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Abstract

Magnetic resonance techniques are able to accurately probe the interactions between elec-
tron spins, nuclear spins and external magnetic fields; this information is encoded in a set of
effective spin Hamiltonian parameters. Of particular interest are hyperfine coupling con-
stants (HFCCs), which display a strong dependence on unpaired electron (spin) density,
thus providing important insight into chemical bonding.

In particular, spin delocalisation can be used as a measure of covalency in paramagnetic ac-
tinide (An) molecules. The complexity of An bonding results from the possibility of valence
electrons occupying some or all of the 5f, 6d, 7s and 7p orbitals, requiring sophisticated elec-
tronic structure techniques to be described ab initio. The non-trivial An valence space is
partly a manifestation of the strong scalar relativistic and spin-orbit coupling (SOC) effects,
which also need to be included in theoretical models of An chemistry.

The interpretation of isotropic HFCCs as measures of spin density at the nucleus is based on
a non-relativistic Schrödinger-Pauli framework. This formalism breaks down for heavy el-
ements, as the significant relativistic effects require a 4-component Dirac treatment. How-
ever, 4-component electronic structure approaches are unfeasible for all but the simplest
systems. The computational cost can be reduced by decoupling the electronic and the
positronic degrees of freedom in the Dirac Hamiltonian via a unitary transformation. Care
must be taken to also apply this transformation to the hyperfine coupling operator, other-
wise a picture-change error (PCE) is introduced.

Our aim is to devise a computationalmethodology for determining relativistic, PCE-corrected
HFCCs for chemical systems of arbitrary size and complexity. With this in mind, we devel-
oped Hyperion, a Python-based program that computes SF-X2C-decoupled g-values and
HFCCs from active space wavefunctions, with or without SOC included a posteriori. Herein,
we use Hyperion to determine HFCCs for selected atoms, as well as for two An complexes
previously characterised via pulsed EPR techniques. For the latter, we further employHype-
rion results to simulate hyperfine sublevel correlation (HYSCORE) spectra, thus facilitating
a direct comparison with experimental data.
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Chapter 1

Introduction

1.1 Rationale for alternative format and organisation of thesis

This thesis is the result of a multi-stage approach to develop a computational tool for char-
acterising actinide complexes via magnetic resonance parameters determined ab initio. In
order to achieve this goal, it was first necessary to devise a suitable strategy for tackling the
electronic structure in actinide complexes. Although active space wavefunction methods
were identified as the most appropriate solution at the onset of this research project, ques-
tions regarding algorithm type, active space selection criteria or the inclusion of spin-orbit
coupling did not have a clear answer yet. Only after refining our electronic structure ap-
proach, it was possible to conceptualise and implement a software solution – the Hyperion
program – to determine EPR g-tensors and hyperfine coupling constants within the chosen
wavefunction-based framework. After some initial testing, the full performance of Hype-
rion was assessed against a previous experimental pulsed EPR study of selected actinide
complexes.1 Following an overview of the fundamental theoretical aspects, the structure of
this thesis follows the chronological progress of the research project, with each manuscript
representing a discrete stage, as detailed below.

Paper one: ”AnomalousMagnetism of Uranium(IV)-Oxo and -Imido Complexes Reveals Unusual
Doubly-Degenerate Electronic Ground States”
J.A. Seed, L. Birnoschi, E. Lu, F. Tuna, A.J. Wooles, N.F. Chilton and S.T. Liddle, Chem, 7,
1666–1680

In this work, CASSCF-SO and crystal field parametrisation techniques are used to elu-
cidate the unusually high low-temperature magnetic moments measured in two newly-
synthesised uranium(IV) complexes. We discover that the axial oxo and imido ligands
generate pseudo-symmetric electronic structures that result in pseudo-doublet spin-orbit
ground states, giving rise to atypical magnetic profiles. Both complexes are best modelled
using a minimal active space, however state-averaging results in an overestimated first en-
ergy gap. A crystal field model is employed to further improve the predicted electronic
spectrum via optimisation with respect to experimental measurements of temperature-
dependent magnetism.

J.A.S. prepared and characterised the compounds. L.B. carried out and interpreted the
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CASSCF-SO calculations and the subsequent crystal field parameter analysis. J.A.S., E.L.,
and F.T. carried out and interpreted the SQUID magnetometry. A.J.W. collected, solved, and
refined all the crystallographic data. N.F.C. and S.T.L. assisted with data analysis, directed
the research, and wrote the manuscript with input from all the authors.

Paper two: ”Hyperion: ANewComputational Tool for Relativistic Ab Initio Hyperfine Coupling”
L. Birnoschi and N.F. Chilton, J. Chem. Theory Comput. 2022, 18, 8, 4719–4732

This manuscript provides a comprehensive description of Hyperion, a Python-based pro-
gram for computing relativistic g-tensors and hyperfine coupling parameters from active
space wavefunctions, with or without spin-orbit coupling (SOC) included a posteriori. Hy-
perion also includes a new orbital decomposition method for assisting active space selec-
tion for calculations of hyperfine coupling. For benchmarking purposes, we determine hy-
perfine coupling constants of selected alkali metal, transition metal and lanthanide atoms,
based on CASSCF-SO, RASSCF-SO and RASCI-SO calculations in OpenMolcas. Our results
are in excellent agreement with experimental data from atomic spectroscopy, as well as
theoretical predictions from 4-component relativistic calculations.

The entire paper is the work of L.B. N.F.C. provided guidance and assisted with writing the
manuscript.

Paper three: ”A RelativisticQuantum Chemical Investigation of Actinide Covalency Measured
by EPR Spectroscopy”
L. Birnoschi and N.F. Chilton, unpublished

This work investigates actinide covalency in two AnCptt3 (An = Th, U) complexes using
the Hyperion package to obtain relativistic g-tensors and hyperfine coupling constants,
which are further employed in simulations of hyperfine sublevel correlation (HYSCORE)
spectra. We compare our results to experimental data reported by Formanuik et al, in order
to assess the performance of fully ab initio models of ligand hyperfine coupling. The extent
of covalency in AnCptt3 is quantified via Mulliken spin population analysis, which uncovers
different patterns in the spin density transfer between An and the ligand atoms.

The entire paper is the work of L.B. N.F.C. provided guidance and assisted with writing the
manuscript.
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1.2 Actinide covalency and connection to hyperfine coupling

The study of actinide bonding is primarily motivated by the need to improve separations
of lanthanide (Ln) and actinide (An) ions in spent nuclear fuel processing.2 Although such
separations are complicated by the similar ionic radii of Ln and An, differences in bonding
modes can be exploited via strategic complexation. Whereas Ln compounds are largely
ionic due to the contracted nature of the valence 4f shell, An 5f orbitals are sufficiently
expanded to overlap with ligand orbitals, thus giving rise to covalent bonds. Actinide co-
valency is thought to occur either as a result of enhanced orbital overlap (overlap-driven
covalency)3 or due to incidental orbital degeneracy (energy-degeneracy-driven covalency)4.
This interpretation follows the rationale of MO theory and is possibly oversimplified, how-
ever, even from a state-of-the-art electronic structure perspective, An bonding is non-trivial
due to the potential involvement of 5f, 6d, 7s and 7p orbitals.5

A method for quantifying An covalency is therefore highly desirable, so as to facilitate
the systematic screening of families of complexes and the identification of periodic trends.
Analytical schemes based on Mulliken (electron) populations, natural localised molecular
orbitals and the Quantum Theory of Atoms in Molecules (QTAIM) have previously been
employed in investigations of An covalency.3,6–8 Powerful insight was obtained by support-
ing computational findings with experimental data from X-ray absorption spectroscopy
(XAS)9 or Nuclear Magnetic Resonance (NMR) spectroscopy.8,10,11 In essence, all analytical
schemes mentioned divide the electron density distribution – usually determined compu-
tationally via Density Functional Theory (DFT) – into segments assigned to specific atoms
and/or bonds; partitioning is done at the basis function level (e.g. Mulliken,12 Löwdin)13 or
at the wavefunction level (e.g. natural population analysis,14 QTAIM).15 The applicability of
each formalism depends on the underlying assumptions, which range from a (somewhat
arbitrary) equal distribution of shared electron density among atoms (Mulliken)12 to a rig-
orous model of molecular structure as an open quantum system (QTAIM).15 The results of
population analysis can be roughly qualified as physical or unphysical, based on chem-
ical intuition and/or experimental insight, however electron populations themselves are
not physical observables and cannot be experimentally validated. Hence, it is important to
consider multiple quantifiers so as to avoid drawing biased conclusions.

Spin population analysis is a less frequently used technique that can be applied to para-
magnetic species. In the context of paramagnetic An complexes, the presence of ligand
atoms with non-zero spin populations suggests that the unpaired electrons (the spins) are
delocalised, which can be interpreted as a departure from the ionic bonding regime – ergo,
covalency. Although the approaches used to divide electron density should also be appli-
cable to spin density and therefore yield a similarly varied array of spin population tech-
niques, currently only Mulliken spin population analysis is widely supported by electronic
structure software. However, spin delocalisation can also be quantified through hyperfine
coupling constants (HFCCs) measured via Electron Paramagnetic Resonance (EPR) spec-
troscopy. This possibility of directly relating a theoretical measure of covalency to a phys-
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ical observable was exploited by Formanuik et al in the first pulsed EPR study of An cova-
lency,1 wherein empirical relationships between HFCCs and spin populations were used to
extract ligand spin populations from hyperfine sublevel correlation (HYSCORE) data.

Hyperfine coupling (HFC) strength is proportional to spin density and scales as r−3
N , where

rN is the electron spin-magnetic nucleus distance; as such, HFCCs are particularly sensitive
to small variations in the spin density distribution. However, this also makes HFCCs chal-
lenging to determine computationally due to the strong dependence on electron correlation,
which requires a multiconfigurational electronic structure approach and thus relatively ex-
pensive calculations. There is currently no established general strategy for electronic struc-
ture studies targeting HFCCs,† although previous work in this area has shown that basis
set size, polarisation functions and configuration excitation level all have a non-negligible
impact on accuracy.16–25 We note that Kohn-Sham DFT, which is a single-configurational
approach, has been extensively used to calculate HFC parameters for organic radicals and
transition metal complexes, with good results,26–28 however a growing body of evidence
indicates that this is due to fortuitous error cancellation.24,29 From among wavefunction-
based algorithms, active space methods, such as Complete Active Space Self-Consistent
Field (CASSCF), provide the most flexibility in terms of balance between accuracy – deter-
mined by the proportion of correlation effects captured – and cost. Flexibility is further
enhanced by the variety of implementations available, particularly within the OpenMol-
cas software.30 It is not surprising, therefore, that a number of recent HFC studies make
use of active space methods, ranging from Restricted Active Space Self-Consistent Field
(RASSCF)31,32 to Density Matrix Renormalisation Group CASSCF (DMRGSCF).33 Neverthe-
less, there is still scope for further investigation, particularly regarding active space selec-
tion strategies targeting HFCC accuracy.

The magnetic properties of actinide complexes are heavily influenced by relativistic effects,
which are conventionally split into two categories: spin-independent, or scalar relativis-
tic (SR), and spin-dependent; from the latter category, spin-orbit coupling (SOC) is most
important. SR effects are most prominent near atomic nuclei and therefore affect HFCCs;
they are usually accounted for by using a scalar-relativistic Hamiltonian in the electronic
structure optimisation, in place of the usual (non-relativistic) Schrödinger Hamiltonian.
Meanwhile, there are various approaches to calculating spin-orbit (SO) effects; in the weak
SOC limit, these can be treated as perturbations, however strong SOC should be included
in the zeroth order Hamiltonian to obtain a qualitatively accurate electronic wavefunction.
Strong relativistic effects are an additional complicating factor for ab initio models of HFC,
as the Fermi Contact (FC) contribution related to spin density at the nucleus does not arise
naturally in relativistic theories.34 Hence, the direct relationship between isotropic HFCCs
– which are equal to the FC contribution in the non-relativistic, no-SOC limit – and spin
population cannot be reliably used in relativistic systems.

We therefore set out to develop a relativistic, fully ab initio framework for determining
†A common denominator in previous theoretical HFC work is the use of uncontracted basis sets, however this becomes unfeasible

for large, experimentally-relevant molecules.
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HFCCs, with a view to study An covalency in experimentally-relevant molecules. We em-
ploy active space wavefunction-based methods and contracted basis sets to maintain fea-
sible computational costs, and explore the impact of active space selection on predicted
HFCCs. In order to assess the accuracy of this methodology, hyperfine structure measure-
ments from atomic spectroscopy are used as benchmarks. For larger systems, where low
symmetry precludes the straightforward determination of HFCCs from EPRmeasurements,
HYSCORE spectra are simulated based on the computed HFCCs and compared with exper-
imental spectra. Finally, spin delocalisation and hence An covalency are quantified via
Mulliken spin population analysis.
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Chapter 2

Theoretical Background

2.1 Wavefunction theory of electronic structure

2.1.1 Born-Oppenheimer approximation

The theoretical treatment of electronic structure starts with the Born-Oppenheimer (BO)
approximation, also known as the clamped nucleus approximation, which assumes that
electrons adjust instantaneously to nuclear motion. For a fixed set of nuclear coordinates
described by the vector R, the electronic structure can be elucidated by solving the eigen-
value problem

ĤeΨe(r;R) = Ee(R)Ψe(r;R), (2.1)

where Ĥe is the electronic Hamiltonian to be diagonalised, Ee(R) is the electronic energy
at the fixed geometry and Ψe(r;R) is the electronic wavefunction. The e subscript will
henceforth be dropped, as this work is concerned exclusively with electronic operators,
energies and wavefunctions determined within the BO framework. In the non-relativistic
(nr) limit, the electronic problem is described by the Schrödinger Hamiltonian

Ĥ(0)
nr =

1

2me

∑
i

p̂i · p̂i −
e2

4πε0

∑
i,N

ZN

RNi

+
e2

4πε0

∑
i>j

1

rij
, (2.2)

where the three sums correspond to kinetic, electron-nucleus and electron-electron inter-
action terms, respectively. Note that summations in Equation 2.2 run over electrons i, j
and/or nuclei N .

2.1.2 Single-configurational methods

The simplest electronic structure model of an Ne-electron system assumes that each elec-
tron is subjected to a mean field resulting from the combined influence of all nuclei and
the remaining Ne − 1 electrons. This results in a single-configurational description where
electrons are distributed among a set of spin-orbitals {χj(ri,mS,i)}, which are functions
of one-electron spatial coordinates (ri) and spin projection (ms,i). We henceforth use the
notation xi to denote the vector containing both spatial and spin coordinates of the ith elec-
tron. Since the Schrödinger Hamiltonian does not contain any spin-dependent terms, it is

17



common practice to separate spatial and spin degrees of freedom by writing spin orbitals
as

χpσ(xi) = φp(ri) σ(mS,i) (2.3)

where φp(ri) is a spatial orbital – or, simply, an orbital – and σ(mS,i) is a one-electron spin
function denoted as |α〉 for a spin-up electron (mS = 1/2) or as |β〉 for a spin-down electron
(mS = −1/2). The occupation number of a spatial orbital can be 2 (doubly-occupied orbital
with spin-paired electrons), 1 (singly occupied orbital with one unpaired electron) or 0
(unoccupied orbital).

The multi-electron wavefunction is conceptually the product of single-electron spin or-
bitals, however the wavefunction must be anti-symmetrised in order to satisfy the Pauli ex-
clusion principle, which ensures that the electronic wavefunction changes sign upon swap-
ping two electron labels and that no two electrons occupy the same quantum state. Mathe-
matically, the appropriately anti-symmetrised Ne-electron configuration is represented as
a Slater determinant:

|χ1χ2 . . . χNe〉 =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χn(x1)

χ1(x2) χ2(x2) . . . χn(x2)
...

... . . . ...
χ1(xNe) χ2(xNe) . . . χn(xNe)

∣∣∣∣∣∣∣∣∣∣
. (2.4)

A Slater determinant can therefore be succinctly represented as a set of spin-orbital oc-
cupation numbers. Although Slater determinants are eigenfunctions of the spin projection
operator Ŝz , they do not have a defined total spin, since multiple spin multiplicities can give
rise to the same spin projection. It is then useful to linearly combine determinants to form
Configuration State Functions (CSFs),1 which are eigenfunctions of the total spin operator
Ŝ2, and can be represented as sets of (spatial) orbital occupation numbers. By using CSFs in
electronic structure calculations instead of Slater determinants, the spin multiplicity of the
system is preserved. Additionally, the number of CSFs formed for a spin S by distributing
Ne electrons among No orbitals, Equation 2.5 (see Appendix A for derivation), is smaller
than the corresponding number of Slater determinants, Equation 2.6, which has important
consequences for the computational cost of multiconfigurational algorithms (Sections 2.1.3
and 2.1.4).

NCSF(Ne, No, S) =
2S + 1

No + 1

(
No + 1
Ne/2− S

) (
No + 1

Ne/2 + S + 1

)
(2.5)

Ndet(Ne, No) =

(
2No

Ne

)
(2.6)

In single-configurational electronic structuremethods, the occupiedmolecular orbitals (MOs)
are modelled as linear combinations of basis functions (most commonly a non-orthogonal
set of atomic orbitals, AOs). MO expansion coefficients are optimised via a self-consistent
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field (SCF) procedure by solving the secular equation

FC = SCε, (2.7)

where F is the matrix representation of the Fock operator in the AO basis, C contains all
MO coefficients, S is the AO overlap matrix and ε is the MO energy. The Fock operator is
a one-electron approximation of the electronic Hamiltonian in Equation 2.2, obtained by
replacing the two-electron interaction termwith a mean-field potential generated byNe−1
electrons.

Single-configurational SCF algorithms applied to closed-shell systems are known as Re-
stricted Hartree-Fock (RHF) and result in identical spatial distributions for spin-paired elec-
trons. In the case of open-shell systems, orbitals associated with paired electrons can ei-
ther be identical (Restricted Open-Shell Hartree-Fock, ROHF)2 or different (Unrestricted
Hartree-Fock, UHF). ROHF methods represent the wavefunction as a CSF,3 while UHF uses
a single Slater determinant model where the α and β spin-orbital manifolds are associ-
ated with different secular equations. Although computationally cheaper than ROHF, UHF
wavefunctions suffer from spin contamination and are not usually true spin eigenfunctions
– that is, their spin projection 〈Ŝz〉 is not integer or half-integer –which affects the accuracy
of predicted energies and properties.

2.1.3 Multiconfigurational methods

The single-configurational description of electronic structure is unreliable for a large num-
ber of chemical systems, ranging from ”simple” dimers4,5 to buckminsterfullerene,6 and in-
cluding, in particular, orbitally-degenerate molecules such as lanthanide and actinide com-
plexes.7 The difference between the total energy and the SCF prediction is known as cor-
relation energy and is mostly a result of the instantaneous electron-electron interaction
(dynamical correlation). However, there is also a second contribution, the static or non-
dynamical correlation, which does not have a physical origin, but rather results from the
inability of a single configuration to provide a qualitatively correct picture of the electronic
structure.

In order to represent electron correlation in the context of wavefunction theory (WFT), we
introduce the Configuration Interaction (CI) ansatz, Equation 2.8, which represents the N -
electron wavefunction as a linear combination of configurations ΦI (Slater determinants
or CSFs) defined with respect to a fixed set of MOs. When the summation in (2.8) includes
all possible configurations obtained by distributing N electrons among all the MOs, the
resulting wavefunction ansatz is known as Full Configuration Interaction (Full CI, FCI); in
the limit of an infinite basis set, the FCI wavefunction is exact. We note that herein we use
spin-adapted techniques and therefore all CI-type wavefunctions are defined in terms of
CSFs.

ΨCI =
∑
I

CIΦI . (2.8)
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The vast majority of multiconfigurational techniques implement a CI ansatz where the ex-
pansion coefficients CI are optimised variationally. Unfortunately, the computational cost
of such algorithms scales exponentially with the number of orbitals, rendering FCI opti-
misation unfeasible for all but the simplest systems. Truncated expansions that include a
subset of all possible CSFs are usually a reasonable compromise; as the CI expansion of
dynamically correlated systems is dominated by one particular configuration (the refer-
ence configuration), robust configuration selection criteria can be defined using the energy
and/or the excitation level† with respect to the reference.

Common electronic structure approaches involve an initial SCF step, followed by a multi-
configurational method such as CI to account for correlation.‡ This is an excellent strategy
for modelling dynamical correlation, as the SCF calculation provides an optimal orbital-
based description of the reference, which, in most cases, already provides a qualitatively
correct picture of the electronic structure. The orbital basis is less important for excited
configurations, as they are associated with much smaller CI coefficients. Instead, the ac-
curacy of the variational CI energy is primarily determined by the size of the accessible
configuration space.

A different strategy is necessary, however, tomodel strongly correlated systems. Within the
CI framework, strong correlation manifests as a multireference wavefunction, containing
multiple large contributions to the CI expansion. As a result, single-configurational meth-
ods cannot provide a suitable starting point for the correlation-including step. Instead, MOs
should be optimised with respect to all reference configurations via a Multiconfigurational
SCF (MCSCF) procedure.

MCSCF methods represent the wavefunction as a CI expansion in terms of selected con-
figurations, with the goal of optimising both the CI coefficients and the underlying MOs
self-consistently.8,9 Although general MCSCF frameworks allow for arbitrary configuration
selections, the most widely used approaches are based on the concept of an active space,10,11

wherein a user-defined number of electrons and set of orbitals completely determine which
configurations are included in the MCSCF wavefunction.

2.1.4 CASSCF and RASSCF

Complete Active Space (CAS) theories10–12 divide the molecular orbital space into three cat-
egories: inactive orbitals, which are doubly occupied in all considered configurations, active
orbitals, having variable occupation, and virtual orbitals, which remain unoccupied. The
multiconfigurational wavefunction is then represented as a superposition of all CSFs ob-
tained by distributing a predetermined number of active electrons among the active orbitals.
Although CI methods traditionally use a determinant-based expansion for the wavefunc-

†The excitation level of a Slater determinant or CSF with respect to the reference corresponds to the number of (spin-)orbitals
that have different occupations in the two configurations. A configuration that differs from the reference by one (spin-)orbital is a single
excitation (or a ”single”), one that differs by two spin orbitals is a ”double” and so on. Note that the same configuration – understood in the
general, electrons-in-orbitals sense – can be associated with different excitation levels, depending on whether a CSF- or a determinant-
based description is used.

‡For this reason, multiconfigurational methods are also known as post-Hartree-Fock, or post-HF, methods.
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tion, as this results in an easily vectorisable implementation, the Split Graphical Unitary
Group Approach (Split GUGA)13–16 enables modern CASSCF codes to employ a CSF-based
description instead,§ thus preserving spin symmetry and maintaining relatively low mem-
ory and storage requirements (c.f. equations 2.5 and 2.6). In particular, the CASSCF imple-
mentation in OpenMolcas uses a spin-free formalism, that is, from the 2S+1 spin-adapted
eigenstates |SM〉 that form a spin multiplet, only the state with the maximum projection
– the ”spin-free” state |SS〉 – is explicitly determined.

The CASSCF method optimises both the CI coefficients and the MOs; CI-only variants that
keep the MOs constant are referred to as CASCI. While the CI problem is a straightforward
diagonalisation of the Hamiltonian matrix in configuration space, CASSCF orbital optimi-
sation seeks to solve the Brillouin-Lévy-Berthier (BLB) problem:10〈

0
∣∣∣Ĥ (Êpq − Êqp

)∣∣∣ 0〉 = 0, Êpq = â†pαâqα + â†pβâqβ. (2.9)

In Equation 2.9, |0〉 is the CASSCF wavefunction and Êpq denotes a (singlet) excitation
operator from orbital q to orbital p. Êpq is formally defined using second-quantisation
creation (â†) and annihilation (â) operators. The CASSCF wavefunction is invariant with
respect to orbital rotations within the inactive, active and virtual subspaces and, as a result,
only BLB elements with p and q belonging to different subspaces have to be considered.
Modern CASSCF codes, including the OpenMolcas implementation employed herein, solve
the BLB problem via the Super-CI (SCI) formalism. The SCI wavefunction,

|SCI〉 = |0〉+
∑
p>q

cpq |p→ q〉 , (2.10)

is constructed by adding to |0〉 all singly-excited configurations |p→ q〉 (SX states) of the
form

|p→ q〉 =
(
Êpq − Êqp

)
|0〉 . (2.11)

The BLB equation 2.9 therefore reduces to a CI-type problemwherein the coefficients cpq are
optimised; this is solved approximately due to computational constraints.10,11 The natural
orbitals obtained by diagonalising the Super-CI one-particle density matrix are then used as
the new orbital set. When determining more than one electronic state/root (state-averaged
CASSCF, SA-CASSCF), a weighted average of state-specific Super-CI density matrices is
diagonalised instead – this yields pseudonatural orbitals. We note that all state-averaged
calculations reported in this thesis use equal weightings for the optimised roots.

Restricted Active Space (RAS) approaches17 are an extension of the CAS model, allowing
the active orbitals to be partitioned into three subspaces, RAS1, RAS2 and RAS3. The RAS1
orbitals are mostly doubly-occupied and a user-defined maximum number of electrons is
allowed out of the entire subspace. Similarly, RAS3 orbitals are mostly unoccupied, with a
user-defined maximum number of electrons allowed into the subspace. RAS2 is the active

§Note that the OpenMolcas implementation of CASSCF still uses Slater determinants in the innermost subroutines of the CI opti-
misation steps.
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space in CAS-type calculations in which all excitation levels are allowed. Due to these
restrictions, RASSCF and RASCI algorithms can accommodate a larger number of active
orbitals compared to CASSCF/CASCI, at the expense of slower convergence due to orbital
rotations between RAS subspaces being strongly coupled to CI rotations.17 RASmethods are
suited for electronic structure problems requiring large active spaces † or for incorporating
(some) dynamical correlation effects into the orbital optimisation procedure. Hence, this
method is well-suited to modelling hyperfine coupling, which is particularly sensitive to
dynamical correlation and to variations in the MO basis.

The flexibility of active space methods makes them an attractive option for a wide vari-
ety of chemical systems, as the size of the calculation can be tuned to give an optimal
balance between accuracy and cost. It comes as no surprise, then, that this area of compu-
tational chemistry has seen a number of exciting developments in recent years. The expo-
nentially scaling Davidson diagonalisation employed for CI optimisation drastically limits
the applicability of CASSCF. As a result, new implementations have been proposed, where
the standard CI eigensolver is replaced by an approximate, lower-scaling method such as
stochastic Quantum Monte Carlo CI (commonly referred to as FCIQMC),18 Density Matrix
Renormalisation Group (DMRG)19,20 or Heat-bath CI (HCI).21 The first two approaches are
implemented in OpenMolcas, while the latter is available as part of the PySCF package.22,23

Aside from the CI solver, the AO basis size also poses difficulties, as integrals have to be
transformed after each orbital optimisation iteration; Sun and coworkers provide a solu-
tion to this problem in the form of an AO-driven CASSCF algorithm,24 also implemented in
PySCF. Most recently, a Localised Active Space SCF (LASSCF) method has been proposed
as an electronic structure strategy for strongly correlated systems with weakly entangled
subunits.25

The additional parameters introduced by new implementations naturally require extensive
benchmarking to establish optimal/recommended values, as well as ranges of applicabil-
ity. Nevertheless, a varied toolkit of active space techniques is ideal for tackling electronic
structure problems at the forefront of chemical research – including, but not limited to, ac-
tinide complexes – where the large number of degrees of freedom and the complex electron
interactions render conventional approaches unfeasible.

2.1.5 Chemical properties in second quantisation

The expectation value of a one-particle operator F̂ with respect to an N -electron wave-
function Ψ is expressed in first quantisation as〈

Ψ
∣∣∣F̂ ∣∣∣Ψ〉 =

∫
F̂ (x1) γ1(x1,x1) dx1, (2.12)

†The largest feasible active space within CASSCF is around CAS(16,16), although the exact limit also depends on the spin multiplicity
and on the AO basis size.
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where γ1(x1,x′
1) denotes the first-order/one-particle reduced density matrix

γ1(x1,x′
1) = N

∫
Ψ∗(x1,x2, . . .xN) Ψ(x1,x2, . . .xN) dx2 . . . dxN . (2.13)

Note that all integrals in equations 2.12 and 2.13 are evaluated over the entire physical
space and over all spin states. Although equation 2.12 is exact, the continuous integrals
over an infinite range of spatial coordinates are impractical to implement in orbital-based
electronic structure algorithms. Instead, expectation values are represented in second quan-
tisation, using matrix elements (Fpσ,qτ ) over spin-orbitals, together with creation (â†pσ) and
annihilation (âqτ ) operators which enable the ”movement” of electrons in configuration
space. The expectation value of F̂ hence becomes〈

Ψ
∣∣∣F̂ ∣∣∣Ψ〉 =

∑
pσqτ

Fpσ,qτ

〈
Ψ
∣∣â†pσâqτ ∣∣Ψ〉 , (2.14)

where
Fpσ,qτ =

∫
φ∗
p(r) σ

∗(mS) F̂ (r) φq(r) τ(mS) dr dmS. (2.15)

Products of creation and annihilation operators are represented in matrix form by (reduced)
density matrices (RDMs). The one-particle RDM (1-RDM) of state |Ψ〉 – i.e. the second
quantisation equivalent of equation 2.13 – is formally defined in spin-orbital space as

Γpσ,qτ =

∫
Ψ∗(x1,x2, . . .xN) â

†
pσâqτ Ψ(x1,x2, . . .xN) dx1 dx2 . . . dxN . (2.16)

If F̂ only acts on functions of spatial coordinates, then the spin degree of freedom in equa-
tion 2.15 can be integrated out.‡ The resulting expectation value can then be evaluated in
(spatial) orbital space, using the spin-summed 1-RDM,

Pα+β
pq = Γpα,qα + Γpβ,qβ , (2.17)

as 〈
Ψ
∣∣∣F̂ ∣∣∣Ψ〉 =

∑
pq

Fpq P
α+β
pq , Fpq =

∫
φ∗
p(r) F̂ (r) φq(r) dr. (2.18)

Note that the elements of P α+β are integrals of the excitation operators Êpq introduced in
equation 2.9.

If, on the other hand, F̂ acts on both spatial and spin functions, its second quantisation
representation in orbital space is less straightforward to derive. To begin with, consider a
one-particle operator of the form

F̂ (r,mS) = V̂ (r) Ŝz(mS), (2.19)
‡The term ”integration” is used loosely here, as the domain of mS consists of two values, +1/2, corresponding to |α〉, and −1/2,

corresponding to |β〉, hence the ”integral” is really just a discrete sum of two terms.
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where we have used Ŝz to denote the one-electron spin projection operator and V̂ (r) to
represent the purely spatial part of F̂ . The effect of Ŝz on one-electron spin functions is, by
convention,

Ŝz |α〉 = +
1

2
|α〉 , Ŝz |β〉 = −

1

2
|β〉 , (2.20)

hence 〈
α
∣∣∣Ŝz

∣∣∣α〉 = +
1

2
, (2.21)〈

β
∣∣∣Ŝz

∣∣∣ β〉 = −1

2
, (2.22)〈

α
∣∣∣Ŝz

∣∣∣ β〉 =
〈
β
∣∣∣Ŝz

∣∣∣α〉 = 0, (2.23)

since |α〉 and |β〉 are orthogonal. For a pair of orbitals p and q, we have

Fpα,qα = +
1

2

∫
φ∗
p(r) V̂ (r) φq(r) dr = +

1

2
Vpq, (2.24)

Fpβ,qβ = −1

2

∫
φ∗
p(r) V̂ (r) φq(r) dr = −

1

2
Vpq, (2.25)

and 〈
Ψ
∣∣∣F̂ ∣∣∣Ψ〉 =

1

2

∑
pq

Vpq

〈
Ψ
∣∣∣â†pαâqα − â†pβâqβ∣∣∣Ψ〉 (2.26)

=
1

2

∑
pq

Vpq P
α−β
pq . (2.27)

In equation 2.27, we have introduced the one-particle reduced spin density matrix P α−β –
usually referred to as spin density matrix or spin 1-RDM – with elements

Pα−β
pq = Γpα,qα − Γpβ,qβ . (2.28)

Although the present discussion has so far focused on expectation values, we note that
the calculation of matrix elements between differentN -electron wavefunctions follows the
same principles, with state-specific 1-RDMs replaced by one-particle transition density ma-
trices (1-TDMs). While state-specific 1-RDMs are real and symmetric for real wavefunc-
tions, 1-TDMs are not generally symmetric, but they are always real for real wavefunctions.

