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Antibody Therapeutics 

Rahul Khetan, The University of Manchester, 2023 

Submitted for the degree of Doctor of Philosophy 

ABSTRACT 

Therapeutic monoclonal antibodies and their associated biologic derivatives are a key 

component of the commercial clinical pipelines of the global pharmaceutical industry. 

The availability of large datasets of antibody biophysical properties enables the search 

for predictive models and computational tools for the “developability assessment” of 

drug candidates. This thesis work has evaluated the scope of using biopharmaceutical 

informatics approaches for the prediction of developability issues such as stability, 

aggregation, and immunogenicity. We firstly establish developability guidelines based 

on in-silico metrics used for the assessment of antibody properties and derived from 

clinical-stage antibodies. These new computational developability guidelines serve as 

benchmarks for acceptable biophysical properties desired in antibody therapeutics. We 

have also highlighted the developability potential of natural human immune repertoire.  

 

Our developability criteria were then utilized to compare the developability profile of 

major antibody discovery platforms to guide the selection of platform technologies for 

next-generation biotherapeutics. Next, we have used machine learning algorithms to 

estimate clinical trial progression of antibody therapeutics. Finally, we have validated 

our developability criteria performance in flagging antibodies that have caused serious 

adverse events or failure in clinical trials with an overall model accuracy of 80.6%. 

Finally, a summary and conclusion of the work are provided with a future outlook 

towards biopharmaceutical informatics for antibody drug discovery and optimization.  
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1 Introduction 

1.1 Background to the research 

Antibodies, also known as Immunoglobulins, are the proteins found in extracellular 

fluids and on the surface of immune cells that are at the core of the immune response 

towards any foreign antigen. The biological activity of antibodies depends on binding 

to the specific receptors on immune cells such as those that express receptors for the 

Fc portion of antibodies (FcR). These FcRs play various roles such as modulation of 

the immune response by released cytokines or phagocytosis.1-3 So, antibodies are 

major molecular effectors of adaptive immune responses.  

The basic unit of each antibody is an immunoglobulin G (IgG) monomer with a 

molecular weight of approximately 150 kDa, that is comprised of four polypeptide 

chains: two identical light chains (L) and two identical heavy chains (H). The 

antibodies are characterised by their specific ‘Y’ shaped structure – two antigen-

binding fragments (Fab) and one constant region (Fc). Also, the structure of antibodies 

includes a specified variable region (Fv) at the end of the light and heavy chains. Also, 

single-chain variable fragments (scFv) are noncovalent heterodimers comprised of the 

variable regions of the heavy (VH) and light chains (VL). Figure 1 shows the antibody 

structure and different molecular building blocks for antibody therapeutic formats. 

 



20 
 

Figure 1: Overview of antibody structures. Wide range of antibody fragments created using 

IgGs, Fabs, and scFvs as building blocks. Image adapted from https://absoluteantibody.com/.  

Fab as the name suggests contains the antigen-binding site (paratope) at the tips of the 

arms that determine the specificity of antibodies while the constant region (Fc domain) 

at the base of the antibody plays a role in modulating the effector function of an 

antibody, that may require prior binding of an antigen. Manipulations in the Fc regions 

can influence the pharmacokinetic properties of mAbs as well as improve the antibody 

dependent cellular cytotoxicity (ADCC).4 IgG antibodies are known to mediate their 

effector functions through Fc gamma receptors (FcγR) on myeloid and Natural Killer 

(NK) cells. ADCC is an Fc-dependent effector function of IgG important for anti-viral 

immunity and anti-tumor therapies. In antibody dependent cellular cytotoxicity, FcγRs 

on the surface of effector cells (natural killer cells, macrophages, monocytes, and 

eosinophils) bind to the Fc region of an IgG which itself is bound to a target cell. An 

immune signalling pathway is triggered upon binding which results in the secretion of 

cytokines, lytic enzymes, perforin, granzymes and tumour necrosis factor (TNF), 

which mediate destruction of the target cell.5 The level of ADCC effector function 

differs for various IgG subtypes in humans with high effector function for IgG1 and 

IgG3, and low for IgG2 and IgG4. Also, Complement-dependent cytotoxicity (CDC) 

is another major effector function of IgG and IgM antibodies. CDC is induced when 

the target-bound antibody is recognized by C1q protein, causing a cascade of events 

that result in the release of soluble C3a and C5a and the formation of the membrane 

attack complex (MAC) that lyses the target cell to achieve an antitumor effect.  

The antigen-binding activity of mAbs is determined by the conformation of its amino 

acids in its complementary determining regions (CDRs) which are hypervariable loops 

of diverse lengths. Three CDRs are located in the variable region of both the light and 

the heavy chains of the antibody. The human immune system has the ability to create 

millions of different antibodies with high affinity to the target molecules because of 

the different unique combinations of CDRs. One of the greatest challenges in 

biomedical research on antibodies is to mimic the screening process of the human 

immune system as closely as possible in order to identify antibodies with the highest 

target/antigen specificity. 

Therapeutic monoclonal antibodies (mAbs) have emerged as a reliable treatment 

option for serious clinical indications since the first monoclonal antibody - Orthoclone 
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OKT3, was approved in 1986.6 Since the approval of OKT3, antibody therapeutics 

have evolved to include humanized and fully human monoclonal antibodies along with 

new formats of engineered antibodies such as bispecific antibody fragments, Fc-fusion 

proteins, and antibody-drug conjugates. Currently, over 166 monoclonal antibodies 

have been approved for the treatment of a variety of diseases that are summarized in 

Figure 2. The full details of the approved 166 mAbs are provided in Supplementary 

Information. Monoclonal antibody therapeutics have established themselves as a 

dominant and reliable biologic product class within the biopharmaceutical market. The 

global antibody therapeutics market has been valued at 217.3 billion USD and is 

projected to have an exorbitant 15% annual growth rate in the next decade.7  

 

Figure 2: Therapeutic monoclonal antibodies in approved or review stages (1986 - 2022) 

 

The therapeutic value of monoclonal antibodies (mAbs) originates from their intrinsic 

molecular properties that make them target-specific, biologically effective, stable, and 

manufacturable. Monoclonal antibodies offer exceptional antigen recognition and 

binding with a longer half-life. In addition, mAbs facilitate crucial effector functions 

such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent 

cell-mediated phagocytosis (ADCP). Some of the major factors contributing to the 

growth of the monoclonal antibodies market are high specificity towards molecular 

targets, excellent safety profiles, optimal pharmacokinetic properties, an easy route 

towards clinical proof-of-concept (PoC), and rapid commercialization for mAbs.   
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R&D advances continue to explore new therapeutic applications and expand the use 

of mAbs in various medical fields. Monoclonal antibodies are widely used in cancer 

therapy to specifically target cancer cells to inhibit their growth and promote immune 

activation for anti-tumour activity. Examples include trastuzumab (Herceptin) for 

HER2+ Breast Cancer and rituximab (Rituxan) for Non-Hodgkin's Lymphomas.8 

Several mAbs have been developed to directly neutralize pathogens such as viruses, 

bacteria, or toxins to combat various infectious diseases like COVID-19, Ebola, and 

HIV.9 In transplantation medicine, mAbs can be used to prevent organ rejection by 

targeting and blocking specific immune cells responsible for rejection, allowing better 

acceptance of the transplanted organ. Examples include basiliximab (Simulect) and 

alemtuzumab (Campath) in organ transplantation.10 Some mAbs have shown excellent 

therapeutic potential in major ophthalmic conditions. Ranibizumab (Lucentis) and 

bevacizumab (Avastin) are examples of mAbs used in ophthalmology. Finally, mAbs 

have been developed to treat allergic conditions, such as asthma and allergic rhinitis. 

These mAbs target and block specific immune molecules or checkpoint modulators 

involved in allergic responses and pathways, providing relief from symptoms.11 These 

are just a few examples of the therapeutic value of monoclonal antibodies. Novel mAb 

applications and biology are being discovered each year with advances in new formats, 

manufacturing processes, design, and understanding of disease pathophysiology.  

1.2 Current advances in biopharmaceutical informatics: Guidelines, 

impact, and challenges in the computational developability 

assessment of antibody therapeutics 

This chapter was written, peer-reviewed and published as: Khetan Rahul, Robin 

Curtis, Charlotte M. Deane, Johannes Thorling Hadsund, Uddipan Kar, Konrad 

Krawczyk, Daisuke Kuroda et al. "Current advances in biopharmaceutical 

informatics: guidelines, impact and challenges in the computational developability 

assessment of antibody therapeutics." In Mabs, vol. 14, no. 1, p. 2020082. Taylor & 

Francis, 2022. doi: https://doi.org/10.1080/19420862.2021.2020082  

Keywords: - Developability guidelines; biopharmaceutical informatics; developability 

assessment; computational prediction; antibody engineering; therapeutic antibodies. 

1.2.1 Abstract  

https://doi.org/10.1080/19420862.2021.2020082
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Therapeutic monoclonal antibodies (mAbs) and their derivatives are key components 

of clinical pipelines in the global biopharmaceutical industry. The availability of large 

datasets of antibody sequences, structures, and biophysical properties are increasingly 

enabling the development of new predictive models and computational tools for the 

“developability assessment” of antibody drug candidates. In this review, we provide 

an overview of the available antibody informatics tools for the prediction of major 

developability issues such as stability, aggregation, immunogenicity, and chemical 

degradation. We further evaluate the key opportunities and challenges of using 

biopharmaceutical informatics for drug discovery and optimization. Finally, we 

discuss the potential of developability guidelines based on in silico metrics that can be 

used for the assessment of antibody stability and manufacturability. 

1.2.2 Introduction  

Monoclonal antibodies (mAbs) and antibody-based biotherapeutics represent a unique 

class of biologics that have greatly reshaped our modern biopharmaceutical industry 

since the first mAb drug, muromonab (Orthoclone®), was approved by the Food and 

Drug Administration in June 1986. The global mAb market is currently valued at 152.5 

billion USD and is projected to exhibit an annual growth rate of 14.6% in the next 

decade.12 Antibody therapeutics currently in late-stage clinical studies have more than 

tripled to 88 compared to 2010 and over 550 novel antibody therapeutics are currently 

in the early-stage commercial clinical pipeline.12, 13 The antibody therapeutics are 

anticipated to be the key treatments in a broad range of disease areas, such as cancer, 

cardiovascular, inflammation, neurological, autoimmune, and infectious diseases.  

Biopharmaceutical informatics is the application of computational methods and 

bioinformatics tools towards addressing challenges in biopharmaceutical drug 

development. It also includes development of databases containing biophysical data, 

molecular modelling and simulations, and statistical analysis of biopharmaceutical 

datasets. The term “Biopharmaceutical Informatics” was first introduced by Kumar et 

al.14 as the umbrella term for applications of computational approaches in drug 

discovery and development. Here, we present different aspects of computational 

applications to antibody-based biopharmaceutical drug development by highlighting 

key scientific advances in the developability assessment of antibody-based biologic 

drug candidates.  



24 
 

One of the first practical applications of software relevant to antibody informatics was 

the antigenic index,15 which was a program to generate surface contour profiles and 

predict antigenic sites from the linear amino acid sequence of proteins including 

antibodies. These techniques were the precursors of modern sequence-and structure-

based bioinformatics tools used in biopharmaceutical discovery and development. The 

multitude of computational tools and algorithms now available have ushered in an era 

of high-throughput biopharmaceutical informatics.  

This review is organized into four main sections. The first section outlines the 

databases and tools available for biopharmaceutical informatics relevant to antibody-

based drugs. In the second section, we discuss the role of developability at early-stage 

development and computational developability assessment of antibody therapeutics. 

The third section describes the application of biopharmaceutical informatics to 

identify key developability issues in antibody-based drug discovery and design. The 

final section summarizes emerging trends in the use of biopharmaceutical informatics 

for antibody therapeutics. While we discussed antibody informatics tools and 

approaches for evaluating developability issues, a comprehensive review of every 

developability issue was not possible within this article. We have, however, cited 

previously published reviews that include more details for each developability issue 

in the respective sections below. 

