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Symbols & abbreviations

For more precise definition, refer to the page numbers indicated in brackets.

a graphene’s lattice constant, 0.246 nm. (49)
A area, m2.
B magnetic field, T.
B0 magentic field with 1 flux piercing a characteristic area, T. (78)
B∗ maximum magnetic field supporting ABS, T. (46)
Bfocusing magnetic field required to focus electrons, T. (33)
Cg gate capacitance, µF. (73)
D diffusion constant, cm2 s−1.
D electric displacement field, V cm−1. (74)
e electronic charge, 1.6× 10−19 C.
E electric field, Vm−1. (25)
Ef Fermi energy, eV.
EJ Josephson energy, eV. (40)
En nth Landau level energy, eV (35)
ETh Thouless energy, eV. (39)
f(E) Fermi-Dirac distribution. (26)
G conductance, S. (30)
g degererancy factor.
h Planck constant, 6.63× 10−34 J s.
ℏ reduced Planck constant = h/2π =1.05× 10−34 J s.
I current, A.
j current density, Acm−1. (26)
jc critical current for a Fermi liquid, Acm−1.
js critical current density in a Josephson junction, Acm−1. (40)
JS critical current spatial density, Acm−1 (81)
kB Boltzmann constant, = 1.38× 10−23 JK−1

kf Fermi wavenumber, cm−1. (26)
ℓ mean free path, cm. (28)
lB magnetic length, nm. (34)
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8 Symbols & abbreviations

L device length, cm. (30)
LE characteristic length of the superconducting proximity effect, cm. (39)
m effective mass, kg.
mc cyclotron mass, kg. (34)
n gate-induced electron density, cm−2. (72)
n0 density of secondary Dirac points, cm−2. (77)
nBZF effective electron density for Brown-Zak fermions, cm−2. (112)
nc electron density per Landau level, cm−2. (35)
nH Hall density, = −B/eρxy, cm−2.
ns electron density in the 2DEG, cm2

Ns density of states, = m/πℏ2.
p momentum, kgm s−1.
p number of flux penetrating a number of unit cell (see q). (106)
q number of superlattice unit cells penetrated by p fluxes. (106)
R resistance, Ω.
Rb resistance in the bend geometry. (32)
rc cyclotron radius, m.
Rn normal resistance, Ω. (64)
T temperature, K.
T transmission coefficient of propagating modes. (31)
Tr transmission coefficient of a junction (64)
vf Fermi velocity, cm s−1. (28)
vd drift velocity, cm s−1. (25)
V voltage drop, V.
VH Hall voltage, V. (30)
Vx longitudinal voltage, V. (30)
Vn voltage step of the nth Shapiro step, V. (46)
W device width, cm. (30)
δ moiré lattice mismatch. (75)
∆ bandgap, eV.
∆ superconducting gap, eV. (40)
εs energy in the Dirac cone eV. (51)
Λ effective length of electron-hole trajectories in a Josephson junction, cm.

(41)
λf Fermi wavelength, cm. (45)
λj Josephson penetration depth, cm.(45)
λsl superlattice periodicity, nm. (76)
µ mobility, cm2 V−1 s−1. (27)
ν Landau filling index. (36)
ξ characteristic length scale, cm.
ξ0 superconducting coherence length, cm. (38)
ξn thermal coherence length, cm. (39)



Symbols & abbreviations 9

φ superconducting phase difference. (40)
ϕ0 flux quantum, = h/e for electrons and = h/2e for Cooper pairs.
ρ sheet resistivity, Ω.
ρxx longitudinal resistivity, Ω. (29)
ρxy Hall resistivity, Ω. (29)
σ conductivity, S.
σxx longitudinal conductivity, S.
σxy = σH Hall conductivity, S.
τm momentum relaxation time, s. (25)
ωc/2π cyclotron frequency, s−1. (34)

2DEG two-dimensional electron gas (25)
ABS Andreev bound states (41)
AR Andreev reflection (39)
BZF Brown-Zak fermions (105)
CAES Chiral Andreev edge states (65)
DP Dirac point (57)
hBN hexagonal boron nitride
LL Landau Level (35)
QHE Quantum Hall effect (36)
mtBG minimally twisted bilayer graphene
MA-tBG magic-angle twisted bilayer graphene
MAR multiple Andreev reflection (80)
MC mixing chamber (92)
NS normal metal - superconductor junction (38)
NP neutrality point (51)
SdHO Shubnikov-de Haas oscillations (35)
SQUID Superconducting quantum interference device (43)
tBG twisted bilayer graphene
tDBG twisted double bilayer graphene
tMBG twisted monolayer-bilayer graphene (146)
vdW van der Waals
vHS van Hove singularity (59)



List of devices measured

A number of devices were emasured in this thesis. This list enumerates different
devices and fabrication parameters.

Table 0.1: List of graphene devices

substrate type width (µm) Fabricated by

G1 SiO2 monolayer 4 Shuigang Xu
G2 hBN bilayer 2 Shuigang Xu

Table 0.2: List of graphene superlattices

width (µm) angle (◦) gate capacitance (µFm−2) Fabricated by

D1 17 0.4 101 Piran Kumaravadivel
D2 4 0 98 Matthew Holwill
D3 3 0.2 104 Na Xin
D4 3.2 0.5 96 Na Xin
D5 2 0.2 106 Roman Gorbachev
D6 2 0.3 98 Na Xin
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List of devices measured 11

Table 0.3: List of Josephson junctions

SC metal length
(nm)

width
(µm)

NDW
a Fabricated by

Ja Nb graphene 300 7 0 Moshe Ben Shalom
Jb Nb bilayer graphene 400 4 0 Moshe Ben Shalom
J1 NbTi mtBG 200 1.5 1 Na Xin
J2 NbTi mtBG 100 4 multiple Na Xin
J3 NbTi mtBG 150 1.5 2 Na Xin
J4 NbTi mtBG 150 2 1 Na Xin
J5 NbTi mtBG 150 0.5 8 Piran Kumaravadivel
J6 NbTi mtBG 150 0.3 1 Piran Kumaravadivel
J7 NbTi mtBG 150 4 6 Na Xin
J8 NbTi bilayer graphene 100 1 0 Na Xin
a NDW denotes the number of domain walls between two superconducting electrodes,
for the case of minimally twisted bilayer graphene (mtBG).
.

Table 0.4: List of twisted monolayer-bilayer graphene (tMBG) devices

twist angle (◦) width (µm) Fabricated by

M1 1.22 1 Shuigang Xu
M2 1.47 1.5 Shuigang Xu
M3 1.30 2 Shuigang Xu
M4 0.99 5 Na Xin
M5 1.18 1 Shuigang Xu
M6 1.20 1 Shuigang Xu
M7 1.26 1.4 Shuigang Xu
M8 1.41 1.2 Shuigang Xu
M9 1.60 2.5 Nila Balakrishnan
.
.

Table 0.5: List of twisted multilayer devices

Nlayers twist angle (◦) width (µm) Fabricated by

S1 4 1.25, 10, 0.4 Shuigang Xu
S2 2 1.23 Shuigang Xu
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Abstract

The past fifteen years have witnessed a dramatic evolution of condensed mat-
ter physics as a new class of materials has been explored: two-dimensional
materials. These are extracted from layered crystals and thinned down to the
atomic layer, revealing new electronic properties absent in the parent crys-
tal. Graphene was the first of these two-dimensional materials to be extracted
and remained the most studied as it is truly unique with a linear electronic
dispersion hosting Dirac fermions, an anomalous quantum Hall effect and a
valley degree of freedom to name a few. The development of graphene research
and fabrication techniques enabled the creation of van der Waals heterostruc-
tures consisting of multiple two-dimensional sheets stacked together. These
heterostructures can combine two different materials assembled in a chosen
sequence to create stacks with designer properties. It is also possible to mis-
align the two lattices by a twist angle θ to create electronic properties un-
seen in nature. This thesis explores the electronic properties of van der Waals
heterostructures made of graphene and hexagonal boron nitride (hBN) with
different twist angles at cryogenic temperatures. The twist angles enable sev-
eral properties based on the long-range superlattice period and the electronic
hybridisation between two neighbouring electronic bands.

The experimental work consists of two parts. First, I study the effect of the
superlattice potential on electronic properties. I present long-range superlat-
tices with periods of more than 10 nm by aligning a graphene layer with hBN.
This length scale is 100 times larger than the lattice constant of the parent
graphene and can be made comparable with the magnetic length at high mag-
netic fields. In high-quality graphene superlattices in high magnetic fields, I
explore the regime of Brown-Zak fermions. I find that they have ballistic mo-
tion and measure their degeneracy. Additionally, I present the superconducting
proximity effect in superlattices made by stacking two graphene sheets at small
angles. This kind of heterostructures is subject to strain-induced reconstruc-
tion, resulting in large domains separated by narrow conduction channels that
are topologically protected against backscattering. The resulting proximity ef-
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fect is found to withstand extremely high magnetic fields and is attributed to
Andreev bound states propagating in the narrow domain walls.

The second part focuses on the band hybridisation occurring when two
layers are stacked at a singular angle. I present twisted monolayer-bilayer
graphene, a system in which the C2 and time-reversal symmetries are sponta-
neously broken. I explore the correlated insulators created by band flattening
and study the asymmetry relative to perpendicular electric fields applied to
the layer. I also probe these flat bands under strong electric fields, shifting the
Fermi surface out of equilibrium and study the interplay of high drift veloci-
ties with narrow bandwidths. Finally, I explore the effect of high twist angles
on strong correlations. These high twists allow screening of electron-electron
interactions. I notably observe the emergence of superconductivity as a result
of band flattening driven by Coulomb screening. I explore this regime’s limi-
tations when the Fermi velocity becomes comparable to the superconducting
condensate velocity.
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Chapter 1
Introduction

The student I was at ESPCI Paris would categorise physics into two distinct
areas: the microscopic and the macroscopic worlds. The microscopic world
contains the building block of matter, such as molecules, atoms and electrons:
objects that cannot be seen directly. These systems contain a sufficiently small
number of excitation quanta that they should be described by the laws of quan-
tum physics. Their wavelength and phase entirely define the behaviour of these
excitations. The macroscopic world contains objects that can be seen with our
eyes and would obey general intuition. They are generally described by the
laws of classical physics or at least can be treated as semi-classical systems.
For example, in usual — macroscopic — solid-state systems, electronic bands
will be only filled up to a maximum energy: the Fermi energy and electrical
conduction occurs because of the partial filling of the topmost band. This Fermi
energy is associated with a maximum wavevector kF, thus with a minimum
wavelength λF = 2π/kF. As only the electrons with energies close to the Fermi
energy contribute to the conduction, the relevant length scale in a macroscopic
metal will be λF, experimentally unreachable. Consequently, the translational
invariance of the lattice leads to the formation of Bloch bands with a finite
number of electronic states available per band [1–3]. Here the wavelength and
phase of individual excitations have no importance in measurable phenomena.

There is, however, an intermediary area: mesoscopic physics, introduced in
the 1980s, motivated by the need to miniaturise components in the electronic
industry, shaping the advent of nanotechnology. Although they contain a very
large number of atoms or electrons, mesoscopic systems are so small that
they only host a few relevant excitations around equilibrium, so that their
behaviour can be described as quantum mechanical. This is counterintuitive
in systems that look dirty, messy, and jumbled with grubby leads connected
to measurement instruments obeying the laws of classical physics, inevitably
inducing decoherence. In these mesoscopic systems, the relevant length scale
is usually a correlation length ξ like the mean free path — the distance an
electron travels before its momentum is destroyed — or the phase relaxation
length — the distance an electron travels before its phase is destroyed. Under
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20 1 Introduction

these length scales, the spectrum of excitations is discrete; therefore, the phase
is preserved, and interference effects can be measured. Both these length scales
can reach a few dozens of micrometres, allowing interference effects [4–6].

The most notable example of electron interference effects in mesoscopic
systems is the behaviour of a ring-shaped conductor in a small magnetic field,
the so-called Aharonov-Bohm effect [7]. Figure 1.1 shows the first example of
such an electron interferometer, consisting of a ring that allows the current
to pass through both arms from the top to the lower contact. In this system,
electrons travelling along a path l acquire a phase shift ∆φ that can be obtained
from the vector potential A: ∆φ = (e/ℏ)

∫
A · dl. Notably, it can be derived

that the phase difference is determined by the total magnetic flux ϕ enclosed
in the area of the ring A:

∆φ =
e

ℏ
BA = 2π

ϕ

ϕ0
, (1.1)

where ϕ0 = h/e is the flux quantum. Here the phase ∆φ is called the
Aharonov-Bohm phase. As the magnetic field is changed, a set of magnetore-
sistance oscillations develop with a periodicity in multiples of ϕ0 [6–9] (see fig
1.1). Although Aharonov and Bohm predicted this effect in 1959 [7], the de-
velopment of controlled growth and advanced optical or electron-beam lithog-
raphy techniques only allowed to create the small structures required for these
observations in the 1980s. This spread in multiple research directions, includ-
ing quantised conductance of quantum point contacts, quantum Hall effects
(integer and fractional, superconductor and normal-super combination includ-
ing Josephson junctions, Coulomb blockade and single-electron transistors,
tunnelling cyclotron resonance, Gantmakher and Weiss oscillations to name a
few [4–14]. The quantum Hall effect, discovered in 1980 [15], is another char-
acteristic effect of mesoscopic physics where external electric and magnetic
fields allow significant system manipulation. Applying a perpendicular mag-
netic field to a 2D electron gas allows the discretisation of the spectrum into
a series of energy levels, opening a window into the basic properties of a given
system. The exfoliation of graphene from pyrolitic graphite crystals in 2004
gave a new impetus to the field, as it introduced new opportunities to create
2D ballistic systems with an even larger number of experimentally tunable pa-
rameters. This new 2D age transformed the landscape of fundamental research
in physics, allowing the demonstration of a wide variety of phenomena: Hall
effects, valley physics, chiral quasiparticles, superfluidity, etc.

When I started my PhD, graphene research had already evolved into a vast
field, with the peak already reached. Researchers had already mastered the art
of exfoliating other 2D materials and stacking them together to create designer
materials not found in nature [16–18]. All the low-hanging fruits of these so-
called van der Waals heterostructures had already been harvested. That was
without counting on the physics of Moiré superlattices that had just boomed.
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Fig. 1.1 Aharonov-
Bohm interferences
a) Magnetoresistance of
the ring at T =10mK.
Inset: picture of the ring,
inside diameter is 784nm.
b Fourier power spectrum
containing peaks at h/e

and h/2e. Data extracted
from ref. [9]
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Instead of stacking 2D materials like LEGO bricks, improvements in fabrica-
tion procedures allowed to add a twist between two layers, opening refreshing
opportunities for fundamental physics owing to the delicate interplay between
long-range effects from the superlattice and interlayer hybridisation. The most
influential of these emergents effects is probably the discovery of correlated in-
sulators and superconductivity when two graphene sheets are stacked together
with a 1.05◦ twist. However, there are less impressive but nonetheless exciting
results that can still be discovered. I hope this thesis gives a blueprint on some
of the directions now within experimental reach. The energy of mesoscopic
systems is discrete. Thermal energy may broaden these levels and smear all
measurable effects. In order to prevent this, we shall pay particular attention
to lowering the thermal energy kBT below the characteristic energy of the ex-
citations we are probing. As such, my investigations made use of a dilution
refrigerator to measure electronic properties at temperatures in the order of
10mK.

This thesis is organised as follows. Part I is a literature review of mesoscopic
physics in graphene. It is composed of two chapters. Chapter 2 is an introduc-
tion to mesoscopic transport. Here, I discuss diffusive and ballistic 2D electron
gas and introduce experimental results on Josephson junctions. Chapter 3 in-
troduces graphene and graphene-based van der Waals heterostructure as a rich
experimental platform. I discuss the main results from the literature. Part II
is focused on experimental technicalities: chapter 4 introduces measurement
techniques of van der Waals heterostructures, encompassing the geometry of
Hall bars, extraction of twist angles, gate capacitances and other device param-
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eters. Reconstruction of the critical current spatial density in Josephson junc-
tions is discussed. Chapter 5 introduces low temperature measurements. As I
have been in charge of maintaining and incrementally improving a dilution re-
frigerator, I discuss the main techniques to achieve electronic temperatures be-
low 300mK. The knowledgeable reader may skip parts I and II, although I hope
newcomers to the field find value in them. Parts III and IV develop the results
of my research, encompassing respectively the long-range superlattice effects
created by a moiré potential and the interlayer hybridisation from interact-
ing electrons resulting in correlation phenomena in which the Coulomb energy
dominates over the quenched kinetic energy. Chapter 6 introduces a family
of ballistic quasiparticles, the Brown-Zak fermions, emerging at high magnetic
fields due to the Aharonov-Bohm phase acquired in a superlattice. Chapter
7 explores the quantisation of Brown-Zak fermions in small effective magnetic
fields and their degeneracy. These two chapters present results published in
ref. [19]. Chapter 8 explores the consequences of inducing superconductivity
in a moiré superlattice via the proximity effect. I engineered a supercurrent in
quantum Hall states on the boundary of moiré domains similar to supercon-
ductivity in the quantum spin Hall regime, where each 1D channel can carry its
own supercurrent. The results from this chapter are currently being prepared
for publication. These three chapters discuss results that can be treated with
a non-interacting single-particle picture. The following two chapters deal with
phenomena originating when electron-electron interactions dominate their ki-
netic energy. Chapter 9 introduces twisted monolayer-bilayer graphene as a
new platform for studying strongly correlated systems. Van Hove singularities
and the phase diagram are discussed. Some of these results were published as
part of ref. [20]. Chapter 10 presents superconductivity and screening effects
in a 4-layer graphene heterostructure. These last two chapters contain data
that have not been published by a lack of sufficient understanding of the un-
derlying mechanisms. Appendix A details the fabrication of van der Waals
heterostructures, a subject I have only treated in the first few months of this
PhD.



Part I
Electronic transport in graphene

23



Blank page

24



Chapter 2
Mesoscopic transport

This chapter presents the basic properties of two-dimensional electron gas and
the consequences of diffusive and ballistic transport on mesoscopic transport.
A second part of the chapter focuses on superconductivity and the Joseph-
son effect. The goal here is to provide enough background to understand the
following chapters.

2.1 Properties of diffusive 2DEGs

This section describes the properties of a two-dimensional electron gas (2DEG)
in the diffusive limit. Low scattering rates can be achieved in these systems —a
fortiori graphene. The mobility at low temperature is a direct measurement of
the momentum relaxation time that is limited only by impurities and defects.
The mobility allows for a quantification of the defect concentration.

2.1.1 Drift velocity

At equilibrium, the conduction electrons of a 2DEG move randomly in all
directions, resulting in a null current. If one applies an electric field E parallel
to the plane of this 2DEG, electrons acquire a drift velocity vd in the direction
of the force eE where e is the electron charge. In a steady state, the rate at
which an electron receives momentum from the external electric field is equal
to the rate at which it loses momentum p due to scattering forces and the drift
velocity is defined as:

vd = −eEτm
m

, (2.1)

where m is the effective mass, and τm is the momentum relaxation time.
One may rewrite equation 2.1 as vd = −µeE where µe is the electron mo-
bility defined as µe = eτm/m; together with the electron density ns, it would

25



26 2 Mesoscopic transport

allow determining the Drude conductivity [4–6]. The current density j in a
homogeneous conductor writes:

j = ensvd. (2.2)

Therefore, by rewriting eq. 2.2 with 2.1, one finds

j =
nse

2τm
m

E ≡ σE. (2.3)

with σ the conductivity. That is an expression of Ohm’s law.
Since all electrons acquire the same average drift velocity, this picture would

suggest that the current induced by the electric field is carried by all the
conduction electrons. At low temperatures, this is a misleading picture: the
states that are more than a few times the thermal energy kBT below the
Fermi energy Ef are all filled; the energy of a conduction electron deep inside
the Fermi sea (shown as the shaded blue area in figure 2.1) cannot change; only
the electrons whose energies are close to Ef can contribute to the conductivity
and vary from the Fermi-Dirac distribution: distribution of electrons among
those at energies close to Ef can be different from the equilibrium Fermi-Dirac
distribution f(E).

f(E) =
1

1 + exp [(E − Ef)/kBT ]
. (2.4)

An easier way to picture this is shown in figure 2.1: deep inside the Fermi sea
(k ≪ kf), nothing much happens when kd < kf with kf the Fermi wavenumber
(in the linear regime): the states were occupied without the electric field and
remain full upon application of the electric field. It is only near ±kf that empty
states become filled or empty as a result of E. From a single particle point
of view, the electric field results in a drift velocity on all electrons; from a
collective point of view, only the electrons between −kf and +kf move.

Fig. 2.1 Fermi sea. a)
All states within a circle of
radius kf (shaded blue) are
occupied at equilibrium.
Under an electric field,
the circle is shifted in
the direction of eE. b)
Calculated Fermi-Dirac
distribution at 0.3K, 3K
and 10K (orange, greend
and blue lines, resp.) for
Ef =10meV representing
the probability for an
energy to be occupied.
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Therefore the current is non-zero only within a few kBT of the Fermi energy
Ef : to understand the conduction properties at low temperature, a common
simplification consists in studying the dynamics of electrons having energies
close to the Fermi energy Ef .

Consequently, the current density can reflect the collective behaviour as
follows:

j = e

(
ns

vd
vf

)
vf . (2.5)

Only a tiny fraction of the total electrons (nsvd/vf), those moving at the
Fermi velocity, are able to carry the current.

2.1.2 Mobility

The mobility µ is the ratio of the drift velocity to the electric field:

µ =
∣∣∣vd

E

∣∣∣ = eτm
m

=
σ

ens
(2.6)

As described in section 6.2, the mobility can easily be measured in Hall
bars, so it is a primary characterisation tool for 2DEGs — or, more generally,
semiconducting and metallic films. Once the mobility is known, the momen-
tum relaxation time τm can easily be deduced. In usual semiconductors, the
momentum relaxation time increases with decreasing temperature due to the
suppression of phonon scattering. However when impurity scattering is the
dominant relaxation mechanism, the mobility remains constant as the temper-
ature decreases. The sum of the drift current density −σE/e and the diffusion
current density −D∇ns vanish in thermodynamic equilibrium (∇µEC = 0). At
zero temperature, the electrochemical potential µEC is spatially constant:

∇µEC = eE +Ns(Ef)
−1∇ns = 0. (2.7)

Here Ns(E) represents the density of states, this leads to the Einstein rela-
tion between the conductivity σ and the Fermi level properties.

σ = e2Ns(Ef)D. (2.8)

Here D is a 2D diffusion constant. It is found by combining equations 2.6
and 2.8:

D =
nµ

eNs(Ef)
=

1

2
v2f τm, (2.9)

where vf is the Fermi velocity and τm the momentum relaxation time.
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2.1.3 Mean free path

In a perfect crystal in the absence of electron-phonon and electron-electron
interactions, the collective motion of electrons is similar to the diffusive be-
haviour of an ideal gas, where interactions between particles are negligible.
Effects of the lattice and electron interactions do not appear in the usual
equations describing the dynamics of electrons in the conduction band [4–6],
although they are responsible for scattering and change of momentum. Instead,
the interacting liquid is described by elementary excitations or quasiparticles.
One uses the same equations to describe the system but incorporates interac-
tions’ effects into an effective mass m assumed to be spatially constant [3].

In the Drude model, the momentum relaxation time τm is related to the
collision time τc with a relation of the form 1/τm → αm/τc, where αm is a
number between 0 and 1 and denotes how effective is an individual collision in
destroying momentum [4]. If collisions happen such that electrons are scattered
only by a small angle, αm is small, and the momentum relaxation time is much
longer than the collision time. The mean free path ℓ is defined as the distance
an electron travels before its initial momentum is destroyed:

ℓ = vfτm, (2.10)

where vf is the Fermi velocity, given by:

vf =
ℏkf
m

=
ℏ
m

√
πns. (2.11)

It corresponds to the velocity of the fastest electrons moving near T = 0,
that is, the velocity corresponding to a kinetic energy equal to the Fermi
energy. The mean free path is given by:

ℓ = σ
ℏ
e2

√
π

ns
. (2.12)

The Fermi velocity can reach 2 × 107 cm s−1 for ns =5 × 1011 cm−2. Con-
sequently, assuming a momentum relaxation time τm =100 ps, one obtains
a mean free path ℓ =30 µm. This distance can be comparable to the size of
mesoscopic devices. This will be detailed in section 6.2.

2.1.4 Transport in weak magnetic fields

As stated in section 2.1.2, Hall measurements are one of the most basic yet
principal tools to characterise 2D materials. It enables us to deduce the carrier
density ns and mobility µ independently.
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When a magnetic field B is applied to a 2DEG, a Lorentz force creates an
electric field perpendicular to both the current and the magnetic field. As a
result, the conductivity σ and the resistivity ρ become tensors:

mvd

τm
= e (E + vd ×B) , (2.13)

that is: (
m/eτm −B

B m/eτm

)(
vx

vy

)
=

(
Ex

Ey

)
. (2.14)

Here vx and vy are the x and y-components of the drift velocity, respectively,
and Ex and Ey are the electric field components. From equation 2.2 one gets:(

m/eτm −B

B m/eτm

)(
jx/ens

jy/ens

)
=

(
Ex

Ey

)
, (2.15)

with jx and jy, the components of j. This results in:(
Ex

Ey

)
= σ−1

(
1 −µB

µB 1

)(
jx

jy

)
, (2.16)

with the conductivity and mobility defined earlier: σ = ensµ and µ =

eτm/m. Equally, a resistivity tensor can be defined from the relation:(
Ex

Ey

)
=

(
ρxx ρxy

ρyx ρxx

)(
jx

jy

)
. (2.17)

This yields the classical result for the longitudinal resistivity

ρxx = σ−1, (2.18)

and the Hall resistivity:

ρyx = −ρxy =
µB

σ
=

B

ens
. (2.19)

This is derived from the Drude model: the longitudinal resistance ρxx should
be constant at low magnetic fields, while the Hall resistance ρxy increases
linearly with the magnetic field. Note that ρxy depends only on ns, the carrier
density, but not on other parameters like the scattering time. For this reason,
the Hall effect is a valuable experiment for measuring the density of carriers
and the sign of their charges (electron or hole-like, e.g.).

Experimentally, the resistivity tensor can be measured from a Hall bar de-
vice, prepared as a rectangular sample, with a set uniform current flowing along
the x-direction (see fig 2.2). Acquisition of the longitudinal voltage Vx = V1−V2

allows one to obtain the longitudinal resistance and that of the transverse volt-
age VH = V2 − V3, the Hall resistance.

Since the sample is assumed homogeneous, jy = 0, one can write:
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Fig. 2.2 Rectangular Hall
bar (width W , length L)
used for magnetoresis-
tance measurement. The
magnetic field is in the z-
direction, perpendicular to
the x−y plane. Source and
drain contacts are depicted
as navy-filled rectangles;
voltage probes contacts as
red rectangles.

L

W

V2V1

V3

II

Ex = ρxxjx and Ey = ρxyjx. (2.20)

It immediately follows that I = jxW and Vx = ExL and VH = EyW , with
L and W the device length and width, respectively. Therefore resistivities ρxx

and ρxy can be expressed as a function of the longitudinal and transverse
voltages:

ρxx =
Vx

I

W

L
and ρxy =

VH

I
. (2.21)

Finally, it is easy to obtain the carrier density ns and mobility µ from the
low field longitudinal and Hall resitivities using equations 2.22 and 2.23

ns =

(
e
dρyx
dB

)−1

=
I/e

dVH/dB
, (2.22)

and
µ =

1

ensρxx
=

I/e

nsVxW/L
. (2.23)

2.2 Ballistic transport

2.2.1 Conductance

It appears here that the conductance G is an easily accessible quantity through
measurements, as it relates the total current to the voltage drop: I = GV ,
while the conductivity relates the local current density to the electric field
j = σE. For large and homogeneous 2DEG, the conductance and conductivity
are related through the width W and length L of the sample:

σ = G
W

L
. (2.24)

This formula is valid as long as W and L are much larger than the mean free
path ℓ, i.e. in the diffusive transport regime(see fig. 2.3). The ballistic transport



2.2 Ballistic transport 31

Fig. 2.3 Electron trajec-
tories (blue arrows) for
diffusive (a) and ballis-
tic (b) transport regimes.
Red dots correspond to
sacttering centres. Taken
from [6]
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regime is reached when the device quality is improved so that ℓ > L > W .
Here only the conductance plays a role; it can be found using the Landauer
formula [4–6] for one propagating mode:

G =
e2

h
T. (2.25)

Here T is the transmission probability of propagating modes at the Fermi
level (also referred to as quantum channels). In this equation, the conductance
does not depend on the sample length; therefore, the conductivity loses its
meaning.

In the ballistic regime, the sample is so clean and temperature low enough
that the momentum relaxation does not occur inside the conductor; the scat-
tering of electrons at the sample boundaries limits the current, rather than
impurity scattering. The consequence is that the Einstein relation 2.8 between
the conductivity and the diffusion constant at the Fermi level, is no longer
applicable in that form. The Landauer formula is an alternative relationship
between the conductance and is a Fermi level property of the sample.

A perfect conductor’s resistance originates from (i) the limited number of
current-carrying modes and (ii) the mismatch between the number of modes
in the conductor and the contacting leads. An essential consequence is that
conductance becomes a quantised physical quantity, as depicted in figure 2.4.
Here I show the conductance of a GaAs nanoconstriction measured as a func-
tion of gate voltage Vg, a parameter enabling control of the constriction’s open

Fig. 2.4 Point contact
conductance as a function
of gate voltage defining the
number of available modes.
Inset: point-contact geom-
etry. Data obtained from
a GaAs nanoconstriction,
extracted from ref [21].
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modes’ number. A sequence of plateaus with steps near integer multiples of
2e2/h is observed, indicating conductance quantisation.

The Landauer-Büttiker formalism can be used to generalise this for a con-
ductor with many terminals having different transmission probabilities but is
beyond the scope of this work. I will here present a few experiments charac-
teristic of ballistic transport.

2.2.2 Experimental signatures of ballistic transport

A few geometry-dependent magnetoresistance anomalies are a direct conse-
quence of ballistic transport. Notably, with the ability to make devices smaller
than the mean free path, Roukes et al. discovered in 1987 the quenching of
the Hall effect in crosses [22], a consequence of the collimation effect [23, 24].
Other effects may appear, such as negative Hall resistance [25], bend resis-
tance [6, 26, 27] or magnetic focusing. These phenomena can be qualitatively
understood with semi-classical mechanisms [28]. I detail two of them: nega-
tive bend resistance and magnetic focusing, used in chapter 7 to prove the
ballisticity of a novel quasiparticle family in graphene superlattices.

2.2.2.1 Negative bend resistance

In cross-shaped ballistic billiards samples, different mechanisms may appear. In
the absence of a magnetic field, collimation and scrambling are key concepts,
shown in figure 2.5a. An electron from the main channel and approaching
the side probe will be reflected, and undergo multiple reflections before being
directed to the contact opposite the injector. A consequence of this is that
the probability for an electron to enter the right or left side probe is equal,
resulting in the quenching of the Hall effect [6, 23–28].

In a magnetic field, the electrons undergo cyclotron trajectories: guiding
takes over, as figure 2.5b. Guiding happens for magnetic fields corresponding to
cyclotron radius smaller than the corner curvature’s radius: B ≥ ℏkf/ercorner.
In this regime, the junction does not scatter the electron back into the channel:
the absence of backscattering is a feature characteristic of the quantum Hall
regime, as will be discussed in chapter 8.

Figure 2.5c shows the resulting negative resistance measured on high mo-
bility GaAs 2DEG shaped into a cross with width W =100 nm. The bend
resistance is defined as Rb = V3−4/I1−2. At low magnetic fields, ballistic elec-
trons injected from contact 1 shoot straight to contact 3 and accumulate,
resulting in a negative resistance. As the magnetic field B is increased, guid-
ing onto contact 2 happens. For small fields, large cyclotron orbits may be
directed into all contacts with equal probabilities. When the cyclotron orbits
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Fig. 2.5: Classical trajectories (red arrows) in an electron billiard, illustrating a) colli-
mation and scrambling at B ≈ 0 and b) magnetic guiding at finite B. c) experimental
data with the geometry presented in the inset. rcorner represents the corner’s curvature
radius, defined in section 2.2.2.1. Data extracted from ref. [27]

become smaller than the cross width, all electrons are directed to contact 2:
no electron is collimated into either 3 and 4, therefore Rb = 0.

2.2.2.2 Transverse magnetic focusing

The second effect is transverse magnetic focusing. It is analogous to the cross-
resistance that measures the signal at the nearest contact to the injector in-
stead of probing the voltage drop on the opposite electrode. Figure 2.6a shows
the typical geometry to observe resonances as due to the magnetic focusing of
electrons into the contact. The injector allows for injecting a divergent beam of
electrons ballistically that reach the collector after one or more specular reflec-
tions at the boundary connecting i and c: these are skipping orbits (fig. 2.6b).
Whenever L, the separation between the injector and collector, is an integer
multiple of the cyclotron diameter, electron focusing results in a resistance
maximum:

Bfocusing ≡
(
2ℏkf
eL

)
p. (2.26)

Here p−1 is the number of rebounds on the edge (p = 1 corresponds to direct
collimation without reflection, from injector to collector), ℏ is the reduced
Planck constant, e is the elementary charge and kf is the Fermi momentum.
For Bfocusing, an electron trajectory matches the distance between injector and
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Fig. 2.6: Electron focusing: a) classical trajectories in an electron billiard, taken from
ref. [6]. b) Classical electron focusing by the magnetic field; skipping orbits along the
2DEG boundary. Trajectories are drawn up to the third specular reflection. Extracted
from ref. [29] c) Experimental electron focusing spectra at 0.3K for five different injector-
collector separations in high mobility material, taken from [30].

collector; therefore, a sharp resonance, seen as an oscillation maximum appears
in the voltage signal. Examples of such resonances are shown in figure 2.6c.

2.2.3 High field magnetotransport

The classical equations of motion for an electron moving in 2D under the
influence of a Lorentz force can be described in terms of the cyclotron frequency
ωc ≡ eB/mc (mc is the cyclotron mass). For weak fields and fast electrons,
the radius of the cyclotron motion is large compared to the size of the wave
packet. However, for high mobility 2DEG at sufficiently low temperature and
sufficiently high magnetic field, the classical picture of section 2.1.4 breaks
down because the orbits become small, and ℏωc becomes significant.

In this problem, the length scale of interest is the magnetic length lB corre-
sponding to the area 2πl2B containing one quantum of magnetic flux ϕ0 = h/e:

lB ≡
√

ℏ
eB

, (2.27)

which is about 26 nm at 1T and decreases as 1/
√
B. This notation shows the

magnetic field as the density of magnetic flux through a 2DEG: B = ϕ0/2πl
2
B.
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2.2.3.1 Landau levels and Shubnikov-de Haas oscillations

At low temperatures and high magnetic fields, the effects of quantisation start
to be important. For electrons without scattering, the allowed energy levels
become discrete Landau levels (LL):

En =

(
n+

1

2

)
ℏωc. (2.28)

The degeneracy for each LL is p = BA/ϕ0 = A/2πl2B, corresponding to the
number of flux quanta in the total area of the sample A = WL. Each Landau
level can hold a carrier density nc = 1/4πl2B = eB/h. Experimentally, one may
observe oscillations of the longitudinal resistivity ρxx: the Shubnikov-de Haas
oscillations (SdHOs), corresponding to the Fermi level of the system passing
through the discrete gaps.

Analytically, the step-like density of states associated with a 2DEG is:

Ns(E) =
m

πℏ2
f(E), (2.29)

where f(E) is the Fermi-Dirac density, defined in equation 2.4. This breaks
down into a sequence of peaks separated by ℏωc:

Ns(E,B) =
2eB

h

∑
n

δ

(
E − ℏωc

(
n+

1

2

))
. (2.30)

It follows that the LL energies change when varying the magnetic field.
Therefore, the resistivity oscillates whenever the Fermi level moves from one LL
to another. Figure 2.7a shows examples of LL. In reality, scattering processes
spread the LL in energy.

Fig. 2.7 Landau
levels: a) density of states
Ns(E,B) vs energy E for a
2DEG in a magnetic field.
En = Es + (n + 1

2
)ℏωc.

b) Shubnikov-de Haas
oscillations as a function
of 1/B measured in a
graphene 2DEG (device
G1).
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The general formula for SdHOs writes for a spin-degenerate 2DEG:

ρxx(B, T ) = ∆ρxx(B, T ) cos

(
2π

Bϕ

B
+ π + ϕ

)
, (2.31)

where 1/Bϕ = 2e/nh is the period of oscillations. With a finite temper-
ature and sample imperfections, SdHOs amplitudes are damped by ∆ρ =
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e−Dλ(T )/ sinhλ(T ) where D = πmc/eBτq is the Dingle factor is associated
with the scattering time τq and λ(T ) = 2π2kBTmc/ℏeB is the thermal factor,
used to determine the cyclotron mass of charge carriers. The quantum scat-
tering time τq enables the characterisation of a sample’s quality. It is used
instead of τm because it is sensitive to small-angle collisions, whereas τm pri-
marily accounts for backscattering. Figure 2.7b shows an example of SdHOs.

