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Abstract 

Background and Purpose: Predicting toxicity from radiotherapy (RT) is a complex problem 

because there are usually multiple organs at risk irradiated and protecting all these structures 

requires compromise. Multiple methods can be used to predict toxicity such as Lyman Kutcher 

Burman (LKB) modelling, logistic regression (LR) and supervised machine learning (ML). 

Several trials have used isotoxic RT to treat non-small cell lung cancer (NSCLC) patients, a 

technique that escalates and individualises RT doses to the tumour to improve local control. 

Dose escalation is often constrained by the dose unavoidably delivered to oesophagus and 

lungs during treatment. Here we model toxicity using data from the IDEAL-CRT trial. 

Methods: Data from 116 IDEAL-CRT patients were analysed in this study. Clinical data 

including sex, age, disease stage, forced expiratory volume (FEV), force vital capacity (FVC) 

and diffusing capacity of lung for carbon dioxide (DLCO) were collected for the trial. 

Dosimetric information was generated from RT datasets, including V5Gy, V20Gy, Mean dose 

(MD) and Equivalent uniform dose (EUD) for lung and V35Gy, V50Gy, D1cc and MD for the 

oesophagus. All doses were reported as equivalent dose in 2 Gy fractions corrected for overall 

treatment time. 

Uni-variable statistical analysis was performed on all metrics using LR, with p-values used to 

determine which metrics would be most useful for toxicity modelling. The bootstrap method 

was evaluate the accuracy of LR. This information was used to inform toxicity modelling with 

ML using the classification learner application in MATLAB v2020a. ML Models reported overall 

predictive accuracy, sensitivity, specificity and Area Under the Curve (AUC) from recover 

operator characteristics (ROC) analysis. Resulting ML models were compared with LKB 

analysis and multi-variable LR.  

Results: Uni-variable LR found a statistically significant (p<0.01) correlation between 

oesophagitis and the MD, V35 Gy, V50 Gy, and D1cc values. LR tests were unable to find a 

statistically significant relationship between any clinical or dosimetric factors and 

pneumonitis, here FEV and FVC produced p<0.05 using LR analysis. 

The ML model for oesophagitis with the highest AUC had an overall accuracy of 73.3%, 

sensitivity of 93.6%, specificity of 31.6% and AUC of 0.79. Model inputs were V50 Gy and sex. 

The model for pneumonitis with the highest AUC had a predictive accuracy of 76.7%, 
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sensitivity of 3.8%, specificity of 97.8% and an AUC of 0.53. The model used the EUD and sex 

as inputs. There was statistically significant relationship (p<0.01) between LKB NTCP values 

and oesophagitis using LR analysis and the Mann-Whitney U test, but not for pneumonitis. 

The multi-variable LR model for oesophagitis had a predictive accuracy of 71.6%, sensitivity 

of 85.9%, specificity of 42.1% and an AUC of 0.77. The multi-variable LR model for 

pneumonitis had a predictive accuracy of 77.6%, sensitivity of 0%, specificity of 100% and an 

AUC of 0.58.  

Conclusion:  Predictive models require high specificity and selectivity in order to be clinically 

useful. Both LR and ML techniques can predict toxicity with similar accuracy when there is 

good correlation between metrics and toxicity. When there is not, machine learning’s ability 

to utilise more diverse data and customise parameters of learning classifiers enables superior 

toxicity models to be generated. Further development is required for these models to be 

clinically useful; this includes testing a wider range of features such as genetic information or 

imaging biomarkers and validation on independent datasets is vital prior to adoption in the 

clinic. The results of this study have shown that ML approaches are well suited to radiotherapy 

toxicity modelling with promising results for the prediction of oesophagitis.   
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1 Introduction 

Lung cancer is the leading cause of cancer related death in the UK, with approximately 47,0001 

new cases a year. Radiotherapy is a common treatment used for both palliative and curable 

patients. The response of normal healthy tissues that are incidentally and unavoidably 

irradiated during radiotherapy treatments is often the main limiting factor to increasing the 

prescription dose to the tumour. Higher doses to the tumour improve the chance of tumour 

control, but high doses to healthy tissue can also increase the chance of toxicity.  Optimising 

this trade-off is known as the therapeutic ratio, but predicting toxicity is a complex problem 

because there are usually multiple organs at risk (OARs) irradiated and protecting all these 

structures requires compromise. We must also consider that various structures will respond 

differently to radiotherapy due to the difference in their organ structures and the types of 

tissues involved. 

Each radiotherapy treatment is planned by a team of experts and is optimized for the 

individual patient. The treatment planning process determines the way in which the 

prescribed dose is delivered to the patient, with the planner able to use a variety of 

techniques to shape the dose distribution in the patient to attempt to find the best treatment 

solution. For lung cancer in particular, doses to healthy tissues are often a limiting factor as 

treatment commonly causes toxicities such as radiation induced pneumonitis or oesophagitis, 

which can disrupt treatment and may lead to a reduction in tumour control. When optimizing 

a radiotherapy treatment plan, the planner utilises objectives regarding the required dose to 

be delivered to the tumour to ensure tumour control and dose constraints for Organs at Risk 

(OARs), which ensure acceptable levels of toxicity are not exceeded. Intensity modulated 

radiation therapy (IMRT) is an advanced type of radiotherapy that is commonly used today. 

IMRT treatment plans are inversely optimized, with the planner setting objectives which 

specialist radiotherapy treatment software will interpret to create the desired dose 

distribution. The accuracy of these dose constraints is important to be able to achieve the 

optimal therapeutic ratio. 

OAR dose constraints are derived through toxicity modelling using large data sets. There are 

multiple methods used to determine the relationship between the occurrence of toxicity and 

various features in the data which can be used as predictors. Traditionally these outcomes 

are modelled using information about the dose distribution and fractionation, but it is 
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recognized that the response to radiation is multifactorial and can include a variety of data 

sources such a clinical factors, bioinformatics, and genetic information. Toxicity models can 

be described as analytical, which employ a biophysical understanding of irradiation effects 

such as the linear quadratic equation or data driven models which are phenomenological 

models that depend on parameters available from collected clinical and dosimetric data. Data 

driven models consider observed treatment outcome as a result of mathematical modelling 

of one or more predictive factors.   

Traditionally a Normal Tissue Complication Probability2 (NTCP) model attempts to reduce 

complex dosimetric and anatomical information to a single risk measure. Most models fall 

into three categories3, Dose Volume Histogram (DVH) reduction models, tissue architecture 

models and multiple metric models. DVH-reduction models are mainly applicable to non-

uniform dose distributions, although they are based on estimated complication probability 

under uniform irradiation, to do this they generally use the concept of generalised equivalent 

uniform dose. The tissue architecture model employs the concept that a portion of an organ 

can be damaged by dose without clinical effect. This model describes organs as either parallel 

or serial. In parallel organs sub-volumes of the organ function relatively independently and so 

some small portions of the organ can be damaged without clinical effect, meaning that 

toxicities are only really seen when a volume greater than a critical volume has been 

damaged. In contrast for serial organs, complications occur when even a small portion of the 

organ suffers damage. We often equate the risk of complications to a single DVH value, 

although this can be overly simplistic. The multi-metric model looks at a larger area of the 

DVH curve and so can be considered more robust. This approach will often select several uni-

variable data features in combination with complex analysis techniques such as machine 

learning (ML) or predicative statistical techniques such as regression analysis to determine 

predictors for toxicity. Multi-variable analysis is not only restricted to dosimetric information 

so a variety of clinical or genetic information can be used in addition to improve the accuracy 

of these models. 

It is important that the toxicity models for OARs are correct as overestimating risk can lead to 

conservative treatments which could lead to lower chances of tumour control, while 

underestimating risk can subject patients to unplanned adverse events. NTCP models are not 

ideal, there are issues with regards to the consistency of grading toxicities, selection of 
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appropriate statistical models and a number of other factors (e.g. difference between 

planned and accumulated dose4) which can limit the usefulness of the constraints generated 

by these models. Data from controlled clinical trials is useful for this type of modelling as they 

are considered to provide high quality data, trials they mandate strict grading of toxicity and 

high-quality data collection which can reduce the number of issues and sources of bias when 

compared to using lower quality evidence. Data from clinical trials is often accrued from 

multiple centres and undergoes rigorous quality assurance, ensuring data is of high quality. 

Clinical trials data is often highly curated due to strict recruitment criteria, this can mean that 

models derived from trials data may not always be generalisable to the real world and could 

contain biases. These data sets often involve small sample sizes, which can lead to problems 

with the robustness and accuracy of models and caution must be taken to ensure that models 

do not overfit their sample data. Ideally models developed using clinical trials should be tested 

on real world data to assess their clinical performance. 

Early NTCP modelling techniques2 assumed that OARs received a uniform dose, which was 

reflective of the non-conformal radiotherapy techniques used at the time (pre-19905). With 

3D conformal radiotherapy becoming more widely used between 1980-19906 and IMRT 

gaining widespread adoption between 2000-20106, OARs have become much more likely to 

receive inhomogeneous doses. Contemporary literature, through sources such as the 

QUANTEC3 papers take into account modern radiotherapy delivery techniques such as IMRT, 

which deliver uniform doses to target volumes whilst delivering a highly variable dose to 

surrounding tissues. The Lyman Kutcher Burman7 (LKB) model is one of the most widely used 

analytical NTCP models, it takes into account partial voluming effects in healthy tissue and 

was widely used in the QAUNTEC papers. The use of LR and ML is increasing in the 

radiotherapy community, in part due to improvements in technology that have allowed easier 

access to these tools in experimental and clinical settings8, but also due to the digitisation of 

healthcare which has improved access to patient data making large scale multi-variable 

analysis easier. However, there are relatively few papers which use radiobiological modelling 

which attempts to quantify the effect of radiation on tissue rather than using absolute doses, 

even though the effects of fractionation of dose are well known.  

For the treatment of lung cancer there are a number of different treatment fractionation 

regimes available for patients, each of these have their own dose constraints9,10. With the 
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advent of Isotoxic radiotherapy where treatment doses are escalated until an OAR dose 

constraint has been met, there is substantial variation in the doses OARs receive. In this case 

it can be difficult to know which dose constraints to use and it would be useful to have OAR 

constraints based on Biologically Effective dose (BED) or Equivalent Dose in 2 Gy Fractions 

(EQD2). These would allow a single set of dose constraints to be used for patients regardless 

of their treatment regime.  Data from the IDEAL-CRT10 trial, which followed an Isotoxic 

fractionation scheme with a fixed number of fractions would provide a useful data set to 

generate these values. 

1.1 Background 

1.1.1 Radiobiology and LQ model 

The biological effect of radiation is not only determined by the total dose but may also be 

characterised by the way the dose is delivered. Important factors include the fraction dose, 

dose rate and overall treatment duration. There are a number of different models that have 

been proposed to predict radiobiological response. The linear quadratic (LQ) model is the 

most widely used and best validated through experimental and clinical data11. 

In the 1960s Elkind12 showed that if a dose of radiation was divided into fractions, patient 

survival increased. This is because most of the radiation induced biological damage is 

repaired. Recovery occurs during fractionated radiotherapy, and this is more beneficial for 

normal tissue because there are differences in the ability to repair damage between tumour 

cells and normal tissue. Normal tissue is better able to repair damage than tumour cells. 

Through fractionating treatments, we are better able to control tumours whilst reducing the 

side effects.  

Radiobiological experiments by Fowler in 196313 and 196514 showed that the isoeffective dose 

(the biologically weighted dose for therapy) was affected not only by the time over which the 

dose was delivered but also by the dose per fraction. Ellis argued that recovery should be a 

function of fraction size rather than time. At the end of the 1960s15 the concept arose that 

the effect of fraction number and overall time could be separated. This is the basis of the Ellis 

normal standard dose model16 (NSD).  The NSD model allowed for routine adjustments of 

dose in the clinic and the calculation of isoeffective regiments with different numbers of 

fractions and overall treatment times. The NSD model was reasonably effective in predicting 
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acute effects but failed to predict late effects at large dose fractions (<3 Gy) as the model is 

empirical and so is only useful when used within the range of dose/fractionation data used to 

derive it17, hence it is no longer used clinically. This led to the recognition of the importance 

the 𝛼/𝛽 ratio in characterising fractionation sensitivity of tissues. α and β are the respective 

radiosensitivity coefficients for creating lethal damage by large ionising events or by 

interactions between two smaller events. In practice the individual values of these 

coefficients are not known, only the ratio can be inferred from clinical results.  𝛼/𝛽 is a 

measure of fractionation sensitivity, so for a large 𝛼/𝛽 the tissue will be relatively insensitive 

to fractionation changes and for small 𝛼/𝛽 tissues will be highly sensitive to fractionation 

changes. In 1976 Douglas and Fowler18 applied linear quadratic theory to the study of 

isoeffective schedules. In 1982 Barendson19 came up with the concept of extrapolated 

tolerance dose (ETD), which was subsequently renamed extrapolated response dose and then 

biologically effective dose.  The BED is a measure of the biological effect produced by a 

radiotherapy schedule and is directly related to the surviving fraction of cells. An increase in 

the BED will mean a reduction in the number of surviving cells and so greater biological effect. 

In 1983 Withers20 recommended the concept of EQD2, which is the equivalent dose if given 

in 2 Gy per fraction. Radiotherapy treatments are most commonly delivered in 2 Gy fractions 

and the concept of EQD2 allows for easier comparison of non-standard treatment regimens 

with more common treatments schedules.               

The basic LQ model describes the surviving fraction (SF) of clonogenic or stem cells as a 

function of radiation dose. The main parameters of this model are α and β which represent 

the intrinsic radio sensitivity of an irradiated cell. The LQ model uses an 𝛼/𝛽 ratio, which is a 

measure of the fractionation sensitivity of the cells. The LQ model has shown its clinical 

usefulness in predicting the sparing effect of fractionated radiotherapy and in comparing the 

equivalent total dose of different fractionation schedules. The estimation of the 

radiotherapeutic outcome and the therapeutic window strongly depends on a reliable 

estimation of LQ parameter 𝛼/𝛽. 

The radiosensitive parameters α and β can be measured in vitro in tumour cell lines, but these 

may not be representative of clinical radiobiological calculations. Although the 𝛼/𝛽  value can 

be inferred from clinical data, this is potentially more difficult for organs at risk due to the 
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inhomogeneity of the doses they receive, but doses could still be correlated to toxicity to 

determine these values.  

The Biologically effective dose is a measure of the biological effect produced by a dose of 

radiation, but BED is not only dose dependent, it also takes into account the type of dose 

delivery. The basic formula allows for the pattern of fractionation, but more advanced 

formulas can also take into account other factors such as the dose rate or Relative Biological 

Effectiveness (RBE) of the type of radiation. The BEDs are tissue specific and normally 

calculated for the tumour and late responding normal tissues. This means that any given 

radiotherapy schedule will generally only utilise two BED values, with normal tissues routinely 

using an 𝛼/𝛽 of 3 Gy in clinical practice. These BED values should relate to specific 

biological/clinical endpoints such as tumour control or toxicity. When considering the BED for 

tumours, we may also consider two additional factors. These are the k factor and Tdelay. The K 

factor represents the dose required to offset one days’ worth of repopulation. It is inversely 

proportional to the tumour radiosensitivity and the tumour doubling time and is therefore 

largest for tumours which are radioresistant and fast growing. Tdelay is the delay time after the 

initiation of treatment before fast tumour repopulation begins. These factors effectively 

reduce the BED to the tumour, but they do not impact late reacting normal tissues. 

The BED for acute reacting normal tissues may be calculated using the formula 1.1. 

𝐵𝐸𝐷 = 𝑁 × 𝑑 × ⌊1 +
𝑑

(
𝛼
𝛽

)
⌋ − 𝑘(𝑇 − 𝑇𝑑𝑒𝑙𝑎𝑦) (1.1) 

Where N is the number of fractions and d is the dose per fraction 

The LQ model also allows any unusual fractionation schedule to be expressed in terms of a 

more familiar schedule. This is usually done to express these regimes as equivalent dose in 2 

Gy fractions (EQD2), this is the total dose required to produce the same biological response 

as a non-standard scheme if all the fractions were of 2 Gy. This can be calculated using the 

formula 1.2. 

𝐸𝑄𝐷2 =  
𝐵𝐸𝐷

1 +
2

(
𝛼
𝛽

)

(1.2)
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There are some limitations with using BED. In particular care should be taken when applying 

the LQ to fraction sizes significantly above 6 Gy per fraction. In this case alternative models 

may need to be considered. The basic BED formulation also only applies when the fractions 

have been appropriately spaced (e.g. 24 hrs apart), a more complex formula is required if the 

fractions are more closely spaced. Many existing NTCP models assume that OARs receive the 

same dose as the tumours, however with modern radiotherapy there is more likely to be 

inhomogeneity in the dose distribution and it is prudent to base late normal tissues response 

on maximum dose or another dose metric. Finally, BEDs are an indirect measure of cell 

surviving fraction. As tumour control is related to surviving fraction then the tumour BEDs are 

fairly reliable indicators of tumour response. For normal tissue response, toxicity is not simply 

related to cell survival. Physiology and hierarchical structure are also very important but are 

not accounted for in BED. This is less important when comparing treatments with a similar 

dose distribution, but perhaps more important when the dose distributions are very different. 

Estimates of the α/β have been derived for a wide range of tumour and normal tissues, the 

ratios for acute normal tissue reactions are usually 10 Gy or greater while for late effects they 

are typically closer to 3 Gy. Potentially a lot of these values have been generated from data 

that predates 3D conformal radiotherapy, whereas the data from modern radiotherapy uses 

3DCRT and IMRT where the dose per fractions for and across OARs will vary significantly 

between different patients due to the greater emphasis on individual dose optimisation for 

these techniques. This means values in the literature for α/β ratios may not be applicable to 

modern radiotherapy data sets and therefore may need to be recalculated to take into effect 

changes in the way modern radiotherapy treatments are delivered. 

1.1.2 Alternatives to LQ model  

The fractionation effect is most commonly quantified using the linear-quadratic (LQ) model, 

however alternative models may be needed in some settings, for example to describe the 

effects of low-dose hypersensitivity21 or hypofractionation22,23. The LQ model can generally 

be considered to characterise the effects of fractionation reasonably well up to 6 Gy per 

fraction.  

One of the proposed alternatives to the LQ model for large fractions sizes is the lethal-

potentially lethal (LPL) model proposed by Curtis24. Although, there is little experimental data 
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that shows that the LPL model describes radiation response better than the LQ model. The 

LPL model is also more complicated to use and is not well characterized in clinical practice. 

The LPL model combines the ideas of lesion interaction, irreparable damage caused by single 

tracks, linear lesion fixation, lesion repair via first order kinetics and binary misrepair. It 

essentially hypothesises two different types of damage to cells from radiation to quantify the 

effective dose, irreparable (lethal) and repairable (potentially lethal) damage. Guerrero22 

proposed work to extend the conventional LQ model with an additional parameter in order 

to more accurately describe the effects of radiation at high dose per fraction. This has 

essentially created a modified LQ model (MLQ) which tracks the LPL model at both high and 

low doses and dose rates.  

The MLQ equations use the parameter δ, which is calculated from LPL parameters which are 

all derived from a table of LPL parameter tables per cell line. As shown in the equation 1.3. 

𝛿 =
3𝜂𝑃𝐿

2휀
(1.3) 

The δ value could also be calculated from the α and β and the final slope of the survival curve 

D0 as shown in equation 1.4 

𝛿 =
2𝛽𝐷0

1 − 𝛼𝐷0

(1.4) 

In practice this would be difficult to implement as the individual α and β are rarely known by 

themselves and it is difficult to apply values from cell survival curves in the lab to those in 

clinical practice. This value is then used in the final MLQ model as shown below, where 

𝑎1/𝑎2  is the equivalent of 𝛼/𝛽. 

1

𝐷𝑡𝑜𝑡
= 𝑎1 + 𝑎2𝑑𝐺(𝛿𝑑) (1.5) 

1.2 Toxicity Modelling 

1.2.1 Lyman Kutcher Burman model 

The Lyman Kutcher Burman (LKB) model is probably the most well-known model used for 

predicating Normal Tissue Control Probability (NTCP) for a radiotherapy treatment plan. The 

model was developed by Lyman25 for heavy charged particles beams where partial volumes 

of homogenous dose could be achieved and was adapted for conventional radiotherapy 
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through the histogram reduction work of Kutcher26 and the parameter values of Emami27 and 

Burman7. 

There are three parameters to the LKB model. TD50(1) represents the dose for a 

homogeneous dose distribution to an organ at which 50% of patients are likely to experience 

a defined toxicity at 5 years. m is related to the standard deviation of the TD50(1) and 

describes the steepness of the dose response curve and n indicates the volume effect of the 

organ being assessed. The publication of the QUANTEC report7 has brought together much of 

the literature and experience of normal tissue toxicity. The LKB model was used by Gulliford28 

to analyse rectal toxicity, the method used in this paper is detailed below. 