Creation of databases and data mining for comparison of biophysical  attributes: 

The availability of larger datasets with new high-throughput experimental methods 

has improved the predictions made by biopharmaceutical informatics tools. The 

challenge of data scarcity is now being resolved by open-source libraries and public 

databases of biopharmaceutical data. Data in biopharmaceutical informatics are highly 

heterogeneous and interrelated. Consequently, it is not possible to capture these broad 

ranges of properties in a single algorithm. Datasets currently used to assess the 

biophysical properties of antibodies are curated from internal releases by 

pharmaceutical companies or data points from scientific papers.16-18 Experimental data 

sourced from scientific papers might not be comparable with one another because of 

differences in experimental setups, the plethora of developability assays, and different 

antibody formats tested. Additional data sources that potentially contain much 

antibody-engineering knowledge are patents, where one needs to scan the 
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documentation for primary sequence information.19 Altogether, there is currently 

much yet-untapped data in the public domain, but these are often hard to curate and 

not immediately compatible and useful without much earlier pre-processing. 

Further advantages from curating antibody databases to learn biophysical properties 

of antibodies can be obtained by linking information from heterogeneous sources. 

Current predictive approaches typically use either structural or sequence data that 

rarely link information from different sources (e.g., structural, and next-generation 

sequencing (NGS)). Collating information from different sources, however, can 

augment information available in heterogeneous sources. For instance, structural 

modelling can provide a conformational dimension to millions of sequences drawn 

from NGS,20 whereas contrasting naturally sourced and therapeutically developed 

molecules can provide insights on commonalities and divergences between the two 

sources.21 A good example of such an integrated approach is the INDI database,22 

which contains data for antibody-cognate nanobodies (single-domain antibodies 

VHH) collected from all major public sources, encompassing patents,19 NCBI 

GenBank, Protein Data Bank (PDB), and NGS/AIRR23 supplemented by manual 

curation from the scientific literature. The sequences and structures of antibodies from 

these heterogeneous sources are linked with textual information into an antibody-

specific database. Integrating the heterogeneous sources in this manner facilitates 

searching and creation of custom datasets of nanobodies. Extrapolating such data 

integration approaches to antibodies should allow researchers to focus more on the 

machine learning/statistical approaches addressing the prediction of the biophysical 

properties of these molecules. 

Norman et al.24 have previously provided an overview of available databases and tools 

for computational antibody analysis. However, our specific focus here is on 

computational developability assessment tools and databases. Table 1 provides a list 

of relevant databases and datasets for antibody-based drugs that can be used for 

training, validation, and assessment of biopharmaceutical informatics tools.  

Table 1. Relevant databases and datasets for biopharmaceutical informatics 
S. No Database Name Application Link 

Sequence Databases 
1. Observed Antibody 

Space (OAS) 

Annotated immune repertoires of over a 

billion Ab sequences across diverse 

immune states and organisms. 

http://opig.stats.

ox.ac.uk/webap
ps/oas/ 
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2.  International 

Immunogenetics 

Information System 

(IMGT) 

IMGT® provides common access to 

sequence, genome, and structure 

Immunogenetics data. 

 

http://www.img

t.org/ 

 

3.   Patented Antibody 

Database 

The Patented Antibody Database contains 

sequence information found in patent 

documents for 267,722 antibody chains 

from 19,037 patent families. 

https://www.nat
uralantibody.co

m/pad  

 

4.  iReceptor Antibody/B-cell and T-cell receptor 

repertoire data from multiple independent 

repositories. 

https://gateway.

ireceptor.org/lo

gin  
 

5. abYsis Integrated antibody sequence and structure 

management, analysis, and prediction 

http://www.aby
sis.org/  

6. EMBLIg Antibody sequences automatically extracted 

from EMBL-ENA 

http://www.aby
bank.org/emblig

/  

7. Antibody 

Knowledge Graph 

A framework for collecting antibody data 

from all major public sources. 

https://www.nat

uralantibody.co
m/antibody-

knowledge-

graph/  

 
8. Integrated 

Nanobody 

Database for 

Immunoinformatics 

(INDI) 

Database with structure data and sequence 

information of nanobodies created using an 

integrated curation approach from several 

sources.  

http://research.n

aturalantibody.c

om/nanobodies  
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Structure Databases 

9. Protein Data Bank 

(PDB) 

3D structure data for large biological 

molecules (proteins, DNA, and RNA). 

https://www.rcs
b.org/  

10. Structural Antibody 

Database (SAbDab) 

An online resource containing all the 

publicly available antibody structures 

annotated with several properties.  

 

http://opig.stats.

ox.ac.uk/webap

ps/newsabdab/s
abdab/  

 
11.  Thera-SAbDab Variable domain sequences and structural 

representations of all antibody therapeutics 

recognized by the WHO INN lists.  

http://opig.stats.

ox.ac.uk/webap
ps/newsabdab/t

herasabdab/sear

ch/ 
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12.  SACS Summary of antibody crystal structures in 

the PDB 

http://www.aby

bank.org/sacs/  
 

13.  AbDb  Information on redundancy and structures 

solved with and without antigens for Fv 

fragments extracted from PDB files.  

http://www.aby

bank.org/abdb/  

14.  PyIgClassify A database of antibody CDR structural 

classifications 

http://dunbrack2
.fccc.edu/PyIgC

lassify/ 

 
15. AAAAA An automatic modelling and analysis tool 

for structural alignment of antibody and T 

cell receptor sequences. 

https://plueckth

un.bioc.uzh.ch/a
ntibody/index.ht

ml  

Immunogenicity 
16. Immune Epitope 

Database (IEDB)  

 

Experimental data on antibodies and T cell 

epitopes.  

 

https://www.ied

b.org/ 

 

http://www.imgt.org/
http://www.imgt.org/
https://www.naturalantibody.com/pad
https://www.naturalantibody.com/pad
https://www.naturalantibody.com/pad
https://gateway.ireceptor.org/login
https://gateway.ireceptor.org/login
https://gateway.ireceptor.org/login
http://www.abysis.org/
http://www.abysis.org/
http://www.abybank.org/emblig/
http://www.abybank.org/emblig/
http://www.abybank.org/emblig/
https://www.naturalantibody.com/antibody-knowledge-graph/
https://www.naturalantibody.com/antibody-knowledge-graph/
https://www.naturalantibody.com/antibody-knowledge-graph/
https://www.naturalantibody.com/antibody-knowledge-graph/
https://www.naturalantibody.com/antibody-knowledge-graph/
http://research.naturalantibody.com/nanobodies
http://research.naturalantibody.com/nanobodies
http://research.naturalantibody.com/nanobodies
https://www.rcsb.org/
https://www.rcsb.org/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabdab/
http://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/
http://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/
http://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/
http://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/
http://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/
http://www.abybank.org/sacs/
http://www.abybank.org/sacs/
http://www.abybank.org/abdb/
http://www.abybank.org/abdb/
http://dunbrack2.fccc.edu/PyIgClassify/
http://dunbrack2.fccc.edu/PyIgClassify/
http://dunbrack2.fccc.edu/PyIgClassify/
https://plueckthun.bioc.uzh.ch/antibody/index.html
https://plueckthun.bioc.uzh.ch/antibody/index.html
https://plueckthun.bioc.uzh.ch/antibody/index.html
https://plueckthun.bioc.uzh.ch/antibody/index.html
https://www.iedb.org/
https://www.iedb.org/
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17. T Cell Epitope 

Database 

(TCED™) 

Database of CD4+ T cell epitopes derived 

from T cell epitope mapping studies. 

https://abzenapr

od.wpengine.co

m/development-

services/immun
ology/immunog

enicity-

assessment/itop
e-and-tced/ 

18. MHCBN 4.0 A database of MHC/TAP binding peptides 

and T-cell epitopes.  

http://crdd.osdd.

net/raghava/mh

cbn/ 
 

19. Bcipep Database of B-cell epitopes. https://webs.iiit

d.edu.in/raghav
a/bcipep/info.ht

ml  

20. Leadscope Toxicity 

Database 

The Leadscope Toxicity Database contains 

over 180,000 chemical structures with over 

400,000 toxicity study results. 

https://www.lea

dscope.com/pro
duct_info.php?p

roducts_id=78 

Antibody-antigen binding / Protein-Protein interactions  
21. PCLICK Antibody-Antigen Structures from a dataset 

of 403 antibody-antigen complexes using 

CLICK method. 

http://mspc.bii.a

-

star.edu.sg/minh
n/cluster_pclick

.html  

 
22. AB-Bind: Antibody 

binding mutational 

database 

Experimentally determined changes in 

binding free energies for 1101 mutants 

across 32 antibody-antigen structures.  

https://github.co
m/sarahsirin/AB

-Bind-Database  
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23. SKEMPI 2.0 Database of binding free energy changes 

upon mutation for structurally resolved 

protein-protein interactions. 

https://life.bsc.e

s/pid/skempi2/  
 

24. AntigenDB 

 

Database of antigens from several 

pathogenic species containing structural, 

sequence, and binding data 

http://crdd.osdd.

net/raghava/anti

gendb/  

 

 

25. AntiJen Database containing quantitative binding 

data for peptides 

http://www.ddg

-
pharmfac.net/an

tijen/AntiJen/an

tijenhomepage.
htm  

 

General Information, Regulatory  
26. Tabs – Therapeutic 

Antibody Database 

(Commercial-use) 

Data on 5,400+ antibodies, 1,350+ 

antigens, and 1,550+ companies, linked to 

clinical trials, patents, papers, news, and 

regulatory agencies.  

https://tabs.craic
.com/static_pag

es/4 

 

27.  AbMiner Database to match commercially available 

antibodies to their respective genomic 

identifiers. 

https://discover.
nci.nih.gov/abm

iner/  

Table 1: Databases suggested for use in biopharmaceutical informatics that are relevant for 

antibody-based drugs. These databases have been selected by authors from several other 

available databases for general proteins to capture antibody-specific properties. 

 

Relevance of biopharmaceutical informatics tools: 

Biopharmaceutical informatics tools have the potential to be widely used for in silico 

screening of biophysical properties in an antibody library. These antibody informatics 

https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
https://abzenaprod.wpengine.com/development-services/immunology/immunogenicity-assessment/itope-and-tced/
http://crdd.osdd.net/raghava/mhcbn/
http://crdd.osdd.net/raghava/mhcbn/
http://crdd.osdd.net/raghava/mhcbn/
https://webs.iiitd.edu.in/raghava/bcipep/info.html
https://webs.iiitd.edu.in/raghava/bcipep/info.html
https://webs.iiitd.edu.in/raghava/bcipep/info.html
https://webs.iiitd.edu.in/raghava/bcipep/info.html
https://www.leadscope.com/product_info.php?products_id=78
https://www.leadscope.com/product_info.php?products_id=78
https://www.leadscope.com/product_info.php?products_id=78
https://www.leadscope.com/product_info.php?products_id=78
http://mspc.bii.a-star.edu.sg/minhn/cluster_pclick.html
http://mspc.bii.a-star.edu.sg/minhn/cluster_pclick.html
http://mspc.bii.a-star.edu.sg/minhn/cluster_pclick.html
http://mspc.bii.a-star.edu.sg/minhn/cluster_pclick.html
http://mspc.bii.a-star.edu.sg/minhn/cluster_pclick.html
https://github.com/sarahsirin/AB-Bind-Database
https://github.com/sarahsirin/AB-Bind-Database
https://github.com/sarahsirin/AB-Bind-Database
https://life.bsc.es/pid/skempi2/
https://life.bsc.es/pid/skempi2/
http://crdd.osdd.net/raghava/antigendb/
http://crdd.osdd.net/raghava/antigendb/
http://crdd.osdd.net/raghava/antigendb/
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
http://www.ddg-pharmfac.net/antijen/AntiJen/antijenhomepage.htm
https://discover.nci.nih.gov/abminer/
https://discover.nci.nih.gov/abminer/
https://discover.nci.nih.gov/abminer/
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approaches have been used to evaluate key biochemical and biophysical properties 

such as solubility, stability, viscosity, charge profiles, post-translational modifications 

(PTMs), immunogenicity, pharmacokinetic and pharmacodynamic (PK/PD) profiles, 

and hydrophobicity to rank the candidates. The prediction of protein tertiary structure 

is accomplished by either homology modelling approaches, fold recognition, or ab 

initio modeling approaches when similar sequences with known structures are absent. 