We are now in a position to consider a general one-particle operator acting on both spatial
and spin functions,

F̂ = V̂(r) · Ŝ (2.29)

= V̂ x Ŝx + V̂ y Ŝy + V̂ z Ŝz (2.30)

= V̂ + Ŝ− − V̂ − Ŝ+ + V̂ z Ŝz. (2.31)

Equations 2.30 and 2.31 are expansions of F̂ in terms of Cartesian and spherical tensor
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operators, respectively. The relationship between the two sets is given by

V̂ ± = V̂ x ± iV̂ y , Ŝ± = Ŝx ± iŜy, (2.32)

where i denotes the imaginary unit. Although the Cartesian expansion is simpler, spherical
operators are better suited to determinations of matrix elements with respect to spin eigen-
functions – we therefore employ the latter in the remainder of this section. The second
quantisation representation of F̂ is

F̂ =
∑
pq

(
V +
pq T̂

1,−1
pq − V −

pq T̂
1,1
pq + V z

pq T̂
1,0
pq

)
, (2.33)

where T̂ 1,1
pq , T̂ 1,−1

pq , and T̂ 1,0
pq are spherical triplet excitation operators defined as

T̂ 1,1
pq = −â†pαâqβ (2.34)

T̂ 1,−1
pq = â†pβâqα (2.35)

T̂ 1,0
pq =

1

2

(
â†pαâqα − â

†
pβâqβ

)
. (2.36)

Note that the matrix representation of T̂ 1,0
pq is the spin 1-RDM P α−β multiplied by a factor

of 1/2.

Together with the singlet operator Êpq, the triplet excitation operators form a set of tensors
that transform as spin eigenfunctions. As a result, their matrix elements with respect to
spin eigenstates |SM〉 – where S is the spin quantum number and M denotes the spin
projection – can be calculated using the Wigner-Eckart (WE) theorem, equation 2.37.〈

ASM
∣∣∣T̂ [k](q)

∣∣∣BS ′M ′
〉
= 〈S ′M ′kq |SM 〉

〈
AS
∣∣∣∣∣∣T̂[k]

∣∣∣∣∣∣BS ′
〉

(2.37)

Above, we added the labels A and B to the bra-ket notation to denote an arbitrary set
of spin-independent quantum numbers, highlighting the applicability of WE theorem to
electronic wavefunctions having different spatial parts. The first element on the right-
hand-side of equation 2.37 denotes a Clebsch-Gordan (CG) coefficient, while the second is
independent of the spin projection and is known as aWE-reducedmatrix element. Equation
2.37 uses conventional tensor operator notation for clarity, however note that the tensor
index q should not be confused with the orbital label employed in second quantisation
expressions. To avoid any further confusion, we henceforth drop the general notation and
instead refer to the corresponding second quantisation excitation operators:

T̂ [0](0)→ Êpq ; T̂ [1](1)→ T̂ 1,1
pq ; T̂ [1](−1)→ T̂ 1,−1

pq ; T̂ [1](0)→ T̂ 1,0
pq . (2.38)

The coupling between spin-adapted states |ASM〉 and |BS ′M ′〉 under a mixed spin-spatial
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operator F̂ can therefore be expressed as〈
ASM

∣∣∣F̂ ∣∣∣BS ′M ′
〉
=
∑
pq

(
V +
pq 〈S ′M ′1 − 1 |SM 〉

〈
AS
∣∣∣∣∣∣T̂[1]

pq

∣∣∣∣∣∣BS ′
〉

− V −
pq 〈S ′M ′1 1 |SM 〉

〈
AS
∣∣∣∣∣∣T̂[1]

pq

∣∣∣∣∣∣BS ′
〉

+ V z
pq 〈S ′M ′1 0 |SM 〉

〈
AS
∣∣∣∣∣∣T̂[1]

pq

∣∣∣∣∣∣BS ′
〉 )

. (2.39)

TheWE theorem is essential for calculating spin-dependent properties from spin-free elec-
tronic structure data. Matrix elements of the type

〈
ASS

∣∣∣T̂ 1,0
pq

∣∣∣BS ′S ′
〉
are straightfor-

wardly determined via equation 2.27 and only require the spin 1-RDM (1-TDM) of the spin-
free state(s) and the integrals Vpq in the orbital basis. The results can then be divided by
the appropriate CG coefficient to obtain the WE-reduced elements, which are subsequently
used in 2.39 to determine matrix elements between states of arbitrary spin projectionM .§

An example of this methodology is described in Section 2.1.6.

We end this overview by highlighting some particularities of matrix rotations between or-
bital bases. Most electronic structure frameworks employ a set of non-orthogonal AOs,
while optimised MOs are made orthonormal; transformations between the two bases are
therefore a common occurrence in both electronic structure optimisations and property
calculations. It is worthwhile to note that, while density matrices (spin or spin-summed,
1-RDMs or 1-TDMs) and matrices of spatial integrals Vpq share a common orbital basis,
they transform differently. As such, for a spatial integral matrix V and a density matrix P ,
AO↔MO rotations are expressed as:

V MO = C> V AO C (2.40)

V AO = S C V MO C> S (2.41)

PMO = C> S P AO S C (2.42)

P AO = C PMO C> , (2.43)

where S is the AO overlap matrix and C is the matrix of MO coefficient (column) vectors.
The validity of these expressions can be verified by checking that the integral〈

Ψ
∣∣∣V̂ ∣∣∣Ψ〉 = Tr

[
V >P

]
= Tr

[
P>V

]
(2.44)

is invariant under orbital basis transformations.

2.1.6 State interaction methods for spin-orbit coupling

TheRestricted Active Space State Interaction (RASSI) method is used to determine the spin-
orbit coupling between spin-adapted CASSCF/RASSCF states via a quasi-degenerate per-

§Within the Hyperion implementation, this is referred to as the spin-free (|ASS〉 states) to spin-free+spin (|ASM〉 states) basis
transformation.
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turbation theory (QDPT) formalism.26 Unlike traditional perturbative approaches, RASSI is
suitable for systems exhibiting strong SOC, while also being more computationally afford-
able compared to variational SOC-including algorithms.

RASSI models spin-orbit coupling based on the Breit-Pauli (BP) spin-orbit Hamiltonian,

HBP
SO =

∑
i

HBP
SO(i) +

∑
i 6=j

HBP
SO(i, j), (2.45)

with the one-electron (HBP
SO(i)) and two-electron (HBP

SO(i, j)) contributions defined as

HBP
SO(i) =

e2 h̄

2m2
e c

2

∑
N

ZN

r3N
si · liN , (2.46)

HBP
SO(i, j) = − e2 h̄

2m2
e c

2

lij
r3ij
· (si + 2sj) . (2.47)

In Equations 2.46 and 2.47, liN and lij denote the orbital angular momentum of electron i
with respect to nucleusN and with respect to electron j, respectively, while ZN represents
the bare nuclear charge ofN . To circumvent handling computationally expensive two-elec-
tron integrals, an effective one-electron representation – the spin-orbit mean-field (SOMF)
approximation27 – is employed:

HSOMF
pq =

〈
p
∣∣∣ĤSO(1)

∣∣∣ q〉+
1

2

∑
t

nt

[〈
pt
∣∣∣ĤSO(1, 2)

∣∣∣ qt〉
−
〈
pt
∣∣∣ĤSO(1, 2)

∣∣∣ tq〉− 〈tp ∣∣∣ĤSO(1, 2)
∣∣∣ qt〉] , (2.48)

where indices p, q and t correspond to spin-orbitals, nt are effective orbital occupation
numbers, and ĤSO(1) and ĤSO(1, 2) denote one-electron and two-electron SOC operators,
respectively. Within RASSI, computational cost is further reduced by only considering one-
center integrals when constructing the HSOMF

pq matrix elements† and using atomic average
valence occupations§ for nt – this is known as the method of Atomic Mean-Field Integrals
(AMFI).28

As the AMFI spin-orbit Hamiltonian is an effective spin-dependent one-electron operator,
its general form can be written as

ĤAMFI
SO = V̂

AMFI
(r) · Ŝ, (2.49)

which is identical to operator in Equation 2.29. V̂
AMFI

(r) is constructed entirely from atomic
parameters and, as a result, its integrals can be evaluated in the AO basis prior to the elec-
tronic structure calculation.

†In other words, integrals between basis functions on different atoms are not included.
§The average valence occupation of a given atom is p/m, where p is the number of valence electrons andm, the number of valence

orbitals.
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Following the strategy outlined in section 2.1.5, the SO Hamiltonian matrix HSO (we drop
the AMFI superscript for brevity) is constructed in the |ASM〉 basis derived optimised
spin-free states from CASSCF/RASSCF. Wigner-Eckart-reduced AMFI matrix elements are
evaluated as

V k
AB =

∑
pq

A→BPWE
pq V k

pq, k = x, y, z , (2.50)

where we have introduced the WE-reduced 1-TDM between states |ASS〉 and |BS ′S ′〉,

A→BPWE
pq =

1

2 〈S ′S ′1 0 |SS 〉
A→BPα−β

pq . (2.51)

UsingWE-reduced 1-RDMs and 1-TDMs is more efficient than computingWE-reduced ma-
trix elements for each term in the second quantisation expansion, c.f. equation 2.39. As
ĤSO is a one-electron spin-dependent operator, only matrix elements with∆S = 0,±1 and
∆M = 0,±1 are non-zero; for reference, we include general expressions for these below.

〈
ASM

∣∣∣ĤSO

∣∣∣B S + 1M ± 1
〉

= −1

2

√
(S ±M + 1)(S ±M + 2)

(S + 1)(2S + 1)(2S + 3)
(±V x

AB + V y
AB)

(2.52)〈
ASM

∣∣∣ĤSO

∣∣∣B S + 1M
〉

=

√
(S + 1)2 −M2

(S + 1)(2S + 1)(2S + 3)
V z
AB (2.53)

〈
ASM

∣∣∣ĤSO

∣∣∣B SM ± 1
〉

= ±1

2

√
(S ∓M)(S ±M + 1)

S(S + 1)(2S + 1)
(±V x

AB + V y
AB)

(2.54)〈
ASM

∣∣∣ĤSO

∣∣∣B SM
〉

=
M√

S(S + 1)(2S + 1)
V z
AB (2.55)

〈
ASM

∣∣∣ĤSO

∣∣∣B S − 1M ± 1
〉

=
1

2

√
(S ∓M)(S ∓M − 1)

S(2S − 1)(2S + 1)
(±V x

AB + V y
AB) (2.56)

〈
ASM

∣∣∣ĤSO

∣∣∣B S − 1M
〉

=

√
S2 −M2

S(2S − 1)(2S + 1)
V z
AB (2.57)

Once constructed, the HSO matrix is then diagonalised to yield SO eigenstates as linear
combinations of the original |ASM〉 states.

2.2 Relativistic quantum chemistry

2.2.1 Decoupling of the Dirac equation

The electron density of heavy elements is strongly influenced by relativity, particularly in
the vicinity of nuclei, where electrons travel at appreciable fractions of the speed of light.
For this reason, any approach designed to model HFC in actinide complexes must include
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relativistic effects to be meaningful. Any relativistic electronic structure problem formally
starts from the one-electron Dirac equation or from the many-electron Breit equation.29

The 4-component (4c) solutions (known as spinors) diagonalise the relativistic Hamiltonian
and give rise to an energy spectrum containing both positive and negative values, which
are identified as electronic and positronic eigenstates, respectively.

Consider the generalised form of a 4-component many-electron Hamiltonian,30

Ĥ4c =
∑
i,N

(
ViN c(σi · p̂i)

c(σi · p̂i) ViN − 2mec
2

)
+

1

2

∑
i 6=j

ĝ(i, j) + VNN . (2.58)

Here, σi and p̂i are operators acting on the coordinates of electron i, ĝ(i, j) acts on the
coordinates of electrons i and j, while ViN and VNN denote the electron-nucleus and nu-
cleus-nucleus interaction potentials, respectively. σi is the 3-vector of Pauli matrices, p̂i is
the linear momentum operator, c is the speed of light andme, the rest mass of the electron.
The first term on the right-hand side represents the Dirac Hamiltonian, written in 2× 2

block form, where each block is a 2-component operator.

Relativistic electronic structure calculations reported hereinmake use of theDirac-Coulomb
Hamiltonian, where the 2-electron contribution only includes the Coulomb interaction,

gC(i, j) =
e2

4πε0

∑
i>j

1

rij
, (2.59)

which essentially amounts to taking the non-relativistic limit of electrodynamics.30 The rel-
ativistic many-electron Hamiltonian can be improved by additionally including the Breit
term,31

gB(i, j) = − e2

8πε0

[
αi · αj

rij
+

(αi · rij)(αj · rij)
r3ij

]
, (2.60)

yielding the Dirac-Coulomb-Breit (DCB) Hamiltonian. In Equation 2.60, αi and αj are 3-
vectors of Dirac matrices. We note that the DCB Hamiltonian is not implemented in Open-
Molcas and is therefore not used in this work.

It is possible to solve the Dirac-Coulomb(-Breit) equation self-consistently; the algorithm is
known as Dirac-Hartree-Fock (DHF) and has been employed in HFCC calculations, albeit
only for atoms32,33 and open-shell diatomics.34,35 Relativistic self-consistent algorithms have
seen slow progress due to early issues caused by the finite-basis representation of the Dirac
Hamiltonian; this problem was labelled ”finite basis set disease”36 and manifested as spuri-
ous low-energy intruder states.37 A solution was proposed in the early 80s, in the form of
restricted kinetic balance (RKB).38

The most significant drawback of DHF, particularly with regards to HFCCs, is the inabil-
ity to account for electron correlation.35 From among the correlation-including 4-compo-
nent methods available, multiconfigurational Dirac-Fock (MCDF) and relativistic coupled-
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cluster (CC) are notable examples that have been involved in HFC studies.33,39 While the
4-component level of theory is the most elegant formalism describing relativistic electronic
structure, its various implementations require significant computational resources, espe-
cially when correlation is required. Computational cost could be reduced by employing
a 4-component DFT method,40 which has been successfully applied to a series of 4d1 and
5d1 complexes.41 However, just as any DFT approach, this is only appropriate for single-
reference problems.

A common strategy to increase the efficiency of a relativistic approach is decoupling the
positronic degrees of freedom (the lower/small component) from the electronic degrees of
freedom (the upper/large component), thereby reducing the electronic structure problem to
a 2-component framework. In what follows, we discuss strategies for decoupling the one-
electron Dirac Hamiltonian; however, many-electron electronic structure methods seek to
decouple the 4-component one-electron Fock operator, which additionally includes an ef-
fective potential resulting from the interaction of an electron with other electrons. If two-
electron magnetic and retardation effects are ignored – which can be achieved by ignoring
the Breit term – then the effective electron-electron contribution can be represented as a
scalar potential, 42 i.e. in a form similar to the electron-nucleus potential ViN . Hence, the
Dirac operator and the Fock operator only differ in the form of the electrostatic potential
V and have otherwise similar matrix representations; as such, the decoupling strategies
discussed below are applicable to both.

Decoupling can either be achieved by elimination of the small (lower) component (ESC) or
by a unitary transformation that reduces the 4-component Hamiltonian to a block-diagonal
form. The former method is based on the 2-component ESC equation43

(V − E)ψU +
1

2mee2
[(cσ · p̂)ω(cσ · p̂)] ψU = 0, (2.61)

where ψU is the upper component of the 4-spinor and ω is given by

ω =

[
1− V − E

2mec2

]−1

=

∞∑
k=0

(
V − E
2mec2

)k

. (2.62)

The order of the unnormalised ESC (UESC) calculation is given by the last term of the
truncated sum.

The scalar parameter ω can also be written as

ω =
2mec

2

2mec2 − V

[
1 +

E

2mec2 − V

]−1

, (2.63)

which forms the basis of the regular approximation (RA) family of elimination methods.
The lowest order truncation of this expression defines the zero order regular approxima-
tion (ZORA). This is perhaps the most popular relativistic formalism in theoretical HFCC
studies and has been widely used in combination with DFT.44–46 Autschbach47 studied the
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performance of this approach for HFC integrals and concluded that, while ZORA accurately
predicts the properties related to valence electrons, it fails to describe core shells correctly.

Filatov and Cremer used the improved infinite order regular approximation (IORA) in com-
bination with ab initio methods48 and with DFT49 to predict isotropic HFCCs for atoms
and some mercury molecules. They found that IORA with a modified metric (IORAmm)
yields reasonable results as long as a balanced description of spin polarisation is available
from the electronic structure theory. In a later study,50 the normalised elimination of the
small component (NESC) formalism was employed within wavefunction theory to predict
hyperfine parameters of selected mercury compounds.

One major disadvantage of ESC methods is their reliance on energy-dependent parameters
that are not variational. This can be circumvented by decoupling the 4-component problem
via a unitary transformation Û that block-diagonalises the Dirac Hamiltonian (ĤD):

Ĥbd = Û† ĤD Û =

(
Ĥ

(+)
bd 0

0 Ĥ
(−)
bd

)
. (2.64)

The Douglas-Kroll-Hess (DKH) transformation relies on the expansion of the Hamiltonian
in powers of the external potential V . A series of unitary matrices Ûk sequentially remove
off-diagonal terms up to order k, yielding a DKHn Hamiltonian decoupled to nth order in
V :

ĤDKHn = Ûn · · · Û1 ĤD Û†
1 · · · Û†

n. (2.65)

In the context of HFCC calculations, scalar relativistic DKH has been successfully used
in conjunction with DFT,51,52 orbital-optimised second-order Møller-Plesset theory (OO-
MP2),53 and DMRGSCF.54 Malkin et al were the first to investigate the advantages of us-
ing a finite nucleus within a DFT/DKH2 approach52 over the usual point nucleus;51 a gen-
eral increase in accuracy was observed for predicted HFCCs of atoms and small molecules.
Sandhofer et al53 compared DKH calculations starting from the default free-particle Foldy-
Wouthuysen (fpFW) transformation and from its gauge-invariant correspondent (denoted
by fπFW), concluding that the latter produces divergent HFCCs. Finally, Lan et al54 im-
plemented the higher order DKH3 transformation (and corresponding property operators)
combined with DMRGSCF to compute scalar relativistic hyperfine data for small transition
metal molecules.

When adopting a transformation-based decoupling approach, care must be taken to apply
the same unitary transformation to the property operators. If this is not done, the calculated
molecular integrals are inaccurate – this is known as the picture change effect (PCE). PCE is
significant in regions close to the nuclei of heavy elements, therefore affecting HFC param-
eters. For example, Sharkas et al55 employed a scalar relativistic DKH scheme combined
with CASSCF/RASSI to describe SR and SOC effects, respectively. However, the hyperfine
operators used were not picture change corrected, thus limiting the applicability of this
method to electrons in light atoms/ligands or in high angular momentum orbitals (where
the HFC is dominated by the PSO mechanism).
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It is also possible to determine the overall unitary transformation Û iteratively in a two-step
(the Barysz-Sadlej-Snijders technique, BSS)56 or a one-step (eXact-2-component, X2C)57

procedure. The PCE problem is straightforward to solve in this case, since Û is readily
available. Autschbach used the X2C approximation with Hartree-Fock and Kohn-Sham or-
bitals to determine HFCCs of selected atoms and the HgH radical,58 then later combined the
X2Cmethodology with CASSCF-SO and RASSCF-SO wavefunctions.59 The disadvantage of
such iterative schemes is that the 4-component Dirac operator must be diagonalised to de-
termine the transfer operator X̂ relating the upper component ψU to the lower component
ψL of the Dirac 4-spinor:42

ψL = X̂ψU. (2.66)

The unitary transformation directly depends on X̂ .

For a complete picture of the available relativistic methods for determining magnetic prop-
erties, the direct perturbation theory (DPT) approach should also be mentioned. In the
DPT framework, relativistic and hyperfine effects are treated as perturbations and HFCCs,
as second-order properties. Hyperfine integrals were successfully derived by Hennum et
al60 using this formalism. DPT approaches the correct limit as c → ∞ since it formally
starts from the non-relativistic limit of the Dirac equation, the Lévy-Leblond equation.61

However, this perturbative treatment is only valid in the weakly relativistic regime, which
is generally not applicable to actinide complexes.

2.2.2 X2C-1e decoupling

Herein, we use the X2C decoupling approach62,63 to model relativistic effects in the elec-
tronic structure and in magnetic properties such as hyperfine coupling. In order to derive
the decoupling transformation, we start from Dyall’s modified Dirac equation (mDE),29

ĤmDE

(
ψU

χU

)
= E

(
1 0

0 1
2mec2

T̂

)(
ψU

χU

)
, (2.67)

obtained by substituting the restricted kinetic balance (RKB) relation into the one-electron
Dirac equation. The 4-component mDE solutions have an upper component, ψU, and a
pseudo-upper component, χU, both of which can be represented using the same basis set
of one-center, one-electron functions (AOs). The mDE Hamiltonian is

ĤmDE =

(
V T̂

T̂ 1
4m2

e c
2 Ŵ − T̂

)
, (2.68)

with

T̂ =
p̂ · p̂
2me

, (2.69)

Ŵ = (σ · p̂)V (σ · p̂). (2.70)
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Projecting the modified Dirac equation onto an AO basis yields42(
V T

T 1
4m2

e c
2W − T

)(
C

(+)
U

C
(+)
L

)
=

(
S 0

0 1
2mec2

T

)(
C

(+)
U

C
(+)
L

)
ε(+), (2.71)

where we use V , T , W and S to denote matrix representations of V̂ , T̂ , Ŵ , and the AO
overlap, respectively. C(+)

U and C
(+)
L are coefficient vectors associated with the upper and

the lower components§ of an electronic eigenstate with energy ε(+). These coefficients
can be determined via diagonalisation the 4-component operator in equation 2.71; subse-
quently, the transfer matrixX is calculated as

X = C
(+)
L

(
C

(+)
U

)−1

. (2.72)

Note that the above relation is simply the matrix form of equation 2.66. It is then possi-
ble to obtain the upper-upper (UU) and lower-upper (LU) blocks of the 4-component X2C
decoupling matrix U using64

UUU = S−1/2
(
S−1/2 S̃ S−1/2

)−1/2

S1/2 , (2.73)

ULU = XUUU , (2.74)

where
S̃ = S +

1

2mec2
X†TX. (2.75)

For electronic structure calculations, we are interested in the upper-upper block of the
decoupled (block-diagonalised) 4-component Hamiltonian,

H
(+)
bd = U †

UUV UUU +U †
UUTULU +U †

LUTUUU +U †
LU

(
1

4m2
ec

2
W − T

)
ULU . (2.76)

Equation 2.76 represents the one-electron part of the X2C 2-component Hamiltonian. For
modelling two-electron interactions, most practical implementations use the bare (untrans-
formed) Coulomb operator. This approach is known as X2C-1e, however it is usually re-
ferred to simply as X2C. Scalar-relativistic decoupling (SR-X2C)65 can be achieved by only
considering the spin-independent part of the Ŵ operator, i.e. the first term on the right-
hand-side of equation 2.77.

(σ · p̂) V̂ (σ · p̂) = p̂ V̂ · p̂+ iσ ·
(
p̂ V̂ × p̂

)
(2.77)

SF-X2C matrices can be represented using scalar (1-component) basis functions and are
therefore compatible with the 1-component framework underlying non-relativistic elec-
tronic structure programs. Herein, we employ the SF-X2C(-1e) implementation within the

§Thecoefficient vectorC(+)
L is the same regardless of whether the RKB condition is applied to theDirac equation (themDE approach,

where the 4-spinor has an upper and a pseudo-upper component) or to the lower component basis set (in which case the Dirac equation
is unchanged). Hence, for clarity, we use the L subscript to denote quantities related to the positronic (lower/pseudo-upper) degrees of
freedom.
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OpenMolcas software.66

It is worth noting that, despite adopting the SF-X2C approach, we later include spin-orbit
coupling via state interaction, hence effectively augmenting the zeroth order (unperturbed)
Hamiltonian with a SOC term. The SOC operator constructed by the OpenMolcas RASSI
module is derived from the Breit-Pauli/first-order DKH theory27 and is hence formally in-
consistent with the X2C model. Nevertheless, such a combination models the electronic
structure of SOC-including systems well.59 Recently, Liu and Cheng developed an atomic
mean-field spin-orbit formalism for X2C-1e.67 In the future, this could be used to improve
the relativistic model used herein, provided that the X2C AMFI formalism can be adapted
to the 1-component framework of OpenMolcas.

2.3 Magnetic properties in quantum chemistry

2.3.1 The electron-Zeeman effect and hyperfine coupling

According to the principle of minimal coupling,68 the interaction between an electron and
one or more magnetic fields can be modelled ab initio by substituting

p̂i → p̂i + eAi (2.78)

into the Hamiltonian eigenvalue equation. In 2.78, A represents the vector potential asso-
ciated with the magnetic field; vector potentials for an external magnetic field B and for
a nuclear spin IN with a point-like magnetic moment are given in equations 2.79 and 2.80,
respectively.

AZee,i =
1

2
B× (ri − RG) =

1

2
B× rG,i (2.79)

AN,i = gNµN
µ0

4π

(
IN ×

rN,i
r3N,i

)
(2.80)

Herein, RG represents the gauge origin,‡ µ0 is the vacuum permeability, gN is the nuclear
g-factor, µN is the nuclear magneton and rN,i = ri − RN is the position vector of electron i
with respect to nucleus N .

In the non-relativistic regime, the operator identity

p̂i · p̂i = (σi · p̂i) (σi · p̂i) , (2.81)

where σi is the 3-vector of Pauli matrices representing the spin of electron i, is applied
together with 2.78 to add magnetic coupling to the Schrödinger equation (equation 2.2),

‡In molecules containing a single heavy atom, the gauge origin is usually chosen to be the position of the heavy nucleus.
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yielding

Ĥnr(A) =
1

2me

∑
i

{p̂i · p̂i + e (σi · p̂i) (σi · Ai) + e (σi · Ai) (σi · p̂i)

+ e2 (σi · Ai) (σi · Ai)
}
− e2

4πε0

∑
i,N

ZN

RNi

+
e2

4πε0

∑
i>j

1

rij
. (2.82)

As this work focuses on one-particle operators, we henceforth drop the explicit summation
over i for simplicity. Collecting A-dependent terms from 2.82 into a one-electron magnetic
perturbation operator Ĥpert

nr , we obtain

Ĥpert
nr = Ĥ(1)

nr + Ĥ(2)
nr , (2.83)

Ĥ(1)
nr =

e

2me

{p̂ · A+ A · p̂+ iσ · (p̂× A) + iσ · (A× p̂)} , (2.84)

Ĥ(2)
nr =

e2

2me

A · A, (2.85)

where i is the imaginary unit and we have used the Dirac relation,

(σ · a)(σ · b) = a · b+ iσ · (a× b). (2.86)

Note that the non-relativistic magnetic perturbation operator has a first-order contribution,
Ĥ

(1)
nr , and a second-order contribution, Ĥ(2)

nr . The latter is known as the non-relativistic
diamagnetic interaction.

The expression for Ĥ(1)
nr can be transformed by employing the product rule for the differ-

ential operator p̂ = −ih̄∇,

Ĥ(1)
nr |ψ〉 =

e

2me

{−ih̄ [∇ · A] + 2A · p̂+ h̄σ · [∇× A]− iσ · (A× p̂)

+ iσ · (A× p̂) } |ψ〉 , (2.87)

where the square brackets indicate that the enclosed ∇ only acts within the brackets. In
Coulomb gauge, ∇ · A = 0 and therefore the first term is zero. Using the relationship be-
tween the magnetic field and the vector potential, B = ∇× A, Equation 2.87 becomes

Ĥ(1)
nr |ψ〉 =

e

2me

{ 2A · p̂+ h̄σ · B } |ψ〉 . (2.88)

Non-relativistic electron-Zeeman and HFC perturbation operators are derived by substi-
tuting 2.79 and 2.80 into 2.88 and using the turnover rule (i.e. integration by parts) for p̂,
yielding

Ĥ
(1)
nr, Zee = µB B ·

(
rG ×∇+ 2 Ŝ

)
, (2.89)

Ĥ
(1)
nr, N =

µ0

4π
gNµNµB IN ·

{(
8π

3
δ(rN) +

3rNr>N − r2N1
r5N

)
· Ŝ− i rN ×∇

r3N

}
. (2.90)
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Note that ∇ is the gradient operator with respect to electronic coordinates and that we
have employed the relation σ = 2 Ŝ to obtain expressions in terms of the one-electron spin
operator Ŝ. The two terms in equation 2.89 correspond to the orbital-Zeeman (OZ) and the
spin-Zeeman (SZ) contributions, respectively, while the terms in 2.90 represent the Fermi
Coupling (FC), spin-dipole (SD) and paramagnetic spin-orbit (PSO) interactions, respec-
tively. The FC term arises because the HFC potential AN (equation 2.80) has a singularity
at rN = 0; as a result, when applying the turnover rule for p̂, derivatives have to be taken
in the distribution sense.69

Applying the same methodology to the modified Dirac equation (equation 2.68), we obtain
the 4-component magnetic perturbation

Ĥ
pert
mDE = Ĥ

(1)
mDE =

e

2me

(
0 (σ · A)(σ · p̂)

(σ · p̂)(σ · A) 0

)
. (2.91)

Note that this operator only has a first-order contribution, unlike its non-relativistic coun-
terpart. It has previously been shown70 that, in the relativistic regime, diamagnetic interac-
tions do not appear explicitly in the magnetic-field-dependent Dirac Hamiltonian; instead,
they are encoded in the coupling between positive-energy (electronic) states and negative-
energy (positronic) states.† Fortunately, this does not affect the determination of first-order
properties such as g-values and HFCCs, which constitute the subject of this work.

After X2C decoupling, the picture-change-corrected 2-component operator

Ĥ
(1)
X2C =

e

2me

{
Û †
UU (σ · A)(σ · p̂) ÛLU + Û †

LU (σ · p̂)(σ · A) ÛUU

}
(2.92)

can be used to evaluate magnetic properties for electrons-only wavefunctions. Below, we
give expressions for the X2C-transformed electron-Zeeman operator (equations 2.93, 2.94
and 2.95) and for the X2C-transformed HFC operator (equations 2.96, 2.97 and 2.98).

