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The majority of extensions to general relativity (GR) display mathematical pathologies—higher
derivatives, character change in equations that can be classified within partial differential equation theory,
and even unclassifiable ones—that cause severe difficulties to study them, especially in dynamical re-
gimes. We present here an approach that enables their consistent treatment and extraction of physical
consequences. We illustrate this method in the context of single and merging black holes in a highly
challenging beyond GR theory.
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Introduction.—The gravitational wave window provides
exciting opportunities to further test general relativity (GR),
e.g., [1]. Especially in the context of compact binary
mergers, gravitational waves produced by the strongest
gravitational fields in highly dynamical settings arguably
represent the best regime to explore deviations from GR,
e.g., [2].
Such effort, the ability to extract consequences and

propel theory forward, rely on at least having some under-
standing of the characteristics of potential departures, to
search and interpret outcomes [3].
Unfortunately, the majority of proposed beyond GR

theories have, at a formal level, mathematical pathologies
which makes their understanding in general scenarios
difficult [4]. Such pathologies may include loss of unique-
ness, a dynamical change of character in the equations of
motion (e.g., from hyperbolic to elliptic) or, even worse,
having equations of motion (EOM) of unknown math-
ematical type (e.g., [6–12]). This, combined with the need
to use computational simulations to study the (nonlinear or
dynamical) regime of interest, pose unique challenges. Of
note is that the standard mathematical approach to analyze
partial differential equations (PDEs) [13]—where the
high-frequency limit is examined—cannot be applied as
it is in such a regime that the problems alluded to arise.
Further, such a regime is incompatible with the very
assumptions made to formulate most GR extensions that
rely on effective field theory (EFT) arguments [14].
We note similar issues arise in broader contexts, where
problems of interest are described by (systems of) partial
differential equations derived from EFT. For relativistic
hydrodynamics and the studies of astrophysical systems as
well as quark-gluon plasmas, which share analog math-
ematical problems (e.g., [15,16]). Faced with these issues,
solid novel ideas must be pursued to understand potential
solutions.

We report here on a technique to fix the underlying
equations of motion to an extent to which the viability of a
given theory can be assessed [17]. In particular, it allows
exploring relevant theories within their regime of validity
and, in particular, monitoring whether the dynamics keeps
the solution within it for cases of interest. This technique,
partially explored in toy models [19,20] and restricted
settings (e.g., [21–23]), is here developed for the general,
and demanding scenario, of compact binary mergers. This
requires further considerations not arising in the previously
simplified regimes. Specifically, we present the first self-
consistent study of both single and binary black hole (BH)
merger in the context of an EFT of gravity where correc-
tions to GR come through high powers (naturally argued
for) in the curvature tensor leading to EOM with a priori
unclassifiable mathematical character.
We adopt the following notation: Greek letters

(μ; ν; ρ;…) to denote full spacetime indices and Latin
letters (i; j; k;…) for the spatial ones. We use the mostly
plus metric signature, and set c ¼ 1.
Focusing on a specific theory.—While we could take any

of a plethora of proposed beyond GR theories—almost all
sharing the problems alluded to earlier—; for definiteness
here we consider a specific extension to GR derived
naturally from EFT arguments [24]. In this approach, high
energy (i.e., above the cutoff scale) degrees of freedom are
integrated out, and their effects are effectively accounted
for through higher order operators acting on the lower
energy ones. For the case of gravitational interactions, in
vacuum assuming parity symmetry, and accounting for the
simplest contribution, such an approach yields under
natural assumptions [25]:
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where C ¼ RαβγδRαβγδ and the coupling scale Λ has units of
½MS�−1 for some scale MS. The EOM are Gμν ¼ 8ϵHμν,
with Gμν the Einstein tensor, ϵ≡ Λ−6 and