At a given electron density, one may calculate the number of occupied LL
by dividing eq. 2.30 by 2eB/h. Consequently, a change in the magnetic field B

results in variations in the number of occupied LL. Therefore at a fixed carrier
density, crossing two successive peaks for fields B1 and B2 would allow getting
the carrier density:

ns =
2e/h

1/B1 − 1/B2
. (2.32)

2.2.3.2 Quantum Hall effect and edge states

For a high-quality 2DEG, whenever ωcτq ≫ 1, the SdHOs evolve into the
quantum Hall (QH) effect. At sufficiently high magnetic fields, one may observe
a series of so-called QH plateaus: the Hall resistivity is quantised to the values:

ρyx =
1

ν

h

e2
. (2.33)

This quantisation does not depend on microscopic details such as the purity
of the sample, the material or the presence of defects. One may rewrite the
Hall resistivity as:

RH =
B

nse
=

h

e2
Be

nsh
=

h

e2
BA
h/e

1

nsA
=

h

e2
ϕ

ϕ0

1

Ne
=

h

e2
Nϕ

Ne
, (2.34)

where Ne = nA is the number of electrons in the area A and Nϕ is the
number of flux quanta in the system. Therefore the quantum number ν can be
seen as ν = Ne/Nϕ, the number of electrons per flux quantum in the system.
This ratio is usually referred to as the Landau level filling factor or, more
simply, the filling factor.

Under these conditions, the bulk of the 2DEG is gapped similarly to band
insulators. The family of allowed wave vectors is 1-dimensional, with the group
velocity of opposite sign on the two edges of the sample. It corresponds to edge
currents of opposite signs flowing on opposite sides. The semiclassical interpre-
tation is that the current flows in a series of skipping orbits, with the circular
motion interrupted by scattering at the device edge - see fig. 2.8. It corre-
sponds in the Landauer picture to a number ν of 1D channels propagating for
a Landau level index ν. The width of the conductor spatially separates these
1D states. For sufficiently wide devices, backscattering is suppressed because it
requires electrons to jump from one edge to the other. As the two states do not
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Fig. 2.8 Propagation
of cyclotron orbits of
electrons in the presence
of a magnetic field pointing
into the paper. Orbits are
closed trajectories in the
bulk. Collisions with the
sample boundaries result
in skipping orbits with
non-zero drift velocities
along the edges, pointing
in opposite directions for
opposite edges.

overlap, only forward scattering can happen, resulting in the disappearance of
the longitudinal resistivity ρxx in the QH regime simultaneously with plateaus
of the Hall resistivity ρxy. This chiral nature of the edge state is responsible
for quantising the Hall conductance independently of disorder. In reality, the
disorder is an essential component for the visibility of the Hall plateaus. When
the Fermi energy Ef lies between LL, disorder would typically cause backscat-
tering destroying the quantisation of σxy. Instead, disorder broadens the LL
in the bulk and provides a reservoir of localised states allowing the chemical
potential to vary smoothly with density; hence is responsible for the visibility
of quantised values over a finite range of B or n.

2.3 Mesoscopic physics and superconductivity

So far, we considered the behaviour of normal electrons retaining a phase co-
herence over a certain length ξ of the order of device size, therefore creating
interference effects between electrons in the same energy band. Let us now turn
to the case of superconductivity. The superconducting state is characterised
by a macroscopic wavefunction retaining its coherence over length scales much
larger than in the normal state. Here we study how the normal and supercon-
ducting coherence couple together. While in a normal metal the conduction
carriers are either electrons or holes, in a superconductor the conductivity is
dominated by Cooper pairs, a composite particle formed by two bound elec-
trons, with radically different properties. In this section, I review the literature
showing that the combination of superconductivity with normal components
hosts different exciting phenomena.
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2.3.1 The superconducting proximity effect

When a normal metal and a superconductor are contacted (NS junction) with
a clean enough interface, superconductivity can penetrate the normal metal
over a length scale ξN. This is called the proximity effect [13]. For a clean metal,
the probability of finding a Cooper pair at a distance of the interface decays
exponentially. For a dirty metal (characterised by a mean free path lower
than the superconducting coherence length ξ0), the Cooper pairs’ leakage is
controlled by diffusion processes.

2.3.1.1 Andreev reflection

The Andreev reflection is the process through which an electron is transmitted
through an NS interface. In the case of a normal-normal interface, a spin-up
electron with an energy δE above the Fermi level is reflected as a spin-up
electron with the same energy δE above the Fermi level. This is not the case
for an NS interface. As in the ground state of the superconductor, electrons
are bound together as Cooper pairs, one should equalise the chemical poten-
tial of two separate electrons in the normal metal and one Cooper pair in
the superconductor. Transferring a spin-up electron with energy δE from the
normal metal to the superconductor requires dragging a spin-down electron
with energy −δE to form a Cooper pair. This process can be seen differently:
it leaves behind in the normal metal an antiparticle in the spin-down band
with a momentum opposite to the picked-up electron. As a result, the An-
dreev reflection reflects an electron in the normal metal into an antiparticle
with opposite momentum in the normal metal and transmits a Cooper pair in
the superconductor [12, 31–33]. Figure 2.9 schematises the Andreev reflection
for an energy δE created by biasing the NS interface with a voltage V .

The superconducting coherence length ξ0 = ℏvf/∆0 is the distance an elec-
tron travels in a time ℏ/∆0, that is the time it takes for an electron with a
spin up to be converted into a hole with spin down. It is possible to evaluate
the variation in quasimomentum δp during the process. It would scale as dp/dt
times the time passed in the interface region ξ/vf :

δp ∼ ξ0
v

∆0

ξ
∼ p0

∆0

p0v
∼ p0

∆0

ϵf
≪ p0. (2.35)

This means that for an Andreev reflection, the variation of the quasimo-
mentum should be smaller than the quasimomentum itself. As the motion of
electrons is directed away from the interface after the reflection, the quasi-
particle should be transferred from one branch of the energy spectrum to the
other: from a quasiparticle to an antiparticle with a close quasimomentum, i.e.
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Fig. 2.9 Schematics of
the Andreev reflection
at a normal metal - su-
perconductor interface.
An electron from the con-
duction band with a total
energy of +eV within the
superconducting gap 2∆

is reflected as a hole with
energy −eV , forming a
Cooper pair at the Fermi
level Ef in the supercon-
ductor.
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from an electron to a hole. The velocity of the reflected antiparticle vref will
be:

vref =
∂ [v(p0 − p)]

∂p
= −vp

p
= −vinc, (2.36)

where vinc is the velocity of the incident particle. Upon reflection, the parti-
cle is converted to an antiparticle with energy and quasimomentum conserved.
The velocity changes sign. This is a fundamentally distinct effect from the
specular reflection of electrons, where only the normal component of the elec-
tron velocity changes sign at the interface. However, in the case of graphene
junctions, Andreev reflection can be specular (see subsection 3.3.1).

Let us note that an electron with energy δE and wavevector kf + δk

will be reflected as a hole with energy −δE and wavevector kf − δk. Dur-
ing the Andreev reflection, the reflected hole may acquire an intrinsic phase:
δφ = − arccos(δE/∆0). Additionally, the wavevector difference between the
incident electron and the reflected hole will also result in a phase difference
when the particles propagate in the normal metal. In the ballistic regime, this
can be written as 2δk = 2δE/ℏvf . Consequently, the electron and hole will lose
coherence at a distance LE = ℏvf/δE which is the characteristic length of the
proximity effect in which the metal properties will be affected by the presence
of the superconductor. In the diffusive regime (with a diffusion constant D), it
can be shown that LE =

√
ℏD/δE. Note that the characteristic length of the

proximity effect depends upon the energy: in the metal at a distance d from
the interface, the electron-hole pairs with energy higher than ETh = ℏD/d2

will lose their coherence, whereas those with energy below ETh will not. ETh

is called Thouless energy. At finite temperatures, the energy of electrons is of
the order of the thermal energy kbT . It is then possible to define a thermal
coherence length as ξN =

√
ℏD/2πkBT .
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2.3.1.2 Josephson junction: Cooper pair tunnelling

Here we consider an SNS junction 1, with the thickness of the metallic layer
between the two superconductors thin enough so that there can be considerable
overlap between the macroscopic wave functions of the two superconductors,
therefore coupling between the two superconducting states. The overlap of
the wave functions results in the coherent exchange of Cooper pairs, an effect
known as the Josephson effect [12,34,35].

In the absence of a voltage, the phase difference φ = (ϕ2 − ϕ1) between the
two superconductors is time-independent. Therefore the current Is through the
superconducting contact is:

Is = Ic sinφ. (2.37)

That is the first Josephson equation: the DC Josephson effect consists of
a DC current crossing the normal metal without a voltage drop. The critical
current Ic depends on the density of the Cooper pairs in the superconducting
electrodes ns, on the junction area A and the coupling constant K between the
two superconductors: Ic = 2Kn/ℏA.

The second Josephson equation describes the evolution of the phase differ-
ence when a voltage drop V is applied to the junction:

∂φ

∂t
=

2eV

ℏ
. (2.38)

This equation means that Cooper pairs can tunnel without dissipation
between the superconducting electrodes in the usual Josephson junction.
The coupling is described by the Josephson energy −EJ cosφ, where EJ is
the Josephson energy, defined as EJ = ℏIc/2e. It is related to the criti-
cal current of the junction, which can be expressed by the tunnelling re-
sistance of the junction Rt and the energy gap of the superconductor ∆0:
Ic(T = 0) = π∆0/(2eRt). Rt can be seen as the transparency of the junction
(see subsection 4.5.1). It corresponds to the total resistance of 1 cm2 of the
junction area and has dimension of s cm (or Ωcm2).

At T = 0, the critical current density in the Josephson junction can be
expressed as a function of the transparency:

js =
π∆0

2eRt
. (2.39)

1 The Josephson effect originally described SIS junctions (superconductor - insulator -
superconductor). The case of SNS junctions was found to be very similar [34]. As this
thesis considers superconducting - graphene - junctions, we focus here on the case of SNS
junctions.
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2.3.1.3 Andreev bound states

The transfer of a Cooper pair through an SNS junction requires two Andreev
reflections at opposite NS interfaces. It is a double Andreev process in which the
involved electrons and holes retrace each other’s trajectories, forming Andreev
bound states (ABS).

The most common way to form ABS is when the electrons and hole in-
volved in Andreev reflections have exactly opposite momenta: p = −p′. Their
phases acquired along trajectories inside the normal metal cancel exactly, and
ABSs are formed. For ballistic junctions, there is another way to find e−–h+

forming ABSs without retracing each other exactly. It corresponds to a small
but non-zero probability of forming Andreev reflection at the contacts with
slightly different reflection angles from the NS interface. In that case, if e−

and h+ have slightly different momenta, as long as the carriers reside within
the superconducting gap ∆0 (i.e. |p− p′|vf < ∆0) and the phase shift acquired
along the retracing e−–h+ trajectories, (ϕ2 − ϕ1) = |p− p′|Λ/ℏ is small, then
there can be ABS. Here Λ is the effective length of e−–h+ trajectories in the
normal metal. This constraint reads:

∆0 < hvf/Λ = ETh. (2.40)

In this condition of misaligned e−–h+ trajectories, Λ is slightly larger than
the device size L. For longer Λ, there can be no conventional Andreev-type
trajectories that can contribute to the transfer of Cooper pairs2.

There is another condition for the conversion of two electrons from a 2D
metal into a Cooper pair: it necessitates py = −p′y (where y indice refers to di-
rection parallel to the NS interface) and px = (ϵ/v) cos θ and p′x = (ϵ′/v) cos θ′,
where θ and θ′ = θ − δθ are the incident and reflected angles of the e−–h+

trajectories (see fig. 2.10). These last two conditions can be simplified as a
single requirement: ∣∣∣vf√p2x + p2y − Ef

∣∣∣ < ∆0, (2.41)

which can be interpreted as: the energies of charge carriers involved in ABS
should reside within the gap. It is also required that the misalignment angle
δθ = θ′−θ between ballistic e− and h+ trajectories forming ABS is very small:

cot θ′ − cot θ ≈ θ′ − θ

sin2 θ
<

∆0

vf cos θ p sin θ
, (2.42)

that can be simplified as [36]:

2 We will show in the next chapter that unconventional Andreev bound states, such as
mesoscopic Andreev edge states and chiral Andreev edge states, exist with longer Λ but
here, we limit ourselves to the general case.
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Fig. 2.10 ABS with
allowed misalignment
of contributing trajec-
tories. a) e−–h+ tra-
jectories for the standard
double Andreev process.
b) slightly misaligned e−–
h+ trajectories that can
also form ABS if their
positions at the two NS in-
terfaces are spatially close.
Adapted from ref. [36].

e−
h+

θ
δθ

a b

max (ξ, λf)

max (ξ, λf)

θ

δθ

δθ <
∆0

Ef
tan θ. (2.43)

Finally, there is another crucial requirement: for an electron to be reflected
as a hole, the candidate electrons and holes should be sufficiently close to the
contact: e−–h+ trajectories should not end up further away from each other
than max(ξ0, λf) where λf is the Fermi wavelength. This is because i) two
electrons can only form a Cooper pair (of size given by the coherence length
ξ0) inside the superconducting contacts if they are at a distance smaller than
ξ0, and ii) two electrons’ positions within a normal metal are indistinguishable
if they are separated by less than λf .

Consequently one may write :

δθ

cos2 θ
<

max(ξ0, λf)

L
. (2.44)

2.3.1.4 Effect of the temperature

At finite temperature, equation 2.39 reads [37]:

jc =
π∆0(T )

2eR
tanh

(
∆0(T )

2T

)
, (2.45)

where the energy gap tempeature dependence is found from the BCS theory
[14,38,39]:

∆(t)

∆0
= 1.74

√
1− T

Tc
. (2.46)

Note that there is an empirical relation between the energy gap ∆0 at T = 0

and the critical temperature of a superconductor: ∆0 = 1.76kBTc. So far, we
have considered the case of short Josephson junctions, where the wavefunctions
from the two superconductors overlap. The Josephson effect exists also for
long Josephson junctions, in which the junction length L is longer than the
superconducting coherence length ξ.

For the case of long junctions, ∆ should be substituted with the Thouless
Energy, ETh [40], and the critical current evolves as:
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Fig. 2.11 Two parallel
Josephson junctions
with enclosed magnetic
flux indicated by hatched
area; phase changes are
calculated along contours
L1 and L2 assumed to
begin and end at the weak
links [14] Ib
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jc ∝ exp(−kBT/ETh) (2.47)

2.3.2 Effect of a magnetic field

Here I detail the effect of a magnetic field on the Josephson current. First,
let me remind the dependence of the energy gap with temperature in the
superconducting state to be used later:

∆(B)

∆0
=

√
1−

(
B

Hc2

)2

, (2.48)

where Hc2 is the critical field of the superconductor, at which superconduc-
tivity is destroyed.

The rest of this subsection is composed of three parts. First, I present the
influence of a magnetic field B on the tunnelling of Cooper pairs in Josephson
junctions by introducing interference of coherent waves. Second, I consider the
case of junctions wide enough so that eddy currents can screen out the applied
magnetic field. Third, I discuss the influence of the magnetic field on Andreev
bound states.

2.3.2.1 Interference of coherent waves in small junctions

One may get a good physical picture by first considering two junctions (a
and b) connected in parallel with superconducting leads such as the one in fig
2.11. Such a device is called a superconducting quantum interference device
(SQUID). One may write the total current passing through the device as:

I = Ic(sin δa + sin δb) = 2Ic cos

(
δa − δb

2

)
sin

(
δa + δb

2

)
, (2.49)
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where δa and δb denote the phase changes in the junctions a and b. The total
phase difference (δa − δb) can be calculated by integrating along the contours
L1 and L2 deep enough in the superconductor so that no current is flowing.
The phase variations can be found as: φi = −2e/ℏ

∫
Li
A · ds (i = 1 or 2). As

δa − δb = φ1 + φ2, the phase difference between the two junctions is found
as [14]:

δa − δb =
2e

ℏ

∮
dsA · s =

2eϕ

ℏ
, (2.50)

where ϕ is the magnetic flux. As a result, the field dependence of the critical
current writes:

I = 2Ic sin

(
δa + δb

2

)
cos

(
π
ϕ

ϕ0

)
= Imax cos

(
π
ϕ

ϕ0

)
, (2.51)

with ϕ0 = h/2e, the flux quantum. Measurements in SQUID-like struc-
ture are shown in figure 2.12 for a graphene-based SQUID [41], showing clear
current oscillations as a function of the flux quantum.
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Fig. 2.12: Resistance R(B, Idc) of a SQUID. The device comprises a 210µm2 Nio-
bium loop with two graphene Josephson junctions. The critical current oscillates with a
period of 8.7µT, corresponding to the flux penetrating an area of 230µm2, as in equation
2.51. colour scale: |Vdc| from 0 (navy) to 180µV (lime). Map extracted from ref. [41]

In a single, thicker Josephson junction, analytically demonstrating the criti-
cal current as a function of the magnetic field can be achieved by replacing the
summation over the two junctions by an integration over the junction width,
resulting in a critical current of the form [42]:

I = Imax

∣∣∣∣ sin(πϕ/ϕ0)

πϕ/ϕ0

∣∣∣∣ . (2.52)
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Here ϕ is the flux trapped in the junction area. For a 2D junction, ϕ = AB

where B is the applied magnetic field, and A is the area of the junction. This
form is similar to the Fraunhofer diffraction amplitude of a single slit: the
common phenomenon between a Josephson junction and optical diffraction is
the interference of coherent waves. The critical current from a 2D Josephson
junction is shown in figure 2.13, following the relationship of equation 2.52.

2.3.2.2 Wide junctions and flux quantisation

In the previous subsection, I neglected the magnetic field contribution inside
the junction. If the junction is large enough, this approximation is no longer
valid as the Josephson current can generate a non-zero magnetic field screening
out the applied field. A junction is wide if L is larger than the Josephson
penetration depth λJ; it is narrow if it is much smaller than λJ, defined as:

λJ =

(
ϕ0

8π2jsd

)1/2

. (2.53)

Fig. 2.13 Tunnel cur-
rent Ic(B) through a
Josephson junction.
The magnetic field is ap-
plied perpendicular to the
junction. Data measured
by Mengjiang Zhu on de-
vice Ja.
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Here d is the inductance of the Josephson junction that scales like the
thickness of the normal metal. This length is in the order of 10−2 cm, much
larger than the ordinary penetration depth of superconductors. In the case of
wide junctions, these eddy currents are carried by Josephson vortices. These
carry a single magnetic flux quantum inside the Josephson junction: ϕ = ϕ0.
As a result, one may see a Josephson junction as a 2D analogue of a type II
superconductor with the Meissner effect. Vortices form from the external field
H = Hc1, which is the order of the average field in the vortex: Hc1 ≈ ϕ0/(dλJ).
The exact formula writes [35]:
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Hc1 =
2ϕ0

π2λJd
. (2.54)

Above that field, the vortex concentration increases with the magnetic field.
However, one may note that there is no transition to a normal state at any
field Hc2 since Josephson vortices have no normal core.

2.3.2.3 Andreev bound states in a magnetic field

A magnetic field suppresses the supercurrent resulting from Andreev bound
states. Following similar consideration as in paragraph 2.3.1.3, it is possible to
estimate B∗ the field above which all ABSs are suppressed.

In a small magnetic field B, interference between Cooper pairs crossing the
normal metal along different paths causes the supercurrent to vanish. When
ϕ = BA ∼ ϕ0, the Cooper pairs have broadly distributed phase shifts leading
the supercurrent to oscillate and vanish periodically. For the case of large
ballistic devices, B bends the e−–h+ trajectories, leading to misalignment such
as Andreev-reflected electrons and holes do not retrace each other exactly
[36,43,44], similarly to misaligned trajectories in fig. 2.10b. The condition of eq.
2.43 in the presence of a magnetic field can therefore be written as a function
of the cyclotron radius rc = pf/eB = ℏkf/eB. It leads to a misalignment of
δθ ∼ L/rc cos θ, where L is the junction length.

Therefore, in order to support ABS in finite B, one needs:

rc >
EfL

∆0
, (2.55)

which is satisfied for B < B∗ where :

B∗ ∼ ∆0

eLvf
. (2.56)

2.3.3 Effect of microwaves: the a.c. Josephson effect

Irradiation of a Josephson junction with an RF excitation of angular frequency
ωrf gives rise to constant-voltage steps in the DC IV curves for a series of
voltages Vn = nℏωrf/2e [45]. These Shapiro steps are shown in figure 2.14 for
a characteristic graphene Josephson junction. It can be understood easily by
considering an ideal voltage bias V = Vdc + Vrf cosωrf applied to the junction.
Then the phase difference across the junction φ = (ϕ2 − ϕ1) can be found
through a time integration of equation 2.38:

φ(t) = φ0 + ωJt+
2eVrf

ℏωrf
sinωrft. (2.57)
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Fig. 2.14: Shapiro steps in a bilayer graphene Josephson junction (J8). a)
constant voltage steps for varying RF power. b) corresponding dV/dI map showing zero
resistance regions with Shapiro peaks as high resistance boundaries and c) Bessel function
fit of Vn. Data measured at Tmc =20mK and frf =4.5GHz.

Here φ0 is an integration constant and ωJ ≡ 2eVdc/ℏ. This phase modula-
tion causes an AC supercurrent at the Josephson frequency ωJ and the side
frequencies ωJ ± nωrf . For most voltage biases, the AC supercurrent does not
affect the DC IV characteristic, but whenever the condition 2eV = nℏωrf is
fulfilled, one of the side frequencies will be zero. This expression can be in-
serted into the first Josephson equation I = Ic sinφ and sin can be expanded
as a sum of Bessel functions Jn:

I = Ic
∑

(−1)nJn(2eVrf/ℏωrf) sin[φ0 + ωJt− nωrft]. (2.58)

Note that the term in the sum contributes a dc component only when ωJ =

nωrf , that is, when the dc voltage Vdc is at one of the values Vn:

Vn = nℏωrf/2e. (2.59)

These correspond to Shapiro steps. Now, one may include the normal cur-
rent V n/R, and therefore the total DC current in the nth Shapiro step can
take any value in the following range:

Vn

R
− IcJn(2eVrf/ℏω1) ≤ I ≤ Vn

R
+ IcJn(2eVrf/ℏω1). (2.60)

That is, the half-width of the nth Shapiro step is defined by:

In = IcJn(2eV1/ℏωrf). (2.61)

The Jn(x) vary as xn for small values of x. Consequently, when the RF
voltage Vrf increases from 0 to a finite value, the lowest step appears before
the second, etc. At higher x, Jn(x) are oscillatory functions, decreasing as x1/2
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for large x. As a result, a given step will have an oscillatory width in I as the
RF voltage varies.

The dc supercurrent in these Shapiro steps only exists for V = Vn. For all
voltages between the Vn, there is no dc effect of the supercurrent, as is the
case for a voltage-biased junction free of irradiation. One may also look at the
dV/dI characteristics. As in a junction free of RF irradiation, the resistance
is zero below Ic and presents resistance maxima before entering a constant
resistance regime where the superconductivity is destroyed. Similarly, at con-
stant irradiation, there are multiple domains with a zero resistance and vertical
Shapiro spikes occurring whenever the energy equals 2eV allowing a Cooper
pair to go through the junction is equal to a multiple of the photon energy
ℏωrf .



Chapter 3
Graphene’s structure and device
properties

Graphene was first isolated on silicon oxide and shaped as a mesoscopic Hall
bar to characterise its electronic properties. Eighteen years after its discovery,
graphene research has vastly expanded, as new physical concepts arrived hand
in hand with fabrication advances, but the kind of devices has remained sim-
ilar. This chapter introduces the essential background necessary for graphene
research. It discusses the properties of graphene-based van der Waals het-
erostructures that are necessary to understand the results of this thesis. The
last section concerns the superconductivity induced in graphene via the prox-
imity effect.

3.1 Graphene’s electronic properties

From a theoretical point of view, graphene can be seen as a single plane from
graphite, a material used as a moderator in nuclear reactors. For this reason,
it was studied long before its discovery [46–50]. Its exfoliation in 2004 has
allowed extensive experimental studies [51–54].

3.1.1 Dirac cones

The graphene structure is a hexagonal network of carbon atoms, as shown in
figure 3.1. The triangular lattice has a basis composed of two atoms per unit
cell, with lattice vectors:

a1 =
a

2

(√
3, 1
)
, a2 =

a

2

(√
3,−1

)
, (3.1)

where a ≈ 0.246 nm is the lattice constant. The nearest neighbour vectors
resulting from these lattice vectors are:

49
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Fig. 3.1 Lattice struc-
ture of graphene: a)
honeycomb lattice with
two interpenetrating tri-
angular lattices, and b)
corresponding Brillouin
zone. The Dirac cones are
located at the K and K′

points.
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(
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(
− 1√

3
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)
. (3.2)

From these equations, it easily comes that the interatomic distance in
graphene is a/

√
3 ≈ 1.42Å. The reciprocal lattice vectors are given by:

b1 =
2π

a

(
1√
3
, 1

)
, b2 =

2π

a

(
1√
3
,−1

)
. (3.3)

The two points, K and K ′, located at the corners of the Brillouin zone,
are critical in the physics of graphene. They are named Dirac points. Their
position in momentum space is given by:

K =
4π

3a
(0, 1) , K′ =

4π

3a
(0,−1) . (3.4)

The stability of graphene’s crystal is ensured by the sp2 hybridised σ bond
between the s, px and py orbitals from each carbon atom. From this, there is
an unaffected pz orbital perpendicular to the plane, forming covalent π bonds,
giving rise to delocalised low-energy electronic states, crossing the Fermi level,
therefore determining the electronic properties of graphene. As each pz orbital
has one electron, the π band is half-filled, resulting in large Coulomb energies
and strong collective effects.

The band structure of graphene can therefore be calculated using a tight-
binding approach [49, 50]. By taking into account only the nearest neighbour
hopping, the tight-binding hamiltonian can be written in a basis of wave func-
tions amplitudes on the A and B sublattices:

H(k) =

(
s0
∑

j e
−ik·rj γ0

∑
n e

−ik·δn

γ0
∑

n e
ik·δn s0

∑
j e

−ik·rj

)
, (3.5)

where the sums are made over N unit cells, n is the index of the nearest
neighbour and j of the second nearest neighbours. γ0 =−3.24 eV is the over-
lap integral between the pz orbitals [55], corresponding to nearest-neighbour
hopping energy (hopping between different sublattices), and s0 =0.0425 eV is
the nearest neighbour hopping energy (hopping in the same sublattice) [56].
The eigenvalues for this Hamiltonian can be expressed as [49,50]:
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Fig. 3.2 Band structure
of graphene. Energy
spectrum calculated from
equation 3.5. The valence
band (red) and conduction
band (blue) touch at six
points at the Fermi level.
The energies ±γ0 − s0

correspond to van Hove
singularities due to the
saddle point located at the
M point.
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ε±(k) = ±γ0

√
3 + f(kx, ky)− s0f(kx, ky), (3.6)

with

f(kx, ky) = 4 cos

√
3akx
2

cos
aky
2

+ 2 cos aky. (3.7)

The corresponding band structure is shown in figure 3.2. Figure 3.2 also
shows a zoom-in around the K point. In this region, the dispersion can be
obtained by expanding the band structure (eq. 3.5) close to the K vector [49]
with k = K + q and |q| ≪ |K| is the momentum close to the Dirac point:

εs(q) ≈ svf |q|. (3.8)

Here s = ±1 is the pseudospin that will be introduced in subsection 3.1.2.
εs(q) does not depend upon energy and is not quadratic in momentum, con-
trary to experimental systems described by the non-relativistic Scrödinger
equation. Instead, εs is linear in q: this is the Dirac equation describing ul-
trarelativistic particles. It is interesting for several reasons.First, the carriers
near the Dirac points move at a constant speed, given by the Fermi velocity
vf = 3γ0a/2, 300 times smaller than the speed of light c. Second, the electron
dynamics in graphene can be described in terms of the Fermi velocity. The
Dirac points (K and K ′) coincide with the charge neutrality, and the two car-
bon atoms in the unit cell each contribute one electron to the two bands; hence
the Fermi energy Ef lies precisely at the half-filled band. Third, the cyclotron
mass mc of massless carriers in graphene can be described by Einstein’s (rel-
ativistic) equation E = mcv

2
f . It makes graphene interesting in itself, but also

allows the study of quantum electrodynamics (merger of quantum mechanics
and relativity theory) in bench-top experiments.
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3.1.2 Pseudospin and anomalous QHE

In equation 3.8, the energy of massless Dirac fermions includes a pseudospin
factor s. It is an additional degree of freedom that is required as the honeycomb
lattice possesses two different sublattices A and B. s can be seen as an index
for the positive or negative part of the Dirac cones. It is tied to the q vector
and therefore is analogous to the real spin of massless fermions and points
towards the direction of propagation. Let us examine two cases: For s = +1,
corresponding to the upper cone at K, the states have a pseudospin parallel
to q and correspond to right-handed Dirac fermions. For the case of s = −1,
corresponding to anti-particles in the lower cone, the situation is reversed,
i.e. q points towards the opposite direction: the situation corresponds to left-
handed Dirac fermions. The chirality of graphene electrons in graphene has
many implications in transport measurements; suppression of backscattering
and the anomalous quantum Hall effect at high magnetic fields are some of
them.

Graphene presents one set of SdHOs for both electrons and holes. Using
standard fan diagrams [51–54] allows for determining fundamental SdHO fre-
quency BF. Both carrier types (electrons and holes) present the same linear
dependence: BF = βn where β ≈ 1.04×10−15 Tm2 [53]. In theory, β is defined
by a degeneracy factor g: BF = ϕ0n/g where ϕ0 is the flux quantum. g was
experimentally found to be equal to 4, corresponding to two spins and two
valleys. The anomaly in SdHOs is their phase. In opposition to usual metals
where the Landau levels correspond to longitudinal resistance ρxx(B) minima,
graphene presents maxima at integer values of Landau filling factors ν. At high
magnetic fields, SdHOs evolve into the quantum Hall effect. Instead of follow-
ing the usual quantisation of σxy with the quantised filling factor ν = ±gn,
with g the band degeneracy, the QHE in graphene is shifted by a half-integer
(see fig. 3.3). The first plateau appears at σxy = 2e2/h, and others occur at
the following:

σxy = 4
e2

h

(
n+

1

2

)
. (3.9)

The odd phase’s origin is explained with the Berry phase (here, it is the
phase electrons acquire during cyclotron motion). The 2π rotation between
time-reversal pairs yields a Berry phase of π. This phase shift was explained
theoretically [57–60], with a LL energy given by:

En = sign(n)
√

2eℏv2f |n|B. (3.10)

This equation allows a single LL with n = 0 and E = 0. σxy exhibits
QHE plateaux when Ef falls between Landau levels and jumps of an amount
ge2/h with g the degeneracy, when Ef crosses a LL, with the time-reversal
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Fig. 3.3 QHE for mass-
less Dirac fermions.
Hall conductivity σxy and
longitudinal resistivity ρxx

as a function of the concen-
tration for the graphene
on SiO2 Hall bar shown in
the inset (device G1).
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invariance guaranteeing particle-hole symmetry. As a result, σxy is an odd
function in energy [48]: regardless of the magnetic field, the n = 0 LL is
so robust that E0 = 0 as long as the sublattice symmetry is preserved. It
results in the first plateau at exactly σxy = ±ge2/2h and the other plateaus
for σxy increasing(decreasing) by an amount of ge2/h as Ef crosses the next
electron (hole) LL. Another effect of the Berry phase is that each scattering
process and its time-reversal pair are dephased by π, resulting in destructive
interferences. This suppresses back-scattering, allowing long electron mean free
paths [17,61,62].

Finally, there is another exciting effect resulting from the pseudospin com-
ponent. It is the unusual direction of the motion of charge carriers, locked into
this extra quantum mechanical degree of freedom. As a result, backscattering
is impossible as backward motion is locked into a different valley than forward
motion. From that point of view, graphene is similar to the conducting sur-
face layer of topological insulators, where the direction of motion of carriers
is locked to their spin. This pseudospin can drive a so-called valley current in
graphene devices [63]. That means that an applied voltage across the device
gives rise to counter-propagating streams of carriers in graphene’s two band
structure valleys. The build-in chirality allows demonstrating an all-electrical
valleytronic circuit. This valley-polarisation is understood in terms of the Berry
phase: carriers in graphene accumulate a Berry phase of πfor momentum-space
circumnavigation of either valley (due to the 2π rotation of pseudospin locked
to momentum). This is similar to the Aharonov-Bohm phase from a path in
the field-free region around a solenoid.
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3.1.3 Effective mass of Dirac fermions

The non-zero Berry’s phase is related to the vanishing mass at the Dirac point.
The effective carrier mass mc can be extracted from the temperature depen-
dence of the SdHOs at small magnetic fields. One may write the amplitude of
the SdHOs ∆σ using the standard [11] expression of section 2.2.3.1:

∆σ =
T

sinh(2π2kBTmc/ℏeB)
. (3.11)

Figure 3.4a shows the dependence of the fundamental SdHO amplitude
versus temperature for two different carrier densities. From this is extracted
the effective mass mc as a function of the carrier density, shown in figure 3.4b.

Fig. 3.4 Cyclotron
mass in graphene. a)
SdHO amplitude ∆σ(T )

yielding mc = 0.069m0

and mc = 0.023m0. b)
extracted cyclotron mass
mc(n). Solid curves: best
fits in both panels. Ex-
tracted from ref. [53].
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The cyclotron mass is defined in the semiclassical approximation [2] as:

mc =
Ef

v2f
=

kf
vf
. (3.12)

As n = k2f /π, the effective mass carrier has a square root carrier density
dependence, consistent with measurements:

mc =

√
πn

vf
. (3.13)

Fitting the square root dependence of the cyclotron mass allows us to es-
timate the Fermi velocity: vf ≈ 1 × 106 ms−1 and the hopping parameter
γ0 ≈ 3 eV. A parabolic (Schrödinger) dispersion would imply a constant cy-
clotron mass. Therefore, the experimentally measured effective mass carrier
dependence provides unequivocal evidence of the existence of massless Dirac
fermions in graphene.

3.1.4 Multilayer graphene

When exfoliating graphene from highly-oriented pyrolitic graphite, it is pos-
sible to extract flakes with two or more atomic planes. In that case, the in-
terlayer coupling changes the band structure drastically, depending on the
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Fig. 3.5 Stacking ar-
rangements for mul-
tilayer graphene. a)
Bernal multilayer (most
stable configuration) and
b) Rhombohedral multi-
layer (less stable)

a b

AB (Bernal) ABC (Rhombohedral)

number of layers and the stacking order (see fig 3.5), as well as experimental
results that can be measured. Bilayer graphene is probably the most interest-
ing because, in experiments, the integer quantum Hall effect shows different
anomalies like the one reported in monolayer graphene (e.g. LL are observed
for ν = gn) [50, 64, 65], and a gap opens between the conduction and valence
band [66]. The magnitude of the gap can be enhanced upon applying an asym-
metry between the two layers that can be achieved experimentally through a
perpendicular electric field D (see methods, subsection 4.2.2 for details), as
shown in figure 3.6. This gap can be inverted by switching the direction of the
electric field D.

The size of the gap can be found from the temperature dependence of the
resistivity ρ at sufficiently high temperatures [67–72]. At low temperature (be-
low 50K), ρ at the CNP in bilayer graphene is saturating at relatively low
values, incompatible with a large gap found in theory papers [50, 66]. This
was, at first, explained by remnant charge inhomogeneities resulting in en-
hanced hopping conductivity weakening the T dependence. However, it is now
understood that the subgap conductivity originates from valley-polarised cur-
rents [73, 74]. These theories enable the valley current to propagate through
the charge-neutral bulk, and was confirmed experimentally with significant
non-local resistance measurements [63,75–78].

More interestingly, stacking boundaries and edges also support a topological
current. Applying two electric fields of two opposite directions in two neigh-
bouring regions can create helical metallic quantum valley Hall kink states
along the gates’ boundary [78–80]. These quantum valley Hall kink states are
chiral in each valley: the group velocities of the two valleys K and K ′ are
opposite and immune from backscattering in the absence of a valley-mixing
scattering mechanism. As a result, these domain boundaries can carry a ballis-
tic valley-polarised current over long distances without dissipation [78,79]. We
will later see that such domains can be engineered with a twist angle instead
of opposite polarity neighbouring gates, yielding similar results.
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Fig. 3.6 Rxx(n,D)

map of a double-gated
Bernal bilayer measured
at 10mK. Logarithmic
colour scale: indigo (10Ω)
to yellow (4 kΩ). Inset:
band structure near the
Brillouin zone corner
(a0 =2.46Å), for different
perpendicular electric field,
extracted from ref. [81].
Interlayer potentials of
100meV (green), 50meV

(teal) and 0meV (navy).
Measured on device G2.

Finally, there have recently been a few interesting phenomena in rhom-
bohedral graphene trilayers [82] and tetralayer [83] attributed to correlation
physics. In thicker rhombohedral graphite films, we showed that the electronic
states in the bulk are gapped, with electronic transport dominated by surface
states [84]. It is particularly interesting as the topological nature of these sur-
face states allows us to observe the quantum Hall effect despite a non-negligible
thickness. Similarly to Bernal bilayer graphene, the application of a perpen-
dicular displacement field opens a gap. However, the gap is present without
the electric field for thinner films (below 10 layers). The study of trilayer films
has benefitted from research on thicker films, showing a ground-state phase
diagram characterised by a gap at high displacement, and phase transitions
between different ferromagnetic isospin phases [85]. At lower temperatures, su-
perconducting phases can be observed in a symmetric state, characterised by
a spin-singlet pairing mechanism, and in a half-filled band with an unknown
mechanism attributed to spin-triplet pairing [86]. This research gave a fresh
look over Bernal bilayer graphene, where similar isospin phases could be ob-
served, with superconductivity in a comparable half-filled band [81], attributed
to a spin-triplet mechanism. These newer studies make Bernal bilayer a system
of broad interest with a potential revival in the years to come.

