
those compositions with very low mean information content values.

It should also be noted that nearly rhythmically-isochronous works can
have an additional contrary effect on the characterisations made by thematic
repetition. For example, the Prelude of Bach’s Cello Suite No. 3 gained the least
amount of modelled repetition. The inter-onset interval representation of this
work consisted entirely of sixteenth-notes, except for its opening and ending;
one theme was detected at the opening, the rhythm of which is substantially
different to the remainder.

However, despite the influence of these works, the converse extreme of each
measure, in some cases, can still identify useful explanatory example composi-
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Table 4.5: Example Compositions From the Extremes (Top and Bottom Five) of
Thematic Repetition, Thematic Variation, Stylistic Unpredictability, and Internal Unpredictab-
ility for the Inter-Onset Interval Representation

Composition Movt. Composer Year Length Value

Thematic repetition
Cello Suite No.3, BWV 1009 1 Bach, Johann Sebastian 1717 970 .07
String Quartet in C major, Op.50 No.2 2 Haydn, Joseph 1787 417 .09
Suite No.1 in A major, HWV 426 4 Handel, George Frideric 1720 960 .13
On the Seashore (A Memory) – Smetana, Bedřich 1861 304 .16
String Quartet in G major, Op.33 No.5 2 Haydn, Joseph 1781 417 .22

Cello Suite No.4, BWV 1010 1 Bach, Johann Sebastian 1717 803 .988
String Quartet in B minor, Op.33 No.1 4 Haydn, Joseph 1781 784 .989
Etudes, Op.10 5 Chopin, Frédéric 1829 944 .990
Cello Suite No.1, BWV 1007 1 Bach, Johann Sebastian 1717 654 .995
Etudes, Op.10 2 Chopin, Frédéric 1829 766 .997

Thematic variation
String Quartet in E-flat major, Op.76 No.6 2 Haydn, Joseph 1796 193 0.34
String Quartet in E-flat major, Op.33 No.2 3 Haydn, Joseph 1781 352 0.36
Six Etudes pour piano, Op.52 3 Saint-Saëns, Camille 1877 1309 0.36
Piano Sonata in A major, D.959 2 Schubert, Franz 1828 441 0.36
String Quartet in F major, Op.50 No.5 4 Haydn, Joseph 1787 821 0.36

Piano Sonata No.1, Op.1 1 Brahms, Johannes 1852 1677 1.76
Piano Sonata in A minor, D.845 1 Schubert, Franz 1825 1864 1.79
Piano Sonata No.7, Op.10 No.3 1 Beethoven, Ludwig van 1797 1926 1.79
Lieder ohne Worte, Op.19b 5 Mendelssohn, Felix 1829 850 1.89
Piano Sonata No.31, Op.110 1 Beethoven, Ludwig van 1821 1058 2.00

Stylistic unpredictability
Etudes, Op.10 2 Chopin, Frédéric 1829 766 0.06
Cello Suite No.1, BWV 1007 1 Bach, Johann Sebastian 1717 654 0.07
Cello Suite No.2, BWV 1008 3 Bach, Johann Sebastian 1717 728 0.09
Cello Suite No.4, BWV 1010 7 Bach, Johann Sebastian 1717 942 0.12
Piano Sonata No.22, Op.54 2 Beethoven, Ludwig van 1804 2374 0.13

Nocturne No.12 in E minor, Op.107 – Fauré, Gabriel 1916 615 2.93
String Quartet in G major, Op.33 No.5 2 Haydn, Joseph 1781 417 3.03
Piano Sonata No.32, Op.111 2 Beethoven, Ludwig van 1821 2135 3.86
Suite No.1 in A major, HWV 426 4 Handel, George Frideric 1720 960 4.65
Violin Sonata No.4 in A minor, Op.23 1 Beethoven, Ludwig van 1800 1454 5.23

Internal unpredictability
Cello Suite No.6, BWV 1012 5 Bach, Johann Sebastian 1717 350 0.68
Cello Suite No.4, BWV 1010 5 Bach, Johann Sebastian 1717 810 0.69
Cello Suite No.6, BWV 1012 3 Bach, Johann Sebastian 1717 1278 0.70
Vier Impromptus, D.899 4 Schubert, Franz 1827 2300 0.70
Mazurkas, Op.30 5 Chopin, Frédéric 1835 276 0.72

Préludes, Book 1 10 Debussy, Claude 1909 112 2.72
Album, Op.72 5 Saint-Saëns, Camille 1884 235 2.72
String Quartet in C major, Op.50 No.2 2 Haydn, Joseph 1787 417 2.79
Miroirs 2 Ravel, Maurice 1903 356 2.85
Violin Concerto, Op.61 2 Elgar, Edward 1905 139 3.72
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tions. For themeasure of thematic repetition, some compositions with low repe-
tition often favour diversions to material of an almost purely stylistic nature—
which, in this representation are largely isorhythmic—rather than repetitions
and variations of thematic material. Examples of this can be seen in the Haydn
String Quartet movements listed. The higher extreme of thematic variation can
be seen to contain mostly sonata-form movements, containing large amounts
of variation due both to their relatively large length, and to the nature in which
material is developed in sonata form. The compositions that were most stylistic-
ally unpredictablewere often those that contained relatively little-used rhythms,
when compared to the rest of the corpus. For example, the 9/16 time signature
of Beethoven’s Piano Sonata No. 32, second movement, produced rhythmic se-
quences (within the inter-onset interval representation that is strict with respect
to absolute duration) that rarely occurred elsewhere. Finally, some composi-
tions with high values of internal unpredictability, such as the work by Ravel,
contained wide varieties of rhythmic patterns throughout the composition that
were not substantially repeated.

4.5 Summary

To investigate the behaviour of the model described in Chapter 3, a corpus of
623 monophonic western-classical works was created, within which there is in-
herent variation of large-scale thematic structure between compositions. The
analysis of the model had the aim of exploring the extent to which the quantit-
ative measures of thematic structure, theme detection and general work prop-
erties could account for variation within the corpus.

The analysis of the model output when applied to the corpus was invest-
igated separately for pitch and rhythmic representations. For both represent-
ations, the analysis first considered the relative performance of different rep-
resentations of the musical surface within each domain. The analysis then ex-
amined the ability of measures to explain variance inherent in the corpus. To
do so, principal component and independent component analyses were used
to understand the nature of the measures. Example compositions from the ex-
tremes of the four primary model measures were assessed to further illustrate
the properties of this variation.

As an initial step in the evaluation of the model of Chapter 3, this analysis
provides useful information for the behavioural studies that make up the re-
mainder of this thesis. Firstly, the corpus created and described here provides
the ability to computationally sample experimental stimuli, based on theirmod-
elled properties. This aids the experiment designs as it can provide the assur-
ance that stimuli provide sufficient variance in the domain of interest. Secondly,
the comparison of the performance of musical representations allowed for the
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most-suitable pitch and rhythm representations to be identified; these repres-
entations are then used in the modelling of experimental data, allowing for the
separate effects of pitch and rhythm to be examined without requiring a pro-
cess of representation selection for each experiment. Finally, this corpus ana-
lysis first identifies the patterns of results produced by the presence of purely
rhythmically-isochronous compositions, an important consideration when in-
terpreting the output of the model in the rhythmic domain.
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Chapter 5

Modelling Small-Scale

Thematic Structure

5.1 Overview

This chapter presents the findings of a first behavioural experiment that aimed
to provide some preliminary validation of the modelling of thematic structure,
based on the statistical learning of structurally-important features, described in
Chapter 3. While the primary focus of this thesis is on the perception on them-
atic structures on the large-scale, in this initial experiment it was important
to examine whether measures could predict perception on a local level before
extending the enquiry to large-scale thematic structures in the following parts
of the thesis. The experiment tested the abilities of participants to perceive a
relationship between pairs of themes and repetition phrases, identified by the
theme and repetition-detection processes described in Chapter 3, within the
monophonic compositions of the corpus created in Chapter 4.

In many ways, the task of this experiment follows on from those reviewed
in Chapter 2 that also considered the perceived similarity between passages of
music (Lamont & Dibben, 2001; Ziv & Eitan, 2007), with the added dimension
of computationally-chosen stimuli and analysis of the statistical and stylistic fea-
tures of excerpts. The experimental question used differs from an explicit judge-
ment of similarity (for example, as used by Lamont & Dibben, 2001); in this ex-
periment, participants were asked to rate the extent to which they believed the
two musical excerpts belonged to the same original work or not. While each
pair of excerpts presented were from the same composition in all cases, this
question was chosen so as to reflect the fact that pairs could be judged accord-
ing to both intra-opus and stylistic properties.

The chapter is ordered as follows. The elements of computational model-
ling are set out. Due to the small-scale focus of this experiment, the complete
set of measures introduced in Chapter 3 are not all applicable; three model-
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derived measures specific to this experiment are described. Then follows the
hypotheses, methods and results of the experiment, with a final discussion of
the findings and implications of for the perception of thematic structure.

5.2 Modelling

The measures of thematic structure introduced in Chapter 3 and tested in
Chapter 4 were designed to characterise statistical elements across complete
pieces of music. The measures were formed using different configurations
of IDyOM variable-order Markov models, using different training domains.
IDyOM, given a training sequence, estimates likelihoods of the occurrence
of note-events in a sequence, smoothing between models of different orders
(Pearce, 2005). These likelihood estimates were converted into a value of in-
formation content—the unpredictability of a note-event occurring, given the
training sequence.

To allow for measures to be created based only on the thematically-relevant
material within a composition, Chapter 3 presented a method of identifying
possible novel themes, and repetitions related to such themes, based on patterns
of internal unpredictably (STM information content) within a composition.

5.2.1 Measures

For this experiment, three measures were used to characterise the theme–
phrase pairs according to different hypothesised statistical learning mechan-
isms. Due to the focus on small time-scales in this initial behavioural study,
measures were simpler and fewer than the primary measures of Chapter 3 from
which they were derived. Pairs could differ in two ways: (1) in their thematic
similarity to each other (i.e., the extent to which one was predictable, given the
other), or (2) in the extent to which they were predictable, given stylistic norms
internalised during long-term prior musical experience. Additionally, the pair
together could be characterised by their stylistic predictability. By understand-
ing these properties on a local scale, we can learn how theymay function during
a composition, where frequent judgments of similarity, both thematic and styl-
istic, may be made between occurring themes and repetitions.

While the model of thematic structure used to generate these experi-
ment measures (and the IDyOM components underpinning it) can be applied
to many different representations of a musical surface, this experiment and
its analyses were limited to two—the sequential interval between pitches (in
semitones), and the inter-onset intervals between note events. These two rep-
resentations covered both melodic pitch and rhythmic domains, providing an
exploration of the independent effects of these domains on the perception of
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thematic structure, while still allowing the evaluation of the measures to be
tractable. The measures used in this experiment therefore had two forms, one
using each representation.

Dissimilarity. The first of these differences was quantified in an experiment
measure of dissimilarity. This measure, the singular instance of Chapter 3’s
thematic variation, used the information-theoretic measure of compression dis-
tance (Li et al., 2003; Pearce & Müllensiefen, 2017) between the theme and the
subsequent repetition. The distance D(r|t) between a theme, t, and a later re-
petition, r (length l), is calculated as the normalised summed information con-
tent of the note-events of the repetition phrase, given a model trained on the
corresponding theme, the measure of dissimilarity used in this experiment is
also related closely to a composition’s internal unpredictability.

D(rl1 | tk1) =
1

l

l∑
i=1

ht(ri)

Stylistic difference. To characterise differences between theme and repetition
stylistic unpredictability, the stylistic information content of each was modelled
using an IDyOMLTM, trained on a corpus ofwestern tonalmelodies (described
in Chapter 4). The absolute difference between stylistic unpredictability inform-
ation contents for the two sequences was used to form the measure of experi-
ment measure of stylistic difference. For a theme, tk1 , of k events and repetition,
rl1, of l events, where hltm is the LTM information content:

Y (tk1, r
l
1) =

∣∣∣ 1
k

k∑
i=1

hltm(ti|ti−1
1 )− 1

l

l∑
i=1

hltm(ri|ri−1
1 )

∣∣∣
Mean stylistic unpredictability. To test whether the overall stylistic unpredict-
ability of a pair would influence the perception of a relationship between the
themes and repetitions, a second derivative of stylistic unpredictability was also
used. Mean stylistic unpredictability quantified how predictable each pair was,
combined, using the grand mean of stylistic unpredictability of themes and re-
petitions.

S(tk1, r
l
1) =

1

2

(1
k

k∑
i=1

hltm(ti|ti−1
1 ) +

1

l

l∑
i=1

hltm(ri|ri−1
1 )

)

5.3 The present experiment

This first behavioural experiment aimed to provide some preliminary validation
of the modelling of thematic structure presented in Chapter 3; it aimed to test
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the extent to whichmeasures based on statistical learning within a composition
could explain listeners’ perception of relationships between passages of music.
It was important to examine whether the model-based measures could predict
perception on a local level before extending the enquiry to large-scale thematic
structures in the subsequent experiments of this thesis—the testing of which
introduces multiple complications. This experiment specifically examined the
effects of dissimilarity (the individual component of thematic variation), stylistic
difference and mean stylistic unpredictability (both derived from stylistic unpre-
dictability) on the extent to which pairs of stimuli, each consisting of a theme
and a later thematic repetition, were perceived as being derived from the same
piece of music

For this experiment, it was hypothesised that all three of the measures of
thematic structure would be able to account significantly for participants’ per-
ception of thematic relationships in some way. This general hypothesis would
provide evidence that thematic structure can be perceived in a systematic way,
and that this perception can be simulated in terms of psychologicalmechanisms
of statistical learning.

More specifically, three hypotheses were advanced for the relationships be-
tween participant ratings and the experiment measures:

1. That dissimilarity would have the strongest effect on participant re-
sponses, versus the stylistic measures, with stimulus pairs showing high
dissimilarity more likely to be judged as unrelated

2. That stylistic differencewould be themeasure of second-most importance,
with pairs of high stylistic difference being more likely to be perceived as
unrelated, particularly when combined with high dissimilarity not imme-
diately identifying the two as related (i.e., two dissimilar phrases could
still be perceived as originating from the same work if they were close in
style)

3. That overall mean stylistic unpredictability would be associated with a
tendency to perceive the excerpts as unrelated—if the stimuli were stylist-
ically novel to a listener, their ability to judge the magnitude of distance
of the other measures would be reduced.

Additionally, for this experiment, measures of participants’ musical back-
grounds were recorded. It was hypothesised that participants with greater mu-
sical training, and so having a greater prior exposure to music and its stylistic
conventions, would increase the impact of the two stylistic measures on ratings.
We made no specific hypotheses as to the effects of musical background on the
intra-opus dissimilarity measure.
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5.4 Methods

5.4.1 Participants

Forty participantswere recruited to participate through the online platformPro-
lific.1 No exclusion criteria were applied other than a required first language of
English and normal or corrected to normal hearing. Participants had a mean
age of 31.98 years (SD = 10.76) and 24 were women. Participants were of eight
nationalities, with 30 of UK nationality. There were no prerequisites on mu-
sical training; 20 participants reported having received some formal musical
training on at least one instrument, of which four reported training for more
than 10 years.

5.4.2 Stimuli

Stimuli were selected from a large corpus of western-classical tonal melodies
(presented in Chapter 4) using the output of the theme and repetition detec-
tion models presented in Chapter 3. Stimuli took the form of pairs of a theme
and a later phrase from the same composition identified by the model as being
related (or belonging) to that theme. These theme–phrase pairs varied in three
experiment measures: (1) dissimilarity, the normalised compression distance
between the two stimuli; (2) stylistic difference, the absolute difference in LTM
information content between the two stimuli; and (3) mean stylistic unpredict-
ability, the mean LTM information content of the pair.

Theme–phrase pairs were selected from the full set of possible pairs extrac-
ted from the corpus by the model. Outliers more distant than 2 SD from the
mean for each measure were removed. Phrases that, in their entirety, were ex-
act matches with any sub-part of the theme were discarded; for the paradigm
used, these phases would not return useful information. To avoid any possible
overlap of material between stimuli, selection was limited to one phrase per
theme and one theme per composition—the first theme was used in all cases.
Following these constraints, 100 theme–phrase pairs were selected at random
from the subset of 6,687 available.2

Audio files were generated for the selected stimuli in a piano timbre with
a uniform loudness using MuseScore3 notation software. Original pitches,
rhythms and tempos were preserved.

In the selected stimuli, themes had a mean duration of 8.32 seconds
(SD = 4.92) and phrases had a mean duration of 4.93 seconds (SD = 1.50).

1https://www.prolific.co/
2Modelling code, stimuli and data for this experiment can be found at https://osf.io/zmqh2/.
3https://musescore.org/
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5.4.3 Procedure

The experiment was implemented using the jsPsych4 JavaScript library—with
a custom designed task—to be conducted online through the participant’s web
browser (de Leeuw, 2015).

The experiment consisted of two parts. For the first (the more substantial
task, taking around 30 minutes for completion), participants were presented
with all 100 of the theme–phrase pairs (theme first, separated by a short gap) in
a randomised order. Stimulus pairs were presented in four equal blocks with
a 30-second mandatory rest period in-between each. Participants were not in-
formed of the theme–phrase relationship between the pairs of stimuli; instead
they were instructed that pairs may, or may not, be excerpts from two differ-
ent compositions. Participants were asked to give a rating answering the ques-
tion ‘to what extent do these two excerpts sound like they are from the same
piece?’ Ratings were given on amoveable slider between ‘same piece’ (returning
a value of 0) and ‘different pieces’ (returning 100). Participants were required
to listen fully to both excerpts before submitting a rating. Additionally, parti-
cipants were asked to indicate if the piece corresponding to either excerpt was
known to them.

In the second part of the experiment, participants gave their responses to
the Goldsmiths Musical Sophistication Index (Gold-MSI) self-report question-
naire for musical sophistication (Müllensiefen et al., 2014).

5.4.4 Statistical analysis

Ratings for stimuli were treated differently in five separate analyses. For all but
the final analysis, the effects of measures in the pitch and rhythmic representa-
tions are presented separately.

The first analysis was categorical, comparing participant responses between
high and low values of each experiment measure. Ratings for theme–phrase
pairs were split into two at the median of each of the three measures, giving
high/low dissimilarity (dissimilar/similar), high/low stylistic difference (stylistic-
ally distant/close) and high/low mean stylistic unpredictability (stylistically un-
predictable/predictable) separately for both pitch and onset models. For each
participant, ratings for stimuli in each cell of the resulting factorial design were
averaged. A three-way repeated-measures ANOVA was used for each repres-
entation to test main and interaction effects of the three categorical measures
on participant ratings.

The remaining analyses were continuous, the second using correlation coef-
ficients (Pearson’s r) between the mean participant results for each theme–
phrase pair and the pair’s corresponding value for dissimilarity, stylistic differ-

4https://www.jspsych.org/
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ence andmean stylistic unpredictability in each representation. Third, amultiple
linear regression analysis was used, for each representation, to test the com-
bined abilities of dissimilarity, stylistic difference, and mean stylistic unpredict-
ability to predict the ratings of theme–phrase pairs. Fourth, a multiple linear
regression analysis compared the effects of measures between pitch and onset
representations on participant ratings.

In the final analysis, participant responses to Gold-MSI questions were ag-
gregated by summing participant responses (accounting for question phrasing)
to produce a measure of general sophistication for each participant, and aggreg-
ated for question subsets relating to participants’ perceptual abilities and mu-
sical training. Correlation coefficients were also calculated between mean rat-
ings for each participant and their aggregated Gold-MSI scores, and between
linear regression slopes for individual participants in each measure and Gold-
MSI scores.

5.5 Results

The results are presented individually for each analysis as follows: (1) a sum-
mary of participant ratings, their distributions, and Gold-MSI scores; (2) the
ANOVA for interactions between ratings and model measures; (3) correlation
and multiple linear regression analyses of relationships between ratings and
model measures; (4) the multiple linear regression analysis comparing meas-
ures from models using pitch and rhythm representations; and (5) the analysis
of correlations between ratings and model measures, and between participants’
Gold-MSI scores, slopes and their ratings.

All 40 participants returned ratings for all 100 theme–phrase stimuli pairs
and all gave full responses to the Gold-MSI questionnaire. Participants gave
ratings of the extent towhich the two phrases belonged to the same composition
with amean of 47.36 (SD= 34.29), using 98% (SD= 3.73) of the scale on average.

After aggregation of responses to the Gold-MSI self-report questionnaire
into scores for each participant, participants had a mean score for general soph-
istication (scale range 18–126) of 53.30 (SD= 17.19), amean score for perceptual
abilities (out of a possible scale range of 9–63) of 38.48 (SD = 6.30), and a mean
score for musical training (scale range 7–49) of 14.53 (SD = 9.58).

5.5.1 Categorical analysis

For the pitch interval and inter-onset interval representations, stimuli were cat-
egorised as being either ‘high’ or ‘low’ in each of their three model measures,
split at the median. Participants’ ratings were averaged for the stimuli in the
eight combinations of categories produced, giving one value per participant in
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Table 5.1: Descriptive Statistics of the Ratings for Stimuli in the Factorial Experi-
mental Conditions of Dissimilarity (high, low), Stylistic Difference (high, low), and Mean
Stylistic Unpredictability (high, low)

Stylistic
difference

Mean stylistic
unpredictability

Dissimilarity

High Low

M SD M SD

Pitch interval
High High 59.09 7.27 43.60 12.82

Low 60.67 8.93 42.20 11.64
Low High 61.60 14.13 34.08 10.30

Low 50.38 8.46 33.48 7.82

Inter-onset interval
High High 63.15 7.98 28.62 11.21

Low 66.18 11.00 37.12 9.12
Low High 60.11 9.20 37.81 9.85

Low 59.08 15.15 27.43 9.51

each condition. Table 5.1 summarises the ratings for these categories.
A three-way ANOVA (repeated-measures) was used to test the interaction

between the three categorical measures and participant ratings for each repres-
entation. For pitch interval, individually all three measures showed signific-
ant main effects: dissimilarity, F(1, 39) = 230.40, p < .001, η2p = .59; stylistic
difference, F(1, 39) = 34.06, p < .001, η2p = .14; and mean stylistic unpredictab-
ility, F(1, 39) = 14.41, p < .001, η2p = .03. For all three measures, mean rat-
ings were higher (i.e., indicating different pieces) for the ‘high’ category. There
was a significant two-way interaction between dissimilarity and stylistic differ-
ence, F(1, 39) = 9.72, p < .01, η2p = .03, such that the effect of stylistic difference
was greater when dissimilarity was low. There was also a significant interaction
between stylistic difference and mean stylistic unpredictability, F(1, 39) = 12.79,
p < .001, η2p = .03, such that the effect of mean stylistic unpredictability was
greater when stylistic difference was low. There was a significant three-way in-
teraction between all model measures, F(1, 39) = 13.18, p < .001, η2p = .04, such
that when dissimilarity was high and stylistic difference low, there was a greater
effect of mean stylistic unpredictability (see Figure 5.1).

For inter-onset interval, significant effects were shown for individual meas-
ures of dissimilarity, F(1, 39) = 870.89, p < .001, η2p = .76 and stylistic differ-
ence, F(1, 39) = 7.13, p < .01, η2p = .03, but not formean stylistic unpredictability.
For both significant measures, mean ratings were higher for the ‘high’ category.
There was a significant two-way interaction between dissimilarity and stylistic
difference, F(1, 39) = 5.87, p = .02, η2p = .02, such that the effect of stylistic dif-
ference was greater when dissimilarity was high—the converse relationship to
that of pitch interval. There was also a significant interaction between stylistic
difference andmean stylistic unpredictability, F(1, 39) = 33.16, p < .001, η2p = .11,
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Figure 5.1: Interaction effects of categorical measures on mean participant ratings
for (A) pitch interval and (B) inter-onset interval. Note: Error bars show 95% confid-
ence intervals.
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Table 5.2: Pearson’s r Correlations Between Experiment Measures and Participant
Ratings

Variable M SD 1 2 3

Pitch interval
1 Dissimilarity 0.88 0.27 –
2 Stylistic difference 0.73 0.50 .29 •• –
3 Mean stylistic unpredictability 3.20 0.53 .04 .09 –
Ratings (stimuli means) 47.36 21.69 .58 ••• .37 ••• .05

Inter-onset interval
1 Dissimilarity 1.56 1.19 –
2 Stylistic difference 1.18 1.13 .23 • –
3 Mean stylistic unpredictability 1.93 0.81 .04 .25 • –
Ratings (stimuli means) 47.36 21.69 .56 ••• .27 •• .17

• p < .05; •• p < .01; ••• p < .001

such that when stylistic difference was low, pairs with low mean stylistic unpre-
dictability would be given lower ratings (i.e., indicating the same parent piece),
with the inverse true at high stylistic difference. A significant three-way interac-
tion between all model measures, F(1, 39) = 13.84, p < .001, η2p = .05, shows that
the interaction between stylistic difference and mean stylistic unpredictability is
greatest when dissimilarity is low (see Figure 5.1).

5.5.2 Continuous analyses

Participants’ ratings for each stimulus were averaged to give a mean rating for
each theme–phrase pair. Thesemean ratings were then analysed using the three
model measures in each representation as predictors. For both pitch interval
and inter-onset interval, themean ratings had a significant positive correlations
both with dissimilarity (r(98) = .58, p < .001 and r(98) = .56, p < .001, respect-
ively) and with stylistic difference (r(98) = .37, p < .001 and r(98) = .27, p < .01)
but had no correlation with mean stylistic unpredictability, (r(98) = .05, p = .64
and r(98) = .17, p = .08). The extent to which measures themselves were correl-
ated is given in Table 5.2.