Hμν ¼ C
h
□Rμν −

1
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α
ν
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Hμν is covariantly conserved, since it is derived from an
action possessing local diffeomorphism invariance.
In GR (ϵ ¼ 0) the resulting EOMs can be shown to

define a hyperbolic, linearly degenerate, nonlinear, second
order, PDE system of equations with constraints (e.g.,
[26]). With suitable coordinate conditions, characteristics
are given by the light cones and do not cross—thus shocks
or discontinuities cannot arise. The right-hand side, how-
ever, spoils all these considerations. Derivative operators
higher than second order appear—which render the equa-
tions outside formal PDE classifications. How is one to
approach the study of this problem? First, one can simplify
somewhat the EOM by applying an order reduction and
replace the Ricci tensor and the Ricci scalar. Since in this
Letter we consider vacuum spacetimes Ric ∼OðϵÞ, the
contribution of the Ricci tensor to the rhs is Oðϵ2Þ and we
can ignore it at the order that we are considering. We are left
with the following EOM at OðϵÞ:

Gμν ¼ ϵ

�
4CWμ

αβγWναβγ −
gμν
2

C2 þ 8Wμ
α
ν
β∇α∇βC

�
; ð3Þ

whereWαβγδ is the Weyl tensor since Rμνρσ¼WμνρσþOðϵÞ.
Then, C ¼ WαβγδWαβγδ. System (3), containing derivatives
up to fourth order of the spacetime metric (in ∇α∇βC), has
no proper classification within PDE theory.
Motivated by the prototypical example discussed in the

Supplemental Material [27], we fix the system (3) by
introducing a new independent variable bC instead of C
above and add an equation for it in the following way:

ð∂2t − 2βi∂ti þ βiβj∂ijÞbC ¼ 1

σ
ðC − bC − τ∂0bCÞ; ð4Þ

where second time derivatives of the metric in the rhs are
replaced—following a reduction of order strategy—using
the zeroth order Einstein equations. The resulting EOMs
have at most second-time derivatives and bC is damped to the
physical C on a timescale ≃σ=τ (for our choices, up to
≃10MS, which is shorter than any dynamical timescales in
the system). As a result, beyond a length scale ≃σ1=2 (for
our choices, up to ≃0.2MS) the system reduces to the
original one, while shorter ones are damped and controlled,
and we can explore even shorter scales through suitable

extrapolation of our results, as we discuss in the

Supplemental Material [27]. The new variable bC, in
essence, brings back (some of) the degree(s) of freedom
integrated out to arrive to the EFT theory, in this case a
massive scalar (see e.g., [12]) and our strategy defines a
completion of the EFT. Notice the operator ∂0 ≡ ∂t − βi∂i
with the advection vector (corresponding to the shift vector
in the 3þ 1 decomposition) helps ensuring inflow towards
the BH(s). That a single scalar suffices to controlling the
whole system is related to it encoding the only contribution
of higher derivatives and controlling it results in an overall
effect ensuring high frequency modes are kept at bay.
Depending on the structure in other theories, one might
need to introduce further quantities (see, e.g., [22]).
Nevertheless, the overall strategy remains unchanged.
Initial data.—We define initial data by a single (for the

single BH case) or a superposition of boosted BHs as
described in GR and dynamically “turn on” the coupling ϵ
bringing it from 0 to the desired value with a quadratic
function in a window t∈ ½10; 30�M. This allows the
coordinate conditions to settle before incorporating GR
deviations, inducing only smooth constraint violations
(which are damped through the now standard use of
constraint damping [35,36]) and by-passing the solution
of initial data problem within the EFT theory, a task which
in itself has received also limited formal and numerical
attention. Again the presence of higher derivatives obscures
the treatment [37].
For initial data in the single BH case, we use a boosted