3.2 van der Waals heterostructures

The exfoliation of graphene in 2004 was followed by increased efforts in exfoliat-
ing and measuring other two-dimensional atomic crystals [16] such as hexago-
nal boron nitride (hBN), transition metal dichalcogenides such as molybdenum
disulphide (MoS2) or tungsten diselenide (WSe2) or various layered oxides. The
most exciting about these new 2D materials is that it opens a venue to create
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new materials by artificially stacking different layers on top of one another, as
one would do with LEGOs [16,18,87]. In such a system, the compound layers
are coupled with weak van der Waals forces, small enough to allow exfolia-
tion but strong enough to keep the stacks together. Choosing the appropriate
compounds, number of layers and alignment allows controlling the physical
properties with the dream to create materials on demand. This thesis focuses
on two types of van der Waals heterostructures based on graphene and hBN,
exploring aligned graphene-hBN and twisted graphene multilayers.

3.2.1 Graphene-hBN heterostructures

One of the simplest and most studied van der Waals (vdW) heterostructures is
graphene encapsulated between two hexagonal boron nitride (hBN) crystals.
hBN has a hexagonal structure similar to graphene, where the A and B sublat-
tices are occupied by boron and nitrogen atoms. Importantly, hBN is extracted
from bulk crystals and is a direct bandgap semiconductor with an absorption
band in the ultraviolet [88]. This makes it an ideal material to act as a di-
electric encapsulation for graphene [89]. Encapsulation of graphene with hBN
protects it from extrinsic disorder [90, 91], resulting in drastic improvements
in the electronic quality compared to suspended devices, with micrometre-
scale ballistic transport limited only by edge scattering. Soon after, hBN was
used as gate dielectrics [92, 93] and tunnel barriers [94, 95]. Using hBN in
such heterostructures gave new momentum to old phenomena, such as nega-
tive differential conductance [96, 97] and Coulomb drag [63], to allow exciton
superfluids [98–100] or magnetophonons [101,102].

There is a particular case when the crystallographic axes of graphene and
hBN are intentionally aligned. The small (1.8%) mismatch between graphene
and hBN crystal lattices results in a long-range periodic moiré potential. Su-
perlattice potentials on 2DEGs have been a long-sought experimental plat-
form [103], but efforts in this direction have been hampered by strong disorder
and difficulties in creating potentials at the 10-100 nm range. The potential cre-
ated by aligned hBN avoids these problems and results in profound changes in
the electronic spectrum with a Brillouin-zone folding of the energy dispersion
strongly modifying the electronic spectrum [87,104–113]. This induces several
original features like secondary Dirac points and van Hove singularities.

3.2.1.1 Secondary Dirac fermions

Figure 3.7 shows a typical density dependence of the resistivity ρxx and the Hall
resistivity ρxy in a typical graphene-hBN superlattice. At zero doping, there is
a sharp peak in the resistivity that corresponds to the main Dirac point. At n =
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Fig. 3.7 Transport
properties of Dirac
fermions in a graphene-
hBN superlattice (D6
with θ =0.3◦) with posi-
tive and negative values of
n correspond to electrons
and holes, resp. a) longi-
tudinal resistivity ρxx(n)

showing two satellite peaks
around 2.5 × 1012 cm−2.
b) Hall resistivity ρxy(n)

changes sign three times
for both electrons and
holes.
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±2.5× 1012 cm−2, there are two satellite peaks spaced equally from the main
neutrality point. It was noted that the secondary DP is much more pronounced
for holes than for electrons. Additionally, the Hall resistance diverges as the
density approaches the ρxx maxima and shows a sign reversal. The sign change
reflects a change of the majority carrier, both in the conduction and valence
band. This feature is consistent for the main Dirac point and the satellite
peaks.

It can be explained as the following: because of the band folding induced
by the long-range superlattice, graphene-hBN superlattices possess a new set
of Dirac points, a consequence of the Bloch’s theorem. These secondary Dirac
fermions have a reduced Fermi velocity [105,114]. Figure 3.8a shows the calcu-
lated band structure of graphene-hBN superlattices with clear secondary Dirac
points both in the conduction and valence bands. If the two crystal layers are
close to perfect alignment, then the superlattice period is about 14 nm, which
results in secondary Dirac points occurring at energies around 0.2 eV from the
main Dirac point of graphene. That happens for electrostatic gating densities
around 3 × 1012 cm−2. Note that the energies at which the secondary Dirac
points occur are angle-dependent (see section 4.4 for further details. Indeed,
the satellite peaks in the transport measurements correspond to the resistance
as the Fermi level is tuned through the secondary Dirac points, consistent with
the change of carrier types. This was confirmed via localised density of state
(STM) measurements [106].

However, measurements of the Hall resistance also show three non-trivial
changes of sign when tuning the Fermi energy away from the main Dirac
point, both for holes and electrons. This is due to the presence of van Hove
singularities in the density of states [105].
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Fig. 3.8 Band structure
of graphene aligned
with hBN. a) band, ex-
tracted from ref. [115],
with secondary Dirac
points in the conduction
band. b) fermi surface
from the main miniband
with vhs between a single
annular fermi sea and six
fermi pockets (indicated as
red contours).
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secondary DPs

3.2.1.2 van Hove singularities

Van Hove singularities (vHS) are singularities in the density of state. They
are usually associated with a change in the band curvature, i.e. a transition
from an electron-like to a hole-like behaviour; therefore, ρxy(vHS) = 0. In con-
densed matter systems, they are attractive for a few reasons: electron-phonon
coupling can get enhanced near a vHS, enabling superconductivity or affecting
its stability [116]. They can also mediate deformations of the Fermi surface.
Notably, vHS can trigger Landau-type symmetry-breaking phase transitions
in the presence of deformations [117]. However, in most bulk materials, the
chemical potential is not easily tunable across a wide enough energy range, so
observing vHSs has been relatively rare. In graphene systems, however, there
are promising candidates. In the graphene band structure (see figure 3.2), the
merging of Dirac cones at the M point leads to vHSs, but the energy required
to access them (2.7 eV) places them out of reach with transport experiments.

For graphene-hBN superlattices (or, more generally, twisted graphene mul-
tilayers), vHSs are readily accessible. In this system, they emerge due to
electron-electron interactions strongly affecting the band structure. The vHSs
occur whenever the Fermi surface topology changes, as shown in figure 3.8b. In
graphene-hBN superlattices, the van Hove singularities happen on each side
of the secondary Dirac points, and correspond to the edge of a new mini-
band, coinciding with a carrier type inversion. Close to the vHS, the Hall
density nH = −B/eRxy diverges logarithmically. However, this is not the case
if the band becomes malleable as a result of strong electron-electron interac-
tions [118,119]. In that case, a gap may open upon crossing the vHS, meaning
that nH resets to zero in the newly created empty band, and beyond this point,
nH will increase linearly with n but offset from the origin of the gap [120]. This
will be discussed in the case of Brown-Zak fermions in chap. 6.
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3.2.1.3 Correlated states

Finally, the moiré potential created by hBN alignment can also influence the
zero energy dispersion near charge neutrality. The superlattice potential breaks
the inversion symmetry protecting graphene’s spectrum [109, 121], an effect
that could open a band gap at the Dirac point [105] with fundamental topo-
logical applications. For example, it was possible to create Berry curvature hot
spots close to the Dirac point of graphene, allowing the study of topological
currents [63].

For other graphene multilayers, hBN alignment also showed dramatic band
modifications. For the case of Bernal bilayer graphene, hBN results in frac-
tional quantum Hall states [122,123]. In other twisted bilayer graphene, align-
ment [124, 125] results in ferromagnetism and a large anomalous Hall effect.
Similarly, flat electronic bands emerged in rhombohedral graphene trilayers
aligned with hBN, with correlated insulators appearing at integer filling of the
moiré superlattice cell [126–128].

3.2.2 Twisted graphene layers

Similarly to stacking hBN on top of graphene with a controlled alignment,
improvements in fabrication techniques have enabled new physics by twisting
two graphene layers with a relative twist angle between them. This is very
different from the case of semiconductor heterostructures like GaAs/AlGaAs,
where the relative orientation between the two components cannot be con-
trolled. The most visible structure is the formation of a relatively long-range
moiré pattern. However, there have been rich physics due to modifications of
the band structure induced by smaller Brillouin zones.

3.2.2.1 Small angles: atomic reconstruction

In the usual graphene monolayer, it is reasonable to assume that the lattice
is rigid: the length of the C–C bond is always exactly 1.42Å, and the inter-
layer distance is always 2.2Å. This picture breaks down in twisted bilayer
graphene, where the interlayer spacing can change depending on the stacking
order, and relaxation effects can significantly affect the in-plane bonds. In bi-
layer graphene, there can be three different stacking types, each with a different
energy profile, leading to different strains affecting the nearest-neighbour and
interlayers distances(see fig. 3.9). The first type is AA stacking (or BB stack-
ing), corresponding to almost perfect vertical alignment of the same sublattice
site from both layers. The second stacking type is AB stacking, corresponding
to the A atoms from the top layer vertically aligned with the B atoms from
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a b
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BA stacking

d

AB stacking
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Fig. 3.9: Stacking types of graphene bilayers. a) long-range Moiré created by a
twist angle θ, showing different stacking arrangements: AA (b), AB (c) and BA (d). For
minimal values of θ, AB/BA regions will increase in size to span the entire yellow triangle
of the panel (a).

the bottom layer. In this configuration, the top B and bottom A atoms are not
aligned with any other atom. The last configuration is BA stacking: B atoms
from the top layer are aligned with A atoms from the bottom layer. Similarly
to AB stacking, the top A and bottom B atoms are not aligned.

In most cases, these three domain types would span over the same area, and
the local stacking order evolves smoothly between the three cases. However,
the AA stacking type is less energetically favourable because atoms sit directly
on one another. As a result, the interlayer distance dAA tends to be larger than
dAB = dBA. It results in corrugations calculated to be as large as 30 pm [129,
130]. As a result, it becomes energetically favourable to distort atomic positions
to minimise the span of AA regions, relaxing into AB-like stacking order that
increases in size. However, distortion is also energetically costly; therefore,
the equilibrium state results from a compromise between stacking energy and
strain energies. Below twists angles of 0.4◦, the importance of strain-induced
atomic reconstruction becomes so great that it leads to the creation of giant
triangular domains of commensurate alternating Bernal stacking [131]. These
domains have been observed through AFM [131, 132] and also in transport
measurements [133,134].

These giant triangular Bernal domains are separated by domain walls that
can be seen as incommensurate solitons [135,136], or alternatively called kink
states [79]. They correspond to local changes in the stacking configurations
so that AB and BA domains have opposite Chern numbers under a uniform
perpendicular electric field. The boundaries support valley-polarised helical
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states [137–142]. As a result, whenever the AB/BA domains are gapped (see
subsection 3.1.4), these gapless domain walls become the only conducting
channel. This was shown in spatially-resolved density of states (STM) [132]
and in electronic transport through the emergence of Aharonov-Bohm oscilla-
tions [134].

3.2.2.2 Magic angles

For large twist angles, the Dirac cones of the two graphene layers are rela-
tively far away in momentum space, therefore their low-energy dispersion is
minimally affected by the presence of a second layer. This is particularly use-
ful to minimise corrugations and is a promising avenue for studying decoupled
systems (see chapter 10). As the angle is decreased, the Dirac cones are moved
closer to one another and interactions between electrons in the two neigh-
bouring bands become non-negligible, resulting in interlayer hybridisation and
renormalisation of the Fermi velocity. For a series of twist angles dubbed magic
angles, the Fermi velocity vf vanishes [143]. The largest of these magic angles
happens at θ =1.1◦.

Fig. 3.10 Band struc-
ture close to the magic
angle. a) band structure
calculated for θ = 1.2◦.
Extracted from ref. [115].
b) Fermi pockets above
and below the first van
Hove singularity. Ex-
tracted from ref. [144].

b

vHS

a

flat band
vf ≈ 0 

Figure 3.10a shows that, close to the magic angle, the Fermi velocity in the
mini Brillouin zone corners is zero. At the magic angle, the states surrounding
the K points are all concentrated in a very narrow energy range — a phe-
nomenon called a flat band. The flatter the band, the greater the separation
with higher energy bands. These flat bands emerged as a rich platform for
exploring electronic interaction, giving rise to phases among which correlated
insulators [145–147], superconductors [148–151], Chern insulators [119,152] or
orbital magnets [124, 125, 150]. In the first works, researchers used the Mott
model to explain the origin of these states [153], but this was quickly contested,
highlighting the need to include non-local correlations, which the Mott model
does not [154,155].
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As shown in figure 3.10b, the spectrum contains two van Hove singularities
separating a high-energy single-pocket Fermi surface centred at the Γ point
from a low-energy two-pocket Fermi surface centred on the K and K ′ points
[119,144].

3.3 Proximity effect in graphene devices

Mesoscopic devices combining graphene and superconductors have been stud-
ied since the early days of graphene research [156–159], but it was only when
ballistic devices [36,91,160–163] were achieved that sensible effects could be ob-
served. The realisation of one-dimensional edge contacts, both with MoRe [163]
and NbTi [36], was instrumental in observing of unusual Andreev physics.

Fig. 3.11 dV/dI(Vg, Idc)

map for a twisted bi-
layer graphene junction
(device Jb) measured at
Tbath =300mK. Inset:
sketch of highly trans-
parent 1D contacts. Map
measured by Mengjiang
Zhu.
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In ballistic graphene Josephson junctions, it became possible to tune the
density and change the type of junction. There are three different phases, as
shown in figure 3.11: a hole-doped (p) regime with a relatively small critical
current (Ic), in which phase-coherent interferences of electrons and holes car-
rying the Andreev bound states could be observed. The formation of a Fabry-
Pérot cavity due to contact-induced n-type doping causes these interferences.
This effect is also responsible for shifting the neutrality point to negative Vg,
an effect most pronounced for devices with a small (<300 nm) graphene strip.
Note that, the doping is uniform for ballistic devices away from the metal in-
terface. There is also an electron-doped (n) regime with a much larger critical
current, reaching values in excess of 10µA at high gate voltages [36, 163]. At
the DP there is a transition between ballistic and pseudo-diffusive evanescent
transport [164]. The Fabry-Pérot behaviour consists of standing waves be-
tween the contacts, leading to pronounced oscillations in Rn(Vg) [36,158,159]
in ballistic devices (not shown here).
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For ballistic devices, the proximity effect can be observed in graphene junc-
tions up to L =2.5µm, with critical currents reaching densities above 5µAm−1

in the shortest junctions at high electron density. High values of the critical
current Ic indicate ballistic transport and low contact resistance (see section
4.5.1 for more information). In principle, Ic can reach the following value at
low magnetic fields:

Ic = α∆/eRn, (3.14)

where in theory α ≈ 2.1, although in experimental works, α was found to
be slightly smaller [36]. For long junctions, one may also write the critical
current as a function of the Thouless energy ETh rather than the gap: Ic ≈
ETh/eRn. Equation 3.14 can be inserted into the usual sinc dependence of the
critical current resulting in an even lower critical current. Remember that the
superconducting gap ∆ depends on B, as shown in eq. 2.48, and Rn increases
with the magnetic field.

3.3.1 Specular Andreev reflection

One of the peculiarities of graphene-superconductor junctions is that they can
support specular Andreev reflections. In a standard NS interface, momentum
conservation imposes that pe sin θi = ph sin θr where pe and ph are total mo-
menta of electrons and holes, θi is the incident angle of the incoming electron,
and θr is the angle of the reflected electron. In that case, Ef ≫ ∆ and the
reflected hole remains in the conduction band of the normal metal, thus carry-
ing a momentum opposite to the incident electron, leading to a nearly perfect
retro Andreev reflection: θr ≈ −θi. This is different in the semimetal graphene,
where the Fermi energy can be tuned such as Ef ≤ ∆. The energy difference
between an electron and its reflected hole in an Andreev process is 2eV . In
the semimetal, the reflected hole can now appear in the valence band and
thus travel in the same direction alongside the interface (θr > 0). Whenever
Ef = 0, the angle of the reflection is equal to the incidence angle: θr = θi. This
phenomenon is called specular Andreev reflection [165,166] and was shown ex-
perimentally whenever ∆ > eV > Ef , with a crossover between intraband and
interband Andreev reflection through tuning of the Fermi energy via electric
field effect [167].

3.3.2 Josephson effect in moderate magnetic fields

With the use of graphene Josephson junctions and particularly ballistic de-
vices, it has become possible to observe the persistence of superconductivity
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Fig. 3.12 Andreev
states in moderate
magnetic fields. a) open
trajectories unable to form
ABS. b) near-edge tra-
jectories can close due to
disorder-induced scatter-
ing, forming mesoscopic
Andreev edge states. Fig-
ure adapted from ref. [36]

a b

no ABS Andreev edge states

in moderate fields. In usual Josephson junctions, the proximity effect would
be destroyed by perpendicular magnetic fields of the order of 10mT, with a
conventional Fraunhofer behaviour (see eq. 2.52). In graphene devices, it was
shown that the supercurrent survives at fields up to 1T, with small pock-
ets (Ic ≈40 nA) appearing and disappearing randomly as a function of the
magnetic field and carrier concentration.

In a moderate magnetic field, ballistic trajectories are bent, corresponding
to cyclotron orbits. The trajectories combining segments of these orbits for
B > B∗, bouncing between the superconducting contacts, do not carry a
supercurrent because the path to form such orbits is infinite (see an example
of such orbits in fig. 3.12a.). The shape of these trajectories is quite general,
forming never-ending star-shaped reflections unable to form Andreev bound
states.

This is different near the junction edges. As shown in figure 3.12b, scatter-
ing from the graphene edges allows the existence of cyclotron orbits with close
ends at both NS interfaces. As a result, despite having different lengths for
the paths of electron and hole trajectories, these can transfer Cooper pairs via
the formation of mesoscopic Andreev edge states [36]. This condition results
in chaotic ballistic billiards [28, 168], with a current capacity close to the uni-
versal quantum limit Iq ≈ e∆/h. Consequently, deviations from the standard
Fraunhofer dependence can be observed from magnetic fields of B ≥5mT,
where random pockets of supercurrent appear instead of the usual oscillatory
pattern, persisting up to 1T.

3.3.3 Chiral Andreev edge states

The situation changes as soon as the cyclotron orbit becomes small enough
to fit between the contacts without touching the interface (rc < L/2). In
graphene, this corresponds to:
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Fig. 3.13 Chiral An-
dreev edge state. a)
semi-classical picture of
electron and hole trajec-
tories along the SN inter-
face. b) CAES along the
junction contour, forming
hybrid electron-hole edge
modes.
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In this condition, transferring Cooper pairs through the usual Andreev
bound states is impossible. There have been some proposals to engineer super-
conductivity in the quantum Hall regime through chiral Andreev edge states
(CAES) [169–175], with early searches in semiconductor heterostructures fo-
cused on magneto-conductance oscillations [176–181]. More recently, ballistic
graphene devices offered a new paradigm, allowing to mediate the supercurrent
through chiral quantum Hall states [182–187].

In the quantum Hall regime, the bulk of the junction is gapped by Landau
quantisation, and charge carriers can only be transferred from one contact to
another via edge states. In this condition, both electron and hole states prop-
agate in the same direction on a single edge; hence two edges are necessary to
carry a supercurrent. It is a different situation from the mesoscopic Andreev
edge states in moderate magnetic fields that are each carrying their own su-
percurrent. Semiclassically, CAES can be seen as skipping orbit trajectories in
which an electron turns alternatively into a hole and then back into an elec-
tron upon successive Andreev reflections on the superconducting contacts (see
fig. 3.13). Quantum mechanically, the CAES are a combination of Andreev
reflections and quantum Hall edge states, yielding fermionic modes hybridis-
ing electrons and holes states, propagating chirally on opposite sides of the
device and along with the graphene-superconductor interface. They are sup-
ported by superconducting correlations induced in quantum Hall edge states.
These CAES allow to couple the two graphene-vacuum edge, allowing a su-
percurrent to be transmitted through the junction. These chiral Andreev edge
states have first been observed as superconducting pockets in the quantum Hall
regime [182] and later induced as either crossed Andreev reflection in the ν = 2

QH state [184], inter-Landau level Andreev reflection in a split zeroth LL [185].
More recently, interferences of these chiral Andreev states were demonstrated
through conductance oscillations on the quantum Hall edge [186].
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Chapter 4
Measurement of van der Waals
heterostructures

In this chapter, I present the main techniques used in this thesis. I start with
basic electronic transport techniques and then give details on simple ways to
measure a twist angle. However, different parameters can be varied through-
out our experiments, namely the magnetic field B and the temperature T . The
magnetic field is a straightforward parameter to vary thanks to a superconduct-
ing coil placed around the device, therefore not detailed here. The interested
reader can refer to refs [188, 189]. The temperature necessitates more careful
operation and is the next chapter’s subject.

4.1 Transport measurements

The principles of electron transport are simple. Most of the time, it involves
applying a small current in a device and measuring a voltage drop between two
voltage probes while varying external parameters such as magnetic or electric
field, charge density, temperature, bias current, etc.

4.1.1 Hall bars

Most devices are shaped as Hall bars to allow multiple measurement configura-
tions (see, e.g. fig 4.1). In the standard measurement, a current I flows through
the channel while a voltage drop V is measured from the side contacts. Such
a configuration allows measuring the longitudinal resistance ρxx = V/(IL/W )

where W is the width of the channel and L is the distance between the voltage
probes. Another typical geometry (that can be measured simultaneously) is
the Hall geometry, consisting of measuring Vxy between contacts opposite to
the sheet. The Hall resistance Rxy = Vxy/I is directly related to the carrier
density n (see eq. 2.19).

69
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Fig. 4.1 Local and non-
local measurement con-
figurations. a) longitu-
dinal resistance geometry.
b) Hall geometry. c) bend
geometry. d and e) non-
local geometries and f)
3-probe geometry.
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The bend geometry can also test if a device is ballistic. It is a modified
version of the cross devices presented in section 2.2.2.1. Additionally, non-
local geometries allow separating charge currents (dominating in local mea-
surements) from the ohmic contribution. Two possibilities exist here. The first
one (see fig. 4.1d) allows for minimising the ohmic contribution resulting from
non-uniform current distribution in order to isolate the current contribution
originating from flavour (spin or valley) diffusion [63, 190, 191]. In the second
geometry (fig. 4.1e), the ohmic contribution is not small, allowing to probe
magnetic focusing.

Finally, there is another configuration for which no results are shown in this
thesis, but that is nonetheless useful to characterise devices prior to advanced
measurements. It is the 3-terminal resistance which helps measuring contact
resistance. Here, the idea is that the measured voltage drop V corresponds
to the contact if the resistance of the region of the sample neighbouring the
contact is small enough and can be ignored. This is the case in most graphene
devices away from the neutrality point.

4.1.2 Lock-in technique

The devices presented in this thesis were measured with the standard lock-in
measurement technique. One uses a low-frequency AC current passing through
the device and measures the voltage drop at this exact frequency with the
lock-in amplifier. Most of the results were acquired using the MFLI lock-ins
from Zurich Instruments. The relatively high input impedance (10MΩ) allows
measuring signals without a preamplifier.
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Fig. 4.2 Example of a
noisy signal. a) signal at
the frequency of interest
(red) is hidden under a
noisy background (blue).
b) noise spectrum of
the signal in (a). The
measurement frequency
(red) is chosen in a region
with small background
noise away from 50Hz
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A lock-in amplifier is a powerful instrument that allows to measure AC
voltages below the noise level. For example, the lock-in can extract the red
signal in figure 4.2. The principle of operation is simple but necessitates a few
precautions in choosing the proper signal. The lock-in uses a reference signal
at frequency fref and multiplies the measured voltage drop by this reference
signal. This measured signal is the sum of sine waves with different frequencies
(see, e.g. the spectrum in fig. 4.2) of the form:

Vmeas =
∑
i

Vi sin

(
2π

fi
t

)
, (4.1)

where Vi is the amplitude of the contribution with frequency fi. This mea-
sured signal is then multiplied by the reference signal. Most of the time, fi is
not equal to fref , so the resulting product is zero. Whenever fi = fref , the two
functions are in phase, and the average value is equal to half the product of
the amplitudes. This value is acquired. Adding filtering options allows getting
rid of higher harmonics of fref . In practice, the multiplication by the reference
signal is carried out over a finite time (the time constant, a parameter that can
be varied between measurements, usually taken an order of magnitude above
the signal periodicity).

A few precautions must be taken to ensure a good signal/noise ratio. The
reference frequency is usually chosen in a region with small background noise,
that is, in a clean white noise region above the 1/f noise and sufficiently far
away from the 50Hz harmonics from the mains. However, in mesoscopic de-
vices, high contact resistances may result in AC coupling to parasitic capaci-
tances, therefore altering the measurement at higher frequencies. For this rea-
son, fref will be chosen as small as possible, usually between 30Hz and 130Hz.
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4.1.3 Differential resistance

On top of the lock-in AC reference signal, a small DC current may be added
to measure a differential resistance dV/dI. As a result, a current I = I0 +

I1 sin(2πt/fref) is passed through the device under test, with a voltage dV

measured by the lock-in amplifier. Here, I0 is a DC component, and I1 is
the amplitude of the AC signal at the reference frequency. This technique is
particularly useful for measuring superconducting characteristics (in Josephson
junctions or superconducting devices) but also allows for inducing finite drift
velocity. The measured voltage at the device’s contacts can be approximated
in the first order:

V (I) = V (I0) +
dV

dI

∣∣∣∣
I=I 0

I1 sin

(
2π

fref
t

)
, (4.2)

that is the sum of a DC component Vdc = V (I0) and an AC signal
Vac = dV/dI|I=Idc

I1 sin(2πt/fref). The differential resistance is then defined
as dV/dI ≡ Vac/Iac.

It is possible to source and measure the DC component with the same lock-in
amplifier as the AC signal: the MFLI has auxiliary DC outputs and multiple
demodulators; one of them can be set up with fref =0Hz. Alternatively, I
have used Keithley nanovolt-meters. As the lock-in sources a constant voltage,
and the resistance of the devices under test can vary dramatically during a
measurement, one has to use a voltage-current converter that usually places
a high resistance in series. I used a homemade stabilised current source that
takes the AC and DC voltages as input and mixes them to generate a low-
noise source current. The amplitude of the AC excitation is chosen between
1 nA and 10 nA, depending on the measurement. The DC current is usually
swept during measurements in a range from 10 nA to 20 000 nA.

4.2 Electrostatic effects

4.2.1 Field-effect

Graphene —and more generally, the van der Waals heterostructures based on
graphene presented in this thesis— shows an ambipolar field effect. It means
that both charge carrier types can be induced by applying a positive or neg-
ative gate voltage Vg through a dielectric on one side of the heterostructure.
Applying a DC voltage across the gate induces a surface charge density:

n =
Vgϵ0ϵr
de

, (4.3)
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where d is the dielectric thickness (3.3 for hBN, 3.6 for SiO2), ϵ and ϵr are
the permittivities of free space and the dielectric, respectively. The gate acts as
a parallel plate capacitor, where the voltage applied to the conductor (n-doped
Si, Au or graphite) across a thin dielectric (hBN or SiO2) induces a charge of
opposite sign in the van der Waals heterostructure so that the Fermi level can
be moved in the conduction or valence band. This is possible because our van
der Waals heterostructures are thin enough so that the surface charge is not
screened throughout the device, as is usually the case for bulk metals. That
way, carrier concentrations of 1×1013 cm−2 can be achieved, corresponding to
a shift of the Fermi level of about 350meV.

Fig. 4.3 Changes in
graphene conductivity
and Hall coefficient. a)
σ as a function of the gate
voltage Vg and b) Hall
coefficient RH. Curves
were measured on the
same device as figure 3.3
(G1).
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Consequently, it is possible to define the gate capacitance Cg as ϵ0ϵr/d. As
the thickness d of the dielectric is relatively hard to measure, it is possible to
find it experimentally by measuring the Hall resistance RH = B/ne. That way,
it becomes possible to extract both the type (electrons or holes) and density
n of carriers. One can find the gate capacitance:

Cg =
1

VgRH
. (4.4)

Additionally, it was experimentally shown [51, 53] that the DC conductiv-
ity of graphene depends linearly on the gate potential Vg (see fig 4.3a) for
both polarities except close to the neutrality point and at high biases, and
the Hall resistance changes sign at Vg = V0 ≈ 0, indicating that a substantial
concentration of electrons (holes) can be induced by positive (negative, resp.)
gate voltages. The gate capacitance calibration can only be found for regions
where σ ∝ n and RH ∝ 1/Vg in other heterostructures to avoid charge inho-
mogeneities and non-linear effects. The relation σ ∝ n can be obtained from
the linearised Boltzmann equation [192, 193] with a relaxation-time approxi-
mation [50]:

σxx = 2
e2

h

πv2f
u2
0

n, (4.5)
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where u0 is the strength of the scattering potential. From that point, the
carrier mobility can be extracted with the usual relationships (see chapter 2).
For example, the mobility in graphene was found to be 15.000 cm2 V−1 s−1 in
2005 [53] and rapidly increased over several million with increasing device size
and fabrication quality [19].

Consequently, the gate capacitance will be extracted by measuring the Hall
resistance while sweeping the gate voltage under a small perpendicular mag-
netic field. If the regions of non-linearities are too large, the Hall coefficient
can be corroborated by sweeping the magnetic field at a fixed gate voltage.

4.2.2 Double gates

For systems asymmetric relative to the axis orthogonal to the 2D structure
(twisted trilayers, Bernal bilayer graphene, rhombohedral trilayer graphene,
etc.), it is sometimes interesting to apply an electric field perpendicular to
the plane. This can also be achieved through field-effect gating. Having two
gates on top and bottom of the heterostructures allows to apply and tune inde-
pendently and simultaneously the carrier concentration n and the transverse
electric field D (called displacement field for reasons detailed in chapter 9). In
a dual gate configuration, the application of a top (Vtg) and bottom (Vbg) gate
voltages results in:

n =
CtgVtg + CbgVbg

e
, (4.6)

and

|D| =
∣∣∣∣CtgVtg − CbgVbg

2ϵ0

∣∣∣∣ , (4.7)

where Ctg and Cbg are top and bottom gate capacitances, respectively. The
sign of D is chosen arbitrarily for different heterostructures.

4.3 Thermal activation

In transport experiments, a resistance temperature dependence translates into
a characteristic energy. For the case of insulating or semiconducting materials,
one expects the resistance to decrease with temperature, as thermal excitations
allow excitations to hop from the valence to the conduction band through the
bandgap. Figure 4.4a shows an example of an insulating state in multilayer
rhombohedral graphite, for which the resistivity decreases with temperature.
The resistance change follows a function of the bandgap ∆:
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Fig. 4.4 Example of
thermal activation gap
of few-layer rhombo-
hedral graphite. a)
resistivity as a function of
the density measured for
various temperatures. b)
Corresponding Arrhenius
plot showing a 2meV gap.
Data published in ref. [84].
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By plotting ρ as a function of 1/T in a log-log scale (Arrhenius plot), it
is possible to find the size of the gap ∆ through a linear fit of ρ(T ). Here ∆

is considered constant, but in reality, it depends on the temperature. In the
region where ρ(T ) is linear, however, it can be assumed constant.

4.4 Moiré superlattices

In usual devices, small vibrations during fabrications, inaccuracies in transfer
temperature, intrinsic strains within devices or other experimental variations
can result in a twist angle between two atomic layers that is different from the
target angle. On top of that, the twist angle can vary within a stack of about
0.5◦ within a few µm. The best way to know the twist angle in a device is to
measure it via transport measurements. Here I give a few details on how to
extract it. The first subsection introduces the relationship between the twist
angle and the superlattice unit cell based on ref. [106] and the subsequent
subsections give two methods to extract the twist angle from measurements.

4.4.1 Twist angle

All the lattices composing the van der Waals heterostructures presented in
this thesis are hexagonal, so the resulting Moiré lattice is also hexagonal.
In the reciprocal space, the resulting lattice points are shown in figure 4.5.
Here we consider two reciprocal lattice vectors corresponding to two layers
with a twist angle and a lattice constant difference. The reciprocal lattice vec-
tor corresponding to the first layer (in blue, e.g. graphene) can be chosen as
b1 = 2π/a(1, 0), where a is the lattice constant. The second layer has a lattice
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mismatch δ = a1/a2 − 1, where a1 and a2 denote the lattice constant of the
top and bottom layers, respectively. As a result, the corresponding recipro-
cal lattice vector is shorter by an amount (1 + δ), yielding (see red hexagon,
e.g. hBN): b2 = 2π/[(1 + δ)a](cos θ, sin θ). For the case of a twisted graphene
bilayer, we note that δ = 0, hence |b2| = |b1|.

Fig. 4.5 The reciprocal
space superlattice is
defined by vectors b1 and
b2. The shortest distance
between these vectors
forms the superlattice
wavevector ksl.

Γ

K1

K2

K’1K’2

Γsl

Msl

Ksl

K’sl
θ

kx

ky

b1

b2

It is possible to define a new reciprocal lattice constant ksl, defined as the
vector connecting the two sets of reciprocal lattice vectors: ksl = b2 − b1:

ksl =
2π

a

(
1− cos θ

1 + δ
,− sin θ

1 + δ

)
. (4.9)

Therefore, the superlattice wave vector is:

Ksl = |ksl| =
2π

a

√(
1− cos θ

1 + δ

)2

+

(
sin θ

1 + δ

)2

, (4.10)

and consequently, the superlattice periodicity in real space can be found as:

λsl =
2π

sin(π/3)Ksl
=

a(1 + δ)√
2(1 + δ)(1− cos θ) + δ2

. (4.11)

For the case of two identical layers twisted by an angle θ, this relationship
simplifies to:

λsl =
a

2 sin(θ/2)
. (4.12)

For small twist angles, i.e. θ ≪ 1, one can write:

λsl ≈
a

θ
. (4.13)
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In short, the superlattice wavelength is inversely proportional to the twist
angle for small twists. As a result, it is virtually possible to achieve arbitrarily
large superlattice periods (e.g. several 100 nm) for van der Waals heterostruc-
tures combining two layers with the same lattice constant (e.g. twisted bilayer
graphene). However, for lattices with a mismatch δ, the maximum superlat-
tice periodicity is limited by δ. The larger the lattice mismatch, the smaller
the maximum wavelength. For example, on graphene-hBN superlattices, the
largest possible superlattice constant is λsl =14nm.

4.4.2 Position of secondary neutrality point

Two methods can be used to find the twist angle in graphene heterostructures—
the first consists of looking at the position of secondary neutrality points.

The area of a superlattice unit cell spans a quadrilateral with sides λsl:

Asl = λ2
sl cos

π

3
=

√
3

2
λ2
sl. (4.14)

For this area, each superlattice band in the reduced Brillouin zone can
accommodate a carrier concentration n0 = 4/Asl, where 4 corresponds to the
spin and valley degeneracies of graphene. As a result, the full filling carrier
concentration is:

n0 =
8√
3λ2

sl

. (4.15)

Whenever the unit cell is filled with 4 electrons, that is, for n0, a secondary
Dirac point occurs [106–109]. As a result, the twist angle can be found as:

n0 =
8
√
2(1 + δ)(1− cos θ) + δ2√

3a(1 + δ)
, (4.16)

i.e.

θ = arccos

[
1 +

δ2

2(1 + δ)
− 3a2

128
(1 + δ)n2

0

]
, (4.17)

where n0 is the position of the secondary Dirac point, a is the lattice con-
stant (0.246 nm for graphene), and δ is the lattice mismatch (1.8% for hBN).
This relationship can be simplified for δ = 0:

θ = 2arcsin

[
a

8

√√
3n0

]
, (4.18)

and, for small angles θ ≪ 1:

θ ≈ a

√√
3

8
n0. (4.19)



78 4 Measurement of van der Waals heterostructures

Fig. 4.6 Conductivity
map of a 1.22°
monolayer-bilayer
graphene (device M1).
B0 and n0 allowing
extraction of the twist
angle are highlighted.
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4.4.3 Aharonov-Bohm effect or Brown-Zak fermions

Another way to find the twist angle is to use the Aharonov Bohm effect.
Whenever the flux piercing through the area Asl (or a multiple of) corresponds
to one flux quantum ϕ0 = h/e, a set of magneto-oscillations periodic in B

develop [134]. Aharonov-Bohm oscillations correspond to interferences between
electronic states propagating along loops formed at the boundary between
different superlattice cells.

As a result, the domain area is given by:

Asl = ϕ0/B0, (4.20)

where B0 is the magnetic field corresponding to 1 flux quantum piercing one
Asl. As the Aharonov-Bohm oscillations are periodic in B, it is possible to use
∆B in this formula. However, if Asl becomes relatively small, B0 might be too
high to be found experimentally. In that case, it is possible to use a consequence
of the Aharonov-Bohm effect: the Brown-Zak oscillations [194]. Whenever the
flux piercing through the area Asl is a multiple of the flux quantum, a set of
magneto-oscillations develop, corresponding to conductance maxima, periodic
in 1/B. In that case, one may extract B0 from the observation of conductance
maxima at several fractions of B0 (e.g. B0/2, B0/3, B0/4).