Ĥ
(1)
X2C, Zee = ĤSZ

X2C, Zee + ĤOZ
X2C, Zee , (2.93)

ĤSZ
X2C, Zee = µB B ·

{
Û †
UU
(
−rG ·∇+ rG∇>) ÛLU + Û †

LU
(
−rG ·∇+ rG∇>)† ÛUU

}
· Ŝ ,

(2.94)

ĤOZ
X2C, Zee =

i

2
µB B ·

{
−Û †

UU (rG ×∇) ÛLU + Û †
LU (rG ×∇)† ÛUU

}
, (2.95)

Ĥ
(1)
X2C, N = ĤFC+SD

X2C, N + ĤPSO
X2C, N , (2.96)

ĤFC+SD
X2C, N = 2 µBgNµN

µ0

4π
IN ·

{
Û †
UU

(
−rN
r3N
·∇+

rN
r3N

∇>
)
ÛLU

+ Û †
LU

(
−rN
r3N
·∇+

rN
r3N

∇>
)†

ÛUU

}
· Ŝ , (2.97)

†This coupling between eigenstates of the Dirac equation should not be confusedwith the coupling between electronic and positronic
degrees of freedom of an electronic state, i.e. between the upper and lower components of the 4-spinor. Only the latter is removed via
techniques such as X2C decoupling.
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ĤPSO
X2C, N = i µBgNµN

µ0

4π
IN ·

{
−Û †

UU

(
rN
r3N
×∇

)
ÛLU + Û †

LU

(
rN
r3N
×∇

)†

ÛUU

}
. (2.98)

Since our chosen electronic structure approach yields spin-adapted wavefunctions or lin-
ear combinations thereof, it is possible to evaluate matrix elements for operators 2.93-2.98
entirely within a 1-component framework.

2.3.2 Temperature-dependent magnetic properties

Magnetic susceptibility and magnetisation can be determined ab initio from integrals of the
magnetic moment operator,

µ̂α = − ∂ĤZee

∂Bα

∣∣∣∣∣
Bα=0

, α = x, y, z, (2.99)

where ĤZee is the Zeeman operator and Bα is a component of the external magnetic field
vector. Note that, in this section, α and β indices denote Cartesian directions.

The SINGLE_ANISO module71 of OpenMolcas computes elements of the molar magnetic
susceptibility tensor χ as a Boltzmann average over the manifold of electronic states λ,
using the Van Vleck equation:72

χαβ =
NA

Q0

∑
λ

e−
Eλ/kBT

[∑
a,a′

〈λa |µ̂α|λa′〉 〈λa′ |µ̂β|λa〉
kB T

−
∑
λ′ 6=λ

∑
a,a′

〈λa |µ̂α|λ′a′〉 〈λ′a′ |µ̂β|λa〉+ 〈λa |µ̂β|λ′a′〉 〈λ′a′ |µ̂α|λa〉
Eλ′ − Eλ

]
, (2.100)

where Q0 =
∑

λ e
−Eλ/kBT is the partition function, NA is Avogadro’s number, and a and a′

index degenerate states with energiesEλ andEλ′ , respectively. The magnetic susceptibility
for a specific direction n of the applied field is calculated as73

χ(n) =
∑
α,β

cos θα χαβ cos θβ , (2.101)

where cos θα and cos θβ are directional cosines; the powder magnetic susceptibility is then
obtained by integrating χ(n) over multiple directions. In Chapter 3 of this work, we use
the calculated molar susceptibility χM for powder to determine the effective magnetic mo-
ment74

µeff =
1

µB

√
3kBTχM

µ0NA
(2.102)

as a function of temperature.
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Themolar magnetisation vectorM is straightforwardly determined by contracting the mo-
lar susceptibility tensor with the applied field B,

Mα = χαβ Bβ . (2.103)

For specific temperature and field values, integrating the projection ofM onto multiple di-
rections yields the powder magnetisationM(B, T ). In Chapter 3, we use this methodology,
as implemented in SINGLE_ANISO, to obtain the low-temperature powder magnetisation
as a function of the applied field.

2.4 HYSCORE Spectroscopy

The electron spin echo envelope modulation (ESEEM) family of pulsed EPR techniques is
designed to detect weak (< 5MHz) nuclear frequencies in paramagnetic species.75 ESEEM
experiments rely on a sequence of single-frequency microwave pulses applied at pre-de-
fined time intervals, whichmanipulate the sample magnetisation such that the amplitude of
the generated echo is modulated by frequencies corresponding to transitions between spin
Hamiltonian eigenstates. In particular, hyperfine sublevel correlation (HYSCORE) spec-
troscopy is a two-dimensional four-pulse ESEEM technique that facilitates the identification
of hyperfine couplings, especially in systems with several nuclear spins.

In what follows, we describe the HYSCORE pulse sequence using an example system with
one S = 1/2 electron spin and one I = 1/2 nuclear spin. The 4 possible spin states for this
system are |mS mI〉, with mS = +1/2 (|mS〉 = |α〉) or mS = −1/2 (|mS〉 = |β〉), and simi-
larly for mI . In practice, the measured sample is an ensemble of non-interacting S = 1/2,
I = 1/2 subsystems (e.g. a sample of hydrogen atoms), wherein the distribution of state oc-
cupations is described by the ensemble density matrix D.

Transfer of density into a matrix element ofD (as a result of an applied pulse, for example)
corresponds to one of the following phenomena: polarisation (P), nuclear coherence (NC),
EPR-allowed electron coherence (ECa) or EPR-forbidden electron coherence (ECf). Equation
2.104 shows the ensemble density matrix represented in the |mS mI〉 basis, as well as the
phenomenon that each element relates to.

D =


〈αα |αα〉 〈αα |αβ 〉 〈αα |βα〉 〈αα |ββ 〉
〈αβ |αβ 〉 〈αα |αβ 〉 〈αβ |βα〉 〈αβ |ββ 〉
〈βα |αα〉 〈βα |αβ 〉 〈βα |βα〉 〈βα |ββ 〉
〈ββ |αα〉 〈ββ |αβ 〉 〈ββ |βα〉 〈ββ |ββ 〉

→


P NC ECa ECf

NC P ECf ECa

ECa ECf P NC
ECf ECa NC P

 .

(2.104)

At the beginning of the HYSCORE experiment, the electron magnetisation is aligned with
the external magnetic field (conventionally along the z axis) and the density matrix is diag-
onal. The first π/2 pulse converts the polarisation states into electron coherences – in other
words, density is transferred from the diagonal elements to the off-diagonal 2×2 blocks
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of D (see Scheme 2.1).75 After an elapsed time τ , the second π/2 pulse converts some of
the electron coherences into nuclear coherences. In the case of non-selective pulses and
anisotropic hyperfine coupling, the π/2→ τ → π/2 sequence also generates EC and nuclear
polarisation, 75 however this pathway is not shown in Scheme 2.1. During the third step of
the sequence, a π pulse transfers the NCs from one mS manifold onto the other. The final
π/2 pulse converts NCs and NPs into ECs that generate a detectable echo. The four pulses
in the HYSCORE sequence are separated by evolution times labelled as τ , t1 and t2, during
which the system evolves according to the spin Hamiltonian

ĤS = B · g · S+ IN · aN · S. (2.105)

τ is fixed throughout the HYSCORE experiment, while t1 and t2 are varied independently.


P

P
P

P

 π/2−−→


ECa ECf

ECf ECa

ECa ECf

ECf ECa

 π/2−−→


NC ECa ECf

NC ECf ECa

ECa ECf NC
ECf ECa NC


π
y

ECa ECf

ECf ECa

ECa ECf

ECf ECa

 π/2←−−


NC ECa ECf

NC ECf ECa

ECa ECf NC
ECf ECa NC



Scheme 2.1. Schematic representation of changes to the density matrix of a S = 1/2, I = 1/2 system, after
each pulse applied during a HYSCORE experiment. Note that colours only highlight groups of matrix

elements; identical colours do not indicate equality.

The time-dependent echo is Fourier-transformed in the t1 and t2 dimensions to yield a 2D
map of signal intensity against (ν1, ν2). Cross peaks corresponding to weak hyperfine cou-
plings appear in the (+,+) quadrant of the HYSCORE spectrum, while strong hyperfine
couplings appear in the (−,+) quadrant. The spectrum is mirrored with respect to the ν2
axis and hence, only the positive ν1 half is usually shown. In the case of disordered samples,
such as solid solutions, hyperfine couplings appear as broad ridges instead of sharp cross
peaks. The horizontal spread of a ridge with respect to the anti-diagonal at (νN, νN) (where
νN is the Larmor frequency for nucleus N) is correlated with HFC anisotropy.75

For systems where the electron spin is interacting with multiple magnetic nuclei, the total
echo modulation for HYSCORE can be determined via the product rule,76

Vtot(τ, t1, t2) =
1

2

[
N∏
i=1

V αβ
i (τ, t1, t2) +

N∏
i=1

V βα
i (τ, t1, t2)

]
, (2.106)

where V αβ
i are contributions from nuclear coherences transferred from the |mS〉 = |α〉

manifold to the |mS〉 = |β〉manifold after the π pulse and vice-versa for V βα
i . The spectrum

complexity increases quickly with the number of nuclei and with the spin multiplicity; as
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such, HYSCORE data is often analysed via a bottom-up approach, wherein simulated spec-
tra are generated based on trial HFC parameters and compared to the measured signal. This
is the approach adopted in Chapter 5, where we use Hyperion-calculated EPR parameters
together with EasySpin76,77 to simulate 1H and 13CHYSCORE spectra for two paramagnetic
actinide complexes.
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Abstract

A fundamental part of characterising any metal complex is understanding its electronic

ground state, for which magnetometry provides key insight. Most uranium(IV) com-

plexes exhibit low-temperature magnetic moments tending to zero, consistent with

a non-degenerate spin-orbit ground state. However, there is a growing number of

uranium(IV) complexes with low-temperature magnetic moments ≥ 1µB, suggesting

a degenerate ground state, but the electronic structure implications and origins have

been unclear. We report uranium(IV)-oxo and -imido complexes with low-temperature

magnetic moments ca. 1.5-1.6 µB and show that they exhibit near-doubly degenerate

spin-orbit ground states. We determine that this results from the strong point-charge-

like donor properties of oxo and imido anions generating pseudo-symmetric electronic

structures, and that traditional crystal field arguments are useful for understanding

electronic structure and magnetic properties of uranium(IV). This suggests that a sig-

nificant number of uranium(IV) complexes might benefit from a close re-evaluation of

the nature of their spin-orbit ground states.
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1 Introduction

The nature of coordinated ligands and the formal oxidation state of uranium modulate the

key effects of inter-electronic repulsion (IER), spin-orbit coupling (SOC), and the crystal

field (CF), which together determine the electronic structure of any uranium complex.1

Some or all of these effects can be of comparable magnitudes where early actinides are

concerned. Therefore, more than anywhere else in the periodic table, the electronic struc-

ture of early actinides can be intrinsically very complex and challenging to study, yet it

is fundamentally important to understand because it dictates the nature of the electronic

ground state, which in turn is intimately connected to the bonding, reactivity, and physic-

ochemical properties of a molecule. As uranium is a central element in civil nuclear energy

production,2–4 resolving the long-standing challenge of nuclear waste could in the future

utilise selective extraction methods that exploit a better understanding of covalency dif-

ferences in uranium-ligand bonding, which are intrinsically connected to the underlying

electronic structure.

One of the most valuable and informative methods for characterising paramagnetic open-

shell uranium complexes is by variable-temperature magnetometry, since this can give

direct insight into the nature of the ground state and formal oxidation state. The free

uranium(IV) ion, which has a ground 3H4 ground state in Russell-Saunders formalism, is

predicted to exhibit a magnetic moment of 3.58 µB, however due to significant CF effects

in molecular complexes, this is often around 2.0–2.5 µB at 298 K and usually decreases

smoothly towards ≈0.3-0.5 µB at 2 K;5–8 the decrease is due to depopulation of excited

CF states into a magnetic singlet ground state (A) with appreciable temperature indepen-

dent paramagnetism (TIP);7,9 note that this is not an S = 0 spin-singlet ground state,

but rather a singly-degenerate spin-orbit state – though rare examples of complexes with

S = 0 ground states do exist, e.g. [(C5Me4H)3UNO].9,10 Such behaviour is known for Oh-

symmetric [UX6]2−,5,11,12 and occurs because the J = 4 spin-orbit multiplet splits into A1,

E, T1, and T2 irreducible representations in Oh symmetry,13 for which the A1 singlet state

is lowest in energy.11,14

The A1 state is diamagnetic because it is composed of approximately 58% mJ = 0, 21%

mJ = −4 and 21% mJ = +4,11 where the mJ = 0 state is itself diamagnetic and the equal

contributions of the mJ = ±4 states cancel each other out; this can also be mapped to spin

and orbital contributions to the mJ states, which can be calculated via Clebsch-Gordan
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coefficients15 and measured experimentally.12 On the other hand, compounds of different

symmetry may not show a decrease to near-zero magnetic moment at low temperature,

signifying the presence of a degenerate paramagnetic ground state (E). For example, ura-

nocene, [U(η8-C8H8)2],16 has a magnetic moment of ≈2.6 µB at 300 K17 that decreases to

1.35 µB at 4 K:18 in this case, the D8h symmetry of the solid-state structure splits the J = 4

spin-orbit multiplet into A1, E1, E2, E3, and B1+B2 irreducible representations, for which

E3 (mJ = ±3) is the ground state.19–21

Outside of ”simple” high-symmetry complexes, sufficiently low-symmetry coordination ge-

ometries will usually exhibit a singlet (A) spin-orbit ground state;5,7,22 this is because ura-

nium(IV) has two unpaired electrons and is thus a non-Kramers ion, and hence there is

no requirement for any electronic degeneracies in the J = 4 spin-orbit multiplet after the

action of the CF, because the CF effect for 5f-orbitals is significant. However, there are

now a growing number of formally low-symmetry uranium(IV) complexes with innocent

ligands where the low-temperature (<2 K) magnetic moments are quite high (≥1 µB),23–39

suggesting that something is differentiating these complexes. Empirically, singlet ground

states tend to be observed with monoanionic ligands, regardless of the (pseudo-)symmetry,

and higher magnetic moments have increasingly been observed at low-temperature when

stronger di- or tri-anionic ligands are present, implying a (pseudo-)doublet (E) spin-orbit

ground state.22 Hence, there is increasing evidence that there is a threshold CF strength for

which high-symmetry arguments, and thus a switching of spin-orbit ground state, might

be invoked.

Previously, we reported that the N-heterocyclic olefin H2C=C(NMeCH)2 reacts with

[UIII(N′′)3] (N′′ = N(SiMe3)2) to produce the mesoionic carbene complex

[U(N′′)3{CN(Me)C(Me)N(Me)CH}] that exhibits a UIII → C 1-electron back-bond interac-

tion.40 Seeking to widen the family of uranium mesoionic carbene complexes we targeted

uranium(V) derivatives. However, we find instead that the basic reactivity properties of the

N-heterocyclic olefin become a complicating factor, promoting cyclometallation and dis-

proportionation reactions, generating rare examples of uranium(IV)-oxo and -imido com-

plexes. We find that these complexes exhibit unusually high low-temperature magnetic

moments, for complexes formally of C1 symmetry, and so we investigated the electronic

structure of these complexes to address the nature of the electronic ground state. This has

permitted us to unambiguously verify that pseudo-C3-symmetric uranium complexes with

a strong axial ligand can have paramagnetic pseudo-doublet (E) spin-orbit ground states,
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showing that traditional CF symmetry arguments can dictate the electronic structure and

magnetic properties when strong enough point-charge-like ligands are coordinated to ura-

nium.

2 Results and discussion

2.1 Synthetic considerations and spectroscopic characterisation

Treatment of pre-prepared [UV(O)(N′′)3] (N′′ = N(SiMe3)2, 1)26 or in situ prepared

[UV(NSiMe3)(N′′)3] (2, by oxidation of [UIII(N′′)3] with N3SiMe3) with half an equivalent of

the N-heterocyclic olefin H2C=C(NMeCH)2 (3) in either diethyl ether or hexane, produces,

after work-up and recrystallisation, brown needles of the uranium(IV)-oxo and -imido com-

plexes [UIV(O)(N′′)3][(Me)C(NMeCH)2] (4) or [UIV(NSiMe3)(N′′)3][(Me)C(NMeCH)2] (5), re-

spectively, Scheme 1. The crystalline yields of 4 and 5 are both 13%, which is low because

4 and 5 decompose in solution affording HN(SiMe3)2 and unidentified and intractable by-

products and because their formation results from disproportionation reactions where the

uranium(VI)-cyclometallate complexes [UVI(O)(N′′)2{N(SiMe3)(SiMe2CH2)}] (6)41 for 4 and

[UVI(NSiMe3)(N′′)2{N(SiMe3)(SiMe2CH2)}] (7) for 5, respectively, form concomitantly, thus

limiting the maximum yield in each case to 50%.

Scheme 1: Synthesis of 4 and 6 or 5 and 7 from 1 or 2, respectively, when treated with
half an equivalent of 3. Conversely, treatment of 1 or 2 with one equivalent of 3 results in
formation of 8 or 9, respectively. Mixtures of 8 and 9 decompose rapidly, with the times
quoted being for total decomposition, but if one further equivalent of 1 or 2, for 8 or 9
respectively, is already present or added rapidly then 1:1 mixtures of 4 and 6 or 5 and 7 are
obtained.

When 1 or 2 are treated with one equivalent of 3, the uranium(V)-cyclometallate complexes

[UV(O)(N′′)2{N(SiMe3)(SiMe2CH2)}][(Me)C(NMeCH)2] (8) and
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[UV(NSiMe3)(N′′)2{N(SiMe3)(SiMe2CH2)}][(Me)C(NMeCH)2] (9), respectively, are formed

quantitatively (see Supplemental Information). Complexes 8 and 9 decompose when they

are left in solution for prolonged periods, with complete decomposition found after 60 and

15 minutes, respectively. However, if 8 or 9 are treated quickly with one equivalent of 1 or

2, respectively, then 1:1 mixtures of disproportionated 4:6 or 5:7 are formed analogously to

the half equivalent reactions with 3 above.

The reactions between 1 or 2 with half an equivalent of 3 clearly produce 1:1 mixtures of

4:6 or 5:7, respectively, as a result of disproportionation and cyclometallation. The reac-

tions of 1 and 2 with one equivalent of 3 provide insight into the likely mechanism of this

reaction, since cyclometallated 8 or 9 are formed in this situation, but only after addition of

further 1 or 2, which then essentially renders the 1/2:3 ratio 1:0.5, does disproportionation

occur. The cyclometallation can be accounted for by basic 3 promoting C-H activation and

H-abstraction, and that the extra cyclometallate donor destabilises the uranium(V) ions in

8 and 9, as evidenced by their otherwise rapid decomposition, such that oxidation to ura-

nium(VI) is more favourable for the cyclometallate formulation at the expense of an anionic

formulation by reduction for the uranium-oxo and -imido components of 4 and 5. Certainly,

the absence of D-incorporation for reactions conducted in D6-benzene are consistent with

this, and [UV(O)(N′′)2{N(SiMe3)(SiMe2CH2)}][MePPh3],41 that is essentially 8 but with a

different counter-cation, is known to be easily oxidised (E1/2 =–0.85 V vs. [Cp2Fe]0/+).

Once isolated, 4 and 5 are poorly soluble in aromatic solvents, and they decompose in

ethers, but NMR spectroscopic data are consistent with their uranium(IV) formulations and

show no evidence of D-incorporation from deuterated solvent (benzene). The six trimethylsi-

lyl groups resonate as one singlet per complex in the 1H NMR spectrum, indicating a sym-

metric species on the NMR timescale. However, these are shifted upfield relative to 1 and

2 in agreement with the increased electron density at the uranium(IV) centres. For 5, the

trimethylsilyl group of the axial imido ligand is observed in the 1H NMR spectrum at –12.55

ppm, but no 1H NMR resonance for the [M=NSiMe3] group for 2 has been reported so no

comparison can be made; however, the 29Si NMR spectra of 4 and 5 exhibit weak reso-

nances at –37.74 and –90.74/–131.19 ppm, respectively, which is within the range of re-

ported 29Si chemical shifts for uranium(IV) complexes.42 Complexes 6 and 8 were identi-

fied by comparison of NMR spectra of reaction mixtures compared to published data and

[UV(O)(N′′)2{N(SiMe3)(SiMe2CH2)}][MePPh3],41 respectively. Complex 9 was identified by

NMR spectroscopy with reference to 8, but 7 could not be unambiguously spectroscopically
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identified, most likely because the imido does not stabilise the uranium(VI) oxidation state

as well as an oxo, but its fleeting existence seems all but assured given the parallels between

these oxo and imido systems with five of the six reaction partners identified.

For both 4 and 5, the UV/Vis/NIR spectra are dominated by strong charge transfer bands

from the UV region to around 20,000 cm−1. Across the range 20,000-5,000 cm−1 the spectra

are dominated by multiple but weak (ϵ < 80 M−1cm−1) absorptions that are characteristic

of Laporte forbidden f-f transitions of uranium(IV) ions, in accordance with the pale brown

colour of both complexes.1,6,43

2.2 Solid state structural characterisation

In order to confirm the formulations of 4 and 5, their solid-state structures were deter-

mined, Figure 1. In gross terms each are very similar, with a separated ion pair formulation

and four-coordinate uranium ions. The geometry about uranium in 4 is essentially trigonal

monopyramidal, with an average O-U-Namide angle of 96.8(3)◦ and an average Namide-U-

Namide angle of 118.6(3)◦, such that the uranium ion lies only 0.279(4) Å above the plane

defined by the three Namide centres. In contrast, 5 exhibits a pseudotetrahedral geometry

about uranium, with an average Nimido-U-Namide angle of 102.39(2)◦ and an average Namide-U-

Namide angle of 115.53(2)◦. Thus, the geometries of tetravalent 4 and 5 largely mirror those

of pentavalent 1 and 2, respectively. The U-Namide distances in tetravalent 4 and 5 span

the ranges 2.346(7)-2.351(7) Å and 2.359(4)-2.368(4) Å, respectively. For comparison, the

U-Namide distances in pentavalent 1 [2.235(1)-2.244(2) Å]26 and 2 [av. 2.295(10) Å]44 are sig-

nificantly shorter. For 4, the U-O distance is significantly longer than that of 5 [1.882(6) vs.

1.817(1) Å, respectively] and the U-Nimido distance in 5 is significantly longer than that of 2

[1.985(4) vs. 1.910(16) Å, respectively]. More widely, the U-O distance in 4 is comparable to

that of [U{OK(18-crown-6)}(N′′)3] [1.890(5) Å]45 and the U-Nimido bond length in 5 is com-

parable to those of [U(NDipp)Cl2(tBu2bpy)(THF)2]46 and [K][U(=NCPh3){N(SiMe3)2}3]47

[1.981(2) Å and 1.9926(14) Å, respectively]. These structural features all support the ura-

nium(IV) formulations of 4 and 5.
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Figure 1: Solid state structures of a) 4 and b) 5 at 150 K with selective labelling. Displace-
ment ellipsoids set at 30% with hydrogen atoms and minor disordered components omitted
for clarity.

2.3 Magnetometric characterisation

Powdered samples of 4 and 5 immobilised in eicosane were studied by variable-temperature

SQUID magnetometry, Figure 2. Complexes 4 and 5 exhibit magnetic moments of 2.88 and

3.01 µB at 300 K, respectively. These values are both lower than the theoretical magnetic

moment of 3.58 µB for one uranium(IV) ion, which is not uncommon, but they are clearly

higher than the maximal magnetic moment of 2.54 µB for one uranium(V) ion, and are

substantially higher than the reported magnetic moments of 1 and 2 (1.59 µB and 2.04 µB,

respectively, at 300 K). The magnetic moments of 4 and 5 decrease slowly, reaching 2.36

and 2.30 µB, respectively, at 20 K, and then decrease more rapidly reaching 1.54 and 1.46

µB, respectively, at 2 K, Figure 2. The data for 4 and 5 do not fit the ‘classical’ behaviour

of uranium(IV),1,6,48 that is the smooth continuous decrease in magnetic moment as the

temperature is decreased and tending to zero at low temperature, which prompted us to

probe their electronic structures in detail in order to explain this observation.
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a) b)

Figure 2: Magnetic moment as a function of temperature for a) 4 and b) 5, recorded in a
field of 0.5 T (black solid lines). Dotted black lines are calculated by CASSCF(2,7)-SO (11
triplets + 9 singlets, see Methods for details) and solid red lines are the best fits with a CF
Hamiltonian (using CASSCF(2,7)-SO-calculated parameters) with optimisation of a single
parameter (a: B6

6, b: B3
6).

2.4 Electronic structure calculations

The uranium(IV) ion has a ground 5f2 configuration, with S = 0 (singlet) and S = 1 (triplet)

electron spin quantum numbers. In the absence of SOC, the Russell-Saunders terms arising

from IER for this configuration are (in order of increasing energy) 3H, 3F and 3P for S = 1

and 1G, 1D, 1I and 1S for S = 0. SOC mixes these terms, rendering L and S no longer

good quantum numbers, and in the weak SOC limit the Russell-Saunders coupling scheme

describes the total angular momentum with quantum number J ; for the f2 configuration,

Hund’s rules predict a 9-fold degenerate 3H4 ground state. CASSCF-SO calculations of the

gas-phase UIV ion reveal the first excited state 3F2 at ca. 5,000 cm−1;7 hence, the SOC is large

enough that the first excited multiplet is not 3H5 as it is for 4f2 PrIII. Nonetheless, the ground
3H4 multiplet is well separated from excited states such that consideration of this multiplet

alone is likely to be sufficient to explain ground state properties such as magnetism. This

free-ion picture is not an accurate depiction of the electronic structure in a coordination

complex, as bonding to ligands hybridises the valence orbitals and removes much of the

electronic degeneracy (i.e. CF splitting). In general for complexes of uranium, the energy

scales of IER, SOC and CF can be similar, especially in the case of multiple bonding, and

multi-reference ab initio electronic structure calculations have emerged as a reliable way to

determine the electronic structure of such molecules.9,49–51 With the present complexes in

mind, we first outline the electronic structure of a hypothetical linear [UIVO]2+ cation, fol-

lowed by a hypothetical C3v-symmetric trigonal pyramidal [UIVOF3]− anion (F− is chosen

to mimic the monoanionic point charge of the N′′ equatorial donors in 4 and 5), and finally

53



onto the full complexes 4 and 5.

Here we take the opportunity to address a point of considerable confusion in the modern

literature of the magnetism and electronic structure of 5f-element complexes. Great care

must be taken when describing energy splitting for these materials where IER, SOC and

CF can all compete, especially when it comes to the distinction between molecular orbital

energies and the energies of many-electron SOC-including eigenstates. For instance, if the

CF is weak compared to IER and SOC (much like the case for lanthanides) it is somewhat

irrelevant to discuss orbital splitting and the only relevant currency is the spin-orbit states.

On the other hand, if the CF is strong, then there is a possibility that electronic ground

state will no-longer be the free-ion Hund’s Rule high-spin state and instead be in a low-spin

configuration (much like the situation common for d-block metals), and thus discussing the

orbital splitting and electronic populations are crucial. Confusingly, the electronic states

arising from both the spin-orbit picture and the ”electrons-in-orbitals” picture are both as-

sociated with irreducible representations of the molecular point group, and thus a doubly-

degenerate spin-orbit state could be described as ”E” and so could a doubly-degenerate

molecular orbital. Hence, one must always be clear what states are being discussed. In

order to avoid confusion, molecular orbitals are conventionally denoted using lowercase

letters (e.g. a doubly-degenerate molecular orbital is labelled as ”e”), while electronic states

have uppercase labels.

It is also important to note here that orbital energies are inherently a single-electron con-

struct, and are not defined in a correlated multi-electron wavefunction. However, we can

extract the effective orbital energies from the observed CF splitting of the ground 3H4 spin-

orbit multiplet, by recalling the origin of the Stevens operator equivalent method, which

relates the multi-electron CF Hamiltonian to the single-electron CF Hamiltonian.52 The CF

Hamiltonian:

ĤCF =
∑

k=2,4,6

k∑
q=−k

Bq
k θk Ô

q
k (1)

acts on the ground J = 4 multiplet, where Bq
k are the CF parameters (CFPs), θk are the

operator equivalent factors and Ôq
k are the Stevens operators (functions of the total angu-

lar momentum operators, Ĵ); for the 3H4 multiplet of the f2 configuration, θ2 = −52/2475,

θ4 = −4/5445 and θ6 = 272/4459455.53 CFPs for [UIVO]2+, [UIVOF3]−, 4 and 5 can be di-

rectly extracted from our CASSCF-SO calculations54 and, using this Hamiltonian, the same

CFPs can be applied to the single-electron l = 3 basis to extract the effective 5f-orbital split-
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ting due to the CF; in this case θ2 = −2/45, θ4 = 2/495 and θ6 = −4/3861,53 where the

Ôq
k are now written in terms of the single-electron orbital angular momentum operators, l̂.

For a linear [UIVO]2+ cation where the U=O bond length is taken from the crystal struc-

ture of 4 (1.884 Å), the axial CF induced by the oxo anion splits the 5f-orbitals into the

C∞v irreducible representations: E3 (ϕ) < E2 (δ) < E1 (π) < A1 (σ), Figure 3, where ϕ, δ

and π are linear combinations of the ml functions ±3, ±2 and ±1, respectively, and σ is

ml = 0. Here, the ϕ and δ orbitals are formally non-bonding, while the π and σ orbitals

are formally antibonding with respect to the U-O bond, which is the origin of the orbital

ordering.51 However, when the CF is smaller than IER and SOC, such as for 4 and 5 (see

below), the effect of the CF on top of the IER+SOC states is to remove the degeneracy of the

J multiplets. In C∞v symmetry, the ground 3H4 multiplet is split into four pseudo-doublets

and one singlet, and for [UIVO]2+: E4 (mJ = ±4) < E3 (mJ = ±3) < A1 (mJ = 0) < E1

(mJ = ±1) < E2 (mJ = ±2), Figure 4. Note that because the configuration has an even

number of unpaired electrons, it is a non-Kramers system and hence a low symmetry CF

could fully remove the degeneracy of the mJ states; thus, we refer to these doublets as

pseudo-doublets to distinguish them from Kramers doublets.

Figure 3: Energies of the 5f orbitals derived using the Stevens operator equivalent method
based on the effective crystal field splitting of the 3H4 ground term calculated with
CASSCF(2,7)-SO (11 triplets + 9 singlets, see Methods for details). Only dominant con-
tributions to the orbitals of [UIVOF3]−, 4 and 5 are given. The energy zero corresponds to
the 5f orbital energy of a bare UIV ion in vacuum.
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Figure 4: Energies of CF states arising from the 3H4 ground term calculated with
CASSCF(2,7)-SO (11 triplets + 9 singlets, see Methods for details). Only dominant con-
tributions to the states are shown. The energy zero corresponds to the 3H4 level of a bare
UIV ion in vacuum.

For the C3v-symmetric trigonal pyramidal complex [UIVOF3]−, where the U=O and U-F

bond lengths are taken from the crystal structure of 4 (U=O: 1.884 Å, average U-N: 2.348

Å), we have performed CASSCF-SO calculations with a 2 in 7 active space (see Methods).

In C3v symmetry the 3H4 multiplet splits as 2×A1 (mJ = ±3, 0), A2 (mJ = ±3) and 3×E

(mJ = ±4,±2,±1),13 Figure 3. Parameterising this splitting of J = 4 with the CF Hamilto-

nian, only Bq
k with q = 0, 3 or 6 are non-zero as the CF Hamiltonian must reflect the point

symmetry of the molecule,13 Table S1. In C3v symmetry the f-orbitals split as 2×A1 (σ, ϕ),

A2 (ϕ) and 2×E (π, π, δ, δ), where the ϕ pair is now split and mixed with σ, and in this case

can be physically understood as arising from the bonding/antibonding interactions with

the equatorial ligands. When the CF Hamiltonian is recast into the l = 3 orbital basis, we

find that the orbitals order as A1 < E < A2 < E < A1, Figure 3.