BH solution derived from the conformal transverse-trace-
less decomposition [39–41], which uses an approximate
conformal factor solution to the Hamiltonian constraint,
valid for small boosts. For the binary BHs, we adopt
Bowen-York-type-of initial data [42] describing two super-
posed equal mass, boosted, nonspinning BHs in a quasi-
circular orbit. The individual masses are mi ≈ 0.5M, i ¼ 1,
2, and the separation is D ∼ 12M (initial orbital frequency
≃0.025=M). The momenta are tuned so this binary is
initially in quasicircular motion, and in GR it describes 12
orbits before merger (the initial BHs velocities are similar
to those in the single boosted BH case).
Evolution.—We use the GRCHOMBO code [43,44] and the

CCZ4 formulation of the Einstein equations [45] (see also
[46]) which implements the system (3) (with C → bC)-(4)
with a distributed adaptive mesh refinement capabilities,
[47] using 6th order finite difference operators for the
spatial derivatives and the method of lines for time
integration through a Runge Kutta of 4th order [48]. We
adopt a standard 1+log slicing condition for the lapse α and
the Gamma-driver for the shift βi, and adopt Sommerfeld
boundary conditions at the outer boundaries. We redefine
the damping parameter κ1 → κ1=α to ensure that it remains
active inside the apparent horizon (AH) [50]; we decrease
the damping parameter in the shift condition as well as
increase σ in (4) at large distances from the centre of the
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binary to ensure that no violation of the CFL condition
arises due to grids becoming coarser with our explicit time-
stepping strategy (e.g., [51]). Otherwise, the chosen values
for the constraint damping, shift and lapse conditions are
fκ1 ¼ 1; κ2 ¼ −0.8; κ3 ¼ 1;α2 ¼ α3 ¼ 1;α1 ¼ 2;η1 ¼ 0.75;
η2 ¼ 1=Mg ([43]) The additional evolution equation (4) is
implemented in the obvious first order form. We treat the
BHs interior as in [11], removing the role of correcting
terms, achieving stable evolutions with unduly high resolu-
tion (see the Supplemental Material [27] for more details).
With the total ADM mass M of the system setting a

scale, our domain for the boosted BH case corresponds to
the quadrant x∈ ½−L;L� and y; z∈ ½0; L� as symmetry
allows for restricting it. We adopt L ¼ 384M with a the
coarsest grid spacing (for production runs) Δ ¼ 2M; we
then add another 6 levels of refinement. For the BH binary
case the computational domain, exploiting symmetries, is
given by x; y∈ ½−L;L� and z∈ ½0; L�. In this case we adopt,
L ¼ 512M and coarsest grid spacing (for production runs)
Δ ¼ 4M; we then add another 8 levels of refinement (for
convergence tests we consider up to Δ ¼ 8=3M and same
number of refined levels). We monitor several informative
quantities, in particular, a “tracking measure”: T ðC; ĈÞ ¼
½ðjjC − Ĉjj2Þ=ðjjCjj2Þ� and gravitational waves, which we
extract at 6 equally spaced radii between R ¼ 50M and
R ¼ 100M extrapolating the result to null infinity. In both
cases we use the second (spatial) derivatives of the
conformal factor [52] χ to estimate the local numerical
error and determine whether a new refinement level needs
to be added; in addition, we fix the spatial extent of certain
levels to ensure the resolution at extraction radii is high
enough. Lastly, we choose jϵj ¼ 10−5M6

S, which implies a
coupling scale for new physics beyond GR of Λ ≈ 7=MS≃
5M⊙=MS km−1. Notice for this small scale, correction
effects will be undoubtedly subtle, with a consequent high
accuracy requirement to capture them. Here we undertake a
first study mainly focused on demonstrating the ability of
the method to control the system. We will concentrate on
assessing this and obtaining a qualitative description of
observed consequences. We consider both signs for ϵ, the
negative case satisfies the constraints argued for in [53],
the positive one also provided azimuthal numbers of the
solution are not large, which is our case. We here choose a
conservative scale MS ¼ 10M⊙, i.e., somewhat below (but
comparable) to the smallest curvature scale set by the
masses of the individual BHs for all detected gravitational
wave events. Choosing a smaller scale would imply that the
modifications become Oð1Þ during the inspiral [54] with
arguably clear imprints on the observed signal, which is
inconsistent with observations. Further, we note that it is
natural to expect the scale to remain fixed, thus the larger
the BH mass, the smaller the effect of corrections would be.
This observation is particularly relevant as the BHs merge,
as corrections after such regime would naturally become
smaller [55]. We here focus on masses comparable to