The LKB model from the original publication29 is given in equation 1.6 

𝑁𝑇𝐶𝑃 =  
1

√2𝜋
∫ ⅇ−𝑡2 2⁄ 𝑑𝑡

𝑢

−∞

(1.6) 

Where 

𝑢 =
𝐷 − 𝑇𝐷50(𝑉)

𝑚 × 𝑇𝐷50(𝑉)
(1.7) 

TD50(V) =
TD50(1)

𝑉𝑛
(1.8) 

TD50(V) is the tolerance dose for a partial volume V. The parameter m multiplied by TD50(V) 

approximates the standard deviation of volume V and n indicates the volume effect of the 

organ being assessed. N=0 indicates a completely serial organ where maximum dose 

dominates outcome and n=1 indicates a parallel organ where the mean dose is related to 

outcome. D is the maximum dose of the DVH to ensure V<1. Histogram reduction can be 

performed to calculate the effective volume V according to the method described in Kutcher 

et al26. 

𝑉 = ∑ (
𝐷𝑖

𝐷
)

1
𝑛𝛥𝑉𝑖

𝑖
(1.9) 

Where Di is the dose defined for each bin in a differential dose volume histogram and D is the 

maximum dose the to the organ. A Maximum Likelihood Estimation (MLE)30 can be used to 

best fit values of the parameters TD50(1), m and n of the NTCP model for known binary 
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outcomes y(i) of the available data by maximising the natural log of the likelihood (LLH) that 

the fitted model describes the data correctly. 

1.2.2 Logistic Regression Analysis 

Logistic regression analysis is the standard statistical tool for binary data. The technique is 

used to obtain an odds ratio and is a classification algorithm that is used where the response 

variable is categorical. The idea of logistic regression is to find a relationship between features 

and the probability of a particular outcome. When utilising this for toxicity prediction we are 

using binomial logistic regression as the response variable has a value of either 0 or 1 

dependent on whether the patient has incurred a treatment related toxicity above a certain 

grade or not. 

The logistic regression model is expressed as  

log (
𝑝

1 − 𝑝
) =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 (1.10) 

Where p is the probability of the event, β are the coefficients, x are the explanatory variables 

and (
𝑝

1−𝑝
) are the odds 

If x is a binary variable: 

log (
𝑝

1−𝑝
) =  𝛽0 + 𝛽1 When x = 1 and 

log (
𝑝

1−𝑝
) =  𝛽0 when x = o 

So the odds ratio is given in equation 1.11 

ⅇ𝛽 =
(

𝑝1
1

−𝑝1)

(
𝑝0
1

−𝑝0)
(1.11)  

Binomial logistic regression estimates the probability of an event occurring and if this 

probability is greater than or equal to a pre-set cut off value (typically 0.5), it will be classified 

as the event having occurred. If it is less than the cut-off value, then it will be classified as the 

event having not occurred. These predictions will be compared with the observed toxicity to 

generate overall predictive accuracy, sensitivity, and specificity of the model. LR analysis will 



27 | P a g e  
 

also show the contribution of each independent variable to the model and its statistical 

significance.  

1.2.3 Machine Learning 

The theoretical framework for machine learning has been around since the 1950s31 and is 

increasingly being used for toxicity prediction in radiotherapy. ML is typically considered as a 

subset of artificial intelligence (AI) and generally refers to a set of algorithms that can learn to 

perform a specific task without an explicit implementation of the solution. These ML 

techniques are particularly well suited to model the relationship between treatment induced 

toxicity and data features as they excel at dealing with large and complex data sets. For 

toxicity modelling, supervised machine learning where the algorithms are presented with a 

known outcome via a labelled dataset is most appropriate. ML models that are able to predict 

outcomes from a set of data features by tuning model parameters on a number of training 

cases, are referred to as a classifier. Some of the most common classifiers are Naïve Bayes, 

logistic regression, k-nearest neighbour, random forest, support vector machine, artificial 

neural networks, and ensemble.  

ML classifiers will learn toxicity model parameters from the available data and so the 

characteristics of the dataset are very important. If the datasets are too sparse or are not 

representative of the overall population, models parameters will not be generalizable to real 

world data. Often this is a result of the modelling overfitting to the training dataset. To avoid 

overfitting of models, datasets are often split into training and validation cohorts but for 

smaller datasets k-fold cross validation is used. For k-fold validation datasets are split into k 

sets of roughly equal size, the first subset will be held out when training the model and the 

outcomes from the held-out datasets are then predicted by the model and used for validation 

and evaluation of the performance of the model in terms of predictive accuracy. The first 

subset is then returned to the training dataset and the second is held out and so forth. The k 

resampled estimates of performance are then summarised and used to understand the 

relationship between the model tuning parameters and the model utility.   

It can be very difficult to rank the performance of ML models as the performance is related 

to the particular problem and dataset being analysed, but the acceptable metric commonly 

used in the literature is to approximate model performance using the Area Under the Curve 

(AUC) value from Receiver Operator Characteristic (ROC) curve. The AUC value of a model 
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ranges between 1 and 0.5, with 1 corresponding to perfect classification of the validation set 

and 0.5 corresponding to a random classification. Although it should be noted that the AUC 

value can be misleading where there are flaws in the model such as heavily imbalanced 

datasets or poor validation of the model. The Transparent Reporting of a multivariable model 

of Individual Prognosis Or Diagnosis (TRIPOD)32 standard has been developed to improve the 

reporting and critical appraisal of prediction model studies, however the TRIPOD-AI standard 

has not yet been published. So this study conforms to the MINIMAR33 (MINimum Information 

for Medical AI Reporting) standard (Appendix 4). 

1.2.4 Studies using the LKB Model 

The LKB model has successfully been used in a number of different studies, in particular there 

are numerous papers where it has been used to assess toxicity for patients that received 

radiotherapy to the pelvis. Gulliford et al28 stipulated that it would be useful to predict a range 

of toxicities that are commonly observed including rectal toxicity that concern patients and 

have quality of life implications, although less data is available for these end points. Gulliford 

used data from the MRC-RT0134 trial to attempt to predict additional toxicities for these 

patients, thereby demonstrating the versatility of the LKB model. 

The ability to fit the parameters to the model hinged on the availability of detailed dosimetric 

information and corresponding follow up of the clinical data with accurate reporting of the 

toxicity.  Data from the MRC-RT01 randomised clinical trial provided detailed treatment and 

follow up data. Gulliford28 used  rectal NTCP data for 388 patients treated with prostate 

radiotherapy as part of the trial. The trial randomised prescription between 64 Gy or 74 Gy. 

Treatment delivery was via 3D conformal radiotherapy and all patients received 64 Gy with 

some patients randomised to receive a 10 Gy boost. All contours were reviewed by a single 

observer. The LKB model was fitted to five different toxicity end points; three were clinically 

reported and two were patient reported. In each of these cases the fit was made separately 

for grade 0 vs. grades 1 and 2 and grade 0 and 1 vs. grade 2. In each case the maximum grade 

recorded over the entire length of the follow up was used. Patients who experienced a 

defined endpoint prior to treatment were excluded from the parameter fitting for that 

endpoint. 

In this case fits were made for the five specific rectal toxicities and the two grades of 

complication. The parameter fits were to a specific set of data, so a bootstrap method was 
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employed. 1,000 different cohorts of 388 patients were generated from the patient data using 

sampling with replacement. The LKB model was refitted for the five end points for each of the 

1000 sampled populations using MLE. The non-parametric Mann Whitney U test was also 

calculated to test for the significant difference in the NTCP values of the groups who reported 

a specific endpoint compared to patients that did not. 

The MLE estimate of the TD50(1) of 59.2 Gy for rectal bleeding for both G1&2 and G2 only, 

were significantly lower than the QUANTEC35 value of 76.9 Gy. The MRC-RT01 trial was 

conducted in an era when 3DCRT was first being implemented and the only rectal constraint 

in the trial was the maximum dose. This meant that there was wide variation of the doses of 

the rectum, which was useful for toxicity modelling. The results presented by Gulliford et al 

emphasise the benefit of the bootstrapping process and the leave one out analysis where the 

effect on a wider population can be tested. The leave one out analysis shows the effect of a 

single case, particularly useful when the number of events is low. This type of analysis is 

subject to the accuracy of incident reporting, as this can skew the data.  

The Lyman29 model has traditionally been used in combination with histogram reduction 

methods to take into account the heterogeneous dose distribution received by normal 

tissues. It was developed at a time when partial volumes of homogeneous dose were more 

prevalent and the ability to spare normal tissues was limited. Advances in radiotherapy 

planning and treatment delivery allow us to create highly conformal dose distributions using 

inverse optimisation. DVH histogram reduction methods are generally insufficient to fully 

characterise these dose distributions as they condense all the dosimetric information into a 

single value, which may not be representative of the response of an OAR to a particular dose 

distribution. Through the use of a large number of patients, it should be possible to overcome 

these biases. The applicability of the LKB model is dependent on the quality of the data put 

into the model. Gulliford concluded that the DVH response of the rectum is different for 

different endpoints and that quality of life related issues may not be fully predicted by the 

classic n value of the LKB model. The degeneracy of the model also means that it may be 

influenced by single cases and that this should be fully explored when deriving constraints for 

clinical use. 

The LKB model has also been combined with the LQ equation. A paper by Tucker et al36 tried 

to estimate the α/β ratio from the LQ model for grade 2 late rectal toxicity for patients that 
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were part of the RTOG protocol 94-06 trial in order to determine whether correcting the rectal 

DVH for differences in dose per fraction based on the LQ model improves the fit of this data 

to the LKB NTCP model. The rational for this project was that evidence has shown the severity 

of normal tissue toxicity depends in part on the number of dose fractions into which the total 

radiation dose is divided37 and that the fractionation effect is quantified by the α/β parameter 

from the LQ model38. 

In this paper Tucker observed that previous calculations of the α/β ratio were based on data 

prior to the advent of 3D conformal radiotherapy and that modern radiotherapy plans would 

deliver doses per fraction which would vary significantly across OARs. α/β values from clinical 

data were previously based on the total isoeffective target dose (the dose corresponding to 

a specific level of tissue injury). Inpatient variations in dose were disregarded and therefore 

these estimates are not accurate. Tucker et al used the LKB model for NTCP to allow them to 

take into account fractionation and volume effects at the same time. Data for the project was 

from a multicentre trial using dose escalation. The variations in dose were modest only going 

from 1.8-2 Gy but because this was 3DCRT, the variation in sub volumes across the rectum 

varied from 0 Gy to 2.2 Gy. It had been suggested by Wheldon et al39 that due to the known 

effects of fractionation, the dose in a DVH should be adjusted to dose per fraction when NTCP 

models are fitted. Tucker also tried to determine whether LQ correction would lead to an 

improved fit compared with the total dose to the rectum.  The study used the LKB model and 

the concept of effective dose but revised the LKB model to obtain the LQ corrected version of 

the model in which physical dose was replaced by EQD2 dose, the dose biologically equivalent 

to Di if given in 2 Gy per fraction using equation 1.12. 

LQ2 = 𝐷𝑖

α
β

+ 𝑑𝑖

α
β

+ 2
(1.12) 

The dose per fraction was calculated by dividing Di by the number of fractions received. The 

values of α/β were estimated as an unknown parameter when the LQ corrected LKB model 

was fitted to the data. 

The paper was able to estimate the α/β ratio of 4.8 Gy, although only with a confidence of 

68%. The LQ corrected model did not lead to a better fit of the LKB model for this cohort of 

patients. This is consistent with previous analysis of the same data in which volume effects 



31 | P a g e  
 

and not dose per fraction seem to explain increases in toxicity. The data used in this study 

had a very narrow range of doses per fraction, so perhaps would not be able to observe the 

difference and only parts of the rectum receiving the highest dose suffer this particular 

toxicity.  

1.2.4.1 Modelling Lung Toxicity 

Tucker et al40 explored the superiority of effective dose over mean lung dose for predicting 

radiation induced pneumonitis (RP), using data from patients in the NCT00915005 trial which 

compared IMRT vs passive scattered protons. Using a dose of 66-74 Gy in 33-37 fractions with 

concurrent carboplatin/paclitaxel. A prior study from 10 years earlier used data from more 

than 500 patients looked at NTCP Grade 3 toxicity and above using the generalized Lyman 

model41. The model incorporated a flexible dosimetric factor, which is the effective dose and 

is also known as equivalent uniform dose. It allowed the exposed volumes of an organ at risk 

to be weighted differently than they are by mean lung dose42. The weighting of these volumes 

is governed by n, when n=1, each volume is weighted by the dose it receives and so the 

effective dose corresponds with the average. When n is less than 1, sub volumes receiving 

higher doses are weighted more heavily.  The earlier analysis demonstrated a better fit to 

overall risk of RP from Deff with n approx. 0.5 than with n =1. Deff
41

  is also known as equivalent 

uniform dose (EUD) and assumes that two dose distributions are the same if they cause the 

same radiobiological effect, it can be calculated directly from dose volume histograms. The 

Lyman model allowed the inclusion of factors outside dosimetric factors to influence toxicity 

and the earlier investigation revealed that smoking status had a significant effect on RP risk.  

Subsequent NTCP modelling investigations43 using 3DCRT found that RP incidence based on 

mean lung dose was associated with beam arrangement indicating the inadequacy of MLD as 

a risk predictor. Deff was able to predict RP risk more effectively and do so independently of 

beam arrangement. It also derived an n parameter close to 0.5, an interpretation of this value 

is that organ subvolumes are weighted by the squared dose and Deff is more conveniently 

described as the square root of the average squared dose to the organ at risk or the root 

mean squared dose (RMSD). 

The study by Tucker evaluated Deff verses MLD when using the Lyman model for describing 

RP risk. The analyses indicated that RP risk is best quantified using the RMSD to lung, which 

predicts risk equally well for IMRT. This highlighted that high doses to small volumes may have 
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a greater impact than low doses to large volumes for the risk of RP. The paper recommended 

that thought should be given to using RMSD dose over MLD and V20 Gy to predict lung toxicity 

more accurately. 

1.2.5 Studies using LR 

Huang et al44,45 performed two studies for the prediction of oesophagitis using LR. The first 

modelled severe oesophagitis (grade 2 or higher) for patients from the RTOG 93-11 study of 

374 patients in which 120 developed toxicity. They found that mean dose to the hottest 85% 

volume, mean oesophageal dose and V30Gy were strong predictors of toxicity using uni-

variable LR analysis.  Multi-variable statistical analysis with cross validation from the study 

suggested that a two variable logistic model based on mean dose and use of concurrent 

chemotherapy robustly predicted acute oesophagitis risk for the trial dataset. The second 

study tested the published two variable model on a new and independent data set and sought 

to update the model for clinical use. A total of 115 patients were analysed in which 94 patients 

developed grade 2 or higher toxicity. The model achieved an AUC of 0.78 and was found to 

be almost as predictive as a model built from the new data alone using a logistic function, 

suggesting the original model is generalisable to real world data. 

Ryckman et al46 performed a single institution retrospective review for patients who received 

SABR to the lung. The study dataset consisted of 93 patients of which 8 developed radiation 

induced pneumonitis of grade 2 or higher. The study found that mean lung dose > 6 Gy 

predicted 5 of the 8 patients, while a V20Gy > 10% captured only 2 patients that also had a 

MLD > 6Gy. They concluded that mean lung dose and V20 were the strongest dosimetric 

predictors of toxicity. 

Makimoti et al47 studied 111 patients with primary lung cancer who received radiotherapy or 

combined chemo-radiotherapy of which 17 patients developed severe pneumonitis. The 

study assessed age, gender, histology, clinical stage, pulmonary function tests, total radiation 

dose and a number of other clinical metrics. Logistic regression analysis found that pre 

radiotherapy interstitial changes and radiotherapy to the contralateral mediastinum of >40 

Gy were significant risk factors associated with severe radiation pneumonitis and that these 

factors may be used to predict severe toxicity. 
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Palma et al48 performed a study on 836 patients that underwent combine chemo-

radiotherapy across Europe, north America, and Asia. Factors predicative of symptomatic 

pneumonitis of grade 2 or higher were evaluated using logistic regression. The overall rate of 

pneumonitis was 29.8% which equated to 249 patients. In the training data sets factors 

predictive of toxicity were lung volume receiving ≥20Gy and carboplatin/paclitaxel 

chemotherapy, with a trend for age. Other factors indicated by this study to be predictive 

include volumes of lung V5Gy, V13Gy, V25Gy and V30Gy, but these dose variables were found 

to be collinear.   

Umberto et al49 investigated predictors of radiation induced lung injury in SABR patients. The 

study cohort of 60 patients underwent SABR with a dose of 45Gy in 3 fractions. The following 

metrics were tested; the PTV volume, tumour location, primary vs metastatic tumour and 

mean lung dose (in EQD2). Grade 2 or higher toxicity was seen in 9 patients and logistic 

regression analysis showed a good correlation between the mean lung dose (EQD2) and 

incidence of toxicity, with no toxicity seen in patients with mean lung dose less than 12Gy. 

1.2.6 Studies using ML 

A recent review by Isaksson et al8 found 53 papers using ML based models for the prediction 

of toxicity, of these models there were 15 studies for lung cancer and only one for the 

oesophageal cancer. The most popular cancer site was the prostate (16 studies).   

For oesophageal cancer Hart et al50 characterized the relationship between radiation induced 

pneumonitis and pulmonary metabolic activity on post treatment FDG-PET scans. The study 

dataset consisted of 101 patients with oesophageal cancer who underwent an FDG-PET scan 

3-12 weeks after completing thoracic radiotherapy. Modelling was perfumed to determine 

the interaction of pulmonary metabolic radiation response (PMRR), mean lung dose and the 

percentage of the lung receiving >20Gy with the incidence of pneumonitis. From the study 

dataset 60 patients had a grade 2 pneumonitis, whilst 5 had grade 3. They found a 

combination of PMRR, and mean lung dose had the highest predictive accuracy and were able 

to achieve a sensitivity and accuracy of 53.3% and 62.5% respectively. The peak AUC achieved 

was 0.63. 

Das et al51,52 performed two studies to predict pneumonitis, the first used a dataset of 219 

lung cancer patients treated with radiotherapy. For both studies the optimal models were 
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derived by fusing two or more single models. The models were trained for grade 2 or higher 

toxicity which occurred in 34 patients. The work used four common ML models, each model 

incorporated a small number of features from available set dose parameters and non-dose 

patient variables. Fusion was achieved by simple averaging of predictions from each patient 

from all four models. The AUC values achieved were 0.79 from cross validated results. The 

features arranged in order of importance were, chemotherapy, EUD, lung V20Gy, sex and 

squamous cell histology. The second model used a database of 234 patients of which 43 were 

diagnosed with pneumonitis. This model augmented the Lyman NTCP model by combining it 

with weighted non parametric decision trees for both dose and non dose inputs. This analysis 

achieved an AUC of 0.72, which was an improvement over the 0.63 achieved by the Lyman 

NTCP model alone. 

Valdes et al53 developed a patient specific big data clinical decision tool to predict 

pneumonitis in stage 1 NSCLC patients that were treated with SABR. They recorded 61 

features for 201 patients in whom 8 developed pneumonitis. Feature selection highlighted 

that the most important features for pneumonitis were the diffusion capacity of the lungs for 

carbon monoxide and the dose to the heart, trachea, and bronchus.  Su et al54 attempted to 

predict radiation induced pneumonitis using artificial neural networks. The study was applied 

retrospectively to 142 patients treated with 3D-CRT of which 26 developed toxicity. Model 

inputs were limited to lung dose volume data only, a volume vector that described patient 

lung sub volumes receiving more than a set of threshold doses was used as the input variables. 

The optimal model achieved 73% sensitivity and 99% specificity with an AUC value of 0.85.   

El Naqa et al55 modelled the occurrence of oesophagitis in 166 NSCLC patients of which 45 

developed grade 3 or higher toxicity using a Logistic Regression classifier. The authors 

concluded that model performance could be improved by mixing clinical and dosimetric 

factors as input parameters for modelling. In a second paper El Naqa54 tested several different 

linear and non linear kernels to approximate treatment response. This was performed on a 

dataset of 166 patients and examined the occurrence of grade 2 or higher toxicity. The 

optimal oesophagitis model consisted of 5 dosimetric and clinical variables, the results 

showed the importance of concurrent chemotherapy and DVH cut offs of 30, 45, 55 and 85 

Gy.  