Using mixed-effects multiple linear regression, ratings were analysed using
the three measures as predictor variables, accounting for the random effects of
participant and stimulus pair. Due to the over-fitting of data when using the
maximal random effects structure, only random intercepts were included. In-
teraction effects were included based on the significant interactions found in
the preceding categorical analysis, Summaries for analyses for both measures
are shown in Table 5.3. For pitch interval, dissimilarity was found to be a sig-
nificant predictor, with greater dissimilarity predicting higher ratings that pairs
were not thought to come from the same piece, β∗ = 0.32. The pitch interval
model accounted for 41.86% of the total variance in the data; participant inter-
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cepts SD= 5.59, stimulus intercepts SD= 17.04. No significant interactionswere
found between the variables in their continuous form. For inter-onset interval,
all three measures were significant: dissimilarity, β∗ = 0.34; stylistic difference,
β∗ = 0.17; andmean stylistic unpredictability, β∗ = 0.09. The inter-onset interval
had one significant interaction between the two stylistic measures, as the styl-
istic difference increased the effect of mean stylistic unpredictability decreased.
The inter-onset interval model accounted for 41.81% of the total variance in
the data; participant intercepts SD = 5.59, stimulus intercepts SD = 16.67.

A final mixed-effects linear regression analysis was used to test the relative
ability of all measures across both representations to predict participant’s rat-
ings, again with random intercepts of participant and stimulus. The one inter-
action that was supported in its continuous form, between inter-onset interval
stylistic difference andmean stylistic unpredictability was included. As shown in
Table 5.4, dissimilarity in both pitch interval and inter-onset interval was found
to be a significant predictor of ratings (β∗ = 0.24, β∗ = 0.24), with higher dissim-
ilarity corresponding with higher ratings. Additionally, pitch interval stylistic
differencewas found to have a significant effect (β∗ = 0.10), as well as inter-onset
interval mean stylistic unpredictability (β∗ = 0.10). The combined representa-
tion model accounted for 41.69% of the total variance in the data; participant
intercepts SD = 5.59, stimulus intercepts SD = 14.42.

To test whether participant’s musical backgrounds influenced ratings, Gold-
MSI scores were correlated both with the mean ratings for each participant
and with coefficients (slopes) from simple linear models predicting each par-
ticipant’s ratings from each of the model measures in each of the representa-
tions. No significant correlation was found between any of the three scores of
general sophistication, perceptual abilities andmusical training, and participants’
mean ratings or slopes for the pitch interval model. A significant correlation
was found between general sophistication and slopes using inter-onset interval
stylistic difference, r(38) = .37, p = .02, such that ratings from participants with
higher Gold-MSI scores were more influenced by the stylistic difference of pairs.

5.6 Discussion

This first behavioural experiment sought to provide some preliminary valida-
tion of the modelling of thematic structure, based on the statistical learning of
structurally-important features, described in Chapter 3. Understanding how
these features interact and influence the perception of musical phrases presen-
ted in isolation as immediate pairwise comparisons of thematic material was an
important first step to understanding their effects when integrated into music
over far longer timespans. For repetition to be identified, the process of com-
paring incoming musical material to existing themes already heard and stored
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in memory must happen many times throughout the course of listening to a
composition. For the statistically-learned features discussed in this thesis to be
able to influence the perception of such large-scale repetition across an entire
composition, they must first influence individual instances of repetition within
the music. Therefore, the rationale of the experiment presented in this chapter
was to test the model-based measures of thematic structure in the microcosm
provided by single pairwise comparisons of musical passages from the same
piece.

Due to the nature of this experimental paradigm, only a subset of the
primary model measures discussed in Chapter 3 were applicable—dissimilarity
(derived from thematic variation), stylistic difference and mean stylistic unpre-
dictability (both derived from stylistic unpredictability). Of the remaining meas-
ures, thematic repetitionwas not meaningful in this context, and internal unpre-
dictability—insofar as its functional aspect in this paradigm is the unpredictab-
ility of the phrase given the theme—is encompassed by dissimilarity between
the two musical passages.

As hypothesised, the results of this experiment showed that the three exper-
iment measures, using both pitch interval and inter-onset interval representa-
tions, had a significant influence on listeners’ perception of theme–repetition
relationships, operationalised as the extent to which the two excerpts sounded
like they came from the same piece of music. The measure of dissimilarity
between the theme and repetition had the greatest effect on this relationship,
such that—as hypothesised—high dissimilarity resulted in pairs being less likely
to be judged as belonging to the same piece. This finding was confirmed for
pitch and rhythm variants separately, and when measures from both represent-
ations were combined in analyses together. Given that the task is closely related
to one providing direct similarity ratings between musical passages, and the
measure of dissimilarity is calculated as the compression distance between the
pair of excerpts, this result provides further evidence that compression distance
accurately simulates perceived similarity between pairs of melodies (Pearce &
Müllensiefen, 2017).

Compression distance provided a direct, encapsulated measure of dissimil-
arity that was found to be independent of any relationship the excerpts had with
other music or musical styles. This effect of dissimilarity provides some support
for the importance of intra-opus statistical learning in the perception of them-
atic relationships inmusic. The evidence that these stimulus pairs can be judged
as being related solely through the unpredictability of one, given the other, sup-
ports similar relationships being perceived in the same way when pairs are situ-
ated in large pieces of music.

However, the results also suggest that there was a secondary factor influ-
encing the extent to which listeners perceived two musical passages as coming
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from the same piece; evidence was found supporting the case that judgements
were also dependent on differences between theme and repetition congruence
with western stylistic norms, internalised inmemory via statistical learning dur-
ing long-term prior musical experience. Independent of any effect of dissimil-
arity, increasing the pitch interval stylistic difference between the two passages
decreased the likelihood that they would be considered to belong to the same
piece (as illustrated in Figure 5.1).

The results also uncovered evidence of a more nuanced role of style in the
perception of these small-scale thematic structures. In addition to the effects
found for stylistic difference, themean stylistic unpredictability of pairs of themes
and repetitions together showed a more subtle influence; this suggested that,
when the two passages showed little stylistic difference, greater overall incon-
gruence with western-musical norms resulted in listeners being more likely to
perceive the two passages as coming from different compositions, perhaps on
the basis of overall stylistic unfamiliarity.

The results of this experiment provided little evidence that the musical
backgrounds of listeners had any influence their judgements of relationships
between theme–repetition pairs. Only one significant difference was found,
with participants’ general sophistication influencing the importance of the styl-
istic difference measure for rhythm only. This finding provides some tentat-
ive support that listeners’ musical backgrounds, through their greater musical
training and so greater exposure tomusical conventions, had some influence on
their sensitivity to stylistic elements. The lack of any other significant findings
based on musical background should perhaps be treated with some caution;
it was not a primary aim of this experiment to explicitly compare musically-
trained and non-trained participants, and so the participants have a narrower
range of musical expertise and background than would otherwise be chosen.
However, the lack of any effect of musical background on any intra-opus meas-
ures for this task corroborates the findings of Lamont and Dibben (2001) and
Ziv and Eitan (2007), both of which explicitly tested for—and did not find—
effects of musical training on similarity judgement tasks.

5.7 Summary

The experiment presented in this chapter provides an important initial corrob-
oration of the theory and accompanying computational measures presented in
Chapter 3, providing evidence in support of statistical learning as an underlying
psychological mechanism for the perception of thematic structure. Specifically,
the three measures used in this experiment provided evidence that intra-opus
compression distance between two thematic excerpts, and stylistic regularity
acquired through long-term statistical learning, influenced how listeners per-
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ceived relationships between the subsections of music making up an overall
piece. This experiment, however, is limited to testing these measures on a short
timescale, without the repetition of material that typically occurs in music. The
local effects revealed in this experiment are not necessarily generalisable, on
their own, to the perception of thematic structure on the much larger times-
cales found in musical compositions.
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Chapter 6

Modelling Large-Scale

Repetition and Unity

6.1 Overview

The previous chapter reported an experiment providing an initial behavioural
test of some of the concepts core to the understanding of thematic structure as
a statistical process on a local scale, the present chapter presents a experiment
that provides substantial testing of our theory and its model on the timescales
needed for large-scale structure. The experiment had two primary objectives—
to test the ability of listeners to identify large-scale repetition within a compos-
ition, and to test their ability to perceive the structural unity of the composi-
tion as awhole—both being highly-important indicators of large-scale thematic
structure inmusic. To investigate the first of these, a task was used in which par-
ticipants were presented long monophonic compositions (with durations of ap-
proximately 2minutes) and asked, at four givenmoments in the later portion of
the composition, whether material at that point constituted a repetition of ma-
terial from earlier within the composition. The task investigating the second of
these—the perception of unity—used a task following those used in the previ-
ous work of Tan and Spackman (2005), Tan et al. (2006) and Lalitte and Bigand
(2006); participants were asked to rate the given composition on the extent of its
perceived structural unity. These two tasks serve as important indicator func-
tions for the more general perception of thematic structure—the perception of
which is difficult to experimentally measure directly (see Chapter 2 for a review
of similar ratings of structure in previous experimental work).

As with the previous experimental chapter, this chapter first presents the
relevant modelling concepts specific to this experiment, before presenting the
experiment’s procedure, results and a discussion of its findings.
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6.2 Modelling

Chapter 3 of this thesis proposed that statistical learning could provide a plaus-
ible underlyingmechanism for the perception of thematic structure. According
to this proposal, large-scale thematic structures are perceived through the impli-
cit recognition of statistical regularities learned through both exact and inexact
repetition and variation of material. The model of the perception of thematic
structure, presented in that chapter, employed the probabilistic modelling of
IDyOM to calculate a range of measures quantifying different properties of a
composition’s thematic structure.

For a given composition, three configurations of IDyOM were used, differ-
ing in the music used for training:

1. As a short-term model (STM), learning incrementally from an initially
empty state within a given musical sequence, representing a listener’s
short-term acquisition of statistical knowledge about repeated structure
within an individual piece of music (see Chapter 3.3)

2. As a long-term model (LTM), in which it is trained on a separate set
of musical sequences, representing long-term learning of the statistical
structure of a musical style, before being applied to predicting the notes
of a musical composition

3. As a theme-trained model (TTM), trained on each theme identified in
a composition (one TTM per theme) and then used to predict the re-
mainder of that composition (see Chapter 3.4)

All IDyOM models, however they were configured for training, computed
a conditional probability estimate for each note-event in a composition when
trained, respectively, on the preceding portion of the composition (dynamic-
ally), on a corpus of melodies, or on the possible themes identified within the
composition. Probability estimates were converted into information content
values, h = −log2 p, giving a representation of the unpredictability of the event,
given the event’s context and the respective model training.

6.2.1 Measures

The measures introduced in Chapter 3 represented different hypotheses about
the psychological mechanisms underlying perception of thematic structure.
The experiment reported in the present chapter provided an empirical compar-
ison of four of these measures—internal unpredictability, thematic repetition,
thematic variation, and stylistic unpredictability. These measures were adap-
ted to the two tasks of the experiment, with terms used to distinguish between
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whether measures were applied to the entirety of a given composition, or char-
acterising properties up to a given moment within the composition.

All of the measures used in this experiment were used in two variants, each
using a different representation of the musical surface: (1) using the sequential
interval between pitches, and (2) using the inter-onset intervals between note-
events. These two representations covered both melodic pitch and rhythmic
domains, providing an exploration of the independent effects of these domains
on the perception of thematic structure. Of these, the pitch interval representa-
tion was prioritised in stimulus selection to avoid the complications identified
inChapter 4whenmodelling thematic structure with rhythmic representations;
it is viable (and relatively common) in western-classical music for compositions
to be extensively rhythmically isochronous.

Internal unpredictability

Internal unpredictability. For the present experiment, the measure of internal
unpredictability was used as defined in Chapter 3, specifically referring to the
mean STM information content of note-events in a composition.

Internal unpredictability at moment. The same dynamically-trained STMs
were also applied to the entire part of a composition before the beginning of
a given moment of interest, characterising the internal unpredictability of that
section.

Internal unpredictability of moment. Additionally, a related measure was
used to quantify how predictable the phrase at the moment itself was, given
the preceding portion of the composition.1

Identification of thematic material

While internal unpredictabilitywas based on all events in a composition (or part
thereof), the remaining three measures applied only to thematically-relevant
material—material relating to any number of thematic candidates (i.e., potential
themes) identified by the model within the musical piece. The theme detection
method implemented in Chapter 3 aimed to identify thematic candidates in a
cognitively-plausible manner; this constraint necessitated themes to be detec-
ted dynamically as a composition unfolded. Potential themes were identified

1As this phrase does not appear in isolation to the listener, but rather with some context of
the melody immediately preceding it, this measure was practically calculated as the mean internal
unpredictability (which is dynamically trained throughout the melody) for the note-events of the
moment phrase. This method also accounted for any further learning taking place within the
phrase itself.
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within a composition through a process of theme detection based on patterns
in internal unpredictability.

Thematic candidates were identified as the onset of substantially novel pitch
interval material, based on sequential comparisons of unpredictability of mu-
sical phrases with that of the preceding material within the composition. Two
thresholds dictated the magnitude of change in unpredictability needed for a
phrase to be identified as a thematic candidate, chosen with the intention of
providing robust identification for a wide range of compositions: A phrase was
declared a thematic candidate if: (1) its mean unpredictability was greater than
the cumulative mean of the material preceding it by more than half a standard
deviation; and (2) there was an absence of highly predictable events, such that
the event with the lowest unpredictability was greater by one cumulative stand-
ard deviation than that of the preceding phrase. Composition beginnings were
considered implicitly to be thematic candidates. Given the difficulty of identi-
fying the precise length of a theme, all thematic candidates were taken as two
phrases long.

It should be noted that thismethod identified thematic candidates purely on
the basis of their intra-opus novelty and so does not correspond entirely to the
notion of theme in music analysis. True themes may be considered to possess
additional properties that add to their perceptual salience. Having noted this,
for brevity, we refer to the thematic candidates as themes for the remainder of
this research.

Thematic repetition. The identified themes were used as training for TTMs,
with a separatemodel created for each theme identified. Each TTMwas trained
on the theme and then used to predict the remainder of the composition com-
mencing at that theme’s onset. The note-by-note information contents thus gen-
erated were divided into two clusters using Gaussian Mixture modelling, with
the lower (more predictable given the TTM) cluster labelled ‘thematic material’.
Thematic repetition reflects the proportion of events in a musical stimulus that
are labelled as thematic material by any of the TTMs.

Thematic repetition at moment. As with the other four primary measures,
the proportion of repetition identified in the material preceding a given mo-
ment was also characterised.

Thematic variation. The extent to which the thematic material varied from its
corresponding theme was quantified when clustering TTM values at the phrase
level. The information-theoretic measure of compression distance (Li et al.,
2003; Pearce&Müllensiefen, 2017)—the normalised summed information con-
tent of the notesmaking up a phrase, given a TTM trained on the corresponding
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theme—was used to give the dissimilarity between each phrase and its corres-
ponding theme. These values were averaged for each melody to give a measure
of how far thematic material developed from its parent theme; higher thematic
variation would indicate greater divergence between the thematic material and
the parent themes within a composition.

Thematic variation at moment. Thematic variation at moment quantified the
extent to which thematic material identified before a moment varied from its
parent themes.

Stylistic unpredictability. The stylistic content of the thematic material was
modelled using an LTM trained on a corpus of western tonal music (as de-
scribed in Chapter 4). The mean LTM information content for thematic note-
events was used to provide ameasure of the stylistic unpredictability of the them-
atic material.

Stylistic unpredictability at moment. The stylistic unpredictability of the them-
atic material occurring before a given moment was also calculated.

6.3 The present experiment

The experiment presented in this chapter aimed to test the extent to which
these measures could account for listeners’ perception of thematic structure
over large timescales. By testing these measures, we had three general aims: (1)
to examine the extent to which listeners can perceive differences in thematic
structure across a range of compositions; (2) to compare different structural
properties of music that may facilitate the perception of these structures; and
(3) to assess the hypothesis put forward by this thesis, that the perception of
thematic structures relies on psychological processes of statistical learning.

This experiment tested the influence of the four model measures on two
different indicators of thematic structure—first, the ability of participants to
identify musical material at specified moments as being a repetition of mater-
ial that appeared earlier in the piece (the recognition task), and second, the
perception of a composition’s structural unity (the unity task). For the recogni-
tion task, the four primary measures were applied to the preceding portion of
a composition before each recognition–moment and, additionally, the unpre-
dictability of the moment itself within the composition was investigated.

It was hypothesised that each of thesemeasures of thematic structure would
possess some ability to influence participants’ performance in the tasks. Corrob-
oration of this general hypothesis would provide evidence that large-scale them-
atic structure can be perceived in a systematic way, and that this perception can
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be simulated in terms of psychological mechanisms of statistical learning.
Specifically, two hypotheses were proposed for the effects of experiment

measures on participants’ abilities to recognise repetition and perceive differ-
ences in structural unity: (1) that material with low internal unpredictability
would be recognised as thematically-related repetition; and (2) that low internal
unpredictability, high thematic repetition, or low stylistic unpredictability would
each increase the ability of participants to perceive repeated thematic structure
and, therefore, increase the perceived sense of unity over an entire composition.

For this experiment, additional measures of participants’ musical back-
grounds were recorded, hypothesising that increased musical training—
through greater exposure to music and increased learning of stylistic
conventions—would increase the impact of stylistic measures on perception of
thematic structure. We made no specific hypotheses as to the effects of musical
background on intra-opus learning.

6.4 Methods

6.4.1 Participants

Forty participants were recruited using Prolific; no exclusion criteria were ap-
plied other than a required first language of English and normal or corrected to
normal hearing. Participants had amean age of 33.58 years (SD = 14.03) and 21
were women. Participants were of nine nationalities, with 25 of UK nationality.
There were no prerequisites on musical training: 27 participants reported hav-
ing received some formal musical training on at least one instrument, of which
three reported training for more than 10 years.

6.4.2 Stimuli

Stimuli for this experiment consisted of 40 two-minute-longmelodies.2 Melod-
ies were taken from the corpus of complete western tonal monophonic compos-
itions, trimming over-length compositions and disregarding those shorter than
the target stimulus length.

The possibility that a composition may be entirely rhythmically isochron-
ous posed several obstacles for selecting stimuli and identifying repetitions of
musical material for this experiment. For this reason, pitch interval was the
only representation used in the stimulus selection process.

For each of the four model measures, compositions more distant than 3 SD
from the mean were removed and 40 melodies were randomly sampled from
the remaining pool. To minimise disruption to the perception of large-scale

2Details of the compositions used are given in Table B.1 of Appendix B
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structure by local effects of the stimuli ending abruptly, endings were manu-
ally identified within an additional 15-second window; endings were identified
(with descending order of preference) at either a section ending marked in the
score, before a substantial gap in the melody, or at a strong phrase ending—i.e.,
with a perfect cadence. Audio files were generated for the selected stimuli in a
piano timbre with a uniform loudness using Apple’s GarageBand software with
original pitches, rhythms and tempos preserved.3

Within the second minute of each stimulus, four phrases were selected for
use in the recognition task. These phrases were selected so as to span a wide
range of internal unpredictability (mean unpredictability for the phrase) when
compared to the cumulativemedian unpredictability for the stimulus. To ensure
this, phrases were selected iteratively, alternating between high—above the cu-
mulative median—and low—below the median—states (with the initial state
randomised); at each iteration, the phrase furthest from the median in the state
direction was selected. Phrases within two seconds of those already identified
were excluded in order tominimise potential disruption caused bymoments be-
ing presented in quick succession. This process was repeated within the second
minute of each stimulus until four phrases were identified for each. These se-
lected phrases are referred to as ‘recognition–moments’ or simply ‘moments’.

The selected stimuli had a mean duration of 127.37 seconds (SD = 5.12).
Recognition–moments had a mean duration of 2.85 seconds (SD = 1.74).

6.4.3 Procedure

An online experiment was created using the jsPsych JavaScript library. The ex-
periment comprised a first part containing the main experimental task (tak-
ing around 50 minutes for completion) and a second part of the Goldsmiths
Musical Sophistication Index (Gold-MSI) self-report questionnaire for musical
sophistication (Müllensiefen et al., 2014).

Four sets of 20 stimuli each were created, distributed randomly, with each
stimulus present in exactly two sets. Participants heard one set each—10 hear-
ing each set—with order of presentation randomised individually for each par-
ticipant.

Individual trials contained a single stimulusmelody and involved two tasks,
the first a recognition memory task at four moments while listening to the
melody, and the second a rating of coherent unity for the melody in its entirety.

For the recognition task, a colour-coded visual indicator was used. A red
indicator notified participants that they should just listen to the stimulus, an am-
ber indicator gave notice that a recognition–moment was approaching, and a
green indicator identified the passage of music for which the task was to be con-

3Modelling code, stimuli and data for this experiment can be found at https://osf.io/e86ys/.
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ducted. Participants were asked to state whether they thought they had heard
the exact musical passage playing at the indicated moment (while the green
indicator was displayed) at any point previously in the stimulus. Responses
were to be given as quickly as possible after the indicator had changed back to
red using the ‘y’ (i.e., heard before) and ‘n’ (not heard before) keys. Four such
recognition–moments occurred during the second half of each stimulus, as de-
scribed above.

After listening to each stimulus, participants were asked to provide a rating
of the level of structural unity they perceived in the stimulus. Specifically, they
were asked to rate ‘the extent to which you think the different parts of the piece
unify into a coherent whole’ on a continuous scale from ‘not very unified’ (re-
turning a value of 0) to ‘very unified’ (returning 100). Participants were also
given the following guidance (adapted from the experimental materials used in
Tan & Spackman, 2005):

For a unified piece, even though there may be many different ideas
in it, the music still sounds like one well-integrated, whole, single
composition. A piece that is not unified, on the other hand, is one
that sounds like unconnected fragments of music that do not seem
to belong together, so that they do not hold together as one well-
integrated, whole, single piece of music.

6.4.4 Statistical analysis

Data collected for this experiment contained three levels of detail: first, re-
sponses for each recognition–moment; second, unity ratings for each stimu-
lus; and third, Gold-MSI questionnaire responses for each participant. Each of
these levels was analysed in turn for both pitch interval and inter-onset interval
representations.

The independent variables for the analyses consisted of model-based char-
acterisations of the stimuli both at the level of the entire stimulus and at the level
of specificmoments. At the stimulus level, melodieswere characterised in terms
of the four basic model measures described above: (1) internal unpredictability;
(2) thematic repetition; (3) thematic variation; and (4) stylistic unpredictability.
In addition to the ‘high’ or ‘low’ categorisation from the selection process for
each moment (and an analogous categorisation made using inter-onset inter-
val4), moments were also characterised by five experiment measures. Firstly,
the unpredictability of moment gave the mean unpredictability for the phrase
when trained on the preceding portion of the stimulus. Furthermore, moments

4Due to the effect of completely isorhythmic content for a small number of stimuli (the
factor that excluded this representation from use in moment selection) there was a small dis-
crepancy between numbers of ‘high’ and ‘low’ unpredictability categorisations for inter-onset
interval.

Chapter 6. Modelling Large-Scale Repetition and Unity 110



were also characterised in terms of the following properties of the melody up
to the start of the recognition–moment (corresponding to the four stimulus-
level characteristics): the unpredictability at moment, the thematic repetition at
moment, the thematic variation at moment, and the stylistic unpredictability at
moment. Figure 6.1 illustrates how these measures apply to the stimuli. Sep-
arate measures for pitch interval and inter-onset interval were calculated for
stimulus-level and moment-level measures.

For the recognition task, data for pitch and rhythm models were first ana-
lysed using a chi-squared test comparing participant responses to themoments’
high/low internal unpredictability. Chi-squared tests were then used to test re-
sponses separately against binary classifications for the remaining five meas-
ures for each representation, splitting each at themedian value for that measure
across all recognition–moments. In all cases missing responses were dropped.
Secondly, recognition–moment data were analysed using mixed-effects logistic
regression analyses with participants’ responses as the dependent variable. The
independent variables were unpredictability of moment and the four ‘atmoment’
measures for both pitch interval and inter-onset interval representations.

Analysis of participant unity ratings firstly tested for correlation (Pear-
son’s r) between ratings and the four interval model measures for each rep-
resentation. Multiple linear regression analyses were then used to examine
whether the four measures were significant predictors of unity ratings for each
representation.

Participant responses to Gold-MSI questions were aggregated to produce
measures of general sophistication, perceptual abilities, and musical training for
each participant. To examine the effect of participants’ musical backgrounds on
their recognition responses, a multiple logistic regression analysis was conduc-
ted predicting responses from Gold-MSI scores. The correlation between Gold-
MSI scores and both mean unity rating per participant and slopes from simple
linear regression models between ratings and measures was also examined.

6.5 Results

The results for this experiment are presented individually for each level of data
collected for both pitch interval and inter-onset interval representations—at the
levels of (1) recognition–moments, (2) entire stimuli, and (3) participant Gold-
MSI scores.

6.5.1 Recognition–moments

Each of the 40 participants heard 20 melodies, each containing four
recognition–moments, with 40 melodies across all participants. In total, 1,642
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CORPUS 1 2 3 4

Internal unpredictability at moment; Thematic repetition at moment; Thematic variation at moment

Stylistic unpredictability at moment

Internal unpredictability of moment

Stylistic unpredictability

Internal unpredictability; Thematic repetition; Thematic variation

Unity rating task

Recognition moment task

Model training

Model prediction

Model training and   
prediction (dynamic)

Modelling domain

Figure 6.1: Illustrative training and prediction domains for experiment measures.
Recognition moment task: For a given recognition moment (shown here for the first
moment but applied to all four), domains used for model training only are shown
with dashed lines and model prediction only with a solid line; domains in which both
training and prediction are applied dynamically are shown with dash-dotted lines. Unity
rating task: As previous task, dash-dotted lines illustrate measures based on training
and prediction within a stimulus composition; stylistic unpredictability is computed from
a model trained on a corpus and used to predict events in the composition.

responses were given for moments being heard before and 1,514 for moments
not heard before, with 44missing responses. Responses were aggregated to give
the proportion of ‘heard before’ to ‘not heard before’ responses for each stim-
ulus moment (missing responses were not included). Correlations were found
for correspondingmeasures between pitch and rhythmic representations; meas-
ures involving intra-opus training showed this positive correlation, only stylistic
unpredictability at moment did not.