the length scale MS, adopting individual BH masses
mi ¼ MS=2 ¼ 5M⊙.
Single boosted black holes.—We confirmed our strat-

egy’s ability to evolve boosted (and stationary) BHs, with
the solution reaching a steady state behavior shortly after
the corrections are fully turned on. The solution is smooth
without inducing growth in high frequency modes or signs
of instability. Beyond GR effects are naturally larger in the
BH region. By comparing the value of bC and C (see Fig. 1)
we confirm the former tracks the physical one quite well
and that lower values of fσ; τg improve the tracking
behavior (see Fig. S2). Importantly, examination of the
relative difference between two values of bC obtained with
two different values of σ (and analogously with C) indicates
errors associated to the choice of this parameter do not
severely accumulate, thus the solution is not degraded by
strong secular effects (see Fig. S4 [27]). For instance, it
would take ≈106M for the relative error for Kretschmann
scalar with σ ¼ 0.1 and 0.05 to be of order Oð1Þ.
Numerical instabilities develop for smaller values of σ
around the excision region, well inside the AH; these
instabilities are sensitive to the details of the excision—
improving with resolution. This suggests other forms of
excision would be more robust as σ is decreased (e.g., [21]).
With a successful handling of correction effects in single,
moving BHs, we turn next focus on the challenging setting
of binary BH merger.
Black hole binary mergers.—The binary tightens due to

emission of gravitational waves which radiate energy and
angular momentum from the system. Figure 2 shows the
gravitational wave strains for different values of ϵ and
contrasts them with the corresponding one in GR.
The solution is smooth, without any signs of instability

FIG. 1. C and Ĉ on a line starting from the puncture and trailing
the boosted BH—where differences in tracking are larger—(at
t ¼ 75M, when all transients related to gauge and initial data
have passed) for a fixed value of τ ¼ 0.005. The BH has mass
M ¼ 0.5 and momentum Px ¼ 0.08M. The vertical dashed black
line denotes the location of the AH and the arrow indicates the
direction of motion of the BH.
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throughout inspiral, merger, and ringdown. The corrections
to GR and their high degree of nonlinearity and higher
gradients contributions certainly tax resolution require-
ments. Our studies here are not focused on quantitatively
sharp answers, but on testing the approach with enough
resolution for qualitatively informative results and con-
trasting them with results in GR. In particular, we see that
positive or negative values of ϵ induce a (slight) merger
phase delay or advance. This is consistent with expect-
ations, where BHs in this theory have nonzero tidal effects,
encoded to leading order in the tidal love number κ ∝ ϵ
[58]. The binary behavior in the inspiral regime can be
captured through a post-Newtonian analysis which shows
tidal effects induce a phase offset ∝ −κ (hence ∝ −ϵ) [59]
(see also [24,60]) for BHs with size comparable to MS.
Leading order post-Newtonian estimates for the phase
difference give ≈� 5 × 10−3 radians up to a common
gravitational wave frequency (Mf ¼ 0.01) for negative or
positive values of ϵ in Fig. 2. Our obtained offsets—
extrapolated to σ → 0—are consistent with the sign, though
about 200 times larger (for a related study in Einstein-
Scalar-Gauss Bonnet theory see Ref. [61]).
The BHs coalesce and the resulting peak strain is

comparatively similar to that in GR and no significant
further structure is induced in the multipolar decomposition
of the waveforms, confirming that the solution stays within
the EFT regime. Furthermore, the peak amplitude obtained
with the BHs initially closer, so that merger takes place in
only ≈200M, agrees with the case taking ≈2000M to less
than 1% relative difference. Moreover, since the merger
gives rise to a BH with roughly twice the individual masses,
corrections are reduced by ≈2−6. Thus the final BH is closer
to a GR solution than the initial ones. After the peak
amplitude, the system settles quickly to a stationary