Once B0 is found, either for Aharonov-Bohm or Brown-Zak oscillations, one
gets:

θ = arccos

[
1 +

δ2

2(1 + δ)
−

√
3

4
a2(1 + δ)

B0

ϕ0

]
, (4.21)

that can be reduced for the case of δ = 0 as:
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θ = 2arcsin

a
√√

3

8

B0

ϕ0

 . (4.22)

Figure 4.6 shows an example of Brown-Zak oscillations and secondary neu-
trality points to extract the twist angle in twisted monolayer-bilayer graphene.

4.5 Josephson junctions

4.5.1 Transparency of the NS interface

Before measuring a Josephson junction, it is important to characterise the
quality of the contacts, that is, the superconductor-normal metal interface.
Previous studies have shown that peculiar effects can only be expected in
ballistic junctions. Here I explain a few methods to measure the quality of an
NS interface based on measurements of the contact resistance Rc and multiple
Andreev reflections (MAR).

4.5.1.1 Contact Resistance

For a ballistic device with superconducting contacts, the resistance in the
normal state Rn (either at sufficiently high current bias to remove the super-
conductivity or at sufficiently high temperature) should be given by:

Rn = Rq + 2Rc. (4.23)

Here Rc is the contact resistance at each N-S interface and Rq is the quan-
tum ballistic resistance, that can be determined for mesoscopic devices with
the Sharvin formula (see section 2.2.1):

Rq =
1

gM

h

e2
. (4.24)

Here g = 4 comes from graphene’s spin and valley degeneracy, M is the
number of propagating electron modes: M = int(2W/λf) with the Fermi wave-
length λf defined as λf = 2

√
π/n = 2

√
π/CgVg. Figure 4.7 shows an example

of the normal resistance for a graphene Josephson junction with the ballistic
limit Rq indicated as a dashed line. In this kind of measurement, it is usually
impossible to extract the carrier density through Hall measurements. As a re-
sult, one should find Cg from Landau fans or SdHOs at high n. The contact
resistance is found by subtracting the quantum ballistic resistance from the
normal resistance: Rc = (Rn −Rq)/2.
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Fig. 4.7 Typical
behaviour of a bal-
listic SGS junction:
Rn measured at high
T =12K. The dashed
curve shows calculated
Rq(n). Measured on
device Ja
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Once the contact resistance is known, it is possible to characterise the av-
erage transmission probability coefficient Tr given by [195]:

Tr =
Rq

Rq +Rc
. (4.25)

For all the Josephson junctions presented in this thesis, I obtain Tr between
0.7% and 0.9%, corresponding to a highly transparent interface. Note that for
hole dopings (Vg < 0), Rn is significantly higher, indicating a much smaller
Tr as p-n junctions appear at the contacts, leading to partial reflection of
electronic waves, resulting in the creation of Fabry-Pérot cavities [36].

4.5.1.2 Multiple Andreev reflections

In a Josephson junction without a decoherence mechanism in the normal metal,
whenever eVdc < 2∆, an Andreev pair traverses the junction successively from
the left to the right superconductor and again from the right to the left super-
conductor. The number of times the Andreev reflection can happen is reflected
as oscillatory features in the DC IV characteristics. It is easy to understand
that this can be used to measure the superconducting contacts’ transparency.
Let us consider the behaviour of a single electron.

If |eVdc| > 2∆, there can be no Andreev process; an electron normally
escapes from the left contact to the right contact. As Vdc is decreased and
|eVdc| = 2∆, at least a single Andreev reflection becomes possible; an effective
charge of 2e is transferred through the Josephson junction. When |eVdc| =
2∆/2, two Andreev reflections happen simultaneously at each NS interface.
Similarly, n Andreev reflections happen simultaneously whenever:

|eVdc| =
2∆

n
, n ∈ N. (4.26)

Experimentally, these multiple Andreev reflections (MAR) result in a sharp
dip in dV/dI at values of Vdc given by equation 4.26 for superconductors with
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Fig. 4.8 Multiple
Andreev reflections in
a NbTi-graphene-NbTi
Josephson junction:
differential resistance
DV/dI(Vdc) for different
gate voltages, showing
maxima associated with
MAR. Curves were
measured in a bilayer
graphene junction at
300mK. (device J8)
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a long coherence length. For other superconductors, such as the NbTi used
this thesis’ junctions, MAR are observed as peaks in the dV/dI characteris-
tics [196]. The amplitude of these features (after normalising the differential
resistance by the normal resistance) is independent of L/ξ, where L is the
length of the junction and ξ is the coherence length in the normal metal:
ξ =

√
ℏD/∆ (with the diffusive constant D = vFℓ/2) [157]. The number of

MAR experimentally observable depend on two factors: thermal noise and
transparency of the NS interfaces.

The transparency dependence of the MAR can also give an estimate of the
transmission coefficient [156, 157, 195], but this method is not as reliable as it
depends on the chosen theoretical model [197, 198]. This method is not used
here, but we note that the consistent observation of MAR further confirms the
excellent transparency of the NS interfaces.

4.5.2 Extraction of the supercurrent density

In section 2.3.2, we assumed that the supercurrent density inside the junction
is uniform, yielding a single-slit Fraunhofer interference in Imax

c (B). It is not
always the case. Here I explain the method developed by Dynes and Fulton
[199] and adapted for 2DEGs [200] to recover the supercurrent density from
Imax
c (B) measurements.

Let us consider a 2D Josephson junction of width W in the x-direction and
length L in the y-direction. The current propagates in the y-direction, and
the density is assumed to vary only along the x-direction. One may write a
normalised magnetic field β as:

β =
2π(L+ Lc)B

ϕ0
, (4.27)

where Lc is the length of the superconducting leads (to account for flux
focusing, a consequence of the Meissner effect) and ϕ0 = h/2e is the magnetic
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Fig. 4.9: Current reconstruction from extracted Imax
c (β). a) extracted Imax

c (β)

from device Ja (blue) and flipper function (arb. units, green). b) IE(β) and IO(β) found
using the Dynes and Fulton method.

flux quantum. For a given supercurrent density profile JS(x), the critical cur-
rent is a complex function Jc(β) that can be found as the Fourier transform
over the width of the junction:

Jc(β) =

∫ +∞

−∞
dxJS(x)e

iβx. (4.28)

Experimentally, we can extract the magnitude of the complex supercurrent
density Imax

c (β) = |Jc(β)|. In order to recover JS(x), it is, therefore, necessary
to find the complex critical current, that is, an even IE(β) and an odd part
IO(β), such as:

JC(β) = IE(β) + iIO(β). (4.29)

Let’s start with an even current density: IO(β) = 0. In that case, the odd
part of eiβx vanishes in the integral of equation 4.28; one may write:

JC(β) = IE(β) =

∫ +∞

−∞
dxJE(x)cosβx, (4.30)

where JE(x) is a real and positive symmetric distribution. As a result, JC(β)

is also real and typically alternates between positive and negative values at
each zero crossing. One may recover the exact IE(β) by flipping the sign of
every lobe in the observed Imax

c (β).
Now let’s add the imaginary, odd component on top of this function. We

assume that JO(x) is relatively small. Its Fourier transform writes:

IO(β) =

∫ +∞

−∞
dxJO(x) sin βx. (4.31)

As a consequence, IE(β) dominates the observed critical current Imax
c (β) =√

I2E(β) + I2O(β) everywhere except at the minima. I obtain IE(β) by multiply-



4.5 Josephson junctions 83

Fig. 4.10 Reconstructed
critical current density
for device Ja, based on
the intermediary steps of
figure 4.9.
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ing Imax
c (β) with a flipping function that switches the sign between consecutive

lobes of the envelope function. When IE(β) is minimal but non-zero, IO(β) is
non-negligible and dominates the critical current. IO(β) is then approximated
by interpolating linearly between the minima of Imax

c (β) and flipping the sign
between lobes. Once Jc(β) is found, a Fourier transform over a range b of β
gives the current density profile:

JS(x) =

∣∣∣∣∣ 12π
∫ b/2

−b/2

dβJc(β)e
−iβx

∣∣∣∣∣ . (4.32)

Figure 4.9 shows the different steps to reconstruct the current distribution.
Figure 4.10 shows the result of such a reconstruction in a Josephson junc-
tion made with minimally twisted bilayer graphene, and etched with a width
W =500 nm.

4.5.3 RF irradiation

Shapiro steps are measured by irradiating a Josephson junction with microwave
excitations. These are generated from an RF source (R&S SMB 100A) and
transmitted to the inner vacuum chamber (IVC) via semi-rigid coaxial cables
made of stainless steel (above 4K) and NbTi alloy (below 4K). The RF lines
are thermally anchored to the different stages of the dilution refrigerator, using
RF attenuators at different stages: 10 dB at 70K and 4K, 6 dB at 0.7K and
0.3K and 3 dB at the mixing chamber stage (10mK), for a total attenuation
of 35 dB. At the bottom end, an antenna consisting of an open-ended cable
irradiates the device from roughly 1 cm. The transmission to the vacuum is
enough to observe all the relevant effects.
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Chapter 5
Cryogenic techniques

Varying the temperature can allow an understanding of the behaviour of
graphene heterostructures. Throughout my PhD, I have been in charge of a
newly acquired dilution refrigerator, its maintenance and optimisation. This
chapter introduces a few properties of liquid helium and mixtures of helium
isotopes and showcases the operation of the dilution refrigerator.

5.1 Liquid Helium

Historically, low-temperature physics started with attempts to liquefy and so-
lidify some gases. One of the aims was to find whether permanent gases exist.
Nitrogen and Oxygen were first liquefied in 1883, enabling temperatures below
100K. These advances were rapidly followed by a wide range of gases, the pin-
nacle of which was hydrogen, condensed by Dewar in 1898, allowing to reach
temperatures as low as 13 kelvin. In 1908, Heike Kamerlingh Onnes liquefied
the last gaseous element to be discovered: helium at 4.2K. He later reached
0.83K by pumping the vapour above a boiling 4He bath. Accessing lower tem-
peratures required more fundamental technologies, like magnetic refrigeration
or adiabatic demagnetisation, that were proposed in the late 1920s to reach
millikelvin temperatures temporarily. Later, another method was proposed,
based on the dilution of the rare isotope 3He by the common isotope 4He:
dilution refrigeration, allowed to reach a few millikelvin.

5.1.1 Isotopes & phase diagram

Here I cover a few properties of the two most stable isotopes of liquid helium at
the heart of refrigeration techniques. 4He is the most stable helium isotope. Its
nucleus is composed of two protons and two neutrons. As each has anti-parallel
nuclear spins, the total nuclear spin is I = 0: 4He is a boson. On the other
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Fig. 5.1: Phase diagram of 4He (a) and 3He (b). Shaded regions correspond to
superfluidity. 4He-I represents the normal fluid phase, 4He-II the superfluid phase. 3He-A
and 3He-B are both superfluid phases. Adapted from refs [14,201–203]

hand, 3He has two protons and one neutron, so its total nuclear spin is I = 1
2 :

3He atoms are fermions and obey Fermi-Dirac statistics. The difference in the
statistics to describe these two isotopes results in considerable differences in
their low-temperature behaviour. For example, pumping on a vapour of 4He
allows reaching temperatures of approximately 1K and pumping on a vapour
of 3He allows reaching ≈0.3K.

The different temperatures achievable from these two isotopes can be ex-
plained by the following: 3He has a smaller atomic mass m than 4He (3.02 u
and 4.21 u, respectively); therefore, 3He atoms have a larger zero-point energy
E0 = h2/8ma2 than 4He (here, a = (Vm/NA)

1/3 is the radius of the sphere
in which the atoms are confined, NA is the Avogadro constant). This higher
zero-point energy of 3He gives rise to a lower boiling point, smaller density,
smaller latent heat of evaporation and larger vapour pressure than its 4He
counterpart. Additionally, on the surface of 3He, there is no film (see below);
therefore, when pumping on 3He, there is no heat leak or pumping load due to
evaporation or the film (or eventually heat transfer along with the film). For
this reason, 3He baths can be pumped via wide tubes at the low-temperature
end, whereas 4He necessitate narrow constriction to suppress film flow.

Figure 5.1 shows the p − T phase diagrams of 4He and 3He. Unlike all
other liquids, both 4He and 3He do not become solid under their own vapour
pressure. Instead, both isotopes remain liquid under normal pressures even at
T =0K. There are two liquid phases for 4He: a normal fluid and a superfluid
at temperatures below the lambda line. 3He has two superfluid phases, with
transition temperatures between 1mK and 3mK, three orders of magnitude
below that of 4He.
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5.1.2 Superfluidity and lambda transition

At Tλ = 2.17K at ambient pressure, the specific heat of 4He presents an
abnormal, pronounced maximum with a discontinuity [204] called the lambda
transition. It corresponds to a phase transition that can be understood as
Bose-Einstein condensation. Above Tλ, 4He behaves as a classical fluid (like
a gas, owing to the low density). Below Tλ, 4He is a superfluid: the fluid can
flow through narrow capillaries without friction [205,206].

Because 3He obeys the Fermi-Dirac statistics and the Pauli principle, its
liquid phase is analogous to that of a normal liquid: individual 3He atoms
cannot undergo the analogue of a Bose condensation into a superfluid state.
There is no lambda transition. There are, however, weak attractive interactions
between 3He atoms in the liquid, giving rise to the pairing of two atoms at
low temperatures, similar to the pairing of electrons to form Cooper pairs in
a superconductor. As a result, 3He undergoes a transition into a superfluid
state at 0.92mK at saturated vapour pressure. The properties of superfluid
helium are not the topic of this thesis, and the reader may refer to textbooks
for this: see refs. [14, 207–210]. However, a property is worth noting in the
prospect of refrigeration techniques: a helium film forms on the surfaces above
a bath of superfluid helium and on the walls of a container partly filled with
liquid helium. It results from relatively strong van der Waals forces between
the substrate and helium atoms driving the first atomic layer into a solid state
and forcing liquid atoms to flow in a relatively thick layer. This solid film is
usually immobile because of the low viscosity but can move in the superfluid
state. Consequently, the levels of two connected partially filled 4He containers
will equalise through a frictionless flow of superfluid helium from one to the
other. The superfluid film flow will later enhance evaporation of the 4He bath
because the superfluid will flow to hotter places and evaporate, siphoning the
bath.

5.1.3 Cooling power

One can pump on the vapour above liquid 4He to obtain temperatures below
the standard (1 bar) boiling point [203]. It can be understood as follows: when
atoms are pumped from the vapour phase, the most energetic atoms (the
hottest) will leave the liquid and replenish the vapour. As a result, the mean
energy of the liquid decreases, resulting in the liquid cooling down. Pumping
on a bath moves n particles from the liquid to the vapour phase per unit of
time. The cooling power Q̇ is given by:

Q̇ = ṅ(Hl −Hv) = ṅL, (5.1)
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where L is the latent heat of evaporation and Hl and Hv are the liquid and
vapour phase enthalpies. Experimentally one may use a pump with a constant
volume pumping speed V̇ , resulting in a mass flow ṅ across the liquid-vapour
boundary proportional to the vapour pressure Pv; hence the cooling power
writes:

Q̇ ∝ LPv ∝ e−1/T . (5.2)

The cooling power becomes less and less efficient as the temperature de-
creases. The absolute temperature minimum is achieved if all the liquid is
evaporated. However, in practice, it is impossible to cool down as soon as the
refrigeration from the atomic evaporation is balanced by external heat flowing
onto the bath, i.e. ≈1.3K for 4He and 0.3K for 3He. Refrigeration of electronic
devices by pumping on a helium bath was occasionally used in this thesis to
measure devices down to 300mK. To cool down even further, it is necessary
to use liquid mixtures of 3He and 4He.

5.2 Liquid mixtures of 3He and 4He

In a mixture of 3He and 4He, superfluid 4He acts as an inert background
because it contains very few excitations. It influences only the effective mass
of the interacting 3He Fermi particles. Differences in the 3He concentration
results in different mean interaction energy and different properties of the fluid.
Here I introduce the basic properties of 3He–4He mixtures that are important
for understanding the operation of a dilution refrigerator.

5.2.1 The phase diagram

Figure 5.2 shows the phase diagram of liquid 3He–4He mixtures. There are
three different regions: a mixture containing normal fluid 4He, superfluid 4He
and a forbidden two-phase region (miscibility gap). Note that the lambda
point is concentration-dependent: 4He becomes superfluid at T = 2.177K,
and increasing the concentration of 3He shifts the lambda point to lower tem-
peratures. It is the case for concentrations in 3He below 67.5%, where 4He
superfluidity ceases to exist and the lambda point Tλ =867mK meets the
phase separation line. Below this temperature, the two isotopes are only mis-
cible for certain limiting (temperature-dependent) concentrations. The shaded
miscibility gap in figure 5.2 is a non-accessible unstable region where a mixture
splits into two phases of concentrations given by the two branches of the phase
separation curve. It means that if one cools down a helium mixture (with a
3He concentration x > 6.48%) to temperatures below 0.867K, it will separate
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Fig. 5.2 Phase diagram
of liquid mixtures of
3He and 4He. The shaded
region marks the extent
of the miscibility gap.
Adapted from refs [14,203].
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into two phases: one rich in 4He and the other rich in 3He. As 3He has a lower
density, the 3He-rich fluid will stay on top of the other phase. Close to absolute
zero, the 3He-rich region will become pure 3He, and the 4He-rich phase will
reach a constant concentration of 6.48%, a necessary feature for the dilution
refrigeration techniques shown later.

Importantly, in the 4He-rich region (diluted phase), 4He is superfluid and
obeys Bose statistics, so there are essentially no excitations (phonon, rotons):
the viscosity, entropy and specific heat vanish. As a result, the 3He fermions can
move through an inert 4He superfluid background unhindered, as conduction
electrons do in a metal crystal. 4He contributes only to the volume of the
liquid, therefore, to the interatomic distance between 3He fermions, resulting
in changes in the effective mass of the dissolved 3He isotope. Under these
conditions, 3He can be treated as an interacting Fermi quasiparticle with a
pressure equal to the osmotic pressure described below.

5.2.2 Finite solubility

The finite x = 6.48% solubility of 3He in 4He can be understood by considering
two containers of pure 3He and pure 4He cooled down separately to 0K before
the liquids are put together and looking at the 3He atoms. Because 3He is
lighter, it exhibits a larger zero-point motion and occupies a larger volume
than 4He. As a result, the first 3He atoms will be closer to the 4He atoms than
the surrounding 3He: the 3He–4He bonding will be stronger than the 3He–3He
and 3He will prefer to stay in the diluted phase.

It is necessary to find the binding energy to understand why the finite
solubility is 6.48%. Let us consider the chemical potential µ3,d of 3He in 4He
and E3 = −µ3,d is the binding energy of one 3He atom in liquid 4He (d
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refers to the dilute phase). The binding energy of 3He in 3He is equal to the
latent heat of evaporation of pure 3He: µ3,c = −L3 (where c refers to the
concentrated phase). As a result, E3 should be greater than L3. The first two
3He atoms will occupy the lowest energy state −E3 with anti-parallel spins,
and additional 3He atoms will have to obey the Pauli exclusion principle: they
will occupy increasingly higher energy states. µ3,d should take into account
the Fermi energy Ef = kBTf , and the binding energy will increase with 3He
concentration. Considering that, at equilibrium, µ3,d = µ3,c, the equilibrium
concentration of 3He in 4He at absolute zero should follow the equation:

−L3 = −E3(x) + kBTf(x), (5.3)

where x = x3 = n3/(n3 + n4) is the concentration of 3He in 4He, as shown
in figure 5.2. This was calculated by Bardeen, Baym and Pines (BBP theory)
[211, 212]. For x =6.48%, the chemical potential equals that of 3He in pure
3He: that is, the finite solubility of 3He in 4He at 0K.

5.2.3 Osmotic pressure

Consider now two containers of liquid helium mixtures with different 3He con-
centrations connected via a superleak capillary. In the dilution fridge, we will
see later that this constitutes the mixing chamber and the still [213]. If the
system starts with equal levels in the two vessels, 4He will flow through the
superleak to equalise the 3He concentration in both containers. As 3He is not
in a superfluid state, the high viscosity does not allow it to pass through the
superleak and reduce the concentration gradient. For T =0K, a concentration
difference of 1% would lead to a difference in height in the two containers of
about 20 cm [14].

5.2.4 Cooling power of 3He–4He mixtures

The cooling process in a 3He–4He dilution refrigerator is achieved through the
transfer of 3He atoms from the pure 3He phase to the dilute phase. In the pe-
culiar phase diagram, finite solubility and osmotic pressure play an important
role in achieving low temperatures. Equation 5.2 described the cooling power
of an evaporating cryogenic liquid as exponentially decaying with temperature.
For a helium mixture dilution process, the cooling power can be expressed as
a function of the concentration x of the dilute phase and the mixing enthalpy
∆H that is the integral of the differences of the specific heats in the two
phases: ∆H ∝

∫
∆CdT . Interestingly, x ≈ 0.0648 is almost constant below

100mK, contrary to the vapour density in an evaporating bath, where the
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number of atoms decreases exponentially with the temperature. The cooling
power temperature dependence writes:

Q̇ ∝ x∆H ∝ T 2. (5.4)

This cooling power shows a much weaker temperature dependence than for
an evaporation process, giving a substantial advantage for a 3He–4He dilution
process.

5.3 The dilution refrigerator

The technique of dilution refrigeration relies on the specific properties of 3He–
4He mixtures detailed in section 5.2. London, Clarke and Mendoza first pro-
posed it in 1962 [14, 214], but it was only in 1965 that the first successful
experiment was realised by Das, De Bruyn, Ouboter and Taconis [215], reach-
ing a temperature of 220mK. Today, dilution refrigerators are regularly used
to access temperatures around 10mK [216], but there is no theoretical lower
bound on the temperature achievable through this process [213].

The maximum solubility of 3He in 4He depends on temperature and pres-
sure (see sec. 5.2). As a result, the 3He concentration is constant during cooling
at sufficiently high temperatures. Below the phase separation line, the mixture
separates into two different phases with concentrations following the phase sep-
aration line. Figure 5.3 shows the temperature and concentration dependence
of different 3He–4He mixtures whilst cooling. The mixture in our refrigerator
is composed of 20.45% 3He: the phase separation occurs at 470mK and the
lambda point at 1.86K.

Fig. 5.3 Concentration
and temperature depen-
dence of 3He dissolved in
4He. The starting con-
centration of the 3He is
indicated at the top of
each curve. Data extracted
from refs [14,217].
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The cooling process occurs in the mixing chamber, transferring 3He atoms
from the concentrated (3He-rich) phase into the dilute phase. Transferring one
mole of 3He to the dilute phase generates a heat of:

∆Q = T∆S = aT 2, (5.5)

with a = −84 JK−2. Continuously pumping 3He away from the dilute phase
in the mixing chamber allows cooling of the liquid, in the same way, that pump-
ing away the vapour coming out of a cryogenic liquid. Feeding 3He back to the
concentrated phase allows for continuous operation of the dilution refrigerator.
Figure 5.4 sketches the cold part of a 3He–4He dilution refrigerator. It consists
of a mixing chamber, a still and a counterflow heat exchanger.

5.3.1 Mixing chamber and still

The dilution process occurs at the mixing chamber (MC) stage, and 3He atoms
are continuously removed from the dilute phase by distilling them off in the
still. The MC and still constitute a system of two containers joined by a su-
perleak (see subsection 5.2.3). In the initial stage of the cooling process, both
the still and the MC are filled with the liquid 3He–4He mixture. The mixing
chamber is cooled below 470mK so that the mixture is phase-separated, with

Fig. 5.4 Sketch of the
inner 3He–4He circuit
of the dilution refrig-
erator. Adapted from
refs [14,203]
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the upper part of the MC filled with the concentrated phase and the lower
part filled with the dilute phase.

Heat is applied to the still by means of an electrical current so that the liquid
evaporates and the vapour is pumped away. The still temperature should be
kept around 0.7K to maximise the 3He/4He ratio. The lighter 3He atoms
are evaporated first, so their concentration is constantly reduced in the still. A
pressure gradient develops between the chamber and the still as due to osmotic
pressure; it is responsible for driving 3He atoms from the concentrated phase
to the dilute phase in the mixing chamber. The transfer of atoms from the
concentrated phase to the dilute phase requires some energy (eq. 5.5) that is
provided by the heat taken from the load: the process refrigerates. 3He is then
carried back into the mixing chamber to ensure the cycle never runs out.

The vapour in the still should be as close as possible to pure 3He: the
presence of 4He can form a continuous film, driving unwanted heat into the
MC. Additionally, the purer 3He is in the concentrated phase, the more energy
the dilution process can take from the load. In this cycle, there may be a
considerable temperature difference between the different parts of the system.
For example, the incoming 3He from the condenser can be three times hotter
than the 3He moving out of the MC. Heat exchangers allow to cool down the
incoming liquids.

5.3.2 Heat exchangers

The performance of the dilution fridge depends on how efficient the heat ex-
changers are in order to minimise the heat that reaches the MC and reduces its
refrigeration power. The concentrated 3He fluid flowing to the mixing chamber
carries heat; the heat exchanger cools it down before entering the chamber.
Figure 5.5 shows the two different heat exchangers used. They rely on the
same principle: the specific heat of 3He in the dilute phase is greater than
that of pure 3He; therefore, the dilute 3He flowing out of the chamber is very
effective at cooling the pure 3He flowing into the MC. These two different heat
exchangers are placed successively to form the counterflow heat exchanger.

Figure 5.5a shows a continuous heat exchanger consisting of a double-walled
tube. The dilute phase flows in the outer tube. At the warm end, the concen-
trated phase flows into an inner capillary (secondary-flow impedance, prevent-
ing re-evaporation and ensuring that the pressure in the condenser builds up
to liquefaction). After a few cm, the inner tube is rolled into a tight spiral.
Figure 5.5b shows a step heat exchanger. The most important element here is
the sintered silver layer attached to the copper-nickel foil, providing increased
contact surface while reducing the thermal resistance. This layer divides the
heat exchanger into two chambers, one in which the 3He-rich phase flows, the
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Fig. 5.5: Sketches of heat exchangers. a) continuous heat exchanger and b) cut
through the cross-section of a step heat exchanger. Figures adapted from refs. [14,203]

other flowing the dilute phase. Such a heat exchanger consists of five steps
with different contact surfaces. It is used at the low-temperature end.

5.4 Experimental setup

The experimental system is composed of an Oxford Instrument dry dilution
refrigerator that has been adapted to fit our needs. It is depicted in figure
5.6. Cooling to 10K is ensured with a pulse tube cooler, followed by mixture
condensing to reach the base temperature.

5.4.1 Pulse tube cooler

Numerous types of cryogenic-free coolers exist; ours is based on a pulse tube
cooler. This is composed of a compressor with a piston connected to a regener-
ator, itself connected to a hollow tube (the pulse tube) with heat exchangers at
both ends [218]. This sort of cooler is based on smooth periodic adiabatic pres-
sure variation. The regenerator is a large enough container filled with porous
material with a high heat capacity. It absorbs heat from the gas pumped into
the pulse tube, precooling it, stores the heat for half a cycle, and then trans-
fers it back to outgoing cold gas in the second half of the cycle, cooling the
regenerator. The compressor is connected to the warm end of the regenerator,
providing the pressure oscillations driving the refrigerator.

The pulse tube transports heat against a temperature gradient through a
process called surface heat pumping. In the first step of the cycle (compres-
sion phase), the refrigerant gas (helium) is compressed by flowing from the
piston to the pulse tube. All the gaps initially in the tube will be adiabatically
compressed closed to the hot end, resulting in a temperature increase. At the
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cold end of the tube, the pressure is reduced, and so is the temperature. The
regenerator then absorbs heat from the hot end. In the second step of the
cycle (expansion), the compressor forces adiabatic expansion of the refrigerant
gas to cool it further. Through the regenerator, heat is further absorbed. This
cycle is then repeated, allowing to cool the system down. Importantly, there is
no liquid-gas interface in a pulse tube cooler because the operating pressures
are above the critical pressures.

This mechanism describes only the original pulse-tube cooler. In practice,
improvements include using rotary valve compressors, second inlets to reduce
the mass flow into the regenerator, or multiple cooling stages [219–222]. State-
of-the-art pulse tube coolers can reach 15K to 20K using a single stage or
about 2K with a dual-stage. Our system is composed of two pulse tube coolers.
One is located at the first stage level (PT1) and operates below 50K. The other
one is placed at the second stage (PT2) and operates below 4K. There is also
a heat exchanger underneath the top plate to extract heat from the incoming
gas before it reaches the pulse tube coolers. Additional cooling power is used
for precooling the still and MC via a precool loop filled with the mixture. As
soon as the system reaches 20K, the precool loop is evacuated using a turbo
pump, and this part of the circuit is shut with valves.
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5.4.2 Condensing

Once the precooling circuit has been emptied, the condensing enables cooling
down to base temperature after the precooling. The mixture is compressed us-
ing the 3He compressor and passed through heat exchangers located on the PT
stage to cool the gas around 4K. Subsequently, the mixture is condensed using
a Joule-Thompson stage. It is based on the following principle: an expanding
gas performs work against its own internal forces. The Joule-Thompson stage
comprises a heat exchanger located inside the still pumping line and a small
nozzle (the impedance) through which the gas undergoes an isenthalpic expan-
sion without moving parts. The nozzle performs no work: W = 0. As a result,
one may write the conservation of enthalpy in this reversible heat exchange
process:

W = H1 −H2 = (U1 + p1V1)− (U2 + p2V2) = 0, (5.6)

and therefore for a real gas:

H = U(T ) + pV = U(T ) +RT. (5.7)

As the enthalpy is constant and does not depend on pressure or volume, a
temperature change must occur. In the dilution refrigerator, the condensing is
done via two different steps: i) when cooling down the system to about 1.3K,
circulating the mixture through the dilution refrigerator will allow cooling
rapidly to the phase separation line around 470mK. ii) As soon as the dilution
refrigerator’s temperature is around 600mK, the still is warmed up to 700mK

to start the distillation process. Then the temperature drops to a base level
of 7mK. During the circulation, the 3He–4He mixture can be contaminated
with other gases (O2, N2). These impurities may block the impedance and
therefore need to be filtered. Filtering is achieved with two traps filled with
a high surface area adsorbent, cooled by liquid 4He (internal trap) or liquid
nitrogen (external trap, requiring refilling in liquid nitrogen every week).

5.4.3 Pumping

It is necessary to have the system at low enough pressure to limit convection.
At relatively high temperatures, this is achieved by pumping the OVC with a
turbo pump during cooling. In the K temperature range, the vapour pressure
of all substances (except He) is so low that surfaces in the OVC are efficient
pumps. Below 10K, pumping on the OVC is counterproductive as cold surfaces
condense the remaining gas molecules and improve the vacuum by several
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orders of magnitude. This is so efficient that it may pump contaminants from
the pumping station into the cryostat.

5.5 Thermal anchoring of electronic devices

Multiple factors may increase the temperature of the device measured. First,
thermal radiations consist, by nature, of incoherent electromagnetic waves
propagating in free space. Appropriate shielding both outside and inside the
refrigerator prevents electromagnetic radiations in the sample. Second, the
wiring may be a loophole for thermally excited electromagnetic fields to leak
into the sample. Transfer of heat via phonons in the wires would there occur
like waveguides. In order to prevent this, it is necessary to provide proper
thermal anchoring and electromagnetic filtering in the wiring.

Samples are attached to the MC close to the dilute phase outflow, where
the temperature is minimal, through a dual-board PCB-based sample holder
system designed during the PhD. The PCB system is composed of a mother-
board permanently connected to the sample puck and an exchangeable daugh-
terboard, on which the sample is glued and wire-bonded. This system accom-
modates the connection of the device measured while ensuring thermalisation.
Additional thermalisation of electrons at different stages of the dilution re-
frigerator are necessary to ensure that the sample’s temperature matches the
mixing chamber temperature, as illustrated in figure 5.7.

In this setup, hot electrons enter the dilution refrigerator at room tem-
perature. They are thermalised at different stages (PT1, PT2, Still, MC) in
order to reduce the electron temperature. Wires are thermally anchored at
all stages to dump heat into the continuously refrigerated plates. As a result,
cooling of the sample is achieved through heat extraction via the wires; this
is much more efficient than via the PCB. The wiring consists of constantan
looms, a non-metallic copper-nickel allow with low thermal conductivity and a
temperature-independent resistivity, therefore well suited for this application.
As the sample seats on an insulating chip carrier in vacuum, thermal coupling
to the mixing chambers occurs through the sample wires. The wire consists of
pure copper between the MC and the sample holder for optimal thermalisa-
tion. At this stage, additional thermalisation and noise filtering are achieved
using a homemade RC filter thermally anchored to the MC plate. It filters the
noise from 150 kHz up to the GHz regime.

Outside the cryostat, the 24-wire cable connects to a breakout box with a
shielded 2-channel twisted pair cable with Fischer connectors. Each channel
then connects a BNC connector on the breakout box. Additional filtering oc-
curs at the breakout box stage. The shield is used as a ground-carrying line to
prevent ground loops. We use the magnet power supply ground as the common
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Fig. 5.7 Schematic of
filtering scheme and
thermal anchoring
There is an RC filter PCB
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and additional filtering at
room temperature. The
whole system is grounded
with the magnet to avoid
ground loops.
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ground, with the dilution refrigerator, the breakout box and the ground pins
of all the measuring equipment connected in series. All the racked instruments
use electrically isolating mounting hardware. The background noise was tested
using the spectrum analyser function of the Zurich Instrument MFLI lock-in
amplifiers. The 50Hz noise peak is 60µV, much lower than the 300µV limit for
low electron temperature measurements usually considered acceptable [223]. I
found that the instruments’ sequential on and off switching did not consider-
ably reduce the amplitude of the 50Hz noise peak, thanks to the minimisation
of ground loops.

5.6 Thermometry below 1K

Complete characterisation of a system’s physical properties usually requires
a temperature dependence measurement. Therefore, it is necessary to mea-
sure the temperature of our devices accurately. For this, one may use either a
primary or secondary thermometer. A primary thermometer is used to mea-
sure the temperature without prior calibration. It is possible if a fundamental
physical law describes the temperature dependence of the measured property.
Conversely, a secondary thermometer must be calibrated to provide an accu-
rate reading, but these are often easier to use. Here I present two techniques
that have been used for low-temperature thermometry.
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5.6.1 Phonon thermometry

The phonon temperature corresponds to the temperature of the MC plate
thanks to good thermal anchoring between the electrical wires connected to
the device and the MC. This temperature can be measured with a resistor ther-
mometer, a secondary thermometer (therefore needs calibration). The temper-
ature of the MC is acquired from a Lakeshore 372 AC resistance bridge based
on lock-in amplification techniques with an AC excitation as low as 10 pA,
allowing to measure the resistance of a metallic wire while minimising self-
heating of the MC plate. Two different materials are used to measure the
phonon temperature Tmc. Above 1.2K, a thin-film ceramic zirconium oxyni-
tride (Cernox) resistor is used because it has a linear temperature dependence
between 1K and room temperature, with minor changes in sensitivity under
magnetic fields. Below 2K, a thick-film chip resistor based on RuO2 is used.
It is a metal-ceramic composite consisting of an alloy of two RuO2 conductive
compounds with lead-silica glass on a ceramic substrate. RuO2 resistors show
non-metallic resistance characteristics. Thermal contact to the MC plate is
ensured via epoxy, which could result in a relatively poor thermal link. In the
millikelvin range, the mixing chamber temperature Tmc is measured from the
RuO2 resistor, supplied and calibrated by Oxford Instruments.

5.6.2 Electron thermometry

The wiring necessary to measure an electronic device may carry out noise, par-
ticularly in high frequencies, that can result in parasitic heating of the device
under test. Additionally, the small AC excitation used to measure the device
may result in Joule heating. Several techniques are available to account for the
electron thermometry, consisting of measuring an electronic quantity directly
related to the temperature: tunnel junctions between normal metal and super-
conductors (NIS) or two superconductors (SIS) and shot noise thermometry
are some examples [14]. Here I used a Coulomb blockade thermometer (CBT)
to measure the electron temperature. This measurement was carried out only
once during my PhD, after several improvements to the dilution refrigerator
system (better thermal anchoring, filtering, minimisation of ground loops).