Several studies have implemented homology modeling to calculate the biochemical 

and biophysical properties of a mAb library.27-29 Specific homology modeling 

algorithms for antibodies have been now developed for better accuracy and 

representation.30-32 In general, antibody sequences and structures are well conserved 

except for the complementarity-determining regions (CDRs). The CDRs, except for 

CDR-H3, can be classified into a set of limited conformations called canonical 

structures33-35 that can be predicted from sequence key residues, enabling sub-

angstrom accuracy in structure prediction. However, predicting conformations of 

CDR-H3 is still challenging because it is the most diverse both in sequence and 

structure.36 Sequence-structure correlations identified for CDR-H3 have been used as 

geometric constraints in simulations for structure prediction.37, 38  

The antibody modeling tools provide an integrated computer-aided molecular design 

platform that can be used to access liabilities and optimize the affinity, solubility, and 

stability of antibody-based drug candidates. Several other biopharmaceutical 

informatics tools for various developability issues depend on protein sequence features 

that are based on amino acid physicochemical properties. There have been increasing 

efforts to compile these tools for integrated antibody sequence and structure 

management, analysis, and prediction. For instance, a large number of tools for 

antibody informatics are compiled under the abYsis database, abYmod antibody 

modeling program, and abYbank database. abYsis39 incorporates a wide-ranging 

species-specific analysis of residue frequencies that can be combined with residue 

clustering to identify either hydrophobic or unusual patches that are likely to be 

important for the stability and immunogenicity of antibodies. The Scratch suite of 

predictors40 also provides a set of comprehensive tools to evaluate the 

physicochemical properties of mAbs, such as solvent accessibility, secondary 

structure, tertiary structure, contact maps, protein antigenicity, and domain locations. 

The Oxford Protein Informatics Group (OPIG) also maintains several webservers and 
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databases relevant to antibody informatics. An up-to-date list of antibody-related 

resources is maintained at http://naturalantibody.com/tools. Table 2 provides a list of 

biopharmaceutical informatics tools for developability assessment of antibodies.  

Table 2. Relevant Biopharmaceutical informatics tools 
Software Name Biophysical Property and Description Link 

Antibody modeling 
abYmod 

 

Prediction of VH/VL packing and an extended 

loop database for modelling CDR-H3.  

http://abymod.abysis
.org  

 

 

ABangle A tool for calculating and analyzing the VH-

VL orientation in antibodies. 

http://opig.stats.ox.a

c.uk/webapps/newsa

bdab/sabpred/abangl
e/ 

ABodyBuilder Machine Learning based antibody Fv 

modelling using ABlooper. 

http://opig.stats.ox.a

c.uk/webapps/abody

builder  
 

PIGS Modeling of immunoglobulin variable 

domains based on canonical structure method. 

https://bio.tools/pigs  

 

MODELLER Comparative protein structure modeling by 

satisfaction of spatial restraints 

https://salilab.org/m

odeller/ 

MOE Integrated computer-aided molecular design 

platform for biologics 

https://www.chemco

mp.com/Products.ht
m 

RosettaAntibody Homology modeling program within the 

Rosetta suite for predicting high-resolution 

antibody FV structures. 

https://new.rosettaco

mmons.org/docs/late
st/application_docu

mentation/antibody/

antibody-
applications 

LYRA Lymphocyte Receptor Automated Modelling 

(LYRA) using homology modeling. 

http://www.cbs.dtu.

dk/services/LYRA/i

ndex.php 

Repertoire Builder Structural modeling of B cell / T cell receptors 

from their amino acid sequences 

https://sysimm.org/r

ep_builder/ 

Solubility and Aggregation 
CamSol CamSol method constitutes three algorithms to 

rationally design protein variants with 

enhanced solubility. 

 https://www-

cohsoftware.ch.cam.

ac.uk/index.php 
 

 

Protein-Sol A web tool for predicting protein solubility 

from 35 sequence-based features such as 

amino acid content, entropy, and disorder. 

https://protein-

sol.manchester.ac.uk
/ 

 
SODA Prediction of protein solubility from disorder 

and aggregation propensity. 

http://old.protein.bio

.unipd.it/soda/  

SOLpro Support vector machine (SVM) algorithm 

based protein solubility predictor 

http://scratch.proteo

mics.ics.uci.edu/exp
lanation.html#SOLp

ro 

SOLart A structure-based method to predict protein 

solubility and aggregation using solubility-

dependent potentials. 

http://babylone.ulb.a
c.be/SOLART/ 

 

SAP 

 

Aggregation Prediction 

Spatial aggregation propensity 
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Solubis A webserver to reduce protein aggregation 

through mutation analysis. 

http://solubis.switchl

ab.org/ 
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GAP Prediction of amyloid fibril-forming and 

amorphous ß-aggregating hexapeptides 

https://www.iitm.ac.

in/bioinfo/GAP/  

http://abymod.abysis.org/
http://abymod.abysis.org/
http://opig.stats.ox.ac.uk/webapps/abodybuilder
http://opig.stats.ox.ac.uk/webapps/abodybuilder
http://opig.stats.ox.ac.uk/webapps/abodybuilder
https://bio.tools/pigs
https://salilab.org/modeller/
https://salilab.org/modeller/
https://www.chemcomp.com/Products.htm
https://www.chemcomp.com/Products.htm
https://www.chemcomp.com/Products.htm
https://new.rosettacommons.org/docs/latest/application_documentation/antibody/antibody-applications
https://new.rosettacommons.org/docs/latest/application_documentation/antibody/antibody-applications
https://new.rosettacommons.org/docs/latest/application_documentation/antibody/antibody-applications
https://new.rosettacommons.org/docs/latest/application_documentation/antibody/antibody-applications
https://new.rosettacommons.org/docs/latest/application_documentation/antibody/antibody-applications
https://new.rosettacommons.org/docs/latest/application_documentation/antibody/antibody-applications
http://www.cbs.dtu.dk/services/LYRA/index.php
http://www.cbs.dtu.dk/services/LYRA/index.php
http://www.cbs.dtu.dk/services/LYRA/index.php
https://sysimm.org/rep_builder/
https://sysimm.org/rep_builder/
http://old.protein.bio.unipd.it/soda/
http://old.protein.bio.unipd.it/soda/
http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro
http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro
http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro
http://scratch.proteomics.ics.uci.edu/explanation.html#SOLpro
http://babylone.ulb.ac.be/SOLART/
http://babylone.ulb.ac.be/SOLART/
http://solubis.switchlab.org/
http://solubis.switchlab.org/
https://www.iitm.ac.in/bioinfo/GAP/
https://www.iitm.ac.in/bioinfo/GAP/
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AGGRESCAN 3D Aggregation Prediction using structurally 

corrected aggregation value (A3D score) 

http://bioinf.uab.es/a

ggrescan/ 
43 

AggScore Aggregation Prediction from distribution of 

hydrophobic and electrostatic patches 

https://www.schrodi

nger.com/Aggscore  

PASTA 2.0 Aggregation Prediction based on energy 

function of cross-beta pairings 

http://old.protein.bio

.unipd.it/pasta2/ 
 

TANGO Aggregation Prediction from physico-chemical 

principles of secondary structure formation. 

http://tango.crg.es/ 

Post-translational modifications/Stability 

MusiteDeep A deep-learning based webserver for protein 

post-translational modification site prediction 

and visualization. 

https://github.com/d

uolinwang/MusiteD
eep_web 

PTM prediction tools 

survey 

Collection of publicly available PTM web 

resources, databases, and 

classification/prediction servers. 

http://www.cbs.dtu.
dk/databases/PTMpr

edictions/ 

MUpro 

 

Prediction of protein stability changes for 

single-site mutations 

http://mupro.proteo

mics.ics.uci.edu 
 

FindMod Tool to predict potential protein post-

translational modifications 

https://web.expasy.o

rg/findmod/ 

SIDEpro 

 

Prediction of protein side-chain conformations 

from rotamer probabilities for each residue  

http://sidepro.proteo

mics.ics.uci.edu/ 
 

SCWRL4.0 Prediction of protein side-chain conformations 

using anisotropic hydrogen bonding function 

http://dunbrack.fccc.

edu/scwrl4/SCWRL

4.php  

PEARS Prediction of protein side-chain conformations 

using the IMGT position-dependent 

distribution of rotamers. 

http://opig.stats.ox.a

c.uk/webapps/pears  

Molecular docking  
DockThor Web Server for Protein-ligand Docking https://dockthor.lncc

.br/v2/ 

SwissDock Molecular docking based on the docking 

software EADock DSS. 

http://www.swissdo

ck.ch/ 

HADDOCK High Ambiguity Driven protein docking with 

ambiguous interaction restraints 

https://wenmr.scienc

e.uu.nl/haddock2.4/ 

MEGADOCK 4.0 FFT-grid-based protein-protein docking https://www.bi.cs.tit

ech.ac.jp/megadock/  

RosettaDock Monte Carlo (MC) based multi-scale docking 

algorithm that optimizes both rigid-body 

orientation and side-chain conformation. 

https://new.rosettaco
mmons.org/docs/late

st/application_docu

mentation/docking/d
ocking-protocol  

FTDock 2.0 Molecular docking based on the surface 

complementarity score between the two grids 

http://www.sbg.bio.i

c.ac.uk/docking/ftdo

ck.html 

AbAdapt Antibody-specific epitope prediction  https://sysimm.org/a

badapt/ 

Immunogenicity 
ANTIGENpro Protein microarray data predictor to predict the 

likelihood that a protein is a protective antigen. 

http://scratch.proteo

mics.ics.uci.edu/exp
lanation.html#ANTI

GENpro 

COBEpro Continuous B-cell epitope predictor using 

epitopic propensity scores on short peptide 

fragments.  

http://scratch.proteo
mics.ics.uci.edu/exp

lanation.html#COB

Epro 

BEpro (PEPITO) Discontinuous B-cell epitope predictor. http://pepito.proteo

mics.ics.uci.edu 

DiscoTope Prediction of discontinuous B cell epitopes 

from protein three-dimensional structures 

http://www.cbs.dtu.
dk/services/DiscoTo

pe/ 

http://bioinf.uab.es/aggrescan/
http://bioinf.uab.es/aggrescan/
https://www.schrodinger.com/science-articles/aggregation-prediction-protein-surface-analyzer
https://www.schrodinger.com/science-articles/aggregation-prediction-protein-surface-analyzer
http://old.protein.bio.unipd.it/pasta2/
http://old.protein.bio.unipd.it/pasta2/
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
http://mupro.proteomics.ics.uci.edu/
http://sidepro.proteomics.ics.uci.edu/
http://sidepro.proteomics.ics.uci.edu/
http://dunbrack.fccc.edu/scwrl4/SCWRL4.php
http://dunbrack.fccc.edu/scwrl4/SCWRL4.php
http://dunbrack.fccc.edu/scwrl4/SCWRL4.php
http://opig.stats.ox.ac.uk/webapps/pears
http://opig.stats.ox.ac.uk/webapps/pears
https://dockthor.lncc.br/v2/
https://dockthor.lncc.br/v2/
http://www.swissdock.ch/
http://www.swissdock.ch/
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
https://new.rosettacommons.org/docs/latest/application_documentation/docking/docking-protocol
https://new.rosettacommons.org/docs/latest/application_documentation/docking/docking-protocol
https://new.rosettacommons.org/docs/latest/application_documentation/docking/docking-protocol
https://new.rosettacommons.org/docs/latest/application_documentation/docking/docking-protocol
https://new.rosettacommons.org/docs/latest/application_documentation/docking/docking-protocol
https://sysimm.org/abadapt/
https://sysimm.org/abadapt/
http://scratch.proteomics.ics.uci.edu/explanation.html#ANTIGENpro
http://scratch.proteomics.ics.uci.edu/explanation.html#ANTIGENpro
http://scratch.proteomics.ics.uci.edu/explanation.html#ANTIGENpro
http://scratch.proteomics.ics.uci.edu/explanation.html#ANTIGENpro
http://scratch.proteomics.ics.uci.edu/explanation.html#COBEpro
http://scratch.proteomics.ics.uci.edu/explanation.html#COBEpro
http://scratch.proteomics.ics.uci.edu/explanation.html#COBEpro
http://scratch.proteomics.ics.uci.edu/explanation.html#COBEpro
http://pepito.proteomics.ics.uci.edu/
http://pepito.proteomics.ics.uci.edu/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.cbs.dtu.dk/services/DiscoTope/
http://www.cbs.dtu.dk/services/DiscoTope/
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ElliPro Antibody epitope prediction based on 