Moving to complexes 4 and 5, CASSCF-SO calculations with a 2 in 7 active space (see

Methods) find characteristically similar results to the C3v [UIVOF3]− complex, Figures 3

and 4. We find that the ground 3H4 multiplet is well-isolated and that there is a pattern of

three pseudo-doublets and three singlets, where the ground pseudo-doublet is dominated

by mJ = ±4 and ±1, and the first excited singlet is dominated bymJ = 0 and ±3, Tables S2
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and S3, and Figure S16. Here, the deviation from exactly degenerate pseudo-doublets is due

to the low-symmetry component of the CF (i.e. deviations from C3v symmetry), where the

magnitude of the low-symmetry perturbation directly influences the energy gaps within

each pseudo-doublet. Magnetic data computed for 4 and 5 on the basis of our CASSCF-SO

results show good overall agreement with experiment, but our calculations do not approach

the correct low-temperature limit, Figure 2; this is particularly acute for the M vs. H

data of 4, Figure 5. From our CASSCF-SO calculations, the pseudo-doublet ground states

are split on the order of 31 and 9 cm−1 for 4 and 5, respectively. In the limit of a truly-

degenerate doublet (i.e. in perfect C3v symmetry), we would expect a rapid increase of the

magnetisation at low fields as the states split, followed by a slower increase at higher fields

(i.e. saturation-like), and in the opposite low-symmetry limit of a well-isolated singlet state,

the magnetisation would be near-zero. For both complexes, the CASSCF-SO-calculated

magnetisation data are lower than the experimental data, indicating that the splitting in

the pseudo-doublet ground state is overestimated by our calculations. We believe the worse

agreement between experimental and CASSCF-calculatedM vs. H data for 4 compared to 5

is due compound 4 having ca. 20% larger CF splitting than 5 (Table S2 cf. Table S3), meaning

the state-average CASSCF wavefunction is less accurate for the lower-lying states than for

5. There is no significant change in magnetic properties resulting from increasing the size

of the active space (8 in 13 active space that includes frontier bonding and anti-bonding

orbitals of the U=E unit, Figures S17-S20), which is consistent with previous computational

studies of uranium(IV) compounds.9

a) b)

Figure 5: Magnetisation at 4 K as a function of field for a) 4 and b) 5 (black solid lines).
Dotted black lines are calculated by CASSCF(2,7)-SO (11 triplets + 9 singlets, see Methods
for details) and solid red lines are the best fits with a CF Hamiltonian (using CASSCF(2,7)-
SO-calculated parameters) with optimisation of a single parameter (a: B6

6, b: B3
6).

Because the low-temperature magnetisation experiment probes only the lowest states, these

data provide an experimental measure of the splitting of the ground pseudo-doublet. The
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CF Hamiltonian described above provides a flexible model that allows us to modify the CF

to reproduce the experimental data and thus indirectly measure the ground state pseudo-

doublet splitting. To calculate the magnetic properties, we use the following Hamiltonian

in the PHI program:55

Ĥ =
∑

k=2,4,6

k∑
q=−k

Bq
k θk Ô

q
k + µB Ĵ · g · B̂ (2)

where the second term is the Zeeman Hamiltonian, representing the interaction of the com-

plex with the magnetic field, µB is the Bohr magneton, B̂ is the magnetic field and g is the

effective g-matrix of the J = 4 ground multiplet. We note that this model implies a pure

5f angular momentum basis, and thus anisotropy and hybridisation effects can be approx-

imated with g, whose principal values (gx, gy, gz) are also obtained from CASSCF-SO:56

these values are (0.71, 0.72, 0.76) and (0.73, 0.73, 0.77) for 4 and 5, respectively, which is

slightly reduced from the free-ion Landé factor for the 3H4 ground multiplet gJ = 4/5.

Starting from the CASSCF-SO-calculated CFPs, Tables S4 and S5, we fit susceptibility and

magnetisation data simultaneously by varying only a single CFP. From the resulting sets

of parameters, we analyse those that reduce the initial residual error (as defined in PHI)55

by at least 90%. Additionally, we assume that the initial CASSCF-SO-calculated electronic

structure is a good initial guess, and so we discard optimised CFP sets that lead to drastic

changes of the overall structure of the J = 4 multiplet. This is achieved by examining the

root mean squared deviations (RMSD) of the CF energy levels and of the pseudo-doublet en-

ergy gaps, Table S6. The energies of the first two excited states of both complexes are shown

in Table S7, and µeff vs. T and M vs. H curves derived for each possible set of modified

CFPs are illustrated in Figures S20 and S21. All acceptable CFP sets give consistent results

for the M vs. H data of 5 (Figure S21b and Table S7), indicating a ground pseudo-doublet

gap of approximately 8.5(1) cm−1 with the first excited singlet state at ca. 120(30) cm−1.

Despite having a large energy RMSD, the optimised B3
6 results show the best agreement

with the experimental µeff vs. T curve, Figure S21a, suggesting the second excited state lies

slightly higher at ca. 198 cm−1, while the ground pseudo-doublet states are separated by

7.9 cm−1. For 4, only 2 sets of optimised CFPs match our selection criteria, and both predict

a ground pseudo-doublet gap of just under 7 cm−1 with the singlet state at ca. 190 cm−1.

We note that none of these models are ”correct” parameterisations of the CF, but rather a

means-to-an-end of approximating the experimental pseudo-doublet splitting.
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Following our identification that 4 and 5 have near-degenerate E spin-orbit ground states,

there are two pertinent questions: i) why do these complexes display high-symmetry-like

electronic structures despite their formal low symmetry; and ii) why do these complexes

have E ground states as opposed to A1 or A2 ground states (all permissible in C3v)?

The answer to i) appears to be predominantly related to the presence of di- or tri-anionic

ligands;23–39 indeed, we have previously found that pseudo-C3v uranium(V) complexes with

terminal nitrido- and oxo- ligands tend to behave as belonging to a high-symmetry point

group, unlike what their C1 structures would dictate.51,57 We found that some of the nitrido-

complexes have EPR-silent mJ = ±3/2 ground states (silent in true C3v symmetry), with

excited mJ = ±5/2 states observable by EPR (active even in true C3v symmetry) lying

within a few tens of cm−1;51 given the very sensitive nature of EPR, and that we could only

observe EPR transitions in the excited state, the ground mJ = ±3/2 states must be very

pure. This corroborates the observation that the corresponding terminal oxo- complex has

a mJ = ±3/2 ground state and is completely EPR silent.57 Presumably this occurs because

there is a hierarchy of influences on the overall CF potential: single strong donor atom >>

trigonal equatorial donors > low symmetry perturbations; while for complexes lacking a

single strong donor atom, the competition between the ”high” and ”low” symmetry parts

of the CF is enough to remove the appearance of high symmetry.

The answer to ii) depends on the nature of the coordination complex, but can be explained

using a simple electrostatic model that has arisen to design high-performance single-molecule

magnets.58–60 Each of the spin-orbit mJ states of the free-ion 3H4 term has an aspherical 5f

electron distribution that can be calculated analytically.61 FormJ = 0 and±1 the shapes are

distinctly prolate spheroidal, while for mJ = ±4 the shape is distinctly oblate spheroidal;

mJ = ±2 and ±3 are neither oblate nor prolate. In the presence of a highly-charged and

multiply-bonded anion like the oxo- or imido- groups in 4 and 5, simple electrostatic argu-

ments dictate that the mJ = ±4 state should be lower in energy than the other mJ states,

while mJ = 0 and ±1 would be higher in energy. Of course, however, the spin-orbit states

must conform to the (pseudo-)symmetry of the complex and are thus linear combinations

of the mJ states. As a reminder, in C3v symmetry the states mix as 2× A1 (mJ = ±3, 0),

A2 (mJ = ±3) and 3×E (mJ = ±4,±2,±1),13 Figure 4. Thus, if the presence of a strong

point-charge-like donor atom would favour a mJ = ±4 ground state, then this would be

one of the E states. Conversely, if the complex had only equatorial coordination, then a

mJ = 0 ground state would be favoured, leading to an A1 ground state. To demonstrate
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this, we have performed CASSCF-SO calculations on the model [UIVOF3]− complex where

we start from a situation where the F− ligands are 47 Å away (i.e. the CF splitting is that

of [UIVO]2+ with C∞v symmetry, Figure 6 left) and move them in until they arrive at their

positions in [UIVOF3]− studied above (U-F: 2.348 Å, C3v symmetry, Figure 6 centre), and

then move the O2− ligand out from its initial position (U=O: 1.884 Å) to 38 Å away (i.e. the

CF splitting is that of [UIVF3]+ with D3h symmetry, Figure 6 right); as expected we observe

a flip from an E ground state to an A1 ground state between [UIVOF3]− and [UIVF3]+.

Figure 6: Energies of CF states for a model complex of [UIVOF3]− where the U-F bond
lengths are reduced from 47 Å (C∞v, left) to 2.348 Å (C3v, centre), and the U-O bond length
is increased from 1.884 Å (C3v, centre) to 38 Å (D3h, right). Doubly-degenerate E states are
coloured blue and singly-degenerate A states are coloured black. Only dominant contribu-
tions to the states are shown.

To test both i) and ii), we have performed a CASSCF-SO calculation on 4 where we have

removed the oxo- anion, i.e. [UIV(N′′)3]+, while maintaining the formal C1 symmetry of the

crystalline geometry. We find that the ground state is well-described as mJ = 0 (i.e. A′
1 of

D3h, Figure 6, right), and that the excited states are linear combinations ofmJ = ±1,±2,±3

and ±4, respectively, split by ca. 110, 20, 120 and 20 cm−1, respectively (Table S8). The large

splitting of 120 cm−1 between the mJ = ±3 pair is expected in D3h symmetry (Figure 6,

right) due to the allowed B6
6 crystal field parameter,13 while the large splitting between

the mJ = ±1 states arises from low-symmetry perturbations (i.e. from non-zero B
(±1,±2)
k

terms due to structural elements with no, or at most two-fold, rotational symmetry). The

presence of this large splitting should be compared to the splittings found between the E

states in 4 which are (from CASSCF-SO) 30, 20 and 30 cm−1, respectively, clearly showing

that low-symmetry perturbations are less influential in the presence of a strong point-like
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donor atom.

In summary, we have demonstrated that treatment of oxo- and imido-triamide complexes of

uranium(V) with an N-heterocyclic olefin results not in mesoionic carbene complexes but

cyclometallation/disproportionation reactions that generate uranium(IV)-oxo and -imido

anion complexes along with uranium(VI)-cyclometallates. The uranium(IV)-oxo and -imido

complexes exhibit unusually high low-temperature magnetic moments for such low sym-

metry systems, that should exhibit magnetic singlet ground states, which prompted an

in-depth analysis of their electronic structures using CASSCF-SO and CF methods bench-

marked to low-temperature magnetisation and magnetic susceptibility experiments. The

experimental magnetisation data indicate a pseudo-doublet (E) ground state for both com-

pounds, split by ca. 7 and 8.5 cm−1 for 4 and 5, respectively, determined by CF modelling

of low temperature magnetometry data. These small splittings thus yield uncharacteristi-

cally large ground-state magnetic moments for formally C1-symmetric species, owing to

the presence of strong, formally 2− point-charge-like oxo- and imido-ligands, along with

relatively high pseudo-symmetry approaching C3v. These data permit us to rationalise and

confirm the basic principle that a singlet (A) spin-orbit ground state is usually the default

for low-symmetry uranium(IV), but this can be flipped to a pseudo-doublet (E) spin-orbit

ground state when there are sufficiently strong ligands to dominate the CF. Lastly, this work

suggests that there are likely many uranium(IV) complexes with E rather than A spin-orbit

ground states on the basis that they exhibit low-temperature magnetic moments of ≥ 1µB

in the presence of strong axial-type donor ligands.

3 Experimental procedures

All manipulations were carried out under an inert atmosphere of dry nitrogen using Schlenk

or glove box techniques. Compounds were characterised by single crystal X-ray diffraction,

NMR, IR, and UV/Vis/NIR spectroscopies, variable temperature SQUID magnetometry, el-

emental analysis, and CASSCF-SO methods.

3.1 Preparation of [UIV(O)(N′′)3][(Me)C(NMeCH)2] (4)

A solution of H2C=C(NMeCH)2 (0.05 g, 0.55 mmol) in Et2O (5 ml) was added dropwise to

a pre-cooled (–78◦C) red solution of [UV(O)(N′′)3] (0.74 g, 1.00 mmol) in Et2O (5 ml). The

mixture was allowed to warm to room temperature slowly over 10 minutes, resulting in

a colour change to brown. The reaction mixture was stirred for 1 min at room tempera-
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ture. After which, the volume of the solution was reduced in vacuo by half, filtered using

a double-wrapped cannula, and subsequently layered with hexane (5 ml). Storage of the

solution at –30◦C for 24 hours afforded 4 as brown needle crystals. Yield: 0.11 g, 13%. Anal.

Calcd for C24H65N5OSi6U: C, 34.06; H, 7.74; N, 8.27%. Found: C, 33.58; H, 7.51; N 8.21%. 1H

NMR (C6D6, 298 K): δ –2.01 (br, s, 54H, Si(CH3)3), –2.97 (br, s, 2H, (H)C=C(H)), –4.89 (s, 6H,

N(CH3)), 25.26 (s, 3H, C(CH3)) ppm. 29Si{1H} NMR (C6D6, 298 K): δ –37.74 ppm. ATR-IR

ν/cm−1: 2941 (s), 2892 (w), 1592 (w), 1553 (m), 1508 (w), 1416 (w), 1235 (s), 1128 (w), 984

(s), 862 (w), 823 (s), 764 (w), 747 (s), 682 (w), 660 (s), 597 (s), 478 (w), 441 (w). Note, complex

4 slowly decomposes in solution at room temperature affording [HN(SiMe3)2] and several

unidentified products after 24 hours, as indicated by 1H NMR spectroscopy.

3.2 Preparation of [UIV(NSiMe3)(N′′)3][(Me)C(NMeCH)2] (5)

To a cold (–78◦C) stirring dark purple solution of [UIII(N′′)3] (0.81 g, 1.00 mmol) in hexane

(10 ml) was added Me3SiN3 (0.115 g, 1.00 mmol). The mixture was allowed to warm to

room temperature slowly over 10 minutes, resulting in a colour change to dark red. The

reaction mixture was stirred for 20 minutes at room temperature. After which, the volume

was reduced in vacuo by half, and a solution of H2C=C(NMeCH)2 (0.06 g, 0.55 mmol) in

toluene (5 ml) was added dropwise. The reaction mixture was stirred for 2 hours at room

temperature. After which, the reaction mixture was concentrated to approximately 5 ml

and stored at –30◦C for 24 hours, to afford 5 as brown needle crystals. Yield: 0.12 g, 13%.

Anal. Calcd for C27H74N6Si7U: C, 35.34; H, 8.13; N, 9.16%. Found: C, 33.80; H, 7.58; N,

8.66%. 1H NMR (C6D6, 298 K): δ 43.30 (s, 3H, C(CH3)), –2.46 (br, s, 54H, Si(CH3)3), –6.90

(s, 6H, N(CH3)), –10.87 (s, 2H, (H)C=C(H)), –12.55 (s, 9H, (=N(Si(CH3)3) ppm. 29Si{1H}

NMR (C6D6, 298 K): δ –90.74 (=N(Si(CH3)3)), –131.19 (-N(Si(CH3)3)) ppm. ATR-IR ν/cm−1:

2958 (m), 2918 (w), 2896 (w), 2849 (w), 1534 (m), 1409 (m), 1246 (s), 1092 (m), 1019 (s), 942

(s), 928 (w), 901 (w), 796 (s, br), 757 (s, br), 725 (w), 661 (s), 605 (s), 595 (w), 437 (w). Note,

complex 5 decomposes in solution at room temperature affording [HN(SiMe3)2] and several

unidentified products after 30 minutes, as indicated by 1H NMR spectroscopy.

3.3 Electronic structure calculations

State-averaged complete active space self-consistent field spin-orbit (CASSCF-SO) calcula-

tions are performed with OpenMolcas.62 Scalar relativistic effects are included via a second-

order Douglas-Kroll-Hess (DKH2) Hamiltonian, which is evaluated in a basis of relativistic

semi-core correlated atomic natural orbital (ANO-RCC) functions.63,64 We use basis sets of
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VQZP quality on U and the first coordination sphere, and VDZP quality for all other atoms.

Two electron integrals are decomposed with the Cholesky method using a threshold of

10−8. CASSCF calculations are performed using a minimal active space of 2 electrons in

7 5f orbitals, averaging over 11 roots for S = 1 and 9 roots for S = 0, corresponding to

the 3H and 1G terms, respectively. The number of optimised roots is a decisive factor, as

calculations using more states fail to approach the correct high T limit of χT for both 4 and

5; this is a result of using state-averaged molecular orbitals, where the representation of the

lowest-energy states becomes less optimal as the number of averaged states increases.

4 Supplemental information

Supplemental Information can be found online at

https://doi.org/10.1016/j.chempr.2021.05.001
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Supplementary Information

S1 General Experimental Considerations

All manipulations were carried out under an inert atmosphere of dry nitrogen using Schlenk

techniques, or in an MBraun UniLab glovebox operating under an atmosphere of dry nitro-

gen with H2O and O2 < 0.1 ppm. All glassware was silylated and dried either by overnight

storage in an oven at 150◦C or by flame-drying with subsequent cooling under 10−3 mm

Hg vacuum followed by repeated alternate evacuation and purging with nitrogen. Solvents

were dried by passage through activated alumina towers and degassed prior to use. All

solvents were stored over potassium mirrors, except for ethers that were stored over acti-

vated 4 Å molecular sieves. Deuterated solvent was distilled from a potassium mirror and

degassed by three freeze pump-thaw cycles and stored under N2. The compounds [U(N′′)3],

1,3-dimethyl-2-methylene imidazoline [H2C=C(NMeCH)2], and [UO{N(SiMe3)2}3]65–67 were

synthesised according to published procedures. 1H, 13C{1H}, and 29Si{1H} NMR spectra

were recorded on a Bruker 400 spectrometer operating at 400.1, 100.6, and 79.5 MHz, respec-

tively; chemical shifts are quoted in ppm and are relative to TMS (1H, 13C, 29Si). Samples

were prepared in the glovebox and placed in J. Young PTFE 5 mm screw-topped borosilicate

NMR tubes. FTIR spectra were recorded on a Bruker Alpha spectrometer with a Platinum-

ATR module in the glovebox. UV/Vis/NIR spectra were recorded on a Perkin Elmer Lambda

750 spectrometer where data were collected in 1 mm path length cuvettes and were run ver-

sus the appropriate reference solvent. Static variable-temperature magnetic moment data

were recorded in an applied DC field of 0.5 T on a Quantum Design MPMS XL7 supercon-

ducting quantum interference device (SQUID) magnetometer using doubly recrystallised

powdered samples. Samples were carefully checked for purity and data reproducibility

between several independently prepared batches for each compound examined. Care was

taken to ensure complete thermalization of the sample before each data point was measured,

and samples were immobilised in an eicosane matrix to prevent sample reorientation dur-

ing measurements. Diamagnetic corrections were applied using tabulated Pascal constants

and measurements were corrected for the effect of the blank sample holders (flame sealed

Wilmad NMR tube and straw) and eicosane matrix. CHN microanalyses were carried out

by Martin Jennings and Anne Davies (University of Manchester). Considerable issues were

repeatedly and consistently encountered obtaining CHN data for 4 and 5. Specifically, de-

spite loading pristine crystalline material into the elemental analysis combustion boats, in

common with other organosilicon-rich compounds,68 silicon-carbide formation precluded
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complete combustion and the instrument temperature could not be raised high enough to

overcome this problem. Combustion aids did not ameliorate this situation. This issue was

compounded by the fact that crystalline samples of 4 and 5 decomposed over a short time

frame. Nevertheless, the characterisation data when taken together support the proposed

formulation of 4 and 5.

S2 NMR Spectra

Figure S1: 1H NMR spectrum of 4 – asterisk (*) denotes decomposition products.
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Figure S2: 13C{1H} NMR spectrum of 4.

Figure S3: 29Si{1H} NMR spectrum of 4.
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Figure S4: 1H NMR spectrum of 5 – asterisk (*) denotes decomposition products.

Figure S5: 13C{1H} NMR spectrum of 5.
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Figure S6: 29Si{1H} NMR spectrum of 5.

S3 IR Spectra

Figure S7: FTIR spectrum of 4.
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Figure S8: FTIR spectrum of 5.

S4 SQUID Data

Figure S9: Variable-temperature SQUID data of a powdered sample of 4.
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Figure S10: Variable-temperature SQUID data of a powdered sample of 5.

S5 UV/Vis/NIR Spectra

Figure S11: UV/Vis/NIR spectrum of 4.
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Figure S12: UV/Vis/NIR spectrum of 4 zoomed in between 450-2800 nm.

Figure S13: UV/Vis/NIR spectrum of 5.
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Figure S14: UV/Vis/NIR spectrum of 5 zoomed in between 450-2800 nm.

S6 Computational Modelling

Figure S15: Eigenstates of the ab initio CF Hamiltonian for a) 4 and b) 5, calculated
with CASSCF(2,7)-SO using 11 and 9 triplet and singlet roots, respectively, and the
QZP+QZP+DZP basis. The segmented lines illustrate the composition of each state in
terms of the total angular momentum eigenfunctions |mJ⟩.
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Figure S16: µeff vs. T curves derived from CASSCF-SO calculations on 4, using a
TZP+DZP+DZ basis set.

Figure S17: M vs. H curves derived from CASSCF-SO calculations on 4, using a
TZP+DZP+DZ basis set.
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Figure S18: µeff vs. T curves derived from CASSCF-SO calculations on 5, using a
TZP+DZP+DZ basis set.

Figure S19: M vs. H curves derived from CASSCF-SO calculations on 5, using a
TZP+DZP+DZ basis set.
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Figure S20: a)µeff vs. T and b)M vs. H curves of 4 derived from different CF Hamiltonians.
For the optimised sets, only the indicated CFP was fitted to the experimental data, while
the other parameters were kept fixed to their ab initio values.

Figure S21: a)µeff vs. T and b)M vs. H curves of 5 derived from different CF Hamiltonians.
For the optimised sets, only the indicated CFP was fitted to the experimental data, while
the other parameters were kept fixed to their ab initio values.

75



S7 Computational Tables

Table S1: CFPs of [UIVOF3]− derived from CASSCF(2,7)-SO with 11 triplet and 9 singlet
roots, using a QZP-QZP-DZP basis set.

k q Bq
k value /cm−1

2 -2 0.0
2 -1 0.0
2 0 -136.3
2 1 0.0
2 2 0.0
4 -4 0.0
4 -3 10453.1
4 -2 0.0
4 -1 0.0
4 0 285.6
4 1 0.0
4 2 0.0
4 3 -470.1
4 4 0.0
6 -6 7.3
6 -5 0.0
6 -4 0.0
6 -3 516.7
6 -2 0.0
6 -1 0.0
6 0 -118.0
6 1 0.0
6 2 0.0
6 3 -23.2
6 4 0.0
6 5 0.0
6 6 80.7

Table S2: Energies and |mJ⟩ percentage contributions for the ab initio CF eigenstates of 4,
as obtained from CASSCF(2,7)-SO (11 triplet and 9 singlet roots, QZP-QZP-DZP basis set).

|mJ⟩ percentage contributions

Energy
/cm−1

|−4⟩ |−3⟩ |−2⟩ |−1⟩ |0⟩ |1⟩ |2⟩ |3⟩ |4⟩

0.0 28.74 0.21 0.97 20.03 0.09 20.03 0.97 0.21 28.74
29.4 31.49 0.29 0.67 17.32 0.45 17.32 0.67 0.29 31.49

195.4 0.18 15.34 0.93 0.40 66.32 0.40 0.93 15.34 0.18
687.2 6.34 0.53 35.94 6.89 0.59 6.89 35.94 0.53 6.34
711.2 9.44 0.34 35.66 4.36 0.41 4.36 35.66 0.34 9.44

1078.0 5.42 21.34 8.63 14.46 0.28 14.46 8.63 21.34 5.42
1109.0 6.46 26.79 7.91 8.73 0.22 8.73 7.91 26.79 6.46
1154.0 11.80 1.39 9.12 27.68 0.04 27.68 9.12 1.39 11.80
1672.0 0.13 33.77 0.17 0.13 31.60 0.13 0.17 33.77 0.13
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Table S3: Energies and |mJ⟩ percentage contributions for the ab initio CF eigenstates of 5,
as obtained from CASSCF(2,7)-SO (11 triplet and 9 singlet roots, QZP-QZP-DZP basis set).

|mJ⟩ percentage contributions

Energy
/cm−1

|−4⟩ |−3⟩ |−2⟩ |−1⟩ |0⟩ |1⟩ |2⟩ |3⟩ |4⟩

0.0 30.71 0.20 1.70 17.18 0.40 17.18 1.70 0.20 30.71
11.6 31.86 0.16 0.64 17.29 0.10 17.29 0.64 0.16 31.86

121.0 0.16 23.11 0.21 0.34 52.35 0.34 0.21 23.11 0.16
508.1 4.59 0.05 42.49 2.83 0.09 2.83 42.49 0.05 4.59
523.2 6.92 0.47 40.17 2.25 0.38 2.25 40.17 0.47 6.92
716.9 0.06 49.06 0.38 0.49 0.00 0.49 0.38 49.06 0.06
999.2 13.40 0.32 5.85 30.33 0.21 30.33 5.85 0.32 13.40

1027.0 12.22 0.05 8.52 29.12 0.18 29.12 8.52 0.05 12.22
1411.0 0.09 26.57 0.03 0.16 46.29 0.16 0.03 26.57 0.09

Table S4: CFPs of 4 derived from CASSCF(2,7)-SO with 11 triplet and 9 singlet roots, using
a QZP-QZP-DZP basis set.

k q Bq
k value /cm−1

2 -2 -157.3
2 -1 -64.3
2 0 183.4
2 1 -283.7
2 2 122.0
4 -4 -125.2
4 -3 7455.3
4 -2 -152.3
4 -1 241.9
4 0 347.2
4 1 -180.7
4 2 -241.4
4 3 -9312.6
4 4 -1.5
6 -6 349.1
6 -5 204.3
6 -4 -33.8
6 -3 57.6
6 -2 -27.4
6 -1 -62.3
6 0 -85.9
6 1 12.7
6 2 -27.0
6 3 -261.6
6 4 18.5
6 5 -19.4
6 6 -76.4
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Table S5: CFPs of 5 derived from CASSCF(2,7)-SO with 11 triplet and 9 singlet roots, using
a QZP-QZP-DZP basis set.

k q Bq
k value /cm−1

2 -2 9.6
2 -1 251.3
2 0 283.0
2 1 146.7
2 2 -35.7
4 -4 -8.5
4 -3 -3910.3
4 -2 -13.4
4 -1 -33.4
4 0 125.4
4 1 84.0
4 2 -128.8
4 3 10386.3
4 4 115.5
6 -6 211.3
6 -5 39.7
6 -4 20.8
6 -3 -135.4
6 -2 15.5
6 -1 14.6
6 0 -73.2
6 1 -40.5
6 2 -11.4
6 3 271.5
6 4 31.2
6 5 29.3
6 6 -211.0
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Table S6: RMSDs of energy levels and of pseudo-doublet energy gaps calculated with re-
spect to ab initio CF data. Only optimised CFPs yielding a residual change of at least 90%
are shown.

4 5

Optimised
CFP

Energy
RMSD
/cm−1

Pseudo-
doublet gap
RMSD /cm−1

Optimised
CFP

Energy
RMSD
/cm−1

Pseudo-
doublet gap
RMSD /cm−1

B1
2 57.6 108.9 B−1

2 3.7 5.9

B1
4 68.7 161.3 B−1

4 2.9 6.6

B1
6 25.3 77.7 B−1

6 3.5 4.9

B2
4 37.8 97.9 B−2

2 2.6 4.3

B3
4 206.8 25.3 B−2

4 22.7 49.4

B−3
6 93.4 17.7 B2

4 20.9 45.9

B−5
6 13.2 14.4 B−2

6 2.4 4.8

B6
6 23.8 19.9 B3

6 43.1 2.9

B−4
4 27.6 66.6

B−4
6 7.8 11.1

B5
6 1.7 1.9

B6
6 11.1 2.1
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Table S7: Relative energies of the second and third CF eigenstates obtained after fitting
one CFP from the ab initio set to magnetic susceptibility and powder magnetisation data.
Note that the different selections of CFPs for the two complexes were chosen so that the
overall energy spectrum was minimally affected after optimisation.

4

Optimised
CFP

Initial CFP
value

Optimised
CFP value

1st excited
state /cm−1

2nd excited
state /cm−1

B−5
6 204.3 572.4 6.8 185.0

B6
6 -76.4 -1032.0 6.5 196.0

5

Optimised
CFP

Initial CFP
value

Optimised
CFP value

1st excited
state /cm−1

2nd excited
state /cm−1

B−2
2 9.6 30.6 8.5 119.0

B−1
2 251.3 109.3 8.4 118.0

B−1
4 -33.4 59.7 8.5 121.0

B−4
6 20.8 -167.2 8.4 136.0

B−2
6 15.5 -9.3 8.5 120.0

B−1
6 14.6 121.1 8.4 117.0

B3
6 271.5 -256.6 7.9 198.0

B5
6 29.3 -32.3 8.5 119.0

B6
6 -211.0 -391.2 8.8 126.0

Table S8: Energies and |mJ⟩ percentage contributions for the ab initio CF eigenstates of
[UIV(N′′)3]+ (4 without the oxo anion), as obtained from CASSCF(2,7)-SO (11 triplet and 9
singlet roots, QZP-QZP-DZP basis set).

|mJ⟩ percentage contributions

Energy
/cm−1

|−4⟩ |−3⟩ |−2⟩ |−1⟩ |0⟩ |1⟩ |2⟩ |3⟩ |4⟩

0.0 0.00 0.1 0.27 0.44 98.37 0.44 0.27 0.10 0.00
160.5 0.07 0.02 0.20 49.51 0.43 49.51 0.20 0.02 0.07
266.6 0.09 0.03 0.15 49.50 0.45 49.50 0.15 0.03 0.09

1053.4 0.02 0.05 49.77 0.09 0.14 0.09 49.77 0.05 0.02
1073.5 0.02 0.09 49.44 0.26 0.39 0.26 49.44 0.09 0.02
2828.7 0.07 49.80 0.08 0.02 0.07 0.02 0.08 49.80 0.07
2946.2 0.08 49.77 0.06 0.03 0.15 0.03 0.06 49.77 0.08
3807.4 49.85 0.07 0.01 0.07 0.00 0.07 0.01 0.07 49.85
3825.4 49.81 0.08 0.03 0.09 0.00 0.09 0.03 0.08 49.81
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Abstract

Herein we describeHyperion, a new program for computing relativistic picture-change-

corrected magnetic resonance parameters from scalar relativistic active space wave-

functions, with or without spin-orbit coupling (SOC) included a posteriori. Hyperion

also includes a new orbital decomposition method for assisting active space selection

for calculations of hyperfine coupling. For benchmarking purposes we determine hy-

perfine coupling constants of selected alkali metal, transition metal and lanthanide

atoms, based on complete active space self-consistent field spin-orbit calculations in

OpenMolcas. Our results are in excellent agreement with experimental data from

atomic spectroscopy, as well as theoretical predictions from 4-component relativistic

calculations.

1 Introduction

Magnetic resonance spectroscopy techniques, such as Electron Paramagnetic Resonance

(EPR) and Nuclear Magnetic Resonance (NMR), are capable of providing very accurate in-

formation on the interactions between electron spins, nuclear spins and external magnetic

fields. The information available from EPR and NMR spectra is often encoded, via iterative

fitting of the experimental data to a model spin Hamiltonian, in a set of effective parameters,

each related to a specific type of coupling between magnetic entities. Quantities probing

interactions between electron and nuclear spins, namely EPR hyperfine coupling constants

(HFCCs) and paramagnetic NMR shifts, depend strongly on unpaired electron (spin) den-

sity1,2 and can therefore be used to measure effects due to chemical bonding. For example,

87



a recent study employed HFCCs as proxies for covalency in a series of actinide complexes.3

The steady evolution of electronic structure algorithms has made it computationally fea-

sible to study heavy-element complexes fully ab initio. As the atomic number increases,

relativistic effects become more important, to the extent where they cannot be regarded

as mere perturbations of the Schrödinger picture; instead, a 4-component Dirac formalism

becomes necessary. The onset of the relativistic regime is especially important for mag-

netic interactions, which couple the electronic and positronic degrees of freedom of a Dirac

spinor, therefore requiring an explicit description of the latter. Hence, theoretical frame-

works developed for magnetic properties such as hyperfine coupling (HFC) must account

for relativistic effects – both spin-independent (scalar relativistic, SR) and spin-dependent

(e.g. spin-orbit coupling, SOC) to ensure a wide range of applicability and to keep up with

the latest experimental advances.