For Chi-squared tests, proportions were rounded to produce a single bin-
ary response for each moment. Classification of the moment according to
internal unpredictability (high or low), relative to that of the melody before
the moment, was found to have a significant effect on responses for both
pitch interval, χ2(1, N = 80) = 34.25, p < .001, and inter-onset interval,
χ2(1, N = 80) = 32.33, p < .001. For binary classifications of the remaining
five measures Table 6.1, unpredictability of moment was found to be signific-
ant for pitch interval, χ2(1, N = 80) = 30.64, p < .001, and inter-onset interval,
χ2(1,N = 80) = 18.24, p < .001, and unpredictability at moment was found to be
significant for pitch interval only, χ2(1, N = 80) = 12.08, p < .001. For all three
of these measures, participants were more likely to mark high unpredictability
moments as not being heard before. An additional significant effect of thematic
repetition at moment, for inter-onset interval only was found χ2(1, N = 80) =
4.22, p= .04. The remainingmeasures were not found to be significant for either
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Table 6.1: Descriptive Statistics for High and Low Categories of Individual Experi-
ment Measures

High Low

Measure M SD M SD

Pitch interval
Unpredictability of moment 4.78 1.03 1.00 0.55
Unpredictability at moment 3.10 0.47 1.70 0.42
Thematic repetition at moment 0.55 0.09 0.30 0.08
Thematic variation at moment 0.91 0.15 0.46 0.09
Stylistic unpredictability at moment 3.55 0.37 2.65 0.26

Inter-onset interval
Unpredictability of moment 2.23 0.80 0.83 0.36
Unpredictability at moment 1.65 0.25 1.11 0.30
Thematic repetition at moment 0.81 0.10 0.40 0.16
Thematic variation at moment 1.06 0.20 0.59 0.14
Stylistic unpredictability at moment 1.78 0.62 0.62 0.24

pitch or rhythm.
Using mixed-effects logistic regression, recognition–moment responses

were analysed using the five pitch interval measures (in continuous form) as
predictor variables. Themodel accounted for the random effects of participants
and moments (nested in their respective stimulus), however, due to the over-
fitting to data when using the maximal random-effects structure, these differ-
ences where modelled using random intercepts only. As shown in Table 6.2,
predictor unpredictability of moment was found to be highly significant. Higher
values (increased unpredictability) favoured the response ‘not heard before’; an
increase in 1SD of unpredictability of moment was associated with an odds ratio
of 2.78 for ‘not heard before’. Participant intercepts had SD = 0.62, moment in-
tercepts SD = 1.02. For a logistic regression model predicting responses using
inter-onset interval measures with random intercepts of participant and mo-
ment (see Table 6.2), a similar significant effect of unpredictability of moment
was found. An increase in 1SD of unpredictability of moment was associated
with an odds ratio of 3.13 for the response of ‘not heard before’. Participant
intercepts had SD = 0.62, moment intercepts SD = 1.02.

To test both representations together, a mixed-effects logistic regression us-
ing all measures from both, as well as accounting for the random intercepts of
participants and stimulus moments, was used to predict recognition response
proportions. As shown in Table 6.3, both pitch interval and inter-onset inter-
val unpredictability of moment were significant predictors, with increases of 1
SD in each being associated with odds ratios of 1.85 and 2.04, respectively, for
the response ‘not heard before’. An AIC score of 3495.00 for this combined
model showed a better goodness of fit to the data than those using only pitch
measures, 3525.40, or rhythmic measures, 3517.40 (where the rhythmic meas-
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Table 6.2: Mixed-Effects Logistic Regression Analyses Predicting Recognition–
Moment Responses by Experiment Measures for Each Pitch and Rhythmic Repres-
entation, Accounting for Participant and Stimulus Differences

Predictor β SE z p

Pitch interval
Intercept 2.08 0.76 2.72 <.01 ••
Unpredictability of moment −0.49 0.05 −10.44 <.001 •••
Unpredictability at moment −0.25 0.13 −1.90 .06
Thematic repetition at moment −0.02 0.72 −0.23 .98
Thematic variation at moment −0.10 0.42 −0.24 .81
Stylistic unpredictability at moment 0.05 0.20 0.24 .81

Inter-onset interval
Intercept 2.25 0.59 3.78 <.001 •••
Unpredictability of moment −1.21 0.12 −10.44 <.001 •••
Unpredictability at moment −0.20 0.27 −0.72 .47
Thematic repetition at moment −0.68 0.45 −1.51 .13
Thematic variation at moment 0.59 0.38 1.53 .13
Stylistic unpredictability at moment −0.06 0.15 −0.42 .67

•• p < .01; ••• p < .001

ure model showed a better fit than the pitch one). Participant intercepts had SD
= 0.62, moment intercepts SD = 0.89.

6.5.2 Unity ratings

All 40 participants returned ratings of unity for all 20 melodies presented
to them. Across the 40 total stimuli, unity was rated with a mean of 57.50
(SD = 27.88) and the mean scale usage by participants was 82% (SD = 15.43).
Unity ratings were combined by producing an average for each stimulus. As
with the recognition task measures, corresponding measures between repres-
entations were positively correlated, excluding stylistic unpredictability.

Correlations between mean unity ratings and the four pitch interval model
measures showed a highly significant correlation between internal unpredictab-
ility and unity, r(38) =−.61, p < .001. No significant correlation was found for
the remaining three measures; thematic repetition, r(38) = −.03, p = .86; them-
atic variation, r(38) = −.11, p = .50; and stylistic unpredictability, r(38) = −.02,
p = .89. Correlations between unity ratings and inter-onset interval measures
showed the same pattern of results, with a highly significant correlation found
with internal unpredictability, r(38) = −.78, p < .001, and no significant correl-
ations found for thematic repetition, r(38) = .11, p = .48; thematic variation,
r(38) = −.11, p = .50; and stylistic unpredictability, r(38) = −.05, p = .06.

Usingmixed-effects linear regression, unity ratings were analysed using the
four measures as predictor variables, accounting for random intercepts of par-
ticipant and stimulus. As shown in Table 6.4, for both representations the pre-
dictor of internal unpredictability accounted for a significant proportion of vari-
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Table 6.3: Mixed-Effects Logistic Regression Analyses Predicting Recognition–
Moment Responses by Experiment Measures Across Both Pitch and Rhythmic Rep-
resentations, Accounting for Participant and Stimulus Differences

Predictor β SE z p

Intercept 2.46 0.80 3.06 <.01 ••
Pitch interval
Unpredictability of moment −0.30 0.05 −5.85 <.001 •••
Unpredictability at moment −0.02 0.15 −0.16 .87
Thematic repetition at moment 0.34 0.68 0.51 .61
Thematic variation at moment −0.21 0.40 −0.52 .60
Stylistic unpredictability at moment 0.05 0.20 0.26 .80
Inter-onset interval
Unpredictability of moment −0.76 0.13 −5.91 <.001 •••
Unpredictability at moment −0.27 0.32 −0.83 .41
Thematic repetition at moment −0.70 0.47 −1.50 .13
Thematic variation at moment 0.67 0.39 1.73 .08
Stylistic unpredictability at moment −0.13 0.15 −0.88 .38

•• p < .01; ••• p < .001

ance, with higher internal unpredictability corresponding to lower perceived
unity for a melody (β∗ = 0.30 and β∗ = 0.38, respectively). The pitch interval
model accounted for 32% of the total variance in the data and the inter-onset
interval model accounted for 31% of the total variance in the data. Participant
intercepts varied for pitch interval SD = 9.58 and inter-onset interval SD = 9.71.
Stimulus intercepts varied for pitch interval SD = 9.56 and inter-onset interval
SD = 6.62.

As the sole predictor of significance in the regression models for both rep-
resentations, the relative ability of internal unpredictability to account for vari-
ance in participant ratings can be compared between representations (still ac-
counting for stimulus and participant random effects). Pitch interval internal
unpredictability accounted for 31% of variance in mean ratings (β = −12.08,
df = 38.28, t = −4.64, p < .001) and inter-onset interval internal unpredictability
accounted for 31% of variance, (β = −22.73, df = 37.74, t = −7.88, p < .001) as
shown in Figure 6.2. However, the strong correlation between the measures of
internal unpredictability for pitch and rhythm, r(38) = .72, p < .001, makes it
difficult to ascertain which has the stronger effect.

6.5.3 Gold-MSI scores

After averaging of Gold-MSI responses into scores for each participant, parti-
cipants had a mean score for perceptual abilities (out of a possible scale range of
9–63) of 40.32 (SD = 6.16), a mean score formusical training (scale range 7–49)
of 16.53 (SD = 8.66), and a mean score for general sophistication (scale range
18–126) of 56.60 (SD = 17.48).

Multiple logistic regression was used to test for the effects of musical soph-
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Table 6.4: Mixed-Effects Linear Regression Analyses Predicting Stimulus Unity Rat-
ings by Experiment Measures for Each Pitch and Rhythmic Representation, Accounting
for Participant and Stimulus Differences

Predictor β SE df t p

Pitch interval
Intercept 88.87 12.41 36.15 7.16 <.001 •••
Internal unpredictability −12.82 2.77 35.28 −4.63 <.001 •••
Thematic repetition −3.87 11.72 35.01 −0.33 .74
Thematic variation −4.30 8.01 35.14 −0.54 .60
Stylistic unpredictability 3.30 3.28 35.13 1.00 .32

Inter-onset interval
Intercept 99.73 7.53 37.83 13.24 <.001 •••
Internal unpredictability −23.40 3.49 35.13 −6.70 <.001 •••
Thematic repetition −7.94 6.43 35.25 −1.24 .26
Thematic variation 2.34 5.78 34.65 0.41 .69
Stylistic unpredictability −0.89 2.40 37.00 −0.37 .71

••• p < .001

1.5 2.0 2.5 3.0 3.5 4.0

Internal unpredictability (bits)

0

25

50

75

100

M
ea

n
 s

ti
m

u
lu

s 
u

n
it

y

Pitch interval

1.0 1.5 2.0 2.5

Internal unpredictability (bits)

0

25

50

75

100

Inter-onset interval

Figure 6.2: Fitted linear relationships of internal unpredictability predicting mean stim-
ulus ratings using pitch interval and inter-onset interval representations. Note: Shaded
regions show 95% confidence intervals.
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Table 6.5: Correlation with Gold-MSI Scores for Participant Mean Ratings and
Slopes Predicting Participants’ Unity Ratings by Model Measures for Each Pitch and
Rhythmic Representation

Variable M SD
General

sophistication
Perceptual
abilities

Musical
training

Mean ratings 57.50 11.30 .07 −.14 .03

Pitch interval
Slopesa

Internal unpredictability −11.85 9.36 −.09 −.37 • −.07
Thematic repetition −5.87 33.04 −.17 −.10 −.12
Thematic variation −10.65 22.86 −.41 •• −.08 −.20
Stylistic unpredictability −1.37 9.78 −.05 −.10 −.01

Inter-onset interval
Slopesa

Internal unpredictability −22.67 13.76 −.14 −.34 • −.11
Thematic repetition 5.27 22.77 −.23 −.07 −.13
Thematic variation −6.49 20.06 −.34 • −.19 −.32 •
Stylistic unpredictability −7.18 8.50 .06 −.26 .01

aSlopes for linear regressions predicting each participant’s unity ratings from a
model measure
• p < .05; •• p < .01

istication scores on participants’ recognition–moment responses. Participants’
perceptual abilities were found to have a weakly significant effect, b = −0.02,
z(3155) = −2.14, p = .03. The other scores were not significant predictors: gen-
eral sophistication, b = 0.004, z(3155) = 1.27, p = .20; and musical training,
b = −0.002, z(3155) = −0.39, p = .70.

Correlations between Gold-MSI scores and mean unity ratings for each
participant were tested; no significant correlations were found. Slope coeffi-
cients from linearmodels predicting each participant’s unity ratings frommodel
measures values for stimuli were also tested against Gold-MSI scores (shown
in Table 6.5). For both representations, significant correlations were found
between general sophistication and individual slopes for measures of thematic
variation, and between perceptual abilities and slopes for measures of internal
unpredictability. Additionally, participant slopes for inter-onset interval them-
atic variation was found to have a significant correlation with musical training.

6.6 Discussion

The experiment presented in this chapter aimed to test listeners’ abilities to
perceive two highly-important indicators of large-scale thematic structure in
music—their ability to identify repetitions of thematic material and their abil-
ity to perceive structural unity. In testing these abilities, this experiment sought
to examine the extent to which statistically-learned features could account for
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listeners’ perception of these two properties and, by extension, the extent to
which statistical learning can allow large-scale thematic structures to be per-
ceived.

While the first behavioural experiment, presented in Chapter 5, sought to
provide some initial evaluation of the theoretical modelling of thematic struc-
tures based on the statistical learning of structural features on a small scale,
the experiment of the current chapter extended the scope to cover longer mu-
sical passages (of around two minutes duration). With the full musical con-
texts available in these longer stimuli, Chapter 3’s model measures could be
applied in the same form as they were hypothesised to operate in real-world
musical listening—quantifying the internal unpredictability, thematic repetition,
thematic variation and stylistic unpredictability of whole compositions, and of
substantial portions of compositions before given moments. The analysis of
this experiment focused on how knowledge acquired dynamically via statistical
learning throughout the entire piece could influence the perception of both re-
petition and unity.

The findings of this experiment presented a striking contrast between the
influence of the four primary modelled features. Across both recognition–
moment and unity tasks, there was strong evidence of an influence of internal
unpredictability (and its associatedmeasures) across both pitch and rhythm rep-
resentations.

Specifically, the results from the recognition–moment task provided convin-
cing evidence that intra-opus internal unpredictability had an effect on the per-
ception of thematic repetition within compositions. The results indicated that
this effect was realised in two ways, however, with some differences between
pitch and rhythmic representations. First, if a passage of music was predictable,
given the music that had occurred before it, it was likely to be perceived as a
repetition for both pitch and rhythmic variants of the measure of internal un-
predictability of moment (how predictable a moment was, given the portion of
the composition before it). Second, and to a lesser extent, if themusic occurring
before a passage in question was itself predictable (i.e., low internal unpredictab-
ility atmoment), the passagewasmore likely to be perceived as a repetition, with
the chief evidence for this measure found when using the pitch representation.
These findings supported our hypotheses regarding the relationship between
internal unpredictability and repetition recognition.

The difference between pitch and rhythmic representations for the results of
the repetition recognition task may be due, in part, to the presence of rhythmic-
ally isochronous stimuli; such stimuli would offer maximum repetition with
minimum variation of inter-onset interval, increasing the likelihood that a pas-
sage would be perceived as having been heard earlier in the piece.

The results for ratings of structural unity revealed a similar pattern of effects;
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there was a strong effect of internal unpredictability on the perception of struc-
tural unity for both pitch interval and inter-onset interval representations. This
result corroborated our hypothesis that compositions that were internally pre-
dictable due to repetition of material would be perceived as having a stronger
sense of unity.

For this experiment, however, the extent to which measures based on the
isolation of thematic material influenced participants’ perception of thematic
structure was less apparent, with an absence of any significant effect of these
measures found. We suggest two possible causes for the differences between in-
ternal unpredictability and the two thematic measures. Firstly, we should con-
sider potential differences between the way in which themes (or rather, them-
atic candidates) are detected in the model, and how they may be perceived
in real-world listening. The model identifies potential themes as substantially-
novel material, working incrementally through a composition from beginning
to end. While this is consistent with traditional understandings of ‘theme’, it
most likely represents something of a simplification of perceptual theme iden-
tification. The extent to which this may the case is hard to discern, given the
relatively little empirical research on theme perception. Any such discrepancies
between the theme-detection model and perception may add noise within the
measures relying on theme detection—thematic repetition and thematic vari-
ation—whereas internal unpredictability is computationally simpler and does
not rely on theme detection.

However, a second explanation presents itself. In addition to being com-
putationally simpler, internal unpredictability is also applicable to the entirety
of a composition’s material, whereas thematic repetition and thematic variation
apply only to the material identified as being thematic. From this, we can infer
that material identified by the model as thematic is not the sole contributor to
perception of thematic structure. Instead, the results suggest that any material
that becomes predictable through repetition, no matter how insignificant, can
contribute to a constantly accumulating perception of thematic structure. This
provides important indicators as to how repetition contributes to perception
of large-scale structure. Relatively precise repetition of important material, the
focus of most empirical investigations of repetition perception to date, may be
secondary to the effects of any repetition at all, no matter how small in scale
or approximate. In this light, we can trace the significant effect of dissimilarity
in the experiment of the previous chapter to the significant effect of unpredict-
ability of moment in the recognition–moment task of the current experiment,
rather than to thematic variation.

The extent to which listeners’ musical backgrounds influence how they per-
ceive thematic structure is still somewhat uncertain. In both tasks, the majority
of Gold-MSI score comparisons to participant responses did not yield any sig-
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nificant relationships, with three exceptions. First, there was a significant effect
of perceptual abilities as a predictor of recognition–moment identification. This
appears to indicate that listeners with lower perceptual abilitieswere more likely
overall to consider the recognition–moments as repetitions, perhaps reflecting
less accurate encoding and therefore less finely discriminated recognition of fa-
miliar material. Second, participants with greater overall general sophistication
(and, additionally, musical training in the case of rhythm) showed a greater
sensitivity to thematic variation, with greater sophistication associated with a
stronger negative association between thematic variation and unity. Third, par-
ticipants with higher scores of perceptual ability had greater sensitivity to the
internal unpredictability of stimuli, such that greater perceptual ability was asso-
ciated with a stronger negative effect of internal unpredictability on unity.

6.7 Summary

This chapter reported the second behavioural experiment of the thesis, testing
the perception of two highly-important indicators of large-scale thematic struc-
ture. The experiment tested participants’ abilities to identify given moments as
being repetitions of earlier thematic material and their judgements of the sense
of structural unity of compositions. As this experiment tested for these features
in longmonophonic compositions (with durations of approximately 2minutes),
themeasures of thematic structure ofChapter 3were evaluated in the same form
as they were hypothesised to operate in real-world musical listening.

Overall, the findings of this experiment provide evidence that large-scale
thematic structure can be readily perceived by listeners, reflected both by an
ability to identify the internal elements of structure over a relatively long time-
span, and by an ability to distinguish differences in inherent structural unity
of different compositions. Furthermore, it was possible to predict differences
in perception of large-scale thematic structure between stimuli as a function of
experimental measures. Importantly, the significant influence of internal unpre-
dictability in accounting for these effects supports our hypothesis that statistical
learning is a plausible psychological mechanism allowing large-scale thematic
structure to be perceived. These findings provide some important corrobora-
tion of overarching hypothesis of this thesis—that thematic structures can be
perceptible through the structural regularities they form.
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Chapter 7

Modelling Large-Scale

Continuation

7.1 Overview

In this chapter, an experiment is presented with the objective of testing the ex-
tent to which statistical learning could account for listeners’ perception of large-
scale continuation. In this experiment, participants heard substantial context
portions of compositions, followed by three passages of possible continuations;
participants were asked to rank the continuations based on the extent to which
they believed each best continued the given context. For stimulus compositions,
plausible continuations were computationally generated, based on predictabil-
ity arising from training based on either a context composition, its themes, or
from the corpus of Chapter 4, using both pitch interval and inter-onset inter-
val representations. Measures based on those of Chapter 3 were compared to
participants’ responses in this task.

This task was chosen for its ability to act as an important indicator of
the effects of large-scale thematic structure. In a manner similar to the well-
established probe-tone paradigm’s purpose of inspecting listeners’ perception
of pitch, given their exposure to a particular musical context, the continuation
task allows us to examine the features learned by listeners in a context on the
timescales needed to investigate the effects of large-scale structure.

In addition to contributing to the cumulative evidence of the relevance of
intra-opus statistical learning to the perception of thematic structure through
the experimental testing of another indicator, this experiment expands on the
scope of the preceding behavioural experiments presented in this thesis in two
ways. First, it increased the duration of stimulus compositions used, testing
whether the general patterns of effect found in Chapter 6 are still present over
yet larger timescales, using compositions both of 2 and 4 minutes long; and
it provides the initial introduction and testing of techniques for the modelling
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of thematic structure in polyphonic compositions of two voices (the theory of
which was discussed in Chapter 3).

7.2 Modelling

The thesis hypothesis that the perception of large-scale thematic structure is
facilitated by the learning of statistical regularities within compositions is sub-
jected to continued testing in the experiment reported in this chapter. As with
all the behavioural experiments of this thesis, the computational measures of
thematic structure presented in Chapter 3 were adapted to produce measures
specific to the current task.

As with the measures used in the previous two experiments, measures for
this experiment use different configurations of IDyOM variable-order Markov
models, using different training domains. IDyOM, given a training sequence,
estimates likelihoods of the occurrence of note-events in a sequence, smooth-
ing between models of different orders (Pearce, 2005). As detailed in Chapter 3,
the likelihood estimates were converted into a value of information content,
or unpredictability. For a given composition, the training sequence may be
taken from within the composition itself (STM; using dynamic training of the
model)—modelling its internal unpredictability—trained only on themes ex-
tracted from within the composition (TTM), or trained on a large corpus of
compositions (LTM)—modelling its stylistic unpredictability.

Unlike the measures used in the empirical research presented in this thesis
so far, this experiment expands the use of modelling to cover polyphonic com-
positions (limited to perceptually segregated two-voices; the assumptions and
discussion of this technique is given in Chapter 3). Used here in its simplest
form—only ever predicting note-events in a monophonic continuation (even
if training material is polyphonic), only non-dynamically trained models are
needed. For example, to model the note-events of a monophonic continuation,
given a polyphonic context, the voices of the context can be used to train the
model separately.

7.2.1 Measures

Five measures were constructed, each presenting a competing hypothesis as to
the ways in which continuations may be ranked. Each measure characterised
continuations based on the statistical learning of different categories of musical
material. For each, an IDyOM model with a different training domain was
used to estimate the unpredictability of note-events in a given continuation, av-
eraging to produce a value in thatmeasure for each continuation. Themeasures
all shared the same hypothesised directionality—from low to high—that lower-
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scoring continuations would be considered more desirable, according to that
particular measure.

All of the measures used in this experiment were dependent on a specific
representation of the musical surface, such that they were each used twice; with
pitch interval and inter-onset interval representations to separately examine ef-
fects of pitch and temporal domains.

Measures were used to characterise properties of a musical passage (a con-
tinuation) that could follow from a large excerpt of a composition (a context).

Composition unpredictability. To quantify how predictable a continuation
may be within its composition (i.e., as an extension to the context preceding
it), for each composition, models were trained on the context section and used
to predict the note-events of the possible continuations. According to thismeas-
ure, continuations that received lower values were more closely related to the
material of the context than their counterparts. For the present experiment, this
measure most closely embodies the effects of intra-opus internal unpredictabil-
ity for the paradigm used.

Late-composition unpredictability. Likewise, a second measure also consider-
ed predictability relating to thematerial from the context section of the compos-
ition. In this measure, however, only the second half of the context (by number
of note-events) was used in the training of models. When compared to the first,
thismeasure hypothesised somememory constraint on learning during the con-
text section, such that onlymaterial present later in a composition informed the
comparative ranking of continuations.

Thematic unpredictability. As discussed in Chapters 3, 4 and 6, we also con-
sidered that all material might not be equal in its ability to influence the per-
ception of structure. Using the methods for detecting possible themes within
compositions, described in Chapter 3, themes were identified for each compos-
ition. These themes were then used to train a single model for that composition
and estimate the unpredictability of the possible continuations.

Continuation unpredictability. The first three measures introduced above
each characterises a way in which a continuation can be judged, based on the
preceding context; however, any possible influence of the internal unpredictab-
ility of the continuations themselves should also be considered. For this meas-
ure, an IDyOM STM was used to dynamically train and predict note-events for
each continuation individually.
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Stylistic unpredictability. To account for any influence of stylistic conventions
on the perceived fit of continuations, a measure was used to encapsulate rank-
ings based on the relative stylistic unpredictability of continuations. For each
continuation, information content was calculated using a model trained on a
corpus of 600 monophonic melodies (described in Chapter 4).

7.3 The present experiment

The experiment presented in this chapter was designed to test the extent to
which statistical learning within musical compositions could account for listen-
ers’ choice of continuations. Judgements based on the statistical features em-
bodied in the described measures would indicate the importance of statistical
learning in the perception of large-scale thematic structure. Furthermore, as
each measure was implemented using two variants—using pitch interval and
inter-onset interval representations of the musical surface—the comparative
importance of the pitch and rhythmic domains in the perception of large-scale
structure was explored.

In addition to the testing of another aspect of large-scale structure, the cur-
rent experiment expanded on the scope of the experiment of Chapter 6 in two
further areas. By expanding the durations of stimuli used, this experiment
aimed to test for any potential differences occurring when the effects of large-
scale structure found in the previous experiment were scaled up to structures
of twice the duration. The current experiment also aimed to test the expan-
sion of modelling techniques to include probabilistic modelling of polyphonic
stimuli. Additionally, this experiment aimed to provide some replication of the
relationship between internal unpredictability and ratings of unity found in the
previous chapter—testing for relationships between the current measures and
participants’ perceived sense of structural unity.

While each of thesemeasures presented their own competing internal hypo-
theses—that participants would rank continuations for a single composition
from low to high values of information content—we hypothesised that meas-
ures of predictability based on features learned during the context sectionwould
have the greatest effects on participants’ rankings. Of these threemeasures, com-
position unpredictabilitywas hypothesised to be themost important because the
related measure of internal unpredictability was found be significant for the in-
dicators of thematic structure used in the experiment of Chapter 6. Likewise,
based on the findings of the previous experiments, we hypothesised that meas-
ures using the pitch representation would be able to account for a greater por-
tion of the variance in participants’ responses than those of rhythm.

Two stimulus category conditions were introduced in this experiment: (1)
a length condition of ‘short’ compositions (2-minutes long, the same as used
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in the previous experiment) and ‘long’ compositions of twice the length; and
(2) a texture condition of ‘monophonic’ and ‘polyphonic’ compositions. For
both of these conditions, we hypothesised that no differences would be found
within them. In particular, in the length category, this hypothesis states that
participants would have the ability to perceive the effects of thematic structures
regardless of the composition duration.

For the unity ratings given by participants for compositions, we followed
the hypothesis given in Chapter 6, that the measures of internal unpredictability
would most closely predict ratings.