Protrusion Index averaged over residues 

http://tools.iedb.org/

ellipro/ 

SVMTriP A tool to predict linear antigenic epitopes  http://sysbio.unl.edu
/SVMTriP/ 

AbAdapt Antibody-specific epitope prediction using 

antigen structural modeling with rigid docking 

https://sysimm.org/a

badapt/ 

EpiPred Antibody-specific epitope prediction based on 

ranking of antigen structure patches 

http://opig.stats.ox.a

c.uk/webapps/newsa

bdab/sabpred/epipre
d/  

RANKPEP Immunogenicity risk assessment using Position 

Specific Scoring Matrices (PSSMs). 

http://imed.med.ucm

.es/Tools/rankpep.ht
ml 

ProPred Immunogenicity risk assessment using custom 

novel quantitative matrices. 

http://crdd.osdd.net/r

aghava/propred/ 

NetMHCIIpan Immunogenicity risk assessment using 

Artificial Neural Networks (ANNs). 

http://www.cbs.dtu.

dk/services/NetMH

CIIpan/ 

MHCEpitopeEnergy Rosetta-based biotherapeutic deimmunization 

platform with flexible scoring term. 

https://new.rosettaco

mmons.org/docs/late

st/rosetta_basics/sco
ring/MHCEpitopeEn

ergy 

Hu-mAb Antibody humanization tool based on Random 

Forest models trained on sequence data 

http://opig.stats.ox.a
c.uk/webapps/newsa

bdab/sabpred/humab 

TOPKAT in silico toxicology assessments. TOxicity 

Prediction by Komputer Assisted Technology 

https://www.toxit.it/

en/services/software
/topkat 

MetaDrug in silico toxicology assessments based on 

OMICs data analysis on pharmacogenomics 

and toxicogenomics datasets. 

https://support.clariv

ate.com/LifeScience
s/s/article/MetaDrug

-Uses-and-

benefits?language=e
n_US 

Biophysical properties 

Abpred 

 

Prediction of biophysical performance on 12 

standard developability assays based on 

multiple machine-learning algorithms 

 

https://protein-

sol.manchester.ac.uk

/abpred 

QikProp ADME prediction tool based on full 3D 

molecular structure.  

https://www.schrodi

nger.com/products/q
ikprop  

 

Delayed HIC retention 

time  

Prediction tool 

Model for prediction of delayed HIC retention 

times directly from sequence. 
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General Developability 
 Therapeutic Antibody 

Profiler (TAP) 

Developability guidelines check and 

Identification of sequence liabilities.  

http://opig.stats.ox.a

c.uk/webapps/newsa

bdab/sabpred/tap 
 

 
  

Developability Index 

Developability Index is a function of an 

antibody's net charge and the spatial 

aggregation propensity, calculated on the 

complementarity-determining region structure.  
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abYsis  Integrated antibody sequence and structure 

management, analysis, and prediction. 

http://www.abysis.or

g/ 

NaturalAntibody 

AbMapper 

A data-driven suite of analytics to improve 

research decision support in screening and 

rational design of antibody therapeutics. 

https://naturalantibo

dy.com/antibody-
analytics/ 

 

http://sysbio.unl.edu/SVMTriP/
http://sysbio.unl.edu/SVMTriP/
https://sysimm.org/abadapt/
https://sysimm.org/abadapt/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred/
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/epipred/
http://imed.med.ucm.es/Tools/rankpep.html
http://imed.med.ucm.es/Tools/rankpep.html
http://imed.med.ucm.es/Tools/rankpep.html
http://crdd.osdd.net/raghava/propred/
http://crdd.osdd.net/raghava/propred/
http://www.cbs.dtu.dk/services/NetMHCIIpan/
http://www.cbs.dtu.dk/services/NetMHCIIpan/
http://www.cbs.dtu.dk/services/NetMHCIIpan/
https://www.toxit.it/en/services/software/topkat
https://www.toxit.it/en/services/software/topkat
https://www.toxit.it/en/services/software/topkat
https://protein-sol.manchester.ac.uk/abpred
https://protein-sol.manchester.ac.uk/abpred
https://protein-sol.manchester.ac.uk/abpred
https://www.schrodinger.com/products/qikprop
https://www.schrodinger.com/products/qikprop
https://www.schrodinger.com/products/qikprop
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/tap
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/tap
http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/tap
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Table 2: Biopharmaceutical informatics tools for assessment of developability issues. Most of 

the tools listed are free for academic use or available on request. Some tools may have an 

upgraded commercial version for users. These tools have been selected by authors from 

several other available antibody informatics tools for general proteins. 

 

1.2.3 Computational developability assessment of therapeutics using 

biopharmaceutical informatics 

Novel criteria based on the biochemical and biophysical properties of mAbs are being 

increasingly used to select an antibody candidate from the early discovery to the 

development stage. Computational developability assessment approaches are now 

becoming a routine step in the drug discovery and development process. 

Developability assessments at the early stage of development can significantly de-risk 

development pipelines, thus saving valuable time and resources. Incorporating 

developability assessments in early-stage development provides an opportunity for us 

to re-engineer the molecule to mitigate any sequence or structural liabilities, or to 

select alternative molecules of similar potency, but with more favorable developability 

profiles. Previous studies have summarized various experimental platforms and 

computational tools to identify developability issues in therapeutic antibodies and 

antibody-like molecules.46, 47 These key tools are summarized in Table 2.  

In the past decade applications of techniques such as phage display, cell surface 

display, yeast display, hybridoma, and NGS have revolutionized biomedical research 

with the successful discovery of several therapeutic antibodies. Although most 

antibody libraries focus on maximizing library diversity, there are growing concerns 

regarding the developability of selected antibodies for successful commercialization.17 

Therefore, frameworks and procedures are being developed for the design of antibody 

libraries with improved developability and manufacturability.48 In silico engineering 

and design of biologics using rational design principles has emerged as a faster and 

more economical alternative to traditional methods of lead generation such as 

hybridoma and phage display. Figure 3 provides a visual representation of the 

recommended biopharmaceutical informatics tools for computational developability 

assessment of antibody therapeutics and antibody-based drugs. 
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Figure 3: Biopharmaceutical Informatics tools for computational developability assessment 

of antibody therapeutics. These tools have been selected by authors from several other 

available antibody informatics tools for general proteins. 

De-risking biopharmaceutical development using developability assessments: 

Developability assessment is used to systematically evaluate mAb candidates that 

have the lowest risks for development to the final product. Previous studies have 

demonstrated the utility of the developability assessment of mAb lead candidates for 

screening out mAbs with low solubility and stability, low potency, high aggregation 

propensity, and high immunogenicity risk.49 Any such predictions will inevitably 
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reject some antibodies that could have made excellent drugs, but not using such 

approaches comes with huge financial risk.  

The general biophysical properties of approved mAbs can serve as a reference for the 

design of new mAb candidates. Several databases of biophysical properties of these 

approved mAb candidates have been reported such as the Jain dataset17 and 

TheraSabDab.25 The Jain dataset provides biophysical characterization across 12 

different biophysical platforms for 137 clinical-stage and approved antibodies.17 This 

benchmarking with approved mAbs provides an estimate of the acceptable ranges of 

the biophysical properties that can be considered in the developability assessments for 

new antibody candidates. Xu et al. have outlined some generally preferred quality 

attributes of a panel of approved and clinical-stage mAb products.50 The general 

concept of examining the properties of successful antibody-based drugs has been 

exploited by Raybould et al.16 resulting in Therapeutic Antibody Profiler (TAP) 

developability guidelines that are derived from the values of 377 clinical-stage 

antibody therapeutics. It relies on the hypothesis that antibodies that have deviating 

biophysical properties from clinically tested therapeutic mAbs are likely to have poor 

developability profiles. TAP can be used to analyze several properties linked to poor 

developability for any candidate mAb with known heavy and light chain variable 

domain sequences.  

In addition, Abpred51 tool can be used to predict the biophysical performance of 

commonly used developability assessment assays with just the amino acid sequence 

input. In Abpred, machine learning methods have been trained on heavy and light 

chain variable domain sequences from the Jain dataset using the amino acid 

composition and other fifteen sequence-derived features to represent physicochemical 

properties of antibodies. Other developability assessments using machine learning 

approaches have been used to predict and select the antibodies with optimal pH and 

thermal stabilities from 77 antibodies in development at Pfizer.52 Lonza Biologics has 

also demonstrated the use of aggregation propensity screening along with other 

computational approaches during early drug development to select molecules with 

reduced risk of aggregation and optimal developability properties for screening several 

anti-interferon γ antibody variants.18 Pfizer has implemented in vitro assays that 

correlate with in vivo human studies to differentiate mAbs at high risk for rapid 

clearance from those with favorable PK.53 Finally, molecular dynamics simulation has 
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also implemented a high-throughput developability workflow on a panel of 152 human 

or humanized mAbs.54 Here, physicochemical properties of these 152 mAbs were 

evaluated from multiple biophysical assays - size exclusion chromatography for 

aggregation, reverse phase chromatography and sodium dodecyl sulfate capillary 

electrophoresis for purity, differential scanning fluorimetry for thermostability, 

hydrophobic interaction chromatography (HIC) for hydrophobicity, affinity-capture 

self-interaction nanoparticle spectrometry for self-interaction and capillary isoelectric 

focusing for isoelectric point (pI) and charge variant analysis. These examined 

biophysical properties and key assay endpoints were also predictive of key 

downstream process parameters in development and clinical manufacturing.54 

Design of antibody libraries with improved developability: 

Screening libraries of antibodies is a commonly used strategy in antibody drug 

discovery. There are two main approaches to library design: creation of 1) a highly 

diverse library potentially containing binders to varied targets, or 2) a library focused 

on potential binders to a specific antigen or set of antigens. The ideal library contains 

genetically varied antibodies with the potential for high affinity and activity, but this 

can result in the generation of increasingly large libraries to achieve high diversity. 

With the huge amount of available sequence data and increased understanding of 

developability prediction, methods are being investigated for the optimal design of 

antibody libraries with high functionality and desired biophysical properties.  

Natural: 

Methods using B-cell receptor (BCR), i.e., antibody repertoires from antigen-exposed 

animals or humans (“immune libraries”, to generate antigen-specific libraries) or from 

non-exposed humans (“naïve libraries”, to generate functionally diverse libraries) try 

to capture the capabilities of the natural immune response in making functional, highly 

expressed, and low immunogenicity antibodies. However, not all naturally occurring 

antibodies are suitable drug candidates owing to other developability concerns, such 

as aggregation.16 Libraries can aim to combat this by selecting the genes with known 

favorable characteristics using native heavy and light chains for improved 

specificity.55-57 Limitations to natural-repertoire approaches also include the 

inherently biased nature, meaning diverse antibodies may be missed owing to 

sequence space restrictions. Nevertheless, available sequence space might not be as 
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constrained as previously expected, as multiple clinical-stage therapeutics have high 

sequence-identity matches in naturally sourced antibody repertoires.21 Another way to 

select antibodies is by considering the “structural space”. For example, a library of 

antibody structures identified in the repertoires of multiple individuals was found to 

contain structures highly similar to clinical-stage therapeutic antibodies58 and may 

suggest antibodies with functionality and a low likelihood of immunogenicity. 