35 | P a g e  
 

1.2.7 Summary of Models 

Many of the LKB models discussed in this section were published around a decade ago and 

have used mature datasets based largely based on 3D conformal radiotherapy, which perhaps 

makes them less relevant to modern radiotherapy techniques that have largely transitioned 

to VMAT as the standard for lung radiotherapy. The studies by Tucker et al have used 

relatively large datasets in excess of 500 patients from clinical trials. Due to the nature of 

NTCP modelling, these studies are primarily focussed on using a single dose metric to quantify 

the risk of toxicity and do not take into account clinical or biological factors. For lung these 

studies have investigated equivalent uniform dose and mean dose as a surrogate to 

encapsulate the whole DVH. LKB studies often focus on deriving the variables in the LKB 

equation (TD50(1), m, and n) rather than predicting toxicity in patients, with importance 

placed on the TD50(1) which is the dose at which 50% of patients are likely to suffer toxicity. 

This is line with how dose constraints are currently used clinically, where the constraints are 

based on a fixed percentage of patients that are likely to suffer from a specific toxicity. The 

national SABR dose constraints by Diez et al56 are a good example of this, as it stipulates the 

expected toxicity and rates of occurrence associated for each constraint. LKB studies often 

utilise the bootstrapping method to estimate the accuracy of their models and maximum 

likelihood estimation to work out model parameters. Some studies have also converted dose 

to EQD2 to compensate for the variation in dose deposition to OARs. 

Logistic regression and machine learning papers have focus on creating models that can 

accurately predicting toxicity for the individual patient. This is in line with modern 

radiotherapy developments where treatments are becoming increasingly individualised to 

the patient. Both these methods of toxicity prediction commonly use a combination of 

dosimetric and clinical factors for modelling, which can maximise the information available 

for model training. For the oesophagus mean dose is a commonly used feature, but some 

papers have used novel metrics such as doses to partial volumes or pulmonary metabolic 

response from PET imaging. For the lung common features include mean dose, V20Gy and 

chemotherapy, but studies have used a range of other dose thresholds, age, sex, tumour 

location, tumour volume, DCLO and doses to nearby OARs amongst others. ML papers have 

frequently used  multiple classifier types, common classifiers include logistic regression and 

naïve bayes models, although more complex kernel and neural networks have been used. 
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Whilst some papers such as those by Palma and Huang have used large patients’ cohorts (836 

and 374 patients respectively), many of the papers had small cohorts with either very high or 

very low rates of toxicity which make them unsuitable for modelling toxicity as they are 

dominated by a particular outcome. LR and ML papers will often report which features were 

most useful for modelling toxicity and the AUC values from ROC analysis for corresponding 

models as their endpoint. A small number of papers have been able to validate models on 

independent data sets, however most studies lack patient numbers to do this and often rely 

on methods such as k-fold cross validation or bootstrapping to assess the accuracy of their 

models.  

Overall there is a trend towards more ML modelling being published rather than LKB or LR, 

with a focus on creating models to predict toxicity. This research is more often  directed to 

lung toxicity rather than the oesophagus. Modelling routinely combines clinical and 

dosimetric data with newer studies also utilising more novel dosimetric features in an attempt 

to take into account the underlying structure of OARs, however there has been limited use of 

biomarkers or genetic information in toxicity modelling.   

1.3 Project Specific 

1.3.1 Thoracic Dose Constraints 

Clinically significant symptomatic radiation pneumonitis (RP) occurs in approximately 5-50% 

of patients that are treated for lung cancer57 making it one of the most common side effects 

of radiotherapy treatment. Mean Lung Dose (MLD) first proposed by Kwa et al58 is often used 

to predict toxicity owing to its simplicity and reasonable effectiveness in predicting RP.  Other 

methods have been shown to be more effective in predicting RP than MLD, although their 

increased complexity has meant that they are not currently as widely used40. Volume 

predictors such as the Lung V20 Gy first proposed by Purdy et al59 are well correlated with 

toxicity and commonly used clinically. The dose constraints recommended by QUANTEC are 

a V20 ≤ 30-35% and MLD ≤ 23-23 Gy which should limit the risk of RP to ≤ 20% for patients 

with Non-Small Cell Lung Cancer (NSCLC).  

Acute oesophagitis is another common side effect of radiotherapy for patients undergoing 

thoracic radiotherapy. Concurrent chemoradiotherapy or hyperfractionation results in 15-

25% rate of severe (G3 or above) acute oesophagitis. There is no recommended dose 



37 | P a g e  
 

constraint for this, although a trend of exposures greater than 40-50 Gy increasing the risk of 

acute oesophagitis60 has previously been demonstrated. 

 The risk of cardiac events is related to the dose and irradiated volume57. Excess deaths have 

been reported from exposures of 42-45 Gy61, but the threshold could be as low as 30 Gy62. 

The risk of cardiac toxicity from radiation is still unclear due to the long lead time for toxicity 

and numerous other factors which can influence cardiac events, thus making it difficult to 

determine the exact threshold. Analysis of the IDEAL-CRT data showed that 38% of patients 

had ECG changes at 6 months , these were found to be highly correlated with left atrial wall 

receiving doses greater than 63 Gy63. 

1.4 Data Sources  

Data from the IDEAL-CRT10, a non-randomised clinical trial could provide valuable data for 

determining thoracic dose constraints. This dataset contains DICOM information relating to 

the radiotherapy treatment plan, including planning CT, structure sets and dose cubes as well 

as clinical information including occurrence and severity of radiation induced 

oesophagitis/pneumonitis, sex, age, disease staging, forced expiratory volume (FEV), Force 

Vital Capacity (FVC) and diffusing capacity of lung for carbon dioxide (DLCO). 

Inclusion criteria for the trial were histologically/cytologically confirmed stage IIA-IIIB NSCLC, 

World Health Organization performance status (PS) 0 or 1, suitability for CRT agreed by 

multidisciplinary team, no prior anticancer therapy, FEV Predicted ≥1 L or 40%, DCLO ≥40% 

predicted, suitable for chemotherapy, and glomerular filtration rate 60 mL/min. Exclusion 

criteria were chronic liver disease or bilirubin >35 mmol/L, connective tissue disorders, and 

history of prior malignancy likely to interfere with the protocol treatment. 

For the IDEAL-CRT10,64 trial all patients had NSCLC and received radiotherapy with concurrent 

cisplatin and vinorelbine. Inclusion criteria for the trial were histologically/cytologically 

confirmed stage IIA-IIIB NSCLC, World Health Organisation performance status 0 or 1, 

suitability for CRT, FEV ≥1L or 40% predicted. RT doses between 63 Gy and 73 Gy in 30 

fractions over 40 days in the first schedule (6 weeks, 5 fractions per week) and doses between 

63Gy and 71Gy in 30 fractions over 33 days for the second schedule (5 weeks, 6 fractions per 

week, including 2 on the same day separated by a minimum of 6 hrs). Patients were given the 

highest tumour dose possible whilst maintaining OAR tolerances and target coverage limits. 
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Dose limits existed for lungs, spinal cord, brachial plexus, and heart, but not for oesophagus, 

so the dose limit was incrementally increased over the course of the trial. Patients were split 

into two non-randomised groups, for Group 1 the max dose deliverable was limited by 

oesophagus dose, this incrementally went up from 65 Gy to 71 Gy for the 6 week schedule 

and was 65Gy for the 5 week schedule. It was originally designed to go up to a final limit of 

73 Gy, but this didn’t happen in practice as tumour dose was not high enough to reach this 

threshold. Group 2 consisted of patients that were limited by other OAR dose constraints. 

Between September 2010 and March 2013, 120 patients from 10 UK centres were enrolled, 

with 118 starting treatment. Two patients did not start treatment, one patient due to 

deterioration and a second patient completed only one cycle of chemotherapy and did not 

finish RT owing to toxicity. There were two treatment related deaths in the study from 4 

recorded grade 5 toxicities, although only two were at least possibly related to radiotherapy. 

One 6 week patient who received 71Gy to 1cc of the oesophagus experienced a grade 5 

perforation, while the other fatality due to hemoptysis 14 months after RT was considered as 

possibly treatment related. Two more patients died from hemoptysis, but these were 

considered unrelated to treatment. Grade 2-5 RTPN toxicity was seen in 25% of patients and 

Grade 2-5 oesophagitis in 81% of patients. There were no ≥ grade 4  events for oesophagitis 

or pneumonitis. 

1.5 Sample Size Calculation 

Numerous predication models are published in medical literature each year, many are 

developed using datasets that are too small in terms of the total number of patients or 

outcome events. This can lead to inaccurate predictions that can lead to incorrect healthcare 

decisions. Riley et al 65 have provided guidance for calculating sample sizes. It is important 

that sample sizes are large enough to ensure that the results of modelling are applicable to 

new individuals in the target population.  

For this the purposes of this study, the number of patients available for analysis is fixed, so 

these sample size calculation techniques can be used to determine the margin of error in the 

overall outcome proportion estimate.  

A simple method is to calculate the sample size needed to precisely estimate the intercept in 

a model when no predictors are included. For binary outcomes, equation 1.13 may be used 
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where n is the number of patients, δ is the confidence interval and �̂� is the anticipated 

outcome proportion. 

𝑛 = (
1.96

𝛿
)

2

�̂�(1 − �̂�)               (1.13) 

For the IDEAL-CRT patients, 67% presented with grade two or higher oesophagitis and 22% so 

presented with grade two or higher RTPN. Assuming 95% confidence interval, the study would 

require 340 patients to model oesophagitis and 264 patients to model RTPN. This is far excess 

of the number of patients available for analysis. Rearranging this equation gives us the ability 

to calculate the confidence interval for a set number of patients as shown in equation 1.14. 

𝛿 = �̂� ± 1.96√�̂�(1−�̂�)

𝑛
             (1.14) 

A total of 116 patients were available from the IDEAL trail, so using the previously discussed 

outcome proportions, the confidence intervals of models derived from the IDEAL data for 

oesophagitis and RTPN would be 91.4% and 92.5% respectively. 

In addition to predicting the average outcome value precisely, the sample size for model 

development should also aim for precise predictions across the spectrum of predicted values. 

For binary outcomes van Smeden et al66,67 use simulation across a wide range of scenarios to 

evaluate how the error of predicted outcome probabilities from a developed model depended 

on various characteristics of the development dataset sample from a target population. They 

found that total sample size, candidate predictor parameters and outcome proportion were 

the three main drivers of a model’s predictive accuracy. This led to the development of 

equation 1.15. 

ln(𝑀𝐴𝑃𝐸) = −0.508 − 0.544 ln(𝑛) + 0.259 ln(𝜙) + 0.504 ln(𝑃)  (1.15) 

 Where n is the sample size, φ is the anticipated outcome proportion and P is the number of 

candidate predictor parameters. MAPE denotes the Mean Absolute Prediction Error. 

Assuming the use of 3 predictor parameters for the 116 patients with φ of 0.67 and 0.22 for 

oesophagitis and RTPN respectively. The equation gives a MAPE of 92.9% for oesophagitis and 

94.7% for RTPN.  

Finally, we must consider the sample size required to minimize the problem of overfitting. 

Overfitting is when a developed model’s output matches the sample dataset to closely, and 



40 | P a g e  
 

therefor is not generalisable to real world data. This notably occurs when the sample size is 

too small. Particularly when the number of candidate predictors is large relative to the sample 

size or the number of events within the sample group. The essential characteristic of an 

overfitted model is that the model’s predictive performance is overly optimistic and when 

used with new data the model’s performance will be much lower. 

Shrinkage methods deal with the problem of overfitting by reducing the variability in models. 

The magnitude of shrinkage required is estimate from the development dataset and can fail 

when the sample size is too small. Riley et al68,69 suggest identifying the sample size and 

number of candidate predictors that correspond to a small amount of shrinkage (<10%) 

during model development.  

For binary outcomes Riley et al showed that the sample size (n) needed to achieve an 

expected uniform shrinkage factor of S can be expressed as below 

 

𝑛 =  
𝑃

(𝑆−1)𝑙𝑛(1−
𝑅𝐶𝑆

2

𝑆
)

                                                           (1.16) 

Riley et al suggested targeting a shrinkage of ≤10% such that S ≥0.9. 𝑅𝐶𝑆
2  is the Cox-Snell R 

squared statistic, this value is important as it reflects the signal to noise ratio which has an 

impact on the estimate of multiple parameters and the potential for overfitting. When a low 

signal to noise ratio is present it becomes more difficult to identify true patterns and so 

models become naturally less reliable. Riley has suggested that in the absence of any other 

information sample sizes should be calculated an 𝑅𝐶𝑆
2  value of 0.15 which corresponds to a 

variance of 15%. With a sample size of 116 patients, this would allow the use of 2 candidate 

predictors assuming a shrinkage of ≤10% and a variance ≤15%. 

1.6 Summary 

There are numerous examples of NTCP modelling in the literature, although results tend to 

vary and there is not a consensus regarding which values to use clinically. Further studies are 

continuing to improve the accuracy of these models and take into account the changes due 

to modern radiotherapy techniques such as IMRT, VMAT and SABR. Some of this work is 

focused on using more sophisticated models such as the LKB model and machine learning for 

NTCP modelling and correcting the data for radiobiological effectiveness of the doses received 
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by OARs. NTCP modelling has its limitations, and the use of clinical trials data allows 

researchers to overcome some of these limits particularly with regards to the quality and 

consistency of the datasets. Researchers must still test the robustness of their data, as 

individual results are capable of data skewing the results of NTCP models. Gulliford et al 

presented a number of different methods that may be used to do this.  

Data from the IDEAL-CRT trial has substantial variation in the doses received to OARs and a 

reasonably high occurrence of toxicity. This would infer that data from this trial would be 

suitable for NTCP modelling using concepts such as BED or EQD2 in an attempt to standardise 

the doses these patients received. The number of patients in this trial is relatively small and 

further analysis would be required to confirm any finding of this analysis. 

1.7 Research hypothesis and objective 

1.7.1 Primary objective:  

This study aims to generate radiotherapy toxicity models for NSCLC patients treated with 

concurrent chemotherapy and isotoxic radiotherapy based on equivalent dose in 2Gy 

fractions (EQD2) to allow a single set of dose constraints to be used for non-standard lung 

radiotherapy treatment fractionations. Models will be generated for the prediction of 

radiation induced oesophagitis and pneumonitis using clinical and dosimetric information 

collected as part of the IDEAL-CRT trial. 

1.7.2 Secondary objective/s: 

Evaluation the performance and utility of Lyman Kutcher Burman NTCP modelling, Logistic 

Regression and Supervised Machine Learning for modelling radiotherapy induced toxicity. 

1.7.3 Study Design 

The study is a retrospective analysis of the radiotherapy planning, clinical and associated 

reported toxicity for patients from the IDEAL-CRT trial. IDEAL-CRT was a phase I/II trials of 

concurrent chemoradiation with dose escalated radiotherapy in patients with stage II/III non-

small cell lung cancer. The study will utilise this data to correlate grade 2 or higher 

oesophagitis and pneumonitis with dosimetric and clinical parameters converted to EQD2 

using radiobiological modelling. Data will be analysed using the Lyman Kutcher Burman NTCP 

model, Logistic Regression and Supervised Machine Learning. 
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1.7.4 Number of subjects 

A total of 116 patients will be reviewed. 

1.8 Author contribution to chapters 

This study was designed by the author. For this study the author successfully completed a 

Health Research Authority (7.1) application to gain ethics approval for this project with the 

support of the IDEAL-CRT chief investigator and the CRUK & UCL clinical trials unit (7.2) which 

allowed the arrangement of a data sharing agreement between East and North Hertfordshire 

NHS trust and the UCL CTC. The author gathered all clinical and toxicity data from the trials 

unit and radiotherapy data from the national radiotherapy trials quality assurance group, then 

performed the processing and analysis of all data reported.   

1.9 Thesis Rationale 

This thesis analyses evidence from a non-randomised clinical trial of isotoxic radiotherapy for 

non-small cell lung cancer. It was written in journal format as the intention is to publish the 

results in an oncology journal, as the results have the potential to inform clinical decisions for 

a patient benefit and direct future research.  

The structure of the thesis was designed so that the first paper which examined the statistical 

significance of data features available for analysis, the second paper used this information to 

inform toxicity modelling using supervised machine learning and the third paper compared 

the results of machine learning toxicity modelling with Lyman Kutcher Burman and logistic 

regression modelling to determine the best approach for future work.   
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2 Paper 1: Analysis of the significance of clinical and dosimetric 

factors for the prediction of radiation induced oesophagitis and 

pneumonitis 

Rushil Patel1, Karen Venables1, Adam Aitkenhead2, Laura Farrelly3, Nicholas Counsell3, David 

Landau4 

1 Mount Vernon Cancer Centre, Northwood, UK 

2 The Christie NHS Foundation Trust, Manchester, UK. 

3 Cancer Research UK & UCL Cancer Trials Centre, London, UK 

4 Guys & St Thomas NHS Trust, London, UK 

2.1 Abstract 

Background and Purpose: The lung and oesophagus are very sensitive to the effects of 

radiation. Radiation induced oesophagitis and pneumonitis can often be limiting factors in 

radiotherapy treatments for NSCLC patients. The study reported here uses data from the 

IDEAL-CRT trial to evaluate the utility of clinical and dosimetric factors for use as predictors 

of oesophagitis and pneumonitis. 

Methods: Descriptive statistics were used to explore the dosimetric and clinical data from a 

total of 116 patients from the IDEAL-CRT trial, these patients then underwent uni-variable 

analyses using logistic regression to determine if there was a statistically significant 

correlation between any of the data features and the occurrence of grade ≥ 2 oesophagitis or 

pneumonitis. 

Results: Of the 116 patients analysed, 27 (23%) and 78 (67%) suffered from grade ≥ 2 

pneumonitis and oesophagitis respectively. Logistic regression analysis demonstrated a 

statistically significant corelation (p<0.008) between the Mean Dose, V35Gy, V50 Gy, D1cc 

dose metrics and the occurrence of grade ≥ 2 oesophagitis. Logistic regression analysis was 

unable to find a statistically significant link between any clinical or dosimetric factor for 

pneumonitis, FEV percent predicted, FVC percent predicted, V20Gy and Mean Dose all had P-

values <0.1. 

Conclusion: For organs such as the oesophagus there is no consensus in the literature as to 

the most appropriate predictors for toxicity. The results of this paper show an encouragingly 



44 | P a g e  
 

strong link between a number of dose metrics and the occurrence of oesophagitis. The results 

of this paper do not show a strong link between any of the predictors and pneumonitis, with 

lung function tests showing the strongest correlation. For both oesophagitis and pneumonitis, 

toxicity modelling using a wider range of input data and more complex modelling techniques 

such as machine learning may be able to build clinically useful toxicity models.  

2.2 Introduction 

Lung cancer is the primary cause of death by cancer in Europe with over 385,000 cases per 

year and an approximate death rate of 52.2/100,000 persons per year70. Chemo-radiotherapy 

is the gold standard therapeutic option for patients with locally advanced lung cancer that are 

ineligible for surgery71.  Chemo-radiotherapy is a treatment that utilises both chemotherapy 

and radiotherapy. Chemotherapy uses anti-cancer drugs to destroy cancer cells, whilst 

radiotherapy uses x-rays to treat cancer cells. The chemotherapy drugs make cancer cells 

more sensitive to radiation and so giving these treatments concurrently is more effective than 

having either treatment on their own or delivered sequentially71.  

For the treatment of lung cancer, the two most significant side effects are oesophagitis and 

radiation induced pneumonitis (RTPN). The current chemoradiotherapy regimes result in a 

15-25% rate of severe acute oesophagitis60, with acute toxicity defined as occurring within 90 

days of treatment and severe toxicity defined as grade 3 or higher according to the 

Radiotherapy Therapy Oncology Group (RTOG) scoring criteria. For the oesophagus late injury 

is less common, which may reflect more on the low survival time for lung cancer patients 

which results in less follow up data. Clinically significant RTPN develops in approximately 5-

50% of patients that undergo radical radiotherapy for lung cancer72.  

The lung is sensitive to the effects of radiation. RTPN is an inflammation of the lung 

parenchyma caused by the delivery of radiotherapy to tumours within or in close proximity 

to lung tissue. The radiation dose to the chest results in the lungs producing less surfactant, a 

substance which helps keep the air passages open. A lack of surfactant can inhibit the lungs 

from fully expanding leading to symptoms such as cough, chest congestion, shortness of 

breath, and chest discomfort. There is a correlation between increased likelihood of 

developing pneumonitis with high doses of radiation, irradiating large volumes of lung tissue 

and certain chemotherapy drugs73. Radiation induced pneumonitis is one of the major 
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toxicities which limits the maximum radiation dose that can be safely delivered to tumours in 

the thoracic region. Its severity ranges from asymptomatic where cases can only be detected 

radiographically to clinically evident where patients have cough, shortness of breath, or fever. 

In the most severe cases there may be dense fibrotic lung changes and respiratory 

compromise which require patients to receive supplementary oxygen or assisted ventilation. 

Radiation induced oesophagitis is the inflammation of the oesophagus due to radiation. The 

symptoms present 2 to 3 weeks after initial therapy and include throat pain and dysphagia. 