For the purpose of thermometry, I used the CBT shown in figure 5.8,
consisting of many small metallic islands connected in an array by tunnel
junctions [224–226]. The conduction of this array is temperature dependent
because of the balance between thermal excitations and single electrons tun-
nelling across the islands through an electrostatic barrier [14, 224–226]. This
kind of device typically works over a decade of temperatures, for temperatures
as low as 3.7mK [224]. Conductance of the CBT is measured in a current-
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Fig. 5.8 Details of the
CBT a) Optical photo-
graph. b) optical micro-
graph (scale bar 10µm)
of the CBT with equiv-
alent circuit diagram. c)
Schematic cross-section
with one Al2O3 junction
between two Al islands
with Au thermalisation
blocks. (b) and (c) from
ref. [224].
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driven four-wire configuration, with the drive current provided by a custom
amplifier. A small AC excitation (500 pA ≤ Iac ≤ 10 nA) is added to a DC
bias (Idc), allowing to measure the differential conductance G with a lock-in
amplifier. A typical CBT’s conductance dips around zero bias, with the dip
becoming deeper and narrower at lower temperatures. It corresponds to the
Coulomb blockade effect when the Coulomb energy Ec = [(N − 1)/N ] e2/CΣ

is much larger than the thermal energy kBT (where CΣ is the capacitance of
each island). Then the differential conductance can be described as [225]:

G = GT

(
1− EC

kBT
g(x)

)
, (5.8)

where GT is the asymptotic conductance at high bias voltage, x = eVdc/(NkBT ),
and N is the number of junctions. g is given by:

g(x) =
x sinhx− 4 sinh2(x/2)

8 sinh4(x/2)
. (5.9)

In practice, when Te = Tp, one may approximate the full width at half
maximum of the conductance dip with [224]:

V1/2 ≈ 5.439NkBT/e. (5.10)

Figure 5.9a shows the measured conductance G as a function of Vdc and
the result of fitting G(Vdc) for different measurements. The warmest measure-
ments (above 150mK) allow calibration of the sensor and extract CΣ =210 fF

and GT =108.3µS. After calibrating the fit parameters, the same equation 5.8
is used to fit the coldest measurements. The resulting electron temperature
is shown in figure 5.9b for 7mK≤ Tmc ≤300mK. The electronic temperature
diverges from the mixing chamber temperature for Tmc ≤50mK. When fixing
the mixing chamber temperature Tmc =6.3mK, lowering the AC input exci-
tation decreases the minimal electronic temperature that can be achieved for
currents above 5 nA (see inset, figure 5.9b). However, the electronic tempera-
ture saturates to Te ≈35mK for Iac ≤5 nA.
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Fig. 5.9: CBT behaviour between 300 and 7mK a) CBT conductance G(Vdc)

for seven different temperatures. Symbols show measured values, and lines show best
fits to the calculated ideal conductance. b) CBT electron temperature Te(Tmc), showing
that below 50mK, the electronic temperature is sensibly higher than the MC phonon
temperature. Inset: CBT electron temperature for different AC excitation currents at
Tmc =6.3mK.

5.6.3 Temperature control

In order to realise temperature-dependent measurements, controlled heat is
applied to the MC plate. It is, in fact, more efficient not to regulate the re-
frigerator’s temperature but to let it float and regulate the temperature of the
sample holder or the plate thermally coupled to the MC. To achieve this, a
signal from the thermometer is applied from the resistance bridge and adjusted
from the temperature reading from the same thermometer. The difference is
amplified and fed back to the heater through a proportional-integral-derivative
(PID) controller. As the MC plate is heated rather than the sample directly,
there is a substantial lag between the temperature reading on the RuO2 ther-
mometer and the internal temperature in the sample. For this reason, it is
necessary to wait a few minutes after changing the temperature before being
able to measure the electronic response.
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Chapter 6
Ballistic Brown-Zak fermions

As introduced in section 2.2.3, the relevant length scale in the presence of a
large magnetic field is the magnetic length lB. Here I show the emergence of
a new family of quasiparticles, the Brown-Zak fermions whenever the mag-
netic length lB (or multiples of) is commensurate with multiples of the lattice
constant (λsl).

6.1 Magneto-Bloch states

6.1.1 Azbel’s formulation

In crystalline solids, the translational invariance of the hamiltonian resulting
from the periodic lattice potential allows charge carriers to propagate freely
through the crystal lattice. This behaviour is described by Bloch’s theorem:
electronic states are delocalised over the crystal lattice. As a result, the spec-
trum is altered compared to a free electron system, as gaps appear on the
edge of the Brillouin zone. In a magnetic field, the spectrum is modified into
Landau levels. Cyclotron motion localises the charge carriers in closed orbits
and the Bloch picture breaks down. A well-known consequence in metals and
2DEGs exposed to magnetic fields is a drop in conductivity.

However, one may explore the regime where the magnetic field B becomes
strong enough so that the magnetic length is commensurable with the lattice
periodicity. The relevant quantities here are the area of the lattice A and the
flux penetrating that lattice unit cell, ϕ = AB. If p flux quanta are piercing q

unit cells, one may write:

Results presented in this chapter have been published in:
J. Barrier, P. Kumaravadivel, R. Krishna-Kumar, L.A. Ponomarenko, N. Xin, M. Hol-
will, C. Mullan, M. Kim, R.V. Gorbachev, M.D. Thompson, J.R. Prance, T. Taniguchi,
K. watanabe, I.V. Grigorieva, K.S. Novoselov, A. Mishchenko, V.I. Fal’ko, A.I. Berdyu-
gin and A.K. Geim, “Long-range ballistic transport of Brown-Zak fermions in Graphene
superlattices”, Nat. Commun. 11, 5756 (2020)
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A
l2B

=
ϕ

ϕ0
=

p

q
, (6.1)

with p, q ∈ Z. By writing the Schrödinger equation for such a problem of
Bloch electrons exposed to quantising magnetic fields (see [227]) Azbel demon-
strated that the solutions have q eigenvalues and that for ϕ = p/qϕ0, there
is an associated family of quasiparticles. In this thesis, they are referred to
as Brown-Zak fermions. In practice, these quasiparticles recover a delocalised
wave function, thereby forming new magnetic Bloch states, propagating along
open trajectories, as if the magnetic field was absent. This is a consequence of
the Aharonov-Bohm effect: an electron passing across q unit cells would acquire
a phase shift that is a multiple of 2π, thus restoring the translational periodic-
ity in high B. In general, the spectrum is dominated by localised states caused
by Landau quantisation (see chapter 7) but at exactly rational values of the
magnetic flux, the spectrum becomes continuous as a result of the emergence
of magnetic Bloch states [194,227–238].

6.1.2 Magnetic translation group

Let us consider the evolution of electron motion and energy dispersion upon
increasing the magnetic field. At zero magnetic field, the electron wavefunction
in a periodic lattice is delocalised in the whole crystal. It corresponds to Bloch
states propagating freely throughout the lattice in straight trajectories. In
finite B, electrons are subject to a Lorentz force thus move in a cyclotron
motion. Their localisation is centred on the cyclotron orbit. In graphene, the
cyclotron radius corresponding to this motion rc writes:

rc =
ℏkf
eB

, (6.2)

where kf =
√
nπ is the Fermi wavevector, n is the charge carrier density. As

B increases, rc becomes smaller and smaller until Landau quantisation dra-
matically changes the energy dispersion. This formalism is valid only when rc

is much larger than the lattice spacing a, which results in highly degenerate
energy levels with respect to their orbits’ centre. In contrast, if rc becomes
so small that it becomes comparable to the distance between atoms in the
lattice, the physics is dramatically different: the cyclotron motion has differ-
ent energies depending on the position in the unit cell. This effect lifts the
orbital degeneracy, with a dispersion resembling broadened LLs as in a con-
tinuous band, a phenomenon known as Harper broadening [239]. However, for
specific magnetic fields, the cyclotron radius becomes commensurate with the
lattice spacing, and translational symmetry of the Hamiltonian is restored.
Consequently, the electron wave function in a magnetic field takes the form
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of delocalised Bloch states: electrons start propagating in straight trajecto-
ries as if the magnetic field were absent, a theoretical result derived by Zak
in 1964 [229]. Such a recovery of the translational symmetry of the electron
wave functions occurs for many special magnetic field values, corresponding to
ϕ/ϕ0 = p/q where ϕ is the magnetic flux, ϕ0 the magnetic flux quantum and p

and q are integer. This condition can correspond to the flux of a number p of
flux quanta piercing a newly defined supercell that is q times larger than the
lattice should be equal to the magnetic flux quantum.

6.1.3 Quantum oscillations

For usual graphene lattices, the nm-sized lattice constant would result in these
magnetic Bloch states for magnetic fields in the order of 10 000T. This is too
large to be experimentally accessible and has for a long time reserved Brown-
Zak fermions for theoretical studies. Nonetheless, the possibility to stack two
different van der Waals crystals together has opened a new direction, enabling
the creation of large-scale superlattices. For example, stacking graphene on top
of hexagonal boron nitride with aligned crystallographic axes creates a moiré
pattern giving rise to a periodic potential affecting the electronic spectrum
of graphene. The superlattice thereby created has a relatively large lattice
constant of ∼14 nm, allowing one flux quantum to penetrate through the su-
perlattice unit cell for magnetic fields of only 30T, experimentally accessible.

The superlattice spectrum is modified with the magnetic field and this be-
comes even stronger away from the main Dirac point. This results in conduc-
tivity maxima for magnetic fields B = Bp/q corresponding to ϕ = ϕ0p/q as the
translational symmetry is restored. At low temperatures, these conductivity
maxima are hidden in the rich spectrum of the Hofstadter butterfly, and be-
come prominent at high temperatures, developing in a new set of 1/B-periodic
oscillations [194,238] (see fig. 6.1).

Fig. 6.1 Brown-Zak
oscillations as recur-
ring Bloch states at
100K for electron and
hole doping on a graphene
superlattice. Inset: BZ
minibands, shown as E(k)

inside the first Brillouin
zone (indicated by the
grey hexagons; their sizes
decreases with increasing
q). Data extracted from
ref [194].
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The quasiparticles residing in these rational fractions of the flux quantum
are the Brown-Zak fermions (BZF), characterised by their own miniband spec-
tra [194,234–236,238], different from the zero-B Dirac spectrum of graphene-
on-hBN superlattices (see inset of figure 6.1 for the most prominent unit frac-
tions). According to the group-theory analysis, these spectra can be reduced to
the case of a zero effective magnetic field (Beff = B −Bp/q = 0) by introduc-
ing new Bloch states and associated magnetic minibands, that are different for
each p/q fraction. This concept was put forward by Brown and Zak [228,229]
who introduced the concept of magnetic translation group, predating the work
of Hofstadter [231]. Each realisation of BZF has an additional q-fold degener-
acy [10, 227–237]. This is equivalent to saying that each BZ fermion contains
q equivalent mini-valleys. This degeneracy is additional to the 4-fold spin and
valley degeneracy of graphene’s original Dirac spectrum. These spectral prop-
erties will be experimentally proven in chapter 7. In the next sections, we
demonstrate that BZFs are Bloch quasiparticles — like electrons in solids or
Dirac fermions, and at B = Bp/q , they propagate through the superlattice as
if the applied magnetic field is zero.

6.2 Experimental measurements of Graphene
superlattices

Here I report the observation of BZFs with different p and q on high-quality
graphene superlattices, fabricated using the dry transfer method (see appendix
A), where the graphene layer is carefully aligned with one of the encapsulating
hBN sheets, using one of the crystallographic edges [107]. For clarity of the
measurement, a second encapsulating hBN crystal is intentionally misaligned
to dodge competing moiré patterns [240–242]. The stack made therein was
placed on an oxidised Si wafer, allowing us to apply back-gate voltage Vg to
control the carrier density n (see chap 4). Multiple devices were studied but
only two are shown in this chapter to highlight characteristic effects.

6.2.1 Zero-field behaviour

The first step in the characterisation of our devices consists in measuring the
longitudinal resistivity ρxx at zero B, as well as the Hall resistivity ρxy in small
magnetic fields (non quantising, i.e. below 0.1T at Tmc =10mK, allowing us
to extract the n(Vg) dependence for all voltages except close to the neutral-
ity points and van Hove singularities, corresponding to densities where ρxy

reverses its sign and can no longer be described by the standard dependence
ρxy = B/ne. An example of the zero-field longitudinal resistivity is shown
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Fig. 6.2 Characterisation
of device D1 with width
W =17µm. Longitudinal
resitivity Rxx(Vg) for
the characteristic device
shown in inset (optical
micrograph) -60 -40 -20 0 20 40 60
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ρ x

x  
 (Ω

)

10-1

100

101

102

5μm

in figure 6.2. Three peaks in ρxx can be observed at 0V, 45V and −45V.
The high-voltage peaks provide an unambiguous indication of the superlat-
tice reconstruction of graphene’s spectrum [105,106,238]; they are referred as
secondary Dirac points. Note that the Dirac point for positive Vg (electron
doping) is blunter than for negative Vg (hole doping), in agreement with the-
oretical work demonstrating that the effect of hBN alignment on the band
structure is stronger in the valence band [105–110].

All studied devices exhibit mobilities µ = (ρxxne)
−1 in the order of 1 ×

106 cm2 V−1 s−1 (fig. 6.3a), reduced from ideality, by edge scattering due to
finite W between 2µm to 17µm. However, the high quality of the devices
can be corroborated using transverse magnetic measurements at low B (see
figure 6.3b). In these conditions, the observation of resistance oscillations —
due to transverse magnetic focusing — confirms that the Dirac fermions travel
ballistically across the devices, along skipping orbits that extend over several
hundreds of superlattice unit cells [243, 244]. This measurement also provides
information about the Fermi surface topography for clean metals (including
graphene superlattices) and agrees with the measurements previously reported
[243].

Another quantity of interest is the mean free path ℓ. For Dirac fermions, the
mean free path is calculated using the standard formula of the Drude model:

σxx = g
e2

h

(
kFℓ

2

)
, (6.3)

where the Fermi wave vector kF = (4π/g)1/2 takes into account the degen-
eracy g of the Dirac fermions, that is 4 to account for the two-fold spin and
valley degeneracies. As a result, one may write the mean free path as:

ℓ =
2

ρxx

ℏ
e2

√
π

4n
. (6.4)

The mean free path for the same characteristic device is shown in figure 6.3.
The mean free path at B = 0 reaches distances >20µm, which implies ballistic
transport, limited by the device width W rather than impurity scattering.
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Fig. 6.3: Characterisation of device D1 a) mobility from the Drude formula. b)
Transverse magnetic focusing measured using contacts separated by 1.5µm (closest con-
tacts of D1). c) mean free path calculated with equation 6.4. Semitransparent vertical
strips in (a) and (c) indicate the doping regions around NPs and vHS where n could not
be extracted directly from Hall measurements with charge inhomogeneity playing a role.
measured at B = 0 (a,c) and Tmc =10mK.

6.2.2 Direct observation Brown-Zak fermions

Figure 6.4 shows a map of the longitudinal conductivity σxx = ρxx/(ρ
2
xx+ρ2xy)

as a function of Vg and B in fields up to 18T. The dark features on this map can
be understood in terms of the Hofstadter spectrum for Dirac fermions in moiré
superlattices [107–113,231] and are the focus of chapter 7. Here, the feature of
interest is the appearance of high mobility Brown-Zak fermions (BZF) in high
(quantising) magnetic fields.

We focus here on the high conductivity features. There are numerous Lan-
dau levels (LLs) spreading from the main and secondary NPs (miniband edges)
which are located at Vg near 0 and ±45V, and other pronounced funneling
features near the vHS for Vg ≈ −60V, −35V, 40V and 55V in both hole
(−) and electron (+) parts of the spectrum. More important, one may see
on the conductivity map (fig 6.4) bright, horizontal yellow streaks, occurring
at ϕ/ϕ0 = p/q where p, q ∈ Z. At high temperatures (e.g. above 100K), Lan-
dau quantisation is strongly suppressed and these high conductivity horizontal
bands become the dominant transport feature [194,238], broadening along the
B axis as the temperature is increased. These were previously named Brown-
Zak oscillations, and can be understood as the giant giant magnetoresistance
of Brown-Zak fermions in a small effective field Beff . The conductivity maxima
correspond to zeros in ρxy, reflecting the recovery of translational symmetry
(p flux quanta penetrate through q superlattice unit cells) and the emergence
of Bloch states experiencing zero Beff . Along with each horizontal streak, a
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Fig. 6.4: longitudinal conductivity σxx(Vg, B) of device D1 measured by sweeping
Vg and varying B in small steps of 40mT. Tmc =10mK and 250mK below and above
14T, respectively. Indigo-to-yellow colours: log scale truncated between 38nS and 16mS

for B <14T and between 4 nS and 0.4mS above 14T. White rectangles are shown in
finer details in chapter 7.

notable feature is the presence of numerous NPs and vHS, reflecting differ-
ent realisations of BZFs at each Bp/q . Additionally, one can find a repetitive
triangular pattern (seen most clearly between 2T to 12T at positive Vg in
figure 6.4). These triangles are made of horizontal streaks at zero Beff and
vertical streaks emerging from NPs for BZF and slanted streaks originating
from vHS. It is understood that the slanted streak corresponds to second-order
realisations of BZFs in a reduced Moiré unit cell.

6.3 Ballistic transport of BZF

6.3.1 Mobility and mean free path

To evaluate the mobility of Brown-Zak fermions, I used the standard formula
µ = σxx/nBZFe where nBZF is the carrier density of BZFs and σxx = 1/ρxx.
This latter expression does not contain ρxy because the effective magnetic field
Beff acting on BZF is zero for ϕ = ϕ0p/q. The difficulty resides in evaluating
nBZF for a given Vg. To do so, I first used Hall measurements at small fields
B ≤0.1T to determine the geometrical capacitance and then use the longi-
tudinal conductivity map around the p/q fraction of interest to identify the
position of the neutrality points as Vg at which Landau mini-fans converge.
vHS can be identified from Hall effect measurements as Vg corresponding to a
change of sign in ρxy without exhibiting mini-fans (see chap. 7). As nBZF varies
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linearly across NPs and exhibits jumps at the vHSs, the known geometrical
capacitance allows one to reconstruct nBZF(Vg) as shown in figure 6.5.
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Fig. 6.5: Evaluating density of BZFs on device D1. a) Dependence of nBZF on
gate voltage at ϕ/ϕ0 = 1/2 for the same device. b) measured maps for the Hall resis-
tivity around ϕ/ϕ0 = 1/2. colour scheme: blue and red represent negative and positive
ρxy, respectively. Regions around NPs are indicated by the grey semi-transparent strips.
The yellow strips mark vHS. The central green area covers the region dominated by the
quantum Hall effect of Dirac fermions from the main graphene spectrum.

From this, the mean free path ℓ can be calculated using the formula of
equation 6.4, replacing g by the BZF degeneracy and n by nBZF:

ℓ =
2

ρxx

ℏ
e2

√
π

gnBZF
. (6.5)

Here BZF have an additional mini-valley degeneracy [10,227–237], equal to
q (thas is, g = 4 × 2 = 8 for the case of ϕ/ϕ0 = 1/2), a result that will be
proven experimentally in chapter 7. Using g = 4q one can extract µ and ℓ

from the measured longitudinal resistivity, as shown in figure 6.6, for different
occurrences of BZF (ϕ/ϕ0 = 1/2, 1/3 and 1/4). Here it is clear that away from
the NPs and vHS, BZF exhibit µ reaching a few 106 cm2 V−1 s−1, comparable
to µ of Dirac fermions in zero B. Additionally, the mean free path of BZF ex-
ceeds 10µm, marginally smaller than ℓ of Dirac fermions, possibly a result of
inhomogeneities within the device, combined with the difficulty of experimen-
tally controlling the magnetic field precisely so that B = Bp/q . Surprisingly,
mobilities for BZF with the larger q remain on the order of 106 cm2 V−1 s−1

and their mean free path approaches values comparable to the device width
W =17 µm, suggesting ballistic transport with a notable contribution from
edge scattering.
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Fig. 6.6 Ballistic
transport of BZFs on
device D1: Mobility
(a, c, e) and mean free
path (b, d, f) of BZF
for unit fractions of the
flux quantum at 10mK,
for ϕ/ϕ0 = 1/2 (a,b),
ϕ/ϕ0 = 1/3 (c,d) and
ϕ/ϕ0 = 1/4 (e, f). For 1/3
and 1/4 we show the data
for positive voltages only
because the vHS could
accurately be identified
only for electron doping.
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6.3.2 Negative bend resistance

The ballisticity of BZF can be confirmed using the bend resistance geometry
[6, 91] (see paragraph 2.2.2.1). Here we adapted the geometry to be used on
Hall bar devices (see fig 6.7a). This allows one to detect if charge carriers can
move ballistically over the entire channel width W with straight trajectories
connecting current and voltage contacts. In these conditions, ballistic transport
gives rise to the negative sign of the bend resistance Rb, in contrast to the
conventional positive sign for a diffusive (ohmic) transport.
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Fig. 6.7: Ballistic transport over micrometre distances. a) Schematic of bend
resistance measurements. Current I is applied between contacts 3 and 4, and voltage Vb

is measured between 2 and 1, yielding the bend resistance Rb = Vb/I. The voltage is
positive for diffusive transport but becomes negative if charge carriers move directly from
current injecting contact 3 into voltage probe 1 (as shown by the red arrow). b) bend
resistance for Dirac fermions in zero B, measured on device D2 with W = 4µm. Inset:
Rb(B) taken at the minimum indicated by the arrow in the main plot.

Figure 6.7b shows measurements of device D2 (W =4 µm) in the bend resis-
tance geometry. As expected from the long ℓ of Dirac fermions, Rb is negative
in zero B everywhere away from NPs and vHS. Additionally, finite magnetic
fields B bend the Dirac fermions trajectories, resulting in a rapid reversal of
the sign of Rb with increasing B (see inset of fig. 6.7b). This measurement can
be understood as follows (see section 2.2.2.1 for more details). For simplicity
let us consider positive charge carriers (hole doping regime). In the case of
ballistic transport, holes injected from contact 3 (see fig. 6.7a) travel along
distances exceeding W hence can reach contact 1 without scattering. As a re-
sult, an extra positive charge would be accumulated near contact 1, and the
voltage difference V21 = V2 − V1 will be negative. However, if the transport
is diffusive, holes from contact 3 would travel along the lines of the electric
field, and accumulate at contact 4 thus the sign of V21 should be conventional
(positive). This consideration is also valid for electrons and therefore, negative
Rb means that ballistic transport is occurring over distances larger than W .

6.3.3 Negative bend resistance of BZF

Concerning ballistic transport of BZF, the devices also exhibit negative Rb in
high B = Bp/q , an evidence of straight trajectories over distances of several
µm. Figure 6.8 shows the measured bend resistance Rb as a function of gate
voltage and magnetic field. Negative Rb is observed in profound pockets around
B corresponding to ϕ/ϕ0 =1/2, 1/3, 1/4 and 1/5. This is the regime where the
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existence of BZF experiencing Beff = 0 was previously demonstrated [194] from
maxima in σxx and zeros in ρxy. Interestingly, negative pockets can only be
observed for unit fractions 1/q of ϕ0 with q from 2 to 5. Despite the relatively
small size W of the device, no evidence for ballistic transport could be observed
in this geometry for high-order BZF (p > 1).
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Fig. 6.8: Ballistic transport of BZF map Rb(Vg, B) for device D2. B was changed
in steps of 50mT. Pockets of negative Rb appear along ϕ/ϕ0 = 1/q and are seen in
magenta. The resistance quickly increases and changes sign for small Beff = B −Bp/q .

At fields B = Bp/q , BZFs move through the superlattice as if there was no
external magnetic field. As a result, the negative bend resistance is observed.
This possibility of ballistic transport was suggested using numerical simula-
tions [111], and the profound negative Rb observed here proves this conjecture
unequivocally. These pockets are located between NPs and vHS for BZF, sim-
ilar to Dirac fermions. Away from these exact Bp/q values, BZF experience
non-zero Beff = B − Bp/q , which bends their trajectories, therefore replicate
the usual magneto-transport effects of charge carriers in conventional 2D elec-
tron systems. As a result, the negative bend resistance vanishes quickly upon
increasing the field. This feature is similar to the case of other Bloch quasi-
particles (electrons, Dirac fermions, etc.).

Let me now comment on the observation of negative Rb only for unit frac-
tions of the flux. As an example, a negative Rb pocket can be seen in figure
6.8 at the flux fraction ϕ/ϕ0 = 1/5, but the signal is positive for 2/5 and 3/5.
This can be attributed to the effective mass of BZFs that depends strongly on
p/q (electronic spectra differ in different magnetic minibands [105, 194, 238]).
Particularly, a consequence is that the mobility µ is much lower for BZF with
p > 1, which could directly result in the absence of ballistic transfer for these
fractions.

Note that the negative signals shown here are robust and characteristic of
the geometry. We measured a corresponding map of ρxx (see chapter 7, fig. 7.6)
in the same device, showing that the longitudinal resistance always remains
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positive. Additionally, for some devices, negative resistance can be observed
away from ϕ/ϕ0 = 1/q. Unlike ballistic transfer resistance at unit flux fractions,
these negative signals are not reproducible for all contact configurations and
are usual in the quantum Hall effect regime using narrow (mesoscopic) devices
[245].

Finally, the ballistic transport of BZF is found to be slightly sensitive to
the temperature T : the pockets of negative Rb disappear universally above
30K to 50K, as shown in figure 6.9. This dependence is generally expected
because the mean free path ℓ of BZF becomes shorter at higher T . Nonetheless,
exact scattering mechanisms are unknown and could be non-trivial such as, for
example, Umklapp electron-electron scattering [246, 247]. Overall, this could
require further investigation well beyond the scope of this work.

Fig. 6.9 Temperature
dependence of BZF’s
ballistic transport ex-
ample of the bend re-
sistance measured at
ϕ/ϕ0 = 1/2 using device
D3 with W =2µm
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Conclusion

Graphene superlattices allow studying electronic transport under strong mag-
netic fields, in a regime where the magnetic length is commensurable with the
lattice constant. Here I have shown that under such conditions, transport is
dominated by a family of Bloch quasiparticles, the Brown-Zak fermions (BZF)
with high mobility and mean free path. Studying further the electronic trans-
port for this family of quasiparticles, I demonstrated that they have ballistic
trajectories up to several microns for unit fractions of the magnetic flux in a
wide range of temperatures.



Chapter 7
Landau quantisation of Brown-Zak
fermions

Whenever the magnetic flux ϕ through the superlattice unit cell is commensu-
rate with the magnetic flux quantum ϕ0, charge carriers (Brown-Zak fermions)
behave as if the applied magnetic field was absent. Their quantisation, de-
scribed by the Hofstadter butterfly, depicts quantum states developed from in-
termixing of the field-induced spectrum (Landau levels) with the superlattice-
related gaps (Bloch bands). This study necessitates low temperatures to pre-
vent smearing of the most fragile gaps. In this chapter, we discuss the general
picture of non-interacting electrons in graphene superlattices, corresponding
to the Hofstadter butterfly. Particularly, we characterise Brown-Zak fermions
(BZF) through their mini-valley degeneracy, extracted from Landau fans in
non-zero Beff .

7.1 The Hofstadter-Wannier picture

7.1.1 Spectrum of Bloch electrons in a magnetic field

If one refers to the problem first enunciated by Azbel [227] (see equation 6.1),
it is possible to calculate the eigenvalues — the spectrum — numerically. This
was first done and plotted by Hofstadter [231] on a square lattice as a function
of the reduced flux α = ϕ/ϕ0 and the energy ε, showing the fractal structure
of the Hofstadter butterfly (see fig 7.1).

In this spectrum, it appears that energy bands cluster into groups of bands,
that in turn cluster into larger groups, forming the recursive structure of the
butterfly. The element of interest here is the white regions between the eigen-

Results presented in this chapter have been published in:
J. Barrier, P. Kumaravadivel, R. Krishna-Kumar, L.A. Ponomarenko, N. Xin, M. Hol-
will, C. Mullan, M. Kim, R.V. Gorbachev, M.D. Thompson, J.R. Prance, T. Taniguchi,
K. watanabe, I.V. Grigorieva, K.S. Novoselov, A. Mishchenko, V.I. Fal’ko, A.I. Berdyu-
gin and A.K. Geim, “Long-range ballistic transport of Brown-Zak fermions in Graphene
superlattices”, Nat. Commun. 11, 5756 (2020)
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Fig. 7.1 Hofstadter
butterfly on a square
lattice black dots show
the eigenvalues. Colour
lines show the gaps be-
tween main bands, cf fig
7.2. Hatched zone is an
example of a cell in the
Hofstadter model.
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values (black dots), corresponding to gaps. The main energy bands are the
Landau levels. For low flux ratios α, the Landau levels are seen as sharp en-
ergy bands, and as α is increased, these bands acquire an internal structure
of subbands, each located inside a cell (see fig 7.1). A few other interesting
information can be extracted from this diagram: a) whenever α = p/q (the
regime of Brown-Zak fermions highlighted earlier), the Bloch band breaks into
p distinct subbands per cell (and q bands for all energies). b) spectrum(α)
= spectrum(α+N). c) spectrum(α) = spectrum(−α) and d) the spectrum is
symmetric in energy. Additionally, filling a band corresponds to increasing the
hall conductivity σxy by 1. As a result, the Hofstadter butterfly can be seen
as a phase diagram for non-interacting electrons [248].

Fig. 7.2 Wannier di-
agram on a square
lattice, constructed based
on the Hofstadter butter-
fly. lines correspond to
the same colour as in fig
7.1, corresponding to gaps
(LLs). grey ellipses cor-
respond to fraction p/q,
a region where BZFs are
found.
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However, the interpretation of measurements in light of the Hofstadter but-
terfly can be complicated at a first sight. To overcome this issue, a transforma-
tion to plot the non-interacting electron model of the Hofstadter butterfly as
a function of measurable quantities was introduced [230]. Indeed, the problem
is simplified when plotting the gaps as a function of the normalised electron
density n/n0 in a magnetic field (or, more exactly the flux ratio α), which is
the Wannier diagram. The zig-zag gaps of the Hofstadter butterfly, carrying
a charge t per unit cell, are constrained to linear trajectories in the Wannier
diagram. Figure 7.2 shows the Wannier diagram of a square lattice for the first
4 Landau levels and sublevels. Here, the red line (navy) corresponds, as in the
Hofstadter butterfly, to 1 electron (hole) per unit cell. The brown (green),
orange (blue) and yellow (teal) correspond to 2, 3, and 4 electrons (holes) per
unit cell, respectively.

All the spectral gaps follow linear trajectories in the Wanier diagram, and
are described by the dimensionless diophantine equation:

n

n0
= t

ϕ

ϕ0
+ s, (7.1)

where s, t ∈ Z. When s = 0, one describes Landau quantisation: t corre-
sponds to the filling factor and is related to the Hall conductance. Parameter
s corresponds to the Bloch band filling factor resulting from the crystal pe-
riodicity; it can be seen as the total number of electrons a band can accept.
Other states can be seen, shown as purple and pink lines in figures 7.1 and 7.2.
These states emerge from cell edges and correspond to s > 1. In our measure-
ments, they are seen as self-similar Landau levels originating from the Landau
quantisation of Brown-Zak fermions (BZF).

7.1.2 Wannier diagram in graphene superlattices

The case of graphene is different from a square lattice. First, the lattice is
hexagonal with two inequivalent sites. Second, each of these sites corresponds
to K points where two bands (conduction and valence band) join together,
forming the general Dirac cones. As a result, the construction of the Wannier
diagram for the hexagonal lattice must take into account these two features. In
such a context, the Hofstadter butterfly is more complicated to calculate and
not necessary for understanding. Note though, that it is no longer periodic in
B, nor is it symmetric relative to n/n0.

In that case, the linear dispersion of massless Dirac fermions results in Lan-
dau levels (LLs) for energies Et(B) = sign(t)vF

√
2ℏ|teB|, with a peculiarity

that is the existence of a zero-energy LL [53,54] (see chap. 3). As a result, the
diophantine equation for LL gaps of graphene (eq. 7.1) is modified by taking
into account a half-integer slope t+1/2 corresponding to the Berry phase [249]:
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Fig. 7.3 Wannier di-
agram for graphene
where the VB and CB
touch at the Fermi level.
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(7.2)

Where, for the case of Dirac fermions, g = 4 and the quantum Hall conduc-
tance can be expressed as σxy = g(t + 1/2)e2/h. For graphene superlattices
with a superlattice constant λsl ≈14 nm, the regime of the Hofstadter-Wannier
model is accessible through transport measurements in varying carrier densi-
ties and magnetic fields. In the Quantum Hall effect regime, spectral gaps
appear as minima in the longitudinal conductance σxx and plateaus in the
transverse Hall conductance σxy quantised in units of e2/h. As a result, each
miniband can be viewed as LLs of BZF minibands in effective magnetic fields
Beff = B − ϕ0p/qS. These features are unique and unambiguous signatures of
the Hofstadter energy spectrum, distinct from the conventional integer quan-
tum Hall effect.

The first features observable in graphene superlattices are a set of con-
ductance minima fanning out from the second-generation Dirac fermions (see
figure 6.4 around ±45V). Counterintuitively, these are not LLs emerging from
second-generation Dirac fermions but represent Hofstadter minibands [110]. At
even higher magnetic fields, other sets of minima can be observed that cannot
be traced back to either the main or secondary NPs [110–113]. I will show
in this chapter that these states originate from the degeneracy lifting of BZF
minibands. As a result, the complex pattern of figure 6.4 cannot be inter-
preted only in terms of Landau quantisation of the Dirac spectrum, or purely
to the Hofstadter-Wannier model, but is specific to BZF in small magnetic
fields Beff = B −Bp/q .
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7.2 Degeneracy of Brown-Zak fermions

7.2.1 The Wannier-diagram as BZF Landau mini-fans

Chapter 6 introduced high mobility BZFs in graphene superlattices. The high
mobility results in Landau quantisation in small Beff = B −Bp/q < 1T. This
Landau quantisation allows to experimentally find the spectral degeneracy g

for different occurences of BZF at various p/q. To do so, figure 7.4 shows a
high-resolution σxx map between ϕ/ϕ0 = 1/2 and 1/4.
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Fig. 7.4: Landau quantisation of BZF. High resolution map σxx(Vg, B) on device D1
for the electron-doped region indicated in figure 6.4 by the white rectangle. B is varied in
steps of 10mT to 20mT around q = 3 and 40mT to 80mT in other regions (resulting
in contrast discontinuities. Logarithmic colour scale: indigo (230nS) to yellow (7.8mS).

One can see many Landau mini-fans originating from NPs, for different
realisations of BZFs. As an example, we note that there are three profound
mini-fans spreading from B ≈ 9.7T (ϕ/ϕ0 = 1/3) for both Beff > 0 and < 0.
For clarity in the analysis, this conductivity map is replotted in figure 7.5 by
tracing the most pronounced minima in σxx. There, each minimum can be
described by an integer filling factor ν, corresponding to gt where g is the
degeneracy and t the integer of the Diophantine equation. As a result, ν can
be found from the minimum’s slope.

In the Wannier diagram of figure 7.5, it is possible to identify LLs originating
from the Dirac spectrum of the graphene superlattice, shown as black lines for
filling indices 6, 10, 14, and 18. Second, we note that the 4-fold degeneracy of
the Dirac fermion is broken, likely from many-body gaps as a result of quantum
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Fig. 7.5: Landau quantisation in BZF minibands: minima from 7.4 shown schemat-
ically. Colour-coded numbers are filling factors for corresponding Landau levels. Thick
black lines correspond to the main sequence of LLs for graphene’s Dirac spectrum (spin
and valley degeneracy lifted). Green, red, navy, blue, orange, magenta, pink and yel-
low lines correspond to q =2,3,4,5,7,8,9 and 11, resp. Dashed red lines: minima due to
mini-valley degeneracy.

Hall ferromagnetism (black lines, filling indices 4,5, 7, 8 , 9). Importantly, we
focus on the LLs for BZF realisation at q =2, 3, 4, 5, 7, 8, 9 and 11, and for
p =1, 2, 3, 4 and 5, shown as coloured fans. The difference in ν between the
nearest LLs yields directly their degeneracy g. For example, all LLs observed
for ϕ/ϕ0 = 1/2 were separated by ∆ν = 2 whereas those at ϕ/ϕ0 = 1/3 and
1/4 by ∆ν = 3 and 4, respectively. As a result, the observed degeneracy of
BZF at p/q is equal to q. A more detailed observation of figure 7.5 allows us
to find that the degeneracy for the fraction p/q is equal to q independently of
the numerator p. This q-fold degeneracy corresponds to the case where both
spin and valley degeneracies are broken, as shown from the LL from the main
Dirac spectrum corresponding to consecutive integer ν. When the spin and
valley degeneracies are not broken — that is, at higher temperature — the
degeneracy of BZF is indeed 4q. In figure 7.6 we show the fan at 2K, much
higher than 10mK in fig 7.5. At that temperature, the Dirac fermions of the
main spectrum show a lifted spin and valley degeneracies at relatively strong B

of 3T. At lower fields B <3T the interaction-induced gaps are smeared. This
is similar for BZFs visible at 2K. They only reach effective fields |Beff | <2T,
which does not allow the lifting of spin and valley degeneracies. As a result,
the observed degeneracy of BZF is 4q at 2K. This can be explained using
the group theory of irreducible representations. A group corresponding to a
p/q fraction of the magnetic flux is non-abelian, because of Aharonov-Bohm
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Fig. 7.6: Longitudinal resistance for ballistic BZF at a higher temperature. a)
Rxx(Vg, B) measured for device D2, with same colour scale as in figure 6.8. b) minima
found in the longitudinal conductivity are shown schematically with the same colour
coding as in figure 7.5. Thin black lines mark LLs with lifted spin and valley degeneracy
for Dirac fermions of the main spectrum.

phases acquired upon translations in non-colinear directions. However, this
group contains an abelian subgroup of translational symmetries, corresponding
to a magnetic superlattice with a supercell that is q times larger. As a result,
each realisation of BZF should have a q-fold degeneracy, taking the form of q
mini-valleys in the magnetic mini-Brillouin zone, with an area that is q times
smaller than the moiré superlattice Brillouin zone at B = 0. This comes on top
of the spin and valley degeneracy of graphene’s Dirac spectrum. As a result,
the full degeneracy of BZF is 4q where 4 corresponds to 2 spins and 2 valleys.
Lifting these degeneracies at ultra-low temperatures (as in figs 7.4 and 7.5)
results in an observed q-fold degeneracy.

Additionally, the measured Hall conductance also exhibits quantised val-
ues in steps of qe2/h, a further proof of the q-fold degeneracy of Brown-Zak
fermions. As an example, figure 7.7 shows a zoom-in around ϕ/ϕ0 = 1/3,
showing steps ∆σxy = 3.