Synthetic: 

Synthetic libraries introduce diversity, often at defined regions of an antibody, to 

generate novel and varied sequences. Such methods can produce antibodies with 

higher affinity than natural repertoires,59 but a proportion of the library may be non-

folding or immunogenic. To reduce non-functionality, methods such as position 

frequency analysis (PFA) and deep learning have been applied. PFA introduces 

mutations based on the amino acid frequencies found at each CDR position in natural 

antibody repertoires, often using identical or only a small number of framework 

regions.60, 61 Such methods do not account for correlations between residues at 

different sites. A different approach has used a database of antibodies with known 

functionality and interchanged CDR regions, assuming CDR regions are modular and 

can be interchanged without negative impact. In doing so they achieved high 

functionality.62 

Deep learning: 

Deep learning models aim to utilize the stability of natural repertoires and capture 

higher-order dependencies, missed by PFA, to avoid producing non-functional 

proteins. However, current limitations of deep learning approaches include a focus on 

only CDR regions or heavy chains, with a lack of experimental validation of predicted 

properties. For instance, 74% antigen binding was achieved in a mouse library 

designed by a variational autoencoder that generated novel CDR-H regions, but such 

an approach ignores non-CDR region contributions to the paratope, and the diversity 

of the sequences in this library is unknown.63 Other generative approaches such as 

Generative Adversarial Networks can be trained on natural human antibody 

repertoires and biased via transfer learning (further training on antibodies with known 

properties such as solubility, stability, and predicted immunogenicity) to generate 

sequences predicted to have the desired biophysical properties.64 However, more 
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information is needed to understand how such properties influence the overall 

developability of the antibody. Additionally, experimental validation of the predicted 

properties is necessary, as has been conducted for an enzymatically active protein 

library65 and a nanobody library created by a generative deep neural network-powered 

autoregressive model trained on a native llama repertoire.66 

Previous work has demonstrated the use of mammalian display libraries for the 

selection of antibody variants with optimal biophysical properties, reduced 

polyreactivity, and immunogenicity.67 Here, they have described the use of a nuclease-

directed integration system to generate antibody variants with differing biophysical 

properties based only on the display level achieved on the mammalian cell surface. 

Other studies have demonstrated the use of machine learning-guided directed 

evolution on the combinatorial sequence space.68 Recently, a machine learning 

pipeline has been formulated to predict the developability of a library of 2400 

antibodies from sequence.69 These advances in bioinformatics and in silico methods 

have enabled the efficient development of commercially viable mAbs. Thus, antibody 

library variants are designed to exhibit better developability than the parent molecule.  

Mitigating aggregation and post-translational modifications: 

Aggregation: 

Aggregation of antibody-based drugs can lead to precipitation and decreased shelf-life 

of drugs before administration, while aggregation in vivo can increase the 

immunogenicity of the drug. The aggregation propensity is a critical attribute 

correlated with product failure.70 Indeed aggregate levels in the final drug product are 

key quality indicators.71, 72 Seeliger et al. have highlighted four key factors that must 

be avoided to minimize aggregation, many of which can be predicted computationally: 

1) the number of “reactive sites”, such as those susceptible to oxidation, deamidation, 

or proteolysis, should be minimized; 2) thermodynamic stability should be high to 

minimize protein unfolding; 3) the structure should not contain hydrophobic or 

charged surface patches; and 4) the sequence should not contain cross-beta-sheet 

aggregation hotspots.73  

Van der Kant et al. showed that mutating residues in predicted aggregation hotspots 

could reduce aggregation and found that those hotspots having the largest impact on 

thermodynamic instability are frequently found in the CDRs.74 The solubility can be 
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improved in mAbs having aggregation-prone regions (APRs) by inserting 

glycosylation sites near these APRs.75, 76 Several other studies have used protein-

engineering approaches to reduce self-association and aggregation to achieve high 

solubility and low viscosity.77-80 A specific prediction of the tendency to aggregation 

is the AggScore,81 which uses structural modeling to identify patches at risk of driving 

aggregation. Several methods have been developed to create so-called “developability 

indices” for antibodies and these tend to focus on aggregation propensity. For 

example, Lauer et al. used data from the storage of 12 IgG antibodies for periods of 

up to two years to examine aggregation. They then combined net charge (at a given 

pH using a calculated pKa) with a “spatial aggregation propensity” (SAP) score 

(derived from accessibility and residue hydrophobicity and calculated over a 

molecular dynamics simulation) to create their developability index and correlated this 

with the experimental aggregation propensity.45 Developability Index45 is a well-

known tool for estimating the developability of a candidate antibody. However, a 

potential drawback of the Developability Index is that it is based only on the full-

length antibody’s net charge and the SAP of the CDR region, and, therefore, may 

ignore other indicators of developability.  

The Therapeutic Antibody Profiler (TAP) has been demonstrated to be very useful in 

selectively highlighting antibodies with expression or aggregation issues.16 Further, 

Lonza’s aggregation prediction tool18 has been instrumental in the selection of lead 

antibody candidates from combinatorial libraries with improved developability. 

abYsis39 incorporates a wide-ranging species-specific analysis of residue frequencies 

that can be combined with residue clustering to identify either hydrophobic or unusual 

patches that are likely to be important for the stability and immunogenicity of 

biopharmaceuticals. Therefore, using these computational aggregation prediction 

tools can identify aggregation issues early in biopharmaceutical development and 

avoid expensive late-stage product failures. 

Post-translational modifications: 

PTMs can lead to several issues encountered with the development of antibodies. By 

their nature, PTMs lead to heterogeneity, something that generally concerns regulators 

since variants must be considered in risk assessments and during characterization to 
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assess the impact on product quality, safety, and efficacy. This includes potential 

effects on antigen binding, immunogenicity, and Fc-mediated effector functions. 

In antibodies, the N-terminal glutamate or glutamine is frequently cyclized by 

nucleophilic attack of the lone pair of electrons from the backbone terminal NH2 onto 

the sidechain carboxy or amide, forming a 5-membered lactam ring known variously 

as pyroglutamic acid (pyroGlu), pyrrolidone carboxylic acid (PCA), 5-oxoproline, or 

pidolic acid, and this has been shown to occur in vitro.82-84 The N-terminus is 

comparatively close to the antigen binding site, so the difference in charge could have 

an effect on antigen binding, particularly for large antigens that may approach close 

to this part of the antibody. In addition to N-terminal heterogeneity, “clipping” 

frequently occurs at the C-terminus of the heavy chain. The last three residues of the 

heavy chain are Pro-Gly-Lys; the proline is the last residue of the CH3 domain, and 

the glycine and lysine form the CHS region. The C-terminal lysine is mostly clipped 

post-translationally by endogenous carboxypeptidases during cell culture, or by 

endogenous serum carboxypeptidase B once the antibody is administered to a 

patient.85 However, this PTM is unlikely to have any serious effect on the in vivo 

performance of antibody-based drugs since the C-terminus is remote from any 

functional sites. That said, C-terminal clipping has been shown to be required for 

optimal complement activation and the presence of the lysine can affect the blood 

circulation time.86 The third major PTM in antibodies is the N-linked glycosylation 

present in the CH2 domain. While these are the three best-known PTMs present in the 

vast majority of antibodies, many other sequence-specific PTMs are also observed, all 

of which led to heterogeneity potentially affecting charge, pI, aggregation, and 

binding. Heterogeneity as a result of PTMs and their effects are reviewed by Liu et 

al.,87 while a comprehensive analysis of charge heterogeneity in adalimumab 

(Humira®) was performed by Füssl et al.88 

Asparagine and aspartate residues form hot spots susceptible to deamidation and 

isomerization.50, 89 In addition to the effect of antibody deamidation, there have been 

reports of deamidation in protein antigens in severe diseases such as anthrax.90 

Oxidation of methionine and tryptophan residues is another sequence liability that can 

lead to low potency, decreased thermal stability, and high aggregation propensity.91, 92 

Disulfide scrambling due to cysteine residues is another phenomenon causing 

configurational changes in the hinge region of antibodies, thus impeding antigen 
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binding and mAb functionalities.93, 94 The variable domains of mAbs may also contain 

N-glycosylation sites, which may cause variable domain glycosylation that results in 

the formation of Fab-associated oligosaccharides with α1,3-galactose that are known 

to cause immunogenicity.95-97 These PTMs often lead to low potency, 

immunogenicity, and instability of circulating mAbs.98 Consequently, suitable 

developability assessment protocols must be designed to capture these sequence 

liabilities. 

abYsis39 (http://www.abysis.org) provides screens for a number of these PTMs for the 

optimization of therapeutic antibodies. It also annotates residues as being exposed, 

buried, or intermediate based on averaged information from several hundred known 

structures and can be used in concert with abYmod (http://abymod.abysis.org) to build 

an antibody model from which more detailed exposure information can be obtained. 

As described, PTMs could seriously hamper the safety or efficacy of therapeutic 

antibodies and this safety concern calls for an immediate need for appropriate tools to 

relate a biophysical property to a single, or a set of, molecular sequence-structural 

motifs in biologic drugs. In summary, biopharmaceutical informatics tools are used to 

locate the amino acids critical for biophysical properties that are in undesirable ranges.  

Biopharmaceutical informatics for drug safety and in vivo performance: 

Drug safety: 

A strategic framework for using computational tools for predicting chemical 

degradation sites in biologic drugs has been presented in a previous study by Sandeep 

et al.14 Several computational tools for predicting the toxicity of antibody-based drugs 

are now available.99 A critically important step in drug development for establishing 

clinical safety is the identification of adverse drug reactions (ADRs). Computer-aided 

prediction of ADRs provides an alternative to recognize ADRs before clinical trials. 

Kuang et al. have reviewed and compared the computational models available for 

predicting ADRs.100 Here, among the topological features of drug-ADR association 

networks, the Jaccard coefficient (a measure of the relationship between the 

neighbourhood set of homology nodes) was the most important feature for the 

prediction of drug-ADR associations. Consequently, the Jaccard coefficient of drug-

ADR association networks is an important topological feature that should be used in 

models designed for prediction of antibody drug safety. 
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Previous computational approaches have estimated in vivo performance descriptors 

such as the PK, PD, and immunogenicity of biologics.53, 101-104 Avery et al. have 

demonstrated a combinatorial triage approach on in vitro assay parameters and 

categories for screening therapeutic mAb candidates with desirable PK properties and 

minimal non-target-related PK risk.53 Here, threshold values of in vitro assays 

reflecting non-specific interactions and self-association were established to define 

criteria for avoiding the selection of mAbs with rapid in vivo clearance. Grinshpun et 

al. have also analyzed biophysical and sequence-based in silico properties that are 

predictive of PK properties such as clearance for a panel of 64 clinical-stage mAbs.105 

They have concluded that experimental poly-specificity assay results and in silico 

estimated pIs were the best predictors to estimate clearance in therapeutic antibodies.  

Antigen-antibody interactions: 

General protein-protein interaction prediction tools for proteins frequently do not work 

well for antigen-antibody interactions because antibody-antigen binding is a rather 

distinct mechanism. Unlike normal protein interfaces, the epitope on an antigen has 

evolved to be an exposed region rather than to be involved in a protein-protein 

interface. Consequently, other computational techniques such as epitope mapping are 

used to identify the regions of an antigen likely to form the epitope before docking. B-

cell Epitope (BCE) mapping tools can broadly be divided into linear epitope 

predictors, which attempt to identify epitopes consisting of continuous amino acid 

primary sequences, and conformational epitope predictors, predicting discontinuous 

epitopes in three-dimensional (3D) space.24 However, like other protein-protein 

interfaces, antibody-antigen interactions involve a combination of non-polar van der 

Waals interactions, hydrogen bonding, charge interactions, and the hydrophobic 

effect. Consequently, along with these epitope prediction tools, several docking 

algorithms such as Megadock, Haddock, RosettaDock, and Piper are being actively 

used to understand the binding between an antibody and the target. However, their 

performance is often poor compared with general protein-protein docking. 

Immunogenicity: 

The presence of T-cell and B-cell epitopes influences the immunogenicity of antibody 

therapeutics, and, therefore, bioinformatics approaches to avoid immunogenicity fall 

into two major categories: T-cell epitope prediction and B-cell epitope prediction. 
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Computational tools for immunogenicity risk assessment provide an alternative to in 

vitro or in vivo immunogenicity assays. The use of in silico tools to identify lead 

candidates with a reduced risk of immunogenicity is an important step in biologic drug 

development. 