The cells that form the lining of the oesophagus are particularly vulnerable to chemotherapy 

and radiation, so patients undergoing chemo-radiotherapy are particularly susceptible to 

oesophagitis as a treatment side effect. Severe oesophagitis will affect a patient’s ability to 

maintain nutrition and hydration, and so occurrences must be managed to ensure that 

oesophageal toxicity does not interrupt radiotherapy treatment, as delays in radiation 

delivery could impact upon patient outcomes. 

The aim of radiotherapy is to achieve locoregional control of cancer. To do this we must 

balance the likelihood of tumour control and the risks associated with toxicity to ensure there 

is sufficient benefit to the patient. The more information we have regarding the effects of 

radiation exposure for an individual patient the better we are able to personalise their 

treatment to give them the optimum balance of tumour control and toxicity. To predict the 

probability of toxicity, we can look at selected clinical demographics about the patient and 

their health as well as dosimetric factors regarding their radiotherapy treatment plan. In 

routine clinical practice constraints are placed on doses to organs at risk (OARs) to limit the 

probability of side effects to acceptable levels. Clinical information from the patient may be 

used to influence treatment decisions but is not routinely used to predict toxicity. For the 

treatment of lung cancer there are a number of different treatment fractionation regimes 

available for patients, each of these having their own dose constraints9,10. With the advent of 

Isotoxic radiotherapy where treatment doses are escalated until an OAR constraint is met and 

the widespread use of Stereotactic Ablative Body Radiotherapy (SABR)74 for the treatment of 

oligometastases, there is substantial variation in the radiation doses that OARs receive. Due 

to the variation in practice and the evidence base it can be difficult to establish which dose 

constraints to use for the respective OARs. Additionally, it would be useful to have OAR 

constraints based on Equivalent Dose in 2 Gy fractions (EQD2); this would allow a single set 
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of dose constraints to be used for all patients regardless of their treatment regime. Data from 

the IDEAL-CRT10 trial, which utilised an Isotoxic fractionation scheme with a fixed number of 

fractions would provide a useful data set to generate these values.   

The IDEAL-CRT trial was a non-randomised study of radiotherapy (RT) concurrent with two 

cycles of cisplatin and vinorelbine for patients with non small cell lung cancer (NSCLC), with 

inclusion criteria of confirmed stage IIA to IIIB and a number of other performance indicators. 

In total 120 patients were recruited from 8 treatment centres, of which 118 started 

treatment. IDEAL-CRT was an isotoxic trial and so tumour doses were prescribed to the 

highest possible dose to the tumour whilst meeting dose constraints for normal tissue and 

target coverage. This meant that doses to targets varied for each patient based on the size of 

their tumour and the proximity of critical structures. Previously established dose limits existed 

for lungs, spinal cord, brachial plexus, and heart, but not for oesophagus, so the trial 

incrementally increased the limit during the trial. Patients were split into two groups, Group 

1 was limited by oesophageal dose, which was incrementally escalated from 65 Gy to 71 Gy. 

The trial planned to allow up to 73 Gy, but this was not achieved in practice as the tumour 

dose was not sufficiently high to reach this threshold. Group 2 were limited by other dose 

constraints. Patients were recruited between September 2010 and March 2015. Data was 

collected for the doses received by nearby organs, which included healthy lung tissue, heart, 

oesophagus, brachial plexus, and the spinal cord. Radiotherapy treatments were planned 

using 3D conformal, and intensity modulated radiotherapy (IMRT) techniques which were 

optimised to the individual patient, meaning that the doses to healthy organs varied 

depending on the specifics of each patient. The median follow up for toxicity was 50 months. 

Toxicity and additional clinical factors were collected using Case Report Forms (CRFs). 

The aim of this analysis is to evaluate the utility of clinical and dosimetric factors for use as 

predictors of oesophagitis and RTPN for patients from the IDEAL-CRT trial.  

2.3 Methods 

2.3.1 Patients 

Of the 120 patients enrolled in the IDEAL-CRT trial, 116 patients with available does volume 

histogram (DVH) data were available for analysis, 2 patients did not start treatment and 2 

patients did not have a full data set available. All patients were treated as per trial protocol 
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with an Isotoxic regimen with the tumour receiving between  63 Gy and 73 Gy in 30 fractions 

over 40 days10 delivered concurrently with 2 cycles of cisplatin and vinorelbine chemotherapy 

on days 1 and 29 of RT.  Toxicity was graded according to the National Cancer Institute (NCI) 

Common Terminology Criteria for Adverse Events (CTCAE) Version 475.  

2.3.2 EQD2 conversion 

The dose to OARs for patients in the IDEAL-CRT trial was dependent on the level of dose 

escalation achieved and the location of the OAR with respect to the tumour location. To make 

the findings of this paper applicable to any dose fractionation, the Dose Volume Histograms 

(DVHs) were converted to EQD2.  The basic Linear Quadratic (LQ) model describes the 

surviving fraction (SF) of clonogenic or stem cells as a function of radiation dose. The main 

parameters of this model are α and β which represent the intrinsic radio-sensitivity of an 

irradiated cell. The LQ model uses an α/β ratio, which is a measure of the fractionation 

sensitivity of the cells.  

𝐵𝐸𝐷 = 𝑁 × 𝑑 × ⌊1 +
𝑑

(𝛼 𝛽⁄ )
⌋ − 𝑘(𝑇 − 𝑇𝑑𝑒𝑙𝑎𝑦) (2.1) 

 

This model allows the conversion of any dose treatment regimen into a Biologically Effective 

Dose (BED)76 and is given in equation 2.1. For ease of comparison the LQ model allows any 

unusual fractionation to be expressed in 2 Gy fractions (EQD2) as per equation 2.2.   

𝐸𝑄𝐷2 =
𝐵𝐸𝐷

1 +
2

(𝛼 𝛽⁄ )

  (2.2)
 

For the purposes of this analysis, an α/β ratio of 4 was used for the lung, taken from the 

QUANTEC analysis77,78. For the oesophagus an α/β ratio of 10, commonly used in the 

literature79,80 was used. The k term representing the dose recovered per day was set at 0.54Gy 

and 0.8Gy for the lung and oesophagus respectively, both values were from a reviews of 

clinical studies by Bentzen et al81,82.  The 𝑇𝑑𝑒𝑙𝑎𝑦 was set at 28 days for both lung and 

oesophagus as per Fowler et al83, with the T value of 33 days and 40 days for the 5 and 6 week 

treatment schedules respectively. Overall treatment time was strictly mandated in the trial 

guidelines. 
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Digitally Imaging and Communications in Medicine (DICOM) data was imported into the 

Eclipse v15.6 (Varian Medical Systems) treatment planning system, DVHs were calculated for 

the oesophagus and Lung-GTV (the whole lung volume excluding the GTV) structures. DVHs 

were calculated with 0.01 Gy dose bins to allow for high precision dose metrics to be 

calculated. This data was then exported to a text file using inbuilt functionality of Eclipse for 

all patients. This data was then processed using an in-house programme written in MATLAB 

v2019b (Appendix 5). The programme parses the DVH text file, converts the dose into EQD2 

using the appropriate α/β ratio and then reports the desired dose metrics for the required 

structures. The software iterates through all DVH files and writes the dose metrics for each 

patient into a single text files which were imported into Microsoft Excel and combined with 

clinical and toxicity data reported from the IDEAL-CRT trial10. 

2.3.3 Statistics 

Data were analysed with SPSS software (IBM) v28. Clinical factors collected through the 

IDEAL-CRT trial included sex, age, disease stage and Forced Expiratory Volume (FEV), Force 

Vital Capacity (FVC) and diffusing capacity of lung for carbon dioxide (DLCO). Dosimetric 

factors were generated using established constraints from QUANTEC60,77  for the initial 

analysis, which included mean dose and V20 Gy for Lung-GTV and mean dose, V35 Gy, V50 

Gy, and V70 Gy for the oesophagus. These factors were classified as continuous (dose metrics, 

age, FEV, FCV, DCLO) or categorical (sex, disease stage) data, with data classification 

determining the types of statistical tests that were performed. Oesophagitis and RTPN were 

analysed using the occurrence of CTCAE V4.0 grade 2 or 3 toxicity within 6 months of 

treatment as the outcome.  

2.3.3.1 Data Characterisation 

Descriptive statistics were calculated on the dataset to better explore the data. For 

categorical data, pie charts were plotted to show the distribution within the sample 

population. For continuous dosimetric data, scatter plots with data colour coded depending 

on their respective toxicity status and box and whisker in which dosimetric data was grouped 

by toxicity status were used to demonstrate the differences between the groups for key 

variables. Finally, Pearson’s correlation coefficients were calculated to measure the strength 

of linear association between the dosimetric variables. Scatterplot matrices were also created 

to visually show the correlation between the different dosimetric parameters. 
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2.3.3.2 Data modelling 

Data underwent binomial logistic regression to establish which factors were the strongest 

predictors of toxicity. Binary logistic regression predicts the probability that an observation 

falls into one of two categories of a dichotomous dependent variable based on one or more 

independent variables. In this case uni-variable analysis was performed to assess predicative 

ability of each variable. Due to the relatively small data set available for this research, it was 

not feasible to test all the predictive factors together but through uni-variable analysis it may 

be possible to determine which factors would be the most useful for further modelling. To 

interpret the results, we used the Wald test which determines the statistical significance for 

each independent variable and significance of the binary logistic regression test. These two 

values can help us determine which factors contribute to the prediction of toxicity and which 

can be removed for further modelling.  

Binary logistic regression provides an estimate of the probability of an event. For the results 

of this analysis, if the estimated probability of the event occurring is equal to or greater than 

the cut-off value 0.5, SPSS classifies this event as occurring. If the probability is below 0.5 SPSS 

classifies the event as not occurring. This essentially provides the sensitivity and specificity of 

the observed model. The Wald value quantifies the magnitude of the impact of the variable 

on the model, and the p-value determines whether the result is statistically significant.  

A bootstrapping method was applied to the data in which a thousand different cohorts of 116 

patients were generated by resampling the original dataset with replacement. These cohorts 

were then fitted using logistic regression and combined by averaging the output. The 

bootstrapping method allows us to determine the 95% confidence intervals of the logistic 

regression analysis as well generating a bootstrapped average p value which informs us of the 

robustness of our p-value. A bias value is also generated, the smaller the bias the better the 

estimated coefficient.  

As multiple statistical tests have been run for a number of variables in the same dataset, a 

multiple comparison correction must be applied. In this case a Bonferroni correction has been 

applied to generate a new p-value, using 𝑝 = 𝛼
𝑛⁄   where alpha is the original significance 

level and n is the number of tests performed. 
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2.3.4 Additional dosimetric parameters 

Additional dosimetric parameters were also tested to determine whether they could provide 

an improvement in the correlation with toxicity. These included factors from that are 

commonly used in the literature. For the oesophagus, small volume doses such as the D1cc 

have been used in clinical trials84,85. For the Lung, V5 Gy86 and Equivalent uniform dose (EUD)40 

have been used in the literature. 

2.3.4.1 EUD Calculation 

Previous studies have been published predicting RTPN using NTCP values based on the 

generalised Lyman model29. This model incorporates a flexible dosimetric parameter, which 

is known as Equivalent Uniform Dose (EUD)85. EUD allows sub volumes of an OAR that have 

been irradiated to be weighted differently. Sub volumes of different organs are weighted by 

the volume parameter n. When n=1 each sub volume is weighted equally and the EUD 

corresponds to the average dose which is the same as mean dose (MD). When n<1 sub 

volumes receiving a higher dose are weighted more heavily. Earlier analysis has shown that 

RTPN correlates better using EUD40 with an n = 0.5 than with n = 1. 

The EUD can be calculated as per equation 2.3 

 

EUD = (∑ D
i

1
n × vi)

n

(2.3) 

Where 𝑣𝑖  is the volume of the dose bin receiving dose 𝐷𝑖, summed over all dose bins in the 

DVH. The sum is then raised to the power n to revert to dose units.  The n parameter affects 

the relative weighting of the subvolumes. 

2.4 Results 

2.4.1 Incidence of Pneumonitis and Oesophagitis 

Of the 116 patients available for analysis, 27 (23%) experienced CTCAE v4.0 grade ≥2 RTPN 

and 3 (3%) patients experienced grade ≥3 RTPN. For oesophagitis 78 (67%) patients 

experienced CTCAE v4.0 grade ≥2 toxicity and 7 (6%) patients experienced grade ≥3 

oesophagitis. Due to the low incidence of grade ≥3 events the analysis will focus on grade ≥2 

toxicity for both RTPN and oesophagitis. 
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2.4.2 Statistical Analysis  

Figures 1-8 and Tables 1-10 contain the descriptive statistics performed on the IDEAL-CRT trial 

data, allowing exploration of the dataset and examining the correlations between the various 

dosimetric variables. Additional plots are available in Appendix 6. 

 

Figure 1 Pie charts of patient gender and disease stage for the IDEAL-CRT trial 

Variables Minimum Maximum Mean Std. Deviation Variance 

AGE 42.60 83.70 65.64 7.67 58.88 

D1cc 13.38 101.73 61.20 14.92 222.69 

V35Gy 0.00 67.08 30.39 16.67 277.86 

V50Gy 0.00 57.01 22.06 15.28 233.54 

MD 3.55 44.74 22.32 8.83 78.01 
Table 1 Descriptive statistics of all variables which may be used to predict Oesophagitis 

Patient Sex

SEX

female

male

Disease Stage

STAGE

IIb

IIIa

IIIb

IV
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Figure 2 Scatterplots of Mean Dose and V50Gy to the Oesophagus tissue against dose V35Gy. Orange dots denote those 
patients that did not suffer ≥G2 Oesophagitis while grey dots denote those that did 
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Figure 3 Scatterplots of Mean Dose to the Oesophagus tissue against dose V50Gy and D1cc. Orange dots denote those 
patients that did not suffer ≥G2 Oesophagitis while grey dots denote those that did 
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Figure 4 Box and whisker plots of the Oesophageal V35Gy, V50Gy, Mean Dose and D1cc, where box zero is for patients that 
did not suffer from ≥G2 Oesophagitis and one is for patients that did 

Oesophagitis Correlations 

  D1cc V35Gy V50Gy MD 

D1cc 
Pearson Correlation 1.00 0.657** 0.600** 0.679** 

Sig. (2-tailed)   0.00 0.00 0.00 

V35Gy 
Pearson Correlation 0.657** 1.00 0.923** 0.963** 

Sig. (2-tailed) 0.00   0.00 0.00 

V50Gy 
Pearson Correlation 0.600** 0.923** 1.00 0.923** 

Sig. (2-tailed) 0.00 0.00   0.00 

MD 
Pearson Correlation 0.679** 0.963** 0.923** 1.00 

Sig. (2-tailed) 0.00 0.00 0.00   
Table 2 contains the results of a Pearson’s correlation procedure run to determine the relationship between four commonly 
used dosimetric parameters which are commonly used to predict Oesophagitis. ** refers to results where the correlations are 
significant at the 0.01 
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Figure 5 A scatterplot matrix which visually demonstrates the relationship between the various dosimetric predictors of 
Oesophagitis 

Variable Minimum Maximum Mean Std. Deviation Variance 

AGE 42.60 83.70 65.64 7.67 58.88 

FVC Percent Predicted 48.00 136.00 94.83 18.84 354.90 

FEV Percent Predicted 36.80 147.00 76.65 20.25 409.94 

DCLO Percent Predicted 41.70 111.00 70.52 17.69 312.90 

EUD 6.52 46.59 24.60 4.83 23.28 

V5Gy 26.61 73.46 50.16 10.17 103.37 
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V20Gy 0.85 40.98 23.03 5.51 30.39 

MD 2.89 29.24 14.08 3.51 12.30 
Table 3 Descriptive statistics of all variables which may be used to predict RTPN 

 

 

Figure 6 Scatterplots of Mean Dose to the healthy Lung tissue against dose V20Gy and Equivalent Uniform Dose. Orange 
dots denote those patients that did not suffer ≥G2 RTPN while grey dots denote those that did. 
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Figure 7 A box and whisker plot of patient lung function. These represent the Forced Vital Capacity and Forced Expiration 
Volume for patients compared with their expected values determined on baseline factors such as age, ethnicity, and height, 

where box zero is for patients that did not suffer from ≥G2 RTPN and box one is for patients that did 

 

Figure 8 Box and whisker plots of the Lung V20Gy, V5Gy, Mean Dose and Equivalent Uniform Dose, where box zero is for 
patients that did not suffer from ≥G2 RTPN and box one is for patients that did 

RTPN Correlations 

  
Lung 
EUD 

Lung 
V5 

Lung 
V20 

Lung 
MD 

Lung EUD Pearson Correlation 1.00 .512** .653** .930** 

Sig. (2-tailed)   0.00 0.00 0.00 

Lung V5 Pearson Correlation .512** 1.00 .735** .746** 

Sig. (2-tailed) 0.00   0.00 0.00 

Lung V20 Pearson Correlation .653** .735** 1.00 .831** 

Sig. (2-tailed) 0.00 0.00   0.00 

Lung MD Pearson Correlation .930** .746** .831** 1.00 
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Sig. (2-tailed) 0.00 0.00 0.00   
Table 4 contains the results of a Pearson’s correlation procedure run to determine the relationship between four commonly 

used dosimetric parameters which are commonly used to predict RTPN. ** refers to results where the correlations are 
significant at the 0.01 level (2-Tailed) 

 

Figure 9 A scatterplot matrix which visually demonstrates the relationship between the various dosimetric predictors of 
RTPN  

Table 5 shows the results of binary logistic regression analysis for oesophagitis, Wald value 

and p-value are reported for each tested variable. Table 6 shows the sensitivity, specificity, 

overall predictive accuracy, while Table 7 shows the results of the bootstrapping method. 

Boxplots of the four most significant predictive factors for oesophagitis are shown in Figure 

4. 

 B Wald Sig. 

Sex 0.852 3.133 0.077 

Age -0.069 5.479 0.019 

D1cc 0.039 7.576 0.006 

V35Gy 0.053 14.609 0.000 

V50Gy 0.061 14.839 0.000 

MD 0.073 8.955 0.003 
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Table 5 Results of binary logistic regression analysis for factors predicting Oesophagitis 

Predictive Accuracy (%) 

  TN TP Overall 

Sex 0 100 67.2 

Age 10.5 97.4 69 

D1cc 28.9 94.9 73.3 

V35Gy 39.5 89.7 73.3 

V50Gy 44.7 84.6 71.6 

MD 28.9 93.6 72.4 
Table 6 The predictive accuracy associated with the binary logistic regression tests for oesophagitis 

 

B Bias Std. Error 
Sig. (2-
tailed) 

95% Confidence 
Interval 

Lower Upper 

Sex 0.852 0.028 0.515 0.067 -0.035 2.043 

Age -0.069 -0.002 0.030 0.018 -0.137 -0.014 

D1cc 0.039 0.002 0.020 0.014 0.008 0.086 

V35Gy 0.053 0.001 0.014 0.001 0.029 0.084 

V50Gy 0.061 0.002 0.015 0.001 0.036 0.095 

MD 0.073 0.002 0.026 0.002 0.031 0.131 
Table 7 results of the bootstrapping method applied to logistic regression analysis 

Table 8 shows the results of binary logistic regression analysis for pneumonitis, Wald value 

and p-value are reported for each tested variable. Table 9 shows the sensitivity, specificity, 

overall predictive accuracy, Table 10  shows the results of the bootstrapping method. Boxplots 

of the four most significant predictive factors for oesophagitis are shown in Figure 8. 

 B Wald Sig. 

Sex 0.542 1.337 0.247 

Age -0.023 0.645 0.422 

FVC Percent Predicted 0.021 3.026 0.082 

FEV Percent Predicted 0.020 3.395 0.065 

DCLO Percent Predicted 0.006 0.212 0.645 

EUD -0.111 3.254 0.071 

V5Gy -0.037 2.567 0.109 

V20Gy -0.076 3.175 0.075 

MD -0.134 2.997 0.083 
Table 8 Results of binary logistic regression analysis for factors predicting Pneumonitis 

Predictive Accuracy (%) 

  TN TP Overall 

Sex 100 0 77.6 

Age 100 0 77.6 

FVC Percent Predicted 100 0 77.6 

FEV Percent Predicted 100 3.8 78.4 



60 | P a g e  
 

DCLO Percent Predicted 100 0 77.6 

EUD 100 3.8 78.4 

V5Gy 100 0 77.6 

V20Gy 100 3.8 78.4 

MD 100 3.8 78.4 
Table 9 The predictive accuracy associated with the binary logistic regression tests for Pneumonitis 

  

B Bias 
Std. 