HFC between an unpaired electron spin S and a nuclear spin IN is most frequently modelled

non-relativistically as the sum of anisotropic dipolar coupling, known as the spin-dipole

(SD) mechanism, and isotropic Fermi Coupling (FC):4

ĤSD =
µ0

4π
geµBgNµN

{
3(IN · rN)(rN · S)

r5N
− IN · S

r3N

}
, ĤFC =

2µ0

3
geµBgNµN ρ

α−β
N , (1)

where we use µ0, ge, µB gN, µN and IN to denote the vacuum permeability, electron g-factor,

Bohr magneton, nuclear g-factor, nuclear magneton and nuclear spin vector, respectively;

rN = r −RN is the position vector of the unpaired electron with respect to the magnetic

nucleus. The strength of FC is proportional to the spin population at the magnetic nucleus,

ρα−β
N , thus providing a convenient probe for spin delocalisation in a molecule. Although

the single-configurational view of electronic structure suggests that this term arises solely

through s-type atomic orbital (AO) contributions to the singly-occupied molecular orbital

(SOMO), several factors complicate this interpretation.

Differences between the interaction of core spin-up and spin-down electrons with the un-

paired spin give rise to spin polarisation (SP),2 which give additional contributions to the

isotropic HFC and cannot be described by a single electronic configuration. Thus, the quan-

titative interpretation of HFCCs requires quantum chemical techniques to model the elec-

tronic structure accurately and capture SP effects. For this purpose, there are two possible
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solutions: spin-unrestricted single configurational methods, such as Unrestricted Hartree-

Fock (UHF) and Unrestricted Kohn-Sham Density Functional Theory (UKS-DFT), which

offer low computational cost at the expense of broken spin symmetry, and more expen-

sive spin-adapted multiconfigurational methods, which preserve spin symmetry and are

designed to handle electron correlation.

Unrestricted DFT is currently the most widely used approach for determining HFCCs, due

to the lower computational cost relative to wavefunction-based (ab initio) algorithms. Hy-

brid functionals give good predictions for HFCCs of organic radicals and transition metal

complexes,5,6 however, the accuracy of these results is believed to be caused by fortuitous er-

ror cancellation.7 Moreover, a recent study8 shows that the best choice of functional for HFC

is system-dependent. Aside from HFC-related shortcomings, the single-configurational

framework underlying Kohn-Sham DFT is inappropriate for describing static correlation,

an important feature of f-element complexes. Such systems require a multiconfigurational

approach, usually in the form of active space wavefunction optimisation techniques such

as Complete Active Space Self-Consistent Field (CASSCF), in order to obtain meaningful

predictions of energies and molecular properties.

Although far from black-box, active space algorithms are not only cheaper than fully-

correlated alternatives such as Full Configuration Interaction or Coupled Cluster methods,

but also more flexible, as the active space is user-defined. This framework can be leveraged

to obtain accurate theoretical HFCCs by including, in addition to static correlation, a se-

lection of dynamical correlation effects (e.g. SP) that significantly influence HFC. The chal-

lenge, then, is developing a strategy for choosing computationally feasible active spaces that

result in accurate theoretical HFCCs. Previous studies employing multireference configura-

tion interaction (MR-CI) algorithms have already analysed the convergence of HFCCs with

respect to CI excitation level, orbital selection threshold and basis set completeness.2,9–16

However, most of the established trends are only applicable to the non-relativistic regime;

in particular, the observations about AO contributions to HFCCs result directly from the

delta distribution form of the FC term (Equation 1, right), which is specific to the non-

relativistic Schrödinger-Pauli framework.17 Relativistic treatments of HFC hence require

new work to establish updated guidelines for theoretical investigations.

Fully-relativistic 4-component approaches are unfeasible for all but the simplest systems,18,19

unless combined with a low-cost electronic structure algorithm such as Dirac-Hartree-Fock
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(DHF)20 or DFT.21 As such, multiple strategies that decouple the upper (electronic) and lower

(positronic) components of the Dirac Hamiltonian have been developed to lower the cost

of relativistic calculations for application to real molecular systems. Use of a decoupling

transformation is, in effect, a change in the reference frame of the wavefunction, and there-

fore it must also be applied to the property operators; ignoring this second step leads to the

so-called Picture-Change Error (PCE).22 Due to the picture-change correction, relativistic

property operators are different from their non-relativistic counterparts and, in the case of

relativistic HFC, the isotropic contribution is no longer proportional to the spin density at

the nucleus.

Approximate (quasi-relativistic) decoupling techniques, such as the regular approximation

(RA) and Douglas-Kroll-Hess (DKH), are now fairly widespread and provide excellent pre-

dictions for the energies of most relativistic systems.23,24 These 2-component approaches

can be simplified further by disregarding spin-dependent effects, yielding a 1-component

scalar relativistic formalism. For magnetic resonance applications, the Zeroth-Order Regu-

lar Approximation (ZORA) is widely used in combination with DFT25–28. Despite providing

a good description of valence properties,29,30 ZORA affords large errors for core-dependent

properties of heavy-element systems (e.g. core-hole X-Ray excitations or absolute nuclear

shielding tensors);29,31 DKH is significantly more accurate in this respect. Indeed, HFCCs

obtained using SR-DKH2 operators are in good agreement with experiment,32,33 although

Lan et al34 show that a higher-order decoupling transformation (DKH3) is needed for a

converged relativistic HFC picture. Quasi-relativistic HFCCs can also be derived via the

Infinite-Order Regular Approximation (IORA), and when combined with a multiconfigu-

rational wavefunction method, this approach produces highly accurate atomic hyperfine

structure constants for alkali and coinage metals.35

Exact 2-component decoupling schemes are also available, together with 1-component SR

variants. For the purpose of theoretical HFC, these offer two main improvements over

quasi-relativistic theories: there is no uncertainty regarding the appropriate order of de-

coupling, and picture-change corrections are straightforward to implement via matrix mul-

tiplication. The eXact-2-Component (X2C)36–38 and Normalised Elimination of the Small

Component (NESC)39 approaches are two popular, fully numerical, choices for theoretical

studies of relativistic HFC. In such cases, it is worth keeping in mind that the form of the

relativistic HFC operator changes on a case-by-case basis, since the picture-change trans-

formation is only defined as a numerical matrix.
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Our goal was to devise a general methodology for determining relativistic, picture-change-

corrected HFCCs for chemical systems of arbitrary size and complexity. With this in mind,

we developed Hyperion, a Python-based program that computes SR-X2C-decoupled mag-

netic resonance parameters from complete active space (CAS) or restricted active space

(RAS) wavefunctions, with or without spin-orbit coupling (SOC) added a posteriori (CASSCF-

SO/RASSCF-SO); a similar method has been developed in parallel by Autschbach and co-

workers, and implemented as part of OpenMolcas.38 Although our code has to-date been

tested only with OpenMolcas, Hyperion is a stand-alone package that can be straight-

forwardly extended to allow inputs from other quantum chemical software. Herein, we

demonstrate the use of Hyperion to obtain HFCCs of selected atoms, and benchmark

our results against experimental data from atomic spectroscopy and predictions from 4-

component calculations. As well as showing the performance of Hyperion, we demon-

strate various strategies for tackling specific combinations of electron correlation, SR and

SOC effects, highlighting both merits and limitations of CASSCF-SO/RASSCF-SO methods.

The comparatively small number of electrons and high symmetry of atoms mean that high

levels of theory are achievable with relatively little computational cost, but as our goal is

to extend our approach to molecules in the near future, we work with usual electronic

structure approximations, such as contracted basis sets and RAS sub-spaces of limited size,

which are the only feasible strategies for molecular calculations.

2 Theory

2.1 SR-X2C magnetic properties

The starting point for any relativistic treatment of magnetic properties is the 4-component

Dirac equation under a scalar potential V and a vector potential A:

c

 V/c σ · (p̂+ eA)

σ · (p̂+ eA) V/c− 2mec

ψU

ψL

 = E

ψU

ψL

 , (2)

where σ is the 3-vector of Pauli spin matrices, p̂ is the electron linear momentum operator,

me is the electron mass and c is the speed of light in vacuum; SI units are used throughout

this work. We represent all 4-component operators in block form, with each matrix element

denoting a 2-component operator. Note that, in 2-component equations, σ = 2 s, where s

is the electron spin vector.
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The Dirac wavefunction, also known as a 4-component spinor, has an upper component

(sometimes referred to as the large component) ψU that describes electronic degrees of free-

dom, as well as a lower component (or small component) ψL describing positronic degrees

of freedom. In order for equation 2 to approach the correct non-relativistic limit, the basis

sets chosen for ψU and ψL must obey the restricted kinetic balance (RKB) condition, namely

that, for an upper component basis set {ϕµ}, the lower component basis set is
{

σ·p̂
2mec

ϕµ

}
.

Although using RKB alone is formally justified only in the absence of magnetic fields, this

approach is reasonable, as the magnetic-field-dependent terms are treated as a perturbation

herein (vide infra). By substituting the RKB condition into the 4-component Hamiltonian,

we arrive at the modified Dirac equation,40

ĤmDE

ψU

χU

 = E

1 0

0 1
2mec2

T̂

ψU

χU

 , (3)

with

ĤmDE =

V T̂

T̂ 1
4m2

e c
2Ŵ − T̂

+
e

2me

 0 (σ ·A)(σ · p̂)

(σ · p̂)(σ ·A) 0

 (4)

T̂ =
p̂ · p̂
2me

, (5)

Ŵ = (σ · p̂)V (σ · p̂). (6)

Notice that the lower component of (2) has been replaced by the pseudo-upper compo-

nent χU, which can be represented in the same basis as that used for ψU. Additionally,

the modified Dirac Hamiltonian (equation 4) has been separated into A-independent and

A-dependent contributions; we henceforth treat the A-dependent term as a first-order per-

turbation, Ĥ(1). Using the Dirac relation, we re-write Ŵ as

(σ · p̂)V (σ · p̂) = p̂V · p̂+ iσ · p̂V × p̂ (7)

and discard the σ-dependent term to obtain a spin-free 4-component operator. By ignor-

ing the spin-dependent contribution, this relativistic formalism becomes compatible with

the 1-component framework employed by most electronic structure packages, including
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OpenMolcas. The resulting spin-free (SF) modified Dirac operator is

Ĥ
(0)
SF-mDE =

V T̂

T̂ 1
4m2

e c
2 p̂V · p̂− T̂

 , (8)

which shall serve as the zeroth-order (unperturbed) Hamiltonian within our theoretical

framework.

Scalar-relativistic eXact-2-Component (SR-X2C) theory41,42 can be employed to determine

a unitary transformation Û (equation 9) that block-diagonalises Ĥ(0)
SF-mDE and decouples the

electronic degrees of freedom from the positronic degrees of freedom. The electronic prob-

lem can then be solved by diagonalisation of the upper-upper (Ĥ(0)
SF-X2C,UU) component of

the transformed Hamiltonian, without any reference to the other 2-component blocks.

Û† Ĥ
(0)
SF-mDE Û =

Ĥ
(0)
SF-X2C,UU 0

0 Ĥ
(0)
SF-X2C,LL

 , Û =

ÛUU ÛUL

ÛLU ÛLL

 . (9)

The electronic-only perturbation operator is obtained in an analogous manner, by applying

the same unitary transformation to Ĥ(1) and then reading off the upper-upper block,

Ĥ
(1)
SF-X2C,UU =

e

2me

{
Û†

UU(σ ·A)(σ · p̂)ÛLU + Û†
LU(σ · p̂)(σ ·A)ÛUU

}
. (10)

As this work pertains only to electronic properties, we henceforth drop the UU subscript

from Hamiltonian operator notation.

The interaction between electrons and magnetic fields (electron-Zeeman interaction), and

electrons and nuclear spins (HFC) can be derived from (10) through substitution of the

appropriate vector potential (equations 11 and 12, respectively),

AZee =
1

2
B× (r−RG), (11)

AN = gNµN
µ0

4π

(
IN × rN

r3N

)
, (12)

where B denotes an external magnetic field and RG is the chosen gauge origin. Note that,

for the vector potential AN induced by a magnetic nucleus N, we have assumed a point-

like magnetic dipole distribution. Alternatively, a Gaussian distribution model (Equations

13 and 14) can be used – this is also implemented in Hyperion, however results herein
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employ the point nucleus expression for simplicity.

AN,η = −gNµN
µ0

4π
IN ×∇

∫
Gη(|R−RN|)

|r−R|
dR, (13)

Gη(|R−RN|) =
(η
π

)3/2

e−η|R−RN|2 (14)

The electronic HFC perturbation operator within the SF-X2C framework is therefore

Ĥ
(1)
N,SF-X2C = ĤFC+SD

N,SF-X2C + ĤPSO
N,SF-X2C , (15)

ĤFC+SD
N,SF-X2C = µBgNµN

µ0

4π
σ ·

{
Û†

UU

(
−rN

r3N
·∇+

rN

r3N
∇⊤

)
ÛLU

+ Û†
LU

(
−rN

r3N
·∇+

rN

r3N
∇⊤

)†

ÛUU

}
· IN , (16)

ĤPSO
N,SF-X2C = i µBgNµN

µ0

4π

{
−Û†

UU

(
rN

r3N
×∇

)
ÛLU + Û†

LU

(
rN

r3N
×∇

)†

ÛUU

}
· IN , (17)

where we distinguish between a spin-dependent contribution, ĤFC+SD
N,SF-X2C, and an imaginary,

spin-independent contribution, ĤPSO
N,SF-X2C. The former reduces to the sum of the FC and SD

operators in the non-relativistic limit, while the latter represents the interaction between

the electronic orbital angular momentum and the nuclear spin, and is known as the para-

magnetic spin-orbit coupling (PSO) term.

It is worth highlighting that (16) does not include a delta-function, that would imply only

contributions at the nucleus and characteristic of traditional interpretations of FC; as shown

by Kutzelnigg,17 this hallmark only arises in the non-relativistic limit of a 2-component

framework. As a result, relativistic spin-dependent HFC cannot be interpreted as a combi-

nation of classical dipolar coupling (SD term) and an FC term sampling the spin density at

nucleus N.4

2.2 Spin Hamiltonian parametrisations

The cornerstone of EPR theory is the spin Hamiltonian, an effective operator describing all

the relevant magnetic interactions as couplings in a (2S + 1)-dimensional space, where S

is the spin quantum number of the system. The HFC spin Hamiltonian is

ĤSpin = IN · aN · S, (18)
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where the HFC tensor aN quantifies the strength and anisotropy of the interaction. Quan-

tum mechanical determinations of EPR parameters are based on mapping ab initio operators

onto the spin Hamiltonian and differentiating to obtain the tensor components of aN:

aN,kl =
∂2Ĥ

(1)
N

∂IN,k ∂Sl

∣∣∣∣∣
IN,k,Sl=0

, k = x, y, z. (19)

In a spin-free/scalar relativistic framework, provided the electronic system is spin-only

(negligible SOC), the tensor components are computed as

aN,kl =

〈
ĥN,k

〉
〈
Ŝz

〉 , (20)

where we have defined the vector operator ĥN as

ĥN,k =
∂Ĥ

(1)
N

∂IN,k

∣∣∣∣∣
IN,k

. (21)

Note that in the case of spin-adapted electronic structure approaches, such as spin-adapted

CASSCF, the spin projection expectation value
〈
Ŝz

〉
is exactly equal to S.

This spin-only parametrisation is not appropriate, however, for systems exhibiting non-

negligible SOC, as S is no longer a good quantum number. Instead, the size of the model

space is chosen as the number of low-lying electronic states in the SO-coupled energy spec-

trum, resulting in an effective 2S+1multiplet, where S is the pseudospin quantum number.

Replacing S with S in equation (18) yields the pseudospin Hamiltonian, from which the el-

ements of symmetrised tensor aNa
⊤
N are computed via the method of Chibotaru:43

(
aNa

⊤
N
)
kl
=

3

S(S + 1)(2S + 1)

2S+1∑
I,J

〈
I
∣∣∣ĥN,k

∣∣∣ J〉〈
J
∣∣∣ĥN,l

∣∣∣ I〉 , (22)

where |I⟩ and |J⟩ denote eigenstates in the pseudospin manifold. A similar approach is

widely used to derive g-tensors for strongly SO-coupled systems.44 The eigenvectors and

eigenvalues of the symmetrised tensors correspond to the principal axes and the squared

principal values of the original tensors; as a result, the pseudospin parametrisation yields

unsigned g-values and HFCCs.
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2.3 HFC orbital decomposition

One aspect of theoretical determination of HFCCs using multi-configurational methods is

choosing the most appropriate active space. This is largely a task of trial and error, for

which it is hard to define general rules. Hence, we have developed an orbital decomposi-

tion method to assess the involvement of particular MOs in the spin-dependent HFCC of a

spin-free state ΨSS . To do so, we use the second quantisation formalism to represent the

expectation value of each vector operator component ĥFC+SD
N,k as a sum over pairs of MOs

{µν}:

〈
ΨSS

∣∣∣ĥFC+SD
N,k

∣∣∣ΨSS
〉
=

∑
µν

〈
µ
∣∣∣ÔN,zk

∣∣∣ ν〉〈
ΨSS

∣∣∣â†µαâνα − â†µβâνβ

∣∣∣ΨSS
〉

(23)

=
∑
µν

〈
µ
∣∣∣ÔN,zk

∣∣∣ ν〉Pα−β
µν , (24)

where â† and â denote spin-orbital creation and annihilation operators, respectively, and

Pα−β
µν is a spin density matrix element. We have used ÔN,zk to denote the l= z components

of a rank-2 tensor operator defined as

ÔN,lk = µB Û†
UU

(
−δlk

rN

r3N
·∇+

rN,l

r3N
∂k

)
ÛLU

+ µB Û†
LU

(
−δlk

rN

r3N
·∇+

rN,l

r3N
∂k

)†

ÛUU. (25)

Note that ÔN represents the spatial part of hFC+SD
N,SF-X2C, as derived via equations 16 and 21.

We consider each term from the summation in (24) separately, combine the k=x, y, z com-

ponents of ÔN,z via the vector norm, and divide the result by the spin projection to obtain

a two-dimensional symmetric matrix M with elements

Mµν =

∥∥∥〈µ ∣∣∣ÔN,z

∣∣∣ ν〉∥∥∥ Pα−β
µν〈

Ŝz

〉 =
1〈
Ŝz

〉 √∑
k

〈
µ
∣∣∣ÔN,zk

∣∣∣ ν〉2

Pα−β
µν . (26)

TheMmatrix contains the same information as the spin-dependent HFCC, albeit in a mod-

ified form wherein MO degrees of freedom are not integrated out. We note that the factor

of
〈
Ŝz

〉−1

, which reduces to S−1 for spin-free states, mimics the expression for HFC oper-

ators in the spin-only formalism. With this representation, the diagonal elements Mµµ can

be interpreted as individual orbital contributions, while the coupling between two different

orbitals is quantified by Mµν +Mνµ = 2Mµν .
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Inspired by Density Matrix Renormalisation Group (DMRG) entanglement diagrams,45 we

designed a similar pictorial representation of orbital involvement in HFC (Figure 1), using

the matrix elements of M. Individual orbital contributions are shown as markers on the

circumference of a circle, while pairwise contributions are shown as chords, colour-coded

by order of magnitude.

Figure 1: HFC orbital decomposition diagrams obtained from relativistic determinations of
HFCCs using Hyperion. a - 133Cs atom, RASCI(45,52) using CASSCF(11,15)-optimised or-
bitals; b - 197Au atom, RASCI(45,54) using RASSCF(19,26)-optimised orbitals. Lines across
the diagram correspond to off-diagonal matrix elements of M. Individual orbital contri-
butions, as indicated by circular markers, correspond to diagonal matrix elements Mµµ.

It is worth emphasising that this model is based on a CI-type wavefunction that is not

relaxed after applying the first-order HFC perturbation, and that our orbital decomposi-

tion diagrams only show a static picture of HFC. To further understand this, we adopt the

direct/indirect terminology used by Engels11 to describe the influence of specific configura-

tions in a CI wavefunction. The HFC orbital decomposition matrixM for a given electronic

state is computed via its spin density matrix, which is completely determined by the CI ex-

pansion. The direct influence of an (active) orbital or pair of orbitals, as indicated by M, is

then proportional to the total CI contribution from all configurations where the orbitals of

interest are singly-occupied. However, the spin density associated with one orbital can vary

between different active space selections, due to the indirect effect of all the other corre-

lated orbitals. Therefore, the active space selection should not be based solely on the orbital

decomposition diagram. HFC calculations should be carried out both with and without a

specific orbital in the CAS/RAS to determine the magnitude of its indirect effect.
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3 Computational details

All electronic structure calculations use a local version of OpenMolcas v19.11 adapted to

print the X2C decoupling matrices, while the spatial HFC integrals are evaluated analyti-

cally with Libcint.46 Full ANO-RCC basis sets47–51 are used throughout to ensure sufficient

flexibility and to maintain consistency with previous relativistic HFC studies.36,38,52 The elec-

tronic wavefunction is optimised using either the complete active space self-consistent field

(CASSCF) approach53 or a restricted active space (RAS) approach54 with (RASSCF) or with-

out orbital optimisation (RASCI). Where necessary, SOC is added a posteriori using the

RASSI method.55 To keep RAS calculations tractable, the RAS2 sub-space is restricted to

the partially occupied shells. As such, for 2S1/2 systems, only the singly-occupied s or-

bital is included in RAS2, while for transition metals or lanthanides with partially-filled d

or f shells, respectively, RAS2 is made up of the valence nd or nf and (n + 1)s orbitals as

required.

4 Results and discussion

4.1 Spin polarisation vs. electron correlation

We take this opportunity to discuss a conceptual aspect that is often encountered in com-

putational HFC literature: the overlap between spin polarisation and electron correlation.

Both effects have physical interpretations related to the interaction between electrons in a

many-electron system, however a distinction arises in electronic structure theory due to the

use of single-configurational (also known as mean-field) references with respect to which

perturbations such as SP, static correlation and dynamic correlation are described.

Unrestricted Hartree-Fock (UHF) theory is the simplest wavefunction-based electronic struc-

ture framework that accounts for SP, albeit not accurately, due to spin contamination. The

UHF wavefunction can be expressed as a perturbation expansion from a restricted open-

shell Hartree-Fock (ROHF) reference, with the first-order term comprising only single ex-

citations.56 It can be deduced that SP arises mainly from singly-excited configurations; a

spin-adapted CI ansatz with singles (S-CI) should therefore be able to provide a more accu-

rate, non-spin-contaminated description of SP.2

Electron correlation – the instantaneous interaction of electrons, which is not captured by

a mean-field ansatz – is also routinely described by a CI wavefunction, which is most ac-
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curate when all possible excitations in the given Fock space are included (Full CI, FCI). The

correlation energy is defined as the difference between the FCI and the reference Hartree-

Fock energies. For open-shell systems represented in a spin-adapted framework (i.e. with a

ROHF reference), it follows that electron correlation includes an SP contribution,56 whose

magnitude directly relates to the overall weighting of single excitations in the CI expan-

sion. Note, however, that if a UHF reference is used instead, the boundary between SP and

”other” correlation becomes unclear. This is fortunately not a concern herein, as we employ

spin-adapted wavefunction methods exclusively.

In a comprehensive review of the spin-polarisation model for HFC, Chipman2 refers to

second- and higher-order correlation effects/true correlation, thus dividing spin-polarising

single excitations from other excited configurations sampled by FCI. While this split view

helps balance computational efficiency with accuracy in multi-configurational calculations,

it has also lead to a prevalence in the HFC literature of single-excitation-only results, with

no discussion of higher-order effects.38,52 This is likely a safe approximation for systems

such as simple organic radicals,57 however there is no reason to assume a priori that the

SP contribution to HFC is more important than contributions from higher-order excita-

tions. In fact, early work shows that high-level CI approximations are required even for

second period atoms to achieve quantitative agreement with experiment.13 For the atomic

systems studied here, we attempt to include most correlation afforded by a chosen active

space using either CASSCF or, where this is unfeasible, RASSCF/RASCI with single and

double excitations.

4.2 Alkali metals

We first apply our methodology to study the hyperfine structure of atoms in the alkali series.

This is a popular test set for theoretical HFC computations, requiring a good description of

electron correlation, as well as an appropriate treatment of relativistic effects for the heav-

ier elements.19,58,59 Table 1 shows predicted (unsigned) HFCCs for the 2S1/2 ground state of

each alkali atom, determined via active space electronic structure methods. We note that

our CASSCF(1,1) results are very close to the 4-component Hartree-Fock data reported by

Talukdar,19 suggesting that, at least for the direct contribution to HFC, relativistic effects are

correctly accounted for with the X2C decoupling in Hyperion. In order to include correla-

tion contributions to the spin density, the active space must be expanded beyond the SOMO;

the CAS size is limited to a maximum of 18 orbitals and we turn to RAS methods to explore

electron correlation effects in a larger orbital space. Note that, due to the computational
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scaling of RAS algorithms, we restrict the RAS2 subspace to the SOMO. HFCCs converge

the fastest when the CASSCF algorithm is used, with CASSCF(11,15) results within approxi-

mately 10% of experimental HFC data for all alkali metals. This contrasts with RASSCF and

RASCI results, which display slower convergence with active space size and only reach

CASSCF accuracy when the majority of MOs are correlated.

Table 1: Unsigned isotropic HFCCs in MHz computed for the ground state of alkali atoms.
The RAS1, RAS2 and RAS3 columns indicate the number of atomic shells – separated by
angular momentum – included in each subspace. Experimental HFCCs and HFCCs calcu-
lated using 4-component methods – namely, Hartree-Fock (4c-HF) and the Z-vector cou-
pled cluster approach with singles and doubles (Z-vector 4c-CCSD) – are reproduced from
reference [19].

Atom Wavefunction RAS1 RAS2 RAS3 |A|
7Li 4c-HF 288.2

CASSCF(1,1) - 1×s - 282.3
CASSCF(3,10) - 4×s, 2×p - 367.9
CASSCF(3,15) - 4×s, 2×p, 1×d - 367.9
CASSCF(3,14) - 5×s, 3×p - 395.7
RASSCF(3,29) 1×s 1×s 6×s, 7×p 392.8
Z-vector 4c-CCSD 399.1
Experimental 401.7

23Na 4c-HF 633.4
CASSCF(1,1) - 1×s - 639.2
CASSCF(9,13) - 2×s, 2×p, 1×d - 724.6
CASSCF(9,14) - 3×s, 2×p, 1×d - 794.2
CASSCF(11,15) - 4×s, 2×p, 1×d - 801.9
RASSCF(11,35) 2×s, 1×p 1×s 6×s, 6×p, 1×d 820.9
RASSCF(11,40) 2×s, 1×p 1×s 6×s, 6×p, 2×d 839.6
Z-vector 4c-CCSD 875.6
Experimental 885.8

39K 4c-HF 151.0
CASSCF(1,1) - 1×s - 152.9
CASSCF(9,13) - 2×s, 2×p, 1×d - 184.0
CASSCF(9,14) - 3×s, 2×p, 1×d - 197.1
CASSCF(11,15) - 4×s, 2×p, 1×d - 203.3
CASSCF(11,16) - 5×s, 2×p, 1×d - 210.7
RASSCF(19,39) 3×s, 2×p 1×s 6×s, 6×p, 1×d 203.6
Z-vector 4c-CCSD 226.6
Experimental 230.8
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Atom Wavefunction RAS1 RAS2 RAS3 |A|
85Rb 4c-HF 666.9

CASSCF(1,1) - 1×s - 691.9
CASSCF(9,13) - 2×s, 2×p, 1×d - 831.2
CASSCF(11,15) - 4×s, 2×p, 1×d - 906.5
RASSCF(19,26) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d,

1×f
859.1

RASCI(37,54) 4×s, 3×p, 1×d 1×s 5×s, 6×p, 1×d,
1×f

908.8

Z-vector 4c-CCSD 986.5
Experimental 1011.9

133Cs 4c-HF 1495.5
CASSCF(1,1) - 1×s - 1539.1
CASSCF(9,13) - 2×s, 2×p, 1×d - 1863.9
CASSCF(9,14) - 3×s, 2×p, 1×d - 2024.6
CASSCF(11,15) - 4×s, 2×p, 1×d - 2041.3
RASCI(35,40) 5×s, 4×p 1×s 5×s, 4×p, 1×d 2083.2
RASCI(35,47) 5×s, 4×p 1×s 5×s, 4×p, 1×d,

1×f
2095.7

Z-vector 4c-CCSD 2218.2
Experimental 2298.1

223Fr 4c-HF 5518.0
CASSCF(1,1) - 1×s - 5240.1
CASSCF(9,13) - 2×s, 2×p, 1×d - 6277.0
CASSCF(11,15) - 4×s, 2×p, 1×d - 6685.7
RASCI(43,57) 6×s, 5×p 1×s 5×s, 6×p, 1×d,

1×f
6940.0

Z-vector 4c-CCSD 7584.5
Experimental 7654.0

The balance of doubly-occupied and virtual (unoccupied) orbitals in the CAS/RAS has a

crucial influence on HFCC accuracy; it is not sufficient to augment a minimal active space

with core orbitals, as appropriate virtual orbitals are needed to correlate them. A similar

observation was made by Talukdar in a relativistic coupled-cluster study19 that emphasises

the need for high-energy unoccupied orbitals to correlate inner-core electrons. From our

results, we deduce that radial correlation, introduced via virtual shells with the same an-

gular momentum as the core shells,60 has the most significant effect on HFCCs. Compare,

for example, the HFCCs obtained from CASSCF(9,13) and CASSCF(9,14); the virtual s shell

included in the latter leads to a 6-8% improvement in accuracy. For calculations that include

orbital optimisation (i.e. CASSCF or RASSCF), a good basic principle for active space selec-

tion is to include one radially correlating virtual shell for each doubly occupied shell in the

active space. However, the exponential scaling of CASSCF severely restricts this strategy

and as such, the largest CAS selections reported herein include only one virtual shell of
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each angular momentum.
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Figure 2: Comparison of experimental vs. theoretical unsigned HFCCs for alkali atoms.
Each panel corresponds to an active space approximation and shows the line of best fit, R2

coefficient, mean absolute deviation (MAD), and mean absolute percentage error (MAPE).
The Largest RASSCF/RASCI data set comprises RAS-type models closest to the configura-
tion interaction with singles and doubles (CISD) limit, subject to subspace size constraints
imposed by OpenMolcas. Experimental HFCCs are reproduced from reference [19].

It is also interesting to analyse the influence of polarisation basis functions. The inclusion of

one virtual d shell in CASSCF affects the HFCCs of all alkali by 4-5% (except Li), suggesting

an angular correlation60 effect related to the presence of core p electrons. Extrapolating,

we postulate that for core shells with the highest angular momentum l, virtual shells with

angular momentum of at least l + 1 are needed to capture angular correlation. Note that

although previous theoretical work highlights the slow convergence of correlation energy

with maximum angular momentum61 – indicating that an accurate description of correla-

tion likely requires much higher angular momenta – similar effects on HFCCs have only

been explored for light atoms.10,13 Nevertheless, testing this hypothesis here is unfeasible

given the computational limitations of CASSCF and RASSCF algorithms; we therefore limit

our approach to include one virtual d shell for atoms Na-Fr and additionally one virtual f
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shell for Rb-Fr. Our calculations on the alkali group reach 11% mean absolute percentage er-

ror (MAPE) with the largest CASSCF model, and 8% MAPE with the largest RASSCF/RASCI;

deviations from experiment appear to be systematic regardless of active space size, as evi-

denced by the R2 values close to 1 (Figure 2).