T-cell epitope prediction, which is relatively well-established, requires predicting 

linear peptides within a protein sequence that will bind to the Major Histocompatibility 

Complex (MHC). MHC molecules present peptides to T cells, which trigger T-cell 

immune responses. MHC molecules can be classified into class I and class II. MHC 

class I molecules present peptides derived from intracellular proteins, whereas MHC 

class II presents peptides from extracellular proteins. Since antibodies are 

extracellular, the focus is on the prediction of peptide binding to MHC class II 

molecules. These tools usually examine the primary sequences of candidate antibodies 

to identify binding motifs of MHC class II allotypes or for similarity to epitopes known 

to elicit an immune response. Several MHC class II binding predictors are available 

and the overall prediction performance is generally good.106, 107 

For example, some tools such as RANKPEP,108 Propred,109 Tepitope,110 and 

NetMHCII111 make predictions based on algorithms trained on MHC class II binding 

assay data. Other tools such as NetMHCIIpan and IEDB (Consensus)112 are based on 

sequence alignments with MHC class II binding peptide databases. Overall, studies 

have established that NetMHCIIpan, Propred, IEDB (Consensus), and 

MULTIPRED113 were the best predictors of MHC class II binding and these are the 

most commonly used tools in the industry for the prediction of MHC class II binding. 

Other previous studies compared nine different MHC class II binding prediction tools 

and six different methods showing that NetMHCIIpan was the best method to predict 

peptide binding to MHC class II epitopes with an updated version, having improved 

predictions, now available.114, 115 While less important for antibody-based drugs, 

computational tools for determining binding to MHC class I molecules require 

locating motifs that bind to the binding groove. Prediction methods for interrogating 

peptide binding to MHC class I alleles include NetMHC-3.0,116 NetMHCpan-1.0, the 

Kernel-based Inter-allele peptide binding prediction system,117 and Adaptive Double 

Threading.118 Based on this predicted T-cell epitope information, Yachnin et al. 

recently developed a Rosetta-based platform to deimmunize therapeutic proteins.119 

They incorporated a new score term utilizing predicted or experimentally identified T-
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cell epitope information into the scoring function so that computational protein design 

calculations can be guided based on the epitope information as well as the energetic 

stability.  

In contrast to the prediction of T-cell epitopes, a much harder task is B-cell epitope 

(BCE) prediction – predicting sites where the patient antibodies will bind to the drug. 

Such approaches have not been very successful, mostly owing to the discontinuity of 

antigen binding sites. As mentioned above, the problem is made harder by the fact that 

B-cell epitopes are, by their nature, regions of a protein surface that have not evolved 

to be involved in protein-protein interactions. Consequently, they do not have clearly 

recognizable features that are bound by antibodies.120 Nonetheless, some regions will 

be more likely to interact with an antibody than others, but making mutations to 

remove a dominant B-cell epitope can simply result in the immune response switching 

to a less dominant epitope. 

Several predictors have been produced that work at either the sequence level or the 

level of 3D structure. The earliest BCE prediction methods attempted to predict linear 

epitopes (i.e., a continuous stretch of amino acid sequence) using sequence features 

such as hydrophilicity,121 amino acid composition,122 and predicted accessibility and 

mobility.123 An early evaluation showed that no single sequence feature performed 

well, leading to attempts to combine features.124 However, machine learning efforts125 

and additional features such as sequence conservation126 have provided limited 

improvements to BCE prediction. In general, conformational epitope predictors such 

as CBTOPE, BETOPE, CEP, and DISCOTOPE are more accurate than linear epitope 

predictors such as LBTope, SYMTriP, and ABCored.127-129 

The performance of computational epitope prediction tools and tools for predicting 

immunogenicity has been reviewed previously to establish guidelines for the 

deimmunization of protein therapeutics.130 It is worth nothing that epitope databases 

are not exhaustive because of the heterogeneity of proteins involved in the immune 

response across the human population.101 This variability of immune response for the 

same antigen limits the utility of in silico immunogenicity assessment methods as 

stand-alone tools. Therefore, this key limitation of immune response diversity needs 

to be captured by the forthcoming immunogenicity prediction tools.  

Guidelines for the design of developability assessment protocols:  
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Assessment of developability by biopharmaceutical informatics protocols at an early 

stage in a development pipeline reduces the costs of development failures. Companies 

using transgenic mice to produce antibodies can generate as many as a million 

sequences a week (after cleaning the high-throughput sequence data) and it is 

impractical to take all these through to experimental validation. Even computational 

evaluation requires significant computing resources and optimization. If each 

sequence takes one second to analyze, a million sequences will require ~11.5 days of 

computer time. Consequently, it makes sense to use a triaging pipeline that performs 

evaluations that can be done quickly first and leave more computer-intensive 

evaluations to be performed only on those sequences that have survived the initial 

rapid triages.  

A screening paradigm used in the industry for selecting mAbs with desirable PK 

properties during mAb discovery and lead selection has been demonstrated in a 

previous study.53 This staged approach for developability assessment involves using 

the high-throughput assays first when hundreds of mAbs are available for screening. 

Here mAbs scoring above assay thresholds or having results outside the acceptable 

range are deprioritized because they have unfavorable physicochemical properties. 

Next, additional physicochemical properties such as thermal stability are evaluated for 

only the mAbs that have passed the previous stage. These additional screens include 

assays measuring properties such as biological activity, expression, and stability that 

are often low-throughput and need higher quantities of mAbs.  

Finally, a combinatorial triage approach is used that ranks and classifies the mAbs 

based on the aggregate result of all the assays. It is very important to combine the 

results of multiple assays together since individual developability assays can have 

some false-positive results. This ensures that mAbs with desirable physicochemical 

properties advance to scale-up and costly preclinical and clinical development.  

A Computational Developability Assessment (CDA) workflow should follow a 

similar strategy where a panel of high-throughput computationally undemanding tools 

is applied first to a mAbs library followed by specific computationally intensive 

antibody informatics tools as per the required objective, such as those for 

immunogenicity assessment. The final step in the CDA workflow as shown in Figure 

4 is to use a combinatorial triage approach to combine scores and rankings from 
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multiple tools together and classify the mAbs based on the aggregate result of all the 

informatics tools.  

 
 

Figure 4: Computational Developability Assessment workflow for screening mAbs with 

optimal biophysical properties. An orthogonal combination of conceptually different 

algorithms is used to reduce method-specific biases. High-throughput antibody informatics 

tools are implemented first to an antibody library. mAbs scoring above assay thresholds or 

having results outside the acceptable range are deprioritized. Next, more computationally 

intensive antibody informatics tools are applied to evaluate additional developability issues. 

The final step in the CDA workflow is to use a combinatorial triage approach to combine 

scores and rankings from multiple tools together to classify the mAbs from aggregate result. 

Together with previously discussed approaches to assessing developability, Raybould 

et al. have described five computational developability guidelines for therapeutic 

antibody profiling: 1) total CDR length, 2) patches of surface hydrophobicity (PSH) 

metric across the CDR vicinity, 3) patches of positive charge (PPC) metric across the 

CDR vicinity, 4) patches of negative charge (PNC) metric across the CDR vicinity, 

and 5) structural Fv charge symmetry parameter.16 Overall, local charge and global 

charge asymmetry between the CDR and the framework have been correlated with 

higher aggregation and poor developability. Here, the approach was to look at the 

characteristics of clinically successful antibodies and rank candidate antibodies by 

ensuring they stay within these bounds. This is conceptually similar to Lipinski’s rules 

used in small-molecule drug design.131 An efficient high-throughput developability 

workflow was also demonstrated by Bailly et al. on a panel of 152 mAbs for rank 
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ordering of molecules during early-stage discovery screening.54 Here, they have 

demonstrated that key physicochemical properties from multiple biophysical assays 

correlated well with major downstream process parameters.  

As above, most types of analysis performed for developability assessment include 

identification of PTM sites, analysis of likely aggregation propensity (largely through 

examining surface hydrophobicity), pI, prediction of stability, and identification of T-

cell epitopes/B-cell epitopes together with humanness scoring or unusual surface 

patches. Other considerations that can be included early in the pipeline include 

checking for the presence of the standard two cysteines present in antibody variable 

domains, the Trp-Gly motif present immediately after CDR-H3, and the length of 

CDR-H3 since unusually long CDR-H3 loops have been correlated with poor 

developability.132 However, each tool relies on different interpretations and weighting 

of the essential features that determine developability. Therefore, an orthogonal 

combination of conceptually different algorithms should be used in computational 

developability assessment protocols to reduce method-specific biases.  

1.2.4 Applications of biopharmaceutical informatics 

Biopharmaceutical informatics for solubility predictions: 

Solubility is one of the key biophysical properties that underpins developability 

potential, as high solubility typically translates into high expression yields, low 

aggregation, and provides the opportunity of formulating products at high 

concentrations while retaining a good shelf life.  

Identifying antibodies with low solubility and high aggregation propensity from 

combinatorial libraries remains a hurdle for antibody development. Several in silico 

predictors have been reported that are now able to predict solubility or aggregation 

propensity accurately in many cases, a feature that makes them highly competitive 

with experiments.48, 133-135 These solubility predictors include CamSol, Protein-Sol, 

SOLpro, SODA, Aggrescan, SAP, and Solubis. They have been effective at predicting 

the solubility and aggregation propensity of diverse antibody libraries.133, 135  

As an example, the CamSol method of predicting solubility relies on a combination of 

physicochemical properties of amino acids. These include charge, hydrophobicity, and 

propensity to form secondary structure elements, which are first considered at the 
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individual residue level, then averaged locally across sequence regions, and finally 

considered globally to yield a solubility score.135, 136 In particular, while a structural 

model is necessary to identify aggregation hotspots, the solubility prediction itself is 

performed using only the amino acid sequence. This aspect makes computational 

calculation significantly faster and makes the method readily applicable to the 

screening of antibody libraries without the need for structural modeling, thus it is fully 

independent of model accuracy.  

For example, CamSol was used to rank the solubility of hits from a phage-display 

library from MedImmune.136 The mAbs that were analyzed differed by up to 32 

mutations in the Fv region, and the correlation between prediction and experiments of 

PEG-precipitation was R~0.97 after one outlier was removed (p<10-4), which is fully 

consistent with the R~0.98 reported for a nanobody in the original report.135 Similarly, 

a statistically significant correlation (R ~ 0.71 to 0.93) between CamSol predictions 

and solubility measurements was also reported for mutational variants of a 

troublesome mAb.137 In a study on a library of 17 mAbs from Novo Nordisk, CamSol 

predictions were compared with a battery of commonly used developability assays and 

one measurement of relative solubility, and the correlations between CamSol and these 

experimental readouts were on a par with those seen between the assays.138  

Notably, all these measurements were carried out with different experimental 

techniques, on widely different molecules, and in different laboratories. Taken 

together, these strong correlations suggest that CamSol predictions can greatly 

facilitate the screening of solubility and hence the developability potential. In 

particular, at the initial stages of antibody discovery campaigns, when the numbers of 

candidates can be very high while yield and purity are often low, such predictions may 

entirely replace experiments. 

Kingsbury et al. have previously predicted the solution behaviour of a diverse dataset 

of 59 mAbs, including 43 approved antibodies, using a comprehensive array of 23 

molecular descriptors categorized as colloidal, electrostatic, conformational, 

hydrodynamic, and hydrophobic.139 They have shown that the diffusion interaction 

parameter (kD), a measure of colloidal self-interaction is the key parameter that is most 

predictive of solution viscosity and opalescence for mAbs. So, they have postulated 

that computational developability assessment protocols should use a threshold value 
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of the diffusion interaction parameter, kD (10 mM histidine-HCl buffer at pH 6.0) to 

screen antibodies with optimal antibody solution behaviour.  

Biopharmaceutical informatics for predicting protein stability and interactions: 

There can be opportunities to address the underlying balance of biophysical forces that 

drive interactions when developing models to predict the properties of 

biopharmaceutical candidates. Two such examples are discussed here, one relating to 

the measurement of hydrophobic interactions and the other to the protein structural 

basis of hydrophobic interaction between proteins. Several machine learning methods 

to predict the HIC retention time from antibody sequence input have been reported 

previously in the literature.44, 51, 140 Assessment of aggregation propensity using HIC 

was the best-predicted biophysical property across 12 models produced using Abpred 

(www.protein-sol.manchester.ac.uk/abpred), one for each of the 12 biophysical 

properties measured across a set of antibodies.51 Even so, there was a marked reduction 

in performance of the model for antibodies with higher retention times in HIC, leading 

to a model in which the salt gradient that is used to modulate hydrophobic interaction 

strength also affects interactions between charged proteins. A revised scheme was 

derived in which charge interactions play a role alongside hydrophobic effects in the 

HIC method. In this scheme, proteins with higher net charge repel more within the 

column when salt concentration (ionic strength) is lower, and are eluted faster, than 

proteins with lower net charge but the same hydrophobicity.  