Error 
Sig. (2-
tailed) 

95% Confidence 
Interval 

Lower Upper 

Sex 0.542 -0.039 0.824 0.274 -0.452 1.474 

Age -0.023 0.002 0.031 0.439 -0.083 0.043 

FVC Percent Predicted 0.021 0.000 0.011 0.035 0.002 0.044 

FEV Percent Predicted 0.020 0.000 0.011 0.045 -0.002 0.043 

DCLO Percent Predicted 0.006 0.000 0.014 0.673 -0.020 0.035 

EUD -0.111 -0.002 0.067 0.079 -0.256 0.016 

V5Gy -0.037 -0.001 0.026 0.126 -0.091 0.013 

V20Gy -0.076 0.002 0.045 0.070 -0.164 0.018 

MD -0.134 -0.006 0.075 0.062 -0.298 0.004 
Table 10 results of the bootstrapping method applied to logistic regression analysis 

2.5 Discussion 

An important consideration for treatment plan optimisation is the ability to predict the likely 

risk of toxicity associated with a potential treatment plan. Any reduction in the risk of toxicity 

must be balanced against the risk of inadequate coverage of the tumour. The prediction of 

risk is a process that should be tailored to the individual patient, taking into account all 

relevant clinical and dosimetric data to ensure an optimum therapeutic ratio. The ability to 

accurately predict of the risk of toxicity is important to ensure treatment plans are optimal 

and the aim of this study is to demonstrate which predictors would be most useful for toxicity 

modelling.  

When analysing the correlation between the various dosimetric parameters for RTPN, we can 

see that there is a statistically significant correlation between the four different metrics. It is 

a similar situation when analysing the parameters for oesophagitis, all four parameters are 

highly correlated. This would suggest that the benefit of using multiple dosimetric parameters 

for modelling may be of limited utility, although we must balance this against the fact that 

multiple dose metrics can give a more complete picture of the DVH which may be more 

beneficial when using advanced modelling techniques. 
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The Bonferroni corrected p-values for oesophagitis and pneumonitis were 0.008 and 0.006 

respectively. In the case of oesophagitis, the results show that there is a statistically significant 

correlation between toxicity and Mean Dose, D1cc, V35Gy, and V50Gy dosimetry metrics in 

agreement with the literature60,87. The strongest correlation was seen between the V50Gy 

metric which had the highest Wald value and joint lowest P value with V35Gy. The overall 

predicative accuracy of this metric using binary logistic regression was 73.3%, although this 

model over predicated toxicity in patients that did not develop any. This was a common issue 

for all metrics tested for oesophagitis, which could potentially be improved by varying the 

cut-off value for the regression analysis. The age of the patients did not have a significant 

impact on toxicity in line with Pignon et al88, 22. The majority of patients did not receive doses 

as high as 75Gy and so this metric was not tested due to a lack of data. When the results of 

the bootstrapping are also analysed, the P-value of the D1cc is no longer significant. The 

V35Gy, V50Gy and mean dose remain statistically significant.  

With regards to radiation induced pneumonitis, the dose metrics recommended by 

QUANTEC60,78,89,90 (MD, V20 Gy) did not provide a strong correlation with toxicity for this 

dataset. Measures of lung function assessed using binary logistic regression performed well, 

with the FEV having the lowest P-value overall. The FVC performed similarly to the FEV, but 

the DCLO had very poor correlation with toxicity. The EUD, V20Gy and Mean Dose all had P 

values <0.1, suggesting that they may have some utility in toxicity modelling when combined 

with additional data. The EUD did show a slightly stronger correlation with RTPN than MLD, 

which was in line with the Tucker et al40, although this also did not prove to be statistically 

significant. These results do not agree with publications in the literature77 or with the dose 

constraints that are commonly used for clinical trials85,91 where the V20Gy, MLD and V5Gy 

(only used for 3 of the 5 arms of the ADSCAN trial) constraints are commonly used. Analysis 

of the bootstrapping showed that FVC and FEV had the lowest P-values overall and that the 

Mean Dose, V20Gy and EUD all generated p-values less than 0.1 with V20Gy providing the 

lowest P-value of all dosimetric predictors. 

For the IDEAL-CRT trial the dose constraint for the lung was an EQD2 mean of 18.2 Gy10, with 

an expectation of a 20% rate of grade 2-5 RTPN92, with the trial reporting an incidence rate of 

23%. This low occurrence of toxicity and the relative homogeneity of the MLD and V20Gy due 
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to planning dose constraints may indicate that this dataset may not be well suited to 

determine the dosimetric factors with high correlation to RTPN.   

2.6 Conclusion 

For OARs such as the oesophagus, there is no consensus in the literature as to the most 

appropriate metrics to use to predict toxicity. With significant heterogeneity in the data, the 

mechanisms of toxicity may not be fully understood. The results of this paper show an 

encouragingly strong correlation with multiple dose metrics, which have the potential to be 

further refined using techniques such as machine learning8 to allow for a more accurate 

prediction of oesophagitis.  

The results for RTPN are less promising from this dataset. There were no statistically 

significant predictors of RTPN. Further analysis using multi-variable analysis and machine 

learning may be able to improve prediction for RTPN by virtue of using more predictors in the 

model and in the case of machine learning performing more complex data modelling8. The 

use of EUD also showed superiority over MLD. Further analysis using Lyman Kutcher Burman36 

NTCP modelling would be worth exploring to improve toxicity prediction for RTPN. 
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3 Paper 2: Predicting radiotherapy toxicity for NSCLC patients using 

Machine Learning Techniques 

Paper 3: Rushil Patel1, Karen Venables1, Adam Aitkenhead2, Laura Farrelly3, Nicholas 

Counsell3, David Landau4 

1 Mount Vernon Cancer Centre, Northwood, UK 

2 The Christie NHS Foundation Trust, Manchester, UK. 

3 Cancer Research UK & UCL Cancer Trials Centre, London, UK 

4 Guys & St Thomas NHS Trust, London, UK 

3.1 Abstract 

Background and Purpose: The accurate prediction of radiation induced toxicity enables 

clinicians to make more informed treatment decisions with regard to the potential risks and 

benefits of radiotherapy treatment. In this study we explore the use of machine learning using 

clinical and dosimetric data features to predict toxicity for NSCLC patients from the IDEAL-CRT 

trial.   

Methods: Dosimetric and clinical data from 116 NSCLC patients from the IDEAL-CRT trial 

underwent supervised machine learning using the classification learner application in 

MATLAB 2022a. Data was modelled against outcomes of grade 2 or higher radiation induced 

pneumonitis and oesophagitis using the Decision Trees, Logistic Regression, Support Vector 

Machines, Ensemble, Neural Networks and Naïve Bayes classifiers. An MRMR feature 

selection method was used to select modelling features. 5-fold cross validation method was 

employed to determine the predictive accuracy, sensitivity, and specificity of each model. 

Receiver operator characteristic (ROC) analysis was performed to determine the area under 

the curve (AUC) to assess overall model performance. 

Results: The predictive accuracies observed for all classifiers and MRMR selected feature 

combinations ranged from 69-74% for oesophagitis and 65-78% for pneumonitis. The Naïve 

Bayes model had the highest AUC of 0.79 for oesophagitis, with an overall accuracy of 78.4%, 

sensitivity of 93.6%, and specificity of 31.6%. The Naïve Bayes classifier utilised the 

oesophageal V50Gy and patient sex as inputs. For pneumonitis the Decision Tree classifier 

produced the model with the highest AUC of 0.53, the Ensemble and Neural Network models 
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provided a slight improvement in sensitivity over other models but overall the predictive 

performance of all models was poor.  

Conclusion: The results of this study were comparable to those found in published literature. 

For radiation induced oesophagitis there is a clear correlation between volumetric dose 

constraints such as the V50 Gy that provided the machine learning classifiers with good 

predictive accuracy. For pneumonitis the models only achieved poor predictive accuracy. 

These models have the potential to be clinically useful and further analysis is required to 

determine if the use of additional input data can improve the performance. Larger datasets 

would also be useful as they would facilitate the use of more features for model training. 

3.2 Introduction 

Half of patients who undergo active treatment for cancer will receive radiotherapy as part of 

their treatment program. A particular challenge of radiotherapy is the close proximity of 

organs at risk (OARs) to the target regions, which can lead to radiotherapy induced toxicity. It 

is common practice when planning a radiotherapy treatment to adhere to predefined dose 

constraints for OARs to ensure an acceptable level of toxicity when treating patients. This 

allows the planner to balance the potential benefits of treatment in terms of tumour control 

against the possibility of damage to healthy organs and tissue. For the treatment of NSCLC 

two of the most common side effects are radiation induced oesophagitis and pneumonitis. 

The treatment outcomes from radiotherapy are determined by complex interactions between 

treatment, anatomical, and patient related variables. These outcomes are traditionally 

modelled using information about the dose distribution and fractionation, but it is recognised 

that the response to radiation is multifactorial and can include clinical prognostics factors as 

well. The modelling of radiotherapy outcomes is conducted by two approaches: analytical 

modelling which employs biophysical understanding of irradiation effects such as the linear 

quadratic model and data driven models that rely on robust parameters gained from matched 

clinical and dosimetric data93. For a data driven model the observed treatment outcome can 

be considered as the result of mathematical mapping of several dosimetric, clinical or 

biological inputs. The treatment outcomes are provided by an experienced healthcare 

professional using a standardised scoring criterion and this data driven approach is a 

commonly used method in outcome modelling94. 
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Data driven approaches increasingly utilise machine learning (ML). The theoretical framework 

for ML has been in existence since the 1950s31, but it was not until recently that advances in 

technology have made it feasible for use in clinical settings8. ML is a subset of artificial 

intelligence (AI) and refers to algorithms that can learn to perform a specific task without 

implementation. ML can be supervised or unsupervised. For supervised learning a labelled 

dataset is used, where each data feature has been labelled with the outcome. The aim of 

supervised ML is to predict the right answer from a selection of features. In unsupervised 

learning, an unlabelled dataset is used in which the “correct” answer is unknown and the aim 

of this type of learning is to be able to structure the data.  

Numerous studies44,45,53,95–98 have used supervised ML to build models for toxicity prediction 

from radiotherapy. Supervised ML is an appropriate technique for this application because 

the endpoints (e.g. grade of toxicity) are known. It is a branch of artificial intelligence in which 

algorithms are used to learn from prior experience to process complex data. Supervised ML 

learning algorithms are used to train data with known outcomes using features to detect 

patterns and correlation through the learning process. 

Data from clinical trials is ideal for supervised ML methods, as they provide high quality data 

with good patient follow up reported using a standardised methodology. This type of data 

also has high levels of curation and quality assurance which can reduce confounding effects 

and bias when used for analysis99,100.  Chemo-radiotherapy is currently the gold standard 

treatment for non small cell lung cancer (NSCLC) in patients that are surgically inoperable71 

and data from the IDEAL-CRT10 trial is well suited for toxicity analysis in NSCLC patients using 

ML methods. 

There are many ML classifiers that would be suitable for analysing the IDEAL-CRT dataset, a 

brief description of relevant classifiers is given here. Many of the classifiers have sub types 

that can be separately trained and may also have an optimisable model which have multiple 

hyperparameters that can be used to further optimise the training of the model with the 

potential to improve the accuracy and generalisability of the subsequent results. Where 

multiple classifiers may be appropriate for training and it is not prohibitively computationally 

expensive, it is recommended to train multiple classifiers and assess predictive performance 

and robustness to determine the most appropriate one for a given dataset.   
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Decision Tree classifiers let you predict responses to data by following the decision from the 

root down to a leaf node. The tree consists of branching decision where the value of the 

predictor is compared with the training weight. The number of branches and the value of the 

weights are determined through the training process, additional modifications known as 

pruning can be used to simplify the model. The Logistic Regression classifier can predict the 

probability of a binary response. Due to its simplicity, it is commonly used. It uses a sigmoid 

function to return the probability of an outcome. It is widely used when the classification 

problem is binary. The sigmoid function generates a probability output by comparing the 

probability with a predefined threshold that is optimised during training. 

SVM classifies data by finding the linear decision boundary (hyperplane) that separates all the 

data points of one class from those of another. The best boundaries for SVM models are the 

ones with the largest difference between two classes. If the data is not linearly separable, a 

loss function is used to penalize points on the wrong side. SVMs sometimes may also use a 

kernel transform to transform nonlinearly separable data into higher dimension where a 

linear boundary can be found. Ensemble classifiers combine several weaker decision trees 

into a stronger ensemble. For example, a bagged decision tree consists of trees that are 

trained independently on data that is bootstrapped from the input data. Boosting involves 

creating a strong learner by iteratively adding weak learners and adjusting the weight of each 

weak learner to focus on misclassified examples. 

The Naïve Bayes classifier assumes the presence of a particular feature in a class is unrelated 

to the presence of any other feature. It classifies new data based on the highest probability 

of its belonging to a particular class. Neural Networks take inspiration from the learning 

process occurring in human brains. A neural network consists of layers, which convert an 

input into an output. Each unit takes an input, applies a function to it and passes it onto the 

next layer. Generally, these networks are designed to feed-forward, as a layer feeds its output 

to the next layer, there is not any feedback to the previous layer. Weightings are applied to 

the signals passing from one unit to another, these weightings are tuned during training to 

adapt to particular problem.  

The accurate predication of clinical outcomes can enable clinicians to make more informed 

treatment decisions with regards to the risks and benefits of particular treatment choices. In 
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this paper we explore the use of clinical and dosimetric factors in combination with supervised 

ML to predict oesophagitis and pneumonitis in NSCLC patients.  

3.3 Methods 

3.3.1 Data pre-processing 

As part of the IDEAL-CRT trial10, clinical factors and radiotherapy treatment data were 

routinely collected for all trial patients. In total 120 patients were recruited to the IDEAL-CRT 

trial; 116 complete records were available for analysis. NCI CTCAE v476 Grade 2 to 5 

radiotherapy induced pneumonitis (RTPN) was seen in 36 (30.5%) of patients that received 

the trial treatment, three of these events were grade 3 (3.7%), no patients had Grade 4 or 5 

toxicity. Grade 2 to 5 oesophagitis rate was 82.9% overall with 5 grade 3 toxicities (6.1%) and 

no grade 4 or 5 toxicity. With regards to clinical factors, sex, age, and lung function 

measurements such as forced expiratory volume in one second (FEV), forced vital capacity 

(FVC) and diffusing capacity of lungs for carbon monoxide (DLCO) were collected. FEV 

measures how much air a person can exhale during a forced breath in one second, FVC is the 

total of air exhaled during a single breath and DLCO is a measure of the ability of the lungs to 

transfer gas from inspired air into the bloodstream.  

IDEAL-CRT was an isotoxic trial with individual dose escalation for each patient. Doses to OARs 

were converted to the equivalent dose in 2 Gy fractions (EQD2) to allow comparison to 

conventional radiotherapy results in the literature, this conversion took into account overall 

treatment time. The dosimetric data for all patients was imported into the Eclipse Treatment 

planning system v15.6 (Varian Medical Systems) and DVH data was exported for each patient 

into an in-house MATLAB programme (Appendix 3) which converted the doses into EQD2T 

for analysis using the linear quadratic equation11 with an 𝛼 𝛽⁄  ratio of 4 for the lung and 10 

for the oesophagus. The programme then calculated dosimetric parameters based on those 

from QUANTEC3,60,77 and relevant clinical trials10,84–86. These included the V5Gy, V20Gy, Mean 

dose (MD), and Equivalent uniform dose (EUD) for Lung and V35Gy, V50Gy, D1cc, and Mean 

dose for the Oesophagus. 

Previous statistical analysis101 for this data set using binary logistic regression analysis showed  

weak statistical correlation between predictive dosimetric factors (V5Gy, V20Gy, MD and 

EUD) and RTPN using uni-variable analysis. That analysis showed a strong correlation (P<0.01) 
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between several predictive factors and oesophagitis. These consisted of all tested dosimetric 

factors. However, while these binary logistic regression models showed good sensitivity (85-

100%), the specificity was poor (0-45%).  

3.3.2 Supervised machine learning 

Trial participants were mapped as either having grade 2 or greater toxicity or not for radiation 

induced oesophagitis and pneumonitis separately. This mapping along with dosimetric and 

clinical data features were imported into the Classification Learner Application in MATLAB 

v2019b to apply supervised machine learning techniques. This involved building and 

evaluating the ability of ML classifiers to correctly predict response based on the selected 

data features. For oesophagitis, the predictive features evaluated were, sex, age, MD, V35, 

V50, and D1cc. For pneumonitis, the factors available for modelling were, sex, age, FVC, FEV, 

MD, V20, and EUD. All factors were continuous data which are defined as numerical values 

that can be an infinite number of values between any two values, except for sex which was 

categorical as it contains a finite number of categories. 

When training ML classifiers, the minimum number of samples per feature required is 

affected by the complexity of the data and model. The modelling of toxicity is complex and 

given the sample size of 116 patients, the number of predictors used for modelling should be 

minimized to aid the robustness of the model and prevent overfitting. Sample size 

calculations have shown that this should be a maximum of 2 features for this dataset to 

minimise shrinkage. Modern classification models are highly adaptive and capable of 

modelling complex relationships, but they can also easily overemphasise patterns that are 

not reproducible. A methodological approach is required to evaluate ML classifiers ensure 

they do not overfit the data, as this would lead to ML classifiers that are too specific to the 

original dataset and are not generalisable. Given that there is a fixed amount of data available, 

the samples will be split into sets used for modelling and sets used for evaluation. Ideally a 

model should be evaluated using samples that have not been used to create the model. For 

smaller datasets, the k-fold cross validation technique can be applied to test and validate the 

data. The data is split into k sets of roughly equal size. The model is trained using k-1 sets and 

is then evaluated using the set that was excluded from the training process.  This procedure 

is performed k times, each time omitting a different sample from the training process and 

using it for evaluation. The k resampled estimates of performance are then summarised and 
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used to understand the relationship between tuning parameters and model utility. k =5 was 

used for this study to ensure a sufficient number of samples in each of the training data sets  

and it has been shown empirically to yield test error rate estimates that do not suffer from 

high bias or variance102. Within MATLAB, the sets are generated using a random seed when 

the data is imported into the classification learner, therefor the k sets are fixed for all 

modelling and can only be regenerated by starting a new modelling session.  

Multiple classifiers are available for ML in the Classification Learner Application, with the 

suitability of the classifier determined by the nature of the dataset. The classifiers evaluated 

were: Decision Trees, Logistic Regression, Support Vector Machines (SVM), Ensemble, Neural 

Networks and Naïve Bayes. Nearest Neighbour and Discriminant Analysis methods were not 

evaluated since they do not support analysis of mixed continuous and categorical data types. 

Each of these different machine learning models have their own characteristics which can 

make them more or less appropriate for a give dataset. The characteristics of suitable ML 

models are given in Table 11. 

Classifier Interpretability Types 

Decision Trees Easy Coarse, Medium and Fine 

Trees 

Logistic 

Regression 

Easy - 

Naive Bayes Easy Gaussian, Kernel 

SVM Easy for Linear 

SVM, hard for 

others 

Linear, Quadratic, Cubic, 

Gaussian 

Ensembles Hard Boosted/Bagged/RUSboosted 

Trees, Subspace Discriminant, 

KNN 

Neural 

Networks 

Hard Narrow, Medium, Wide, 

Bilayered, Trilayered 

Table 11 A table of suitable ML models available in the classification learner application with the difficulty of interpretation 
and model sub-types available for training. 
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A large number of datasets and features can pose a problem when performing machine 

learning, both in terms of the efficiency of algorithms in dealing with the data and the 

performance of the resulting models in terms of accuracy and generalisability. To confront 

this problem, feature reductions techniques have been developed to reduce the number of 

features and therefor improve the performance of the learning process. To this end Minimum 

Redundancy Maximum Relevance (MRMR) algorithm was developed by Peng & Ding103, it 

finds an optimal set of features that is mutually and maximally dissimilar and can represent 

the response variable effectively. The algorithm minimizes the redundancy of a feature set 

and maximises the relevance of a feature set to the response variable. The algorithm is able 

to quantify the redundancy and relevance using the mutual information of variables as a proxy 

for computing relevance and redundancy.  

The goal of MRMR is to find an optimal set of features that maximises the relevance of the 

set with respect to the response variable. It is a filter-based feature selection approach. 

MRMR was developed for feature selection of microarray data. It tends to select a subset of 

features having the most correlation with a class (relevance) and the least correlation 

between themselves (redundancy)104. In this algorithm the features are ranked according to 

the minimal redundancy maximal relevance criteria. The relevance can be calculated using 

the F-statistic (for continuous data) or mutual information (for categorical data) and 

redundancy can be calculated by using Pearson correlation coefficient (for continuous data) 

or mutual information (categorical data). MRMR was used for feature reduction to enable 

efficient and optimal training for the algorithms. Prior to MRMR ranking a cut off was applied 

where groups of variables were highly correlated. For oesophagitis a cut off of P≤0.01 to the 

bootstrapped results of LR was applied for dose metrics which removed the D1cc metric. For 

pneumonitis a cut off of P≤0.1 to the bootstrapped results of LR was used for lung function 

and dose metrics, which removed the V5 Gy and DCLO metrics. 