Spin-dependent HFCCs are known to be particularly sensitive to correlation effects from

inner-core electrons; to investigate this, we performed RASSCF and RASCI calculations

with RAS1 subspaces spanning most of the core region. All RASCI calculations are per-

formed with CASSCF(11,15) optimised orbitals for consistency. Orbital decomposition anal-

ysis of RASCI results (Figure 1a) reveals a trend of decreasing HFC contribution with in-

creasing angular momentum. Most s and p orbitals are strongly coupled by the HFC op-

erator and make significant (> 10 MHz) direct contributions to the HFCC. The influence

of (virtual) polarisation functions (4-5% increase in HFCC accuracy) is not reflected by the

relatively insignificant contributions (< 10−3 MHz) shown in the orbital decomposition

diagram. Therefore, such functions have a predominantly indirect effect, displacing spin

density from orbitals with significant HFC contributions. Occupied d and f shells show

similarly small orbital decomposition contributions and, additionally, our calculations sug-

gest their inclusion leads to insignificant variations in the computed HFCC. As such, we

conclude that core d and f orbitals of alkali atoms can be safely left out of the RAS1 sub-

space for the purpose of HFCC determinations. We note that the error with respect to

experimental HFCCs plateaus around 10% for RASCI (Figure 3), which could be a conse-

quence of the restricted excitation level and/or the basis set size.

In order to assess the trade-off between accuracy and cost in a CAS/RAS-based electronic

structure strategy, we compare our results for the alkali atoms with the HFCCs computed

by Talukdar19 using Z-vector 4-component coupled cluster with singles and doubles (4c-

CCSD), Table 1. The 4c-CCSD results display undoubtedly better agreement with experi-

ment, with all absolute deviations below 1.5%; note, however, that these HFCCs are obtained

using uncontracted, 4-component, quadruple-zeta basis sets with 338-656 spinors for Rb-

Fr62 (the size of the spinor space explored in the 4c-CCSD calculations is slightly smaller, as

a virtual energy cutoff is applied). By contrast, we employ 1-component contracted ANO-

RCC basis sets, which contain the equivalent of 186-240 spinors (not including g orbitals)

for Rb-Fr. While calculations with large uncontracted bases are achievable for small sys-

tems, they become prohibitively expensive as the number of atoms and the complexity of

the electronic structure increase. The main goal of this work is to devise a scalable approach
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that can be extended to larger systems in the future; as such, we make use of common elec-

tronic structure approximations, such as contracted basis sets and RAS1/RAS3 subspaces

limited to no more than 35 orbitals, even though they are not strictly necessary for atoms.

Considering the strong dependence of HFCCs on basis set size, as well as the fact that our

calculations explore a relatively limited parameter space, consistent circa 10% deviations

from experiment are therefore very encouraging.
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Figure 3: Evolution of HFCC absolute error with active space size for alkali atoms. Absolute
errors are computed with respect to experimental data from reference [19].

Lastly, the issue of orbital optimisation in RAS calculations bears discussion. The Super-CI

algorithm employed by OpenMolcas ”folds” single excitations involving inactive and sec-

ondary orbitals into the active MO coefficients,53 thus capturing more correlation than a

CI-only calculation with the same parameters. Theoretically, orbital optimisation should

allow for accurate HFCCs to be obtained with relatively little computational expense, since

the active space needs only be large enough to capture the significant correlation contri-

butions to HFC; indeed, this proves true for CASSCF, however for RASSCF, the results are

unpredictable. In the case of light alkali (Li-K), it was possible to run RASSCF calculations

involving the entire core s and p manifold, together with polarisation functions, which pro-

duced HFCCs in excellent agreement with experiment. On the other hand, this approach

is prohibitive for heavier atoms – even if memory is not a limitation, orbital optimisation

is slow and prone to convergence issues. We therefore only employ RASCI for large active

space calculations on Rb-Fr. RASSCF calculations involving fewer active orbitals were also

attempted, however the resulting HFCCs were on average less accurate than those from

RASCI. It appears that the excitation level restriction severely hinders the efficiency of or-

bital optimisation; stochastic CASSCF63 and DMRG-CASSCF methods64 are likely to provide
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more accurate HFCCs, however due to additional uncertainty introduced by approximate

CI solvers, such algorithms are not explored herein.

4.3 Coinage metals

The treatment of HFC in coinage metals is very similar to that of the alkali metals, given

they both have configurationally-pure 2S1/2 ground states. A notable point of difference is

the valence d shell which, unlike the core-like d shells in alkali atoms, imparts a significant

contribution to the HFCC. Correlating the entire valence region is therefore not feasible

with CASSCF, and in this case RASSCF is the only option. We find that the benefits of a

larger active space outweigh the limitations due to excitation level restrictions, leading to

a net improvement in HFCC accuracy from CASSCF to RASSCF (Table 2). This contrasts

with the behaviour observed for the alkali metals, indicating that it is perhaps the nature

of the correlated orbitals (valence vs. core), rather than the CI approximation, that makes

the biggest difference to theoretical HFCCs.

All RASCI calculations reported herein were performed using a RASSCF(19,26)-optimised

orbital space for all coinage metals. Surprisingly, correlating most of the s and p manifold

changes the initial RASSCF HFCCs very little; the largest variations are observed in cal-

culations that correlate additional polarisation shells. We observe improvements of 2-6%

upon including one f shell in the orbital optimisation step (c.f RASCI results in Tables 2 and

S2). Despite the significant challenges associated with these elements, Hyperion HFCCs

derived from RASSF(19,26) display a 12% MAPE (Figure 4, lower left panel), while HFCCs

calculated from the largest RASCI for each atom have a 10% MAPE (Figure 4, lower right

panel). The R2 coefficients close to unity indicate that deviations from experiment are sys-

tematic for all the main active space selections.

Some notable differences between the coinage metals and the alkali are highlighted by the

orbital decomposition analysis. Figure 1 shows orbital decomposition diagrams obtained

from RASCI calculations on 133Cs and 197Au atoms; while both systems have a 6s1 ground

configuration, their core configurations set them apart, which is reflected by the observed

HFC. Compared to 133Cs, 197Au exhibits stronger coupling between d orbitals, as well as a

more significant contributions from the f polarisation shell (however, the latter could be a

consequence of including this shell in the orbital optimisation step). Nevertheless, in both

cases the largest contributions to HFC are concentrated around orbitals 5s-7p, with addi-

tional non-negligible couplings involving the most diffuse s and p functions.
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Table 2: Unsigned isotropic HFCCs in MHz computed for the ground states of Cu, Ag and
Au. The RAS1, RAS2 and RAS3 columns indicate the number of atomic shells – separated
by angular momentum – included in each subspace. Experimental HFCCs are reproduced
from reference [59].

Atom Wavefunction RAS1 RAS2 RAS3 |A|
63Cu CASSCF(11,6) - 1×s, 1×d - 4137.3

CASSCF(19,14) - 3×s, 2×p,
1×d

- 4604.9

RASSCF(19,19) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d 4611.3
RASSCF(19,26) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d,

1×f
4831.4

RASSCF(19,35) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d,
1×f, 1×g

4813.7

RASSCF(29,45) 3×s, 2×p, 1×d 1×s 3×s, 2×p, 1×d,
1×f, 1×g

5004.8

RASCI(29,50) 3×s, 2×p, 1×d 1×s 5×s, 6×p, 1×d,
1×f

5036.5

Experimental 5866.9
107Ag CASSCF(11,6) - 1×s, 1×d - 1325.1

CASSCF(19,14) - 3×s, 2×p,
1×d

- 1455.1

RASSCF(19,19) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d 1481.1
RASSCF(19,26) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d,

1×f
1594.6

RASCI(37,54) 4×s, 3×p, 1×d 1×s 5×s, 6×p, 1×d,
1×f

1620.6

RASCI(47,59) 4×s, 3×p, 2×d 1×s 5×s, 6×p, 1×d,
1×f

1619.4

Experimental 1712.5
197Au CASSCF(11,6) - 1×s, 1×d - 2362.1

CASSCF(19,14) - 3×s, 2×p,
1×d

- 2536.0

RASSCF(19,19) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d 2608.3
RASSCF(19,26) 1×s, 1×p, 1×d 1×s 1×s, 1×p, 1×d,

1×f
2733.6

RASCI(45,54) 5×s, 4×p, 1×d 1×s 4×s, 5×p, 1×d,
1×f

2704.6

Experimental 3049.7
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Figure 4: Comparison of experimental vs. theoretical unsigned HFCCs for coinage metals.
Each panel corresponds to an active space approximation and shows the line of best fit, R2

coefficient, mean absolute deviation (MAD), and mean absolute percentage error (MAPE).
The Largest RASCI data set comprises RAS-type models closest to the configuration inter-
action with singles and doubles (CISD) limit, subject to subspace size constraints imposed
by OpenMolcas. Experimental HFCCs are reproduced from reference [59].

4.4 Groups VI-B (Cr) and VIII-B (Fe)

The hyperfine structure of transition metal (TM) atoms with partially-filled d shells is by

far the most challenging to model due to a number of competing factors. The orbital angu-

lar momentum couples to the nuclear spin through the PSO mechanism and the resulting

HFCC contribution is similar in magnitude to the spin-dependent FC+SD contribution (Fig-

ure S3). Both SOC and spin density must therefore be modelled accurately. On the one hand,

the RASSI approach requires a sufficient number of spin-adapted states in order to repre-

sent the SOC states accurately, where the number of optimised roots corresponds to the

lowest-energy Russell-Saunders (LS) terms (Table 3). Additional LS terms were included

for 101Ru, 183W and 189Os to obtain a converged ordering of SO energies at the minimal

CASSCF-SO level.

On the other hand, the electronic states of TM atoms exhibit significant mixing between
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Table 3: Number of spin-adapted roots optimised for each spin S and corresponding LS
terms

Atom Number of roots LS terms

53Cr 1 (S = 3), 6 (S = 2) 7S, 5D, 5S

95Mo 1 (S = 3), 6 (S = 2) 7S, 5D, 5S

183W 1 (S = 3), 5 (S = 2), 3 (S = 1) 7S, 5D, 3P

57Fe 12 (S = 2) 5D, 5F

101Ru 7 (S = 2), 7 (S = 1) 5F, 3F

189Os 12 (S = 2), 10 (S = 1) 5D, 5F, 3P, 3F

ndN(n+ 1)s2 and ndN+1(n+ 1)s1 configurations; these have competing influences on the

form of the valence s orbital, as optimised singly-occupied s functions are usually more

radially expanded than doubly-occupied s functions.60 The O(r−3
N ) dependence of the HFC

operator amplifies such differences, leading to computed HFCCs that are very sensitive to

variations in the CI expansion. This proves particularly problematic when CASSCF/RASSCF

orbitals are averaged over states dominated by different configurations, such as the low-

lying 5D (3d64s2) and 5F (3d74s1) terms of 57Fe.67,68 Note that CASSCF(8,6)-SO HFCCs for
101Ru are in much better agreement with experiment than 57Fe HFCCs (Figure 5); this is be-

cause the 101Ru 5F term is sufficiently energetically separated and can be modelled without

requiring additional quintet roots in the spin-adapted CASSCF step. Similar state-averaging

effects are observed in the quintet levels of 53Cr and 95Mo.

Although relatively small in magnitude, the spin-dependent part of TM HFCCs depends on

SP and higher-order correlation, similar to the spin-only HFCCs of alkali and coinage met-

als. Unlike the 2S1/2 systems however, the expanded RAS2 subspace precludes large RAS

optimisations. Therefore, calculations that correlate the entire core region were only feasi-

ble with RASCI for 3d TMs, however this still gave very good results (Figure 5). While 57Fe

HFCCs are overall improved compared to CASSCF(8,6)-SO, 53Cr HFCCs are slightly worse,

with the exception of the 5S2 level. We note that the RASCI-SO energies determined for
53Cr do not match the ordering observed experimentally and that the wrong ground state

is predicted, indicating inaccuracies in the electronic wavefunction that are reflected in the

calculated HFCCs. RASSCF-SO calculations correlating the valence shells were performed

for all six atoms, yielding HFCCs that are overall less accurate compared to CASSCF-SO for
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Figure 5: Unsigned HFCCs computed by Hyperion for selected energy levels of Cr group
and Fe group atoms. Experimental HFCCs are reproduced from references [65] (53Cr), [66]
(95Mo, 183W), [67] and [68] (57Fe), [69] (101Ru) and [70] (189Os).

the 3d and 5d TMs. The improvement with RASSCF observed for 95Mo and 101Ru can be

justified by their well separated ground terms, which prevents state contamination during

the RASSCF optimisation.

Overall, it appears that minimal CASSCF-SO provides the most balanced model for the hy-

perfine structure of TMs, with errors around 25%. Approaches that include more correlation

effects can theoretically improve the accuracy of the FC+SD term, however in practice such

calculations – unless they approach the full correlation limit – have undesired side-effects

that worsen the quality of the SO-coupled wavefunctions, which propagates to the com-

puted HFCCs.
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4.5 Lanthanides

The hyperfine structure of lanthanide (Ln) atoms is dominated by the PSO term, with previ-

ous work suggesting minor contributions from core polarisation.71 As the 6s orbital and the

4f manifold are energetically well separated, CI effects between the two are negligible and

the HFC response is expected to arise predominantly from the 4f shell. Hence, we compute

the HFCCs of multiple levels in 4fN6s2 Ln atoms using a minimal CASSCF(N ,7)-SO, with

the number of optimised roots (Table 4) selected using a similar approach to Section 4.4.

Table 4: CASSCF(N ,7)-SO optimised LS terms for each Ln atom

Atom LS terms
141Pr 4I
143Nd 5I
147Pm 6H
147Sm 7F, 5D
151Eu 8S
159Tb 6H, 4I
161Dy 5I
165Ho 4I
167Er 3H, 3F, 1G
169Tm 2F

Predicted HFCCs (Table 5) are in remarkable agreement with experiment overall.72 The

poorest agreement is observed for 151Eu and 165Ho; the former has a spin-only septet ground

state, which only exhibits spin-dependent HFC (no PSO contribution), and hence requires

a more sophisticated treatment of correlation. Inaccuracies in the latter could also be due

to missing CI effects, as indicated in previous work,72 but increasing the active space with

CASSCF or RASSCF methods had no appreciable impact on the calculated HFCCs here.

Table 5: Unsigned isotropic HFCCs in MHz determined for Ln atoms. For each computed
HFCC, the absolute deviation from experiment is shown in MHz (|∆|) and in percentage
points (|∆%|). Experimental HFCCs are reproduced from reference [72].

Atom Level |AFC+SD| |APSO| |Atot| |Aexpt| |∆| |∆%|
141Pr 4I9/2 28.6 933.9 962.5 926.2 36.3 3.9

4I11/2 13.9 759.4 773.4 730.4 43.0 5.9
4I13/2 0.4 654.8 655.1 613.2 41.9 6.8
4I15/2 13.3 587.0 573.8 541.6 32.2 5.9
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Atom Level |AFC+SD| |APSO| |Atot| |Aexpt| |∆| |∆%|

143Nd 5I4 6.2 207.5 201.3 195.7 5.7 2.9
5I5 3.8 163.1 159.3 153.7 5.6 3.6
5I6 1.7 137.7 135.9 130.6 5.3 4.1
5I7 0.3 121.8 122.1 117.6 4.5 3.8
5I8 2.4 111.2 113.6 110.5 3.1 2.8

147Pm 6H7/2 42.0 472.3 430.4 447.1 16.7 3.7
147Sm 7F1 34.8 70.4 35.6 33.5 2.1 6.2

7F2 28.6 70.4 41.8 41.2 0.6 1.5
7F3 20.4 70.4 50.0 50.2 0.2 0.4
7F4 11.2 70.4 59.2 59.7 0.5 0.8
7F5 1.7 70.4 68.7 69.1 0.4 0.6
7F6 7.7 70.4 78.1 78.4 0.2 0.3

151Eu 8S7/2 1.8 0.0 1.8 20.1 18.3 91.3
159Tb 6H15/2 25.2 720.0 745.2 673.8 71.4 10.6

6H13/2 2.8 773.4 770.7 682.9 87.8 12.8
6H11/2 34.0 856.8 822.9 729.0 93.9 12.9

161Dy 5I8 2.7 124.9 127.6 116.2 11.4 9.8
5I7 0.3 136.8 137.1 126.8 10.3 8.2
5I6 1.9 154.6 152.7 139.6 13.1 9.4
5I5 4.3 183.2 178.9 162.0 17.0 10.5
5I4 6.9 233.2 226.2 205.2 21.0 10.2

165Ho 4I15/2 28.6 1253.7 1225.1 800.6 424.5 53.0
4I13/2 0.7 1398.4 1399.0 937.2 461.8 49.3
4I11/2 29.8 1621.9 1651.7 1035.1 616.6 59.6
4I9/2 61.5 1994.5 2056.0 1137.7 918.3 80.7

167Er 3H6 9.2 136.2 127.0 120.5 6.5 5.4
3F4 16.8 147.1 130.4 121.8 8.5 7.0
3H5 4.7 158.0 162.7 159.5 3.2 2.0
3H4 5.2 168.4 173.6 173.4 0.2 0.1
3F3 4.6 149.8 145.2 143.5 1.7 1.2
3F2 14.4 217.9 203.5 167.1 36.3 21.7

169Tm 2F7/2 48.4 433.0 384.7 374.1 10.5 2.8
2F5/2 115.8 577.4 693.2 704.6 11.5 1.6

5 Conclusions

We have presented a new computational package, Hyperion, that enables the evaluation

of relativistic picture-change-corrected magnetic resonance parameters from CASSCF-SO

and RASSCF-SO wavefunctions, along with a new orbital decomposition method to assist

in choosing appropriate active spaces for HFCC calculations. We used this code to study

the hyperfine structure of alkali metal, transition metal and lanthanide atoms in order to

understand the range of applicability afforded by this approach. Our best predicted HFCCs
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are within 10% accuracy for alkali, 15% for coinage metals and 20% for lanthanides (although

the vast majority of Ln HFCCs deviate less than 10% from the experimental value). The hy-

perfine structure of group VI-B (Cr) and group VIII-B (Fe) transition metals proved to be the

most challenging to model, however, despite the larger percentage errors, we obtain theo-

retical HFCCs that closely follow experimentally-observed trends. Based on these results,

we devised a number of guidelines for modelling HFC in systems exhibiting important cor-

relation effects, strong SOC or a combination of both. In future work, these guidelines will

be refined by using Hyperion to study HFC in molecular systems.
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Supplementary Information

S1 Investigation of active space selection using orbital

decomposition analysis

To investigate the influence of various orbital optimisation strategies on the computed

HFCCs, we choose two small test systems, the 7Li atom and the 14N atom, and represent

both using an ANO-RCC…8s7p basis set (containing 8 s functions and 7 sets of p functions).

We have already shown that active spaces comprising only s and p shells are sufficient to

obtain 7Li HFCCs in excellent agreement with experiment; meanwhile, previous work9,13,14

suggests that our chosen basis set is insufficient to achieve quantitative agreement with the

experimental 14N HFCC, A = 10.4509 MHz.9 Nevertheless, in this case we are interested

not in the accuracy of the computed HFCC, but in the HFC orbital decomposition analysis.

We aim to model HFC in the full orbital space, which is achievable via RASCI(3,29) for the

chosen test systems. Figures S1 and S2 show orbital decomposition diagrams for the 2S1/2

ground state of 7Li and for the 4S3/2 ground state of 14N, respectively; all diagrams are ob-

tained from RASCI(3,29) calculations using CASSCF- and RASSCF-optimised orbitals. It is

immediately apparent that, as the number of optimised orbitals increases, the diagrams be-

come more sparse and the HFC response is focused into a smaller subset of the orbital space.

Surprisingly, CASSCF and RASSCF orbitals obtained using the same active space selection

give rise to extremely similar diagrams - the same pairwise couplings are observed in both

cases, with only a few small changes in magnitude. The most noticeable difference is the

coupling between optimised orbitals, which appears to be slightly stronger when RASSCF

is used. The larger HFCCs observed for calculations using RASSCF orbitals are likely a re-

sult of this stronger coupling, especially as the variations in HFCC are small.

These observations suggest that, within the multiconfigurational electronic structure frame-

work, large active space optimisations of the orbital space result in the most effective rep-

resentation of HFC. Compared to active space size, the constraints introduced by a RAS

ansatz appear to have a minimal effect on the HFC orbital decomposition and the resulting

HFCC. Of course, these conclusions are based on a limited number of small systems and

might have limited applicability; further investigation is necessary to establish the validity

of such trends in larger, more complex systems.
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Figure S1: 7Li HFCCs and HFC orbital decomposition diagrams determined from
RASCI(3,29) wavefunctions using different CASSCF/RASSCF-optimised orbitals. Orbitals
are labelled according to the dominant AO basis function contribution. Orange labels cor-
respond to RAS2 orbitals.
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Finally, it is worth highlighting that orbital energy is not a good indicator of the contribution

to HFC. In both 7Li and 14N, high-energy diffuse functions couple most strongly with the

SOMO and the other valence orbitals, while ”mid-range” orbitals (e.g. 2p-dominated func-

tions in 7Li, 5p-dominated functions in 14N) have much smaller contributions. In the context

of theoretical HFCC determinations, this is not a new observation; Feller and Davidson re-

marked, in a 1988 study of second-period atomic HFCCs,12 that ”[…] the choice of energy as

the selection criterion is probably far from optimal for properties other than energy. However,

when an entire group of properties is desired (including the energy) it may be as good a choice

as any other.” In ab initio studies that target HFCC accuracy, it is therefore essential to ex-

plore orbital selection criteria that are not energy-based; this is particularly relevant given

the recent developments around automated active space selection methodologies.73–75

115



Figure S2: 14N HFCCs and HFC orbital decomposition diagrams determined from
RASCI(3,29) wavefunctions using different CASSCF/RASSCF-optimised orbitals. Orbitals
are labelled according to the dominant AO basis function contribution. Orange labels cor-
respond to RAS2 orbitals.
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S2 Additional results

S2.1 Alkali

Table S1: Isotropic HFCCs (unsigned) in MHz computed for the ground state of alkali
atoms. The RAS1, RAS2 and RAS3 columns indicate the number of atomic shells - separated
by angular momentum - included in each subspace. Experimental HFCCs are reproduced
from reference [19].

Atom Wavefunction RAS1 RAS2 RAS3 |A|
7Li CASSCF(3,14) - 8×s, 2×p - 378.1

Experimental 401.7
23Na CASSCF(11,14) - 5×s, 3×p - 775.4

CASSCF(11,18) - 4×s, 3×p, 1×d - 810.2
RASSCF(11,33) 2×s, 1×p 1×s 6×s, 7×p 785.7
RASSCF(11,38) 2×s, 1×p 1×s 6×s, 7×p, 1×d 820.8
Experimental 885.8

39K CASSCF(11,14) - 5×s, 3×p - 185.8
CASSCF(11,18) - 4×s, 3×p, 1×d - 207.4
RASSCF(19,42) 3×s, 2×p 1×s 6×s, 7×p, 1×d 203.6
RASSCF(19,44) 3×s, 2×p 1×s 6×s, 6×p, 2×d 203.1
Experimental 230.8

85Rb CASSCF(11,14) - 5×s, 3×p - 834.3
RASSCF(27,30) 2×s, 2×p, 1×d 1×s 1×s, 1×p, 1×d,

1×f
789.2

RASSCF(27,34) 2×s, 2×p, 1×d 1×s 2×s, 2×p, 1×d,
1×f

847.0

RASSCF(37,44) 4×s, 3×p, 1×d 1×s 4×s, 3×p, 1×d,
1×f

855.0

RASCI(27,45) 4×s, 3×p 1×s 5×s, 7×p, 1×d 909.6
RASCI(37,50) 4×s, 3×p, 1×d 1×s 5×s, 7×p, 1×d 907.2
RASCI(37,47) 4×s, 3×p, 1×d 1×s 5×s, 6×p, 1×d 907.6
Experimental 1011.9

133Cs RASCI(35,47) 5×s, 4×p 1×s 6×s, 6×p, 1×d 2070.9
RASCI(43,51) 4×s, 4×p, 1×d 1×s 6×s, 6×p, 1×d 2066.2
RASCI(45,52) 5×s, 4×p, 1×d 1×s 6×s, 6×p, 1×d 2066.8
RASCI(45,45) 5×s, 4×p, 1×d 1×s 5×s, 4×p, 1×d 2077.4
RASCI(45,52) 5×s, 4×p, 1×d 1×s 5×s, 4×p, 1×d,

1×f
2093.9

Experimental 2298.1
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S2.2 Coinage metals

Table S2: Isotropic HFCCs (unsigned) in MHz computed via RASCI using RASSCF(19,19)-
optimised orbitals. The RAS1, RAS2 and RAS3 columns indicate the number of atomic shells
- separated by angular momentum - included in each subspace. Experimental HFCCs are
reproduced from reference [59].

Atom Wavefunction RAS1 RAS2 RAS3 |A|
63Cu RASCI(29,47) 3×s, 2×p, 1×d 1×s 6×s, 7×p, 1×d 4793.4

RASCI(29,48) 3×s, 2×p, 1×d 1×s 6×s, 5×p, 1×d,
1×f

4908.1

RASCI(29,49) 3×s, 2×p, 1×d 1×s 6×s, 6×p, 2×d 4826.8
Experimental 5866.9

107Ag RASCI(47,52) 4×s, 3×p, 2×d 1×s 5×s, 6×p, 1×d 1495.4
RASCI(47,57) 4×s, 3×p, 2×d 1×s 5×s, 6×p, 2×d 1505.1
RASCI(47,59) 4×s, 3×p, 2×d 1×s 5×s, 6×p, 1×d,

1×f
1512.7

Experimental 1712.5
197Au RASCI(45,47) 5×s, 4×p, 1×d 1×s 4×s, 5×p, 1×d 2598.0

RASCI(45,54) 5×s, 4×p, 1×d 1×s 4×s, 5×p, 1×d,
1×f

2645.9

Experimental 3049.7
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S2.3 Groups VI-B (Cr) and VIII-B (Fe)
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Figure S3: Spin-dependent (FC+SD) and spin-independent (PSO) unsigned HFCCs com-
puted by Hyperion for selected energy levels of Cr group and Fe group atoms.
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(51) B. O. Roos, R. Lindh, P. Å. Malmqvist, V. Veryazov, P. O. Widmark and A. C. Borin,

Journal of Physical Chemistry A, 2008, 112, 11431–11435.

(52) K. Sharkas, B. Pritchard and J. Autschbach, Journal of Chemical Theory and Compu-

tation, 2015, 11, 538–549.

(53) B. O. Roos, International Journal of Quantum Chemistry, 1980, 18, 175–189.
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Abstract

We investigate actinide covalency effects in two AnCp
tt

3 (An = Th, U) complexes using

the recently developed Hyperion package to obtain relativistic g-tensors and hyper-

fine coupling constants from CASSCF-SO, RASSCF-SO and RASCI-SO wavefunctions.

HYSCORE simulations using the computed parameters are then compared to experi-

mental data reported by Formanuik and coworkers, in order to assess the performance

of fully ab initio models of ligand hyperfine coupling. The extent of covalency in AnCp
tt

3

is quantified via Mulliken spin population analysis, which uncovers different patterns

in the spin density transfer between An and the ligand atoms.

1 Introduction

The actinide (An) series is a key area of interest within chemical science, attracting research

efforts from experimentalists and theorists alike.
1–4

Despite this interest, the inherent radi-

ological hazards of working with An elements, as well as the need for specialist equipment,

have made progress in this area slow. To this day, our understanding of An bonding and

properties is limited, lagging behind other regions in the periodic table. Of particular inter-

est is the concept of An covalency, believed to arise due to the more expanded nature of 5f

orbitals relative to 4f orbitals
5

in the predominantly ionic lanthanides (Ln).
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Actinide chemistry is influenced by strong relativistic effects, as well as non-trivial elec-

tronic structures, where 5f, 6d and 7s valence orbitals are all involved in bonding. This

combination is rarely observed in the rest of the periodic table, hence any insight into An

properties based on periodic trends is severely limited. As such, the most viable solution

is a hybrid approach involving both experimental and theoretical methods. Indeed, X-ray

absorption
6

and magnetic resonance techniques
7,8

are now popular choices for studies of

An covalency, often complemented by computational electronic structure calculations such

as DFT or RASSCF-SO.

In 2017, Formanuik et al published the first pulsed EPR study of An complexes,
9

with a

focus on correlating hyperfine coupling (HFC) measurements with covalency. The strength

of HFC, quantified by hyperfine coupling constants (HFCCs), depends on the unpaired elec-

tron (spin) density distribution and varies as r−3
N

, where rN is the distance between mag-

netic nucleus N and the spin density. In traditional non-relativistic interpretations, isotropic

HFCCs arise solely due to spin density at the position of the magnetic nucleus,
10

and there-

fore report directly on spin delocalisation. The picture is not so clear in relativistic the-

ory,
11

but still, small variations in the spin density distribution lead to noticeable changes

in HFCCs, hence measurement of HFC is a particularly precise probe for covalency. For-

manuik derived spin populations – used to quantify An covalency – for the ligand atoms in

both An complexes using a classical point-dipole model of HFC, with added spin polarisa-

tion contributions determined by fitting the simulated HYSCORE spectra to experimental

data. Empirical parameters from studies of HFC in cyclopentadienyl radicals were used to

define the relationship between spin populations and HFCCs.

Unfortunately, such approximations are inappropriate for actinide complexes, as the strong

relativistic effects preclude the use of non-relativistic HFCC expressions. Instead, a rela-

tivistic model – based on the Dirac equation or a variant thereof
12

– must be employed,

thus introducing the need for a quantum chemical approach. Although such a strategy

comes with a significant increase in complexity and computational cost, the overall number

of model parameters is reduced, leading to increased interpretability and reproducibility.

Aside from the ability to account for relativistic effects at the appropriate level of theory,

quantum chemical methods can provide estimates for spin populations which are com-

pletely decoupled from HFCC determinations. As such, the need for empirical parameters

is eliminated, and the only free parameters are those introduced at the onset of the elec-

tronic structure optimisation step. Thereafter, spin populations and HFC parameters are
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straightforwardly determined from the electronic structure results.

Recently, we presented the newly developed Hyperion code for computing relativistic

HFCCs from first-principles electronic structure calculations. We used complete active

space and restricted active space self-consistent field methods (CASSCF/RASSCF)
13,14

to ac-

count for spin polarisation/electron correlation in a flexible manner and, where necessary,

additionally included spin-orbit coupling (SOC) via a state-interaction approach (CASSCF-

SO/RASSCF-SO);
15

this yielded very good results for a wide selection of atomic systems.

Herein, we employ the same methodology with Hyperion to calculate HFCCs for the two

AnCp
tt

3 complexes studied by Formanuik et al (Figure 1), with the aim of assessing the per-

formance of a fully ab initio model when applied to non-trivial systems, and to determine

the implications of using a relativistic treatment for assessing covalency in actinide com-

pounds.

Figure 1: a: Schematic of the AnCp
tt

3 structure; b: Pseudo-C3 z axis and numbering con-

vention used for identifying C(Cp) atoms (red) and H(Cp) atoms (blue).