7.2.2 Lifting mini-valley degeneracy

Looking in detail at figures 7.4 and 7.7, one can distinguish a notable exception
to the single-particle Hofstadter-Wannier gap sequence with a q-fold degener-
acy. There are additional quantum Hall effect minima, shown with dashed
lines in figure 7.5. These LLs of BZF with q =3 are separated only by ∆ν =1
so that all consecutive LLs from 3 to 12 are visible on the fan diagram. In
theory, LLs with ∆ν = 1 do not exist within the single-particle Hofstadter-
Wannier model [112,113,230,231]. These fragile minima are attributed to BZ
states with lifted mini-valley degeneracy. The quantum Hall effect for σxy =

7, 8, 10 e2/h (see fig. 7.7 is further evidence of the observed degeneracy lifting.
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Fig. 7.7: Quantised Hall conductance of BZF on device D1. a) σxy around
ϕ/ϕ0 = 1/3. b) Hall conductivity as a function of gate voltage at a number of constant
B within the field interval around 11T (colour-coded in (a)).

One can see well-developed plateaus with quantised values, fully consistent
with the filling factors reported in 7.5. This lifting of all the degeneracies of
BZF at low T involves very small energy gaps, as further emphasised by the
rapid disappearance of these features with increasing T . Indeed these addi-
tional minima could not be resolved at 2K, and also disappeared rapidly with
increasing excitation current. For example, figure 7.8 shows the Landau mini-
fan around ϕ/ϕ0 = 1/3 for currents of 10 nA and 100 nA. In the lower current
measurements, the minima associated with the lifted mini-valley degeneracy
are lifted. At higher currents, one can observe the complete smearing of the
degeneracy-lifted gaps as a result of an increase in the electronic temperature.

Let me comment on the fact that this degeneracy lifting has been observed
previously and referred to as either the Fractional Bloch quantum Hall effect
(FBQHE) [112] or symmetry-broken Chern insulators (SBCI) [113]. Both these
denominations are confusing as they suggest that these states appear either
spontaneously or through many-body physics. In theory, the mechanisms un-
derlying the mini-valley degeneracy lifting is unclear and would require further
studies to be fully resolved. A few hypotheses can nonetheless be made based
on localisation of BZF states at ultra-low temperatures. The degeneracy lift-
ing can happen via mini-valley mixing, due to the formation of charge-density
waves that are commensurate with the magnetic superlattice (composed of q
unit cells of the underlying moiré pattern), or a Wigner crystal [250] (states
localised in a region of the magnetic supercell). Alternatively, this may occur
because of spontaneous mini-valley polarisation of the BZF LLs, a phenomenon
analogous to the isospin ferromagnetism in graphene [110]. In that case, BZF
states would localise in the momentum space around one of the mini-valleys
but would remain delocalised in the magnetic supercell.

According to the group theory of irreducible representations for the group
of translation in a magnetic field [228,229],
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Fig. 7.8: Landau mini-fans in device D1 for different excitation currents. a
and b) σxx(B, Vg) at Tmc = 10mK for Iac = 10nA and 100nA, resp. Indigo-to-yellow
log scale: 310nS to 780µS. c and d) minima found in (a) and (b) shown schematically.
Colour-coded numbers are the filling factors for the nearby LLs. Thick black lines = main
sequence of LLs for graphene’s Dirac spectrum.

7.3 Anomalous behaviours

On the electron side of the Vg−B map, most of the features follow the described
behaviour. However, some Landau mini-fans in the electron (Vg < 0) exhibit
highly anomalous behaviour at low T that cannot be understood within the
Hofstadter-Wannier model, or by considering LLs of non-interacting BZF. To
the best of my knowledge, this behaviour has not been reported before, and
understanding will be needed. Figure 7.9 shows an example of anomalous BZF
behaviour.

In both the considerations of the Hofstadter-Wannier model and LLs of
non-interacting BZF, LLs should evolve linearly in Vg and B, as detailed so
far. The linear dependence comes from the fact that the density of state on
each BZF LL is proportional to Beff = B − Bp/q . Note that our devices are
gated through the Si/SiO2 wafer substrate, and the relatively long (∼300 nm)
distance from the graphene to the gate allows us to neglect the quantum ca-
pacitance corrections [251,252], therefore n ∝ Vg. Figure 7.9 shows that some
BZF LLs exhibit bending and staircase-like features in the case of hole doping.
These two anomalous features appear away from the NPs, in the region closer
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Fig. 7.9: Anomalous behaviour of BZF’s LLs. a) High resolution σxx(Vg, B) for the
hole-doped region of device D1 marked in fig. 6.4. The measurements below B =12.5T

carried out at Tmc =10mK and at 250mK above. B applied in steps of 16mT to 40mT

beove and below 12.5T, resp (except for lower corner: data acquired at resolutions of
10mT, see contrast discontinuities). log scale indigo (310nS) to yellow (0.3mS). b)
Schematics for the conductance minima found in (a). Same colour coding as in fig 7.5.
Solid lines indicate LLs evolving as expected, linearly in B and Vg. Thin curves indicate
the anomalous bending. Dotted curves show the staircase-like features for some LLs. All
the anomalous features are highly reproducible and do not depend on the measurement
step size.

to the BZF’s vHS. It would be reasonable to expect that these effects come
as a result of strong electron-electron interactions, as they play a role in other
experimental observations (e.g. lifting the spectral degeneracies) for the BZF
occuring in the same fractions p/q. Note that the bending occurs towards the
gate-voltage axis therefore usual suspects like negative compressibility fail at
explaining our results. In that case, the LLs would bend towards the B axis. As
a result, these anomalous behaviours are possible as a result of the interplay
between BZF’s LL with other quantised states originating from the nearby
vHS leading to a redistribution of charge carriers between states with light
and heavy effective masses. Another explanation could be the localisation of
electrons within some parts of the magnetic supercell, as its size becomes no-
tably larger than the magnetic length lB at external fields B >10T. This would
be consistent with the Wigner crystallisation already mentioned [250]. Sadly
no other features could be found to decipher the origins of these anomalies.
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Conclusion

Here I have shown that in small Beff = B −Bp/q < 2T, Brown-Zak fermions
(BZF) develop their own Landau levels (LL), forming the general structure
of the Wannier diagram. In-depth analysis of the LLs sequence allowed to
resolve the spectral degeneracy of p/q occurrences of BZF as 4q, degeneracy
that can be fully lifted when electron-electron interactions are strong enough.
Surprisingly, the additional mini-valley degeneracy can also be lifted, resulting
in ∆ν = 1 for some instances of BZF. Additionally, we report two anomalous
behaviours (bending and staircase-like feature) that cannot be understood at
present.
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Chapter 8
Proximity effect in quantum Hall channels

When a normal metal N is placed between two superconducting electrodes
S, it becomes possible to induce a supercurrent into the normal metal via
Andreev bound states. It consists in transferring Cooper pairs between the
two opposite electrodes via simultaneous Andreev reflectinos: an electron of
the normal metal can be converted into a hole with opposite momentum and
transfer a Cooper pair into the superconductor [12,32–35]. In the presence of a
magnetic field, electron and hole trajectories bend, and the picture breaks down
as their momentum and position no longer coincide at the NS interface [36].
The detail of this mechanism is explained in sections 2.3.2.3 and 3.3.2.

In ballistic systems however, electrons’ and holes’ trajectories can occa-
sionally return to the same position after multiple bounces on mesoscopic
edges [36], yielding switching currents of ∼50 nA under magnetic fields as
high as 0.5T. This is below the quantum Hall (QH) regime, in which proxim-
ity superconductivity is expected to allow for the observation of exications
with non-trivial braiding statistics, like Majorana fermions or non-abelian
anyons [253–256] but so far remains to be observed. In the QH regime, elec-
trons and holes propagate in the same direction on the same side of the device,
which does not support Andreev bound states, unless one manages to cou-
ple oppositely propagating edge states. To do so, chiral Andreev edge states
(CAES) in the superconducting sheath [44, 169–173, 257–260] were exploited
can be exploited. Early searches for these CAES in semiconductor heterostruc-
tures focused on the suppression of zero-bias peaks [176,177] and on magneto-
conductance oscillations [178–181]. Graphene-based Josephson junctions with
increased contact transparency [36, 91, 160–163] have enabled observations of
similar phenomena corresponding to edge-mediated supercurrent [?,182], inter-
preted later as CAES [261]. In Hall bars with superconducting fingers, CAES
have been observed as crossed Andreev reflection in the LL ν = 2 [184] through
negative differential resistance; inter-Landau level Andreev reflection in the ze-
roth LL [185] or interferences of Chiral Andreev edge states [186, 187]. This
strategy requires two edges to carry a supercurrent, and results in switching

Results presented in this chapter will be submitted for publication
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Fig. 8.1 mtBG super-
lattice structure. a)
lattice structure of AB and
BA domains. b) Geome-
try in our device: wa is
the average lateral size of
the Bernal domains; wb is
the average width of the
domain walls.
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currents of a few nA at 1T [182]. In principle, narrow devices would allow
for increased coupling between opposite edges but at the expense of increased
backscattering. To overcome that Sisyphean task, I suggest in this chapter a
new geometry where edge states are carried along valley-polarised channels.
This is similar to topological insulators in which each edge supports electrons’
and holes’ trajectories in both directions therefore carries its own supercur-
rent [200,262–264], but in which superconductivity is destroyed by weak fields
of ∼10mT, an effect attributed to time-reversal symmetry breaking in the
edge channels, detroying their helicity [262].

8.1 Device geometry

8.1.1 Minimally twisted bilayer graphene

Twisted bilayer graphene is a rich platform, in which considerable change in the
electronic structure can be achieved through minute variations of the twist an-
gle between the two graphene layers by virtue of the delicate interplay between
strain-induced long-range superlattice effects and interlayer hybridisation (see
section 3.2.2.2. For mtBG with twist angles <0.4◦, internal strains tend to
maximise the extension of energetically-favourable Bernal stacking at the detri-
ment of AA-stacked regions. This atomic reconstruction forces the superlattice
in large (µm-wide) triangular domains with uniform, alternating Bernal stack-
ing, separated by sharp AB/BA domain walls and AA vertices [131–134] (see
section 3.2.2.1. Figure 8.1a shows the lattice of such domains. Their structure is
represented in figure 8.1b. The width of these domains can reach a few 100 nm,
depending on the twist angle. The domain boundary width is independent of
the twist angle and typically between 6 nm and 9 nm. As a result, these do-
main walls can behave as perfect 1D quantum wires. Electrostatic gating or
external magnetic fields can break the inversion symmetry in individual Bernal
domains. As a result, mtBG’s Berry curvature changes sign between Bernal
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Fig. 8.2 Josephson
junctions made with
mtBG a) in the proposed
Andreev reflection an elec-
tron in valley K of the
mini-Brillouin zone is re-
flected as a hole in valley
K′ and reciprocally. b)
geometry of the fabricated
device. c) Example of pho-
tocurrent measurement
enabling identification of
AB/BA domains and cor-
responding boundaries.
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domains, allowing counter-propagating valley-polarised 1D helical modes in
the domain walls [77, 78, 131–134, 136–139, 265–268]. Four gapless 1D modes
propagate on each side of the domain boundary, with opposite directions for
valleys K and K ′, forming a network of 1D metallic states protected topolog-
ically against backscattering. Transport in this network is characterised by a
Luttinger liquid behaviour [269] which is expected to widen interest in this
class of twisted systems. At high magnetic fields, electronic transport in the
DWs is expected to be slighly different, as the domain bulk can be gapped
by cyclotron motion, and the DW would act as individual device edges. Their
width of a few nA alows electrons’ and holes’ trajectories joining at a spot
smaller than the superconducting coherence length.

8.1.2 Josephson junctions and device characterisation

Here I present a Josephson junction where the mtBG domain walls are prox-
imitised. I make use of the valley-polarised helical network, a system in which
Andreev processes reflect an electron from valley K (K ′) into a hole in val-
ley K ′ (K respectively) [270] on the same channel (see figure 8.2a). For this
reason, the degeneracy of DWs under a magnetic field is 4.

Figure 8.2b shows a schematic of the devices used. In order to neutralise
competing edge states at the device-vacuum interface, we designed devices with
a semi-corbino geometry, instead of the conventional Josephson junction ge-
ometry. Our devices are formed of narrow constrictions along selected AB/BA
domain boundaries, preventing any coherence losses, while the edges of the
graphene flakes remain unetched to maximise the distance between contacts
and eventually suppress the supercurrent along the device edges [271]. Stacks
were fabricated using the standard dry transfer procedure (see appendix A).
Before designing the superconducting contacts, photocurrent measurements
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Fig. 8.3 Contact trans-
parency in junction
J2 with multiple do-
main walls. a) MAR seen
through dV/dI(Vdc). Ar-
rows indicate the multiple
andreev reflections corre-
sponding to 2∆/3, ∆ and
2∆ from left to right. b)
IcRn(Vg) ≪ ∆ despite
good transparency.
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were carried out to select domains of interest on hBN-encapsulated mtBG
heterostructures, following the method described in ref. [272]. An example of
such measurement is shown in fig. 8.2c. The superconducting electrodes are
made of sputtered NbTi allow, with upper critical field Hc2 = 9.9T and a
critical temperature of Tc =7K. The device length is chosen between 100 nm

and 200 nm for all the devices because the conductivity of 1D channels was
shown to deviate from the quantised value of 4e2/h for longer channels [77].
All our devices show a pronounced proximity effect with a non-zero critical
current Ic at the neutrality point, slowly increasing with |Vg|, with a gap 2∆ ≈
1.6meV, and an IcRn product of about 200µV, orders of magnitude below ∆.
It is usually possible to characterise the contact transparency by comparing
the IcRn product to the superconducting gap measured from MAR (see, e.g.,
chap. 4). Here, it would result in suboptimal contacts and MAR should not
be observable at low transparencies, therefore the low IcRn values must come
from a different mechanism. In the case of Josephson junctions made with
multiple, parallel conduction channels, Rn should be smaller. Indeed, we find
that the Sharvin formula of equation 4.24 should be rewritten as:

Rq =
1

g (M + 4N)

h

e2
(8.1)

Where g = 4 is the degeneracy, N is the number of Bernal domain walls
between the two contacts and M is the number of propagating modes defined
in equation 4.24. In brackets, the first term corresponds to the number of
electron modes inside the Bernal domains, and the second term corresponds
to the number of conducting modes in the channels (4, as found experimentally
in domain walls [77, 78]). Injecting equation 8.1 into 4.25 we find the contact
transparency. Figure 8.3 shows an example of MAR in a junction with 8 domain
walls as well as a comparison between IcRn and the superconducting gap on
the same junction, yielding a contact transparency of 90% despite low IcRn.
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Fig. 8.4 High temper-
ature transport: a)
R2p(Vg, B) in junction J3
with 2DWs, at Tmc =10K

with LLs as dashed lines
and b) Conductivity of the
ν = 0 LL as a function
of the magnetic field for
junctions J3, J4 and J5.
Number of DWs found
from SNOM is indicated.
Black dots: JJ with no DW
(J8).
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8.1.3 Number of channels

I studied 8 Josephson junctions where the helical channels of mtBG are prox-
imitised. After characterising the number of channels using photocurrent mea-
surements we measure the transport properties above the critical field of the
superconductor. Figure 8.4a shows a fan diagram measured for junction D5
at Tmc =10K> Tc. The Landau levels appear as resistance maxima [273] for
filling factors ν ≡ nh/eB = ±4, 8, and 12, consistent with the four-fold valley
degeneracy of bilayer graphene with a Berry phase 2π. The resistance maxima
in the normal state have a relatively low resistance of ∼ 100Ω, orders of mag-
nitude below the resistance quantum RK = h/e2 ≈ 25.8 kΩ. It corresponds
to the normal transport through the device edges combined with several 1D
channels formed by AB/BA domain walls. These have a 4-fold degeneracy to
account for spins and valleys propagating on each side of the boundary in
opposite direction [77, 78, 131–134, 136–139, 265–268] but with a propagation
direction fixed by the QH effect. As a consequence, the conductance in the
normal state corresponds to:

σLL = ν(4N + gLL)
e2

h
(8.2)

Where ν is the Filling factor of the considered LL, N is the number of
domain boundaries in the junction and gLL the degeneracy of the Landau
level of interest. From this equation, it is possible to extract the number of
domain walls, representing 1D channels, in each of our devices. This confirms
the photocurrent measurements and is used for the characterisation of the
contact transparency. Figure 8.4b shows the number of channels as a function
of the conductance of the LL ν = 4. In the following, we focus on devices J1
and J2 with multiple and 1 domain walls, respectively.
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8.2 Supercurrent at low B

I started by measuring the supercurrent under small magnetic fields. Figure
8.5 shows the differential resistance dV/dI as a function of the magnetic field
B <40mT and the current bias Idc for device D1 with one domain wall (DW).
This was measured for a gate bias of 35V, a carrier density at which the AB
and BA domains should be partially gapped, while the domain walls should
be weakly metallic. The critical current at small magnetic fields B <10mT

is modulated with the periodicity of a conventional single-slit response (see
equation 2.52), where the periodicity of the oscillations should correspond to
the magnetic flux penetrating the junction area. The periodicity of oscillations
is 1.7mT, corresponding to an area AJ =1.2µm2, relatively large compared
to the size of the device (0.3µm2). By taking into account the London pen-
etration depth of NbTi thin films λL ≈350 nm, the effective area is reduced
to 0.34µm2, which is close to the junction area. These oscillations are shown
as a solid white line in figure 8.5. At magnetic fields B >10mT, one can see
deviations from the conventional oscillatory Fraunhofer diffraction pattern. In-
stead, the supercurrent follows a set of random oscillations, somehow limited
by a constant value of the switching current IS ≈ 100 nA. This supercurrent is
attributed to the supercurrent flowing along the device mesoscopic edges and
on the DW. As the magnetic field is varied, the critical current oscillates and
the superconducting phase difference becomes position-dependent, revealing
the spatial distribution Js(x) of the supercurrent. To extract it from the mea-
sured switching current IS(B), I follow the Dynes-Fulton approach adapted
for 2D Josephson junctions (see section 4.5.2). The result is shown in the inset
of figure 8.5. It is clear here that a small portion of the supercurrent is prop-
agating away from the narrow strip of the junction, as evidenced by non-zero
current density for |x| >0.75µm. Most of the supercurrent is propagating in
the bulk of the junction, with two ears corresponding to the mesoscopic edges.
At such magnetic fields, the presence of a DW has no discernable effect on the
reconstructed supercurrent.

One can note, however, that when wultiple DW are present within the
junctions, these act as device edges, and no supercurrent can be seen away
from the narrow strip of the junction. On top of that, devices with multiple
DW show a highly inhomogeneous reconstructed Js(x) with peaks represent-
ing 50% of the average current in the junction strip. This is attributed to
inhomogeneous transport between semi-gapped Bernal domains and metallic
conduction channels.

Overall, the reconstructed supercurrent spatial density shows that the small-
field supercurrent originates from conduction in individual aligned domains,
with small contributions from the device edges. On top of that, DWs allow
separation between proximitised and non-proximitised regions. The contribu-
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Fig. 8.5 Supercurrent
at low magnetic
fields: dV/dI(B, Idc) at
Tmc =20mK on device J1
with 1 domain wall. White
curve: Fraunhofer diffrac-
tion pattern for a usual
2D junction of the same
dimensions. pink curve:
1/B enveloppe for the
same dimensions. Inset:
reconstruction using the
Dynes-Fulton method.
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tion from edge states is analogue to the previously described regime where
proximity superconductivity persists under the aegis of cyclotron motion and
edge scattering [36]. It should be noted that the method we used presents
limitations, as it assumes a homogeneous supercurrent along the length of the
junction, which means perpendicular Andreev processes relative to the con-
tact edge, and a sinusoidal current-phase relation (CPR). The former is not
guaranteed because of the triangular nature of the Bernal domains; the lat-
ter either as the critical current does not reach zero. This does not affect our
conclusions thanks to the presence of sharp behaviour change around 10mT.

8.3 Supercurrent at quantizing B

8.3.1 Field dependence

In small magnetic fields, the Bernal domains are only weakly gapped with the
displacement field induced by a single gate. To fully break the time-reversal
symmetry, gap these domains and force transport in DWs, we apply a much
larger perpendicular magnetic field to our junctions of a few T. Under these
conditions, the maximum supercurrent flowing through a junction is modu-
lated by the magnetic flux, with a period corresponding to the flux quantum
Φ0 = h/2e where h is the Planck constant and 2e is the charge of a Cooper pair.
According to the results of section 2.3.2.3, the supercurrent in a 2D Josephson
junction should vanish above weak magnetic fields B∗ (see eq. 2.56) as our
device is edgeless.

Figure 8.6 shows the supercurrent B-dependence of device D2 with 8 domain
boundaries. The proximity effect withstands magnetic fields up to 8T, a field
comparable to the critical field of the superconducting electrodes, suggesting
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Fig. 8.6: Supercurrent in high B dV/dI(B, Idc) at Vg =20V, showing supercurrent
persisting at B in exces of 8T. White arrow indicates the quantising field for the gate
voltage. White curves show line cuts show the dV/dI(Idc) profile for various B indicated
by thin wite lines. Pink curve is the profile described by equation 8.3. Measured in device
J2 with multiple DWs.

its 1D nature with tight lateral confinement, an effect consistent with propa-
gation in the network of domain walls. In all our devices, the proximity effect
persisted up to 6T at least. At high magnetic fields, this behaviour is different
from usual graphene Josephson junctions in the quantum Hall regime [169–186]
where edge channels conduct the supercurrent through chiral Andreev edge
states. This is because the 1D domain walls are valley polarise and can carry
out electrons and holes on the same channel with opposite momentum, con-
trary to chiral Andreev edge states that necessitate two edges with a possible
loss of coherence. As a result, this is a similar situation to quantum spin Hall
Andreev states [200,262–264] where each 1D state supports its own supercur-
rent. Unfortunately, a supercurrent in the quantum spin Hall edge under a
magnetic field was never reported.

In our measurements, the supercurrent persists well above the theoretical
envelope for 2D josephson junctions, shown as a solid pink line:

Ienvelopec (B) =
α

e

∆(B)

Rn(B)πΦ/ϕ0
(8.3)

Where α ≈ 2.1, and ∆(B) = ∆(0)
√

1− (B/Bc)2 is the superconducting
gap and Rn(B) is the resistance in the normal state, experimentally measured
at 10K (see fig. 8.4). This trend results from the gapped bulk in the QH
regime (above 2T, see fig. 8.6), preventing the flow of a supercurrent [36,161,
162,178]. It is worth noting that the critical current is systematically above the
theoretical envelope: Ic(B) > Ienvelopec (B). This is different from the known
case of a chiral Andreev states-mediated supercurrent [169–186] for which only
a small number of superconducting pockets can be observed above Ienvelopec .
This measurement shows a fast modulation of the supercurrent. This is due
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Fig. 8.7 Control
measurement on a
Bernal junction (J8)
a) atomic force micro-
graph of the device used.
b) dV/dI(B, Idc) at
Vg =20V bilayer. Color
scale: indigo (0Ω) to yellow
(500Ω).
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to interferences between DWs that can be resolved for magnetic fields smaller
than the one shown here.

To support this statement, we measured a control device made with Bernal
bilayer graphene (shown in figure 8.7). This device shows no supercurrent
above 400mT. Equally, the uniqueness of our mtBG system can be witnessed
by measuring other type of junctions. Josephson junctions including domain
boundaries formed by a wrinkle in the graphene layer or by a step in the
hBN substrate did not show any sign of a supercurrent above 0.25T. In the
literature, attempts to couple edge states in bilayer with an n-doped top layer
and a p-doped bottom layer did not result in any high-field supercurrent [274].

8.3.2 Shapiro steps

A further evidence of the Josephson effect persisting up to high magnetic fields
is the presence of Shapiro steps in the device. In the presence of a microwave
excitation, phase locking between the RF field and the Josephson supercurrent
gives rise to constant-voltage Shapiro steps in the V (I) characteristics, with a
step size Vn = nhfrf/2e, where frf is the microwave frequency and n ∈ Z. The
presence of such steps is an unequivocal consequence of the Josephson effect. At
B =5T and f =3GHz, we observe steps with a high ∆V = 6.2µV, consistent
with the Cooper pair tunneling. It can be seen as minima with 0 ≤ |n| ≤ 3 in
the differential resistance map as a function of the RF amplitude Vrf (fig. 8.8a).
In a conventional Josephson junction, the evolution of the Shapiro step width
∆In should follow a Bessel function pattern: ∆In ∝ |Jn(2eVrf/hf)| where Jn

is the nth Bessel function. Figure 8.8b shows a quantitative comparison of the
width of the Shapiro steps ∆In(Vrf) for n =0, 1, 2 and 3. We observe that
the Shapiro plateaux can be perfectly described by Bessel functions. We note,
however, that CPR oscillations with different frequencies may contribute to
this width, resulting from the coexistence of 2π-periodic and a 4π-periodic
Josephson current in the topological state [275]. For multichannel wires, it
is indeed not possible to observe only the 4π-periodic supercurrent and to
distinguish topological excitations. This system is analogous to a periodic array
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Fig. 8.8 Shapiro steps
at 5T in device J2 at Vg =

18V. a) dV/dI(Vrf , Idc

showing clear Shapiro
spikes and zero resistance
pockets. Color scale: indigo
(0Ω) to yellow (70Ω) and
b) Bessel function fit of
the Shapiro steps for n =0,
1, 2 and 3.
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of Josephson junctions [276], allowing Josephson vortices to flow through the
array. Note that the high magnetic field periodicity of the critical current may
be a result of pinning and hopping of vortices through the junction, an effect
that could be exploited to search for non-trivial excitations [277,278].

8.3.3 Quantum oscillations at large B

Further analysis of the current propagation can be carried out by looking at the
high magnetic field response. Figure 8.9 shows the switching current B depen-
dence for different Josephson junctions in the QH regime. Figure 8.9a shows a
typical bilayer graphene Josephson junction (J5), for which we do not observe
any supercurrent, but small pockets with non-linear IV characteristics. This
corresponds to proximity superconductivity carried out by the edges of the de-
vice, coupled via CAES [182]. This is contrasting with devices containing DWs.
Each DW is able to carry out its own supercurrent, with electrons and holes
propagating on each side. As the superconducting coherence length of NbTi is
∼6 nm, similar to the width of individual DWs, and therefore, simple Andreev
bound states are allowed to carry exist. Figure 8.9b shows the B response of
a Josephson junction (device J1) containing a single DW. In this small range
of magnetic fields (40mT, there is a constant supercurrent, corresponding to
almost perfect Andreev bound states within a metallic nano-wire formed by
the DW. One can also explore the case of multiple domain walls. Figure 8.9c
shows a junction containing two DWs and figure 8.9d one containing multiple
DWs, at magnetic fields deep into the QH regime. For the case of the junc-
tion containing two DWs, there are oscillations with aperiodicity of 2.2mT,
corresponding to an area of 9 × 10−13 m2. Taking into account the London
penetration depth, it corresponds to the area delimited by two DWs separated
by 400 nm, much smaller than the junction width (1.5µm). Here, the coupling
between two DWs is ensured via CAES propagating on the superconducting
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Fig. 8.9: High field periodicity of the critical current measured in devices J8, J1,
J3 and J2 at base temperature Tmc =10mK.

sheath between the two edge states. When the number of DWs is increased,
multiple oscillations coexist at small field. For this reason, it is necessary to
look at high magnetic fields to understand the length scale of interest. Indeed,
at small magnetic fields, DWs with different spacing can couple together, re-
sulting in multiple areas penetrated by a flux quantum, and therefore multiple
oscillations periodicity. At 7T (as shown in figure 8.9d), only the closest DWs
can interract together, and the oscillation periodicity is 5mT, corresponding
to the area delimited by two DW separated by 180 nm (taking into account
the London penetration depth).

8.3.4 Ballistic transport in individual DWs

We focus here on device J1 with 1 domain wall. Figure 8.10a shows the gate
dependence at B =0T. This gate dependence is typical for bilayer graphene
Josephson junction. For hole doping (Vg <0V, we observe Fabry-Pérot (FP)
oscillations, a sign of ballistic transport within the bilayer graphene strip.
However, no FP oscillations are visible for electron doping (Vg >0V), a sign of
good contact transparency. This is consistent with previous reports on ballis-
tic, long, graphene Josephson junctions [36,163]. Turning on the magnetic field,
one can look at intermediate fields of 1.2T. Fabry-Pérot oscillations emerge
for Vg < 25V, which corresponds to gate voltage at which the cyclotron di-
ameter 2rc is smaller than the junction length L. Note that above that region,
oscillations are still visible, but they appear randomly as coupling can also
happen with the junction edges. At much higher magnetic fields of 3T, FP
oscillations become more visible. Figure 8.10b shows that at high bias (Idc ≈
20 nA), the supercurrent is supressed, highlighitng the low-resistance QH fea-
tures described earlier. At low DC biases, the proximity effect is visible for
all positive Vg (fig. 8.10b), with clear oscillations of the switching current as a
function of the gate voltage: FP oscillations along the DW. Further example of
such oscillations can be seen in the fan diagram at Idc =0nA, showing that the
zero-bias resistance oscillates, with resistance minima that match the critical
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current maxima (fig. 8.11a to c), highlighting the Fabry-Pérot nature of such
oscillations.

Finally, the FP oscillations do not follow a 1/
√
n dependence as expected for

the case of a 2DEG, but rather 1/n. This is a behaviour expected for the case
of 1D metallic wires, as shown in figure 8.11d. There might be, however, addi-
tional contribution and coupling between the 2D bulk and 1D edges. Further
theoretical studies might give more insight into the nature of such FP oscilla-
tions. Such a fit, however, gives a cavity length of L =240 nm, corresponding
to a DW oriented between the two superconducting electrodes at a non-zero
angle, if one considers the Fermi velocity of the Dirac spectrum. Overall, the
presence of FP oscillations appearing in the Quantum Hall regime shows bal-
listic motion of the electrons and holes trajectories forming the Andreev bound
states in the DWs.

8.3.5 Further characterisation of the proximity effect in DWs

To better understand the properties of the proximity effect in the DWs, I study
their dependence with temperature. The superconducting coherence length of
NbTi is ≈6 nm and the length of the junction around 200 nm, therefore we are
in the case of long Josephson junction. In this case, temperature should play
little role, except for reducing the superconducting gap at kBT comparable
to ∆. In the current-phase relation, the gap ∆ shoud be substituted with the
Thouless energy ETh [36, 279], and the critical current should be limited by
ETh rather than ∆. Indeed, figure 8.12a shows that at B =0T, the critical cur-
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Fig. 8.11: Characterisation of Fabry-Pérot oscillations in individual DWs. a)
zero bias differential resistance. b) critical current and c) characteristic lengthscale of the
FP cavity. Measured on device J1 with 1 DW.

rent evolves with the expected long junction behaviour: IC ∝ exp(−kBT/ETh)

where ETh = ℏvF/L [280], and the temperature dependence saturates at low
temperatures, when kBT becomes comparable to ETh =0.1meV (1.2K). Fig-
ure 8.12b shows an example of the temperature dependence at high magnetic
field (3T), where the proximity effect seems to persists up to 2K. One can
define the switching current IS as the current for which R(IS) = RN/2. The
switching current dependence is shown in figure as a white dashed line in fig-
ure 8.12b. This dependence differs qualitatively from the one at B =0T, and
does not evolve as a function of ETh anymore —or at least, not the ETh as
defined for the case of a 2DEG. This shape resembles the dependence for a
short junction.

Here, there can be different interpretations for the observed phenomenon.
On the one hand, convex shapes are usually a sign of transport in short
junctions, a definition usually written in terms of the device length: L ≫ ξ,
where ξ is the superconducting coherence length. There is also another equiv-
alent definition for the short junction limit in terms of the Thouless energy:
ETh ≫ ∆0 [281, 282]. If we define ETh as: ETh = ℏvf/lϕ, where lϕ is the
coherence length in the junction and vf is taken as in the Dirac spectrum vf

∼106 ms−1, then we get ETh ∼ 10meV which is much larger than ∆0 ≈1meV.
As a result, the fits with a ballistic short-junction model would be considered,
as shown in figure 8.12c, for different temperatures. The short junction fit
writes as follows:

IS(ϕ, T ) =
π∆(T )

2eRN

sinϕ√
1− τ sin2 ϕ/2

tanh

(
∆(T )

2kBT

√
1− τ sin2 ϕ/2

)
, (8.4)

where ∆(T ) ≈ ∆0

√
1− (T/TC)2, ϕ is the phase difference between the

two superconductors, τ the transmission coefficient of the SN interface, and
RN the normal state resistance [279, 280] . For a usual junction, the critical
current corresponds to the value of ϕ that maximises IS(T ). On the other
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Fig. 8.12 Temperature
dependence of the
critical current. a)
ρxx(Idc, T ) at B =0T

measured in J1 with 1DW.
b) same at B =3T. c)
IS(T ) for different mag-
netic fields. solid line: fit
with eq. 8.4. Mearused on
device J1 with 1DW.
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hand, the effective transparency of the NS interface should be taken as 1 in the
case of figure 8.12c, as the measurements were done in a resonance (standing
wave condition) of the Fabry-Pérot oscillations, corresponding to Vg =33V.
Therefore, when fitting for parameter ∆0, we find that in the QH regime,
∆0 =0.25meV, suggesting that the nature of the superconductor changes.
Indeed, it was predicted that the proximity of an s-wave superconductor with
a topological insulator would result in the creation of a p-wave superconductor
[283]. Here, the proximity of NbTi with the quantum Hall topological insulator
created by DWs might change the nature of the superconductor and create a
p-wave superconductor with different properties. This hypothesis would need
more theoretical and experimental studies to be validated.

Conclusion

In this chapter, I demonstrated robust Josephson coupling along 1D edges in
the quantum Hall regime. I showed that in such structures, the proximity effect
persists deep into the quantum Hall regime. The magnetic-field oscillations of
the supercurrent are consistent with Andreev bound states in very narrow
channels. Further characterisation provides evidence for the ballistic nature of
such junctions, and for enhanced coupling between two superconductors. This
could open new research directions in the search for topological excitations in
the quantum Hall regime. In addition, it could be a platform for new devices,
such as SQUID magnetometers operating at high B.
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Chapter 9
Correlated states and van Hove
singularities

In twisted bilayer graphene, flat bands emerged as a platform for the ex-
ploration of electronic interaction, appearing close to the magic angle (see
paragraph 3.2.2.2). In most condensed matter systems, the variety of quantum
phases is usually the result of strong electronic interactions breaking the un-
derlying symmetries. The variety of different phases in magic-angle twisted bi-
layer graphene (MA-tBG) suggests that the flat band results in low-symmetry
states in the many-body spectrum, stabilised by external parameters (pres-
sure, strain, electric and magnetic fields, etc.) [152], but, as I am writing this
thesis, the nature of the interaction-driven symmetry breaking is not yet un-
derstood. The non-trivial topological properties of the low-energy spectrum of
MA-tBG are revealed through the lifting of their degeneracies, by creating a
gap between them [119, 152]. Particularly, the single-particle band structure
of MA-tBG conforms to the sublattice C2 and time-reversal T symmetries,
protecting the Dirac point. The breaking of these symmetries can create a gap
and give rise to Chern insulators, having a quantised Hall conductance. The
C2 sublattice symmetry can be broken by the alignment of MA-tBG with hBN
substrate [124,125]. The time-reversal T symmetry can be broken by applying
strong magnetic fields [119,150–152].

In this chapter, we propose a new system in which the sublattice C2 sym-
metry is spontaneously broken. We stack a graphene monolayer on top of a
Bernal-stacked graphene bilayer to create topological flat bands, as several
theoretical studies predicted [284–286]. Narrow and topologically non-trivial
valley-projected Moiré minibands emerge, breaking both the sublattice C2 and
interlayer mirror My symmetries [20, 287–290]. We show that the low crystal
symmetry and the tunability of the band and topology make it a rich system

Results presented in this chapter have been published in:
S. Xu, M.M. Al Ezzi, N. Balakrishnan, A. Garcia-Ruiz, B. Tsim, C. Mullan, J. Barrier,
N. Xin, B.A. Piot, T. Taniguchi, K. Watanabe, A. Carvalho, A. Mishchenko, A.K. Geim,
V.I. Fal’ko, S. Adam, A.H. Castro Neto, K.S. Novoselov and Y. Shi, “Tunable van Hove
singularities and correlated states in twisted monolayer-bilayer graphene”, Nat. Phys. 17
(5), 619 (2021). Sections 9.4 and 9.5 have not been published.
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for the exploration of correlated states. In this chapter, I present 4 devices,
labeled M1 to M4.

9.1 Emergence of tunable correlated states

First, twisted monolayer-bilayer graphene (tMBG) can be fabricated with two
mirror-symmetric configurations: either with the Bernal graphene bilayer on
top or with the monolayer graphene on top. All our samples are double-gated
(see section 4.2.2) therefore the overall ρxx(Vtg, Vbg) can be flipped through
Vg → −Vg between these two symmetric configurations to observe the same
results. This was corroborated experimentally [20]. For consistency, we define
positive D when the electric field points from the monolayer to the bilayer.

Figure 9.1 shows the transport behaviour of a tMBG sample (M1) with angle
1.22◦ at 1.6K. All the features are similar in the mK range but contact issues at
lower temperatures result in a lack of clarity. There is a clear asymmetry with
respect to D, related to the lack of symmetry in tMBG stacks [286]. There
is also an asymmetry between the valence (n < 0) and conduction (n > 0)
bands. Theory allowed us to unravel a few features from this map.