Each of the six classifiers were automatically trained to determine the most appropriate 

one(s) for further training using hyperparameter optimisation. The training utilised the 

features generated through MRMR feature reduction and evaluated the prediction accuracy, 

sensitivity, specificity, and the largest area under the curve (AUC) value from Receiver 

Operator Characteristic (ROC) analysis. 



71 | P a g e  
 

Models were trained using the clinical and dosimetric predictors mapped to a 

positive/negative score for Grade 2 or higher toxicity for either oesophagitis or pneumonitis. 

The predictive accuracy, sensitivity, specificity in addition to AUC values were used to 

evaluate the clinical potential of models. A desirable ML classification should balance both 

sensitivity and specificity rather than relying on overall accuracy alone. 

3.4 Results 

The results presented here are a representation of all ML classification models using the 

predictor combinations refined through MRMR. The predictive accuracies observed for all 

tested classifiers with MRMR selected feature combinations ranged from 69-74% for 

oesophagitis and 65-78% for pneumonitis. Overall predictive accuracy, sensitivity and 

specificity of the models are reported below 

3.4.1 Oesophagitis 

Table 12 shows the ranking of features using the MRMR algorithm. Table 13 gives an overview 

of the performance of the six classifiers using the MRMR selected features for oesophagitis. 

The top two features were selected on accordance with the results of sample size calculations. 

Figure 10 is a bar chart representing the predictive accuracy, sensitivity, and specificity of the 

trained models. Figure 11 shows the ROC curves for a simple and complex model, Table 14 

shows the output of the same 2 models that have been retrained using different 

randomisation seeds for the K-fold validation. 

Rank Feature MRMR 

1 V50 0.0556 

2 Sex 0.0202 

3 V35 0 

4 MD 0 

5 Age 0 
Table 12 Results of feature ranking using the MRMR algorithm for Oesophagitis, the top two features were used for training 

the ML classifiers  

 

Model 
Features 

Machine Learning Model Results 

Decision 
Tree 

Logistic 
Regression 

Naïve 
Bayes 

SVM Ensemble 
Neural 
Network 
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Total 
Accuracy 

71.6 69 73.3 74.1 69.8 74.1 

Sensitivity 92.3 84.6 93.6 94.9 82.1 89.7 

Specificity 28.9 36.8 31.6 31.6 44.7 42.1 

AUC 0.68 0.78 0.79 0.66 0.7 0.77 

Model 
Sub Type 

Coarse N/A Kernel 
Fine 

Gaussian 
Boosted 

Trees 
Narrow 

Table 13 Table showing the resulting 5-fold predictive accuracy, sensitivities, specificities, and Area under the Curve from ROC 
analysis for the trained ML classifiers against tested features for oesophagitis. Corresponding confusion matrices are plotted 
in Appendix 5 

 

 

Figure 10 Bar chart demonstrating the median predictive accuracies, sensitivities and specificities obtained for the predictors 
and ML classifier stated in Table 7 for oesophagitis 

 

Model Features 0 1 2 3 4 5 Mean S.D. 

Naïve 
Bayes 

Total Accuracy 73.3 74.1 73.3 72.4 74.1 74.1 73.6 0.63 

Sensitivity 93.6 94.9 93.6 92.3 94.9 94.9 94.0 0.97 

Specificity 31.6 31.6 31.6 31.6 31.6 31.6 31.6 0.00 

AUC 0.79 0.75 0.74 0.71 0.74 0.75 0.7 0.02 

0 10 20 30 40 50 60 70 80 90 100

Decision Tree

Logistic Regression

Naïve Bayes

SVM

Ensemble

Neural Network

Bar Chart of Total Predictive Accuracy, Sensitivity and Specificity for Oesophagitis 
Models 

Specificity Sensetivity Total Accuracy
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Neural 
Networks 

Total Accuracy 74.1 71.6 67.2 69.8 68.1 98.1 74.8 10.66 

Sensitivity 89.7 84.6 78.2 87.2 83.3 80.8 84.0 3.82 

Specificity 42.1 44.7 44.7 34.2 36.8 42.1 40.8 3.94 

AUC 0.77 0.71 0.68 0.67 0.69 0.7 0.7 0.03 
Table 14 Results of two models repeated with different randomisation seeds for K-fold validation 

For the oesophagitis models in Table 13, the SVM and Neural Network models had the highest 

overall predictive accuracy (74.1%), the Neural Network model had the highest Specificity 

(44.7%). While the Neural network model had a sensitivity of 89.7%, the SVM (94.9%), 

Decision Tree (92.3%) and Naïve Bayes (93.6%) had superior performance. Receiver operator 

characteristics (ROC) curves for Naïve Bayes and Neural Network models are shown in Figure 

11. The Area Under the Curve (AUC) provides an aggregate measure of the performance 

across all possible classification thresholds, the highest AUC was achieved by the Naïve Bayes 

Model (0.79), although the Logistic Regression (0.78) and Neural Network (0.77) models 

performed similarly. The Naïve Bayes and Neural Network models were further tested using 

a different randomisation seed for the K-fold cross validation as shown in Table 14, the 

standard deviation of the AUC for both models were similar at 0.2 and 0.3 respectively but 

the overall predictive accuracy varied more for the Neural Networks (10.66%) than the Naïve 

Bayes model (0.63%).  
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Figure 11 Receiver Operator Characteristic (ROC) curves for Oesophagitis Naive Bayes (Top) and Neural Networks (Bottom). 
The Area Under Curve (AUC) represents the model’s overall ability to correctly classify structures into each category. The 
orange dot gives the optimal point on the curve that gives the highest overall predictive accuracy.  

3.4.2 Pneumonitis 

Table 15 shows the results of feature selection using the MRMR algorithm. Table 16 gives an 

overview of the performance of the six classifiers using the MRMR selected features for 

pneumonitis. Figure 12 is a bar chart representing the predictive accuracy, sensitivity, and 

specificity of the trained models. Figure 13 shows the ROC curves for a model and Table 16 

shows the same model that has been retrained using different randomisation seeds for the 

K-fold validation. 
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Rank Feature MRMR Value 

1 Sex 0.0056 

2 LungEUD 0 

3 V20 0 

4 MD 0 

5 FVC 0 

6 FEV 0 
Table 15 Results of feature ranking using the MRMR algorithm for RTPN, the top two features were used for training the ML 
classifiers 

 

Model 
Features 

Machine Learning Model Results   

Decision 
Tree 

Logistic 
Regression 

Naïve Bayes SVM Ensemble 
Neural 
Network 

Total 
Accuracy 

76.7 77.6 78.4 77.6 64.7 69.8 

Sensitivity 3.8 0 3.8 0 23.1 11.5 
Specificity 97.8 100 100 100 76.7 86.7 
AUC 0.53 0.5 0.5 0.4 0.49 0.43 
Model 
Sub Type 

Coarse N/A Gaussian Linear 
Boosted 

Trees 
Narrow 

Table 16 A table showing the resulting 5-fold predictive accuracy, sensitivities, specificities, and Area under the Curve from 
ROC analysis for the trained ML classifiers against tested features for pneumonitis. Corresponding confusion matrices are 
plotted in Appendix 5 

 

Figure 12 Bar chart demonstrating the median predictive accuracies, sensitivities and specificities obtained for the features 
and ML classifier stated in Table 7 for pneumonitis 

 

0 20 40 60 80 100 120

Decision Tree

Logistic Regression

Naïve Bayes

SVM

Ensemble
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Bar Chart of Median Predictive Accuracy, Sensitivity and 
Specificity for Pneumonitis Models 
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Table 17 Results of a model repeated with different randomisation seeds for K-fold validation 

For pneumonitis, Naïve Bayes model had the highest overall predictive accuracy (78.4%), 

several models had a specificity of 100%. The ensemble model has the highest sensitivity 

(23.1%) and the lowest specificity (76.7%). Receiver operator characteristics (ROC) analysis 

was performed, the highest AUC for was 0.53 for the Decision Tree model. 

 

Model Features 0 1 2 3 4 5 Mean S.D. 

Decision 
Trees 

  

Total 
Accuracy 

76.7 
73.3 75 74.1 75.9 76.7 75.3 1.28 

Sensitivity 3.8 7.7 15.4 23.1 23.1 34.6 18.0 10.34 

Specificity 97.8 92.2 92.2 88.9 91.1 87.8 91.7 3.19 

AUC 0.53 0.51 0.66 0.54 0.61 0.56 0.6 0.05 



78 | P a g e  
 

 

Figure 13 Receiver Operator Characteristic (ROC) curves for Pneumonitis Ensemble model 13. The Area Under Curve (AUC) 
represents the model’s overall ability to correctly classify structures into each category. The current classifier gives the optimal 
point on the curve that produces the highest overall predictive accuracy. 

3.5 Discussion 

Developing predictive models describing the relationship between clinical parameters and 

outcomes in radiotherapy is complex. In order to perform effective modelling, all the 

important features must be contained within the dataset, it must be of sufficient size, and we 

must understand that many variables are highly correlated, particularly dosimetric ones. We 

must consider how different variables interact, which can be complex and non linear in 

determining the endpoint(s). Successful ML models for oesophagitis and pneumonitis have 

the potential to be clinically useful for patients with NSCLC. The accurate prediction of toxicity 
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would allow us to determine which patients would benefit most from an isotoxic treatment 

regime that has the potential to improve outcomes while maintaining acceptable toxicity 

levels. Conversely it would also enable us to determine which patients are likely to suffer from 

toxicity allowing us to attempt to mitigate potential treatment disruptions, which can 

negatively affect outcomes105.  

3.5.1 Oesophagitis 

Training of the classifiers returned models with a high degree of sensitivity, with SVM model 

predicting 94.9% of all true positives, although this was at a cost of reduced specificity of only 

31.6.% of true negatives. There was a general trend for all models to have low specificity. As 

67% of all patients within this data set had grade 2 or higher toxicity, this may have led to the 

ML algorithms favouring sensitivity over specificity as this gave the highest overall predicative 

accuracy.  For modelling oesophagitis, the SVM and Neural Network classifiers provided 

models with the highest predictive accuracy. Notably the Neural Network model was able to 

achieve this with the second highest specificity. The Naïve Bayes model had the highest AUC 

of 0.79, although the Neural Network model AUC of 0.77 was similar. When these models 

were repeated using a different randomisation seed for the K-fold cross validation, the 

performance of the Naïve Bayes model was consistent whereas the performance of the 

Neural Network model had substantially more variance.  This may be due to the increased 

complexity of the Neural Network model in comparison to the Naïve Bayes model in 

combination with the relatively small size of the dataset. The small size of the dataset also 

limited the number of features used to two, including more features into the modelling 

dataset may be able to improve performance. Two other studies from El Naqa et al54,55  have 

explored oesophagitis in lung cancer patients using a Logistic Regression classifier and found 

that performance could be improved by mixing clinical and dosimetric factors as input 

parameters. In the latter study they found that SVM provided superior performance to logistic 

regression and neural networks which is not consistent with the results presented here, they 

did not test the naïve bayes or ensemble classifier.   

The Naïve Bayes model had the highest AUC with an overall accuracy of 73.3%, sensitivity of 

93.6%, specificity of 31.6% and AUC of 0.79. This is comparable to results of Huang et al44 

whose most successful logistic regression model achieved an AUC of 0.83 using MD and 

concurrent chemotherapy. In a second paper they tested this model on independent data and 
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achieved an AUC of 0.78. While concurrent chemotherapy has been shown to have a 

significant impact on toxicity and would therefore be a useful feature for ML, all patients 

within the IDEAL-CRT trial underwent concurrent chemotherapy so this variable could not be 

used for modelling. Niedzielski et al98 explored using CT imaging biomarkers to quantify the 

radiosensitivity of individual patients with the goal of predicting oesophagitis. They used ML 

techniques to produce models with an AUC of 0.75. This information could also be used to 

improve the accuracy of the model as Niedzielski found that models using radiosensitivity 

predictors outperformed those that did not for grade 3 toxicity. 

3.5.2 Pneumonitis 

For the modelling of pneumonitis 6 different variables were reduced to 2 using the MRMR 

algorithm. Classifier training produced toxicity models with negligible accuracy with each 

model favouring high specificity due the large percentage of patients within this cohort that 

did not suffer toxicities. Three of the tested models achieved 100% specificity with a fourth 

modelling achieving 97.8%, each of these four models achieved a sensitivity of less than 3.8%. 

the AUC values achieved by all models was between 0.4-0.53 which suggests these models 

are no better than random guesses. The decision trees classifier provided the highest AUC 

value of 0.53 with an overall accuracy of 76.7%, specificity of 3.8% and sensitivity of 97.8%. 

This model was tested a further 5 times with a different randomisation seed for the K-fold 

cross validation, the standard deviation of the AUC and overall accuracy was 0.05 and 10.34% 

respectively. Suggesting that even for a simple classifier the reproducibility of the model is 

poor and therefor it is unlikely to work well with new datasets. Here we found that the MRMR 

algorithm favoured EUD as the most appropriate dosimetric feature but we must take into 

account that patient gender had the highest MRMR score. This suggests that the features 

available for this dataset have weak correlation with RTPN and that additional features need 

to be analysed in order to improve model performance. 

Das et al52 used a parametric dose based Lyman NTCP model in conjunction with weighted 

non parametric decision trees to train a model with an AUC of 0.72, which was an 

improvement over the Lyman NTCP model alone which achieved an AUC of 0.62. A further 

study by Das et al51 combing four classification models achieved an AUC of 0.79. Lee et al96 

used a Bayesian network approach using dose, clinical and blood biomarkers to achieve an 

AUC of 0.85, although this was using a relatively small patient sample of 54.  Valdes et al53 
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used a larger dataset of 201 patients and found that the ensemble model had the best 

performance. They found that the dose to 15cc of the heart, dose to 4cc of the trachea or 

bronchus and ethnicity were the most important features in the model prediction, features 

not used for this project whilst ethnicity data is not available, doses to other OARS should be 

considered for future research. Similarly Luna et al95 found that the oesophagus maximum 

dose was another potential new predictor.  

3.6 Conclusion 

There are numerous studies51–55,96,98,106 that have reported associations between various 

parameters and toxicity to OARs and normal tissues. This information is used to attempt to 

improve patient care by providing clinicians and treatment planners with the tools to find the 

optimal balance between tumour control and toxicity. This study found that accurately 

predicting radiation induced oesophagitis was achievable using data from the IDEAL-CRT trial, 

but that predicting RTPN poses more of a challenge.  

For radiation induced oesophagitis there is a clear correlation between various volumetric 

dose constraints, here the V50Gy metric provided the ML classifiers with high predictive 

accuracy. These models had good sensitivity (82-95%) but only moderate specificity (29-45%). 

The results compare well with the literature and indicate ML has the potential to create 

clinically useful models for predicting oesophagitis. For pneumonitis the models only achieved 

moderate predictive accuracy, there was no statistically significant link to any of the tested 

features. The results suggest that ML is unlikely to produce a clinically useful model for RTPN 

using the IDEAL-CRT dataset 

ML techniques have the ability to utilise the complex data to predict radiotherapy induced 

toxicity and our results demonstrate what can be achieved using clinical and dosimetric 

features. There is scope to further improve these models by using doses to nearby OARs53, 

imaging biomarkers98 and genomic information107. Advances in technology make much of this 

data easier to obtain and clinical trials are increasingly collecting tissue samples for 

translational research for UK radiotherapy trials. With this additional information and the 

increasing ease of access to ML techniques, it is possible that highly accurate models can be 

produced for oesophagitis and pneumonitis.  
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4 Paper 3: Evaluating methods for predicting toxicity in NSCLC 

patients 

4.1 Abstract 

Background and Purpose: Accurate prediction of toxicity is essential to obtain a favourable 

trade-off between tumour control and toxicity (therapeutic ratio) in radiotherapy. Several 

trials10,84,85 have attempted to utilise isotoxic lung radiotherapy, a technique that escalates 

and individualises RT doses to improve local control for these patients, however dose 

escalation is often constrained by the dose delivered to nearby healthy tissues, notably the 

oesophagus and lungs. Accurate prediction of toxicities could lead to an improvement in the 

therapeutic ratio. The study reported here aims to compare Lyman Kutcher Burman (LKB) 

NTCP modelling and multi-variable logistic regression (LR) analysis to previous machine 

learning (ML) and uni-variable LR approaches to assess methods of toxicity modelling.  

Methods: Data from 116 NSCLC patients from the isotoxic IDEAL-CRT trial were analysed.  LKB 

NTCP and multi-variable LR were compared with ML approaches for toxicity modelling. The 

overall predictive accuracy, sensitivity, specificity, and area under the curve (AUC) values from 

recover operating characteristics (ROC) analysis were compared for the three different 

techniques. 

Results: A strong correlation was found using LKB NTCP analysis for oesophagitis using LR and 

Mann-Whitney U with both tests producing a P-value <0.01. Predictive accuracy of LKB NTCP 

values using LR was comparable with the results of uni-variable logistic regression. Statistical 

tests of LKB modelling for pneumonitis did not produce a statistically significant correlation. 

Multi-variable LR analysis offered a moderate improvement over uni-variable analysis for 

both oesophagitis and pneumonitis. ROC analysis of NTCP modelling for oesophagitis 

produced AUC values of 0.68, compared to 0.77 for multi-variable LR and 0.79 for ML. The 

corresponding AUC values for pneumonitis were 0.55 for LKB, 0.58 for multi-variable LR and 

0.53 for ML. 

Conclusion: Multi-variable LR analysis techniques can predict toxicity with similar accuracy to 

ML when there is good correlation between metrics and toxicity. When there is not, machine 

learning’s ability to utilise more diverse data and customise parameters of learning classifiers 

enables superior toxicity models to be generated. Including imaging biomarkers and genetic 
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information with clinical and dosimetric information has the potential to improve the 

accuracy of toxicity models and has the potential to create clinically useful tools that can 

improve patient outcomes.  

4.2 Introduction 

Accurate prediction of toxicity is essential to obtain a favourable trade-off between tumour 

control and toxicity (therapeutic ratio) in radiotherapy (RT). Non small cell lung cancer 

(NSCLC) is often associated with poor outcomes and is the primary cause of death by cancer 

in Europe108. Several trials10,84,85 have attempted to utilise isotoxic radiotherapy, a technique 

that escalates and individualises RT doses to improve local control for these patients, however 

dose escalation is often constrained by the dose delivered to nearby healthy tissues, notably 

the oesophagus and lungs. Accurate prediction of toxicities such as oesophagitis and 

pneumonitis for these patients may allow further dose optimisation, potentially leading to an 

improvement in the therapeutic ratio. 

The occurrence of toxicity in radiotherapy patients is governed by complex relationships 

between multiple factors which include dosimetric, clinical and genetic parameters. When 

modelling toxicity, models can be classified as analytical or data driven. Analytical models are 

based on a simplified characterisation of the interaction between radiation and biological 

tissues explaining the underlying mechanisms with explicit algorithms. Common models such 

as the Lyman Kutcher Burman29 (LKB) model use hand crafted rules with intricate exceptions 

that can often fail to predict the actual complications induced by RT. Data driven approaches 

are based on the assumption that the interaction between radiation and normal tissue is 

complex and cannot be properly represented deterministically. Commonly used models for 

predicting radiotherapy toxicity through statistical analysis include logistic regression (LR), 

normal tissue complication probabilities (NTCP) models such as LKB and artificial intelligence 

(AI) methods such as supervised machine learning (ML). 

The LKB model is the most widely known NTCP model. It comprises of an empirical model of 

dose response as a function of irradiated volume, reducing the dose volume histogram to a 

single metric for each organ at risk tested (OAR)94. The dose distribution within an OAR is 

likely to be inhomogeneous in modern radiotherapy plans and, for these cases, this metric 

serves to translate the inhomogeneous dose distribution into the same equivalent dose 
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response as a homogeneous dose distribution to that OAR. The most commonly used metric 

is generalised equivalent uniform dose (EUD).  This model has been used extensively in the 

Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) publications3,60,77 

published in 2010 that presented evidence-based results made available from 3D treatment 

planning data. These summarised dosimetric and volumetric constraints for OARs after 

external beam radiotherapy for commonly reported side effects and these constraints are 

widely used in the radiotherapy community.  

Alternative models consider the functional architecture of the OAR as to whether they can be 

considered as parallel or serial organs. Damage to a single functional unit in a serial organ can 

impair function of the whole organ, therefore the dose constraint for such structures should 

refer to the maximum dose delivered to any part of the organ. Parallel organs have a 

functional reserve, whereby a number of functional subunits may be damaged before there 

is any loss of function. In this case it is likely that mean dose (MD) is a more useful metric. In 

many cases the true organ architecture could be mixed, and the type of dose constraint to be 

used may be dependent on the specific toxicities being assessed. Traditionally the oesophagus 

is considered a serial organ and the lungs are considered parallel, QUANTEC recommends 

mean dose for oesophagitis and pneumonitis suggesting the tissue architecture for both these 

OARs is mixed. 