For this experiment, we also recorded measures of participants’ musical
backgrounds. We hypothesised that participants with increased musical train-
ing would show an increase in the impact of stylistic unpredictability on rank-
ings of continuations, facilitated by their greater exposure to music and so in-
creased implicit learning of stylistic conventions.1

7.4 Methods

7.4.1 Participants

Eighty participantswere recruited to participate using theProlific online recruit-
ing platform. Participants had a mean age of 41.00 (SD = 12.51), 43 were men
and 37 were women. Participants were required to have English as their first
language and to have normal, or corrected to normal, hearing. All participants
were residents of the UK or the USA. No recruitment criteria were enforced
on participants’ level of musical training; 48 participants reported having some
musical training on at least one instrument, with 12 of those reporting more
than 10 years of training.

7.4.2 Stimuli

Stimuli for this experiment consisted of 40 context passages of music, each with
three possible continuations. Stimuli were adapted from 40 Western-classical
compositions, belonging to either a ‘monophonic’ or ‘polyphonic’ (of two
voices) texture category, and to either a ‘short’—of approximately 2 minutes—
or ‘long’—approximately 4 minutes—length category.2 Compositions spanned
three centuries (1703–1934), featuring works by 20 composers. The 20 mono-
phonic compositions were selected from the set used in the experiment of
Chapter 6, which, in turn, were sampled from a large corpus of western-classical

1Although we have hypothesised for an effect of musical background, based on collected
Gold-MSI scores, it should be noted that participants were not selected based on their musical
experiences; this was not the primary goal of this research. The scores of musical training have
an additional value in precisely characterising the samples for purposes of replication.

2Details of the compositions used are given in Table B.2 of Appendix B
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tonal melodies (described in Chapter 4). The 20 polyphonicmelodies consisted
of western-classical instrumental duets. Compositions that were longer than
their respective length categorywere shortened; endings that produced themin-
imal structural disruption were manually identified within an additional 15-
second window: (1) at either a section ending marked in the score (2) before a
substantial gap in the melody, or (3) at a strong phrase ending.

Short closing portions (approximately 10 seconds long) of the trimmed
compositions were identified, at strong phrase endings, as the basis for the gen-
eration of possible continuations. Continuations were monophonic only, with
the voice containing the predominantmelodicmaterial during the continuation
section selected for those compositions of the ‘polyphonic’ category.

Probabilistic generation methods were used to create a range of plausible
continuations that favoured the effects of statistical learning from a range of
different materials. Using the procedure of Pearce (2005) (Chapter 9) for pro-
ducing novel melodies from IDyOMMarkovmodels, edits weremade to the ex-
isting material of the continuation sections by sampling from the distributions
of trained models using the Metropolis–Hastings algorithm (Robert & Casella,
2004). Through this process, a continuation could be made more predictable,
given the material used to train the model.

To generate three different continuations for each composition, for each
new continuation two generation passes were made to modify the original ac-
cording to a different combination of training materials. For each pass, the
training domains of models were sampled randomly (excluding duplicates be-
tween continuations for that composition) from either: (1) the context section
of the composition; (2) the themes identified within the context (using the
theme detection method described in Chapter 3,M = 2.05 themes per context);
(3) a large corpus of western-classical tonal melodies (described in Chapter 4,
excluding compositions used as stimuli); or (4) none—making no changes. The
model for each pass used either the pitch interval or inter-onset interval rep-
resentation (randomly selected), modifying the pitch or duration of a continu-
ation’s notes, respectively. No edits were made within the final phrase of each
continuation, allowing all continuations for a single context to end consistently,
removing any influence of a continuation’s sense of final closure on participants’
rankings. A mean of 24% of events were changed from the originals, per con-
tinuation.

The resulting stimuli3 contained contexts with a mean duration of 111.64
seconds for the ‘short’ category (SD = 4.51; of which, ‘monophonic’M = 112.93,
SD = 4.63, and ‘polyphonic’ M = 110.36, SD = 10.70), and 227.50 seconds for
those in the ‘long’ category (SD = 8.35; of which, ‘monophonic’ M = 224.08,
SD = 4.42, and ‘polyphonic’M = 230.91, SD = 10.09). ‘Short’ continuations had

3Modelling code, stimuli and data for this experiment can be found at https://osf.io/kru4x/.
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ameanduration of 10.54 seconds (SD=5.74; ofwhich, ‘monophonic’M =12.45,
SD= 5.79, and ‘polyphonic’M = 8.63, SD= 4.13), and ‘long’ continuations had a
mean duration of 12.16 seconds (SD = 4.67; of which, ‘monophonic’M = 13.82,
SD = 5.15, and ‘polyphonic’ M = 10.50, SD = 3.47).

Audio files for contexts and continuations were generated using MuseScore
notation software at a uniform loudness, preserving original pitches, rhythms,
and tempos. ‘Monophonic’ stimuli were rendered using a piano timbre; to aid
the perceived separation between voices, ‘polyphonic’ stimuli were rendered
with a piano timbre for the first voice and a marimba timbre for the second.

7.4.3 Procedure

Thetask designwas implemented using the jsPsych JavaScript library (de Leeuw,
2015) for online use in a web-browser. The experiment consisted of two parts:
first, the primary experimental continuation task (taking approximately 20min-
utes); and second, the Goldsmiths Musical Sophistication Index (Gold-MSI)
self-report questionnaire for musical sophistication (Müllensiefen et al., 2014).

Each participant received four trials of the continuation task, with stimuli
covering the four different stimulus category combinations, and presented in
a randomised order. For each trial, participants were first played the stimu-
lus context. After the context, three possible continuations were presented in
a randomised order, with a 1 second gap before each; participants heard each
continuation only once. The context and continuation being played was indic-
ated to participants onscreen, with continuations labelled from ‘A’ to ‘C’. Parti-
cipants were instructed to rank the continuations based on the extent to which
they would best continue the given context.

After each continuation task, participants were asked to rate the compo-
sition—the context and their top-ranked continuation—on its level of structural
unity (from 0 to 100), defined as the extent to which themusic still sounded like
one well-integrated, whole, single composition (giving participants the same
extended definition of unity as used in the experiment of Chapter 6).

7.4.4 Statistical analysis

Data collected during this experiment belonged to three categories: (1) continu-
ation rankings, for each trial conducted by each participant; (2) unity ratings for
each composition heard by each participant; and (3) Gold-MSI scores for each
participant, aggregated from their questionnaire responses. The statistical ana-
lyses for this experiment examined each of these in turn.

Within the data collected for the continuation task, differences between con-
tinuations at participants’ chosen rankings were examined. First, differences in
the composition texture and length categories were tested. Mann–Whitney U
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tests were used to test for differences in levels of inter-participant agreement
between categories. For each measure, independent t-tests were used to test
for significant differences between categories using the values of the measure
for participants’ first-choice continuations. Second, to determine the effects
of individual measures on participant rankings, individual one-way repeated-
measures (within participant and stimulus) ANOVAs were used to compare
measure values of continuations between ranks. Third, the closeness of continu-
ations to their unmodified version was tested—a Friedman test compared the
number of edits used to create continuations positioned at each rank. Fourth,
correlations between measure values for continuations at the first rank were
tested. Finally, an ordinal logistic regression (Christensen, 2022) was used to
predict the rankings of continuations using combined measures from both rep-
resentations.

Analysis of unity ratings tested for correlations (Pearson’s r) between ratings
and the non-centred measures of participants’ chosen continuations for each
representation.

Participant responses to Gold-MSI questions were aggregated to produce
measures of general sophistication, perceptual abilities, and musical training for
each participant. To examine the effect of participants’ musical backgrounds on
their orderings, correlations between participants’ Gold-MSI scores and mean
measure values were tested. A multiple linear regression analysis was used to
examine the ability of Gold-MSI scores to predict participant mean unity rat-
ings.

7.5 Results

The results for this experiment are presented in turn for each of the three types
of data collected—first, analysis of continuation ranks, second, analysis of the
unity ratings given for each composition, and third, participants’ Gold-MSI
scores.

7.5.1 Continuation rankings

Each of the 80 participants completed the continuation ranking task, providing
a ranking of three possible continuations each for four different composition
contexts. Each participant gave responses for stimuli covering the four differ-
ent stimulus length and texture category combinations; eight ranking responses
were recorded for each composition, for a total of 320 rankings.

Each continuation was modelled using the five measures described at the
beginning of this chapter. As the primary interest of these analyses was to test
for differences between continuations with different properties, values for each
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continuation were centred to the mean for the three continuations belonging to
the same parent composition. During modelling, alphabet sizes were kept con-
stant between all compositions within the same representation, allowing meas-
ure values to be directly comparable between compositions.

Comparison of stimulus categories

A score of agreement between participants for each stimulus composition was
calculated as the proportion of participants who selected the most popular con-
tinuation, in a given rank. Agreement ranged from a maximum of 1 to a min-
imum possible score of 0.375 for the eight participants ranking continuations
for each composition. At the first rank, participants had a mean agreement of
0.58 (SD = 0.17), at the second rank 0.52 (SD = 0.13), and at the third rank 0.52
(SD = 0.11).

Differences in the agreement scores between compositions belonging to dif-
ferent texture and length categories were tested using Mann–Whitney U tests.
No significant difference in participant agreement was found between ‘mono-
phonic’ (M = 0.61) and ‘polyphonic’ (M = 0.56) categories (U = 227, z = 0.74,
p = .47). No significant difference was found between ‘short’ (M = 0.60) and
‘long’ (M = 0.57) categories (U = 186, z = 0.39, p = .71).

For eachmeasure, for each representation, independent t-tests were used to
test for differences in composition-centredmeasure values for participants’ first-
choice continuations (averaged per stimulus) between stimuli in texture and
length categories. As shown in Table 7.1, no measure was found to show a sig-
nificant difference between ‘monophonic’ and ‘polyphonic’ categories. For the
length category, shown in Table 7.2, a significant difference between ‘short’ and
‘long’ stimuli was found for the pitch interval measure of continuation unpre-
dictability, with participants’ chosen continuations more internally predictable
for ‘short’ category compositions than ‘long’. The subsequent analyses made use
of the combined data across categories.

Comparison of participant’s rankings

Individual one-way repeated-measures (within participant and stimulus) AN-
OVAs were used to test for differences in measure values between participants’
chosen continuations at each rank. Table 7.3 displays the results of these tests
for each measure, for both pitch interval and inter-onset interval representa-
tions. The closely related measures of composition unpredictability and late-
composition unpredictability were found to present highly significant differ-
ences between ranks, for both pitch interval and inter-onset interval repres-
entations. Paired-samples t-tests were used to make post hoc comparisons
between ranks against a Bonferroni-adjusted alpha value of .017. For pitch-
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Table 7.1: T-Test Comparisons Between ‘Monophonic’ and ‘Polyphonic’ Stimulus
Categories for Each Measure, Using Participants’ First-Choice Continuations

Monophonic Polyphonic

Measure M SD M SD df t p

Pitch interval
Composition unpredictability −0.21 0.48 −0.06 0.31 32.53 −1.21 .24
Late-composition unpredictability −0.20 0.43 −0.05 0.29 33.14 −1.32 .19
Thematic unpredictability −0.13 0.34 −0.10 0.37 37.64 −0.27 .79
Continuation unpredictability −0.05 0.14 −0.01 0.20 33.49 −0.78 .44
Stylistic unpredictability −0.03 0.20 0.04 0.16 36.96 −1.22 .23

Inter-onset interval
Composition unpredictability −0.19 0.46 −0.15 0.44 37.94 −0.33 .74
Late-composition unpredictability −0.25 0.61 −0.14 0.45 34.66 −0.71 .49
Thematic unpredictability 0.01 1.15 −0.12 0.40 23.55 0.48 .64
Continuation unpredictability 0.02 0.15 0.01 0.27 30.23 0.21 .84
Stylistic unpredictability 0.02 0.11 −0.01 0.14 36.30 0.69 .49

Table 7.2: T-Test Comparisons Between ‘Short’ and ‘Long’ Stimulus Categories for
Each Measure, Using Participants’ First-Choice Continuations

Short Long

Measure M SD M SD df t p

Pitch interval
Composition unpredictability −0.15 0.34 −0.11 0.47 34.45 −0.27 .79
Late-composition unpredictability −0.15 0.32 −0.11 0.42 35.56 −0.31 .76
Thematic unpredictability −0.20 0.43 −0.02 0.23 29.35 −1.70 .10
Continuation unpredictability −0.09 0.19 0.03 0.13 33.94 −2.34 .03 •
Stylistic unpredictability −0.04 0.20 0.05 0.16 35.87 −1.49 .15

Inter-onset interval
Composition unpredictability −0.12 0.45 −0.21 0.44 37.97 0.63 .53
Late-composition unpredictability −0.15 0.60 −0.24 0.47 36.09 0.52 .60
Thematic unpredictability 0.11 1.12 −0.21 0.43 24.46 1.18 .25
Continuation unpredictability 0.05 0.29 −0.02 0.09 22.49 0.92 .36
Stylistic unpredictability 0.02 0.16 −0.00 0.08 27.95 0.50 .62

• p < .05
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based variants, significant differences were present between the first rank and
the lower two (for composition unpredictability, t(627.42) = −3.72, p < .001 and
t(624.24) = −3.12, p = .002, respectively, and for late-composition unpredict-
ability, t(627.72) = −3.78, p < .001 and t(626.10) = −3.54, p < .001, respect-
ively), with continuations in the first rank being more predictable according
to these measures. For the rhythmic versions of these measures, significant
differences were present between the first rank and the last, and between the
last two ranks (for composition unpredictability, t(579.72) = −5.17, p < .001 and
t(600.18) = −3.79, p < .001, respectively, and for late-composition unpredictab-
ility, t(584.59) = −5.02, p < .001 and t(606.55) = −3.70, p < .001, respectively),
with more predictable continuations placed in higher ranks. A similar signi-
ficant difference was found between ranks for the pitch interval measure of
thematic unpredictability (between ranks 1 and 2, t(627.45) = −2.47, p = .014,
between ranks 1 and 3, t(627.45) = −2.47, p = .014; a similar, non-significant
effect was found for the equivalent inter-onset interval measure).

In a similar manner, the closeness of continuations to the originals from
which they were modified was tested between ranks. The number of edits used
to generate stimulus continuations, for a given representation, was compared
across ranks using non-parametric Friedman tests. A significant effect of close-
ness to original continuations was found for the pitch interval representation
(χ2(2) = 13.74, p < .001), with continuations with fewer edits significantly more
likely to be placed in the first rank than the lower two. No corresponding effect
was found when using inter-onset interval (χ2(2) = 2.06, p = .36).

Relative importance of measures

The extent to which measures were correlated with each other was examined
using the participants’ first-choice continuations, averaged across participants
to provide a single value for each stimulus, for each measure. Table 7.4 shows
the Pearson’s r correlations between all measure combinations, for both repres-
entations. Measures that involved training material from all or part of the con-
text section (composition unpredictability, late-composition unpredictability and
thematic unpredictability) had a high positive correlation within each represent-
ation, but not for corresponding measures between representations. Addition-
ally, a significant correlation was found between continuation unpredictability
and stylistic unpredictability.

Using mixed-effects ordinal logistic regression, measures (centred to com-
position means) for both representations were used to predict participants’
rankings, accounting for differences between participants and stimuli continu-
ations. Due to the close relationship between the measures of composition un-
predictability and late-composition unpredictability (as shown in the correlation
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Table 7.5: Mixed-Effects Ordinal Logistic Regression Analysis Predicting Parti-
cipants’ Rankings Using Combined Measures From Both Representations, Accounting
for Participant and Continuation Differences

Predictor β SE z p

Pitch interval
Late-composition unpredictability 0.62 0.23 2.67 <.01 ••
Thematic unpredictability −0.22 0.20 −1.09 .27
Continuation unpredictability 0.52 0.33 1.59 .11
Stylistic unpredictability −0.33 0.29 −1.13 .26
Inter-onset interval
Late-composition unpredictability 0.69 0.13 5.21 <.001 •••
Thematic unpredictability −0.38 0.13 −2.93 <.01 ••
Continuation unpredictability −0.40 0.39 −1.05 .30
Stylistic unpredictability 0.47 0.50 0.94 .35

•• p < .01; ••• p < .001

analyses above) presenting a potential and undesirable source of collinearity
within the regressionmodel, separate regression analyses were conducted; each
combined one of these two measures with the remaining three, using variants
for both representations together as predictors. The best-fitting model, using
late-composition unpredictability is shown in Table 7.5 (with an AIC score of
2054.94, compared to 2058.75 for the model using composition unpredictabil-
ity).

Significant effects were found for late-composition unpredictability for both
pitch interval and inter-onset interval, such that the probability of a continu-
ation being placed in a better rank (i.e., closer to Rank 1) increased as the in-
formation content in these measures decreased. For pitch, an increase of 1SD
was associated with an odds ratio of 2.38 for a better rank; for rhythm, an in-
crease of 1SD was associated with an odds ratio of 1.23 for a better rank. This
effect is illustrated in Figure 7.1. Conversely, rhythmic thematic unpredictability
displayed a smaller, but still significant effect, in the opposite direction. Lower
values in this measure increased the probability that a continuation would be
placed in the bottom rank—an increase of 1SD was associated with an odds
ratio of 0.47 for a better rank.

7.5.2 Unity ratings

All 80 participants returned a rating of structural unity for each composition
they heard. Across all 320 ratings, unity was rated with a mean of 59.26
(SD = 26.99). As participants were explicitly instructed to base their ratings
on the whole of the context and their top-ranked continuation, unity ratings
were combined to produce a mean rating for each different continuation (109
of the continuations were placed in the first rank by at least one participant).

Using non-centred measure values (allowing for testing of effects between
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Figure 7.1: Results of ordinal logistic regression predicting participants’ rankings
using late-composition unpredictability, thematic unpredictability, continuation unpredictabil-
ity and stylistic unpredictability together for both pitch interval and inter-onset interval
representations. Subplots show probabilities of a continuation being in Rank 1, 3 or
3, given a measure information content value. For each subplot, all other measures
are held at zero (i.e., at their means).
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stimuli, as well as between individual sets of continuations), correlations
between measures and ratings were tested. No measure using the pitch inter-
val representation was found to have a significant correlation with unity rat-
ings (composition unpredictability, r(107) = −0.04, p = .67; late-composition un-
predictability, r(107) = −0.03, p = .73; thematic unpredictability, r(107) = 0.04,
p = .66; continuation unpredictability, r(107) = −0.11, p = .25; and stylistic un-
predictability, r(107) = −0.08, p = .43). Significant negative correlations with
unity were found for inter-onset interval measures of continuation unpredict-
ability (r(107) = −0.40, p < .001) and stylistic unpredictability (r(107) = −0.35,
p < .001), with no significant effects of the remainingmeasures (composition un-
predictability, r(107) = −0.07, p = .48; late-composition unpredictability, r(107)
= −0.05, p = .59; and thematic unpredictability, r(107) = −0.06, p = .53).

7.5.3 Gold-MSI scores

After aggregating Gold-MSI responses into scores for each participant. Parti-
cipants had a mean score for general sophistication (out of a possible scale range
18–126) of 52.36 (SD = 17.76), a mean score for perceptual abilities (scale range
9–63) of 39.98 (SD = 6.65), and a mean score for musical training (scale range
7–49) of 14.98 (SD = 9.45).

Composition-centred measures were aggregated by taking means of each
participant’s first-choice continuations. The correlations between Gold-MSI
scores and aggregated measures are shown in Table 7.6. A sole significant pos-
itive correlation was found between participants’ perceptual abilities and pitch
interval late-composition internal unpredictability.

The ability of Gold-MSI scores to predict participants’ mean unity ratings
was tested using a multiple linear regression analysis. As shown in Table 7.7, no
score managed to significantly predict ratings.

7.6 Discussion

The experiment presented in this chapter aimed to test the extent to which stat-
istical learning could account for listeners’ perception of large-scale continu-
ation. This task of identifying suitable continuations was chosen for its ability
to act as an important indicator of the effects of large-scale thematic structure.
In a manner similar to the well-established probe-tone paradigm’s ability elicit-
ation of pitch expectations, given exposure to a particular musical context, the
continuation task allows us to examine the features learned by listeners in a con-
text on the time-scales needed to investigate the effects of large-scale structure.
Five computational measures, each using both pitch interval and inter-onset in-
terval representations, were used to characterise competing statistically-learned
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Table 7.6: Pearson’s r Correlations Between Participants’ Gold-MSI Scores and
Mean Measure Values for Their First-Choice Continuations

Measure
General

Sophistication
Perceptual
abilities

Musical
training

Pitch interval
Composition unpredictability .01 .20 .03
Late-composition unpredictability .05 .22 • .07
Thematic unpredictability −.06 .14 −.06
Continuation unpredictability .14 .12 .21
Stylistic unpredictability .14 .03 .18

Inter-onset interval
Composition unpredictability .04 −.12 .03
Late-composition unpredictability .05 −.12 .06
Thematic unpredictability −.07 −.14 −.09
Continuation unpredictability .04 .12 −.06
Stylistic unpredictability .06 .17 −.01

• p < .05

Table 7.7: Linear Regression Analyses Predicting Participants’ Mean Unity Ratings
by Their Gold-MSI Scores

Predictor β SE t p

Intercept 48.58 11.33 4.30 <.001 •••
General sophistication 0.05 0.22 0.24 .81
Perceptual abilities 0.38 0.40 0.95 .34
Musical training −0.47 0.32 −1.48 .14

••• p < .001
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features of hypothesised importance in this task; measures were derived from
the theoreticalmodelling of thematic structures based on the statistical learning
of structural features, discussed in Chapter 3.

Thefindings of the continuation task of this experiment provide strong evid-
ence that statistical learning has an important role in the perception of large-
scale continuation. In particular, the results showed significant evidence that
intra-opus statistical learning influenced participants’ perception of large-scale
continuation, as hypothesised. Measures involving training on material taken
from the context section of compositions were found to differ significantly
between participants’ rankings. This effect, in general, appears to be a robust
one; the three measures of composition unpredictability, late-composition unpre-
dictability, and thematic unpredictability (taking training from the context, the
second half of the context, and the themes identifiedwithin the context, respect-
ively) showed significant influence over rankings in the ANOVA of individual
measures (Table 7.3), for both representations, and pitch thematic unpredictab-
ility and rhythm late-composition unpredictability showed similar effects when
measures were combined in the ordinal regression analysis (Table 7.5).

More specifically, however, the precise differences between these
measures—and so the particular features that may be used by listeners in
this task—are not so clearly defined. The three measures are, by their nature,
closely related. The results of the correlation analyses showed that composition
unpredictability and late-composition unpredictability were extremely-highly
correlated (Table 7.4); this is likely due to the repetition of earlier material
being great enough within the context second-halves that any additional
learning afforded by the inclusion of complete compositions was not required.
This possibly indicates that listeners do not need to form perfect memories of
the occurrence of events within large compositions for such statistical learning
of thematic structures to take place (this is tentatively further supported by
the fact that the regression model containing late-composition unpredictability
provided a better fit to the rating data than the model containing composition
unpredictability, although the difference in AIC was small). This redundancy
in training material for intra-opus learning is further supported by the signi-
ficance of rhythmic thematic unpredictability, requiring learning based on far
less information to judge effects of structure. These findings provide some
confirmation of our hypothesis, developed from the findings of the experiment
of Chapter 6, of the importance of composition unpredictability over the other
context-based measures.

The three context-based measures discussed so far showed mostly consist-
ent effects between pitch interval and inter-onset interval representations, pro-
ducing similar effects in the analysis, although not being significantly correlated
across representations. However, for the remaining measures of continuation

Chapter 7. Modelling Large-Scale Continuation 138



unpredictability and stylistic unpredictability, differences were found between
variants for each representation. As discussed previously in this thesis, a likely
cause of this disparity between representations is the relatively frequent occur-
rence of rhythmically-isochronous compositions in western music.

When comparing the differences between representations, limitations of
the continuation generation process should be considered. Unlike the modi-
fication of notes in continuations based on pitch, modifications based on inter-
onset interval have the potential to disrupt metrical patterns outside of the im-
mediately changed note-event. However, this disruption is mitigated, firstly,
by the short length and fragmentary nature of the continuations (often con-
taining only a small number of bars), and secondly, as generation models were
trained only on metrically complete material, these changes must still be rhyth-
mically predictable (i.e., modifications that produce unusual rhythmic patterns
are highly unlikely). No evidence was found that participants favoured con-
tinuations that were rhythmically close to the originals (containing the original
metrical patterns) over the modified version, whereas a significant effect was
found for pitch interval edits.

The findings of this experiment provide some validation for the expan-
sion of the methods used to model statistical learning from monophonic to
polyphonic material. As hypothesised, no significant differences were found
between compositions based on their assigned texture category, with no differ-
ence between measures when using monophonic and polyphonic techniques.

Likewise, few differences were found between compositions in ‘short’ and
‘long’ categories; a sole significant difference emerged for the pitch interval
measure of continuation unpredictability (Table 7.2). This difference may be
caused by the duration of continuations, with the longer continuations of
the ‘long’ composition category containing a greater opportunity for variation.
Aside from this measure, the lack of a significant difference between these cat-
egories confirms our hypothesis that participants would have the ability to per-
ceive the effects of thematic structure, regardless of composition duration.

The task of rating the perceived unity of compositions (contexts plus parti-
cipants’ first-rank continuations) sought to replicate the link between internal
unpredictability and perceived structural unity found in the experiment of
Chapter 6. However, no significant effect was found between ratings and any
of the context-based measures; this included the measure of composition unpre-
dictability, directly related to a compositions internal unpredictability. There
are several potential reasons why a comparable effect was not found, the most
likely being that, due to the priorities of participants in completing the main
continuation task, the unity task was too far removed from that of the previ-
ous experiment, in which all of the composition (i.e., the context and chosen
continuation) was heard together without being interrupted. This conclusion,
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perhaps, also gains some support from the measures that were significantly cor-
related with ratings (inter-onset interval continuation unpredictability and styl-
istic unpredictability); these effects may suggest participants were only using
properties of the individual continuations, independent of their contexts, to in-
form their ratings. An additional possibility is that any other effects may have
been confounded if some participants were to treat the unity rating instead as
a confidence rating in their rankings.