Fig. 9.1 resistivity of
sample M1 with twist
angle θ =1.22◦, ρxx(ν,D)

measured at T = 1.6K

and B = 0T. Logarithmic
colorscale: indigo (10Ω) to
yellow (10 kΩ).
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9.1.1 Single-particle features

As in most graphene-based moiré superlattices, one may expect tMBG to
present two secondary Dirac peaks at full-filling ν = ±4. As the Bernal bilayer
graphene component shows a gap opening under a perpendicular displacement
field, it was also an expected feature in tMBG. Indeed, figure 9.1 shows high
resistance features at ν = ±4 as well as an increase in the resistivity for
ν = 0 at finite |D| =0.4V nm−1. Indeed, these features are corroborated by
calculations of the band structure with a continuum model [20,289] (shown in
figure 9.2).

These calculations combine the band structure of monolayer graphene with
Bernal bilayer graphene, assuming that there are no interactions between the
bands. These calculations for D = 0 (fig. 9.2, left panel) show clear bandgaps
emerging at ν = ±4, separating the low-energy bands (lowest conduction and
valence bands shown as green and orange lines) from higher-energy bands
(shown as black lines). When D = 0.5V nm−1 (fig. 9.2 right panel), the two
band insulators change slightly: The bandgap ∆+4 at ν = +4 increases slightly
on the electron side, while the bandgap ∆−4 at ν = −4 decreases on the
hole side. This situation is reversed for negative D. Additionally, a gap ∆0 is
opened by D at the charge neutrality point (brown streak), consistent with
the increased resistance in fig. 9.1. There is also a small but non-zero energy
shift of the monolayer Dirac point EDS that occurs even in the absence of

Fig. 9.2 calculated
band structure of
tMBG with θ = 1.22◦ for
displacement fields D = 0

(left) and 0.5V nm−1

(right). Yellow streaks in-
dicate the bandgaps ∆±4

at full filling and the brown
region shows the gap ∆0 at
charge neutrality, opened
upon application of D.
Green and orange colours
indicate the lowest energy
bands for the K point re-
siding at the bilayer and
monolayer and corners,
respectively. EDS is the
energy shift of the mono-
layer Dirac point. Data
from ref. [20].
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a displacement field D, resulting in an electron-hole asymmetry that will be
discussed later. The displacement field D has two effects on the band struc-
ture [291]. Increasing the displacement field (in both directions) pushes the
conduction band of the monolayer upwards and its valence band downwards
with equal magnitude. For the bilayer band, a positive D results in an inter-
layer bias U , shifting the conduction band upward by U/2 and the valence
band downward by U/6, and reciprocally for negative D. This explains the
opening of a bandgap at charge neutrality after the bilayer conduction band is
shifted upwards by a displacement field, while the resulting conduction band
is very flat. The positive EDS results in a smaller bandwidth in the conduction
band than in the valence band.

9.1.2 Correlated states at integer fillings

However, some of the features in figure 9.1 cannot be explained by the single-
particle picture in fig 9.2. There are indeed resistance peaks that emergy at
fillings ν = 1 and 2, strongly asymmetric for electrons and holes, as well as
positive and negative D. Similar insulating states at fillings 1, 2 and 3, failing to
be described with a single-particle picture have also been reported in twisted
bilayer graphene (tBG) [145, 148], twisted double bilayer graphene (tDBG)
[292–296]. Additionally, independent measurement of tMBG at the Universities
of Washington (WA, USA) [289, 290] and Santa Barbara (CA, USA) [287,
288] support our conclusions. Indeed these states are similar to the correlated
states originating from band flatness and band isolation in twisted double
bilayer graphene [292], consistent with relatively flat bands in the valence band.
Because of the electron-hole asymmetry of the band structure shown in figure
9.2, the bandwidth is much smaller in the conduction band compared to the
hole band, concomitant with the observation of resistive states only for positive
carrier densities. On top of that, we note that these insulating features have
a much lower resistance for D < 0 than for D > 0, in contrast with twisted
double bilayer graphene [292] where the correlated states are symmetric with
respect to the sign of D.

9.1.3 Temperature dependence

These correlated states manifesting as resistivity peaks at commensurate fill-
ings ν = 1, 2 and 3 show qualitatively different behaviours for positive and
negative D. The correlated state at D > 0 presents important resistances of
≈20 kΩ, while at D < 0, the resistance of 2.5 kΩ is much smaller. Here I dis-
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Fig. 9.3 Temperature
dependence of the
correlated states at
D = +0.45V nm−1 on
sample M1: ρxx(ν) with
varying T . Inset: ρ(T ) ac-
quired at the filling marked
by coloured arrows in the
main panel.
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cuss the temperature dependence as a function of electron filling, at constant
displacement.

9.1.3.1 Positive displacement

At positive D, there is a highly resistive state at half-filling in the conduc-
tion band surrounded by a stretched halo of increased resistance (see fig. 9.1).
Figure 9.3 shows the temperature dependence of ρxx at D =0.5V nm−1. This
shows insulating behaviours at half-filling (see inset) whereas, at all other
fillings, the behaviour is metallic (defined as increasing ρ with T ). We note
that measurements of the localised density of state (LDOS) for positive dis-
placements in the same system indicate a phase behaviour similar to twisted
double bilayer graphene [289]. This behaviour is probably arising as a conse-
quence of symmetry breaking within a flat conduction band. Additionally, it
was shown that energy gaps appear when an in-plane magnetic field is ap-
plied, an effect that could indicate the emergence of a spin-polarised ordering
at ν = 2 [289, 290]. All these observations correspond to the behaviour of
correlated insulators and metallic states in twisted double bilayer graphene
(tDBG) [292–296], suggesting that the phase diagram of tMBG is similar to
that of tDBG with the same twist angles, and the weak differences appear as
a result of the absence of a weakly charged fourth graphene sheet.

Slightly away from half-filling, the resistivity drops abruptly as the tem-
perature is lowered (see inset, fig. 9.3). This abrupt drop is present in regions
of the phase diagram in which the magnitude or the sign of the Hall density
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Fig. 9.4 Temperature
dependence of the
correlated states at
D =−0.45V nm−1 on
sample M1: ρxx(ν) with
varying T .
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nH deviates from the single-particle picture expectation (see below). This is
similar to tDBG, in which insulators deviating from the single-particle picture
were interpreted as correlated states for fractional fillings. The emergence of
these states was attributed to band flatness and band isolation of the low-
energy conduction band from its neighbouring bands. Many studies in twisted
bilayer graphene close to the magic angle have shown that the spin and valley
degeneracies are lifted as a result of electron correlations, giving rise to similar
correlated states at integer numbers of electron and hole fillings. Here there
is no sign of any insulating state for hole dopping. Indeed, calculations with
a continuum model have shown that the bandwidth is much higher in the
valence band [20, 289]. This absence of flat band with a much higher Fermi
velocity would be the reason for the lack of a correlated insulating state at
n < 0.

9.1.3.2 Negative displacement

At negative displacement, there are three states with increased resistance, all
appearing for integer fillings of the conduction band. Figure 9.4 shows the
temperature dependence of ρxx in the conduction band for D =−0.45V nm−1.
All these states are characterised by a metallic behaviour and a low resistivity
(∼1 kΩ) at low temperatures. The behaviour for the insulating state at half-
filling (ν = 2) is monotonic with temperature. It corresponds to a semimetallic
behaviour. However, the metallic resistive states at ν = 1 and 3 do not show
such a monotonic behaviour. Their resistance increases with rising T below
≈20K and decreases at higher temperatures. In this region of negative dis-
placement fields, LDOS measurements have shown great similarities with the
phase behaviour of tBG for similar angles [289]. There are, however, some
differences as the resistivity depends on details of the band structure. In this
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type of correlated insulator, the band structure can be hard to understand.
The peak amplitude of all these three correlated states at integer fillings de-
creases with increasing temperature. This is consistent with the expectation
that electron-electron interactions weaken with temperature. Resultingly, the
three integer-filling metallic resistive states are attributed to strongly corre-
lated electronic states. However, the non-monotonic behaviour could originate
from the competition of different phenomena. Correlations are the principal
suspect to explain the low resistivity and metallic temperature dependence.
Here they could cause a partial gap opening and band overlap instead of a gap
opening as is the case for positive displacements. Another possibility for this
non-monotonic behaviour would be temperature-driven phase transitions, from
a low-entropy liquid state to a large-entropy localised state. This effect is usu-
ally described by the Pomeranchuk effect and was reported in tBG [297,298].
Full understanding would require further investigations.

Here again, calculations have shown that these states originate from flat
bands. However, the local minimum bandwidth is flatter for a positive inter-
layer potential than for negative potentials. In our transport experiments, this
results in flatter bands at D > 0 than D < 0. It coincides with the experimen-
tal observation that the correlated states at positive D are more robust than
under negative D.

Finally, such correlation-mediated band insulators appear close to an integer
number of electrons per moiré unit cell. This is similar to tBG, where the
origin of the strongly correlated insulator is still debated. It was proposed
that it could arise from the formation of Mott insulators [145], but this was
impugned [154, 155]. Another possibility is the formation of a Wigner crystal
[154], or because electron interactions can lift the spin and valley degeneracies
[150]. For all these proposed mechanisms, insulating states are expected at
integer electron and hole fillings because electron-electron interactions conserve
momentum, and can only dissipate the current by Umklapp processes. This
condition is only allowed when a moiré mini-band is completely filled [299].

9.2 van Hove singularities

To better understand the nature of these correlated insulators and the phase
behaviour in tMBG, we study the response of the Hall coefficient under small
perpendicular magnetic fields.
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Fig. 9.5: vHS in sample M2 (tMBG with a 1.47◦ twist): a) Rxy(n,D) at B =0.5T

and Tmc =1.6K. Colour scale: blue (−4 kΩ) to red (4 kΩ). b and c) longitudinal
(B =0T) and Hall (B =0.5T) resistivities for D =0Vnm−1 and 0.3V nm−1, respec-
tively, showing vHS emerging at different densities.

9.2.1 Valence band

We first focus on the behaviour in the valence band. Figure 9.5a shows a
Rxy(n,D) map measured in a sample M2 with a twist angle θ =1.47◦. There
is a clear, abrupt change of sign at charge neutrality (ν = 0) and full filling
(ν = ±4) that can be explained by the Fermi level passing through single-
particle superlattice gaps (see section 3.2.1.1), accompanied by a change of
carrier types. There is also a much less abrupt change of sign, occurring in an
S-shape feature in the valence band and vertical line in the conduction band.
Figure 9.5b and c give further information on this change of sign. It is identified
as a change of the band curvature from electron- to hole-like with ρxy = 0. We
attribute this change in the carrier type to van Hove singularities, spanning
the whole D range that can be reached in our transport experiments. The
position of the vHS changes with displacements, following the white S-shape
of figure 9.5a. The presence of vHS in the valence band is consistent with the
presence of two single-particle gaps at ν = 0 and ν = −4. The behaviour is
different —much richer— in the conduction band.

9.2.2 Symmetry breaking in the conduction band

We now turn back to sample M1 shown previously. Figure 9.6 shows ρxy in
the region corresponding to correlated states for integer ν > 0 and D > 0,
for three different temperatures. First, we focus on the behaviour at D =

0.45V nm−1. The behaviour deviates from the single-particle picture (see, e.g.
the ρxx peaks at fillings ν = 1 and 2 in figure 9.6). ρxy changes sign, for low
temperatures, at filling ν = 1 and 2, and for the highest temperatures, only
around filling ν = 2. The change of sign indicates a change of carrier type
from hole-like to electron-like in the middle of the band. It was postulated
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Fig. 9.6 vHS in the
conduction band at
positive displacement
in sample M1 at T =

10mK, 1K and 10K,
a, b, c resp.) ρxx(ν)

(top) and ρxy (middle)
at D =0.45V nm−1 Bot-
tom pannels: ρxy(ν,D)

Colour scale: blue (−2 kΩ)
to red (2 kΩ).
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[289] that the change of carriers is the result of symmetry breaking at half
and quarter filling, with the formation of a new mini-band edge. The sign
change of ρxy is happening within the halo of increased resistance introduced
in section 9.1.3.1, suggesting spontaneously broken symmetry within the band.
Looking at the larger picture, the ρxy change of sign happens only for a small
range of displacement fields 0.4 < D <0.7V nm−1. This is in contrast with
the previously reported sign change at D < 0 [289] where the three resistive
features are all concomitant with sign changes in ρxy and features much more
concentrated in a narrow range of D. As these states also have a low resistivity,
it can be postulated that for D < 0, the correlated states indicate overlap
between electron and hole-like bands when the Moiré unit cell hosts an integer
number of electrons.

We attribute these sign changes to van Hove singularities resulting from
band reconstruction as a result of strong correlations. These van Hove singu-
larities indicate the formation of three new Fermi surfaces (Lifschitz transi-
tions) when the conduction band hosts an integer number of electrons, similar
to the behaviour of tDBG and tBG.

9.3 Evolution with twist angles

So far, I have shown two devices M1 and M2 with twists 1.22◦ and 1.47◦. The
first one shows correlated states at integer fillings of the conduction band, the
second did not. Here we explore a wider range of twist angles and their influence
on the correlated states. Figure 9.7 shows the evolution of the correlated states
as a function of twist angle θ. We present 8 devices with twists 0.99◦, 1.18◦,
1.22◦, 1.26◦, 1.30◦, 1.41◦, 1.47◦ and 1.60◦. Let us first discuss the correlated
states at D > 0 (fig. 9.7a). For all the twist angles considered, there is a halo
of somewhat increased resistance appearing between CNP and full-filling in a
narrow range of displacement fields. For twists angles between 1.18◦ and 1.41◦

correlated insulators develop at integer fillings, between 0.3 < D <0.7V nm−1.
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These states remain in the same range of displacement fields for all twist
angles. Additionally, it seems that the correlated states at ν = 1 and 3 are
more stabilised for a range of twists between 1.26◦ and 1.41◦. The resistance of
these states is maximum between 1.22◦ and 1.26◦ and decreases with increasing
θ above 1.26◦ and with decreasing θ below. Theory has shown [20] that the
bandwidth minimum of the low energy conduction band at positive interlayer
biases (corresponding to positive displacement fields) increases with θ between
0.9◦ and 1.6◦, consistent with the observation that the correlated features at
D > 0 fade away with increasing θ. The band isolation is also calculated to be
maximised at 1.26◦, consistent with our experimental observations.

Concerning negative D (shown in fig. 9.7b) the semimetallic resistive states
appear most clearly for a small range of twists between 1.18◦ and 1.30◦. They
fade away below 1.18◦ and shift to higher displacements above 1.26◦, to a
point that they cannot be measured in our transport experiments. Theoretical
calculations have shown that the position of the minimum of the low-energy
conduction band shifts to larger energy [20]. This is in accordance with the
shift of the correlated states to higher displacements. Additionally, this low-
energy conduction band becomes less isolated from the high-energy conduction
band as the gap ∆+4 decreases in energy, with increasing interlayer bias. The
less isolated band at D < 0 than at D > 0 could explain the lower resistance
observed at D < 0. Overall, the correlated states observed at integer fillings in
the conduction and valence band can be explained by enhanced band hybridi-
sation in a set of magic angles that flattens the band and increase electronic
correlations.
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9.4 Anomalous Hall effects & orbital magnetism

We now focus on the correlated states emerging at D > 0. Figure 9.8 shows
the Hall resistivity ρxy as a function of the magnetic field for different temper-
atures, measured in device M3 with twist angle 1.30◦ at ν = 0.76 and 1.6, and
D = 0.45V nm−1. These states, in the halo of the insulating states at ν = 1

and 2, exhibit a robust anomalous Hall effect with a large hysteresis with a
large Hall angle ρxy/ρxx ∼ 10 at B = 0. Contrary to other reports [287–290]
we observe that the anomalous Hall effect decreases as one moves closer to
ν = 1 or 2. Figure 9.8 shows the temperature dependence of the anomalous
Hall effect, showing its total suppression by raising the temperature above 5K.
The large Hall angle indicates that the transport is occurring predominantly
through the edges. However, ρxy is not quantised and ρxx is still finite. This
could be due to either disorder or a small gap, preventing the full develop-
ment of the Chern insulator. This should be achieved when moving closer to
integer filling, but our devices do not show such an effect. Indeed, previous
reports noted that the insulators at integer filling were trivial, and the anoma-
lous Hall effect was observed upon doping from ν = 1, with no quantisation
achieved [287–290]. There is, however, a very narrow range of angles around
1.25◦ for which a Chern insulator with C = 2 and the Anomalous Hall effect
approaching quantisation was observed [288].

Note that spin-orbit coupling is very low in graphene, therefore the anoma-
lous Hall effect should not emerge from spin-ordered magnetism. Instead, it was
proposed that the hysteretic behaviour in twisted graphene heterostructures
could originate from orbital magnetism [124, 125, 128, 288, 290]. This ordering
would be confirmed by additional reports that have shown that the magnetic
ordering could be controlled and switched with sweeping n at B = 0, in addi-
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resistance as a function of 1/T , showing activation gaps of 1.1 and 1.3meV, resp.
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tion to switching with B [288,289]. This is a sign of unique orbital magnetism
exhibited in twisted monolayer-bilayer graphene that would deserve further
studies.

9.5 Correlated states beyond the Fermi surface edge

Away from the correlated states, we observed non-linear IV characteristics [20]
resembling incipient superconductivity, with a sharp increase in the resistance
with temperature. However, although this system shares some qualitative simi-
larities with MA-tBG, superconductivity is absent and the non-linear IV curves
are rather a signature of out-of-equilibrium anomalies. I first explain this ef-
fect in a single-particle picture for the general case of graphene superlattices,
before showing data in tMBG.

9.5.1 The Dirac fluid away from equilibrium

In general metals, the electric response of a given system can be described by a
small displacement of the Fermi surface in momentum space balancing acceler-
ation of charge carriers with scattering-induced relaxation. In the general case
of subsection 2.1.1, the displacement of the Fermi surface in momentum space
is small: the drift velocity vd is negligible compared with the Fermi velocity
vf . In graphene, weak inelastic scattering allows to shift the Fermi surface far
from equilibrium [300–302] As a result, it was recently made possible to shift
the charge carriers within the topmost partially filled band along the applied
electric field E resulting in the production of extra carriers through interband
transitions [115]. This happens in the Dirac fluid, a relativistic plasma of mass-
less electrons and holes. Whereas at high carrier densities, the drift velocity
in graphene is only limited by phonon emission [303, 304], this is not the case
for low n, close to the neutrality point, where thermal excitations allow non-
negligible displacements of the Fermi surface. This regime shows a universal
behaviour at high bias (see figure 9.9 and ref. [115]). At relatively high biases
(j ≲ 10µAµm−1) the superlattice exhibits linear IV characteristic, followed by
a rapid switching into a high-resistance state: the dV/dI shows a pronounced
peak for a critical current density jc and decreases at higher biases. jc ≈ nevf

corresponds to the transition between a low- and high-resistance state, where
vd ≈ vf . For j > jc it was shown that a Schwinger-like effect consisting of
particle-antiparticle creation occurs in the Dirac fluid [115].
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Fig. 9.9 Non-linear
transport in a graphene
superlattice (device
D3). a) I-V characteristic
as a function of the current
density j, and b) corre-
sponding dV/dI curve.
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9.5.1.1 Secondary Dirac fermions

Here we focus on the behaviour close to secondary Dirac points (DP) of
graphene superlattices where the Fermi velocity vf is expected to be lower
as a result of narrow electronic bands, a feature that should enhance the vis-
ibility of out-of-equilibrium criticalities. I chose to focus on the hole side as
the Dirac point is more pronounced and leads to enhanced resistance (see, for
example, fig. 3.7 in section 3.2.1.1). In this region, the non-linear IV charac-
teristics evolve in such a manner than the two peaks at jc merge for n = −n0

where n0 is the density of the secondary DP found at 4.01 × 1012 cm−1, as
shown in figure 9.10.

At finite biases close to the secondary DP, the Fermi velocity was calculated
to be half of the value of the main Dirac point [114]. This translates into
jf = v2DP

f /nse where v2DP
f ≈ 5×105 ms−1 and ns is the carrier density in the

region of interest. ns is different from the total density n induced by the gate
and is found by taking into account the presence of vHS in the band structure:
ns = Cg(Vg − V2DP)/e = CgVg/e+ n0 (see details in section 6.2), where V2DP

is the gate voltage at which the secondary DP is measured. Additionally, it
is possible to evaluate the drift velocity vd corresponding to the maxima jc.
These are shown as white dots in the map of figure 9.10, whereas the current
jf(n) corresponding to the calculated Fermi velocity is shown as a dashed line.
Here the maxima are found for vd much smaller than vf .

In order to get more insight into the critical behaviour, I show the extracted
drift velocity vd calculated for the maxima at jc in figure 9.11a. The found vd

corresponds to several 104 ms−1, an order of magnitude below the calculated
Fermi velocity. Close to the secondary neutrality point at ν = −1, the drift ve-
locity shows a sharp peak, and evidence of rapidly decreasing vd away from the
secondary DP. Additionally, vd is smaller for the electron-like miniband than
for the hole-like miniband. This can be explained by a higher bandwidth on the
hole-side miniband. As the band structure flattens away from the secondary
Dirac point, one may expect vd to decrease further as the density is tuned
away from n0 [115] but my measurements do not allow to confirm or refute
this hypothesis. Overall, a better understanding of this critical transport char-
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Fig. 9.10 High bias
regime close to the sec-
ondary DP in device
D3: dV/dI as a function
of j and n for the same
superlattice of figure 9.9.
Measured at Tmc =20mK.
White dots indicate the
position of jc, dashed
lines indicate the current
jf(n) corresponding to
the Fermi velocity cal-
culated in the secondary
DP of a graphene-hBN
heterostructure.
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acteristic near the secondary Dirac point would require specific calculations of
the electronic spectrum.

At the secondary Dirac point, the behaviour can be understood via a
Schwinger-like particle-antiparticle production as follows. At relatively low bi-
ases, the resistance drops dramatically, attributed E-induced interband car-
riers generation along the e–h puddle boundaries [115, 305]. The minimum of
the differential resistance dV/dI occurs for a relatively low critical current of
∼10µAµm−1, five times smaller than close to the main Dirac point in graphene
point contacts [115]. At higher current densities, the resistance gradually in-
creases again. In this case, E can move the electrons from the valence bend
to the conduction band, with extra electrons and holes created by interband
transitions. At these biases, the apparent drift velocity exceeds the maximum
possible Fermi velocity: vd = j/ne > vf . This is made possible thanks to the
extra electrons and holes, generated at a rate ∝ E3/2 in the Schwinger-like
mechanism, adding a density ∆n on top of the gate-induced n. Accounting for
electron-hole annihilation (recombination processes that bring the electronic
system back into equilibrium), the concentration of extra carriers can be found
∆n ∝ V 3/2 if ∆n ≪ n. This translates into the current ∆nevf ∝ V 3/2 and
therefore we measure dV/dI ∝ j1/3, as shown by the dashed line in figure
9.11b. This behaviour is expected to be similar at all densities (not only close
to a DP) for a current above jc. For j ≲ jc carriers move at maximum veloc-
ity and saturate at vf explaining the peak separating the regime of a weakly
dissipative fluid-like flow to a strongly dissipative electron-hole plasma.

9.5.2 The case of Brown-Zak fermions

This behaviour is similar for Brown-Zak fermions, which can be seen as replicas
of the Dirac spectrum in a magnetic supercell. Figure 9.12 shows similar high-
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Fig. 9.11 Non-linear
transport near the sec-
ondary Dirac point in
device D3. a) drift ve-
locity at jc as a function
of the filling ν = n/n0.
b) dV/dI at the secondary
DP (red arrow in panel a).
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bias transport in a graphene superlattice for B = p/qBϕ0 with p/q = 1/3.
Whereas in graphene, jc = nevf is valid for a wide range of carrier densities n,
this is not the case in graphene superlattices as a result of band reconstruction
in the mini Brillouin zone. As a result, the group velocity of charge carriers
decreases rapidly away from the secondary Dirac point and drops close to the
van Hove singularities.

In the case of Brown-Zak fermions, there are several neutrality points (NP)
occuring for all Landau filling fractions ν = ±2,±6,±10,±14,±18 (as shown
in figure 9.12), with van Hove singularities occuring between each of these
neutrality points (see chapter 7 for more details). Consequently, there is a
small range of nBZF around each of these NPs for which jc evolves linearly
as jc ≈ nBZFevf where nBZF is calculated in section 6.3.1. In that case, the
presence of vHSs between two consecutive NPs would deviate from the linear
behaviour of jc(nBZF). Indeed, the non-linearity would correspond on one side
of the vHS to electron-like BZF and, on the other side, to hole-like BZF. These
electron and hole-like pairs do not cancel out at large biases but contribute to
the high-bias behaviour. This results in bell-shaped features, interconnecting
different NPs of the BZF.

Additionally, the BZF have verry narrow minibands, and therefore a low
vf and the onset of high-bias transition is expected at small j. Indeed, the
switching transition occurs at jd ≲ 20µAµm−1, 10 times smaller than at
zero magnetic fields. Aronud each NP, vf is found between 3 × 103 ms−1 and
5 × 103 ms−1, an order of magnitude smaller than the characteristic vf of
several 104 ms−1 for superlattices at zero field. This translates into relatively
small minibands widths of ≈10meV, expected from band structure calculations
[105,194].

9.5.3 High bias behaviour in tMBG

It becomes reasonable to expect similar non-linearities to appear in tMBG,
with Dirac cones merging at ν =-4, 0 and 4, and remain unaffected in the
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Fig. 9.12: Non-linear transport at B = Bϕ0
/3 in device D3 dV/dI(Vg, j) in a

graphene-hBN superlattice at Tmc =20mK. Colour scale: indigo (50Ω) to yellow (2.4 kΩ).

region of the correlated insulators, as a large number of carriers and very low
Fermi velocity would need much larger fields to be driven out-of-equilibrium.

9.5.3.1 Slow Fermi velocity

Figure 9.13a sows a dV/dI(ν, j) map, measured for D =0.45V nm−1 in device
M4 with a twist angle of 1.2◦ device. A number of features can be observed
and are sketched on figure 9.13b.

First, we focus on the valence band (ν < 0). The signal shows a low re-
sistance at small biases, corresponding to the regions indicated in navy in
figure 9.13b, with a constant resistance (dV/dI ≲2 kΩ). This signal then in-
creases dramatically to a pronounced peak for a certain value jc2 (red curve in
fig. 9.13b), consistent with the observations in graphene superlattices detailed
above. For j > jc2, the Schwinger mechanism of electron-hole pair generation
is still valid.

The behaviour is different in the conduction band, where multiple non-
linearities can be observed. Close to full filling, the transition between the
high and low-resistance follows jc ≈ nevf with vf =500m s−1, a value found
through calculations with a continuum model [20] and indicated as a white
dashed line in fig 9.13a. This very slow Fermi velocity is reduced by more than
three orders of magnitude compared with the Fermi velocity of monolayer
graphene (106 ms−1) and two orders of magnitude compared with the Fermi
velocity close to the secondary DP of graphene superlattices (see fig. 9.11). It is
nonetheless consistent with reports in tBG at 1.23◦ [115] and translates into a
bandwidth of ∼10meV, consistent with band structure calculations [20]. How-
ever, contrary to the twisted bilayer graphene system where the high-resistivity
jc branches merge at charge neutrality, there is no evidence of such an effect in
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Fig. 9.13 Non-
linearities in tMBG. a)
dV/dI(ν, j) measured at
constant D =0.45V nm−1

in device M6 with a
1.2◦ twist angle at
Tmc =20mK. Colour
scale: indigo (0Ω) to
yellow (10 kΩ). Dashed
white line: calculated jf

for ν = 4. b) Schematic of
the behaviour in (a).
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tMBG, for a wide range of displacement fields between 0.2 and 0.55V nm−1.
This could be explained by two different mechanisms. The insulating state at
ν = 2 could be different from charge neutrality and instead host relatively
flat bands. This seems counter-intuitive as single-particle calculations show
the emergence of a resistive state at CNP, but the nature of this state was
recently challenged and is still under debate [287,290]. A second possibility is
a competition between conducting channels in tMBG. At D > 0, the density of
states is dominated by the contribution from the bilayer, so that the outer layer
of the bilayer concentrates most of the electronic charges [128]. As a result,
at high biases, the electric field shifts the Fermi sea from the bilayer, leaving
the electronic structure of the monolayer untouched. This could reorganise
the spectrum, as non-linear behaviour is virtually unreachable in monolayer
graphene. This hypothesis is corroborated by measurement at D < 0 (not
shown), in which the two branches of jc2 merge at ν = 0, similar to twisted
bilayer graphene.

In the range 0 < ν < 4 the spectrum is subject to multiple Lifshitz tran-
sitions and van Hove singularities and many-body reconstruction of the spec-
trum. There, the high-bias transport regime is more complex. In addition to
the critical current jc2 at ∼20µAµm−1, there is another resistance maximum
depending weakly on the density, at jc1 ≈1µAµm−1 (shown as a green line
in fig. 9.13b). Interestingly, the resistance peak at jc1 is more pronounced
around ν = 2, where it displays a constriction but doesn’t merge in the insu-
lating state. Rather, there are small but noticeable maxima, seen as a zero-
bias peak, emerging for ν = 1 and 2. Note that in this regime, jc1 is very low
(≈1µAµm−1), corresponding to Fermi velocities of a few ms−1. This results
in very flat bandwidths in the range of ∼ 0.1–1meV, an experimental evidence
of the flat bands leading to strong correlations at integer fillings.
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9.5.3.2 Charge transfer in a nested Fermi surface

Here I try to understand the high-bias behaviour of the correlated insulator at
ν = 2. Note that in this region, the band structure possesses a Lifschitz tran-
sition, reshaping the band structure [20]. Figure 9.14a shows the non-linear
behaviour at ν = 2. At small bias, there is a small zero-bias peak as the Hall
density is reset. In a usual neutrality point, the initial drop is attributed to
electron-hole puddles, and small E generate interband carriers along the pud-
dle boundary, enhancing the conductivity. Here the system presents similari-
ties as the carrier density is reset by the Lifschitz transition, so it is reasonable
to expect a similar mechanism. As the field is increased further, there is a
minimum in dV/dI at j ≈100 nA µm−1, followed by a rapid increase and a
peak at a very low critical current of jc1 =450 nA µm−1 and a minimum at
∼1µAµm−1. At higher biases, there is once again, an increase followed by a
gradual drop of the resistance, before the onset of jc2.

Figure 9.14b shows the temperature dependence of the non-linearities. The
zero-bias peak is the most fragile feature and disappears around 3K. Upon
increase of the temperature, jc1 appears to be constant over a temperature
range between 20mK and 6K, before being smeared by heating, evidence
of a transition from Schwinger-dominated transport to normal transport as
additional electron-hole pairs are thermally excited. Note that these two tem-
perature scales are smaller than the range over which the correlated state at
ν = 2 is observed (see, eg. fig. 9.3). However, the resulting kBT is in the order
of 0.5meV which corresponds to a very narrow bandwidth expected in this
regime of strongly correlated electrons. These non-linearities at a small jc1

could be associated with very flat bands that even a small electric field can
shift out of equilibrium. Over the range of this measurement, I am not able
to distinguish any variation in jc2, therefore we can expect it to be associated
with an unreconstructed band with a larger bandwidth.

To understand better the origin of these features, figure 9.14c shows the
Fermi surface at ν = 2 for a 1.22◦ twist angle, calculated with a single particle
model. As the carrier density is reset by the Lifshitz transition at ν = 2, a
multi-pocket Fermi surface merges into a single Fermi surface. This results
in a nested Fermi surface, where a small portion is encircling KBG of the
mini Brillouin zone corresponding to the K point of the bilayer Brillouin zone,
corresponding to localised electron wavefunctions in the bilayer. The first peak
jc1 would correspond to this portion of the Fermi surface, where the group
velocity is minimal (see fig. 9.14c). As the field is increased, the effects on the
rest of the Fermi surface surrounding Γ become more pronounced, resulting
in the criticality observed at jc2. Importantly, the maximum group velocity is
calculated in the large Fermi pocket encircling Γ for all densities, corresponding
to a uniform distribution of the electron wavefunction across all three layers.



9.5 Correlated states beyond the Fermi surface edge 163

a b c8

7

6

5

4Re
si

st
an

ce
, d

V/
dI

 (k
Ω

)

15

12

9

6

3

0

 T
em

pe
ra

tu
re

, T
 (K

) 

4 6 -1 0-2 0 2
j (µA/µm)

1
j (µA/µm)

~j1/12

~j-1/12

jc1

KBG

KMG
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The high-bias behaviour is expected to be described by dV/dI ∝ jα, where
α = 1/3 for a Schwinger mechanism. It is found that the best-fit exponent for
the creation of carriers above jc1 is close to 1/12 (see fig. 9.14a), much smaller
than for a Schwinger mechanism, therefore, suggesting a different mechanism.
This exponent could be related to Zener-Klein tunnelling, where α was shown
to be comprised between 0 and −1/3 at the graphene neutrality point [305].
In that case, the exponent is related to tunnelling between different energy
bands and defect scattering. This is consistent with the analysis above, where
the different high-bias features correspond to charges being driven from the
low-energy subband around KBG to the high-energy subband around Γ . As
the bias is increased, annihilation of carriers follows the same power law and
therefore likely corresponds to the inverse mechanism, transferring carriers
back from the high-energy- to the low-energy subband.

9.5.3.3 Field-induced Band reconstruction

To appreciate the competition between wavefunctions localised at the mono-
layer and at the bilayer in the band structure, I measured the displacement
dependence of the low-bias non-linearities at constant ν = 2, shown in figure
9.15a. The displacement field is expected to shift the weight of the wavefunc-
tion from the monolayer to the bilayer, therefore shifting the energy of the
KMG and KBG points with respect to each other. The zero-bias peak, corre-
sponding to the correlated state at ν = 2 can be resolved for a finite range of D
between 0.3V nm−1 and 0.5V nm−1 below which the transport regime is linear
as expected from the absence of correlated insulators and the dV/dI peaks oc-
curing at jc1 are more pronounced above D = 0.4V nm−1. Between 0.3V nm−1
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Fig. 9.15 Field-induced
band reconstruction en
device M6. a) ρxx(j,D)

at ν = 2. Colour scale:
indigo (0Ω) to yellow
(10 kΩ). b to f) Fermi
surface at D indicated in
panel (a).
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and 0.4V nm−1, the high-bias regime corresponds to a drop of the resistance,
different from the usual maxima observed in graphene superlattices [115].

These features can be interpreted with the variation of the Fermi surface
with D (fig. 9.15 b to f). At relatively high displacements of 0.52V nm−1

and 0.44V nm−1 (b and c), a small Fermi pocket is centred around KBG,
while at lower displacements of 0.3V nm−1 and 0.22V nm−1 (e and f) small
Fermi pockets are centred around KMG. This suggests that over this range of
displacement fields, a Lifschitz-like transition occurs, moving the Fermi surface
from the bilayer to the monolayer corner of the mini Brillouin zone.

Note that in this region, the Fermi velocity cannot be calculated easily
because of the resetting of the Hall conductance at ν = 2, leading to unknown
n. It is nonetheless expected to be very low as the bandwidth is found ≲1meV.
Overall, the correlated insulator at ν = 2 may result from partial polarisation
of KBG and KMG with respect to the layers, leading to a condensate of electrons
and holes. Here, vHSs result in many-body reconstruction of the spectrum so
the single-particle calculations of the Fermi surface can only be used as a guide.

Conclusion

In this chapter, I introduced twisted monolayer-bilayer graphene (tMBG), a
system that exhibits a variety of effects as a result of the absence of inversion
symmetry. Correlated states emerge at integer fillings of the conduction band
upon application of a displacement field for a small range of twist angles, a re-
sult of symmetry breaking and interlayer hybridisation. In the vicinity of these
correlated states, the anomalous Hall effect can be observed. Finally, the pres-
ence of both monolayer- and bilayer-like subbands results in a strong interplay
of states at some displacement fields. Measurements of non-linear transport at
high bias allow us to extract a very low Fermi velocity that explains the many-
body phenomena, with consequences being debated [306]. Further studies may
explore the nature of the correlated state at ν = 2 as it shows similarities with
the recently measured BCS-BEC crossover in MA-tBG [307], even though su-
perconductivity is absent in tMBG.



Chapter 10
Flat band superconductivity via proximity
screening

The use of metals in proximity with a studied system is a widely used
platform for the control of electron-electron interactions. This induces ad-
ditional screening and suppresses Coulomb interaction in the studied sys-
tem [98, 247, 308–310]. In van der Waals heterostructures, there are two dif-
ferent approaches for this proximity screening. The first is to place a metallic
system (e.g. multilayer graphene) close enough to the heterostructure with a
thin hBN layer to decouple this multilayer graphene from the studied het-
erostructure via interlayer distance. In this case, it is possible to decrease the
thickness of the dielectric spacer to increase the magnitude of screening. There
is another approach that consists in using a virtual spacer of zero thickness and
decoupling the two systems by a large angle [311–317]. This translates into a
large momentum mismatch between the two K points of the two subsystems.
The previous chapter was focused on multilayer systems with a small twist
angle so that the wavefunctions from each layer overlap and hybridise between
the two Dirac cones of the two subsystems. In this chapter I propose a dif-
ferent kind of heterostructures, using large angles to decouple two subsystems
and induce screening of the Coulomb interactions with effects on relatively flat
bands.