When performing statistical analysis on the occurrence of toxicity in NSCLC patients, selection 

of the appropriate statistical test is critical. The data can be divided into two groups depending 

on whether they have or have not had a predefined grade of toxicity, and results in a 

categorical dependent variable. Independent variables can be continuous or categorical and 

can be chosen to test single or multiple variables at once. Statistical tests are routinely used 

to determine whether there is a statistically significant correlation between independent and 

dependent variables through the p-value, but this does not always translate into a predictive 

model. Binary Logistic Regression (LR), like all regression analyses, is predictive. LR is used to 

describe data and explain the relationship between a dependent binary variable such as 

toxicity and one or more nominal independent variables. Adding more independent variables 

to a LR model will increase the variance, too many and it can lead to overfitting, reducing the 

generalisability of the model. A cut-off is set for the LR value, standardly as 0.5, to predict 

whether a patient is classified as having had toxicity or not. This is then used to determine 
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overall predictive accuracy, sensitivity and specificity allowing comparison with ML derived 

models. 

Supervised machine learning is an approach that has seen increasingly widespread use in 

radiotherapy. This is partly due to technological developments making ML more accessible in 

the clinic, as well as a move towards more digital healthcare allowing for greater access to 

patient data8. ML approaches are particularly well suited to modelling radiation induced 

toxicity as they are able to automatically create predictive models on new and unseen data 

and can easily handle large and diverse datasets. ML approaches will learn the parameters for 

a given toxicity model from the available data, using predefined artificial intelligence (AI) 

algorithms based on the type of ML classifier selected. There is risk of overfitting the model if 

the baseline dataset cannot be generalised to real world data. Previous publications using uni-

variable statistical analysis101 and ML techniques109 have investigated predicting oesophagitis 

and pneumonitis using data from the IDEAL-CRT trial.  

The study reported here aims to generate toxicity models using LKB NTCP modelling and 

multi-variable logistic regression for oesophagitis and pneumonitis in NSCLC patients using 

the IDEAL-CRT trial dataset. The efficacy of these models will be evaluated in the context of 

ML toxicity models on the same dataset by Patel et al109 in order to assess the merits of these 

different approaches.  

4.3 Methodology 

Data was available for 116 patients from the IDEAL-CRT trial. Patients were treated with 

isotoxic radiotherapy with treatment doses ranging from 65-71Gy in 30 fractions, treated in 

either 5 or 6 weeks. All patients received concurrent chemotherapy. Full radiotherapy DICOM 

datasets were collected, and toxicity was reported using Common Terminology Criteria for 

Adverse Events (CTCAE), version 4.0. Clinical factors were collected through case report 

forms. 

LKB and multi-variable logistic regression models were compared with ML toxicity models for 

overall predictive accuracy, sensitivity, specificity, and Area Under the Curve (AUC) from 

Receiver Operator Characteristics (ROC) analysis. 

All doses were reported in terms of equivalent dose in 2 Gy daily treatment fractions (EQD2) 

corrected for overall treatment time to allow for straight-forward comparison of non-
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standard treatment regimens (e.g. isotoxic) with more common treatment regimens such as 

the 60-64Gy in 30-32 fractions regime that is commonly used in the UK. Dose conversions 

were calculated using a custom MATLAB script (Appendix 3) that utilised the linear quadratic 

equation110. An α/β ratio of 4 was used for the lung, taken from the QUANTEC analysis77,78. 

For the oesophagus an α/β ratio of 10, commonly used in the literature79,80 was used. The k 

term representing the dose recovered per day was set at 0.54Gy and 0.8Gy for the lung and 

oesophagus respectively, both values were from a reviews of clinical studies by Bentzen et 

al81,82.  The 𝑇𝑑𝑒𝑙𝑎𝑦 was set at 28 days for both lung and oesophagus as per Fowler et al83, with 

the T value of 33 days and 40 days for the 5 and 6 week treatment schedules respectively. 

4.3.1 LKB Modelling 

The LKB model is used for predicting NTCP for a radiotherapy treatment plan.  

The LKB model from the original publication29 is given in equation 4.1 

𝑁𝑇𝐶𝑃 =  
1

√2𝜋
∫ ⅇ−𝑡2 2⁄ 𝑑𝑡

𝑢

−∞

 (4.1) 

Where 

t = (D – TD50(V)/σ(V))                                                        (4.2) 

𝑢 =
𝐷 − 𝑇𝐷50(𝑉)

𝑚 × 𝑇𝐷50(𝑉)
(4.3) 

TD50(V) =
TD50(1)

𝑉𝑛
(4.4) 

TD50(V) is the tolerance dose for a partial volume V. The parameter m is related to the 

standard deviation of TD50(1) and describes the steepness of the dose response curve, m is 

multiplied by TD50(V) approximates the standard deviation of volume V and n indicates the 

volume effect of the organ being assessed. A true serial organ, where maximum dose 

dominates outcome, is indicated by n=0; n=1 indicates a true parallel organ, where mean dose 

is related to outcome. D is the maximum dose of the DVH to ensure V<1. Histogram reduction 

can be performed to calculate the effective volume V according to the method described by 

Kutcher et al26 shown in equation 4.5. 

𝑉 = ∑ (
𝐷𝑖

𝐷
)

1
𝑛𝛥𝑉𝑖

𝑖
(4.5) 
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Where Di is the dose defined for each bin in a differential DVH and D is the maximum dose to 

the organ. A Maximum Likelihood Estimation (MLE)30 can be used to best fit values of the 

parameters TD50(1), m and n of the NTCP model for known binary outcomes y(i) of the 

available data by maximising the natural log of the likelihood (LLH) that the fitted model 

describes the data correctly. 

There are numerous studies that have used the maximum likelihood method to find the LKB 

parameters that correlate with grade 2 or higher toxicity. IDEAL-CRT patients were treated 

with combined chemotherapy with dose escalation. In this study, the LKB parameters 

published by Belderbos et al111 for oesophagitis, and those published by Lee et al112 for 

pneumonitis have been applied, as these studies also used data from NSCLC patients treated 

with chemoradiotherapy and investigated toxicity of Grade 2 or higher. LKB values for each 

patient were generated using a custom MATLAB programme  (Appendix 3). As NTCP is often 

used for ranking, the non parametric Mann Whitney U test was calculated using the SPSS 

Statistics v28 (IBM) software to confirm the correlation between toxicity and LKB value. The 

Mann-Whitney test ranks all of the data and then compare the sum of ranks for each group 

to determine whether the groups are the same or not. 

Uni-variable LR was also performed to assess the efficacy of LKB modelling to predict toxicity. 

The sensitivity, specificity, overall predictive accuracy, and p-value from logistic regression 

were reported. The bootstrapping method was performed using 2000 samples generated by 

sampling with replacement to evaluate the robustness of the LR models generated.  

Receiver Operator Characteristic (ROC) curves were plotted and the Area Under the Curve 

(AUC) was reported to evaluate the overall performance of the model.   

4.3.2 Logistic Regression 

The factors available for logistic regression were, age, MD, V35, V50, D1cc, LKB, sex and age 

for oesophagitis and FVC, FEV, MD, V20, EUD, LKB, age and sex for pneumonitis. Uni-variable 

LR has been previously published101; a multi-variable analysis was performed within the work 

presented here for the most statistically significant factors with the aim of improving the 

accuracy of previously generated models. A minimum redundancy maximum relevance 

(MRMR)103 feature selection method which uses mutual information as a proxy for computing 

relevance and redundancy among the selected variables was used to rank the relevance of 

features for modelling. The top two ranking features for oesophagitis and pneumonitis were 
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selected, as sample size calculation have determined that is the maximum permissible for the 

patients available for the IDEAL-CRT data set while assuming a shrinkage of ≤10% and a 

variance ≤15%.  All analyses were performed in MATLAB 2022a and SPSS v28 (IBM). 

As per previous uni-variable analysis, bootstrapping was performed to evaluate the 

robustness of LR models, and the sensitivity, specificity, overall predictive accuracy and p 

values of the variables were reported. ROC curves were also plotted to allow the AUC to be 

reported.  

4.4 Results 

4.4.1 LKB  

LKB NTCP values generated through a custom MATLAB programme (Appendix 5) were 

imported into SPSS for analysis. The result of the Mann-Whitney U tests is given in Table 18. 

4.4.1.1 Mann-Whitney U 

  Lung_LKB Oeso_LKB 

Mann-Whitney U 1055 954 

p-value 0..446 0.002 

Table 18 A summary of results of Mann-Whitney U statistical test using LKB NTCP 
values for oesophagitis and pneumonitis. P-value reported is asymptomatic and 2 
tailed. 

4.4.1.2 Logistic Regression 

Predictive accuracy, sensitivity and specificity were all calculated using a cut-off of 0.5 for the binary 
logistic regression analysis as reported in Table 19. LR and ROC analysis with AUC values are 
reported in Figure 14. 
 

LKB-NTPC 
Percentage Correctly Predicted 

P Value 
Sig (2-
tailed) 

Specificity Sensitivity Overall 
Accuracy 

Oesophagitis 28.9% 94.9% 73.3% 0.004 0.004 

Pneumonitis 100% 0% 77.6% 0.128 0.107 
Table 19 Results of binary logistic regression analysis using LKB NTCP factors to 
predict oesophagitis and pneumonitis. The 2 tailed significance is generated 
thjrough LR of 2000 bootstrapped samples. 
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Figure 14 Receiver Operator Characteristic (ROC) curves for oesophagitis (left) and pneumonitis (right) from LBK NTCP 
analysis 

4.4.2 Multi-variable Logistic Regression Analysis  

The results from the LR models for oesophagitis and pneumonitis using the two highest 

ranking features from MRMR feature selection are given in Table 20, with the results of 

logistic regression with samples bootstrapped 2000 times given in Table 21 and Table 22 for 

oesophagitis and pneumonitis respectively. ROC analysis for the two models with the highest 

overall predictive accuracy for oesophagitis and pneumonitis are reported in Figure 15. 

Toxicity Variables Sig. 
Percentage Correctly Predicted 

Specificity Sensitivity Overall 
Accuracy 

Oesophagitis Sex 0.02 42.1 85.9 71.6 

V50 0.00 

Pneumonitis Sex 0.33 100 0 77.6 

EUD 0.09 
Table 20 Table showing the results of multi-variable binary logistic regression analysis for factors predicting oesophagitis and 
pneumonitis. Predictive accuracies are based on a cut-off value of 0.5 

Variable B Bias Std. Error 
Sig. (2-
tailed) 

95% Confidence 
Interval 

Lower Upper 

Sex 1.25 0.08 0.59 0.02 0.23 2.73 

V50 0.07 0.00 0.02 0.00 0.04 0.11 
Table 21 shows the results of multivariable logistic regression using bootstrapping for oesophagitis 
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Variable B Bias Std. Error 
Sig. (2-
tailed) 

95% Confidence 
Interval 

Lower Upper 

Sex 0.46 -0.02 0.52 0.34 -0.52 1.39 

EUD -0.11 -0.01 0.06 0.06 -0.23 -0.01 
Table 22 shows the results of multivariable logistic regression using bootstrapping for pneumonitis 

 

 

 

Figure 15 Receiver Operator Characteristic (ROC) curves for multi-variable Logistic Regression analysis of oesophagitis (left) 
and pneumonitis (right). 

4.5 Discussion 

With growing interest in the application of AI in all aspects of radiotherapy, some 

studies8,51,52,54,55,97 have focussed on generating toxicity prediction models for oesophagitis 

and pneumonitis. One of clear advantages of these AI techniques is that they can easily be 

applied to large and diverse datasets and be used to model complex relationships, making 

them well suited to modelling toxicity in radiotherapy. A previously reported analysis109 on 

the IDEAL-CRT trials data using machine learning techniques was able to produce good models 

for oesophagitis but struggled with pneumonitis. The study reported here compares 

established methods of LKB modelling and LR with ML to determine the advantages of these 
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different techniques for modelling oesophagitis and pneumonitis in patients from the IDEAL-

CRT trial. 

A strong correlation was found between the NTCP values and toxicity for oesophagitis using 

the Mann-Whitney U test for LKB modelling. This was also the case with LR analysis, with both 

statistical tests producing p-values <0.01. The p value of LR was robust when validated using 

the bootstrapped method. The LR predictive accuracy was similar to that achieved through 

previously reported uni-variable LR analyses101, with high sensitivity (94.9%) but low 

specificity (28.9%). The low specificity would limit the use of the model clinically as it assumes 

most patients develop toxicity. The AUC was calculated as 0.678, which is lower than other 

models produced using the same data.  

Neither the Mann-Whitney U test nor LR regression analysis showed a statistically significant 

correlation with pneumonitis. The predictive accuracy, sensitivity, and specificity were similar 

to uni-variable LR analysis.  

Multi-variable LR was able to offer similar performance when compared to uni-variable 

analysis in terms of predictive accuracy, sensitivity and specificity for both oesophagitis and 

pneumonitis. The occurrence of oesophagitis had a strong correlation with various dose 

parameters but, as these metrics are interrelated, the benefits of using multiple dose metrics 

for LR was limited, hence MRMR was used to reduce the number of variables. V50Gy proved 

to be the most significant indicator of toxicity in the LR model for oesophagitis. Uni-variable 

LR analysis favoured specificity over sensitivity in predicting pneumonitis, a trend that was 

also apparent in multi-variable analysis. Here the EUD showed significant contribution to the 

LR model.  

ROC analysis of multi-variable LR results produced AUC values for pneumonitis that were a 

slight improvement on those generated through ML, whilst the ML model AUC was slightly 

superior for oesophagitis. Results from the analysis by Patel et al109 using machine learning 

for patients from the IDEAL-CRT trial are summarised in Table 23, for reference.  

OAR Variables 
Percentage Correctly Predicted 

ROC AUC 
Specificity Sensitivity 

Overall 
Accuracy 

Oesophagitis Sex, V50 31.6% 93.6% 73.3% 0.79 

Pneumonitis Sex, EUD 3..8% 97.8% 76.7% 0.53 
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Table 23 The best performing ML models for oesophagitis and pneumonitis using the IDEAL-CRT dataset 

 

Evaluating the three different approaches to modelling oesophagitis, a strong correlation is 

observed between dose metrics and the occurrence of oesophagitis. LKB modelling, which 

aims to distil the DVH to a single metric, shows a strong correlation with toxicity, however it 

does not offer an improvement on the standard dose metrics suggested by QUANTEC60,77. 

Multi-variable LR does offer an improvement over LBK modelling and uni-variable LR, 

providing higher specificity and leading to a higher overall accuracy and AUC. It also produces 

models comparable to ML using multiple classifiers  

Previously reported uni-variable analyses using LR failed to identify a significant correlation 

between any of the tested dosimetric or clinical parameters and incidence of pneumonitis. 

The strongest clinical predictors were measures of lung function (FEV, FVC), with p-values of 

<0.05, and the strongest dosimetric factors were MD, V20Gy and EUD, with p-values <0.1. 

Given the weak correlation with dosimetric factors it is unsurprising that LBK analysis was also 

unable to show a strong statistical correlation with toxicity and resulted in a higher p-value 

than for MD, V20Gy and EUD. Multi-variable LR did not improve specificity and overall 

accuracy when compared with uni-variable LR, however ML techniques could offer a 

significantly higher specificity. Overall, results show the use of ML allows for more balanced 

models in terms of sensitivity and specificity.  

A statistically significant correlation was observed between dosimetric factors and 

oesophagitis, and therefore ML and LR were able to produce predictive models with very 

similar performance. The LR model was able to achieve this producing a simpler model that 

is likely to be more robust. A simpler model is less likely to be affected by noise in the data 

and is more generalisable, being less likely to be overfitted to the original dataset. There was, 

however, little correlation seen for pneumonitis, and this is where ML outperformed LR. ML 

is able to utilise categorical and continuous data for analysis to produce predictive models, 

giving the user a wider choice of input data. ML models also offer more customisation than 

LR, allowing automatic model parameter optimisations and weighting of model parameters 

to improve sensitivity or specificity. This can produce more rounded models in data sets 

where one outcome dominates the overall predictive accuracy. The ML models also use K-

fold cross validation, splitting up data sets into training and validation cohorts to ensure that 
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models do not overfit the data. LR uses the whole dataset for analysis and therefore would 

require a separate, independent dataset for validation of the results. Which is problematic 

given the data available for this study. 

4.6 Conclusion 

Predictive models require high specificity and selectivity in order to be clinically useful. Both 

LR and ML techniques can predict toxicity with similar accuracy when there is good correlation 

between metrics and toxicity. When there is not, machine learning’s ability to utilise more 

diverse data and customise parameters of learning classifiers could enable superior toxicity 

models to be generated. Analyses reported here were limited to clinical and dosimetric 

parameters available from the IDEAL-CRT trial, however inclusion of dosimetric features from 

nearby OARs, spatial analysis of dose deposition within OARs, imaging biomarkers and genetic 

information in combination with ML have been applied successfully to create toxicity models. 

The addition of these variants has the potential to further improve toxicity models so they 

can become valuable tools, although validation on independent datasets is crucial before they 

can be translated to the clinic.     
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5 Critical Appraisal 

Lung cancer is the leading cause of death from cancer in the UK. These patients have poor 

outcomes with lung cancer accounting for 21%113 of all cancer deaths for men and women in 

the UK. Several recent radiotherapy clinical trials10,84,85 for lung cancer have attempted to 

increase radiotherapy dose to the tumour using an isotoxic treatment model. The increased 

dose to the tumour improves the chance of tumour control but it also increases the risk of 

toxicity, as normal tissues are unavoidably irradiated during treatment. The intention of 

isotoxic radiotherapy is to escalate and individualise radiotherapy doses and find the ideal 

therapeutic ratio for each patient. In lung cancer, doses to organs at risk (OARs) such as the 

oesophagus and lungs are often the limiting factors in escalating tumour dose. Accurate 

prediction of oesophagitis and pneumonitis would allow treatment planners to safely escalate 

treatment doses for these patients improving treatment outcomes. 

In the three papers presented in this study, clinical and dosimetric data for patients from the 

IDEAL-CRT trial were analysed to determine which data features have the strongest 

correlation with toxicity. This information was then utilised to develop predictive models for 

oesophagitis and pneumonitis to determine whether clinically useful toxicity models can be 

generated from the IDEAL-CRT trial data.  

5.1 Oesophagitis 

With regards to oesophagitis, uni-variable logistic regression (LR) analysis using the bootstrap 

method found a statistically significant (p<0.01) correlation between the occurrence 

oesophagitis and Mean Dose, V35Gy and V50Gy dose metrics. The most statistically 

significant factors were the V35 Gy and V50 Gy, which is in line with the recommendations of 

the QUANTEC paper60 and suggests there may be a threshold dose for oesophageal toxicity. 

ADSCAN85, a phase 3 platform clinical trial for isotoxic and hyperfractionated treatment 

regimens for non small cell lung cancer (NSCLC) applies a D0.1cc for 2 arms and a D1cc for 

one arm and no constraints for 2 arms. The LR analysis suggested that the three 

aforementioned dose metrics have superior correlation to the occurrence of toxicity than 

small volume constraints. It should be noted that all of the dose metrics tested are highly 

correlated and so the benefit of using multiple dose metrics for toxicity prediction may be 

limited. 
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Multi-variable LR provides a similar performance in terms of the overall predicative accuracy, 

sensitivity and specificity when compared to uni-variable analysis. The occurrence of 

oesophagitis is strongly correlated with dose and so the performance of LR analysis was 

dominated by the dose feature. When performing multivariable LR, MRMR feature selection 

ranked V50Gy and Sex as 1st and 2nd highest features respectively. The addition of patient sex 

to LR modelling had minimal impact on the overall performance of the model when compared 

to univariable modelling with the V50 Gy feature. The size of the IDEAL-CRT dataset has 

limited the number of features that can be used for modelling when mitigating the risk of 

overfitting. These results indicates that either additional clinical factors need to be explored 

or that a larger patient dataset (allowing more features in the model) would be required to 

create models with superior performance. 

Lyman Kutcher Burman (LKB) toxicity modelling distils the entire DVH into a single dose 

parameter (EUD) which compensates for type of OAR and tissue. This type of modelling is 

entirely dependent on the dose information to predict toxicity, which would suggest it is well 

suited for modelling oesophagitis. While LR and Mann-Whitney U tests found that the 

correlation between LKB and oesophagitis were statistically significant, LR toxicity models 

using LKB data did not offer superior performance over uni-variable logistic regression with 

single dose parameters. This suggests the additional complication involved in generating LKB 

values was not worthwhile. 