The results for participants’ Gold-MSI scores provided little evidence of any
influence of musical background on their first-rank choices. Only the single
measure of pitch interval late-composition unpredictability was found to be sig-
nificantly correlated with any score. For this finding late-composition unpre-
dictability was positively correlated with participants perceptual abilities; this
would imply that participants with greater perceptual abilities were more likely
to choose continuations that were more unpredictable, based on this measure.
No significant effect was found between Gold-MSI scores and unity ratings. No
evidence was found to support the hypothesised connection between musical
background and stylistic features of music. The lack of evidence in support of
this relationship in the continuation task may be due to the ranking nature of
the task, with participants prioritising intra-opus considerations regardless of
the level of stylistic conformity.

7.7 Summary

The experiment presented in this chapter contributes to the testing of the un-
derlying hypothesis of this thesis—that large-scale thematic structures can be
perceived through the statistical regularities that they form—and the testing of
computational methods informed by this theory. This experiment had the ob-
jective of testing listeners’ judgements of large-scale continuations, given a long
musical context, with plausible continuations generated according to predictab-
ility due to composition, theme and stylistic considerations. This experiment
expanded on the scope of the previous experiment presented testing the per-
ception of large-scale structure in two ways. First, it increased the duration
of stimulus compositions used (and so tested whether the significant general
findings of Chapter 6 hold for longer structures), using compositions both of 2
and 4 minutes long. Second, it introduced and tested techniques (discussed in
Chapter 3) for the modelling of thematic structure in polyphonic compositions
of two voices.

The findings for this experiment corroborate those of the previous exper-
iment, finding significant evidence in support of the importance of internal
unpredictability, or in this experiment context unpredictability, in the percep-
tion of large-scale thematic structures. The results showed that continuations
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that contributed to lowering a composition’s overall internal unpredictability
(i.e., continuations that were predictable given the context composition) were
favoured.
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Chapter 8

Modelling Large-Scale Order

8.1 Overview

In this chapter, both the final behavioural experiment and a computational ex-
periment are presented. These experiments aim to contribute to the conver-
ging understanding of thematic structure built-up throughout the course of this
thesis through the investigation of the perception of large-scale order. Testing
the ability of listeners to perceive large-scale order is central to understanding
the cognition of thematic structure; the order of musical segments is one of the
key specifications of large-scale forms (Whittall, 2001), and through order re-
peated material can be progressively developed and distributed throughout a
composition.

The majority of experimental research into the perception of large-scale
structures (reviewed in Chapter 3) used experimental designs in which mul-
tiple versions of a composition would be created based on its internal segment-
ation, with participants choosing or rating versions on various perceptual scales
(either within or between subjects). There have, however, been several attempts
to adopt a puzzle-based task, in which participants are supplied with the seg-
ments of the composition and are tasked with placing them into what they be-
lieve is the most appropriate order (Granot & Jacoby, 2011, 2012; Tillmann et
al., 1998). Certainly, this task is further removed from the real-world listening
conditions provided by the more-established experimental paradigm, however,
in doing so the experimenter gains the potential to have a far greater insight
into listeners’ abilities and sensitivity to musical properties. Specifically in the
case of thematic structure, as noted by Granot and Jacoby (2011, 2012) in their
motivation for employing such a paradigm, the puzzle task has the advantage
that the assumption that the original composition order should inherently and
solely be preferred is avoided.

However, puzzle-task experiments have the disadvantage that their output
is more complex to analyse; although the combinatorial mathematics means
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that if orders do match between participants it is highly unlikely to be due to
chance, determining themore likely partial effects is difficult. Additionally, due
to the greater experimental control afforded participants, there is an increased
risk of no meaningful conclusions being able to be drawn at all.

The first experiment of this chapter adapted the experimental paradigm of
Granot and Jacoby (2011); participants were tasked with ordering the segments
of monophonic and two-voice polyphonic compositions (with complete com-
positions of approximately 2 and 4 minutes in duration). One alteration was
made to the task—participants were provided with the original starting seg-
ments. This information provided to participants works to make the task more
tractable and removes a potential source of random noise among responses.
The analysis of this experiment has an advantage over those of previous puzzle
experiments—the computational modelling allows for individual participant
orders to be characterised based on features of thematic and tonal structure. A
Monte Carlo approach was used to test for significant differences between par-
ticipants’ orders and those of a large randomly-generated set.

Using these same methods that characterise orders and their differences
from chance, a second, computational experiment is presented in this chapter in
which modelled properties of original composition orders are analysed, along-
side example orders taken from the extremes of the randomly-generated set.

8.2 Modelling

Our over-arching hypothesis for this research is that the perception of large-
scale thematic structure is facilitated by the learning of statistical regularities
within a composition. We continue to apply this hypothesis to the experiments
presented in this chapter. As with the previous experiments of this thesis, com-
putational measures tailored to the specific experimental paradigm were used
to test the effects of statistical learning—as well as other plausible features—on
the given task.

The principles, detailed in Chapter 3, of modelling thematic structure using
Prediction by Partial Matching (PPM) models were applied again here. PPM is
a variable-order Markov modelling technique that estimates likelihoods for the
occurrence of note-events within a symbolic sequence, given the number of oc-
currences of subsequences of varying size within a training sequence, smooth-
ing between models of different orders (Bunton, 1997; Cleary & Witten, 1984).
The likelihood estimates are converted into a value of information content,
h=−log2 p, or the unpredictability of the event. In this research, for a given com-
position, the training sequencemay be taken fromwithin the composition itself
(often necessitating dynamic training of the model), modelling the its internal
unpredictability, or themodel may be trained on a large corpus of compositions,
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modelling its stylistic unpredictability. Unlike the PPM models used in the pre-
vious chapters that possess perfect memory for all events, an additional PPM
version is also used that is memory-constrained to a certain duration before a
given event (Harrison et al., 2020).1

8.2.1 Measures

A series of measures were constructed to characterise a given segment order for
a composition in terms of features of hypothesised importance. As well as mod-
elling the effects of inter and intra-opus statistical learning, measures sought to
quantify other features thatmay influence a given order, such as tonal considera-
tions, or the closeness of an order to that occurring in the original composition.

In many cases, measures were dependant on a specific representation of the
musical surface. These measures were used in two forms, using pitch interval
and inter-onset interval to separately examine effects of pitch and temporal do-
mains.

Internal unpredictability

As with the other experiments presented in this thesis, the effects of intra-opus
statistical learning are central to our investigation. Two measures were con-
structed to characterise the internal unpredictability of a newly ordered com-
position for a given representation. This was calculated as the mean inform-
ation content across note-events in all segments, using individual models for
each segment that were trained on the preceding segments in the order, as well
as being dynamically trained within itself.

This method differs from the measures of internal unpredictability used in
the previous experiments, that—more simply—used information content val-
ues from a single model trained dynamically within a composition. The result-
ing difference between such an approach, if it were applied to the current exper-
iment (joining all segments together before dynamically training a model), and
themethod used is that the presentedmethod excludes n-grams from spanning
section boundaries.

The two measures using this method differed in the memory constraints
applied to their training.

Internal unpredictability (perfect). The first of these measures used PPM
models with perfect memory (such as possessed by IDyOM in the previous ex-
periments), so that all observations carried equal weight.

1It is for this reason that the modelling in this chapter does not use IDyOM, but rather is
based on the PPM-decay implementation of Harrison et al. (2020). As only one-dimensional
representations of the musical surface are used, the output of the two implications should be
in agreement.
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Internal unpredictability (buffer). The second of these measures used a mem-
ory-constrained variant of PPM (Harrison et al., 2020); only events that oc-
curred within a fixed buffer period before a given note-event contributed to the
information content of that event. The length of this buffer period can be con-
sidered a free parameter, with the optimal duration for the stimuli to be determ-
ined. For the present experiments, the length of this buffer period was optim-
ised to the segmented compositions used, maximising the variance of internal
unpredictability (buffer) between possible orderings of a composition. This al-
lowed themeasure to describe the maximum amount of variation in orders and
to provided the largest possible distinction to internal unpredictability (perfect)
(i.e., with an infinitely long buffer).

Information flow

The above measures give an absolute value of orders’ internal unpredictability;
however, these measures do not capture the positioning of segments due to re-
lative differences in internal unpredictability.

Internal unpredictability flow. A measure of internal unpredictability flowwas
used to characterise these relative differences as the mean absolute difference
between information content means for segments, trained as described for in-
ternal unpredictability (perfect). Orders with segments closer in overall unpre-
dictability scored lower in this measure.

Stylistic unpredictability flow. Likewise, a measure was used to encapsulate
ordering based on relative stylistic unpredictability of segments. Segment in-
formation contents were calculated using a model trained on a corpus of 600
monophonic melodies.

Variation

Variation. Unlike the measures of variation and repetition used in the previ-
ous experiments of this thesis, we cannot apply the same techniques of theme
detection to the ordering paradigm. An alternative measure of variation was
used. To characterise the extent to which the segments of an order progress
in a linear manner (i.e., each development of material takes it further from its
original instance). Evidence suggests that the information-theoretic concept of
compression distance can provide a cognitively plausible measure of dissimilar-
ity between musical sequences (Pearce & Müllensiefen, 2017), where the direc-
tional compression distance between two sequences, D(x|y), is calculated as
the normalised summed information content of the latter sequence (of length
k), given a PPM model trained on the former.
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D(x|y) = 1

k

k∑
i=1

hmy(xi)

For an ordering of segments, sn1 , for each segment the minimum compres-
siondistance to those preceding itwas taken and these distances averaged across
the order.

V (sn1 ) =
1

n− 1

n∑
i=2

min{D(si|s1), . . . , D(si|si−1)}

As orders were exhaustive, with each segment appearing once, and only
once, an overall lower mean compression distance indicates that segments were
ordered such that variation of themes progressed more linearly throughout the
order.

Tonality

The rearranging of a composition’s segments, as used in this paradigm, disrupts
both large-scale thematic and tonal structures alike. While this thesis is primar-
ily concerned with the effects of thematic structures, the effects of tonal struc-
ture need to be taken into consideration.

Tonal distance. A measure was used that summarised the extent to which an
order conformed to the western-classical norm of favouring modulation to
more closely related keys. Keys were identified for the beginnings and end-
ings of segments (the first and final thirds, based on duration) using the Krum-
hansl and Schmuckler algorithm (Krumhansl, 1990). The distance of trans-
itions between keys was measured as the number of steps around a circle of
fifths between adjacent key signatures, with an additional penalty of 1 added
for any further move to a relative major or minor. The mean of these distances
was used as the measure of tonal distance.2

Global features

To account for the effects of closure on orders, two measures were used that
modified measures of tonal distance and variation to apply only to the relation-
ship between starting and ending segments.

Global tonality. To measure tonal closure, the circle of fifths distance de-
scribed above was applied between to opening keys of the first segments and

2While it is possible that multiple modulations can be present in a segment—resulting in a
larger than expected distance between keys in adjacent segments—the fact that all ordering are
exhaustive maintains the premise of this measure within the context of a given set of segments.
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the closing keys of the last. Orders with more closely tonally related openings
and endings gained a lower score.

Global distance. The compression distance, dependant on pitch interval or
inter-onset interval representation, between first and last segments in an orders
were used as a test for thematic closure—the extent to which these sections con-
tained closely related material.

8.2.2 Closeness to original orders

Finally, two measures were used to quantify the relationship between a given
order and a specific target order—for example, between an order and the ori-
ginal order of segments from that composition. There are several ways in which
closeness between orders can be judged; the absolute positions of segments can
be compared (i.e., that segments in the same position match), or the extent to
which smaller matching subsequences exist between the two can be tested.

Dissimilarity. Compression distances were calculated between segments at
corresponding positions in the given and target (or original) orders (depend-
ent on representation). Distances were averaged across all positions to give a
measure of overall dissimilarity.3

Edit distance. As with analysis of orders used by Granot and Jacoby (2012),
Levenshtein (1966) edit distance was used as a metric to compare two orders
based on the minimum number of operations required to transform one or-
der to the other. Three types of operation were permitted: (1) insertion of a
value into the sequence; (2) deletion of a value; or (3) substitution of one value
for another. Orders with a lower distance contained a greater number of sub-
sequences in common. For the purposes of the present experiments, asmultiple
segments within a composition may be highly similar, or even identical, no dis-
tinction betweenhighly-similar segmentswasmadewhen calculating thismeas-
ure. Using the pairwise compression distances between segments, segments
were treated as equivalent if the distance between them was less than 4 SD from
the mean of compression distances comparing segments to themselves.

8.2.3 Monte Carlo simulation of orders

Themeasures, as described above, each provide a way to quantitatively describe
a segment order for a specific composition and to compare it to other orderings

3Not to be confused with the measure of the same name specific to the experiment of
Chapter 5.
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that use the same segments. For these measures to be useful as a means of eval-
uating the wider effects of large-scale order, they need two further properties—
they need to have the ability to be generalisable between compositions, and they
need to provide a measure of how unexpected such an order may be.

To achieve this, a Monte Carlo approach was used, generating random or-
ders for each composition (maintaining the fixed first segment constraint). For
compositions with large numbers of segments (nine or greater), 20,000 random
orders were created; otherwise, the exhaustive set of permutations was used
(i.e., for compositions where all possible permutations of segments were lower
than this value). Measure values were calculated for each of the randomly gen-
erated orders and the means and standard deviations were obtained for each
composition, to which any given future order could be standardised. These
standardised measure scores provided a measure of the distance from chance
for an order (i.e., the distance from zero), and appropriately, adjusts scores to
the ranges available within combinations, allowing measures to be compared
between orders using different compositions.

8.3 The present experiments

The research presented in this chapter aimed to examine the importance of
large-scale structural order in music. The investigation is divided into two
experiments—the first, a behavioural experiment testing the abilities of par-
ticipants to order segmented compositions and how they perceive unity, the
second, modelling the order of segments in their original compositions and ex-
ploring the orders that can produce extremes in these measures.

Experiment 1 aimed to test the extent to which large-scale structural order
can be perceived by listeners, firstly through the ability of participants to recre-
ate original orders of segmented compositions, secondly by the extent to which
the modelled measures can explain participants’ orders. Of these measures, we
particularly aimed to test the effects of features based on statistical learning.
Additionally, Experiment 1 aimed to test for relationships between the prop-
erties of orders as reflected by the computational measures and participants’
perceived sense of structural unity.

For this experiment, we hypothesised that participants’ chosen orders
would be significantly related to those of the original compositions (using the
dissimilarity and edit distance measures). Secondly, we hypothesised that parti-
cipants would prioritise certain features in their orderings—that orders would
be more internally and stylistically predictable than chance orders (i.e., having
lower values of internal unpredictability (perfect), internal unpredictability (buf-
fer), internal unpredictability flow and stylistic unpredictability flow), and would
more closely follow tonal convention than chance orders. Based on the find-
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ings of the previous three behavioural experiments of this thesis, of these meas-
ures we hypothesised that measures of internal unpredictability would have the
strongest effect on orders given.

For the unity ratings given by participants to their orders, we followed the
hypothesis given in Chapter 6, that the measures of internal unpredictability
would most closely predict ratings.

For Experiment 1, we also recorded measures of participants’ musical back-
grounds, hypothesising that the greater exposure to music and its stylistic con-
ventions that comeswith greatermusical trainingwould aid participants in their
recreation of compositions’ original orders and favour approaches based on styl-
istic unpredictability.

While the aims of this research are chiefly concerned with the behavioural
elements of the first experiment, Experiment 2 aimed to explore further the
properties of the modelled measures. Firstly, the task of composers, in their
creation of the original compositions from which segments were taken, shares
some similarity with the task given to participants; they are both producing
musical material following some organisational scheme. The techniques used
to model and test participants’ orders were, therefore, also applied to the orders
in which the segments appeared in the original compositions, with the aim of
understanding the features that may have influenced the organisation within
them. Secondly, as the Monte Carlo method, described above, made it possible
to sample orders from different points across the range of measures, examples
of orders that can produce minimum and maximum values in each of the meas-
ures were examined for illustrative purposes.

For the original orders, it was hypothesised that these orders would prior-
itise the same measures as those of the participant, that orders would be more
predictable and more their segments more closely tonally related than chance
orders.

8.4 Experiment 1

8.4.1 Methods

Participants

Eighty participants were recruited to participate in the experiment using the
Prolific online platform. Participants had a mean age of 37.73 (SD = 12.81), 47
were women and 33 were men. Participants were required to have English as
their first language and to have normal, or corrected to normal, hearing. All par-
ticipants were residents of the UK or the USA. No recruitment criteria were en-
forced on participants’ level ofmusical training; 47 participants reported having
some musical training on at least one instrument, with seven of those reporting
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more than 10 years of training.

Stimuli

Stimuli consisted of segmented versions of 40 compositions (using the same
compositions as used in the experiment of Chapter 7).4 Compositions belonged
to either a ‘monophonic’ or ‘polyphonic’ (of two voices) texture category, and
to either a ‘short’ or ‘long’ length category (of approximately 2 or 4 minutes,
respectively). The 20 monophonic compositions were selected from a large cor-
pus of western-classical tonal melodies (described in Chapter 4); the 20 poly-
phonic melodies consisted of western-classical instrumental duets. In cases
where compositions were longer than their respective length category, end-
ings that produced the minimal structural disruption were manually identified
within an additional 15-second window.

Possible appropriate boundaries for segmentation were manually identified
for each composition (in a descending order of preference) at section boundar-
ies marked in the score, at substantial changes of melodic content, or otherwise
at strong phrase endings. Segmentation targeted 7 to 10 segments for ‘short’
compositions and 10 to 15 segments for ‘long’ compositions of approximately
similar duration. To discourage participants from attempting to complete the
task by matching small surface features between segment endings and begin-
nings, segments were modified to end at their cadences. Removed material
consisted of passing notes and other stylistic figurations (such as scales) that
did not contain any extra harmonic or melodic function other than to lead into
the next section.

The resulting stimuli5 contained a mean of 8.20 segments per ‘short’ com-
position (SD = 0.95) and 12.65 segments per ‘long’ composition (SD = 1.60).
‘Short’ segments had a mean duration of 15.09 seconds (SD = 4.83; of which,
‘monophonic’ M = 14.95, SD = 4.85, and ‘polyphonic’ M = 15.24, SD = 4.60).
‘Long’ segments had a mean duration of 18.89 seconds (SD = 5.56; of which,
‘monophonic’ M = 18.94, SD = 5.98, and ‘polyphonic’ M = 18.84, SD = 5.14).

Audio files were generated for each segment usingMuseScore notation soft-
ware at a uniform loudness, preserving original pitches, rhythms and tempos.
‘Monophonic’ stimuli were rendered using a piano timbre; to aid the perceived
separation between voices, ‘polyphonic’ stimuli were rendered with a piano
timbre for the first voice and a marimba timbre for the second.

4Details of the compositions used are given in Table B.2 of Appendix B
5Modelling code, stimuli and data for this experiment can be found at https://osf.io/4zs2j/.
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Procedure

The experiment was conducted online using a web browser-based task, imple-
mented using the jsPsych JavaScript library (de Leeuw, 2015). The experiment
consisted of two parts—the first containing the main experimental ordering
task (taking around 35 minutes for completion), the second containing the
GoldsmithsMusical Sophistication Index (Gold-MSI) self-report questionnaire
for musical sophistication (Müllensiefen et al., 2014).

For the ordering task, each participant received two trials. All texture and
length categories were covered between the two trials, such that a participant
would receive either a ‘monophonic’ and ‘short’ category trial followed by a
‘polyphonic’ and ‘long’ one, or a ‘polyphonic’ and ‘short’ category trial followed
by a ‘monophonic’ and ‘long’ one. Due to the vastly higher number of per-
mutations possible for segment sets in the longer category, those in the easier
‘short’ category were always first to be presented. Following this structure, com-
positions were assigned at random to participants, with each composition used
exactly four times.

As shown in Figure 8.1, for a given trial of the ordering task, the segments
of an individual stimulus composition were represented onscreen as a series of
solid-coloured circles, randomly distributed within the central portion of the
screen, with each segment having its own circle of a different colour. Segment
circles could be double-clicked to play from the beginning or stop playing the
respective segment,6 and could be freely dragged around the window. Parti-
cipants were asked to arrange the segments within an indicated response area
in the order they thoughtmade ‘themost coherent piece of music’. Additionally,
participants were advised to not try to assemble their orders based on match-
ing segment endings to beginnings (which would be a very difficult task). The
first segment of the order was given within the response area (immovable and
coloured black). An additional option was given to play through all segments
in the response area in the order in which they were positioned. Completion
of the task was limited to 10 and 20 minutes for ‘short’ and ‘long’ categories, re-
spectively, with a further minute then allowed for participants to submit their
final orderings.

For each trial, after the ordering task participants were asked to rate the
composition—in the order they had produced—on its level of structural unity
(from 0 to 100), defined as the extent to which the music still sounded like one
well-integrated, whole, single composition (see Chapter 6 for a more detailed
description of this question).

6Each segment would always start playing from its beginning, as with the modified segment
endings, this behaviour was implemented to discourage matching surface features across seg-
ments.
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Figure 8.1: Interface used in ordering task trials. Segments of an individual stimulus
composition were represented onscreen as solid-coloured circles. Segment circles
could be double-clicked to play from the beginning or stop playing the respective seg-
ment. Participants were asked to arrange the segments within an indicated response
area in the given time.

Statistical analysis

Data collected during this experiment belonged to three categories: (1) segment
orders for each composition, for each participant; (2) unity ratings for each com-
position, for each participant; and (3) Gold-MSI scores for each participant, ag-
gregated from their questionnaire responses. The statistical analyses for this
experiment examined each of these in turn.

Values for each measure for individual participant orders were calculated;
segments were modelled in their orders and standardised by composition to
the means and standard deviations from the Monte Carlo set of randomised
orders. For measures dependant on a specific representation of music, both
pitch interval and inter-onset interval variants were analysed separately.

Differences between measures for orders belonging to compositions of dif-
ferent categories were examined. Independent t-tests were used to test for signi-
ficant differences between measures for stimuli in the ‘monophonic’ and ‘poly-
phonic’ categories, and between ‘short’ and ‘long’ categories. To determine the
effects of individual measures on participant orders, one-sample t-tests were
used to test the significance of distances between eachmeasure and themeans of
theMonte Carlo set of orders (the distance from zero for the standardisedmeas-
ures). The relationships between measures for participants’ orders were then
examined; first, by testing the correlations between measures, and second, us-
ing an exploratory principal component analysis (PCA) to describe the unique
variance that could be explained by each measure (R-Core-Team, 2020).

Analysis for unity ratings split ratings at the mid-point of the scale to form
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high and low-unity categories. The differences between these categories were
tested using t-tests for each measure.

Participant responses to Gold-MSI questions were aggregated to produce
measures of general sophistication, perceptual abilities, and musical training for
each participant. To examine the effect of participants’ musical backgrounds on
their orderings, correlations between participants’ Gold-MSI scores and mean
measure values were tested. A multiple linear regression analysis was used to
examine the ability of Gold-MSI scores to predict participant mean unity rat-
ings.

8.4.2 Results

The results for this experiment are presented in turn for each of three types of
data collected: participants’ orders, their unity ratings of the ordered segments,
and their Gold-MSI scores.

Participants’ orders

Each of the 80 participants completed the ordering task for two sets of segments
covering all texture and length categories. All participants successfully submit-
ted an order for each of their trials, giving 160 orders, four for each different
composition segment set. For each order provided by participants, all meas-
ures described in Section 8.2 were calculated, using both interval and inter-
onset interval representations where relevant. Measures were then standard-
ised to Monte Carlo means and standard deviations for each composition. This
provided standardised measures, using both representations for each order.

For calculation of the internal unpredictability (buffer)measure, an optimal
buffer duration was found for the stimuli used. The buffer duration parameter
was optimised to maximise the variance between the information contents of
randomly generated orders of a composition, averaged across all compositions,
with the values for each representation combined. A smaller set ofMonte Carlo
orders was used than those used in the main analyses; 100 orders were gener-
ated for each composition. Figure 8.2 shows the relationship between buffer
duration and the amount of variance between orders for both representations.
An optimal duration of 30.01 seconds was found.

Participant agreement was calculated using measures of edit distance (nor-
malised by number of segments), the proportion of edits needed to transform
one order to another, and dissimilarity (pitch and rhythmic), the dissimilarity
between segments in corresponding positions, between orderswithin each com-
position. Means in these measures were calculated when comparing each order
to all others using that stimulus. Participants had a mean edit distance agree-
ment of 0.53 (SD = 0.07), indicating the average proportion of edits needed to
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Figure 8.2: Amounts of variance between 100 randomly generated orders for seg-
ments of each composition, modelled using internal unpredictability with varying dura-
tions of buffer.

Table 8.1: Agreement Between Participant Orders or Stimulus Categories

Monophonic Polyphonic Short Long

Measure M SD M SD M SD M SD

Edit distance 0.54 0.06 0.52 0.08 0.49 0.07 0.57 0.06
Dissimilarity (PI) 0.76 0.15 0.78 0.15 0.71 0.16 0.83 0.12
Dissimilarity (IOI) 2.13 2.24 1.41 0.74 1.64 1.41 1.904 1.96

transform one order to another. Table 8.1 gives the level of agreement between
participant orders for each of the texture and length stimulus categories.

For each measure, for each representation, independent t-tests were used
to test for differences in participant responses between stimuli in texture and
length categories. As shown in Table 8.2, only a single measure showed a sig-
nificant difference between ‘monophonic’ and ‘polyphonic’ categories—that of
global distance using the pitch interval representation. Chosen ending segments
were closer (in compression distance) to given starting segments for ‘mono-
phonic’ category stimuli. Table 8.3 shows tests between measures for ‘short’
and ‘long’ categories. Significant differences were found between categories for
internal unpredictability (buffer) in both representations—in both cases ‘long’
stimuli were more predictable—and for internal unpredictability flow for pitch
interval only—‘long’ stimuli had a large average difference in unpredictability
between segments. The subsequent analyses make use of the combined data
across categories.