10.1 Decoupling with a large twist angle

Here I introduce the effects of high-angles on transport measurements in rela-
tively simple systems. Let’s consider a system of two layers of graphene stacked
together at a very large angle ∼10◦. An example of a lattice of such a het-
erostructure is shown in figure 10.1a. When the two layers are stacked with
a large twist angle, there is no long-range Moiré superlattice. The two Dirac
cones of the two monolayers are spaced in momentum space by a distance pro-
portional to the twist angle – large at high angles. As a result, the two Dirac
cones can be considered non-interacting and could be studied independently.
These sorts of heterostructures can be fabricated using the usual method, and

165
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Fig. 10.1: Transport properties of large-angle bilayer graphene. a) Sketch of two
graphene layers twisted with a large angle. top: in reciprocal space: the two Dirac cones
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ation results in flat bands. c) Electrostatic model used in the chapter and d) ρxx(n,D)

calculated with the inter-layer capacitance model. Logarithmic colour scale: indigo (16Ω)
to yellow(400Ω).

Raman spectroscopy during the fabrication process is performed to verify that
the two layers are decoupled.

In such a system, tuning the top gate affects mostly the density of state in
the top layer, while varying the bottom gate predominantly affects the density
of state in the bottom layer. Figure 10.1b shows the different capacitances in-
volved in this system. Ctg and Cbg correspond to the geometric capacitances of
the top and bottom graphene to the top and bottom gate, respectively. They
can be found using the usual methods: one can use atomic force microscopy to
find the thickness of the hBN layers or use Hall measurements in a small mag-
netic field (see subsection 4.4.2). The capacitance between the two graphene
sheets is Cm. The quantum capacitances Cqt and Cqb of the top and bottom
layers are proportional to the density of states at the Fermi energy in the top
and bottom layers, respectively: Cqt = e2Ns,t(Ef) and Cqb = e2Ns,b(Ef) where
Ns,t and Ns,r represent the density of state of the top and bottom layer, respec-
tively [315]. As in usual double-gated systems, the slope of the zero-density
line in the (Vtg, Vbg) map is given by −Cb/Ct (see section 4.2.2). The influence
of the interlayer and quantum capacitances can be appreciated in transport
measurements. Figure 10.1c shows the resistivity ρxx(n,D), where the density
and displacements are calculated with gate thicknesses found through atomic
force microscopy. There are notable features to observe on this map. First,
there is a high-resistivity peak at n = 0 and |D| <0.25V nm−1, correspond-
ing to the two independent Dirac points, evolving as a function of both n

and D. Second, this high-resistivity peak is split at large displacements |D| >
0.25V nm−1. The finite interlayer capacitance —originating from the finite
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electronic thickness of graphene— is responsible for the splitting of this peak
into two branches [315].

The variations of these NPs in the (Vtg, Vbg) space can be described as ridges
following the equations [315]:

∂Vtg

∂Vbg

∣∣∣∣
nb=0

≈ −Cbg

Ctg

(
1 +

Cqt

Cm

)
(10.1)

∂Vbg

∂Vtg

∣∣∣∣
nt=0

≈ −Ctg

Cbg

(
1 +

Cqb

Cm

)
(10.2)

This can be expressed as trajectories of the CNPs:

Vtg|nb=0 = −−Cbg

Ctg

(
1 +

Cqt

Cm

)
Vbg + const. (10.3)

Vbg|nt=0 = −−Ctg

Cbg

(
1 +

Cqb

Cm

)
Vtg + const. (10.4)

Combining these equations with equations 4.6 and 4.7 we get the trajectories
in the (n,D) space, approximating Cqt = Cqb = Cq:

DCNP ≈ e

ϵ0

Cm

Cq
nCNP +D0, (10.5)

where nCNP and DCNP are the coordinaters of the two charge neutrality
points (CNP) for the two independent layers.

As a result, for high-angle twisted bilayer graphene, the splitting in n is given
by Cq/Cm. This behaviour is non-linear as Cq ∝

√
n, therefore |DCNP| ∝

√
|n|.

This behaviour is different in high-angle twisted double bilayer graphene for
which Cq = const. Figure 10.2 shows a sketch of the zero-density lines for
high-angle tBG and tDBG in the (Vtg, Vbg) space. In such a map, the line with
slope −Ctg/Cbg corresponds to the gating condition where the total charge
carrier density vanishes. In this map, the CNP from each graphene layers
is found to depart from the ntot = 0 line as

√
|n| and the CNP from each

bilayer follows linear trajectories. Multiple experimental studies confirm these
calculations [314–317]

10.2 Twisted tetralayer graphene

10.2.1 Description of the device

Twisted monolayer and bilayer graphene can be seen as model systems for
high-angle heterostructures. Here I propose to explore a more complex het-
erostructure, composed of two twisted bilayers (tBG), stacked together with
a large angle (≈10◦), so that the electronic structure is decoupled. Here I de-
scribe sample S1, combining two twisted bilayers: the bottom bilayer is twisted
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Fig. 10.2 Zero-density
lines for high-angle
systems: tBG (pink and
light blue lines) and tDBG
(red and navy lines). Black
dashed line represents
ntot = 0.
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bilayer graphene with a 1.25◦ angle, close to the magic angle but sufficiently
far enough that superconductivity and correlated states have, so far, not been
observed at this angle. This bottom subsystem is referred to as MA-tBG. The
top bilayer is a twisted bilayer graphene with a twist angle of 0.4◦. At this
angle, the lattice is expected to reconstruct into giant alternating Bernal do-
mains [131–134]. This top bilayer is referred to as mtBG. The twist angles in
the two subsystems were extracted from the positions of secondary DPs and
BZFs.

This system is analogue to a recently reported heterostructure in which a
thin hBN spacer was used between an MA-tBG layer and a Bernal bilayer
graphene layer [310]. This hBN spacer was used to decouple electronically the
MA-tBG from the Bernal BG and at the same time screen the Coulomb in-
teraction of MA-tBG resulting in enhancement of the superconductivity and
weakening of insulating states. Here, the large twist angle has the same effect
as the thin hBN spacer. In this system, the two gates can be used to simul-
taneously control the carrier density n and the displacement field D in both
layers. Owing to the large twist angle, the two subsystems are relatively in-
dependent of one another therefore it is possible to access a space of constant
densities and displacement relative to each bilayer. This is a relatively differ-
ent system from small-angle twisted tetralayers [318–320] because it cannot be
treated as a uniform system but encompasses two distinct subsystems influ-
encing each other. To the extent of my knowledge, this is the first use of large
angle heterostructures to tune strongly correlated electronic systems.

10.2.2 Screening of electron-electron interactions

Understanding the role of Coulomb interactions is detrimental to identifying
the nature of the correlated state in magic-angle twisted bilayer graphene [310].
In particular, MA-tBG shows a phase diagram resembling that of cuprates,
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with correlated insulators close to superconducting phases. Recent studies in-
validated this hypothesis by showing that correlated insulators and supercon-
ducting phases could appear independently of one another. Here, screening
electron-electron interactions should reduce the influence of Coulomb interac-
tions and stabilise superconductivity. Sample S1 that I show here comprises
a bottom bilayer close to the magic angle and screening electron-electron in-
teractions could help the understanding of the emergence of electronic phases
around the magic angle [150,151,310,321].

To understand the impact of screening from the top twisted bilayer on the
bottom MA-tBG, we compare transport measurements with a double-gated
twisted bilayer graphene device fabricated in the same conditions (sample S2).
The position of secondary neutrality points and BZF in this device reveal a
twist angle of 1.23◦, similar to the 1.25◦ of the 4-layer heterostructure. Figure
10.3 shows both resistivities ρ at 2K and 50K. We note that at 2K the resis-
tivity is an order of magnitude smaller in the 4-layer graphene at the secondary
DPs. This lowered resistance is likely due to parallel conduction in both the
MA-tBG and mTBG bilayers.

At elevated temperatures, Umklapp electron-electron scattering is expected
to dominate the resistivity of graphene heterostructures [246]. In twisted bi-
layer graphene, ρ(T ) can be described quantitatively by Umklapp e−–e− scat-
tering, i.e., should rapidly increase as ∆ρ ∝ T 2. In figure 10.3, this is visible
through a 10-fold increase of the resistivity at 50K compared to 2K. In the
tetralayer heterostructure, the presence of an additional bilayer twisted with
a large angle strongly suppresses ∆ρ(50K) by a factor > 5. The suppression
of high-temperature resistivity is most visible close full filling (ν = 4) where
the resistivity is suppressed by a factor ∼50.

The suppression of the resistivity in this tetralayer heterostructure is at-
tributed to suppressed Umklapp e−–e− scattering, as a result of enhanced
Coulomb screening. The presence of the top bilayer strongly screens Coulomb

Fig. 10.3 Suppression
of umklapp e–e scat-
tering in large-angle
tetralayer graphene
ρ(ν) of 1.2◦ twisted bilayer
graphene and 1.2◦, 10◦

and 0.4◦ twisted tetralayer
graphene for T =2K (solid
lines) and 50K (dashed
lines).
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Fig. 10.4 Gate-tunable
transport in weakly
coupled tetralayer
graphene (device S1).
a) ρxx(Vtg, Vbg) measured
at 2K. Red (navy) arrows
denote resistivity features
corresponding to the bot-
tom MA-tBG (top mtBG).
White dashed line: cut
at which figures 10.3 and
10.6 were measured, corre-
sponding to constant dis-
placement in the bottom
MA-tBG. b) Schematic of
the constant filling lines on
each bilayers. solid lines
show zero-density lines for
the top (navy) and bottom
(red) bilayers; dashed lines
show non-zero constant
density lines.
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interactions, which enhances electron correlations. A consequence of this is the
presence of small resistance peaks appearing close to ν = ±2, attributed to cor-
related insulators [145] visible in the low-temperature characteristic of figure
10.3, but absent in S2 at all temperatures. Lower temperatures are expected
to enhance the resolution of these metallic resistive states.

10.2.3 Transport in weakly coupled layers

Figure 10.4a shows a resistivity gate dependence measured at 2K. There are
multiple features observable from this gate map, sketched in figure 10.4b. There
are slanted resistance maxima, indicated with navy and red lines. As shown
previously for the case of high-angle twisted double bilayer graphene, these
lines correspond to constant-density features in the top bilayer (mtBG) and
the bottom bilayer (MA-tBG). The trajectories of the constant-density lines
of the MA-tBG (shown in red) are straight lines in the (Vtg, Vbg) space. The
trajectories corresponding to constant-density lines of the mtBG (shown in
navy) are a succession of discontinuous segments, shifting by a few volts on
the top gate whenever they intersect constant density lines of the MA-tBG.
The linear behaviour can be explained similarly to high-angle twisted dou-
ble bilayer graphene. The discontinuous behaviour is analogous to transport
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Fig. 10.5 ρxx(Vtg, Vbg)

in weakly coupled
tetralayer graphene
(S1) at 20mK. Same
colour scale as in figure
10.4.
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data in screened magic-angle twisted bilayer graphene [310], where distortions
of transport features occur whenever the screening BLG is fully insulating,
leading to unscreened behaviour. Here, these distortions happen when the re-
sistance of MA-tBG is higher suggesting the same mechanism.

From this electronic measurement, we find Ctg/Cbg ≈ 3.4, in agreement
with the expected slope considering the measured thickness of top and bottom
hBN via atomic force microscopy. We can also extract the geometric capac-
itance between the two bilayers, and find Cm =6.4µF cm−2, a value com-
parable to the observed capacitance between two single-layer graphene sheets
(7.5µF cm−2) [315], and approximately double as the capacitance between two
bilayers (3.5µF cm−2) [314], probably due to the additional twists between in-
dividual layers.

10.3 Incipient superconductivity

10.3.1 Ultra-low temperature transport

Figure 10.5 shows the resistivity measured at Tmc = 20mK. It should be
compared with figure 10.4a with which it shares the colour scale, enabling
better visualisation of the resistance difference. In most of the (Vtg, Vbg) space,
the resistance drops homogeneously by a factor 3, consistent with increasing
electron-electron interactions at ultra-low temperatures. Note, however, that
the suppression of the resistance between 2K and 20mK is much greater than
between 50K and 2K, a further sign of screened electron-electron scattering
in our 4-layer device.

There is another important feature, noticed as indigo streaks close to
νMA−tBG = ±2, corresponding to zero-resistance. We attribute these streaks
to superconductivity for the following reasons. In twisted bilayer graphene
systems close to the magic angle, superconductivity has been observed close
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to the correlated states for fillings 2 ≤ |ν| ≤ 3 [148–151]. Notably, the su-
perconducting dome at negative doping was found to be consistently stronger
for a wide range of twist angles. For some angles far from the magic angle
superconductivity was only observed for hole doping. This is consistent with
the measurements of figure 10.5 that show a broader zero-resistivity streak for
ν ≈ −2 than for ν ≈ 2. For this reason, the indigo streaks in figure 10.5 is at-
tributed to superconductivity. Further characterisation is provided later in this
chapter. Additionally, superconductivity is expected to appear in twisted bi-
layer graphene close to the magic angle, with a critical temperature decreasing
dramatically as the angle is moved away from the magic angle condition [321].
To the extent of my knowledge, the highest angle at which superconductivity
was reported is 1.18◦ [321], much lower than the 1.25◦ of device S1. Impor-
tantly, no sign of zero resistance could be observed at our lowest temperature
in S2 with twist angle of1.23◦, neither for electron and hole doping. Correlated
insulators at half-filling were also absent at low temperatures.

10.3.2 Unconventional superconductivity

We now aim to characterise the superconductivity in weakly coupled tetralayer
graphene (S1). Figure 10.6a shows the resistivity measured along with the
white dashed line in figure 10.4. This line is chosen to be in a region of small
DMA−tBG, and without any high-resistance features originating from the top
bilayer, so that its influence is minimal [310]. We observe resistive metallic
states for filling factors νMA−tBG = -4, -2, 0, 2, 3 and 4. The resistance of
these states is much lower than the resistance of correlated and insulating
states reported in magic-angle bilayers [150] but is comparable with magic-
angle tetralayers [320]. As explained above, this is because an additional bilayer
offers a parallel conduction system.

We observe superconducting domains for 2 ≤ |νMA−tBG| ≤ 3, highlighted
as blue stripes in figure 10.6. The superconductivity is spread over a wide
range of densities, encompassing the whole range between correlated insula-
tors at |νMA−tBG| = 2 and 3. The behaviour for electron-doping is consistent
with previous reports, where superconductivity was observed mostly close to
correlated insulators, suggesting in early reports that the insulating and su-
perconducting orders could share a common origin as in cuprates. However,
measurements in screened devices [151, 310, 321] have shown that when the
strength of Coulomb interaction is tuned, superconductivity can be decoupled
from the correlated insulators. This suggests that correlated insulators and
superconductivity could be two phenomena competing with each other. In our
device, hole-side doping shows a relatively weak metallic-insulating phase at
ν = −2 and no insulating phase at all at ν = −3, consistent with observa-
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Fig. 10.6 Superconductivity
in weakly coupled
tetralayer graphene
(S1): a) ρxx(ν) measured
at 20mK along the white
dashed line of figure 10.4.
b) dV/dI(Idc) measured
for density corresponding
to the brown arrow of (a).
c) ρxx(T ) at the same
point.
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tions in screened devices. The amplitude of correlated insulators is decreased
by screening, while superconductivity increases from the decreasing Coulomb
interaction.

We now explore the superconducting behaviour close to ν = +2. Figure
10.6b shows the differential resistance dV/dI and the DC voltage Vdc mea-
sured as a function of the DC bias current Idc for n =1.63 cm−2. At low biases
Idc <100 nA, we observe a non-linear behaviour characteristic of supercon-
ductivity, with a rapid increase of the differential resistance for Idc ≈50 nA,
corresponding to the switching current of the superconducting phase. As the
bias current is further increased, non-linearities emerge, characterised by a
much broader peak in dV/dI with a maximum at Idc =200 nA. This non-
linear behaviour corresponds to a critical shift of the Fermi surface in the
normal state, as explained in the previous chapter. Figure 10.6c shows the re-
sistivity temperature-dependence measured at Idc = 0 at the same density of
1.63×1012 cm−2. We observe a rapid increase of the resistivity for temperatures
>100mK. It corresponds to a thermal activation energy of ∼10µeV. Similarly,
in small magnetic fields, the superconductivity disappears around 3mT (not
shown). Taking this value as the critical field Hc2, one can estimate the super-
conducting coherence length ξ0 =

√
ϕ0/2πHc2 ∼330 nm. This is 6 times larger

than superconducting coherence lengths reported in MA-tBG [150,293], proba-
bly resulting from electrostatic gating suppressing charge inhomogeneities and
enabling superconducting correlations at larger distances. It is also possible
to use the uncertainty principle to estimate the superconducting coherence
length with Pippard’s argument. In that case, one gets ξ0 ∼ ∆x ∼ ℏvf/kBTc ∼
76 nm. This is somehow smaller than the coherence length measured from Bc,
and closer to previously reported coherence lengths in MA-tBG [150, 293].
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From these measured ξ0, it is possible to find the pairing gap ∆ from the BCS
relation: ∆ ∼ ℏvf/ξ0. Using vf ∼ 1000m s−1, the superconducting gap is found
∆ ∼ 1µeV (or 8µeV with Pippard’s argument), therefore the ratio ∆/kBT

is about 0.1 to 1, which is much smaller than the ratio of 1.73 expected in
conventional superconductors, but somehow consistent with MA-tBG [307].
These energy scales suggest rather fragile superconductivity with an uncon-
ventional behaviour, and superconducting correlations persisting over rather
long length scales, probability as a result of the Coulomb screening induced
by the top mtBG layer. In that sense, screening could shift the competition
between electron-phonon coupling with Coulomb interactions in favour of the
electron-phonon coupling, therefore strengthening the Cooper pair formation
and superconductivity. This mechanism, however, appears to be inconsistent
with the finding of unconventional ∆/kBT ratio. Alternatively, the screening
of Coulomb interaction could modify some properties of the MA-tBG band,
such as the bandwidth or the size of the Fermi surface, resulting in a flatter
band that favours strong correlations.

Note that the non-linearities corresponding to a critical shift of the Fermi
surface are visible for magnetic fields in excess of 500mT and temperatures
above 400mK, as expected from the Schwinger mechanism [115].

10.3.3 Displacement dependence of the superconductivity

In order to acquire a better understanding of the influence of the screening
from the top mtBG on the superconducting behaviour, we study the super-
conducting streak in the (nMA−tBG, DMA−tBG) space. This corresponds to a
region of constant density and displacement fields applied to the bottom bi-
layer. For a strongly coupled heterostructure, the displacement field between
the different layers can be found using equation 4.7. In weakly coupled sys-
tems, the top bilayer acts as a gate on the bottom layer, therefore if we want
to study the bottom bilayer, it is necessary to replace CtgVtg in eq. 4.7 with
CmVmtBG, where Cm is the measured interlayer capacitance between the two
weakly coupled bilayers and VmtBG is the electrical potential of the top layer.
Additionally, the Fermi energy in the top layer is [314]:

Ef,t = eVmtBG =
ℏ2

2m∗πnmtBG =
e2

Cqt
nmtBG (10.6)

Therefore, VmtBG = ent/Cqt and the displacement calculated on the bottom
bilayer can be rewritten as:

DMA−tBG =
1

2ϵ0

(
Cm

Cq
enmtBG − CbgVbg

)
(10.7)

Which can be written as:
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Fig. 10.7 Superconductivity
in screened MA-
tBG (S1). a)
ρxx(nmA−tBG, DMA−tBG).
Logarithmic color map:
indigo (10Ω to yel-
low (290Ω). b)
dV/dI(j, nmtBG). Col-
ormap indigo (0Ω) to
yellow (500Ω).
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DMA−tBG =
1

2ϵ0
(CeffVtg − CbgVbg) (10.8)

Where Ceff = CmCmtBG/Cq with CmtBG the capacitance of the top bilayer.
Similarly, n can be found as:

nMA−tBG =
CeffVtg + CbgVbg

e
(10.9)

Here, I find Ceff =330 µFm−2. Figure 10.7a shows the ρxx map of figure
10.5 rearranged in the (nMB−tBG, DMA−tBG) space. Here we find that the su-
perconducting behaviour varies in a small range of n in an inverted 3 shape,
as the resistance of the normal state changes with D. This is due to varying
screening as a result of varying resistance of the top mtBG. More impres-
sive, the superconductivity disappears above DMA−tBG = 0.03V nm−1 and
below −0.3V nm−1. To the extent of my knowledge, this is the first time
that such a field-dependence of superconductivity is reported, either in un-
screened or screened magic-angle twisted bilayer graphene devices. This could
result from enhanced screening in a narrow range of Vtg, as the resistance
of the top mtBG is relatively low. As Vtg (and thus, DMA−tBG) is moved
into a high-resistance region of mtBG, the electron screening is reduced, and
the magnitude of the Coulomb interaction increases again to compete with
the electron-phonon coupling and superconductivity is destroyed as the band
is not flat enough. In the hypothesis of an unconventional behaviour of the
superconducting pocket, screening would flatten the band, resulting in super-
conductivity, and as Coulomb screening is reduced at high D, the bandwidth
would increase and superconductivity is destroyed.

To corroborate this hypothesis, figure 10.7b shows a dV/dI(j, nmtBG) map,
giving more insights into the interplay between superconductivity and the
Fermi velocity, and the influence of the density of state in the top bilayer.
We find that the critical shift of the Fermi surface happens for j comparable
to the superconducting switching current density js around 3 densities in the
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top bilayer: nntBG =−1 × 1012 cm−2, 0.5 × 1012 cm−2 and 2.2 × 1012 cm−2.
At high charge density, the superconductivity appears to be limited by the
E-induced critical shift of the Fermi surface. This would be consistent with
a restructuration of the Fermi surface leading to increased superconductivity
under high screening, while the ground (unscreened) state corresponds to a
metallic layer, consistent with unconventional superconductivity.

10.4 Superconductivity at the edge of the Fermi surface

We now focus on the peaks at high bias corresponding to the critical shift
of the Fermi surface. Figure 10.8a shows the resistivity as a function of
the current density j and the density nMA−tBG, close to ν = 2. This cor-
responds to sweeping the back-gate across the brown line of figure 10.7a.
For nMA−tBG away from half-filling, the superconducting non-linearities are
present for |j| <50 nA µm−1, consistent with the results above. Importantly,
the switching current remains constant at all densities where a superconduct-
ing behaviour is observed. For carrier densities nMA−tBG > 1.65× 1012 cm−2,
the critical shift of the Fermi surface happens at constant jc ≈ 200 nA µm−1.
As the carrier density is tuned closer to half-filling, the jc maxima decrease to
form a zero-bias peak at half-filling.

Fig. 10.8 Fermi-
surface limited su-
perconductivity. a)
dV/dI(nMA−tBG, j)

along the brown line
of figure 10.7a (D =

−0.15V cm−1). Colour
scale: indigo (0Ω) to yel-
low (400Ω). Dashed lines
show the calculated Fermi
velocity. b) extracted
vd(νMA−tBG).
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In such a system, it is relatively complicated to estimate theoretically the
Fermi velocity owing to the influence of screening. In unscreened twisted bilayer
graphene with a 1.23◦ twist angle, vf =3×104 ms−1 close to charge neutrality
and 4×105 ms−1 at full filling [115]. However, as a flatter band emerge from in-
terlayer hybridisation, the Fermi velocity is expected to be much lower close to
half-filling. Figure 10.8a shows jf(nMA−tBG) corresponding to vf =3×104 ms−1

as white dashed lines, an upper bound of the expected Fermi velocity. Indeed,
it appears that the drift velocity vd at ν = 2 is much lower, as shown by
the white dots in fig. 10.8a. In figure 10.8b, I show the corresponding vd, in-
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creasing as ν moves closer to 2 on the electron side and diverging for ν = 2.
Evidence of the flatter band is found through vd ≈ 4 × 103 ms−1 that is an
order of magnitude below estimations close to charge neutrality, but consistent
with observations in magic-angle graphene [307]. At densities corresponding to
hole-like doping of this correlated insulator, a zero-bias peak appears instead
of a symmetric maximum. This behaviour is not yet understood and would
necessitate further studies.

Interestingly, it appears that the zero-resistance behaviourattributed to un-
conventional superconductivity is destroyed when the critical current jc, corre-
sponding to out-of-equilibrium non-linear criticalities, reaches a current density
close to the superconducting switching current js. This mechanism could open
new directions to further the understanding of superconductivity in twisted
bilayer graphene. Indeed it was suggested that the coincidence of js and jc

results from the same current-limiting mechanism in the superconducting and
normal state, which means that the group velocity limit in the Dirac fluid
would also limit the current density in the superconducting phase [307]. For
completeness, let me mention an alternative explanation: the critical shift of
the Fermi surface could correspond to a feature of the top bilayer. This possi-
bility was ruled out as the variation of the gate was chosen so that it does not
cross any resistance peak attributed to the top mtBG, and therefore change
in the density of states from the top twisted bilayer graphene.

Conclusion

In this chapter, I introduced a new system to study the influence of screening
and parallel bands on superconductivity, based on high-angle van der Waals
heterostructures. The addition of a graphene bilayer at a large angle on top of
a twisted bilayer close to the magic angle results in increased Coulomb screen-
ing in a narrow range of top gate voltage, thus inducing superconductivity for
a finite range of displacement fields. The superconductivity was found to share
unconventional characteristics, therefore increased Coulomb screening is likely
to flatten the band, leading to the emergence of correlated insulators and su-
perconducting pockets. Still, the superconducting switching current appears
to be limited by the Fermi velocity, a limiting mechanism similar to relativis-
tic superfluids [322]. This kind of high-angle structure can be generalised to
potentially any stack and allow further studies on the influence of screening
and parallel systems on strongly correlated states.
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Chapter 11
Summary

In this thesis, I demonstrated several novel transport phenomena unique to
graphene heterostructures. Even eighteen years after the discovery of graphene,
when most of the field has been ploughed and harrowed, there is still room
for emerging physics if one chooses not to dig deeper but rather start forming
one’s own furrow on the other side of the fence. Here, a few factors enabled new
research: improvement of fabrication techniques, access to ultra-low tempera-
tures, and the creation of novel heterostructures with different twist angles.

The improved fabrication techniques and availability of high-quality samples
with high mobility allowed us to reduce the disorder and lift all degeneracies.
It enabled observation of high-mobility Brown-Zak fermions (chapter 6) and
further understanding of the Hofstadter’s butterfly (chapter 7). Accessing low
temperatures with a dilution refrigerator to measure high-quality samples al-
lowed us to lift all the degeneracies of Brown-Zak fermions (BZF). On this
matter, I observed for the first time a few features such as mini-Landau fans
of BZF evolving into bent trajectories or staircase-like characteristics.

More importantly, creating new kinds of heterostructures allowed me to ob-
serve other effects. For example, a significant part of the research on graphene
heterostructures in the past four years focused on magic-angle devices. In-
stead of making similar devices, we chose to explore much smaller angles, i.e.
minimally twisted bilayer graphene (mtBG), where the lattice reconstructs,
creating a network of topologically protected channels. The use of supercon-
ducting leads to induce a proximity effect in mtBG domain walls (chapter 8
revealed the persistence of supercurrent in impressively high magnetic fields.
When graphene sheets are twisted with slighly larger angles, the two Dirac
cones are spaced in momentum close enough so that the neighbouring bands
hybridise into flat bands, a harbinger of unique phenomena. I explored a differ-
ent system combining two heterogeneous band structures: twisted monolayer
bilayer graphene (tMBG, chapter 9). In this system, flat bands result in the
emergence of correlated insulators at integer fillings of the conduction band
upon application of a displacement field. I explored the anomalous Hall effect
in these states and their Fermi velocity in a non-linear transport regime. Fi-
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nally, I explored another system: high angle twisted tetralayer graphene, where
the high angle decouples two bilayer subsystems and screens the Coulomb
interaction (chapter 10). It results in superconductivity in a finite range of
displacement fields. I explored this regime and its limitation when the Fermi
velocity becomes comparable to the superconducting condensate velocity.

As for future works, fundamental questions remain. Some of them would
only be answered through incremental advances. In the case of Brown-Zak
fermions, for example, we still understand poorly the bending of the Landau
levels and the staircase-like features at high magnetic fields. In this case, the-
oretical studies should be essential to identify possible mechanisms. In the
same system, other directions would also deserve a more careful look: how
do the high-conductivity slanted streaks emerge? High-order BZFs certainly
play a role in forming these states. What is the Landau quantisation of sec-
ondary Dirac fermions and their Berry phase? So far, we lack experimental
evidence. There is no question that the combination of large, high-quality
devices and ultra-low temperatures will be instrumental in answering these
questions. Concerning the other projects (proximity superconductivity in the
1D topological network of mtBG, correlated states of tMBG or superconduc-
tivity in tetralayer graphene), one can imagine fundamental developments. For
example, the proximitised helical states can be a basis for topologically pro-
tected superconducting qubits. Another idea would consist in inducing spin-
orbit coupling through proximity with a heavy metal, for example, by adding
transition metal dichalcogenides to the stack. What happens in this system
if the spin-degeneracy of the domain walls is lifted? As for the correlated
states of mtBG, one can imagine inducing superconductivity into the stack via
proximity with a superconducting finger to explore the interplay of anoma-
lous Hall effect and superconductivity. The diversity of potential studies with
high-angle heterostructure is unlimited. For example, one may imagine twisting
two magic-angle graphene layers at a high angle. What would be the resulting
feature? What about two mtBG layers stacked with a high angle? Could it
create a high-order topological network? Based on this thesis, the possibilities
of potential experimental systems and research directions are infinite, so the
experienced reader will undoubtedly come up with their own idea.



Appendix A
Fabrication of mesoscopic devices

The results presented in this thesis come after significant efforts to improve
the fabrication of van der Waals heterostructure. Good contacts are neces-
sary to observe the desired results. For example, high contact resistance can
blur the observation of low resistance features; low-transparency graphene-
superconductor interfaces can hamper observation of the zero resistance. Fab-
rication of suitable interfaces is a relatively complex method explained here.
In this appendix, I use the following acronyms:

PDMS polydimethylsiloxane
PMMA polymethyl methacrylate
PPC polypropylene carbonate

A.1 Exfoliation

Two-dimensional materials — a fortiori graphene — are extracted from a par-
ent bulk compound, consisting of multiple layers bound together by van der
Waals forces. These interlayer forces are weak compared to the in-plane cova-
lent bonds (or ionic for some compounds), making the different layers easily
peeled off from one another with various physical or chemical methods. The
highest quality yield stems from micromechanical exfoliation.

Exfoliation involves using low-tack adhesive tape1 to exfoliate the material
and cleaved it onto silicon-oxide substrates. To do so, a piece of tape is placed
onto a layered material to peel off the first few layers and then repeatedly
folded on itself to thin down the layers stuck to the adhesive. Next, the tape is
brought in contact with a clean substrate, such as a Si/SiO2 wafer. The tape is

During my PhD, I spent the first 6 months fabricating devices, which did not yield any
data presented in this thesis. The following section lists the method I used, and combines
information from other people who fabricated the devices shown in this thesis.
1 Low-tack is generally used for graphene/hBN, while high-tack can exfoliate more fragile
materials such as transition metal dichalcogenides.
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then slowly peeled from the substrate to leave a freshly cleaved material on top
of it. There are a few parameters that influence the quality and the maximum
lateral dimensions of monolayers. First, the size of the parent crystal limits the
maximum layer size. A second limiting factor is the crystal adhesion to a sub-
strate and the easiness of release from the tape. Controlling the depositon- or
peel-angle can avoid this limit. Third, the substrate-crystal surface chemistry
may influence the quality of the exfoliated layers. Plasma/O2 activation can
enhance it. Fourth, there are other less controlled factors, like surface rough-
ness of the substrate or humidity conditions. The most important here is the
parent bulk crystal’s quality and low defect density. Graphene is exfoliated
from highly oriented pyrolitic graphite from NGS Naturgraphit GmbH. hBN
crystals are grown by Kenji Watanabe and Takashi Taniguchi [88].

The resulting crystals can then be identified and selected through visi-
ble light optical microscopy. The optical contrast of 2D materials is seen
through Fabry-Pérot cavities between the 2D material and the dielectric (SiO2

layer). Graphene monolayers are most visible for oxide substrates of thickness
∼290 nm. Additionally, green band-pass filters can improve the optical con-
trast. With these techniques, it is possible to select flakes depending upon
their thicknesses, as different thicknesses have different absorption or refrac-
tion coefficients to incident light. When the colour contrast is not enough to
distinguish flakes of different thicknesses, one can use Raman spectroscopy or
atomic force microscopy to identify the different layer thicknesses.

The exfoliation with adhesives may leave some residues on the 2D materi-
als. This contamination prevents one from obtaining atomically thin interfaces
while stacking different layers; it may create bubbles or cracks, or limit elec-
tronic properties. There are a few methods to clean the stacks. Annealing at
300 ◦C to 500 ◦C in an inert gas (H2, Ar) or vacuum for several hours would
vaporise or decompose most contaminants. This works well for hBN, but other
2D materials may not be stable at such high temperatures. Graphene, for ex-
ample, may detach from the SiO2 substrate and roll-up. Another method uses
contact-mode AFM to clean the material by scanning the tip. It is, however, a
rarely used process as very lengthy. Finally, the encapsulation of flakes within
hBN results in a self-cleaning mechanism, agglomerating impurities into bub-
bles, allowing one to pattern a device into bubble-free areas.

A.2 Stacking

Vertical assembly of van der Waals heterostructures is performed using a mi-
cromanipulator system consisting of the following. A rotating hotplate is placed
on an X-Y micrometre stage under an optical microscope. A transfer arm is
placed between the microscope optics and the heating stage and is attached
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Fig. A.1: Fabrication of van der Waals heterostructures a) polymer stamping
technique used to pick-up and assemble the different flakes sequentially. b) optical micro-
graph of a completed stack of graphene encapsulated between two hBN flakes. c) high-
resolution transmission electron micrograph of hBN-graphene-hBN stack. Figure adapted
from refs [87,160].

to an X-Y-Z micrometre stage. Once graphene and hBN crystals are exfo-
liated separately on appropriate substratse, they can be picked up using a
PPC polymer film on a PDMS elastomer stamp. This stamp can easily be
realised on a microscope slide attached to the transfer arm so that the flake
pick-up can be seen under the microscope (see fig. A.1a). This stamp allows
for peeling an hBN flake directly off the SiO2 substrate and henceforth placed
over a graphene flake and brought in contact with it. Heating the graphene’s
SiO2 substrate favours van der Waals adhesion between the hBN flake and
the graphene layer. Graphene is peeled off its substrate when the elastomer
stamp is moved up. This stack can then be placed on top of another material
to compose a complex van der Waals heterostructure. The composite structure
can later be deposited on a pristine Si/SiO2 wafer for device processing. Fig-
ure A.1b shows an example of a simple van der Waals heterostructure. Figure
A.1c shows a section of the heterostructure, resulting in an atomically sharp,
impurity-free interface.

A.3 Lithography and contact deposition

Metal leads need to contact the van der Waals heterostructures for the sake
of electronic measurements. 1D edge contacts have substantially lower contact
resistance than the standard surface contact [91,160]. Therefore this technique
is essentially used for the devices presented in this thesis. A positive resist such
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as PMMA is used. Upon irradiation, it will undergo chain scission, lowering
the cross-link density and increasing the resist embrittlement. After coating
the substrate-heterostructure device, e-beam lithography with an EVO-MA10
scanning electron microscope is performed to selectively expose the resist, with
a resolution limited to 50 nm to 100 nm. In order to minimise the lithography
time, small and large parts of the contacts are exposed separately so that
the beam dose is adjusted for varying resulution. Several factors affect the
sharpness and the resolution of the final exposed pattern. The most impor-
tant is electrons scattering through the resist, broadening the exposed region.
This lowers the resolution but, in turn, makes the lift-off step easier: carefully
selecting the resist thickness is necessary.

In order to optimise the undercut profile and the resolution of the exposed
trenches, two resist with different molecular weights are used. The first layer is
a solution containing 3% 495K PMMA, spin-coated at 3000 rpm and annealed
at 150 ◦C for 5min. The second layer is a solution containing 3% 950K PMMA
and is spin-coated using the same conditions. The combined thickness of the
resist is ∼220 nm. The large molecular weight layer acts as a buffer to limit
the electron scattering in the underneath layer.

Contacts can then be developed into a 3:1 mixture of IPA and deionised
water. Placing the device in a beaker for 30 s is sufficient to dissolve and wash
away the regions with lower cross-linking. The device is then cleaned for 30 s in
IPA and blown with nitrogen. Metal is then deposited in the contact trenches.
There are different techniques: thermal evaporation, e-beam evaporation and
sputtering. E-beam evaporation is the method with the highest purity and thus
lowest contact resistance. We use a Moorfield e-beam evaporation system to di-
rect an electron beam at a metal target under a high vacuum (<5×10−6 mbar).
The kinetic energy of electrons is converted into thermal energy, causing sub-
limation of the metal. The generated metal vapour is then condensed onto the
sample. Chromium is first used as a thin (3 nm to 5 nm) adhesion-enhancing
layer before gold or other superconducting metals (40 nm). For usual devices,
gold gives good contact to graphene; therefore is the most common choice. Su-
perconductors enabling high-transparency Josephson junctions are MoRe or
NbTi. The last fabrication step is the lift-off: the PMMA resist is dissolved in
acetone for ∼1 h, removing the metal layer above it. The stack is transferred
in IPA for cleaning and dried with nitrogen gas.
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