Toxicity models based on ML techniques performed similarly to multi-variable logistic 

regression. The dose metrics were the key data features for oesophagitis, with V50 Gy the 

best performing individual feature. Multiple ML models had strong performance and were 

able to produce high AUC values, with the simpler Naïve Bayes and more complex Neural 

Networks model providing similar performance. When evaluating the robustness of these 

models the simpler Naïve Bayes model demonstrated that it was more reproducible when 

changing the randomisation seed for the K-fold cross validation than the Neural Networks 

model. Suggesting that the more complex model was overfitting the data. This is another area 

where a larger dataset would be useful in producing more robust models and perhaps 

allowing separate training a validation cohorts which would provide a way to independently 

evaluate model performance. 
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5.2 Pneumonitis 

Initial testing with uni-variable logistic regression using dose metrics recommended by 

QUANTEC77 and relevant clinical trials9,10,85,86 (V5 Gy, V20 Gy, Mean Dose and D1cc) and 

available clinical variables was unable to find a statistically significant correlation (p<0.01) 

with the occurrence of pneumonitis. The best performing data features were the FEV and FVC 

which achieved p<0.05. The best performing dose metric was MD, which is commonly used 

clinically along with the V20Gy metric. The V20 Gy and mean lung dose are widely used in 

clinical trials85,91 but the results of this study indicate that baseline lung function may be a 

superior predictor of toxicity, additional dose metrics may improve correlation with toxicity. 

MRMR feature selection ranked Sex and EUD as 1st and 2nd highest features respectively, 

these features were used for multivariable LR and ML modelling. Multi-variable logistic 

regression had similar performance in terms of model sensitivity as uni-variable logistic 

regression, but the AUC was markedly improved. 

LKB NTCP analysis did not demonstrate a benefit as it is based on dose, which was not found 

to correlate strongly with pneumonitis in previous analysis. Mann Whitney U and LR analysis 

was unable to find a statistically significant relationship between NTCP values and toxicity. ML 

techniques were able to produce toxicity models that were able to better balance specificity 

and sensitivity, where LR models largely favoured high specificity and poor sensitivity. The 

prediction of pneumonitis is perhaps where the benefits of ML approaches become apparent. 

The majority of patients in the study did not suffer from pneumonitis which meant that the 

dataset was unbalanced, and ML techniques can provide more complex methods to take this 

into account. Overall ML methods produced models with an AUC close to 0.5, which is similar 

performance as randomly guessing. Here the size of dataset which limits model training to 

two features and the lack of strong correlation of the tested features combines to give poor 

results. A larger dataset or features with a stronger correlation to toxicity are needed. The 

use of imaging biomarkers and genetic information to determine the radiosensitivity of the 

lungs prior to irradiation requires further investigation and has the potential to improve 

toxicity modelling. Palma et al114  have also shown success predicting pneumonitis in patients 

by analysing spatial dose patterns, showing that the occurrence of toxicity is associated with 

dose to the lower portions of the lung and that it is possible to identify regional lung 

radiosensitivity. This work infers that refining dose features to sensitive parts of the lung or 
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adding tumour location (e.g. anterior, peripheral etc) would help further improve model 

performance using existing data.  

5.3 Limits of Study 

The IDEAL-CRT trial accrued patients using a mixture of 3D conformal radiotherapy and IMRT, 

this information could be extracted from the DICOM data and may have impacted toxicity. 

This is particular important as majority of UK centres have moved towards VMAT 

radiotherapy as the standard technique for lung patients and so the inclusion of 3DCRT may 

make this analysis less relevant for modern treatments. Doses to OARs in close proximity to 

the lung have been used as predictors for pneumonitis by Valdes et al53, this data could have 

been extracted from the existing DICOM data set and may have improved toxicity models. It 

would have also been useful to gather information on patient smoking status, but this would 

require additional ethics approval. 

All patients in the IDEAL-CRT trial were treated with concurrent chemotherapy which was 

standard practice at the time of the trial. The standard treatment of platinum doublet based 

chemo-radiotherapy for NSCLC has a 5 year survival of 15-32%115. The phase 3 Pacific trial116 

has shown immunotherapy agents such as Durvalumab significantly prolonged overall 

survival with long term analysis estimating 48-month OS rate was 49.6% for durvalumab 

verses 36.3% for placebo. The standard practice in the UK is now moving towards 

immunotherapy as standard of care for many lung cancer patients and the SARON trial has 

had a recent protocol amendment117 to allow immunotherapy for trial patients. At this point 

the effects of immunotherapy on radiation sensitivity is unclear and results of this analysis 

may be less applicable to patients that are treated with it. 

There was a mean dose limit of 18Gy in EQD2 for the lung for the IDEAL-CRT study, this was 

often a factor limiting in dose escalation and could have reduced variation in lung doses across 

the data cohort making it more difficult to model toxicity. The occurrence of grade 3 toxicity 

for pneumonitis and oesophagitis was limited to 3 and 5 patients respectively in the IDEAL-

CRT trial. This means that the dataset could only be used to investigate grade 2 toxicity, for 

grade 2 toxicity 62.9% of patients suffered oesophagitis and 30.5% of patients suffered 

pneumonitis, the data sets were unbalanced which makes toxicity modelling more difficult as 

overall predicative accuracy is heavily influenced by the dominant outcome. Finally, the 
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number of patients available for this study was only 116 patients, ideally a larger patient 

dataset or an independent validation cohort would have been beneficial for toxicity 

modelling. 

Data used in this study was from a phase 2 non randomised clinical trial, which had strict 

inclusion criteria for patient to be included. This study required a World Health Organisation 

performance status (WHO PS) of 0 or 1 and a FEV/DCLO value of ≥40%, which is not 

representative of the poor health status of most lung cancer patients, thus models derived 

from this data may not be generalisable to the real world. Also, whilst trial data is of high 

quality and has good data curation, the number of patients available for analysis is a limiting 

factor and it is here where the use of real-world data could be useful in producing more 

accurate and robust predictive models. 

5.4 Conclusion 

Data from randomized clinical trials provide high quality radiotherapy data with good patient 

follow up reported using a standardised methodology. Whilst this type of data generally has 

smaller patient numbers and cannot always be generalised to the real world due to patient 

selection criteria, it has high levels of curation and quality assurance which can reduce 

confounding effects and bias99,100, which makes it useful for toxicity modelling. While 

technological advances since the IDEAL-CRT have led to an increased use of VMAT 

radiotherapy and immunotherapy as an alternative to chemotherapy, analysis of the IDEAL-

CRT trial dataset has been worthwhile. The ADSCAN trial should have produced a more 

modern dataset of 360 patients in this space, but the trial has closed to recruitment early 

partially due to the effects on funding due covid but also as a result of the fast pace of change 

in the standard of lung cancer treatment effecting recruitment. It is unlikely that further 

randomised control trial data will be produced in this space in the near future with the 

prominent UK lung trials focusing on synchronous oligometastatic disease74 and 

oligoprogressive disease118.  

Three different toxicity modelling techniques were assessed for oesophagitis and 

pneumonitis. The results of this study suggest that the utility of LKB NTCP modelling could 

now be an outdated approach as it is restricted to dosimetric data and cannot fully utilise the 

breadth of data that is available in modern radiotherapy datasets. This limitation is 
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demonstrated in the modelling of pneumonitis where dosimetric features had poor 

correlation with toxicity. The performance of LR and ML toxicity models in this study were 

similar in terms of overall predictive accuracy and AUC, but ML models were consistently able 

to produce more balanced models in terms of sensitivity and specificity. ML models offer 

greater scope for customisation through the weighting of model parameters to help achieve 

the desired specificity or sensitivity. The ML models also use K-fold cross validation, splitting 

up data sets into training and validation cohorts to ensure that models do not overfit the data 

while LR uses the whole dataset for analysis. This suggests that ML models are likely to be 

more generalisable to real world datasets, but this requires validation. 

In terms of the toxicity models that have been produced in this study, the models for 

oesophagitis have been promising and consistently predict the patients that suffer from 

toxicity with high accurately but only attain moderate accuracy for detecting patients that do 

not. The pneumonitis models had poor balance in terms of sensitivity and specificity and do 

not provide the level of accuracy required to be clinically useful. In both cases it would be 

useful to test additional data features. Data features that could relatively easily be attained 

for the existing dataset would be smoking status, CT imaging biomarkers, spatial analysis of 

dose within organs and doses metrics for nearby OARs.  

In conclusion ML approaches to toxicity modelling for oesophagitis and pneumonitis have 

shown encouraging results in building clinically useful toxicity models. With the proviso that 

these results need to be validated on an external dataset, analysis has shown a clear link 

between dosimetric factors and oesophagitis, although further exploration of data features 

is required for pneumonitis. ML models have the potential to be further refined through the 

incorporation of additional data features which can be derived from existing data and through 

the use of ML techniques it should be possible to develop clinically useful toxicity models that 

can improve patients’ outcomes.   
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7 Appendices 

7.1 Appendix 1: HRA Approval Letter 
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7.2 Appendix 2: Letter of Support from IDEAL-CRT Study 
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7.3 Appendix 3: MATLAB Code 

7.3.1 EQD2 conversion and dose reporting script 

All MATLAB code is based on example code provided by Dr Colin Baker and have been adapted 

and rewritten for this project.  

This section of code reads all DVH csv files generated by the Eclipse Treatment planning 

system from a folder. Converts the data into an array for the desired OAR, converts this to 

EQD2 and writes pre-set patients and dosimetric values to a text document for each file. 

% Rush test for C2 project to read data from an absolute Eclipse DVH export 
 
%looping through a folder and writing to file: think this should be in a 
%separate file and will then call the function to go through each file and 
%pull out the data 
files = dir('G:\My Drive\HSST\Module C\C2\Matlab PUnC 2020\DVH-data\*.txt') ;    % 
you are in folder of txt files 
N = length(files) ;   % total number of files  
% loop for each file  
 
 
for i = 1:N 
    thisfile = files(i).name ; 
    % do what you want 
     
     
    %OAR = 'Oesophagus';   
    OAR = 'Lungs-GTV'; %name of the structure being analysed 
    fidOAR=fopen(thisfile);  %location of the file 
    ab_OAR = 4;  %alpha beta ratio used for dose conversion 
    k = 0.54; 
    t = 40; 
    tdelay = 0; 
    Nfract = 30; %number of fractions 
    nLKB = 0.5;      
     
        % runs the import eclipse function 
    [DoseOAR, dDVHoar, ID] = ReadDVHEclipse(fidOAR,OAR);  %DoseOAR = dose value of 
the bin, dDVHoar is the differential volume of the bin 
        %fprintf('%s\n',t); 
        %fprintf('%s\n',ID{6}); 
   for j = 0:4 
        tdelay = j*7; 
              
        if strcmp('1',ID{6}) 
            t=33; 
        end         
        %fprintf('%d\n',t); 
        Dcor2(1)=DoseOAR(1)+0.5*(DoseOAR(2)-DoseOAR(1)); 
        nmaxD=0; 
        for ibin=2:length(DoseOAR)-1 
            Dcor2(ibin)=DoseOAR(ibin)+0.5*(DoseOAR(ibin+1)-DoseOAR(ibin)); 
            %also establish max dose bin 
            if dDVHoar(ibin)>0 
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                nmaxD=ibin; 
            end 
        end 
        
Dcor2(length(DoseOAR))=DoseOAR(length(DoseOAR))+0.5*(DoseOAR(length(DoseOAR))-
DoseOAR(length(DoseOAR)-1)); 
        %DoseOAR=Dcor2; 
         
        %Normalise to relative volume - assume absolute volumes from DVH files 
        OARvol=sum(dDVHoar);  %sum of the volumes 
        dDVHoar=100*dDVHoar/OARvol; %dDVHoar is now relative 
         
        %conversion factor to 2Gy fraction equivalence *********************** 
        lam = 0; 
        for iDose=1:length(DoseOAR) 
            lam(iDose)=(((DoseOAR(iDose)*(ab_OAR + DoseOAR(iDose)/Nfract))-(k*(t-
tdelay)))/(ab_OAR + 2)); %I've multiplied by the total dose to be safe 
             
        end 
         
        % working out the D1cc in Gy 
        d1ccinpercent = 0; 
        d1vol = 0; 
        d1cc = 0; 
        pos=0; 
        d1ccinpercent = (1/OARvol)*100; 
        for iDose=length(dDVHoar):-1:1 
            if d1vol<=d1ccinpercent 
                d1vol = d1vol + dDVHoar(iDose); 
                pos = iDose; 
            end 
        end 
        d1cc = lam(pos); 
                 
         %Normalise to relative volume - assume absolute volumes from DVH files 
        OARvol=sum(dDVHoar); 
        dDVHoar=100*dDVHoar/OARvol; 
        % LKB 
model**************************************************************** 
        sumeud=0; 
        dDVHoar; 
        for iDose=1:length(lam) 
            eud(iDose)=0.01*dDVHoar(iDose)*(lam(iDose)^(1/nLKB)); 
            sumeud=sumeud+eud(iDose); 
        end 
        EUDoar=sumeud^nLKB; 
         
        % working out the V5Gy as a percentage of the total lung volume 
        fiveGy = 0; 
        vfive = 0; 
        for iDose=1:length(lam) 
            if lam(iDose)>=5 
                fiveGy = fiveGy + dDVHoar(iDose); 
            end 
        end 
        vfive = (fiveGy/sum(dDVHoar))*100; 
         
        %working out the V10Gy as a percentage of the total lung volume 
        tenGy = 0; 
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        vten = 0; 
        for iDose=1:length(lam) 
            if lam(iDose)>=10 
                tenGy = tenGy + dDVHoar(iDose); 
            end 
        end 
         
        vtwenty = (twentyGy/sum(dDVHoar))*100; 
%                 
        % working out the V35Gy as a percentage of the total lung volume 
        v35a = 0; 
        v35 = 0; 
        for iDose=1:length(lam) 
            if lam(iDose)>=35 
                v35a = v35a + dDVHoar(iDose); 
            end 
        end 
        v35 = (v35a/sum(dDVHoar))*100; 
         
        % working out the V50Gy as a percentage of the total lung volume 
        v50a = 0; 
        v50 = 0; 
        for iDose=1:length(lam) 
            if lam(iDose)>=50 
                v50a = v50a + dDVHoar(iDose); 
            end 
        end 
        v50 = (v50a/sum(dDVHoar))*100; 
         
        % working out the V70Gy as a percentage of the total lung volume 
        v70a = 0; 
        v70 = 0; 
        for iDose=1:length(lam) 
            if lam(iDose)>=70 
                v70a = v70a + dDVHoar(iDose); 
            end 
        end 
        v70 = (v70a/sum(dDVHoar))*100; 
         
        % mean dose calculation 
        meandose = 0; 
        for iDose=1:length(lam) 
            meandose = meandose + (lam(iDose)*(dDVHoar(iDose)/(sum(dDVHoar)))); 
        end 
         
        %fprintf(1,'\n%s%5.2f','V20Gy [%] = ',vtwenty); 
        %fprintf(1,'\n%s%5.2f','Mean Dose [Gy] = ',meandose); 
        %fprintf(1, '\n%s%4.1f', 'OAR a/b [Gy] ', ab_OAR); 
        %prints everthing into csv format 
        fid = fopen('G:\My Drive\HSST\Module C\C2\Matlab PUnC 
2020\tdelay\lung.txt','a'); %opens the file 
        fprintf(fid,'\n'); %prints a new line 
        fprintf(fid,'%s',ID{1:8},','); %adds the trials ID then comma 
        fprintf(fid,'%s',OAR,','); % adds OAR name 
        fprintf(fid,'%f%s',ab_OAR,','); %adds alpha-beta ratio 
        fprintf(fid,'%f%s',k,','); % 
        fprintf(fid,'%f%s',t,','); % 
        fprintf(fid,'%f%s',tdelay,','); % 
        fprintf(fid,'%f%s',d1cc,','); %adds D1cc 
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        fprintf(fid,'%f%s',EUDoar,','); %adds EUD OAR 
        fprintf(fid,'%f%s',vfive,','); %adds V5 
        fprintf(fid,'%f%s',vtwenty,','); %adds V20 
        fprintf(fid,'%f%s',v35,','); %adds V35 
        fprintf(fid,'%f%s',v50,','); %adds V50 
        fprintf(fid,'%f%s',v70,','); %adds V70 
        fprintf(fid,'%f%s',meandose,','); % adds mean dose 
        fclose(fid); % closes file 
     
    fclose('all'); 
    end 
end 

 

7.3.2 EUD Calculation 

The code below generates the EUD value when used in the script in 7.5.1 

dDVHoar; 
        for iDose=1:length(lam) 
            eud(iDose)=0.01*dDVHoar(iDose)*(lam(iDose)^(1/nLKB)); 
            sumeud=sumeud+eud(iDose); 
        end 
        EUDoar=sumeud^nLKB; 

7.3.3 LKB Calculation 

LKB NTCP calculation script assuming data import as in section 7.5.1 

% LKB model**************************************************************** 
        sumeud=0; 
        dDVHoar; 
        for iDose=1:length(lam) 
            eud(iDose)=0.01*dDVHoar(iDose)*(lam(iDose)^(1/nLKB)); 
            sumeud=sumeud+eud(iDose); 
        end 
        EUDoar=sumeud^nLKB; 
        tval=(EUDoar-TD50)/(mLKB*TD50); 

         
        if tval>0 
            NTCPLKB=100*(0.5*(1+erf(tval/sqrt(2)))); 
        else 
            NTCPLKB=100*(0.5*(1-erf(-tval/sqrt(2)))); 
        end 
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7.4 Appendix 4: MINIMAR Compliance Table 

Minimar AI Reporting 

Features Description Section 

1. Study population and setting  

 Population  Population from 
which study sample 
was drawn  

1.4 

 Study setting  The setting in which 
the study was 
conducted (eg, 
academic medical 
left, community 
healthcare system, 
rural healthcare 
clinic)  

1.4 

 Data source  The source from 
which data were 
collected  

1.4 

 Cohort selection  Exclusion/inclusion 
criteria  

1.4, 5.3 

2. Patient demographic characteristics  

 Age  Age of patients 
included in the 
study  

2.4.2 

 Sex  Sex breakdown of 
study cohort  

2.4.2 

  

 Race  Race characteristics 
of patients included 
in the study  

Not Available 

  

  

 Ethnicity  Ethnicity 
breakdown of 
patients included in 
the study  

Not Available 

 Socioeconomic 
status  

A measure or proxy 
measure of the 
socioeconomic 
status of patients 
included in the 
study  

Not Available 

  

  

3. Model architecture  
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 Model output  The computed result 
of the model  

2.3, 3.3.2 

 Target user  The indented user of 
the model output 
(eg, clinician, 
hospital 
management team, 
insurance 
company)  

5 

 Data splitting  How data were split 
for training, testing, 
and validation  

3.3.2 

 Gold standard  Labeled data used to 
train and test the 
model  

N/A 

 Model task  Classification or 
prediction  

3.3.2 

 Model architecture  Algorithm type (eg, 
machine learning, 
deep learning, etc.)  

3.3.2 

 Features  List of variables 
used in the model 
and how they were 
used in the model in 
terms of categories 
or transformation  

3.3.1 

 Missingness  How missingness 
was addressed: 
reported, imputed, 
or corrected  

N/A 

4. Model evaluation  

 Optimization  Model or parameter 
tuning applied  

3.4 

 Internal model 
validation  

Study internal 
validation  

3.3.2 

 External model 
validation  

External validation 
using data from 
another setting  

N/A 

 Transparency  How code and data 
are shared with the 
community.  

7.3 
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7.5 Appendix 5: Confusion Matrices 

The confusion matrices below visually demonstrate ML model performance using the MRMR 

selected features. Here 0 and 1 represent no toxicity and toxicity respectively, TPR is the true 

positive rate and FVR is the False negative rate. 

7.5.1 Oesophagitis 

All models presented here use the V50Gy and patient sex as features. The classifier type and 

model numbers are as follows. Decision Trees (Model 2.3), Logistic Regression (2.4), Naïve 

Bayes (2.6), SVM (2.10), Ensemble (2.10) and Neural Network (2.16). 
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7.5.2 Pneumonitis 

All models presented here use the EUD and patient sex as features. The classifier type and 

model numbers are as follows. Decision Trees (Model 2.3), Logistic Regression (2.4), Naïve 

Bayes (2.5), SVM (2.7), Ensemble (2.13) and Neural Network (2.16). 
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7.6 Appendix 6: Data Visualisation 

This section contains additional data plots to better visualise the data. Histograms and box 

plots have been plotted for the four lung and four oesophageal dose metrics used for 

modelling. For the histograms, the natural logarithm was also plotted to assess the impact of 

data transformation (variables prefixed with Ln). Finally Q-Q plots have been plotted for the 

dose metrics and measures of lung function to assess normality. 

7.6.1 Lung 

7.6.1.1 Histograms 
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7.6.1.2 Boxplots 
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7.6.1.3 Q-Q plots 
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7.6.2 Oesophagus 

7.6.2.1 Histograms 
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7.6.2.2 Boxplots 
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7.6.2.3 Q-Q Plots 
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