2 Theory

Starting from the 4-component Dirac equation, relativistic expressions for the Zeeman and

the HFC operator can be determined by adding in – via minimal coupling – vector poten-

tials arising from external and nuclear magnetic fields, respectively. The additional terms

are treated as first-order perturbations to the field-free Dirac equation. This 4-component

model is then simplified via scalar-relativistic eXact-2-Component (SR-X2C) decoupling,

wherein a unitary transformation, known as the picture-change transformation, is applied

to the zeroth order Hamiltonian and to the perturbation operators. As a result, the rela-

tivistic wavefunction and properties can be determined within the 1-component framework

underlying most electronic structure packages.
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The SF-X2C-transformed perturbation operator for HFC can be expressed as

Ĥ
(1)
N,SF-X2C

= ĤFC+SD

N,SF-X2C
+ ĤPSO

N,SF-X2C
, (1)

ĤFC+SD

N,SF-X2C
= 2 µBgNµN

µ0

4π
IN ·

{
Û†

UU

(
−rN

r3
N

·∇+
rN

r3
N

∇⊤
)
ÛLU

+ Û†
LU

(
−rN

r3
N

·∇+
rN

r3
N

∇⊤
)†

ÛUU

}
· Ŝ , (2)

ĤPSO

N,SF-X2C
= i µBgNµN

µ0

4π
IN ·

{
−Û†

UU

(
rN

r3
N

×∇
)
ÛLU + Û†

LU

(
rN

r3
N

×∇
)†

ÛUU

}
, (3)

where ÛUU and ÛLU represent blocks of the SR-X2C decoupling matrix, Ŝ is the one-electron

spin operator, IN is the nuclear spin vector and rN denotes the electron position vector with

respect to nucleus N. µB, gN, µN and µ0 have their usual meanings of Bohr magneton, nu-

clear g-factor, nuclear magneton and vacuum permeability, respectively, and i denotes the

imaginary unit.

In equation 1, we distinguish between a spin-dependent contribution, ĤFC+SD

N,SF-X2C
, and an

imaginary, spin-independent contribution, ĤPSO

N,SF-X2C
. The former reduces to the sum of the

Fermi-coupling (FC) and the spin-dipolar (SD) operators in the non-relativistic limit, while

the latter represents the interaction between the electronic orbital angular momentum and

the nuclear spin, and is known as the paramagnetic spin-orbit coupling (PSO) term. The

Zeeman perturbation operator can be similarly divided into a spin-Zeeman term and an

orbital-Zeeman term. It is worth highlighting that (2) does not include a delta-function

characteristic of the FC interaction; as shown by Kutzelnigg,
11

this hallmark only arises in

the non-relativistic limit of a 2-component framework. Hence, relativistic spin-dependent

HFC cannot be interpreted as a combination of classical dipolar coupling (SD term) and an

FC term sampling the spin density at nucleus N.
10

In the spin-only limit (no unquenched orbital angular momentum), the PSO term is zero,

and elements of the HFC tensor aN can be evaluated with respect to a spin-free (SF) state
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ΨSS
as

aN,kl =
1

S

〈
ΨSS

∣∣∣∣∣
(
∂2 ĤFC+SD

N,SF-X2C

∂IN ∂Ŝ

)
kl

∣∣∣∣∣ΨSS

〉
, (4)

k, l = x, y, z .

This is equivalent to mapping the ab initio HFC operator onto an effective spin Hamiltonian,

Ĥspin = IN · aN · S , (5)

whose model space is the 2S + 1 spin multiplet represented by ΨSS
. We note that there

are reports in the literature of spin-only parametrisations of HFC in SO-coupled systems,

requiring the PSO contribution to be treated as a second-order perturbation. This approach

is not employed herein – Hyperion computes spin-only HFCCs via equation 4.

For systems where S is not a good quantum number, we use the pseudospin (S) parametri-

sation, where the model space – known as the pseudospin multiplet – encompasses the

lowest-energy 2S + 1 states in the SO-coupled spectrum. Replacing S with S in (5) yields

the pseudospin Hamiltonian, from which the elements of symmetrised HFC tensor aNa
⊤
N

are computed via the method of Chibotaru:
16

(
aNa

⊤
N

)
kl
=

3

S(S + 1)(2S + 1)

2S+1∑
µ,ν

〈
Ψµ

∣∣∣∣∣∂ Ĥ
(1)
N,SF-X2C

∂IN,k

∣∣∣∣∣Ψν

〉〈
Ψν

∣∣∣∣∣∂ Ĥ
(1)
N,SF-X2C

∂IN,l

∣∣∣∣∣Ψµ

〉
, (6)

where Ψµ and Ψν denote eigenstates in the pseudospin manifold. A similar expression for

the symmetrised g-tensor can be obtained by replacing the HFC operator derivative in (6)

with the derivative of the Zeeman perturbation operator with respect to a component of

the external magnetic field. The eigenvectors and eigenvalues of the symmetrised tensors

correspond to the principal axes and the squared principal values of the original tensors;

as a result, the pseudospin parametrisation yields unsigned g-values and HFCCs. We use

an approximate methodology, described in Section S1, to determine the missing signs and

employ the resulting HFCCs to simulate HYSCORE spectra of the AnCp
tt

3 complexes.

3 Computational details

All electronic structure calculations use the CASSCF-SO/RASSCF-SO implementation in

OpenMolcas v20.10.
17

Molecular geometries from the crystal structures reported in [9] are
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used without any further adjustment. [In reality, the geometry of the complexes relaxes in

solution, and this influences the effective EPR parameters, however geometry optimisations

of An complexes are beyond the scope of this work. We note in passing that, although the

computational work in [9] uses optimised geometries, these do not include the cyclopen-

tadienyl ring substituents; the
t
Bu groups have a critical influence on AnCp

tt

3 HFC due to

steric repulsion, which likely persists in solution.] Atoms are represented using ANO-RCC

basis sets
18–22

of TZP quality on An, DZP on C(Cp), H(Cp) and tertiary C(
t
Bu), and MB

on all other atoms. HFCCs, g-values and corresponding principal axes are determined from

electronic structure data using the Hyperion package. The hyperion2easyspin utility within

Hyperion is then employed to generate EasySpin
23

input files containing the EPR param-

eters, followed by HYSCORE simulations via saffron.
24

HYSCORE simulations of the ThCp
tt

3 complex are carried out at B0 = 351.6 mT (g∥) and at

B0 = 366.3 mT (g⊥), with τ = 130 ns and t1 and t2 incremented from 0.2 µs to 5.3 µs in

steps of 0.02 µs (256 points). 181 orientations (knots) are computed explicitly, using a spec-

trometer frequency of 9.614 GHz and a microwave excitation bandwidth of 62.5 MHz. Ex-

perimental spectra are rendered using 30 contour levels in the following ranges: 0.018−1.5

(
13

C HYSCORE, g⊥), 0.05−1.5 (
1
H HYSCORE, g⊥) and 0.15−1.5 (

13
C HYSCORE and

1
H

HYSCORE, g∥). Simulated spectra are rendered using 20 contour levels between 0.15 and 2

(
13

C HYSCORE) and between 0.5 and 5 (
1
H HYSCORE).

1
H HYSCORE simulations of UCp

tt

3 are carried out at B0 = 244.3 mT (gx) and at B0 =

450.4 mT (gy), with τ = 200 ns and t1 and t2 incremented from 0.2 µs to 5.3 µs in steps of

0.02 µs (256 points). 31 orientations (knots) are computed explicitly, using a spectrometer

frequency of 9.723 GHz and a microwave excitation bandwidth of 62.5 MHz. Experimental

spectra are rendered using 30 contour levels between 0.3 and 2, while simulated spectra are

shown using 20 contour levels between 0.15 and 2. We note that, for both complexes, we

employ the same HYSCORE simulation parameters as Formanuik et al.

All HYSCORE simulations reported herein use the experimental frozen solution g-values,

and we assume that frozen solution-phase HFCCs, as well as the orientation of the princi-

pal HFC axes with respect to the main magnetic axes, are identical to those of the crystal

structure. Note that we use the principal g-axes and HFC axes determined from ab initio

data via Hyperion and as such, each electronic structure model (choice of CAS/RAS and

number of optimised states) yields a different set of directions (Figures S1 and S2).
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Due to the steep scaling of pulsed EPR simulations,
24

it is necessary to limit the number

of magnetic nuclei included in the saffron step. To determine
13

C HYSCORE spectra of

ThCp
tt

3 , we use a representative set of five
13

C nuclei, comprising three C(Cp) (labelled as

C1, C2 and C4 in the XRD structure), one tertiary C(
t
Bu) (C6) and one primary C(

t
Bu)

(C26).
1
H HYSCORE simulations of the same complex employ four

1
H nuclei, of which

three are H(Cp) atoms from the same cyclopentadienyl ring, while the fourth is a repre-

sentative H(
t
Bu) atom (H8 in the XRD structure). Using the Hyperion-calculated g-axes

and HFC parameters, the HFC matrices of the selected nuclei are rotated into the g-tensor

eigenframe for the purpose of HYSCORE simulations. We note that the representative sets

of nuclei are selected on the basis of symmetry arguments (axiality of ThCp
tt

3 g-values,

pseudo-mirror plane bisecting the cyclopentadienyl plane), variations in spin population

and distance from the An center; more details are provided in Section S5.1.

Unlike ThCp
tt

3 , the rhombicity of the UCp
tt

3 g-values requires nuclei from all Cp
tt

groups to be

included in HYSCORE simulations, which quickly becomes unfeasible. We therefore define

two sets of H(Cp) nuclei based on distances measured in the crystal structure: set 1 includes

all in-plane (H1-type) nuclei and the three out-of-plane (H2/H3-type) nuclei closest to U,

while set 2 includes all in-plane nuclei and the three out-of-plane nuclei located farthest

from U. Given the geometry fluctuations in solution and assuming no drastic change in the

U-Cp centroid distance, we expect the HYSCORE signal of H(Cp) in solution to be roughly

an average between the two sets.

4 Results and discussion

4.1 Electronic structure

We first benchmark our electronic structure calculations against the experimental g-values

measured for the crystal structures of AnCp
tt

3 . For ThCp
tt

3 , the measured g∥ = 1.974 and

g⊥ = 1.880 indicate the presence of spin-orbit coupling (as they significantly deviate

from the free electron g-value), despite the fact that the ground state is well described by

the 6d
1
z2 configuration and hence the orbital angular momentum of the 6d shell is mainly

quenched. A state-averaged (SA) CASSCF(1,12) calculation considering the 6d and 5f or-

bitals and including all 12 doublet states, followed by mixing by SO coupling reveals that

the SO ground Kramers doublet is dominated by the lowest-energy spin-free doublet state
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(6d
1
z2), with small contributions from the first two excited SF doublet states, which ap-

pear to be a pseudo-degenerate pair with hybrid 6d/5f singly-occupied molecular orbitals

(SOMOs). All subsequent SA-CASSCF-SO and SA-RASSCF-SO calculations therefore only

include the lowest three SF states. We note that the energies of the lowest SO-coupled

excited states, 15199 cm
−1

and 15373 cm
−1

, are in close agreement with the first strong

absorption, ϵ = 15600 cm
−1

, observed in the solution-phase UV-Vis spectrum.
9

Table 1: ThCp
tt

3 active orbitals included in state-averaged CASSCF-SO/RASSCF-SO with 3

spin doublet roots.

Active space RAS1 RAS2 RAS3

CASSCF(1,12) -

5×6d,

7×5f

-

RASSCF(19,27) 9×πCp 3×6d 6×π∗
Cp

, 2×6d, 4×5f, 7s, 7px,y

RASSCF(27,36)

6s, 3×6p,

9×πCp

3×6d 6×π∗
Cp

, 2×6d, 4×5f, 7s, 3×7p, 8s

Electron correlation effects involving the cyclopentadienyl groups are then added via a

RASSCF-SO approach, where occupied and unoccupiedπ-type valence orbitals are included

in the RAS1 and RAS3 subspaces, respectively (Table 1). To keep the computational cost

feasible, only the SOMOs of the 3 optimised states are kept in the RAS2 subspace, while

all other Th virtual orbitals are assigned to RAS3. The complex chemistry of actinides is

a consequence of non-trivial bonding modes involving some or all of the 5f, 6d, 7s and 7p

orbitals. Our electronic structure calculations therefore include all such orbitals that are

stable in – i.e. do not rotate out of – the active space. As we are interested in modelling

HFC, we also investigate the effects of correlating outer core electrons using a RAS(27,36)

model (Table 1) that includes Th 6s and 6p functions in RAS1, as well the 8s orbital in RAS3.

We note that this active space yields the most accurate g⊥, Table 2, while RASSCF(19,27)-

SO yields the best prediction for g∥; nevertheless, all g-values are in good agreement with

experiment, especially considering that the experiment is conducted on a frozen solution

and the calculations are performed using the crystalline geometry.

133



Table 2: ThCp
tt

3 g-values calculated from active space electronic structure data. Note: owing

to the C1 symmetry of the XRD structure, the two g⊥ values are not coincident.

Active space g∥ g⊥ g⊥

CASSCF(1,12) 1.975 1.827 1.821

RASSCF(19,27) 1.973 1.831 1.826

RASSCF(27,36) 1.983 1.870 1.866

Experiment 1.974 1.880 1.880

The U centre in UCp
tt

3 has an idealised 5f
3

configuration associated with a
4
I9/2 Russel-

Saunders ground term; this is split by the ligand field, resulting in a Kramers doublet ground

state which can be modelled as an effective S = 1/2. Herein, we limit CASSCF and RASSCF

optimisations of UCp
tt

3 to include only 13 spin quartets and 11 spin doublets (corresponding

to the
4
I and

2
H LS terms, respectively, which are the lowest-lying terms for each spin

multiplicity), so as to minimise the impact of state averaging on the predicted magnetic

properties. It is immediately apparent (Table 4) that the minimal CAS(3,7) does not cap-

ture the magnitude and rhombicity of the experimental g-values (gx = 3.645, gy = 2.563,

gz < 0.5);
9

increasing the number of optimised states has no effect on the accuracy of these

results. Significant improvement is observed upon correlating πCp-type orbitals using a

RASSCF(21,30)-SO ansatz, Tables 3 and 4.

The computational cost of RASSCF calculations scales more steeply for UCp
tt

3 compared to

ThCp
tt

3 , owing to the larger RAS2 subspace required. As a result, larger active spaces become

unfeasible and, in order to correlate more electrons, we resort to a RASCI-SO approach

(where the orbitals are not optimised) using RASSCF(21,30) orbitals. Upon augmenting the

RAS(21,30) space with U 6s and 6p (RASCI(29,34)) and U 8s (RASCI(29,35)), the gy value is

significantly improved (Table 4), indicating that the U outer core region influences in-plane

magnetisation, just as it was observed for ThCp
tt

3 .
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Table 3: UCp
tt

3 active orbitals included in state-averaged CASSCF-SO/RASSCF-SO with 13

spin quartet roots and 11 spin doublet roots.

Active space RAS1 RAS2 RAS3

CAS(3,7) - 7×5f -

RAS(21,30) 9×πCp 7×5f 6×π∗
Cp

, 4×6d, 7s, 3×7p

RAS(29,34)

6s, 3×6p,

9×πCp

7×5f 6×π∗
Cp

, 4×6d, 7s, 3×7p

RAS(29,35)

6s, 3×6p,

9×πCp

7×5f 6×π∗
Cp

, 4×6d, 7s, 3×7p, 8s

Table 4: UCp
tt

3 g-values calculated from active space electronic structure data

Active space gx gy gz

CASSCF(3,7) 2.524 0.301 0.031

RASSCF(21,30) 4.117 1.860 0.357

RASCI(29,34) 4.020 2.241 0.403

RASCI(29,35) 4.014 2.192 0.388

Experimenta
3.645 2.563 < 0.5

Experimentb
3.050 1.650 < 0.5

a
Crystal structure

b
Frozen solution

4.2 Hyperfine coupling

The accuracy of theoretical HFCCs is significantly impacted by the quality of optimised

molecular orbitals (MOs), as shown in previous work. State-averaged calculations of ThCp
tt

3

(Section 4.1) combine a ground state having an axial spin density distribution with 2 highly

excited states (ca. ϵ = 15300 cm
−1

) having in-plane spin density distributions. Hence, it

is possible that the state-averaged MOs underlying the ground state wavefunction do not

provide an adequate description of ligand HFC. In order to control for this possibility, we

carry out state-specific (SS) RASSCF optimisations of the ground doublet for ThCp
tt

3 , Table

5, and determine ground state HFCCs using a spin-only parametrisation. Taking advantage

of the larger RAS1 and RAS3 selections available due to the one-orbital RAS2 subspace, we
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additionally correlate σCp-type orbitals in SS-RASSCF(39,38), therefore allowing for spin

density delocalisation over C(Cp)-C(Cp), C(Cp)-C(
t
Bu) and C(Cp)-H(Cp) σ bonds.

Table 5: ThCp
tt

3 active orbitals included to describe the ground state in state-specific

CASSCF/RASSCF.

Active space RAS1 RAS2 RAS3

RASSCF(19,26) 9×πCp 6dz2 6×π∗
Cp

, 4×6d, 2×5f, 7s, 3×7p

RASSCF(27,36)

6s, 3×6p,

9×πCp

6dz2 6×π∗
Cp

, 4×6d, 4×5f, 7s, 3×7p, 8s

RASSCF(39,38)

6×σCp,

6s, 3×6p,

9×πCp

6dz2 6×π∗
Cp

, 4×6d, 7s, 7pz , 6×σ∗
Cp

13
C HYSCORE spectra of ThCp

tt

3 simulated usingHyperion-calculated parameters are shown

in Figures 2 and 3. Preliminary simulations with different subsets of nuclei reveal that the

ridges observed in the B0 = 351.6 mT (g∥) spectrum at νN ± 0.5 MHz, νN ± 1 MHz and

νN ± 1.5 MHz (where νN is the nuclear Larmor frequency) are due to C(Cp), 3
◦

C(
t
Bu)

and 1
◦

C(
t
Bu) nuclei, respectively. None of the state-specific calculations reproduce the

ridge corresponding to 3
◦

C(
t
Bu) and, as such, state-averaged calculations yield overall the

best simulations of the g∥ spectrum. Meanwhile, the g⊥ spectrum is most accurately ap-

proximated by the largest state-specific calculation, SS-RASSCF(39,38), which appears to

correctly reproduce the anisotropy – encoded in the ridge curvature – of
13

C HFC matri-

ces. The larger state-averaged calculations, SA-RASSCF(19,27)-SO and SA-RASSCF(27,36)-

SO, yield HFCCs of the correct magnitude – encoded in the ridge length – however the

simulated ridges lie mostly along the anti-diagonal corresponding to the nuclear Larmor

frequency.
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Figure 2: Experimental HYSCORE spectra in the
13

C region at B0 = 351.6 mT (g∥) for

ThCp
tt

3 (blue contours). HYSCORE simulations (red contours) include HFC matrices of 5

representative nuclei: three C(Cp), one 3
◦

C(
t
Bu) and one 1

◦
C(

t
Bu).
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Figure 3: Experimental HYSCORE spectra in the
13

C region at B0 = 366.3 mT (g⊥) for

ThCp
tt

3 (blue contours). HYSCORE simulations (red contours) include HFC matrices of 5

representative nuclei: three C(Cp), one 3
◦

C(
t
Bu) and one 1

◦
C(

t
Bu).

1
H HYSCORE simulations show little variation with respect to the size of the active space,

hence we only show data from the largest calculations, SS-RASSCF(39,38) (Figure 4) and SA-

RASSCF(27,36)-SO (Figure S6). We obtain different simulated signals depending on which

subset of H(Cp) nuclei is selected; herein, labels H(Cp1), H(Cp2) and H(Cp3) indicate nuclei

from different cyclopentadienyl groups. Since all simulated ridges overlap with parts of the

experimental spectrum, we deduce that the frozen solution HYSCORE spectrum samples a

combination of different H(Cp) and H(
t
Bu) local environments. The central feature at g⊥,

corresponding to near-zero HFC, is likely caused by weakly coupled nuclei, such as those of

the solvent molecule. Compared to state-specific results, state-averaged calculations result

in HYSCORE signals of decreased intensity, Figure S6, displaying essentially no variation
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between different cyclopentadienyl rings.
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Figure 4: Experimental HYSCORE spectra in the
1
H region for ThCp

tt

3 (blue contours);

left: B0 = 366.3 mT (g∥), right: B0 = 351.6 mT (g⊥). Simulations (red contours) use EPR

parameters calculated from SS-RASSCF(39,38) and include all three H(Cp) atoms from one

cyclopentadienyl ring and one H(
t
Bu) atom (H8 in the XRD structure). a, b: H(Cp1)+H(

t
Bu);

c, d: H(Cp2)+H(
t
Bu); e, f: H(Cp3)+H(

t
Bu)

It is instructive to compare our CASSCF(1,12)-SO simulations with the point-dipole simu-

lations in [9], as both localise all spin density on An and hence do not include spin polari-

sation. The crucial point of difference is the treatment of electron spin: while Formanuik et

al model HFC as a classical interaction between two point-like magnetic dipoles, the quan-

tum mechanical framework employed herein implicitly involves a delocalised spin density

distribution, derived from our relativistic calculations. Such theoretical aspects clearly in-

fluence AnCp
tt

3 hyperfine structure, as their inclusion allows us to capture more features of

the HYSCORE spectra.
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We use Mulliken spin population analysis
25

(Section S3) to quantify spin delocalisation

across ligand atoms. For ThCp
tt

3 , SS-RASSCF(39,38) gives Mulliken spin populations of

0.0044, 0.0089, 0.0040, -0.0003 and -0.0005 for nuclei C1-C5, respectively, and 0.0011, -0.0014

and -0.0020 for H1-H3, respectively. Note that all electronic structure calculations, other

than the minimal CASSCF(1,12)-SO, yield C(Cp) spin populations with a clear C2>C1,3>C4,5

trend. Despite differences between models, the Mulliken spin populations are close to the

values derived by Formanuik et al from
13

C HYSCORE: 0.010 for C2 and 0.002 for C1/C3;

meanwhile, the C2 spin population of 0.014, determined from
1
H data, is an overestimate.

Figures 5 and 6 show
1
H HYSCORE simulations of UCp

tt

3 at gx and gy, obtained using active

space electronic structure models of increasing size. We note that set 2 simulations at gx

(Figure 5, right-hand side) start out much more diffuse than the measured signal and dimin-

ish as more An orbitals are correlated. Meanwhile, in set 1 simulations, only the features

closest to νN show noticeable changes with active space size. Less variability is observed

for the gy orientation (Figure 6); but, despite the differences between peak positions, owing

to a slight overestimation of the largest
1
H HFCCs, all major features of the experimental

spectrum are captured.

Spin population analysis of UCp
tt

3 is complicated by the extensive mixing between spin-

free states due to strong SOC (Table S1). Herein, we focus on Mulliken spin populations

derived for the fourth quartet SF state, which has the highest weighting in the ground

Kramers doublet wavefunction. H(Cp) spin populations range between -0.0001 and -0.0004,

regardless of active space or state, a result which is two orders of magnitude lower than the

0.019 value reported in [9]. But, given the good reproduction of the experimental HYSCORE

spectra based on the relativistic multi-configurational calculations here, this discrepancy

highlights the shortcomings of non-relativistic HFC models in the case of strongly SO-

coupled systems: large HFCCs must be ascribed to large spin populations when the PSO

term is completely neglected.
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Figure 5: UCp
tt

3 HYSCORE spectra,
1
H region, B0 = 244.3 mT (near gx). Simulations

(red) include H(Cp) nuclei from set 1 (left) and set 2 (right). a, b: RASSCF(21,30)-SO; c, d:

RASCI(29,34)-SO; e, f: RASCI(29,35)-SO.

Although no HYSCORE signal could be measured in the
13

C region for UCp
tt

3 ,
9

C(Cp) spin

populations from electronic structure calculations provide a useful point of comparison

with ThCp
tt

3 . We note that C(Cp) spin populations obtained from CASSCF(3,7)-SO differ

in both magnitude and sign from the populations derived from larger calculations; how-

ever, as the minimal CASSCF-SO model fails to reproduce the magnitude and anisotropy

of the UCp
tt

3 g-tensor, these populations are likely inaccurate. C(Cp) spin populations de-

rived from RASCI(29,35)-SO fall between -0.0023 and -0.0038 for C1-C3; these values are

in stark contrast with the positive populations of the equivalent atoms in ThCp
tt

3 . Smaller

spin populations, ranging from -0.0004 to -0.0014, are observed for C4- and C5-type nuclei,

in line with the Th complex. It appears that, relative to a purely ionic picture, spin density

transfer between Cp
tt

and An occurs primarily via atoms at the C1, C2 and C3 positions for

both complexes. Considering also the Mulliken spin populations at An, 0.96 for Th and 3.03

141



for U, we deduce that the Cp
tt →An dative bond leads to spin density transfer away from

Th(III) in ThCp
tt

3 and to spin density transfer towards U(III) in UCp
tt

3 .
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Figure 6: UCp
tt

3 HYSCORE spectra,
1
H region, B0 = 450.4 mT (near gy). Simulations

(red) include H(Cp) nuclei from set 1 (left) and set 2 (right). a, b: RASSCF(21,30)-SO; c, d:

RASCI(29,34)-SO; e, f: RASCI(29,35)-SO.

Orbital decomposition analysis of the HFC matrices (Section S6) reveals similar patterns of

pairwise orbital contributions – which are proportional to the probability of spin density

transfer between orbitals – for unsubstituted C(Cp) and the H(Cp) bonded to them; com-

pare, for example, Figures S8 and S10 (atoms C2 and H1) and Figures S9 and S11 (atoms

C4 and H2). The orbital decomposition diagram for out-of-plane unsubstituted C(Cp) (C4)

features weaker pairwise terms relative to out-of-plane substituted C(Cp) (C1, Figure S7)

and in-plane C(Cp) (C2, Figure S8); this is consistent with our observations from Mulliken

spin population analysis.

For ThCp
tt

3 , C(Cp) and H(Cp) HFC matrices appear to be dominated by Cp π2 → Cp π∗
3 and
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Cp π2 → Th 6d excitations. Herein, we have used π1, π2 and π∗
3 to label the valence π-type

MOs of the cyclopentadienyl groups based on the number of nodal planes, which, accord-

ing to MO theory, determines the MO energy; although our electronic structure approach

is more complex than basic MO theory, this is a useful strategy to classify the 9 bonding

πCp MOs (3×π1 and 6×π2) and the 6 anti-bonding π∗
Cp

MOs (all π∗
3). Some Cp π1 → Cp π∗

3

and Th 6px,y → Cp π∗
3 contributions are observed for the in-plane atoms (C2, Figure S8, and

H1, Figure S10), however as our calculations yield strongly hybridised Th 6px,y–Cp π1 MOs,

both types of contributions are likely due to interactions between ligand atoms. The inclu-

sion of σCp and σ∗
Cp

MOs in SS-RASSCF(39,38) has a significant impact, with σCp → σ∗
Cp

excitations manifesting as strong contributions to the HFC matrices of C1, C2 and H1 (Fig-

ures S7, S8 and S10, respectively). In future work, it would be beneficial to also investigate

σCp correlation effects in UCp
tt

3 , perhaps using multiconfigurational techniques that can ac-

commodate larger active spaces.
26–30

The orbital decomposition diagrams for C(Cp) and H(Cp) in UCp
tt

3 are overall more sparse

than their ThCp
tt

3 equivalents, particularly in the case of C(Cp). Metal-ligand spin density

transfer appears to occur mainly via Cp π2 → U 6d excitations. Unlike the Th complex,

we observe strong U 6px,y →7px,y pairwise contributions in the orbital decompositions for

C1, C2 and H1, i.e. the positions in the cyclopentadienyl ring associated with the largest

spin populations. We note that Hyperion’s orbital decomposition scheme only takes into

account the spin-dependent (FC+SD) part of the HFC operator, therefore the (likely signif-

icant) PSO interactions are not included in this breakdown.

5 Conclusions

We employed active space electronic structure techniques, together with the recently-developed

Hyperion program, to derive relativistic g-tensors and relativistic hyperfine coupling pa-

rameters for two AnCp
tt

3 complexes, which were previously characterised by Formanuik et

al using experimental pulsed EPR techniques. Simulated HYSCORE spectra based on the

calculated parameters were then used to benchmark our electronic structure calculations

against experiment.

We modelled electron correlation and spin-orbit coupling effects on the electronic struc-

ture and on magnetic properties of AnCp
tt

3 , and discussed the influence of various param-

eters, such as active space composition, number of optimised electronic states and state-
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averaging molecular orbitals. We showed that good predictions of ligand HFCCs can be

obtained from a fairly minimal electronic structure model, provided that relativity is ac-

counted for, and that the non-relativistic interpretation of HFC is unreliable, particularly

when SOC is strong. Based on theoretical g-tensor determinations, we uncovered a link

between spin polarisation of C(Cp) atoms, modelled using an expanded active space, and

in-plane magnetisation. Additionally, we showed that the most accurate HYSCORE sim-

ulations for ThCp
tt

3 require a state-specific electronic structure model for the g⊥ spectrum

and a state-averaged model for the g∥ spectrum.

Finally, to gain insight into An-ligand bonding and the extent of covalency, we employed

Mulliken spin population analysis, which showed that the two AnCp
tt

3 complexes differ in

the direction of spin density transfer between An and the Cp
tt

ligands. The extent of spin

delocalisation appears to be diminished for the U complex, with only C(Cp) atoms having

spin populations significantly different from zero. By contrast, spin polarisation in ThCp
tt

3

extends as far as H(Cp), for which spin populations are the same order of magnitude as

C(Cp) spin populations. Although they are not a direct measure of An covalency, the ef-

fects on H(Cp) show that spin populations beyond the first coordination sphere can be

affected by the ligating metal and, as such, empirical parameters derived from bare radicals

have limited applicability.

Mulliken spin populations on the An atoms suggest that actinide covalency is slightly

stronger in the Th complex, which is the opposite conclusion to the study by Formanuik

et al. However, we ascribe covalency to a deviation of ±0.04 from the spin population in

the idealised ionic bonding model; this minuscule difference, coupled with the well-known

basis set dependence of the Mulliken population scheme,
31

indicates that further evidence

is required to support our conclusion.

One possible avenue for improvement is to complement the Mulliken analysis presented

herein with other spin density partitioning schemes: formalisms such as Löwdin,
32

Hirsh-

feld,
33

natural population analysis (NPA),
34

quantum theory of atoms in molecules (QTAIM)
35

and LoProp,
36

although primarily used for charge density analysis, are also applicable to

spin density. Note, however, that spin populations determined via different partitioning

schemes display noticeable differences, as shown by Neese;
37

hence, it is possible that em-

ploying multiple formalisms will introduce confusion, rather than clarity.
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Overall, the phenomenon of actinide covalency is by far too complex to be accurately quan-

tified by a single number. It is therefore important to verify observations regarding actinide

covalency by using multiple experimental and theoretical techniques, as well as extending

the study to cover a larger set of complexes, which shall constitute the subject of future

work.
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Supplementary Information

S1 Signs of pseudospin HFCCs

Although sign information is lost when modelling HFC using a pseudospin Hamiltonian,

the signs of HFCCs influence HYSCORE simulations. We therefore developed a methodol-

ogy for approximating HFCC signs in order to obtain simulated HYSCORE spectra that can

be compared to experimental measurements. This method is implemented as an extension

to the Hyperion package.

As shown in equation (1) from the main text, the HFC operator can be split into a spin-

dependent FC+SD contribution and a spin-independent PSO contribution; partial HFCCs

are obtained by replacing the full HFC operator in equation (6) with either the FC+SD part

or the PSO part. Note that, since this method ignores any cross terms, the partial HFCCs do

not add up to the total HFCCs; nevertheless, in practice, the cross terms are relatively small.