In this second example, another set of HIC data for 24 antibodies was used.141 Here, 

the aromatic sidechain content of CDRs correlated well with the experimental data, 

but the equivalent correlation was much lower for the solvent-accessible surface area 

calculated for non-polar atoms in the CDRs142 and it was concluded that hydrophobic 

interaction strength may be dependent on non-polar surface shape as well as surface 

area, consistent with thermodynamic measurements made for mutations in an 

antibody-antigen interface.143 These examples demonstrate that models rooted in 

biophysical descriptions of protein stability and interactions, and benchmarked against 

experimental data, can both provide predictive insight for biopharmaceuticals and 

further the understanding of the underlying biophysical mechanisms.  

Biopharmaceutical informatics for pre-clinical immunogenicity risk assessment: 

http://www.protein-sol.manchester.ac.uk/abpred
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A key concern with any biologic drug is immunogenicity, the effects of which range 

from simply having an immune response, meaning that the drug is rapidly cleared 

from the body when administered, through to the possibility of anaphylactic shock. As 

described above, methods can be applied to predict T-cell epitopes and (to some 

extent) B-cell epitopes, but a more practical approach has been to ensure that antibody-

based drugs are as human as possible, and this has become one of the main aims in 

producing antibody-based drugs. As described earlier, the first monoclonal antibody-

based drug to be approved was a mouse antibody (muromonab). However, since then, 

efforts have gone into making antibody-based drugs less immunogenic, first by 

producing chimerics (where the variable domains are from the donor species while 

constant domains are human) and then by “humanization” (where the CDR loops that 

form the antibody combining site are from the donor species and the rest of the variable 

domains is predominantly human, as well as human constant domains).144  

A halfway step between chimerics and humanization to reduce immunogenicity has 

been “resurfacing” of chimeric antibodies in which surface residues of the variable 

domain, away from the CDRs, are mutated to human residues.145 This is done to 

remove primarily B-cell epitopes on the antibody surface. Many antibody-based drugs 

are now “fully human”, being produced by phage display, using transgenic mice, or 

by identifying antibodies from recovering patients. However, antibodies produced by 

such methods can still be immunogenic. For example, adalimumab (Humira®, the 

world’s top-grossing drug), while “fully human” (produced by guided phage display), 

elicits an immune response in >25% of patients with only 4% of these patients having 

sustained remission, compared with 34% of patients who did not have antibodies 

against adalimumab.146 

Thus, even with fully human antibodies, computational BCE and TCE predictors can 

be used to predict B-cell epitopes and T-cell epitopes, which can also be 

experimentally identified through proteomics assays.147, 148 It is then desirable to 

remove these potentially immunogenic regions in advance of clinical trials. As well as 

the application of BCE and TCE predictors, various “humanness” scores have been 

proposed based on sequence information of human antibodies, enabling the in silico 

assessment of human-likeness given sequences of antibodies.149-151  
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Recently, Schmitz et al. developed a computational method that maps the sequence of 

a given antibody onto human B-cell repertoires comprising 326 million sequences of 

human antibodies.152 Chin et al. built a machine learning-based predictive model that 

distinguishes human antibody sequences from non-human ones, which was trained on 

a large-scale repertoire dataset.153 These human-likeness scoring approaches will be 

useful when assessing how much the given antibodies are close to human repertoires; 

the more human-like antibodies are, the less immunogenic they are expected to be. As 

described above, another approach is to identify patches of unusual residues on the 

protein surface that may lead to an immune response. 

1.2.5 Future perspectives in biopharmaceutical informatics  

Decoding human antibody gene repertoires and their role in target validation and 

drug discovery:  

New high-throughput sequencing methods have generated a vast amount of antibody 

sequence data, with over one billion antibody sequences publicly accessible in 

repositories.23, 39, 154-159 A sequenced human B-cell receptor (BCR, i.e., antibody) 

repertoire provides a snapshot of the BCRs present, typically those circulating in the 

blood, at a given time. BCR sequence and structure datasets can be used to investigate 

immune system mechanisms for improved library design, understand disease 

pathogenesis, and identify antibodies for potential therapeutic development.160 

Immune system mechanisms: 

The diversity of BCR repertoires can be used to develop an understanding of the 

mechanisms underlying the immune system. Typical BCR repertoire profiling 

includes sequence-based analysis, such as clonotyping. Clonotyping involves 

clustering sequences into clones, usually based on identical V and J genes and high 

CDR-H3 identity.161 Such analysis can reveal dominant antibody sequences, 

potentially indicative of a response to an antigen, e.g., after vaccination. The 

availability of large datasets has been useful in characterizing the response to antigens 

and estimating true antibody genetic diversity,162 though these are still far from fully 

understood. Sequence-based analysis has revealed that the immune systems of 

unrelated individuals have similarities; an estimated 0.02% of clones are “public” – 

shared across multiple individuals.163 However, differences identified between 



51 
 

identical twins indicate the complexity of the immune response and the importance of 

epigenetics and environmental factors.164 Understanding such mechanisms is useful 

for antibody drug development, for example, to design antibody libraries for drug 

discovery. 

Understanding disease pathogenesis: 

Immune responses to disease, and also therapies, can be profiled using BCR 

repertoires to investigate B cell subtype involvement and levels of antibody response. 

Using such analysis, we can distinguish between healthy and disease repertoires and 

learn about disease mechanisms, particularly those associated with B cells, such as 

autoimmune diseases, chronic lymphoid leukemia, and other cancers.165, 166 In the 

future, such information will hopefully be used to improve patient outcomes by 

identifying the most at-risk patients, tracking disease progression and monitoring 

response to therapies. A better understanding of the immune system involvement in 

disease may also indicate targets for potential therapeutic intervention and even 

suggest antibody drug candidates present in the BCR repertoires of patients with the 

disease. 

Therapeutic antibody candidate identification – using sequence information: 

BCR sequence repertoires can be used to suggest suitable candidates for drug 

development. A previous study has contextualized the sequence and structural 

properties of clinical-stage antibodies with human immunoglobulin datasets (Ig-seq) 

to evaluate the extent of humanness/originality of antibodies in clinical investigation.16 

Whilst not all naturally occurring antibodies make good drug candidates, 29 clinical-

stage therapeutic antibodies were found to share 100% CDR-H3 identity with a BCR 

sequence from a healthy human repertoire.21, 163 By looking for antibody sequences 

frequently found after exposure to an antigen, we can identify those that might bind 

specifically to that particular antigen. When assessing individuals with the same 

disease or who have been exposed to the same antigen (either through infection or 

vaccination), these sequence-convergent responses can be a useful starting point for a 

potential therapeutic. Evidence to support this approach for drug discovery comes 

from vaccine studies167 and more recently SARS-CoV-2-infected individuals, where 

convergent antibodies had sequence similarity with identified SARS-CoV-2-binding 
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antibodies.168 In addition to being potential binders, public clones may also have low 

immunogenicity, making them attractive as drug candidates.58 

If existing binders are already known, likely drug candidates can be identified from a 

BCR repertoire by comparing them with known antibodies binding to the desired 

antigen. Identification can be based on sequence identity, such as clonotyping,169 or 

prediction of similar binding properties.170 As such, sequence data from BCR 

repertoires can be useful starting points for suggested therapeutic antibody candidates, 

with or without knowledge of existing binding antibodies. 

Therapeutic antibody candidate identification – incorporating structural information: 

Whilst most examination of immune repertoires focuses on sequence analysis, 

utilizing available structural information may also be important when identifying 

potential therapeutic antibody candidates. Conventional antibody modeling tools are 

inefficient for building 3D models of entire repertoires of BCRs, with the fastest taking 

seconds per antibody model via homology modeling methods31, 171, or ~285 CPU 

hours172 with ab initio methods. Therefore, structural modeling methods have been 

developed specifically for large-scale BCR or TCR repertoire data analysis. 

Incorporating structural information from models can allow the prediction of antibody 

properties in a repertoire and we may be able to predict antibody domain binding by 

performing structural clustering of antibody models with known-function antibody 

datasets, such as CoV-AbDab.173, 174 

A high-throughput alternative to modeling utilizes structural annotation to rapidly 

predict antibody CDR loop shapes, based on sequence identity matching to a 

template.175 Repertoires can be evaluated based on predicted CDR structures, for 

example, to identify over-represented CDR-H3 templates or clusters of templates that 

may represent a response to an antigen, and therefore be a useful starting point in 

therapeutic antibody design. Using structural prediction tools with BCR repertoire 

sequence data can reveal antibody drug candidates not seen using sequence-only 

analysis.  

Current limitations for utilizing BCR repertoire data in drug development include the 

major challenges of predicting antibody-antigen binding and affinity. In addition, 

existing BCR sequencing datasets often contain only heavy chain information and 

methods for obtaining BCR repertoires and binding affinities are varied and lack any 
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standardized protocols or analysis pipelines. With the development of high throughput 

methods for single-cell sequencing and antigen specificity mapping,176 increased 

amounts of high-quality, antigen-labeled antibody data might enable new accurate and 

reliable computational methods for drug discovery.  

Biopharmaceutical informatics for design and optimization of next-generation 

biotherapeutics: 

The spectrum of biological activities accessible to antibody therapeutics is being 

expanded by exploring novel mechanisms of action. For example, bispecific 

antibodies can be created by engineering different specificities into each arm of the 

antibody, and multi-specific antibodies can be created by adding further VH/VL 

domains on the heavy and light chains or as a single-chain Fv (scFv) appended on the 

N- or C-terminus. In addition, novel binding functions can be created using scFvs or 

nanobodies (heavy-chain only), often combined in tandem for higher avidity or multi-

specificity. Other technologies include antibody-drug conjugates (ADCs) created by 

conjugating cytotoxic drugs (payloads) for site-specific delivery. These novel 

antibody constructs are often collectively referred to as “next-generation 

antibodies”177 and are emerging as potential therapeutics with unique properties. 

The sequences of these antibody formats may differ substantially from those of 

immune-system-derived immunoglobulins, as extensive engineering is typically 

required to bring about the desired functionality. It is often the case that engineering 

additional functionality comes at the expense of other important properties that 

underpin developability, including conformational and colloidal stability, solubility, 

immunogenicity, and PK. Therefore, the successful development of next-generation 

biotherapeutics presents additional challenges, which are usually system-specific. For 

example, ADCs are complex molecules that require careful attention to various 

components, including the mAb, the engineered drug conjugation sites, the selected 

linker, the payload, and the drug load distribution.178-180 Similarly, multi-specific 

antibodies require the selection of multiple binding domains that must be successfully 

combined to ultimately yield a homogeneous product with the desired functionality 

and suitable developability profile.177 

In general, the computational prediction of the developability potential of these novel 

antibody-based formats presents two overarching challenges. The first is that there is 
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no guarantee that combining together components with suitable properties will 

translate into a final therapeutic that has desirable characteristics. For example, a 

bispecific antibody obtained by combining two Fvs with good developability profiles 

may present unexpected liabilities, such as increased oligomerization brought about 

by cross interactions between its components. Therefore, while the tools described 

here may be used to pre-select or engineer binding domains and mAbs with optimal 

characteristics when these are combined in a multi-specific format the resulting 

construct may not necessarily be well-behaved. The second challenge lies in the 

combinatorial nature of combining multiple constructs, which amplifies prediction 

errors and hence the risk of failure, even assuming that different components behave 

independently. As an example, consider a computational predictor of a “good” 

characteristic (such as having good solubility) with precision, or “positive predictive 

value” (PPV) of 0.9 that implies a false discovery rate (FDR = 1-PPV) of 0.1 (i.e., of 

the positive predictions, 90% of them are correct, or in other words, 1 in 10 antibodies 

that are predicted as good are actually poor). If we apply this method to select two 

distinct Fvs for a bispecific antibody, then the probability of introducing at least one 

liability in this construct is given by 1-(PPV)2, i.e., 0.19 or 19%. Similarly, for a tri-

specific construct, such as nanobodies in tandem, the probability of introducing a 

“poor” binding domain becomes 27.1%. Therefore, even when neglecting the first 

challenge and considering the different components as fully independent from each 

other, the accurate prediction of the developability profile of next-generation 

biotherapeutics will require exceedingly precise methods. 