Individual t-tests were used to test whether measures were significantly dif-
ferent to chance for participants’ orders. Table 8.4 displays the result of these
tests for both representations. The measures dissimilarity, for both representa-
tions, and edit distancewere found to be highly significant, with participants’ or-
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Table 8.2: T-Test Comparisons Between ‘Monophonic’ and ‘Polyphonic’ Stimulus
Categories for Each Measure, Using Participants’ Orders

Monophonic Polyphonic

Measure M SD M SD df t p

Pitch interval
Internal unpredictability (perfect) −0.26 1.07 −0.30 1.06 157.99 0.21 .83
Internal unpredictability (buffer) −0.56 1.36 −0.48 1.24 156.82 −0.42 .67
Internal unpredictability flow 0.13 1.06 0.20 1.03 157.86 −0.38 .71
Stylistic unpredictability flow −0.43 1.10 −0.30 0.99 156.16 −0.78 .43
Variation −0.16 0.97 −0.09 1.04 157.03 −0.42 .67
Global distance −0.16 1.13 0.19 0.83 145.16 −2.24 .03 •
Dissimilarity −0.31 1.26 −0.45 1.14 156.51 0.74 .46

Inter-onset interval
Internal unpredictability (perfect) 0.12 1.02 −0.06 1.04 157.95 1.09 .28
Internal unpredictability (buffer) −0.46 1.39 −0.38 1.21 155.00 −0.37 .71
Internal unpredictability flow −0.10 1.02 −0.12 1.11 156.86 0.10 .92
Stylistic unpredictability flow −0.47 1.32 −0.58 1.27 157.80 0.53 .60
Variation −0.15 1.12 −0.13 1.10 157.98 −0.13 .90
Global distance −0.16 1.02 0.02 1.00 157.96 −1.14 .26
Dissimilarity −0.32 1.17 −0.34 1.14 157.86 0.13 .90

Other
Tonal distance −0.10 1.16 −0.21 0.98 153.53 0.63 .53
Global tonality −0.15 0.98 −0.20 0.94 157.80 0.35 .73
Edit distance −0.29 1.23 −0.48 1.14 157.18 1.02 .31

• p < .05

Table 8.3: T-Test Comparisons Between ‘Short’ and ‘Long’ Stimulus Categories for
Each Measure, Using Participants’ Orders

Short Long

Measure M SD M SD df t p

Pitch interval
Internal unpredictability (perfect) −0.22 1.01 −0.34 1.12 156.37 0.72 .47
Internal unpredictability (buffer) −0.27 1.18 −0.78 1.36 154.73 2.53 .01 •
Internal unpredictability flow −0.01 1.01 0.34 1.06 157.70 −2.11 .04 •
Stylistic unpredictability flow −0.23 0.98 −0.51 1.09 156.28 1.70 .09
Variation −0.12 0.97 −0.13 1.04 157.06 0.09 .93
Global distance 0.07 1.04 −0.04 0.97 157.39 0.67 .50
Dissimilarity −0.39 1.16 −0.38 1.24 157.31 −0.07 .95

Inter-onset interval
Internal unpredictability (perfect) −0.10 1.11 0.16 0.94 153.81 −1.63 .11
Internal unpredictability (buffer) −0.21 1.07 −0.63 1.47 144.56 2.09 .04 •
Internal unpredictability flow −0.13 1.04 −0.09 1.09 157.59 −0.21 .84
Stylistic unpredictability flow −0.38 1.28 −0.67 1.29 157.99 1.42 .16
Variation −0.21 0.99 −0.07 1.22 151.66 −0.79 .43
Global distance −0.00 1.03 −0.14 0.99 157.77 0.86 .39
Dissimilarity −0.37 1.20 −0.30 1.11 157.06 −0.40 .69

Other
Tonal distance −0.09 1.07 −0.22 1.07 157.99 0.81 .42
Global tonality −0.23 0.95 −0.11 0.97 157.92 −0.83 .41
Edit distance −0.47 1.15 −0.29 1.21 157.60 −0.98 .33

• p < .05
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Table 8.4: T-Tests for Measures Testing Distance of Participants’ Orders From
Chance

Measure M SD df t d p

Pitch interval
Internal unpredictability (perfect) −0.28 1.06 159 −3.31 −.26 0.001 ••
Internal unpredictability (buffer) −0.52 1.30 159 −5.08 −.40 <.001 •••
Internal unpredictability flow 0.17 1.04 159 2.01 .16 0.05 •
Stylistic unpredictability flow −0.37 1.05 159 −4.42 −.35 <.001 •••
Variation −0.13 1.00 159 −1.58 −.12 0.12
Global distance 0.01 1.00 159 0.19 .01 0.85
Dissimilarity −0.38 1.20 159 −4.03 −.32 <.001 •••

Inter-onset interval
Internal unpredictability (perfect) 0.03 1.03 159 0.37 .03 0.71
Internal unpredictability (buffer) −0.42 1.30 159 −4.11 −.32 <.001 •••
Internal unpredictability flow −0.11 1.06 159 −1.33 −.11 0.18
Stylistic unpredictability flow −0.52 1.29 159 −5.13 −.41 <.001 •••
Variation −0.14 1.11 159 −1.56 −.12 0.12
Global distance −0.07 1.01 159 −0.87 −.07 0.38
Dissimilarity −0.33 1.15 159 −3.65 −.29 <.001 •••

Other
Tonal distance −0.15 1.07 159 −1.83 −.14 0.07
Global tonality −0.17 0.96 159 −2.27 −.18 0.02 •
Edit distance −0.38 1.18 159 −4.07 −.32 <.001 •••

• p < .05; •• p < .01; ••• p < .001

ders significantly closer to composition original orders than those generated by
chance (as shown in Figure 8.3). Using edit distance values withoutMonte Carlo
standardisation but rather normalised by number of segments, edits to 62% of
segments, on average, were needed to completely transform a participant order
to that of an original composition

Measures of inter-opus statistical learning were found to be highly signific-
ant: pitch interval internal unpredictability (perfect), and internal unpredictabil-
ity (buffer) for both representations; participant orders were found to be more
predictable than chance orders. Information-flow-based measures showed sig-
nificant effects for both stylistic unpredictability flow, in both representations,
and pitch interval internal unpredictability flow, where participants favoured
smaller differences in predictability between segments than would be expected
by chance. While no significant effect was found for the measure of tonal dis-
tance, the simpler global tonality measure was found to be significant, with par-
ticipants choosing endings in keys more closely related to those of the starting
segments.

The extent to which measures for participant orders were correlated with
each other is shown in Table 8.5. While the full results for this analysis are
given in the table, it is worth noting the results for measures of closeness to ori-
ginal orders. These measures were found to positively correlate to each other,
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Figure 8.3: Values of participants’ ordered segments, calculated for the measures of
internal unpredictability (buffer), stylistic unpredictability flow and dissimilarity for both pitch
interval and inter-onset interval representations, standardised to Monte Carlo means
and SDs. Solid lines showMonte Carlo composition means, dashed lines shows means
of orders, with shaded region showing confidence intervals for t-tests of Table 8.4.
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Figure 8.4: Explained variances and measure contributions for components of PCA
for pitch interval.

between edit distance and both representations of dissimilarity. The only ad-
ditional correlation found to one of these measures was between inter-onset
interval dissimilarity and variation, however, the later measure was not found
to be significantly different to chance in the prior t-test analysis.

A PCAwas used to examine relationships betweenmeasures using the pitch
interval representation (additionally including measures that were not repres-
entation specific) by geometrically reducing them into a smaller set of ortho-
gonal components. The variance explained by each of these new components,
and the contribution of individual measures to each of them, is displayed in
Figure 8.4. A summary of the dominant features of the first seven of the iden-
tified components (that together account for 80.67% of the explained variance)
can be given as follows: (1) a component of internal unpredictability, account-
ing for 17.20% of the variance in the data; (2) tonality, exclusively made up of
tonal distance and global tonalitymeasures, accounting for 12.47%; (3) informa-
tion flow, however, with some weighting of similarity measures, accounting for
12.26%; (4) edit distance, accounting for 10.22%; (5) a more mixed component
encompassing elements of variation, stylistic unpredictability flow, and dissim-
ilarity, accounting for 9.98%; (6) dissimilarity, accounting for 9.46%; and (7)
global distance, accounting for 9.08%.

Likewise, a PCA was used to examine relationships between measures us-
ing the inter-onset interval representation (also including non-representation-
specific measures), shown in Figure 8.5. The first six components, accounting
for a combined 73.45% of the variance, can be summarised as: (1) a compon-
ent mixing internal unpredictability (buffer) and stylistic unpredictability flow,
with only a limited effect of the other internal unpredictability measures, ac-
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Figure 8.5: Explained variances and measure contributions for components of PCA
for inter-onset interval.

counting for 17.88% of explained variance; (2) tonality, accounting for 12.47%;
(3) global distance, internal unpredictability (perfect), and variation, accounting
for 12.31%; (4) internal unpredictability flow and dissimilarity, accounting for
10.84%; (5) edit distance, accounting for 10.22%; (6) another element of internal
unpredictability flow, accounting for 9.73%.

Unity ratings

All 80 participants returned a rating of structural unity for each of their orders.
Across all 160 orders, unity was rated with a mean of 55.65 (SD = 23.66).

As ratings were distinctly bimodal in their distribution around the scale
mid-point of 50, orders were split into low- and high-unity categories. Table 8.6
gives the results for t-tests comparing high- and low-unity orders for eachmeas-
ure. No measure was found to significantly influence the unity category in
which an order was placed.

Gold-MSI scores

After aggregating Gold-MSI responses into scores for each participant, parti-
cipants had a mean score for general sophistication (out of a possible scale range
18–126) of 51.85 (SD = 18.72), a mean score for perceptual abilities (scale range
9–63) of 39.35 (SD = 7.64), and a mean score for musical training (scale range
7–49) of 13.82 (SD = 8.76).

Measures were aggregated by taking the mean for each participant’s orders.
The correlations between Gold-MSI scores and aggregated measures are shown
in Table 8.7. Significant positive correlations were found for pitch interval in-
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Table 8.6: Results of Comparison T-Tests Between Participants’ High and Low Rat-
ings of Orders’ Unity for Each Measure

Low unity High unity

Measure M SD M SD df t p

Pitch interval
Internal unpredictability (perfect) −0.28 1.07 −0.28 1.06 129.79 −0.01 .99
Internal unpredictability (buffer) −0.47 1.26 −0.55 1.33 135.26 0.41 .68
Internal unpredictability flow 0.15 1.07 0.17 1.03 126.61 −0.13 .90
Stylistic unpredictability flow −0.51 0.93 −0.28 1.11 145.98 −1.42 .16
Variation 0.00 1.08 −0.21 0.95 117.13 1.26 .21
Global distance −0.03 0.97 0.04 1.03 134.85 −0.42 .67
Dissimilarity −0.31 1.08 −0.43 1.27 145.00 0.65 .51

Inter-onset interval
Internal unpredictability (perfect) 0.15 1.02 −0.05 1.04 131.70 1.19 .24
Internal unpredictability (buffer) −0.53 1.32 −0.35 1.28 127.23 −0.83 .41
Internal unpredictability flow −0.14 1.04 −0.09 1.08 133.04 −0.28 .78
Stylistic unpredictability flow −0.51 1.35 −0.53 1.26 123.67 0.07 .94
Variation −0.07 1.17 −0.18 1.07 121.19 0.60 .55
Global distance −0.14 0.95 −0.03 1.05 139.58 −0.69 .49
Dissimilarity −0.36 1.03 −0.32 1.23 146.39 −0.23 .82

Other
Tonal distance −0.13 0.97 −0.17 1.13 143.64 0.22 .83
Global tonality −0.17 0.94 −0.17 0.97 132.87 0.01 .99
Edit distance −0.30 1.11 −0.43 1.23 139.28 0.73 .46

ternal unpredictability (buffer) and participants’ perceptual abilities, and inter-
onset interval internal unpredictability (buffer) and their level of musical train-
ing. Significant negative correlations were found between inter-onset interval
dissimilarity and scores of participants’ general sophistication andmusical train-
ing.

The ability of Gold-MSI scores to predict participants’ mean unity ratings
was tested using a multiple linear regression analysis. As shown in Table 8.8, no
score managed to significantly predict ratings.

8.4.3 Summary

While the findings and implications of this experiment are discussed in detail
in the general discussion below, alongside the second experiment, the key find-
ings are summarised here. Firstly, this experiment provided significant evid-
ence that listeners are sensitive to the large-scale ordering of musical material.
This was shown through the ability of participants to reconstruct the original
orders of compositions significantly better than chance would suggest. This
closeness to original orders existed both in the absolute positioning of segments
within the order, and in the ability to correctly match smaller subsequences of
the originals. The studies of Granot and Jacoby (2011, 2012) produced similar
findings, where participant orders were closer to originals than chance would
suggest (measured using edit distance).
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Table 8.7: Pearson’s r Correlations Between Participants’ Gold-MSI Scores and
Mean Measure Values for Their Orders

Measure
General

Sophistication
Perceptual
abilities

Musical
training

Pitch interval
Internal unpredictability (perfect) .13 .16 .09
Internal unpredictability (buffer) .19 .23 • .21
Internal unpredictability flow −07 .01 −07
Stylistic unpredictability flow −03 .15 .03
Variation .13 .05 .14
Global distance −06 .01 −05
Dissimilarity −19 . .03 −14

Inter-onset interval
Internal unpredictability (perfect) .13 .10 .10
Internal unpredictability (buffer) .16 .19 .26 •
Internal unpredictability flow .03 .08 .01
Stylistic unpredictability flow .01 −00 .02
Variation −02 −03 .02
Global distance −09 −04 .00
Dissimilarity −24 • −07 −22 •

Other
Tonal distance −14 −04 −05
Global tonality −05 −03 −09
Edit distance −14 −07 −08

• p < .05

Table 8.8: Linear Regression Analyses Predicting Participants’ Mean Unity Ratings
by Their Gold-MSI Scores

Predictor β SE t p

Intercept 56.80 11.79 4.82 <.001 •••
General sophistication 0.01 0.23 0.06 .96
Perceptual abilities −0.15 0.40 −0.38 .70
Musical training 0.30 0.40 0.74 .46

••• p < .001
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The findings of this experiment also provide evidence that statistical learn-
ing has an important role in the perception of large-scale order. The three
measures that modelled possible effects of intra-opus learning—the measures
of internal unpredictability (perfect), internal unpredictability (buffer), internal
unpredictability flow—were found to be significantly lower than chance for par-
ticipant orders when using the pitch interval representation. Internal unpredict-
ability (buffer) was found to be significantly lower than chance when using the
inter-onset interval representation.

Analysis of Gold-MSI scores of participants provides some limited evidence
of an influence of musical background on orderings. Two measures were found
to be significantly correlated with Gold-MSI scores. The findings suggest that
participants with greater perceptual abilities ormusical training returned orders
that were closer to chance for internal unpredictability (buffer) (for pitch inter-
val in inter-onset interval, respectively). A significantly negative correlationwas
found between inter-onset interval dissimilarity and scores of general sophistic-
ation andmusical training; orders given by participants with higher scores were
closer to original segment orders than those of participants scoring lower in
these categories.

None of the measures were found to have a significant effect on ratings of
unity of ordered compositions.

8.5 Experiment 2

The second experiment reported in this chapter aimed to explore further the
role of large-scale order in music through the same computational measures as
the first. While the first experiment focused on the orderings provided by par-
ticipants in a behavioural experiment, the second investigated the properties of
compositions in the orders in which theywere originally produced. The process
of composition shares some similarity with the task given to participants. They
are both producingmusicalmaterial following some organisational scheme and
for both this ordering is based, in part, on their past musical experiences. Like
the participants a composer must also decide on an ordering for the sections of
a composition.

The measures described in Section 8.2 were also applied to the orders in
which the segments appeared in the original compositions, with the aim of
understanding the features that may have influenced the organisation within
them. Additionally, theMonte Carlo standardisationmade it possible to sample
orders from different points across the range of measures, and so produce ex-
amples of orders from the extremes of each of the measures

Chapter 8. Modelling Large-Scale Order 163



8.5.1 Methods

Stimuli

This experiment used the same stimuli as in Experiment 1. Stimuli consisted
of segmented versions of 40 compositions. Compositions belonged to either
a ‘monophonic’ or ‘polyphonic’ (of two voices) texture category, and to either
a ‘short’ or ‘long’ length category (of approximately 2 or 4 minutes, respect-
ively). The 20 monophonic compositions were selected from a large corpus
of western-classical tonal melodies; the 20 polyphonic melodies consisted of
western-classical instrumental duets.

Stimuli used the same segmentations as in Experiment 1. Possible appropri-
ate boundaries for segmentation were identified for each composition. Stimuli
contained a mean of 8.20 segments per ‘short’ composition (SD = 0.95) and
12.65 segments per ‘long’ composition (SD = 1.60). ‘Short’ segments had a
mean duration of 15.09 seconds (SD = 4.83; of which, ‘monophonic’M = 14.95,
SD = 4.85, and ‘polyphonic’ M = 15.24, SD = 4.60). ‘Long’ segments had a
mean duration of 18.89 seconds (SD = 5.56; of which, ‘monophonic’M = 18.94,
SD = 5.98, and ‘polyphonic’ M = 18.84, SD = 5.14).

Statistical analysis

For the first analysis of this experiment, segments were examined in the orders
they occurred in the original compositions. Values for each measure of these
orders were calculated, with measures standardised to the means and standard
deviations for each composition from the Monte Carlo set of randomised or-
ders. For measures dependant on a specific representation of music, both pitch
interval and inter-onset interval variants were analysed separately.

As with the analysis of participant orders in Experiment 1, first, differences
between measures for orders belonging to compositions of different categories
were examined. T-tests were used to test for significant differences between
measures for stimuli in the ‘monophonic’ and ‘polyphonic’ categories, and
between ‘short’ and ‘long’ categories. Likewise, to determine the effects of in-
dividual measures on the original orders, one-sample t-tests were used to test
the significance of distances between eachmeasure and themeans of theMonte
Carlo set of orders. Correlations between measures when calculated using the
original composition orders were tested.

The second analysis in this experiment used the Monte Carlo set of ran-
domised orders—for each composition, the lower of either the exhaustive per-
mutations of all segments, or 20,000 randomly generated orders. Four example
compositions were selected, covering each of the possible category combina-
tions. Examples for high and low scoring orders were selected as the minimum
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Table 8.9: T-Test Comparisons Between ‘Monophonic’ and ‘Polyphonic’ Stimulus
Categories for Each Measure, Using Original Orders

Monophonic Polyphonic

Measure M SD M SD df t p

Pitch interval
Internal unpredictability (perfect) 0.07 1.19 −0.26 0.87 34.83 1.00 .32
Internal unpredictability (buffer) −0.22 1.60 −0.13 1.35 36.94 −0.19 .85
Internal unpredictability flow −0.20 1.27 −0.35 1.25 37.99 0.38 .71
Stylistic unpredictability flow 0.25 1.33 0.24 1.13 37.05 0.02 .98
Variation −0.23 0.76 −0.26 0.98 35.77 0.14 .89
Global distance 0.11 0.92 0.28 0.66 34.32 −0.66 .51

Inter-onset interval
Internal unpredictability (perfect) 0.27 0.85 −0.02 0.92 37.76 1.03 .31
Internal unpredictability (buffer) −0.36 1.22 0.11 1.37 37.50 −1.14 .26
Internal unpredictability flow 0.15 0.92 −0.07 1.29 34.23 0.61 .54
Stylistic unpredictability flow 0.10 1.08 −0.23 1.18 37.75 0.95 .35
Variation −0.13 0.79 −0.52 1.12 34.00 1.29 .20
Global distance −0.02 0.95 0.11 0.85 37.55 −0.48 .64

Other
Tonal distance −0.69 1.24 −0.12 0.81 32.63 −1.71 .10
Edit distance −0.27 1.13 −0.24 1.12 37.99 −0.10 .92

and maximum orders within the Monte Carlo set for each measure, for both
representations.

8.5.2 Results

Original orders

There were 40 compositions with segments in their original orders used in this
analysis.

As with the behavioural experiment, for each measure, for each represent-
ation, independent t-tests were used to test for differences in the standardised
measures between compositions in texture and length categories. As shown
in Table 8.9, no measure was found to be significantly different for original or-
ders between ‘monophonic’ and ‘polyphonic’ categories. Likewise, when com-
paring ‘short’ and ‘long’ composition categories, no measure was found to be
significant—shown in Table 8.10. A non-significant effect of global distancewas
shown when using pitch interval.

For each measure, for each representation, t-tests were used to test for sig-
nificant differences between measure values for original orders and those of
the large randomly generated set. The outcomes of these tests are displayed
in Table 8.11. A sole significant effect was found for the measure of tonal dis-
tance—modelling the extent to which an order used more distantly related keys
between sections. Key relations were found to be significantly closer between
the segments of the original order than would be expected by chance orderings.
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Table 8.10: T-Test Comparisons Between ‘Short’ and ‘Long’ Stimulus Categories
for Each Measure, Using Original Orders

Short Long

Measure M SD M SD df t p

Pitch interval
Internal unpredictability (perfect) −0.26 1.00 0.07 1.08 37.83 −0.98 .33
Internal unpredictability (buffer) −0.36 1.42 0.00 1.52 37.80 −0.79 .44
Internal unpredictability flow −0.04 1.08 −0.51 1.39 35.81 1.18 .24
Stylistic unpredictability flow −0.08 1.37 0.57 0.97 34.13 −1.73 .09
Variation −0.40 0.82 −0.09 0.90 37.65 −1.13 .27
Global distance 0.43 0.81 −0.04 0.72 37.50 1.91 .06

Inter-onset interval
Internal unpredictability (perfect) 0.02 0.91 0.22 0.87 37.89 −0.72 .47
Internal unpredictability (buffer) −0.19 1.24 −0.06 1.39 37.53 −0.31 .76
Internal unpredictability flow 0.26 1.28 −0.18 0.88 33.73 1.27 .21
Stylistic unpredictability flow −0.16 1.17 0.03 1.11 37.89 −0.51 .61
Variation −0.51 1.08 −0.14 0.85 35.98 −1.20 .24
Global distance 0.26 0.96 −0.17 0.79 36.72 1.53 .13

Other
Tonal distance −0.45 0.80 −0.37 1.31 31.58 −0.21 .83
Edit distance −0.03 1.02 −0.48 1.17 37.30 1.28 .21

The variationmeasure, for both pitch interval and inter-onset interval represent-
ations was the only other to approach significance for the original orders; this
non-significant effect showed variation lower for original orders than those of
chance.

The extent to which measures for original orders were correlated with each
other is shown in Table 8.12.

Example orders

The large number of orders generated for Monte Carlo approach used in these
experiments provided a comprehensive set of orders across the full ranges of
each measure, from which useful examples could be sampled. Four composi-
tions were selected from the available stimuli, one for each category combina-
tion: (A) ‘monophonic’ and ‘short’, taken from Handel, Recorder Sonata in A
minor, HWV 362, fourth movement; (B) ‘monophonic’ and ‘long’, taken from
Beethoven, Piano Sonata No. 15, Op. 28, second movement; (C) ‘polyphonic’
and ‘short’, the fourth duo from Glière, 12 Duos for 2 Violins, Op. 49; and (D)
‘polyphonic’ and ‘long’, taken from Mozart, Duo for Violin and Viola, K.423,
first movement. For the purpose of interpreting orders given for these compos-
itions, scores of the segmented compositions are given in Appendix C.

The orders from the Monte Carlo set that produced the minimum andmax-
imum values were found for each measure, excluding those of closeness to ori-
ginal orders and those that only compare starting and ending segments. These
example orders are given in Table 8.13.
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Table 8.11: T-Tests for Measures Testing Distance of Original Orders From Chance

Measure M SD df t d p

Pitch interval
Internal unpredictability (perfect) −0.09 1.04 39 −0.58 −.09 .57
Internal unpredictability (buffer) −0.18 1.46 39 −0.78 −.12 .44
Internal unpredictability flow −0.28 1.25 39 −1.40 −.22 .17
Stylistic unpredictability flow 0.25 1.21 39 1.28 .20 .21
Variation −0.26 0.86 39 −1.95 −.28 .06
Global distance 0.20 0.79 39 1.57 .25 .12

Inter-onset interval
Internal unpredictability (perfect) 0.12 0.88 39 0.87 .14 .39
Internal unpredictability (buffer) −0.13 1.30 39 −0.61 −.10 .54
Internal unpredictability flow 0.04 1.11 39 0.21 .03 .83
Stylistic unpredictability flow −0.07 1.13 39 −0.37 −.06 .71
Variation −0.31 .03 39 −1.90 −.33 .07
Global distance 0.05 0.90 39 0.32 .05 .75

Other
Tonal distance −0.41 1.07 39 −2.41 −.38 .02 •
Global tonality −0.25 1.11 39 −1.44 −.23 .16

• p < .05

Qualitatively, several general trends can be seen. For the three measures
of internal unpredictability, elements of inter-measure consistency can be seen.
Patterns of small subsequences are repeated between orders for each meas-
ure, for example, in composition A between minimum pitch interval internal
unpredictability (buffer) and inter-onset interval internal unpredictability (per-
fect). This pattern becomes closer when considering segments that may similar-
enough so as to be freely interchangeable with each other. Due to this effect
of segment interchangeability, it can be seen that measures using inter-onset
interval bear a closer resemblance to each other than those of pitch interval.
While none of these example compositions are rhythmically-isochronous, this
effect is still most likely due to the reduced variation between segments in this
representation.

For thesemeasures of internal unpredictability, this close similarity between
segments can be seen to influence example orders in another way; they show
a marked tendency to group together segments that are highly-similar (or in
many cases identical) early in the ordering. This effect can be seenmost strongly
in orders for composition D, in which segment 10, the exact repeat of the open-
ing segment is placed directly after it for both pitch and rhythm variants of the
first two measures. This can be seen as a direct consequence of the minimisa-
tion of internal unpredictability; repeating material before the model’s training
material has diversified will minimise the possible unpredictability overall. It is
also particularly interesting to note that this behaviour seems to be closely ana-
logous to that of the ‘early repetition’ identified as a compositional strategy by
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Huron (2013). The converse of this effect can also be observed, though some-
what harder to distinguish, in the maximum-inducing orders for these meas-
ures. For example, in composition B, maximum orders of internal unpredictab-
ility measures jump between different thematic ideas at each segment.