BH solution. This transition is described by an expo-
nential, oscillatory behavior described by quasinormal
modes (QNM).
While QNM spectra have only been computed for slowly

rotating BHs in this theory [58,62], the departure observed
in decay rates is consistent with extrapolation to higher spin
values, though this is not the case in the oscillatory
frequency. We note, however, that the extracted values
for the case in GR, have relative errors ≈0.1%; since GR
corrections to the QNMs in the case studied here are
subleading by an order of magnitude such potential
discrepancy can be attributed to a need for even higher
accuracy to capture them sharply.
Also, as the solution approaches its final state we

confirm it is axisymmetric. Such symmetry is expected
in stationary BH solutions in EFTs of gravity [63]. By
evaluating different scalars, such as the conformal factor χ

of the spatial metric and bC, on the intersection of the AH
(which in the stationary case coincides with the event
horizon) with the equatorial plane, the tendency towards
axisymmetry can be confirmed (Figs. S5–S6 [27]). Last,
note that the difference in the innermost stable circular orbit
frequency between slowly rotating BHs in this theory and
GR goes as δΩISCO ∝ −ϵ. Thus, extrapolating this obser-
vation to general spins, and following the successful
strategy to estimate the final (dimensionless) spin in BH
coalescence in GR [64], one can argue that the final BH
spin should be higher or (lower) for positive or (negative)
values of ϵ as the final “plunge” takes place with a higher or
(lower) contribution of orbital angular momentum to the
final BH. Cautioning that a higher accuracy is required to
confirm this expectation, our results are consistent with it.
Discussion.—We demonstrated the ability of the “fixing”

approach to enable studies of beyond GR theories. This
approach, in particular, provides a practical way to explore
phenomenology in the highly nonlinear and dynamical
regime of compact binary mergers. Especially relevant is
that it enables assessing whether the solution for cases of
interest remains in the EFT regime and the impact of
corrections in observable quantities. From this first analy-
sis, we conclude the solution does remain in this regime
for comparable mass, quasicircular mergers in the BH(s)
exterior. Thus, much like in the case of GR, a strong UV
energy flow takes place inside the horizon but not in the
outside region, staying within the valid EFT regime. While
in the current work we have focused on a specific theory
and scale, our choice was motivated by stress-testing the
approach with highly demanding challenges—brought by
higher than second order derivatives and in the context of
BH collisions. However, the underlying strategy is appli-
cable also in beyond GR theories with second order
equations that can induce change of character in the
equation of motion (e.g., [8,22]). We note that for a
particular class of nonlinear theories (with second order
equations of motion) consistent, nonlinear studies have

FIG. 2. Gravitational waves in GR and in the EFT theory
(ϵ ¼ �10−5) with σ ¼ 0.0625, τ ¼ 0.005. Top: ðl; mÞ ¼ ð2; 2Þ
mode of the þ polarization hþ22, extrapolated to null infinity as a
function of the retarded time u ¼ t − r�, where r� is the tortoise
radius. Bottom: gravitational wave phase of h22.
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been presented [61,65,66]. However, they required signifi-
cant supporting theoretical efforts to identify appropriate
gauge conditions and merging BH solutions have been
obtained up to some maximum coupling value otherwise
mathematical pathologies arise. Our approach, in principle,
provides a way to robustly explore beyond such coupling
and, in general, study beyond GR theories self-consistently
where such supporting theoretical input is not available or
even achievable without strong—and a priori unjustifiable
—assumptions [67]. Of course, practical application of the
approach described here should be mindful of checking
results upon variations of ad hoc parameters to ensure,
given a coupling length, scales are sufficiently resolved.
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