It is therefore possible to deduce the relative signs of the partial and the total HFCCs by

comparing magnitudes. This is the first approximation in our methodology, as the three

sets of HFCCs are defined with respect to different sets of main axes. To minimise the error

introduced in this step, HFCCs to be compared are grouped in a way that maximises the

overlap between their corresponding eigenvectors.

In the following step, we take advantage of the a posteriori inclusion of SOC in our chosen

electronic structure approach, drawing parallels between spin-only (signed) HFCCs derived

from CASSCF/RASSCF and pseudospin HFCCs derived from CASSCF-SO/RASSCF-SO. This

is done by rotating the FC+SD spin-only tensor, aFC+SD

spin-only;(x,y,z), from the molecular frame

(x,y, z) into the eigenframe (eS,1, eS,2, eS,3) of the FC+SD pseudospin tensor:

aFC+SD

spin-only;S =
(
eS,1 eS,2 eS,3

)
aFC+SD

spin-only;(x,y,z)


eS,1

eS,2

eS,3.

 (S1)

The signs of the diagonal elements of aFC+SD

spin-only;S are then assigned to the FC+SD pseudospin

HFCCs - in the limit of equivalence between the spin-only and pseudospin parametrisa-

tions, this becomes exact. Signs for the total pseudospin HFCCs are obtained by combining

the relative sign information inferred in the first step with the absolute signs of the FC+SD
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eigenvalues deduced in the second step.

The second approximation underlying our methodology is therefore introduced by the

forced equivalence between a spin-only multiplet and the set of SO-coupled states forming

the pseudospin multiplet. This is, of course, inexact since a SO state is a superposition of

multiple spin-free states. Moreover, results depend on which spin-free state is chosen for

the comparison. Fortunately, we find this strategy to be straightforward when applied to

the AnCp
tt

3 complexes investigated in this work. ThCp
tt

3 is, to a good approximation, a 6d
1

doublet and as such, there is a natural correspondence between the lowest energy spin-free

state and the lowest-energy SO state. In the case of UCp
tt

3 , the ground Kramers doublet has

a predominant spin quartet character (see Section S1) and we find that applying our strat-

egy using any of the 13 spin-free quartet states considered herein yields consistent results

for all ligand HFCCs studied.

S2 SO states of UCptt
3

Table S1: Composition of the lowest-energy Kramers doublet (SO states 1 and 2) of UCp
tt

3 in

terms of quartet SF states. SF state indices are assigned in order of increasing energy, such

that SF state 1 is the lowest-energy quartet SF state. Note that only the lowest 6 quartet SF

states make significant contributions to the ground Kramers doublet in all calculations, and

that SF state 4 has the most significant contribution in all calculations that include ligand

correlation effects.

SO state 1 SO state 2
Calculation SF state Weight (%) SF state Weight (%)

CASSCF(3,7)-SO 1 16.65 1 16.65

2 15.61 2 15.61

3 14.91 3 14.91

4 14.47 4 14.47

5 12.98 5 12.98

RASSCF(21,30)-SO 4 23.42 4 23.42

5 20.60 5 20.60

6 12.39 6 12.39

3 11.61 3 11.61

2 9.52 2 9.52

RASCI(29,34)-SO 4 23.66 4 23.66

5 20.91 5 20.91

6 14.08 6 14.08

3 10.48 3 10.48

2 8.49 2 8.49
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SO state 1 SO state 2
Calculation SF state Weight (%) SF state Weight (%)

RASCI(29,35)-SO 4 23.49 4 23.49

5 20.57 5 20.57

6 13.61 6 13.61

3 10.63 3 10.63

2 8.95 2 8.95

S3 Mulliken spin population analysis

Table S2: Mulliken spin populations of ThCp
tt

3 atoms. Columns a-f correspond to

electronic structure calculations; a: SA-CASSCF(1,12)-SO; b: SS-RASSCF(19,26); c: SA-

RASSCF(19,27)-SO; d: SS-RASSCF(27,36); e: SA-RASSCF(27,36)-SO; f: SS-RASSCF(39,38).

Atom labels are consistent with the crystal structure reported in reference [9]. For the

1
◦
C(

t
Bu) and H(

t
Bu) atom groups, the minimum and maximum spin populations are re-

ported. Atoms C26 and H8 are included in the HYSCORE simulations reported in the main

text, while H41 is the H(
t
Bu) atom closest to the Th center.

Atom a b c d e f

Th 0.9367 0.9784 0.9674 0.9625 0.9574 0.9617

C(Cp1)
C1 0.0073 0.0037 0.0038 0.0051 0.0052 0.0044

C2 0.0074 0.0092 0.0107 0.0083 0.0090 0.0089

C3 0.0071 0.0034 0.0035 0.0047 0.0046 0.0040

C4 0.0013 -0.0022 -0.0016 -0.0009 -0.0006 -0.0003

C5 0.0012 -0.0025 -0.0019 -0.0012 -0.0008 -0.0005

C(Cp2)
C14 0.0072 0.0035 0.0035 0.0049 0.0049 0.0042

C15 0.0079 0.0099 0.0115 0.0090 0.0097 0.0095

C16 0.0077 0.0041 0.0042 0.0053 0.0054 0.0046

C17 0.0014 -0.0016 -0.0010 -0.0006 -0.0002 0.0000

C18 0.0012 -0.0027 -0.0022 -0.0013 -0.0010 -0.0006

C(Cp3)
C27 0.0075 0.0042 0.0044 0.0055 0.0054 0.0047

C28 0.0072 0.0091 0.0106 0.0082 0.0089 0.0087

C29 0.0062 0.0023 0.0024 0.0038 0.0038 0.0032

C30 0.0012 -0.0025 -0.0020 -0.0011 -0.0008 -0.0005

C31 0.0013 -0.0022 -0.0015 -0.0010 -0.0006 -0.0003

3◦C(tBu)
C6 -0.0002 -0.0004 -0.0002 -0.0003 -0.0002 -0.0003

C10 -0.0002 -0.0004 -0.0002 -0.0003 -0.0002 -0.0003

C19 -0.0004 -0.0006 -0.0004 -0.0005 -0.0004 -0.0005

C23 -0.0004 -0.0006 -0.0005 -0.0005 -0.0004 -0.0005

C32 -0.0003 -0.0004 -0.0003 -0.0004 -0.0003 -0.0004

C36 -0.0002 -0.0004 -0.0003 -0.0003 -0.0003 -0.0003
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Atom a b c d e f

H(Cp1)
H1 0.0010 0.0011 0.0011 0.0011 0.0010 0.0011

H2 -0.0014 -0.0017 -0.0016 -0.0014 -0.0014 -0.0014

H3 -0.0020 -0.0024 -0.0022 -0.0020 -0.0019 -0.0020

H(Cp2)
H22 0.0011 0.0011 0.0011 0.0011 0.0010 0.0011

H23 -0.0011 -0.0014 -0.0013 -0.0011 -0.0012 -0.0011

H24 -0.0019 -0.0023 -0.0021 -0.0019 -0.0018 -0.0019

H(Cp3)
H43 0.0009 0.0010 0.0010 0.0009 0.0009 0.0009

H44 -0.0015 -0.0017 -0.0017 -0.0014 -0.0015 -0.0014

H45 -0.0016 -0.0020 -0.0019 -0.0016 -0.0016 -0.0016

1◦C(tBu)
C26 0.0003 0.0001 0.0002 0.0001 0.0002 0.0001

min 0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

max 0.0005 0.0004 0.0005 0.0003 0.0004 0.0004

H(tBu)
H8 -0.0003 -0.0004 -0.0004 -0.0003 -0.0003 -0.0003

H41 -0.0012 -0.0013 -0.0012 -0.0012 -0.0011 -0.0012

min -0.0012 -0.0013 -0.0012 -0.0012 -0.0011 -0.0012

max 0.0003 0.0003 0.0002 0.0003 0.0003 0.0001
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Table S3: Mulliken spin populations of UCp
tt

3 atoms, as determined from CASSCF(3,7)-SO.

Atom SF state 1 SF state 2 SF state 3 SF state 4 SF state 5 SF state 6

U 2.9780 2.9746 2.9744 2.9677 2.9675 2.9671

C(Cp1)
C1 0.0015 0.0016 0.0019 0.0020 0.0024 0.0021

C2 0.0014 0.0011 0.0015 0.0012 0.0011 0.0012

C3 0.0014 0.0015 0.0018 0.0020 0.0024 0.0023

C4 0.0015 0.0020 0.0016 0.0029 0.0023 0.0027

C5 0.0016 0.0020 0.0018 0.0027 0.0025 0.0024

C(Cp2)
C14 0.0016 0.0014 0.0021 0.0018 0.0023 0.0021

C15 0.0014 0.0013 0.0013 0.0013 0.0010 0.0011

C16 0.0014 0.0014 0.0021 0.0020 0.0023 0.0023

C17 0.0015 0.0017 0.0019 0.0020 0.0030 0.0026

C18 0.0015 0.0017 0.0019 0.0018 0.0029 0.0027

C(Cp3)
C27 0.0014 0.0022 0.0012 0.0026 0.0018 0.0022

C28 0.0013 0.0014 0.0009 0.0009 0.0011 0.0011

C29 0.0016 0.0022 0.0013 0.0025 0.0019 0.0019

C30 0.0016 0.0019 0.0020 0.0028 0.0024 0.0026

C31 0.0015 0.0018 0.0020 0.0029 0.0024 0.0027

H(Cp1)
H1 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000

H2 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 0.0000

H3 -0.0001 -0.0001 -0.0001 0.0000 0.0000 0.0000

H(Cp2)
H22 -0.0001 0.0000 -0.0001 0.0000 0.0000 0.0000

H23 -0.0001 -0.0001 -0.0001 -0.0001 0.0000 -0.0001

H24 -0.0002 -0.0001 -0.0001 0.0000 -0.0001 0.0000

H(Cp3)
H43 -0.0001 0.0000 -0.0001 0.0000 0.0000 0.0000

H44 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 0.0000

H45 -0.0001 -0.0001 -0.0001 0.0000 -0.0001 -0.0001
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Table S4: Mulliken spin populations of UCp
tt

3 atoms, as determined from RASCI(29,35)-SO.

Atom SF state 1 SF state 2 SF state 3 SF state 4 SF state 5 SF state 6

U 3.0474 3.0430 3.0429 3.0332 3.0332 3.0336

C(Cp1)
C1 -0.0034 -0.0038 -0.0031 -0.0032 -0.0043 -0.0031

C2 -0.0023 -0.0031 -0.0017 -0.0031 -0.0028 -0.0032

C3 -0.0039 -0.0039 -0.0034 -0.0034 -0.0034 -0.0018

C4 -0.0033 -0.0016 -0.0036 -0.0010 -0.0004 -0.0013

C5 -0.0027 -0.0016 -0.0029 -0.0009 -0.0004 -0.0016

C(Cp2)
C14 -0.0030 -0.0041 -0.0019 -0.0028 -0.0033 -0.0026

C15 -0.0026 -0.0026 -0.0032 -0.0038 -0.0025 -0.0040

C16 -0.0033 -0.0042 -0.0020 -0.0023 -0.0034 -0.0021

C17 -0.0031 -0.0026 -0.0023 -0.0007 -0.0020 -0.0010

C18 -0.0034 -0.0028 -0.0025 -0.0014 -0.0021 -0.0002

C(Cp3)
C27 -0.0037 -0.0017 -0.0048 -0.0031 -0.0013 -0.0033

C28 -0.0022 -0.0021 -0.0030 -0.0030 -0.0038 -0.0021

C29 -0.0033 -0.0023 -0.0046 -0.0035 -0.0026 -0.0049

C30 -0.0025 -0.0024 -0.0013 -0.0006 0.0000 -0.0009

C31 -0.0033 -0.0034 -0.0016 -0.0004 -0.0011 -0.0014

H(Cp1)
H1 -0.0002 -0.0002 -0.0001 -0.0001 -0.0002 -0.0001

H2 -0.0004 -0.0003 -0.0003 -0.0002 -0.0003 -0.0002

H3 -0.0003 -0.0002 -0.0002 -0.0001 -0.0001 -0.0001

H(Cp2)
H22 -0.0002 -0.0001 -0.0003 -0.0002 -0.0001 -0.0002

H23 -0.0004 -0.0004 -0.0003 -0.0002 -0.0003 -0.0003

H24 -0.0004 -0.0003 -0.0004 -0.0002 -0.0001 -0.0001

H(Cp3)
H43 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0001

H44 -0.0004 -0.0003 -0.0004 -0.0002 -0.0001 -0.0002

H45 -0.0003 -0.0003 -0.0002 -0.0001 -0.0001 -0.0002
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S4 Principal directions of the theoretical g-tensors

Herein we show the orientation of the calculated g-tensor principal axes with respect to the

molecular structure of ThCp
tt

3 , Figure S1, and UCp
tt

3 , Figure S2. Note that the state-specific

(SS) calculations on ThCp
tt

3 yield three isotropic g-values (g = 2) and hence the resulting

principal axes follow the molecular reference frame directions. In this case, a straightfor-

ward correspondence between theoretical and experimental g-values does not exist. Nev-

ertheless, for the HYSCORE simulations presented in this work, we assign the experimental

g∥ value to the direction that lies closest to the pseudo-C3 axis, which is consistent with the

results of state-averaged calculations.

SS-RASSCF(19,26) SA-RASSCF(19,27)-SO

SS-RASSCF(27,36) SA-RASSCF(27,36)-SO

SS-RASSCF(39,38) SA-CASSCF(1,12)-SO

Figure S1: Principal axes for the g-tensor of ThCp
tt

3 , as calculated via Hyperion from elec-

tronic structure data. Axes corresponding to gx and gy (i.e. g⊥) are shown in red and green,

respectively. The blue axis corresponds to gz (g∥).
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CASSCF(3,7)-SO RASSCF(21,30)-SO

RASCI(29,34)-SO RASCI(29,35)-SO

Figure S2: Principal axes for the g-tensor of UCp
tt

3 , as calculated via Hyperion from elec-

tronic structure data. Axes corresponding to gx, gy and gz are shown in red, green and blue,

respectively.

S5 Additional HYSCORE simulations

S5.1 Choice of representative nuclei

At the the most general level, HFC strength, as measured by HFCCs, is determined by the

spin density at the magnetic nucleus of interest – usually quantified by the spin population

– and by the distance from the paramagnetic center (here, the An atom). We use these crite-

ria to choose a small number of representative nuclei from the AnCp
tt

3 XRD structures; HFC

parameters for these nuclei are then included in HYSCORE simulations. In both complexes,

the largest Mulliken spin populations are associated with C(Cp) and H(Cp) atoms, which are

therefore expected to make the most significant contribution to the
13

C and
1
H HYSCORE

spectra, respectively. For UCp
tt

3 , only
1
H HYSCORE experimental data is available, and we

use the U-H(Cp) distances calculated from the XRD coordinates to define two sets of 6 rep-

resentative H(Cp) nuclei, as described in the Computational details section of the main text.

The increased computational cost of HYSCORE simulations for ThCp
tt

3 , particularly
13

C

HYSCORE, precludes selections of more than 5 nuclei; hence, more complex selection cri-

teria are needed. Due to the axially-symmetric g-values of ThCp
tt

3 , we assert that equivalent

nuclei associated with different cyclopentadienyl rings give rise to similar HYSCORE fea-

tures. In practice, this assertion only proves true for state-averaged results; EPR parameters
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from state-specific calculations yield subtly different HYSCORE signals for the three Cp
tt

groups in the solid-state unit cell. The differences are most pronounced for
13

C spectra ob-

tained from SS-RASSCF(39,38) results, Figures S3 and S4. Overall, the best agreement with

experiment is observed for simulations with Cp1 nuclei, which we henceforth consider

representative of C(Cp) HFC in frozen solution.

Figure S3: Experimental HYSCORE spectra (blue contours) in the
13

C region for ThCp
tt

3 ,

measured at B0 = 351.6 mT (g∥). Simulations (red contours) use EPR parameters calcu-

lated from SS-RASSCF(39,38); only parameters for selected C(Cp) nuclei are included in the

HYSCORE simulation.
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Figure S4: Experimental HYSCORE spectra (blue contours) in the
13

C region for ThCp
tt

3 ,

measured at B0 = 366.3 mT (g⊥). Simulations (red contours) use EPR parameters calcu-

lated from SS-RASSCF(39,38); only parameters for selected C(Cp) nuclei are included in the

HYSCORE simulation.

In addition to splitting ligand nuclei by Cp
tt

group, we also investigate selections of three

C(Cp), with one in-plane nucleus (C2-type), one out-of-plane substituted nucleus (C1/C3-

type) and one out-of-plane unsubstituted nucleus (C4/C5-type). The omission of two C(Cp)

nuclei appears to have a minor impact – a slight decrease in intensity – on the simulated

HYSCORE spectra, and we conclude that the 3×C(Cp1) simulation provides the best bal-

ance between computational cost and accuracy. To complete the set of representative
13

C

nuclei, we additionally include one tertiary C(
t
Bu) from the Cp1 group (C6) and one pri-

mary C(
t
Bu) (C26); both are selected based on their distance from Th in the crystal structure.
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We use a similar strategy to select a set of
1
H nuclei, comprising three H(Cp) from one Cp

tt

group and one H(
t
Bu). However, HYSCORE simulations that include atom H41, having the

smallest Th-H(
t
Bu) distance, result in unusually intense HYSCORE features, as well as poor

agreement with the spectrum measured at g⊥ (Figure S5). This is most likely a consequence

of the uncharacteristically large spin population associated with H41 (Table S2); it is unclear

whether this is a limitation of the minimal basis used for H(
t
Bu) in our electronic structure

calculations, or whether such high spin densities are a feature of the crystal structure, but

are not prevalent in frozen solution. Nevertheless, we observe significant improvement in

the accuracy of HYSCORE simulations (Figures 4 and S6) upon replacing HFC parameters

of H41 with those calculated for H8, which has a Mulliken spin population closer to typical

H(
t
Bu) values.

Figure S5: Experimental HYSCORE spectra in the
1
H region for ThCp

tt

3 (blue contours); a:

B0 = 351.6mT (g∥), b: B0 = 366.3mT (g⊥). Simulations (red contours) use EPR parameters

calculated from SS-RASSCF(39,38) and include all three H(Cp1) atoms and the H(
t
Bu) atom

lying closest to the Th center in the XRD structure (H41).
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S5.2 1HHYSCORE spectra from state-averagedThCptt
3 calculations
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Figure S6: Experimental HYSCORE spectra in the
1
H region for ThCp

tt

3 (blue contours); left:

B0 = 351.6 mT (g∥), right: B0 = 366.3 mT (g⊥). Simulations (red contours) use EPR pa-

rameters calculated from SA-RASSCF(27,36)-SO and include all three H(Cp) atoms from one

cyclopentadienyl ring and one H(
t
Bu) atom (H8 in the XRD structure). a, b: H(Cp1)+H(

t
Bu);

c, d: H(Cp2)+H(
t
Bu); e, f: H(Cp3)+H(

t
Bu)
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S6 Orbital decomposition analysis

Below, we show HFC orbital decomposition diagrams generated by Hyperion for ligand

atoms representative of different C(Cp) and H(Cp) local environments within AnCp
tt

3 . The

vertices represent RASSCF-optimised MOs, which are linear combinations of AOs from all

atoms in AnCp
tt

3 . As such, their labels are only approximate, as they represent an idealised

picture where there is no mixing between An and ligand MOs. Although most labels could

be unambiguously assigned, we observe strong mixing between Th 6px,y and Cp π1 orbitals,

which may complicate the interpretation of the orbital decomposition.

158



Figure S7: HFC orbital decomposition diagrams for nucleus C1 (as labelled in the XRD

structure). Only pairwise contributions > 10−2
MHz are shown. a: ThCp

tt

3 , SF state 1

(S = 1/2), SS-RASSCF(39,38); b: ThCp
tt

3 , SF state 1 (S = 1/2), SS-RASSCF(27,36); c: UCp
tt

3 ,

SF state 4 (S = 3/2), SS-RASCI(29,35)
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Figure S8: HFC orbital decomposition diagrams for nucleus C2 (as labelled in the XRD

structure). Only pairwise contributions > 10−2
MHz are shown. a: ThCp

tt

3 , SF state 1

(S = 1/2), SS-RASSCF(39,38); b: ThCp
tt

3 , SF state 1 (S = 1/2), SS-RASSCF(27,36); c: UCp
tt

3 ,

SF state 4 (S = 3/2), SS-RASCI(29,35)
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Figure S9: HFC orbital decomposition diagrams for nucleus C4 (as labelled in the XRD

structure). Only pairwise contributions > 10−2
MHz are shown. a: ThCp

tt

3 , SF state 1

(S = 1/2), SS-RASSCF(39,38); b: ThCp
tt

3 , SF state 1 (S = 1/2), SS-RASSCF(27,36); c: UCp
tt

3 ,

SF state 4 (S = 3/2), SS-RASCI(29,35)
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Figure S10: HFC orbital decomposition diagrams for nucleus H1 (as labelled in the XRD

structure). Only pairwise contributions > 10−3
MHz are shown. a: ThCp

tt

3 , SF state 1

(S = 1/2), SS-RASSCF(39,38); b: ThCp
tt

3 , SF state 1 (S = 1/2), SS-RASSCF(27,36); c: UCp
tt

3 ,

SF state 4 (S = 3/2), SS-RASCI(29,35)
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Figure S11: HFC orbital decomposition diagrams for nucleus H2 (as labelled in the XRD

structure). Only pairwise contributions > 10−3
MHz are shown. a: ThCp

tt

3 , SF state 1

(S = 1/2), SS-RASSCF(39,38); b: ThCp
tt

3 , SF state 1 (S = 1/2), SS-RASSCF(27,36); c: UCp
tt

3 ,

SF state 4 (S = 3/2), SS-RASCI(29,35)
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Chapter 6

Conclusion

This work represents an exploration of actinide bonding through the lens of magnetic prop-
erties, using ab initio CASSCF-SO and RASSCF-SO techniques to describe the electronic
structure. We describe Hyperion, a new software package implemented to compute rel-
ativistic picture-change-corrected g-values and HFCCs from active space wavefunctions,
with relativistic effects included via the SF-X2C formalism. Additionally, we present a novel
orbital decomposition approach, implemented as part of Hyperion, designed to inform the
active space selection process by providing insight into the orbital interactions underlying
predicted HFCCs.

We observe that, within a CASSCF-SO/RASSCF-SO framework, the number of optimised
roots in a strongly SO-coupled system has the most significant impact on the accuracy
of predicted magnetic properties. This number should be large enough to ensure an ade-
quate basis of spin-free states is used to represent the SO Hamiltonian; however, MO state-
averaging, which is a feature of all multi-state MCSCF algorithms, worsens the quality of
the lowest energy wavefunction(s), leading to erroneous predictions of magnetisation and
other related properties. As ligand effects are weaker than inter-electron repulsion and
SOC for all SO-coupled systems studied herein, Russel-Saunders coupling principles can be
applied to choose an optimal set of roots.

Our findings suggest that the best active space choice is dictated by which molecular prop-
erty is targeted; in particular, although a good description of the electronic structure – as
quantified by electronic energies – is achievable with a relatively small number of active
orbitals, more expansive active space selections are necessary if accurate HFCCs are de-
sired. Naturally, the principles of quantum chemistry dictate that calculated properties are
only reliable if they are based on a qualitatively correct wavefunction, hence, in the ab initio
study of molecular properties, good wavefunctions are a pre-requisite.

Based on the An complexes studied herein, and using predicted magnetic properties to
judge accuracy, we deduce that molecules containing hard ligands, such as the oxo and
imido groups in Paper one, are best described using a minimal CAS(N ,7), where N is the
number of 5f electrons. Meanwhile, the influence of soft ligands, such as Cptt in Paper
three, can only be captured by correlating frontier bonding and antibonding ligand orbitals,
in addition to An valence orbitals. We note, however, that these conclusions are based on
a small number of An molecules and should therefore be verified by investigating a larger
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number of complexes.

Finally, we show that the combined theoretical and experimental study of hyperfine cou-
pling in An molecules is a promising approach for investigating the intricacies of An bond-
ing. However, care must be taken to account for SR and SOC relativistic effects at the
appropriate level of theory. The ab initio electronic structure description can be fine-tuned
by benchmarking against experimental HFCCs or, where these cannot be easily determined,
against HYSCORE spectra. Subsequently, spin delocalisation can be quantified viaMulliken
spin population and used to draw conclusions about An covalency.
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Chapter 7

Outlook

We have introduced a new strategy for studying actinide covalency, based on ab initio de-
terminations of HFCCs using the Hyperion package; there is significant potential for fur-
ther refinement, and this chapter outlines some possible future directions. Although only
traditional CASSCF-SO and RASSCF-SO algorithms are employed herein, newer implemen-
tations, such as DMRGSCF1,2 or stochastic CASSCF,3 can potentially unlock further insight
into An bonding by making larger active spaces accessible. The choice of electronic struc-
turemethod should bemade on a case-by-case basis, taking into account the system size and
symmetry (or lack thereof) and using chemical intuition to assess the bonding interactions
(e.g. hard/soft ligands, An-An bonds). It is possible that one quantum chemistry program
does not provide any suitable algorithms to treat a particular system; for such situations, we
emphasise that Hyperion is a stand-alone package, which can easily be extended to allow
inputs from other software, such as PySCF,4 which provides a number of novel multiconfig-
urational electronic structure algorithms,5–7 and DIRAC,8 which can determine molecular
properties within a fully relativistic 4-component framework.

There is scope for improvement in the theoretical framework underlying Hyperion; in par-
ticular, an X2C-based formalism for including SOC in the wavefunction9 would make the
present approach more consistent. Additionally, Hyperion’s orbital decomposition scheme
could be made more powerful by using a perturbed spin density matrix – determined via a
perturbative electronic structure algorithm – to compute approximate HFC matrices (and,
hence, the orbital decomposition matrix M) in the full orbital basis, instead of just the
active space. This strategy is inspired by the so-called ”BK and AK method” used in an
early HFC study to quantify the orbital contributions neglected by multireference CI ap-
proximations.10 Currently, it is unclear which perturbative method is best suited for this
application and whether this idea is computationally feasible for experimentally-relevant
molecules. Although the BK and AK method appears to have been relegated to the past,
similar strategies could potentially fare better in the current context of electronic struc-
ture theory, given the variety of perturbative techniques available and their rapid advance-
ment.11–14

Perhaps themost important future development is the implementation of NMR shiftswithin
Hyperion. Relativistic paramagnetic (pNMR) shifts can be straightforwardly incorporated
within the currently-used RKB-based formalism. To ensure that the pNMR shifts can be
computed for electronic states of arbitrary degeneracy, the RKB-based formalism is best
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combined with Soncini and Van Den Heuvel’s approach,15–17 which was previously em-
ployed in non-relativistic ab initio studies.18–22 Note, however, that a secondary (diamag-
netic) reference must be used to extract pNMR shifts from experimental NMR spectra; the
diamagnetic reference should be similar to the original molecule, such that differences be-
tween the diamagnetic contributions to the NMR shifts are minimised. In practice, diamag-
netic NMR shift variations are on the order of 1 ppm, which is negligible for all magnetic
nuclei except for 1H.21 Therefore, approaches that only compute pNMR shifts are unsuitable
for 1H NMR, as theoretical predictions cannot be benchmarked against reliable experimen-
tal quantities.

Diamagnetic NMR shifts are more challenging to determine ab initio, particularly in rela-
tivistic theory, as a diamagnetic term does not appear in the field-dependent Dirac Hamil-
tonian when the RKB approximation is used.23 Most previous work on ab initio full NMR
shifts – including both the diamagnetic and the paramagnetic contributions – uses Kohn-
Sham DFT methods; this is true for both non-relativistic24,25 and relativistic studies.26–32

There is currently a lack of knowledge around relativistic, multiconfigurational models of
full NMR shifts and, consequently, a lack of computational tools developed for this purpose.
The most straightforward solution to this problem is to use non-relativistic property oper-
ators and only include relativistic effects in the wavefunction optimisation; however, this
introduces a picture-change error which, if significant, can invalidate the result.

Alternatively, the Restricted Magnetic Balance (RMB)28 approximation or the Orbital De-
composition Approach† (ODA)26,27 can be used to obtain relativistic perturbation operators
that include a diamagnetic contribution. To date, existing applications of RMB and ODA
are exclusively DFT-based; to the best of our knowledge, neither have been implemented
within a multiconfigurational framework. It is worth noting, however, that replacing the
RKB condition with RMB in our formalism also requires changing the operators used for
first-order properties (g-values andHFCCs), as well as the X2C transformation and the X2C-
decoupled zeroth order Hamiltonian. The last two pose some practical difficulties, as any
changes to the X2C procedure have to be implemented in the electronic structure software,
unless support for Hamiltonians computed externally is available.

Finally, there is a renewed interest in local approximations (diagonal local approximation
to the unitary decoupling matrix, DLU) to relativistic decoupling methods, as suggested by
recent literature;29–32 Franzke et al recently derived and implemented a DLU-X2C model of
NMR shielding tensors within unrestricted DFT.30–32 Although an extension to multicon-
figurational theories is, once again, not obvious, DLU methods have a lower computational
cost relative to their non-local counterparts, and are hence worth considering for applica-
tions to large molecules.

†The ODA approach, used in relativistic calculations of second-order magnetic properties, should not be confused with the HFC
orbital decomposition scheme proposed in Paper two of this thesis. The two are only similar in name.
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Appendix A

Number of CSFs in spin-adapted

CASSCF

Herein we derive the number of high-spin configuration state functions (CSFs) which ap-
pear in the CI expansion of a spin-adapted CASSCF wavefunction. The number of active
electrons, Ne, the number of active orbitals, No, and the spin quantum number, S, are re-
garded as fixed parameters.

The total number of Slater determinants that can be formed by distributing Ne electrons
among 2No spin-orbitals is

Ndet(Ne, No) =

(
2No

Ne

)
. (A.1)

Slater determinants are eigenfunctions of the spin projection operator, Ŝz , and hence have a
well-defined spin projectionM .The number of Slater determinants with a specificM can be
expressed as all possible arrangements of Nα spin-up electrons among No α-spin-orbitals,
multiplied by all possible arrangements of Nβ spin-down electrons among No β-spin-or-
bitals: 1

N det
M =

(
No

Nα

) (
No

Nβ

)
=

(
No

Ne/2 +M

) (
No

Ne/2−M

)
. (A.2)

Reference [1] provides a general equation relating the number of high-spin (S =M ) CSFs
to the number of Slater determinants:

NCSF
S=M,M = N det

M −N det
M+1. (A.3)

As only high-spin configurations are required for spin-adapted CASSCF, we henceforth
replace the spin projection quantum numberM with the spin quantum number S.

Substituting Equation A.2 into A.3 yields

NCSF
S,M=S =

(
No

Ne/2 + S

)(
No

Ne/2− S

)
−
(

No
Ne/2 + S + 1

)(
No

Ne/2− S − 1

)
. (A.4)
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Expanding the binomial coefficients and creating a common denominator,

NCSF
S,M=S =

[(
Ne

2
+ S + 1

)(
No −

Ne

2
+ S + 1

)
−
(
No −

Ne

2
− S

)(
Ne

2
− S

)]

× No! No!
(No + 1− Ne/2 + S) ! (Ne/2− S) ! (No − Ne/2− S) ! (Ne/2 + S + 1) !

= (2S + 1)(No + 1)× 1

(No + 1)2
× (No + 1) !

(No + 1− Ne/2 + S) ! (Ne/2− S) !

× (No + 1) !
(No − Ne/2− S) ! (Ne/2 + S + 1) !

.

Finally, we obtain

NCSF
S,M=S =

2S + 1

No + 1

(
No + 1
Ne/2− S

) (
No + 1

Ne/2 + S + 1

)
, (A.5)

wherein the right-hand side is identical to that of Equation 2.5.
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