Although fragments of the original sequential orders can be seen, it is clear
that none of these measures, at either extreme, are substantially recreating the
originals—that the originals are not best performing in any of these measures.

8.6 Discussion

The two experiments presented in this chapter together provide evidence of the
importance of large-scale order in music. More specifically, the results also
provide evidence that perception of the way in which sections of musical ma-
terial are ordered is influenced by the dynamic learning of statistical properties
within compositions. Both experiments tested whether computational meas-
ures of thematic structure, covering both pitch and rhythm, influence the or-
dering of musical material. Experiment 1 did so using orders provided by parti-
cipants in a behavioural study; Experiment 2 did so by examining original and
theoretically optimal orders.

The results of Experiment 1 provided significant evidence that listeners are
sensitive to the large-scale ordering of musical material. One way that this was
shown is through the ability of participants to reconstruct the original orders of
segments significantly better than chance, as characterised by both themeasures
of dissimilarity between segments in corresponding positions (for both pitch
and rhythm representations) and of the overall edit distance between orders.
The joint significance of these measures makes this finding a robust one. The
closeness of participant orders to originals existed both in the absolute position-
ing of segments within the order, and in the ability to correctly match smaller
subsequences of the originals.

However, the sensitivity to original orderings was not the only significant
influence on the perception of order supported by the findings of this experi-
ment. The results for the other modelling measures tested showed effects on
orderings that were independent of any relationship with the segment order
present in the original compositions. In particular, the values for participant
orders in the measures of internal unpredictability (perfect), internal unpredict-
ability (buffer), internal unpredictability flow, stylistic unpredictability flow, and
global tonality were all significantly lower than would be expected by chance
(i.e., participant orders were more predictable, or more closely related) for least
one representation, as hypothesised for these measures. These effects were not
significantly different between compositions that lasted around 2 minutes and
those lasting around 4 minutes.
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This suggested independence between measures of closeness to original or-
ders and other significant measures was first indicated in the analysis of correl-
ations between measures (see Table 8.5), with no significant correlations to oth-
erwise significant measures found. Another small indication that participants’
orders were partly motivated by features independent of original orders is that
no significant effect for these measures was found in the analysis of original or-
ders, however, with the caveat that tests on original orders are limited to amuch
smaller sample size than those of the behavioural experiment.

This separation was also shown in Experiment 1 when using PCA to com-
bine measures into a smaller number of orthogonal components. Edit distance
was found to be highly independent from other measures; dissimilarity, while
differing in amounts of interaction with other measures between representa-
tions, was still mostly independent. Aside from these two measures, the PCAs
suggest that there are several orthogonal factors present in participants’ orders—
particularly in the pitch interval representation (the limitations that arise with
inter-onset interval are discussed below). The first of which being an effect of
internal unpredictability (both perfect and buffer variants).

These findings provide strong evidence that statistical learning has an im-
portant role in the perception of large-scale order, as hypothesised. The three
measures that modelled possible effects of intra-opus learning—the measures
of internal unpredictability (perfect), internal unpredictability (buffer), internal
unpredictability flow—were found to be significantly lower than chance for par-
ticipant orders when using the pitch interval representation; internal unpredict-
ability (buffer) was found to be significantly lower than chance when using the
inter-onset interval representation. The results also suggest that there was a sig-
nificant stylistic component, providing some evidence that inter-opus statist-
ical learning plays an additional role in the perception or order. These findings
suggest that participants were, at least in part, assembling their orders so as to
minimise unpredictability—both of the whole composition, and on a segment-
to-segment basis.

Comparison between the performances of internal unpredictability (perfect)
and internal unpredictability (buffer) measures can provide some insight into
the role of memory in the perception of structural elements on these larger
times-scales. As can be seen in the optimisation process finding the buffer dur-
ation (Figure 8.2), restricting the memory of the model can greatly increase
the amount of variance that can be captured between orders; subsequently, the
buffer-limited version out-performs the perfect-memory version in explaining
variance in participants’ orders (see Table 8.4). The two measures are, however,
still highly related. These results suggest that, for intra-opus statistical to allow
listeners to perceive the effects of large-scale orders, only a sensitivity to more
local statistical regularities may be needed. It is interesting to note that the op-
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timal buffer value for the stimuli used in these experiments of 30 seconds is a
little under double that of the mean segment duration (17 seconds).

The effect of tonal properties presents one of the clearest differences
between those orders chosen by participants and those of the composers’ ori-
ginals. Tonal distance was the only measure, out of all those tested, that was sig-
nificantly lower than chance for original orders; furthermore, it was found not
to be significantly different from chance for participant orders. Interestingly,
this result would suggest that, while the composers used in this set of tonal mu-
sic largely followed the convention of modulation to related keys, participants
were not as sensitive to this convention.

However, it is not necessarily the case that participants made no consider-
ation to tonal features at all. The behavioural experiment does provide evid-
ence that participants attached some importance to global tonality—that the
first and last segments were in closely-related keys—that persisted even in the
‘long’ stimuli category. The fact that a similar effect of this measure is lacking
for the original orders may be due to the cropping of works to meet the 2 and
4 minute categories. A possible explanation for the discrepancy between tonal
distance and global tonality for participants is that the preference for low internal
unpredictability, as discussed above, obscured ordering based on segment-by-
segment tonal relationships, but that participants’ sensitivity to tonality was just
strong enough to influence the single global relationship.

As so far discussed, the results of the behavioural experiment show parti-
cipant orders had both significant effects of measures of closeness to original
orders and, independently, measures of statistically learned features. However,
the apparent lack of a significant relationship between any of the significant
measures and the measures of dissimilarity and edit distance (with no correla-
tion between measures, and little shared explained variance in the PCA) poses
a question as to the features that allowed participants to continue to achieve this
closeness to original orders. One possible explanation is that, despite the steps
taken to discourage such an approach to the task, the matching of very local
continuities between segment ends and starts still had some influence over par-
ticipants’ orders. However, were this to be the case, it cannot account for the
significant impact of the measures that were independent of the original orders,
so would have limited effect. Alternatively, it is possible that many of the signi-
ficantmeasures contributed in a small way to partially recreate originals—of too
weak an effect to have been significant with the tests used. There is an argument
for this scenario in that dissimilarity was found not to be purely orthogonal to
all other dimensions in the PCAs, however, edit distance largely was so. The
final possibility is that, due to the high complexity of music as a stimulus, par-
ticipants were using other features that are beyond the scope of our modelling
here.
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It is clear from the results for these experiments that the pitch and rhythmic
domains, while similar inmany aspects, do present some significant differences.
This is most noticeable where measures that are significant when modelled
using pitch interval are not so when using inter-onset interval. These differ-
ences are largely restricted to measures of internal unpredictability—internal
unpredictability (perfect) and internal unpredictability flow, in particular. As
discussed in the previous experiments of this thesis, a likely cause of this dispar-
ity is the relatively high frequency of rhythmically-isochronous compositions
in western music. Specifically, for the current experiments, little variance in
rhythmic material is possible between different orders of segments from com-
positions that are highly (or even partly) rhythmically isochronous. The more
general point is that pitch structure is the dominant carrier of thematic structure
in the musical styles included here. This has the effect of reducing the abilities
of measures to distinguish between orders when modelled using inter-onset in-
terval.

In order to replicate the link between internal unpredictability and per-
ceived structural unity found in Chapter 6, the behavioural experiment of this
chapter included a unity rating task for participants’ orders. However, no sig-
nificant effect was found between ratings and any of the modelled measures—
including those of internal unpredictability. There are several possible explana-
tions as to why this effect was not replicated. Firstly, the unity task in this exper-
iment is restricted by the requirements needed for the ordering task—such as
requiring far more time for each trial, reducing the overall number of responses
that could be gathered—it is possible it is lacking sufficient statistical power for
any effect to become apparent. Secondly, it could be that the cognitive, problem-
solving nature of the ordering task disrupted themore immediate perception of
unity when ratings were subsequently taken. Finally, it is possible that the task
had become too far removed from that of the experiment of Chapter 6, such
that participants’ abilities to judge unity were too disrupted by the fragmented
nature of the task. This may also be compounded were participants to treat the
rating—despite the instructions—as a confidence rating in their given orders.

The Gold-MSI scores of participants in the first experiment provide some
limited evidence of an influence of musical background on orderings. Two
measures were found to be significantly correlated with Gold-MSI scores—in-
ternal unpredictability (buffer) and dissimilarity. For the first, the findings sug-
gest that participants with greater perceptual abilities or musical training re-
turned orders that were closer to chance for that measure (for pitch interval
in inter-onset interval, respectively); this would seem to imply that the parti-
cipants who score more highly on these scores were prioritising other methods
of ordering. These participants may be more sensitive to segments’ original or-
ders. A significantly negative correlation was found between inter-onset inter-
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val dissimilarity and scores of general sophistication andmusical training; orders
given by participants with higher scores were closer to original segment orders
than those of participants scoring lower in these categories. No significant ef-
fect was found between Gold-MSI scores and unity ratings. No evidence was
found to support the hypothesised connection between musical background
and stylistic features of music.

8.7 Summary

In this chapter, the final experiments of this thesis were presented. These exper-
iments aimed to investigate properties of the large-scale ordering of material
within a composition. The first experiment observed the responses of parti-
cipants using a puzzle paradigm previously employed by Granot and Jacoby
(2011), participants were tasked with ordering segmented compositions in the
order they judged to produce the most coherent composition. A Monte Carlo
approach was used to test for significant differences between participants’ or-
ders and those of chance, based on measures derived from those of the model
of Chapter 3, extensions of thesemeasures to cover effects ofmemory limitation
and the optimal information flow, closeness of orders to those of the original
compositions, and considerations of tonal structure. Compositions used in
this experiment differed in two category conditions. Compositions were evenly
split betweenmonophonic and two-voice polyphonic categories (using the tech-
niques for the dynamic modelling of polyphonic discussed in Chapter 3), and
between ‘short’ and ‘long’ categories (approximately 2 and 4 minutes, respect-
ively). The second experiment applied to same procedure to original composi-
tion orders and explored example orders from the extremes of each measure.

The results of the behavioural experiment provided significant evidence that
listeners are sensitive to the large-scale ordering of musical material, producing
support for the importance of several measures. Firstly, participant orders were
found to be significantly closer to those of originals thanwould occur by chance
(measures of dissimilarity in both representations and edit distance). Secondly,
measures of internal unpredictability (perfect), internal unpredictability (buffer),
internal unpredictability flow, stylistic unpredictability flow, and global tonality
were all significantly lower than chance orders in at least one representation.
The findings of this chapter contribute to the converging evidence across this
thesis in support of the perception of elements of thematic structure through
the statistical learning of compositional regularities.

Chapter 8. Modelling Large-Scale Order 175



Chapter 9

Conclusions

9.1 Overview

The primary goal of this thesis was to develop an improved understanding of
how large-scale thematic structures—the organisation of material within a mu-
sical composition—can be perceived. Whether, and if so, how, these structures
may be perceived provides an interesting psychological problem, combining
many aspects of memory, pattern recognition, and similarity judgement. How-
ever, strong experimental evidence supporting the perception of large-scale
thematic structures (reviewed in Chapter 2) remains limited, often arising from
difficulties in measuring and disrupting their perception.

In order to address some of the shortcomings identified within the literat-
ure, Chapter 3 sought to provide a concrete specification of the cognitive pro-
cesses involved in the perception of large-scale thematic structure. The chapter
described a probabilistic computational model of the perception of thematic
structure, based on the hypothesis that thematic structures can be perceived
through the statistical regularities they form over the course of a composition.
This chapter introduced IDyOM (Pearce, 2005), a computational model of aud-
itory expectation, which provided a platform for the modelling of thematic
structure, then summarised the main components of the model itself—the pro-
cesses of theme and repetition detection—and, finally, presented four model-
based measures to characterise properties of thematic structure for any given
composition: (1) the intra-opus internal unpredictability of a composition; (2)
thematic repetition—the proportion of material in a composition identified by
the model as repetition of identified themes; (3) thematic variation—the extent
to which this repetition develops from its parent themes; and (3) the stylistic un-
predictability of this identified material. Given this foundation, the remainder
of the research reported in this thesis was then concerned with the empirical
evaluation of this model, and the overarching hypothesis on which it was based
(Table 3.1 gave an overview of the relationship between the four primary model
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measures and those used in the behavioural experiments).
Chapter 4 provided the first step in this evaluation, presenting a corpus ana-

lysis based on the measures of the model. A corpus of 623 complete mono-
phonic compositions was created and described in this chapter—not only for
use in the analysis, but also as a basis for stimulus selection in the subsequent be-
havioural experiments. The analysis aimed to demonstrate that the measures of
hypothesised importance to the perception of thematic structure varied system-
atically when applied to the corpus, reflecting the inherent variation of structure
present within the corpus itself. Through this analysis, the common output pat-
terns, ranges, and relationships between measures were explored, with the four
model measures of importance found to be able to substantially explain vari-
ance within the corpus. In addition to comparingmeasures, the corpus analysis
also served to identify the representations ofmusical surface best-suited tomod-
elling features of thematic structure in the pitch and rhythmic domains; repres-
entations of pitch interval and inter-onset interval, respectively, were identified
and subsequently using in the modelling of the following behavioural experi-
ments.

The first behavioural experiment, presented in Chapter 5, provided some
preliminary validation of concepts from the model of Chapter 3. This exper-
iment was the only one reported in this thesis not to test measures directly
on large-scale compositions; it was important to examine first whether meas-
ures could predict perception on a local level in this initial experiment, before
extending the enquiry to large-scale thematic structures in the subsequent ex-
periments. The experiment tested the abilities of participants in perceiving
a relationship between pairs of themes and repetition phrases, identified by
the model within the monophonic compositions of Chapter 4’s corpus. This
task aimed to understand how modelled features interacted and influenced re-
sponses in isolation as an important first step to understanding their effects
when integrated into compositions over far longer timespans. Measures were
found to correspond significantly with participants’ responses in both pitch and
rhythm domains; this effect was found to exist primarily in intra-opus features,
but also in the stylistic relationship between pairs.

Chapter 6 presented the second behavioural experiment of the thesis, test-
ing the perception of two highly-important indicators of large-scale thematic
structure; the experiment tested participants’ abilities to identify given mo-
ments as being repetitions of earlier thematic material and their judgements
of the sense of structural unity of compositions. As this experiment tested for
these features in monophonic compositions of substantial length (with dura-
tions of approximately 2 minutes), the measures of thematic structure were
evaluated in the same form as they were hypothesised to operate in real-world
musical listening. The findings of this experiment presented a striking contrast
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between the influence of the four measures. Across both tasks, the results of
this experiment provided strong evidence of an influence of internal unpredict-
ability, across both pitch and rhythm representations. Internal unpredictability,
both of a given moment and of the composition preceding it, was found to aid
the correct identification of repeated material, and compositions with lower in-
ternal unpredictabilitywere found to have a significantly stronger sense of unity.
These findings provided some corroboration of the overarching hypothesis of
this thesis—that thematic structures can be perceptible through the structural
regularities they form.

The influence of statistical features on the perception of large structures
was further tested in the experiment presented in Chapter 7. This experiment
aimed to test listeners’ judgements of large-scale continuation, as a means of ex-
amining the importance and nature of statistically learned features in this task.
For stimulus compositions, plausible continuations were computationally gen-
erated, based on predictability from the composition, its themes, or from the
corpus of Chapter 4, using both pitch interval and inter-onset interval repres-
entations. Measures based on those of Chapter 3 were compared to participants’
responses in this task. The findings of this experiment provided robust evidence
that intra-opus statistically-learned elements had an important role in influen-
cing the perception of these continuations. This experiment expanded on the
scope of the experiment of Chapter 6 in two ways: it increased the duration of
stimulus compositions used (and so the scale of possible structures), using com-
positions both of 2 and 4 minutes long; and it introduced and tested techniques
(discussed in Chapter 3) for the modelling of thematic structure in polyphonic
compositions of two voices.

The final behavioural experiment was presented in Chapter 8. This exper-
iment aimed to contribute to the converging understanding of thematic struc-
ture built-up throughout the course of these experiments by testing the per-
ception of large-scale order. Using a puzzle paradigm previously employed by
Granot and Jacoby (2011), participants were tasked with ordering segmented
compositions in the order they judged to produce the most coherent compos-
ition. As with the stimuli of the previous experiment, both monophonic and
polyphonic compositions were used, with complete compositions of 2 and 4
minutes in length. A Monte Carlo approach was used to test the significance
of participants’ orders based on measures derived from those of the model of
Chapter 3, alongside additional measures characterising tonality and closeness
to original orderings. The results of this experiment provided significant evid-
ence that listeners are sensitive to the large-scale ordering of musical material.
Participants’ orderings were found both to be closer to the original orders than
chance would suggest and favoured significantly lower internal unpredictability
in both the pitch and rhythmic domains.
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9.2 Research outcomes

9.2.1 Intra-opus statistical learning of thematic structure

Taken together, the findings of the behavioural experiments of Chapters 5, 6, 7
and 8, in their evaluation of the measures of thematic structure of Chapter 3,
provide converging evidence that the perception of large-scale thematic struc-
tures can be accounted for by the dynamic learning of statistical regularities
within musical compositions. Table 9.1 summaries the key findings for meas-
ures of thematic structure. All four experiments found that the internal un-
predictability of material (or the experiment-specific measure that most-closely
encapsulated its effects) consistently presented the strongest influence on their
respective tasks. As listeners’ perception of structure cannot be tested directly,
each experiment focused on different experimental indicators that thematic
structures were perceived; experiments tested the abilities of listeners to per-
ceive structural unity, large-scale repetition, continuation, and large-scale or-
der. The ability of internal unpredictability to have a significant effect on all of
these indicators makes this finding a robust one.

Testing the perception of structural unity, Chapter 6 found strong evidence
that the sense of structure unity of a composition is directly related to its in-
ternal unpredictability, with compositions that contain a greater amount of re-
petition, and so have higher intra-opus predictability, perceived as being more
unified. For completeness, it should, however, be noted that the experiments
of Chapters 7 and 8 were unable to replicate this finding though the collec-
tion of unity ratings after completion of their respective tasks. As discussed
in these chapters, this lack of significance was most likely due to the prioritisa-
tion of the primary experimental tasks resulting in the unity rating task being
too far removed from the original (with the additional possibility participants
erroneously treated this rating as an expression of their confidence in their re-
sponses to the main task). This finding of the ability of listeners to perceive
large-scale unity builds on those of Tan and Spackman (2005), Tan et al. (2006)
and Lalitte and Bigand (2006).

Testing the perception of large-scale repetition, the other task in the experi-
ment reported in Chapter 6 found strong evidence that listeners are able to per-
ceive repetition within compositions over large time-scales—building on the
findings of Margulis (2012). The experiment found effects of internal unpre-
dictability for both pitch and rhythm, such that phrases that were predictable
given a preceding musical context were more likely to be perceived as having
been heard before, especially when the preceding context was itself predictable.

Analysis of the properties of continuations chosen by participants in the ex-
periment of Chapter 7 showed that continuations that contributed to lowering
a composition’s overall internal unpredictability were favoured.
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Testing the sensitivity of listeners to the large-scale ordering of composi-
tions, the behavioural experiment presented in Chapter 8 built on the findings
ofGranot and Jacoby (2011, 2012). This experiment demonstrated that the over-
all internal unpredictability of ordered compositions has a significant influence
on the perception of structure—that participants aimed to produce orders that
minimised internal unpredictability.

9.2.2 Towards a cognitive model of large-scale thematic
structure

Given the empirical evidence gathered throughout the research presented in
this thesis (see Table 9.1), the concept of a cognitive model of the perception
of large-scale thematic structure can be reviewed. The evidence gives strong
and robust support for a model based on the internal unpredictability of com-
positions (it would also suggest that processes of discrete theme and related
repetition detection are of lesser importance) .

When we listen to music, our auditory sensory input contains patterns that
recur both exactly and approximately at a range of different timescales. As
we detect and recognise repeated patterns, our brains form schemas or men-
tal representations of these patterns, based on dynamic online statistical learn-
ing. These schemas help us anticipate what will happen next in the music and
enable us to make predictions based on our previous experiences with the com-
position.

As a part of this pattern detection andpredictionprocess,musical structures
made from the repetition of material give the brain an opportunity to process
structured musical inputs as unified units. This may give the potential to sim-
plify cognitive load, making it easier to process complex auditory information
in music and discern yet larger structures.

Although not covered directly by this thesis, we can hypothesise how this
model of thematic structure can be applied to hierarchical musical structures.
Repetition, as it is often nested hierarchically, can allow for relationships to be
perceived between different levels of structures. The same properties of struc-
tural unity based on internal predictability that were investigated over whole
compositions can be applied to sections in a structural hierarchy, with high in-
ternal predictability indicating more unified sections.

9.2.3 Pitch and rhythm domains

In all four behavioural experiments reported in this thesis, there was a
large amount agreement between measures using representations of pitch and
rhythm. For measures found to have the strongest effects in each experiment,
effects were often found when using either pitch interval or inter-onset interval
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versions: in Chapter 5, dissimilarity in both predicted responses; in Chapter 6,
the predictability of repetitions and the ability to predict unity ratings were sig-
nificant for both representations; in Chapter 7, significant effects were found in
both representations for measures based on predictability, given the context of
the compositions; and, in Chapter 8, effects of closeness of orders to original
versions, memory limited internal unpredictability, and style were consistent
across representations.

However, outside of these cases, a substantial disparity was found in the
ways in which pitch and rhythm influenced thematic structure. Broadly, these
differences should be treated with some caution; as first identified in Chapter 4,
and discussed throughout this thesis, these differences may likely be due to
the ability of western-classical compositions to be rhythmically-isochronous—
compositions consisting of notes of only a single duration (or pairs of durations,
for example, in a swung pattern). The presence of such compositions may ex-
aggerate the influence of certain features when testing using representations of
rhythm through their maximum repetition and minimum variation. However,
rhythmically isochronous compositions are relatively frequent in western mu-
sic, suggesting such compositions should not be unfamiliar to listeners or dis-
rupt their perceptual processing of thematic structure. Instead, it seems likely
that the psychological representations involved in the cognitive process of per-
ceiving thematic structure vary based on their contextual relevance, as has been
shown in research investigating the perception of othermusical features (Prince,
2014; Prince et al., 2009).

The nature of the stimuli across all of these experiments provides some
insight into the relationship between pitch and rhythm representations over
different timescales. The correlation between composition-trained (i.e., intra-
opus, non-stylistic) measures across representations suggests these properties
become more closely correlated as the length of excerpt they are applied to
increases—barring any effects of isochrony. The cause of this correlation may
be due to the repetition characterised by these measures. Repeated material
usually maintains at least some of its pitch and rhythmic content between repe-
titions; as longer excerpts can afford more repetition—and increased repetition
increases predictability—when material is repeated, predictability in both do-
mains increases together.

9.2.4 Musical background

There is one further way in which the four experiments were in agreement—
little consistent evidence was found that supported listeners’ musical back-
grounds being able to influence performance in any of the tasks. For each be-
havioural experiment, alongside the listening task, participants gave their re-
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sponses to questions from the Goldsmiths Musical Sophistication Index (Gold-
MSI) self-report questionnaire for musical sophistication (Müllensiefen et al.,
2014). Three scores from the questionnaire were used: (1) general sophistic-
ation; (2) perceptual abilities; and (3) musical training. Effects of scores were
often found to be contradictory between experiments.

Participants with higher scores of general sophisticationwere found to be in-
fluencedmore by stylistic differences in Chapter 5, more likely to show stronger
negative effects of thematic variation on perception of unity in Chapter 6, and
prioritised rankings similar to original orders to a lesser extent than other parti-
cipants in Chapter 8. Participants with higher scores of perceptual abilitieswere
found to possess a greater sensitive to internal unpredictability in perception
of unity in Chapter 6, but conversely, provided orders in Chapter 8 that were
closer to chance in memory limited internal unpredictability than other parti-
cipants. Participants with higher scores ofmusical training also provided orders
that were closer to chance for internal unpredictability (buffer) and prioritised
rankings similar to original orders to a lesser extent than other participants in
Chapter 8.

It should, however, be cautioned that testing the effects of musical back-
ground was not the primary aim of this research and, as such, participants were
not recruited to capture a wide range of musical abilities. The conclusions that
may be drawn are, therefore, limited without further targeted confirmatory re-
search.

9.2.5 Computational modelling of music

Although the primary aim of the research presented in this thesis is to better
understand processes of music perception and cognition, both the computa-
tional methods used and the empirical findings can offer some insight into the
wider computational modelling of music. Several elements of the modelling
used in this thesis have some overlap with common tasks in the field of music
information retrieval, such as measures of similarity, repetition identification
and structure analysis.

Even though the modelling of this thesis is based on the first time listening
to music, and so models must operate linearly as a work develops in order to
be function as models of cognition—a constraint that does not need to apply
to MIR approaches—this work may be more widely applicable. In this case, we
consider general (non-cognitive) approaches to form an idealised or ‘perfect’
understanding of music, as may be achieved by multiple hearings of a compos-
ition, perfect memory and musical training.

In this research, the similarly relationships between passages of music were
modelled using the information-theoretic metric of compression distance. In
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particular, in the experiment presented in Chapter 5, the task used is closely re-
lated to one providing direct similarity ratings between musical passages. The
findings of this experiment provide strong empirical validation that compres-
sion distance accurately simulates perceived similarity between pairs of melod-
ies, supporting the findings of Pearce and Müllensiefen (2017).

The research presented in this thesis, can provide some insights useful for
computational methods of segmentation and musical structure analysis. The
empirical support it has found for the hypothesis that thematic structure can be
perceived through the statistical regularities caused by repetition highlights the
central role played by repetition in the perception of structure. This provides
some support for methods that use repetitions to find structural boundaries
(Nieto et al., 2020; Rodríguez-López & Volk, 2015); the recognition task of
Chapter 5 shows that repetitions can be perceived and this perception is in part
due to their relationship to the wider perception of structure in a composition.
The experiment of Chapter 8 provides some insight into the ways in which re-
petition can inform the order of segments, such as favouring the placement of
more closely related segments closer together earlier in a composition.

However, as discussed above, the findings of this thesis also consistently
showed measures of internal unpredictability out-performing measures that
sought to only use identified thematic repetitions. This finding indicated that
all repetition (as captured by internal unpredictability) could aid the perception
of structure, rather than larger, specifically-identified repetitions. In the area of
MIR automatic segmentation, this finding provides particular support to prob-
abilistic methods that identify boundaries through patterns in unpredictability
or entropy (Juhász, 2004; Lattner et al., 2015; Pearce, Müllensiefen & Wiggins,
2010), particularly if they aim to provide a more cognitively-relevant focus. As
presented in Chapter 3 (and testing in Chapters 7 and 8), the development of
techniques for the modelling of internal unpredictability in polyphonic music
maynowprovide opportunities to expand these information-theoretic segment-
ation approaches outside of monophonic contexts.

9.3 Limitations and future directions

As discussed in Chapter 1, a number of general limitations were placed on the
scope of the research presented in this thesis. Perhaps the foremost among these
are those applied to the computational modelling of thematic structure, presen-
ted in Chapter 3 and evaluated throughout the thesis. As a computational ac-
count of the real-world perception of large-scale thematicmusical structure, the
model presented does possess some limitations. For the most part, these limita-
tions were brought about through the necessity to reduce the processes involved
to a form that is tractable with themethods in existence, and to avoid unjustified
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assumptions about cognitive processes for which empirical evidence is lacking.
The model is, of course, a simplification of human perception and cognition,
and of its parallels in music theory and analysis. The limitations faced by this
model can be broadly attributed to three areas: (1) constraints on the types of
musical information themodel deals with—particularly the limitation tomono-
phonic material in Chapters 4, 5 and 6, and limitation to two-voice polyphony
in Chapters 7 and 8; (2) limitations on the ways in whichmusic can be represen-
ted, and how multiple such representations can be combined across domains;
and (3) limitations resulting from the selection of parameters within the model
and its constituent components.

Materials used in the modelling of thematic structure were constrained
either to monophonic compositions, or those containing only two independ-
ent voices (and meeting the other assumptions given in Chapter 3). The reduc-
tion of existing compositions, particularly into monophonic versions leads to a
loss of information—particularly when compared with the original works from
which the melodies were extracted. For example, in the earlier example of the
Mozart Piano Sonata given in Chapter 3, some occurrences of themes in tradi-
tional analyses rely on harmonic or cadential cues that are not present in the
melody. However, we caution that, while illustrative, the melody should not be
considered as being directly the same work as the original composition from
which it was extracted. Instead, we maintain that these melodies of the corpus
described in Chapter 4, with selections used as stimuli in all the experiments,
can function as valid compositions in their own right, albeit with different aud-
itory information available. While the monophonic constraint was maintained
during the initial portions of this research to avoid the complications of pro-
cessing thematic material across many polyphonic layers, the first steps towards
the modelling of intra-opus thematic structure in polyphonic music were made
in the final two experiments. Themodelling of statistical learning in polyphonic
material introduced in this thesis is, however, still subject to several stringent
assumptions (see Chapter 3). In this thesis, the modelling of polyphony was
limited to carefully chosen compositions of two voices, far from representing
the full experience available in polyphonic music. For these modelling tech-
niques to be more generally applicable, accurate modelling of auditory streams
is needed to extract all perceptually salient voices from the polyphonic texture.1

For the modelling presented in this thesis, as with much symbolic model-
ling of music, limitations also stem from how the music can be meaningfully
represented; in particular, how to represent and combine the separate domains
of pitch and rhythm. The analysis of these two domains in this research main-
tains an amount of separation between them, allowing for the relative effects of

1Multiple successful models of voice separation have been designed; however, further re-
search is needed to investigate the extent to which such voices are perceptible to listeners.
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thematic structure to be compared within measures of a single representation,
then the relative effects across domains. However, as frequently noted, the abil-
ity of compositions to contain only a single uniform pattern places limitations
on the utility of the rhythmic modelling of thematic structure; the combina-
tion of the two domains with equal weighting (i.e., their combination into a
single linked representation of both the pitch and rhythmic surface) would still
propagate this issue. The route for the future combination of representations in
the modelling of thematic structure likely exists in the development of a selec-
tion process of the appropriate representations for a given composition, in some
cases including rhythmic representations and excluding (or down-weighting)
them for others. The exact nature of this mechanism requires further develop-
ment and experimental exploration.

Finally, in order for themodel tomake classifications on phrase boundaries,
thematic candidates and thematic repetitions, themodel requires certain condi-
tions to bemet. These conditions exist as free parameters within themodel—for
example, the number of phrases that are extracted to make up a theme. While
values for these parameters are informed by theory or statistics, the true op-
timum will vary between compositions, styles and listeners. As a result, these
mechanisms have the potential to miss or misclassify their elements on a small
number of occasions, adding noise to the modelling data. For example, the
phrase boundaries identified by the Grouper algorithm may differ from those
perceived by a listener, or a thememay not be identified due to it narrowlymiss-
ing the novelty criteria. The cognitive modelling of theme identification, in par-
ticular, presents a useful area for future investigation; there is little behavioural
research into the musical conditions and features that allow listeners to identify
themes within compositions. Such research is needed for the optimisation of
these remaining free parameters.

Aside from these limitations needed to constrain the aspects of computa-
tional modelling used in this thesis, limitations to the scope of its application in
behavioural evaluation were also necessitated, any of which would be fruitful
avenues for future investigation.

First, the study of thematic structure included in this thesis was limited
to the domain of western-classical tonal music. This limitation was a continu-
ation of that of the vastmajority of preceding literature and computational tools,
which largely borrow terminology from, or seek to test, western music theory.
However, the cognitive processes hypothesised andmodelled in this thesis need
not be constrained to western-classical music; the foundational principles of re-
petition and similarity have evidence of being musically universal (Nettl, 2010).
While the model in the form presented in this thesis contains assumptions spe-
cific to western music—for example, in the process of phrase detection—its
adaptation and evaluation in wider cultural domains would provide many op-
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portunities for future work to better understand the perception of large-scale
structures.

Although all four of the behavioural experiments collected and analysed
information on their participants’ musical abilities and backgrounds, the spe-
cific testing of effects of level of musical ability on the perception of thematic
structure was not their priority. However, through the targeted recruitment of
participants and the design of appropriate experiments, the testing of effects of
musicality and musical trained on the perception of structure would provide a
useful area of possible future research.

Throughout the course of these behavioural experiments, the scale of struc-
tures tested were incrementally increased from the local scale, to compositions
of 2 minutes, to those with durations of 4 minutes in the final two experiments.
Excluding the study focusing on the effect over small timescales, these lengths
were chosen as being long enough both to contain large-scale musical structure
and to provide an appropriate amount of context material for the tasks used,
but short enough to collect sufficient experimental data in a reasonable experi-
mental session. However, while there do exist many western-classical compos-
itions of these lengths, they are certainly on the shorter end of the spectrum
of composition length. The findings of this thesis are, therefore, limited when
scaling up from these compositions to those of quarter- or half-hour durations,
or longer; perception of thematic structure of such large composition lengths
remains to be investigated in future experimental research.

Finally, when taken together, the results of these experiments provide con-
verging evidence that the perception of large-scale thematic structures can be
accounted for by the dynamic learning of statistical regularities within com-
positions. These consistent effects found across experiments, each testing for
a different aspect of thematic structure, make the overall findings of this thesis
robust ones; future research into the perception of large-scale thematic struc-
ture should continue this approach, providing insight into the many different
ways in which the effects of thematic structures in musical compositions may
be perceived.
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Appendix A

Thematic-Candidate Detection

Example

This appendix contains an annotated score for the thematic-candidate detec-
tion given in Chapter 3. The four thematic candidates identified by the model
(also shown in Figure 3.5) are marked by brackets with solid lines. Sections
of the score identified by the analyses of Beach (1994) and Kinderman (2006)
are marked by brackets with dashed lines. The IDyOM STM internal unpredict-
ability values when using the pitch interval representations, as well as phrase
boundaries detected by Grouper are shown below notes.

0

2

4

6

8

10

12

14

Note unpredictability
Upper: Phrase means
Lower: Phrase mins
Thematic-candidate
onsets

0

5

10
Threshold:
0.5 SD above
cumulative mean
Phrase means

0 50 100 150 200 250
Note onset (quarter-notes)

5

0

5
Threshold:
Cumulative SD
Difference in
phrase mins

In
te

rn
al

 u
np

re
di

ct
ab

ili
ty

 (b
its

)

[Copy of Figure 3.4]: Theme detection for Mozart K. 332, first movement, ex-
position. Four onsets were identified at 0, 60, 121 and 253 quarter-notes, based on
pitch interval internal unpredictability. Thematic candidates were identified by phrase
mean information contents being greater than a threshold of a 0.5 SD above the cu-
mulative mean (subplot 2), and having a difference in phrase minimums greater than
1 SD (subplot 3).
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Mozart, Piano Sonata No. 12, K.332, first movement,

bars 1–93
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Appendix B

Experiment Stimuli Compositions

This appendix contains lists of compositions used in the experiments presented
in Chapters 6, 7 and 8. Table B.1 gives the details of the 40 compositions used in
the experiment of Chapter 6. These were all monophonic compositions taken
from the corpus of Chapters 4, adjusted to be approximately 2 minutes in dura-
tion. Table B.2 gives the details of the 40 compositions used in the experiments
of Chapter 7 and Chapter 8. These compositions belonged to a texture category
of monophonic compositions (taken from those of Table B.1) and polyphonic
compositions of two voices. Compositions belonged to a length category of
‘short’ compositions of approximately 2 minutes duration, and ‘long’ composi-
tions of approximately 4 minutes.
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Table B.1: Stimulus Compositions Used in the Experiment of Chapter 6

Composer Work Movt. Yeara

Alkan, Charles-Valentin Gigue et air de ballet, Op.24 2 [1844]
Bach, Johann Sebastian Cello Suite No.3, BWV 1009 1 1717
Bach, Johann Sebastian Cello Suite No.5, BWV 1011 1 1717
Bartók, Béla 2 Romanian Dances, Op.8a 1 1910
Beethoven, Ludwig van Piano Sonata No.7, Op.10 No.3 4 1797
Beethoven, Ludwig van Piano Sonata No.10, Op.14 No.2 1 1798
Beethoven, Ludwig van Piano Sonata No.12, Op.26 4 1800
Beethoven, Ludwig van Piano Sonata No.13, Op.27 No.1 1 1800
Beethoven, Ludwig van Piano Sonata No.15, Op.28 2 1801
Beethoven, Ludwig van Piano Sonata No.17, Op.31 No.2 3 1801
Beethoven, Ludwig van Violin Sonata No.1 in D major, Op.12 No.1 1 1797
Brahms, Johannes Ballades, Op.10 2 1854
Brahms, Johannes Cello Sonata No.1, Op.38 3 1862
Brahms, Johannes Scherzo, Op.4 – 1851
Chopin, Frédéric Mazurkas, Op.33 3 1837
Chopin, Frédéric Mazurkas, Op.68 4 1826
Chopin, Frédéric Waltzes, Op.69 2 1829
Dvořák, Antonín Legends, Op.59 3 1881
Fauré, Gabriel Thème et variations, Op.73 – 1895
Fauré, Gabriel Valse Caprice No.4 in A-flat, Op.62, Op.62 – 1894
Grieg, Edvard Piano Sonata, Op.7 3 1865
Handel, George Frideric Fantasia in C – 1703
Handel, George Frideric Recorder Sonata in A minor, Op.1 No.4 4 1712
Haydn, Joseph String Quartet in B-flat major, Op.55 No.3 4 1788
Haydn, Joseph String Quartet in C major, Op.64 No.1 4 1790
Haydn, Joseph String Quartet in C major, Op.76 No.3 3 1796
Haydn, Joseph String Quartet in E-flat major, Op.64 No.6 4 [1791]
Haydn, Joseph String Quartet in F major, Op.17 No.2 1 1771
Haydn, Joseph String Quartet in G major, Op.17 No.5 3 1771
Haydn, Joseph String Quartet in G major, Op.77 No.1 3 1799
Liszt, Franz Aus der Ungarischen Krönungsmesse – 1869
Mozart, Wolfgang Amadeus Piano Sonata No.7, K.309 2 1777
Mozart, Wolfgang Amadeus Piano Sonata No.7, K.309 3 1777
Mozart, Wolfgang Amadeus Piano Sonata No.12, K.332 2 1783
Mozart, Wolfgang Amadeus Piano Sonata No.17, K.570 2 1789
Mozart, Wolfgang Amadeus Piano Sonata No.18, K.576 3 1789
Saint-Saëns, Camille 6 Etudes, Op.111 6 1892
Schubert, Franz 4 Impromptus, D.935 2 1827
Schubert, Franz 4 Impromptus, D.899 4 1827
Vaughan Williams, Ralph Suite for Viola & Small Orchestra 1 1934
aWhere composition year is unknown, first publication year is given
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Appendix C

Four Example Compositions

This appendix contains the segmented versions of the four example compos-
itions for Chapter 8, Experiment 2. Each Composition is presented with the
segment orders that gained minimum and maximum values within the large
Monte Carlo set of randomised orders.

Composition A

Handel, Recorder Sonata in A minor, HWV 362, fourth movement
‘Monophonic’ and ‘short’ categories

Minimum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 5, 2, 4, 7, 3, 9, 6, 8 −2.82
Internal unpredictability (buffer) 1, 5, 4, 2, 6, 3, 7, 8, 9 −3.53
Internal unpredictability flow 1, 8, 2, 7, 9, 6, 5, 4, 3 −3.15
Stylistic unpredictability flow 1, 4, 5, 2, 8, 7, 3, 6, 9 −3.56
Variation 1, 6, 4, 2, 7, 5, 8, 9, 3 −0.99

Inter-onset interval
Internal unpredictability (perfect) 1, 5, 4, 2, 7, 6, 3, 8, 9 −3.52
Internal unpredictability (buffer) 1, 4, 7, 2, 3, 5, 6, 8, 9 −3.29
Internal unpredictability flow 1, 2, 8, 3, 9, 5, 4, 6, 7 −2.53
Stylistic unpredictability flow 1, 4, 9, 8, 7, 3, 6, 2, 5 −3.59
Variation 1, 3, 4, 9, 6, 5, 8, 7, 2 −1.30

Other
Tonality 1, 2, 6, 8, 4, 9, 5, 3, 7 −2.31
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Maximum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 8, 3, 5, 6, 2, 7, 4, 9 2.71
Internal unpredictability (buffer) 1, 5, 7, 4, 8, 3, 9, 2, 6 2.35
Internal unpredictability flow 1, 4, 2, 5, 7, 6, 8, 3, 9 2.90
Stylistic unpredictability flow 1, 7, 5, 3, 8, 9, 2, 6, 4 2.05
Variation 1, 8, 5, 2, 7, 9, 3, 4, 6 1.94

Inter-onset interval
Internal unpredictability (perfect) 1, 9, 6, 5, 8, 3, 7, 4, 2 2.25
Internal unpredictability (buffer) 1, 9, 5, 7, 8, 2, 6, 4, 3 2.44
Internal unpredictability flow 1, 4, 5, 2, 3, 6, 8, 7, 9 2.82
Stylistic unpredictability flow 1, 2, 8, 3, 9, 5, 4, 6, 7 1.96
Variation 1, 2, 9, 7, 4, 5, 3, 8, 6 1.80

Other
Tonal distance 1, 3, 5, 9, 4, 6, 2, 7, 8 2.32
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�
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� �� � � � ��� � � �� � �� �� � � � � � �

� � � � � � � � �� � �� � � � � �� � �� � � � � �� � � � � � �� � �
� �

� �� �� � � ��� �

Segment 2

� �
� 44

�� �� � � � � � � � �� � � � � �� �� �

�
� �� �� � �� � � � � � ��

� � �� � � �� �

Segment 3

� �� �44
� � � � � � � �� �� �� � � � �� � �� ��� � �� � �� �

� � � � � � �� � � � � � � � � � �� �� � � �� �� � � �

�
� � � �� � �� � � � �� � �� � � � � �� �� � �

Appendix C. Four Example Compositions 198



Segment 4
�

44
� � � � � � � � � � � � � �� � ��

� �� � � � ��� � � �� � �� �� � � � � � �

� � � � � � � � �� � �� � � � � �� � �� � � � � �� � � � � � �� � �
� �

� �� �� � � ��� �

Segment 5

� �
� 44

�� �� � � � � � � � �� � � � � �� �� �

�
� �� �� � �� � � � � � ��

� � �� � � �� �

Segment 6

� �� �44
� � � � � � � �� �� �� � � � �� � �� ��� � �� � �� �

� � � � � � �� � � � � � � � � � �� �� � � �� �� � � �

�
� � � �� � �� � � � �� � �� � � � � �� �� � �

Segment 7

� � � � � � � �� �
44

� � �� � �
� � �� �� � �� � � �� �

�

� ��� � � � �� � � � �� �� �� � � � � �� � � � � �� � �� �
�

� � � �� � �� � ��� ��� � � ��� � �� � � �� �� �

� � �� � �

Appendix C. Four Example Compositions 199



Segment 8

�� � �44 � � � �
� � � � � � ��� � � �� � � � ��� � �� �� �

�
� � � � � � �� � � �� � � � � �� �� � � � � � � � � ��

� �
� � � ��� �

Segment 9

� �44
� � � � � � � � ��

� � � � �
�

� �� � �
�

�� ��
� � �

�
� � �� � � � � � �� � ��

� � � �
�

� � � �� � �

�
� � ��� � � �� �� � � ��� ���

� � � � � � � �
�

Appendix C. Four Example Compositions 200



Composition B

Beethoven, Piano Sonata No. 15, Op. 28, second movement
‘Monophonic’ and ‘long’ categories

Minimum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 3, 11, 2, 9, 4, 12, 8, 5, 6, 13, 7, 10 −3.68
Internal unpredictability (buffer) 1, 2, 9, 12, 3, 11, 4, 13, 5, 6, 10, 8, 7 −4.89
Internal unpredictability flow 1, 6, 10, 4, 13, 8, 12, 7, 3, 5, 11, 2, 9 −3.03
Stylistic unpredictability flow 1, 9, 5, 6, 2, 13, 7, 8, 10, 11, 3, 4, 12 −3.78
Variation 1, 9, 7, 12, 2, 5, 3, 10, 11, 6, 8, 4, 13 −1.80

Inter-onset interval
Internal unpredictability (perfect) 1, 8, 13, 9, 6, 7, 5, 2, 12, 11, 3, 4, 10 −3.56
Internal unpredictability (buffer) 1, 2, 9, 12, 3, 11, 4, 13, 5, 6, 10, 8, 7 −4.08
Internal unpredictability flow 1, 4, 13, 2, 7, 9, 3, 11, 5, 10, 12, 8, 6 −3.32
Stylistic unpredictability flow 1, 11, 3, 9, 4, 2, 6, 8, 10, 12, 7, 5, 13 −3.41
Variation 1, 3, 13, 10, 12, 4, 11, 5, 2, 7, 9, 8, 6 −2.41

Other
Tonality 1, 13, 6, 8, 5, 7, 9, 3, 11, 10, 4, 2, 12 −4.06

Maximum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 6, 10, 4, 8, 12, 7, 3, 11, 2, 13, 9, 5 2.87
Internal unpredictability (buffer) 1, 11, 7, 4, 12, 8, 3, 10, 5, 9, 13, 6, 2 1.96
Internal unpredictability flow 1, 9, 11, 3, 13, 2, 5, 4, 8, 6, 10, 7, 12 3.96
Stylistic unpredictability flow 1, 4, 6, 12, 5, 10, 2, 9, 13, 11, 8, 3, 7 2.49
Variation 1, 10, 13, 12, 6, 8, 4, 5, 11, 2, 7, 3, 9 2.69

Inter-onset interval
Internal unpredictability (perfect) 1, 10, 3, 2, 13, 9, 6, 11, 4, 5, 8, 7, 12 2.28
Internal unpredictability (buffer) 1, 5, 3, 6, 11, 13, 12, 2, 7, 10, 9, 8, 4 2.22
Internal unpredictability flow 1, 10, 5, 7, 2, 6, 4, 12, 3, 9, 8, 13, 11 2.33
Stylistic unpredictability flow 1, 7, 4, 6, 9, 12, 2, 10, 11, 8, 3, 5, 13 2.82
Variation 1, 2, 8, 7, 13, 12, 3, 9, 6, 5, 4, 11, 10 1.53

Other
Tonal distance 1, 4, 6, 12, 5, 13, 11, 9, 7, 10, 3, 8, 2 2.71
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Composition C

Glière, 12 Duos for 2 Violins, Op. 49, fourth duo
‘Polyphonic’ and ‘short’ categories

Minimum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 8, 5, 6, 9, 4, 7, 2, 3 −2.44
Internal unpredictability (buffer) 1, 3, 8, 9, 2, 7, 4, 5, 6 −3.13
Internal unpredictability flow 1, 2, 7, 4, 5, 3, 9, 6, 8 −2.72
Stylistic unpredictability flow 1, 8, 3, 7, 6, 9, 5, 4, 2 −3.91
Variation 1, 9, 2, 3, 8, 4, 5, 6, 7 −2.13

Inter-onset interval
Internal unpredictability (perfect) 1, 5, 3, 8, 6, 9, 2, 4, 7 −2.78
Internal unpredictability (buffer) 1, 5, 8, 6, 3, 7, 4, 9, 2 −3.17
Internal unpredictability flow 1, 7, 4, 9, 6, 2, 5, 8, 3 −3.34
Stylistic unpredictability flow 1, 8, 3, 5, 6, 9, 2, 7, 4 −3.20
Variation 1, 3, 4, 9, 2, 5, 6, 7, 8 −1.92

Other
Tonality 1, 4, 3, 8, 9, 7, 5, 2, 6 −2.82

Maximum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 2, 3, 7, 4, 6, 5, 9, 8 2.01
Internal unpredictability (buffer) 1, 4, 5, 3, 9, 6, 2, 8, 7 2.06
Internal unpredictability flow 1, 8, 9, 3, 7, 2, 5, 6, 4 2.77
Stylistic unpredictability flow 1, 2, 3, 9, 8, 6, 7, 4, 5 1.83
Variation 1, 6, 7, 4, 2, 8, 9, 3, 5 2.25

Inter-onset interval
Internal unpredictability (perfect) 1, 7, 4, 2, 6, 9, 3, 5, 8 2.59
Internal unpredictability (buffer) 1, 6, 7, 8, 9, 5, 2, 4, 3 2.88
Internal unpredictability flow 1, 8, 5, 3, 7, 6, 9, 2, 4 2.52
Stylistic unpredictability flow 1, 6, 7, 5, 4, 9, 2, 3, 8 1.94
Variation 1, 6, 7, 8, 2, 9, 4, 5, 3 2.11

Other
Tonal distance 1, 8, 9, 4, 5, 3, 7, 6, 2 3.02
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Composition D

Mozart, Duo for Violin and Viola, K.423, first movement
‘Polyphonic’ and ‘long’ categories

Minimum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 10, 3, 9, 12, 11, 5, 2, 6, 7, 14, 13, 4, 8, 15 −2.68
Internal unpredictability (buffer) 1, 10, 7, 9, 13, 4, 6, 14, 5, 15, 8, 3, 12, 11, 2 −5.95
Internal unpredictability flow 1, 6, 14, 7, 8, 4, 15, 9, 12, 11, 5, 13, 10, 3, 2 −3.54
Stylistic unpredictability flow 1, 10, 8, 6, 7, 5, 14, 2, 15, 3, 9, 12, 4, 13, 11 −3.83
Variation 1, 5, 4, 8, 12, 15, 14, 13, 11, 2, 9, 6, 7, 3, 10 −2.11

Inter-onset interval
Internal unpredictability (perfect) 1, 10, 8, 4, 9, 12, 3, 7, 11, 13, 6, 5, 2, 14, 15 −3.43
Internal unpredictability (buffer) 1, 10, 5, 15, 3, 14, 8, 9, 6, 11, 2, 13, 4, 12, 7 −5.15
Internal unpredictability flow 1, 6, 8, 15, 9, 13, 11, 5, 14, 4, 10, 2, 7, 3, 12 −4.22
Stylistic unpredictability flow 1, 10, 6, 8, 11, 2, 4, 15, 7, 14, 12, 3, 13, 9, 5 −3.73
Variation 1, 15, 6, 7, 3, 4, 14, 12, 5, 2, 11, 13, 8, 10, 9 −1.90

Other
Tonality 1, 10, 15, 3, 2, 5, 9, 4, 11, 14, 8, 13, 12, 6, 7 −4.60

Maximum

Measure Order Value

Pitch interval
Internal unpredictability (perfect) 1, 6, 7, 15, 8, 4, 2, 14, 11, 5, 13, 9, 3, 10, 12 2.55
Internal unpredictability (buffer) 1, 13, 12, 2, 6, 9, 10, 7, 5, 8, 11, 4, 15, 14, 3 2.06
Internal unpredictability flow 1, 12, 3, 2, 11, 15, 14, 9, 10, 7, 13, 4, 6, 5, 8 3.40
Stylistic unpredictability flow 1, 3, 8, 9, 2, 11, 7, 14, 15, 13, 6, 12, 10, 4, 5 2.64
Variation 1, 7, 9, 10, 6, 14, 3, 2, 8, 11, 15, 13, 5, 12, 4 2.42

Inter-onset interval
Internal unpredictability (perfect) 1, 14, 6, 4, 15, 2, 3, 7, 10, 5, 8, 9, 13, 11, 12 3.77
Internal unpredictability (buffer) 1, 9, 10, 11, 3, 13, 6, 12, 4, 5, 14, 7, 2, 15, 8 2.77
Internal unpredictability flow 1, 10, 4, 14, 2, 11, 15, 3, 8, 5, 12, 9, 7, 6, 13 3.40
Stylistic unpredictability flow 1, 11, 6, 14, 2, 12, 10, 5, 8, 3, 15, 13, 7, 9, 4 2.52
Variation 1, 12, 7, 13, 8, 4, 11, 14, 10, 9, 5, 6, 15, 3, 2 2.45

Other
Tonal distance 1, 11, 7, 3, 2, 8, 4, 14, 15, 5, 6, 13, 9, 12, 10 2.70
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