Some of the databases that can be used for the analysis of nanobody-derived 

therapeutics are the Single Domain Antibody Database181 (sdAb-DB), Integrated 

Nanobody Database for Immunoinformatics22 (INDI Nanobodies DB), Non-

redundant Nanobody database182 and database of Institute Collection and Analysis of 

Nanobodies183 (iCAN). These databases host large collections of natural and synthetic 

camelid single-domain antibody sequences from literature sources and other online 

repositories. Each of these databases further provides unified annotation and 

integrative analysis tools for describing various single domain antibodies.  

Overall, computational predictions of developability potential can already be used to 

aid the development of next-generation biotherapeutics. However, further 

developments are required before these methods will become highly competitive with 
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experimental readouts in terms of accuracy and reliability. To accelerate innovation in 

this area, it will be essential that experimental data of developability are published 

together with the antibody sequences used in the experiments, including any 

engineered modifications. We anticipate that, just as the Jain et al. study17 and others54, 

184 spurred the development of several computational predictors,16, 51 similar 

investigations using next-generation biotherapeutics will enable such methods to be 

refined, or new approaches to be developed, to yield accurate predictions of the 

developability profiles of these constructs.  

Applications of artificial intelligence and machine learning towards antibody 

discovery, development, and manufacturing: 

Machine learning algorithms have been used for the classification, regression, or 

clustering of biopharmaceutical experimental datasets. Machine learning models have 

been used for the prediction of protein secondary structure,185, 186 relative solvent 

accessibility,187-190 protein folding,191-194 protein-protein interactions,195-199 and 

PTMs.200-203 Machine learning methods have also been applied to the prediction of 

aggregation using a classification tree ensemble with sequence-derived 

physicochemical properties.18, 204 Other machine learning approaches such as gradient-

boosting machines have been used for the prediction of CDR structure from protein 

sequence, particularly CDR-H3.205, 206 The most common strategy used by these 

algorithms is the use of biophysical propensity scales as input features for machine 

learning methods to characterize the structural and functional properties of proteins.207  

Narayanan et al. have reviewed the application of machine learning approaches in 

predicting the developability of antibody-based biologics.208 A machine learning 

algorithm has been shown to predict antibody developability solely by sequence using 

a dataset of 2400 antibodies.69 Here, a support vector machine model trained on 

physicochemical features with multiple sequence alignment emerged as the best 

machine learning pipeline combination to capture antibody developability from the 

sequence.  

Deep learning approaches for antibody design and engineering are also becoming 

popular.209 Several deep learning models have been described for predicting paratope 

regions in antibody sequences,210 epitope-specific paratope identification,211 

predicting antibody/antigen binding,212 CDR-H3 region optimization,213 and virtual 
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screening for therapeutic antibody optimization.214 Deep learning algorithms offer the 

ability to capture key biophysical features and properties for any developability 

objective without the need to create complex theoretical functions. Consequently, deep 

learning approaches are ideal for cases where mechanistic understanding of the 

underlying developability issue is not fully understood. However, deep learning 

algorithms generally require large amounts of data, and so can be unsuitable for 

smaller datasets.  

The choice of the machine learning algorithm is decided by the dataset availability and 

the objectives of the application. Supervised machine learning methods such as 

support vector machines, random forests, and conditional random fields are usually 

more appropriate for balanced datasets.202 Although machine learning-based methods 

lack the physical transparency of other approaches, their practical application is 

remarkably successful. Therefore, given that the amount of available training data 

across biological and structural databases is rapidly increasing, and that machine-

learning algorithms are constantly improving, these methods are destined to play key 

roles in shaping the future of biopharmaceutical informatics.  

1.2.6 Conclusion: 

The past two decades have seen transformational advances in the biomedical sciences. 

In particular, the Human Genome Project has triggered the development of NGS 

technologies, which are enriching biological databases with millions of sequences of 

proteins, including antibodies from myriad different sources. Furthermore, 

improvements in the pace and accuracy of protein structure determination techniques 

are contributing unprecedented amounts of high-quality structural data, comprising 

large numbers of antibody-antigen complexes.215-217 The increasing use of quantitative 

methods in biology has gradually transformed the way biological observations are 

made, and it is now possible to assemble large datasets of highly accurate 

measurements of antibody biophysical properties. Finally, computers able to perform 

complex calculations quickly are available, and extremely powerful algorithms for 

data mining and machine learning are constantly being developed. Taken together, 

these advances are enabling the antibody community to address questions that were 

essentially intractable a decade ago, including the development of highly accurate 

computational methods to streamline the development of biotherapeutics.  
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Here, we have described numerous metrics for computational developability 

assessment and established that no single tool or biophysical parameter can be used 

for predicting the developability potential of a biotherapeutic. The orthogonal 

combination of conceptually different algorithms should be used in developability 

assessment protocols to reduce method-specific biases. However, as stated by 

Narayaram et al.,208 “one common disadvantage of such in silico tools is that they use 

only protein sequences or structure-based information as input and usually do not 

consider the impact of formulation conditions”. The biophysical solution behaviour is 

also influenced by the excipients and solution conditions of the formulated product. 

Therefore, the developability assessment algorithms will have more real-life practical 

applications if they also consider the solution conditions and formulation parameters 

in the algorithms. In addition, minimal information has been provided in the available 

literature on the validation of these tools in the industrial setting. Therefore, it is 

important that biopharmaceutical informatics approaches are uniformly applied across 

the industry to expand and accelerate their potential for biotherapeutics development.  

Biopharmaceutical informatics can also be a valuable guide for the commercialization 

and licensing of antibody-based drugs. The insights from computational 

developability assessments can aid the due-diligence activities performed during 

licensing and acquisition transactions.218 The application of biopharmaceutical 

informatics tools is likely to increase in the future as new accurate and faster software 

are becoming available for generating antibody structure from the sequence for mAbs. 

Recently, AlphaFold,219 a neural-network-based algorithm that was recognized as the 

optimal solution to the protein-folding problem at the Critical Assessment of protein 

Structure Prediction (CASP) competition, has received wide media attention, but its 

efficacy in modeling antibodies remains unproven. The recent success of AlphaFold 

at predicting protein structures demonstrates the power of bioinformatics applications. 

With increasing efforts devoted to data curation and method development as described 

here, biopharmaceutical informatics holds the potential to play a leading role in 

selection and engineering of safe therapeutics.  
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1.3 Biopharmaceutical informatics 

Biopharmaceutical informatics refers to the application of computational methods and 

bioinformatics tools towards biopharmaceutical drug development. It incorporates a 

full strategic framework of computational tools and informatics applications such as 

database curation, big data analytics, molecular modelling, simulation, sequence and 

structure-based bioinformatics analyses, machine learning, and artificial intelligence. 

The traditional biologic drug discovery and development driven solely by the use of 

experimental methods has been expensive and time-consuming. Moreover, from the 

cost perspective as well, the creation and screening of a large number of candidates in 

multiple biophysical characterization assays have been challenging. This has 

motivated the development of computational approaches for assessing biological 

product properties to minimize sample requirements and accelerate the biologic drug 

development process. 

Computational tools are particularly useful in the early stages of biotherapeutic drug 

discovery where usually little or no experimental data is available. Biopharmaceutical 

informatics is, therefore, very useful for selecting antibodies to be prioritized and 

flagging antibodies to be deprioritized to shortlist antibodies for experimental testing.  

1.3.1 Molecular modelling and simulations for biologic characterization 

Computational modelling and simulation approaches have also been actively used for 

structure prediction and dynamic characterization of antibodies. Molecular dynamics 

(MD) simulations, in particular, provide a dynamic view of the conformational 

ensembles by numerically solving the Newton's equations of motion for a system of 

interacting particles to determine the trajectories of atoms and molecules.220 So, these 
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simulations capture the fluctuations in the three-dimensional structure of proteins that 

may have timescale ranges from low nanoseconds up to seconds. Some of the major 

applications of MD simulations include antigen recognition, receptor binding, and 

identification of aggregation propensity and chemical modifications.221  

There have been substantial advances in antibody structure prediction with more 

accurate biophysical surface property predictions. Deep learning methods like IgFold 

and AlphaFold are leading this revolution of reliable and accurate estimations for each 

residue and six hypervariable loops.222-224 These can be used to build paratope 

ensembles to elucidate the function and properties of antibodies. Other specific 

molecular modelling tools have emerged for describing CDR loop movements, side 

chain orientations, interdomain rearrangements, and angle rearrangements of the 

antigen-binding site.  

This conformational diversity of antibodies captured by modelling and simulation 

tools has been utilized to engineer developability liabilities and optimize biophysical 

properties. For instance, a previous study has used molecular dynamics simulations to 

estimate the thermal stabilities of antibodies by correlating the fraction of native 

atomic contacts (Q) to the melting temperature.225 Also, conformational shifts toward 

more hydrophobic low-population states have been shown to accelerate aggregation 

of antibodies in a previous study.226 Constant pH molecular dynamics simulations 

have been also used to reflect the sampling protonation changes to evaluate charge-

dependent biophysical properties that facilitate antibody therapeutics development.  

Multi-scale molecular simulations can help us to identify early formulation process 

challenges such as aggregation, viscosity, solubility, diffusion interaction, degradation 

and stress tolerance. Specifically, the use of explicit molecular dynamics simulations 

can potentially provide a molecular-level understanding of response to thermal and 

other stresses. Expanding the scope of MD simulations to include formulation 

parameters such as pH, buffers, salt, and excipients will pave the way towards in silico 

formulation development for antibody therapeutics. 

1.3.2 Protein sequence-structural contexts for biologic product stability 

Protein sequence-structural contexts play a crucial role in determining the stability of 

biologic products. The stability of a protein refers to its ability to maintain its folded 
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and functional state over time, under various environmental stress conditions. This is 

particularly important for biologic products, such as therapeutic proteins, antibodies, 

or enzymes, as their stability directly impacts their efficacy, safety, and shelf life. 

The relationship between protein sequence and structure is well established.227 The 

amino acid sequence of a protein determines its folding pattern and three-dimensional 

structure, which in turn influences its stability. The protein stability is an interplay 

between the presence and distribution of hydrophobic and hydrophilic patches on the 

protein surface, the ratio of secondary structure elements like α-helices and β-sheets, 

flexibility and conformational changes of the loop regions, linkers and disulfide bonds, 

and post-translational modifications.228 This has paved the way for sequence-guided 

design approaches in biopharmaceutical informatics which provides insights into 

position-specific mutations that are tolerated and acceptable in therapeutic design.  

We have witnessed, in particular, the emergence of in silico candidate screening tools 

which are based on de novo prediction of properties based on sequence and structure 

information. These in silico tools have been very successful in identifying high-value 

leads and new engineering targets for improving biological activity and stability. The 

era of machine learning has also arrived in biologic drug discovery and development 

expanding beyond image recognition and language translation. For example, machine 

learning enabled sequence analysis has been used to train a deep contextual language 

model on 86 billion amino acids across 250 million protein sequences spanning 

evolutionary diversity.229 This merger between biopharmaceutical informatics and 

protein sequence-structural relationship insights has accelerated new asset discovery, 

optimized mAb designs, and de-risked development programs.  

Some other applications of computational tools and informatics approaches in later 

drug development stages are in clinical trials workflow management actions such as 

patient selection and recruitment, study design optimization, outcome prediction and 

monitoring, data analysis and interpretation, and real-world evidence studies. Overall, 

these biopharmaceutical informatics approaches analyze historical clinical trial data to 

optimize future human clinical trial protocols. Figure 5 provides an overview of the 

application of biopharmaceutical informatics across the entire biologic drug discovery 

pipeline to accelerate new asset discovery, optimize design, and de-risk programs. We 

have focused on the in silico developability assessments part in this thesis work.  
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Figure 5: Application of biopharmaceutical informatics across the drug discovery pipeline 

 

1.4 Computational developability assessment 

Successful development of monoclonal antibodies into safe and effective commercial 

therapeutics can often be impeded by known developability liabilities such as poor 

expression, low solubility, high viscosity, and aggregation. A good developability 

profile is therefore a key attribute for a biological drug. Poor biophysical properties of 

antibody-based drugs can lead to decreased shelf-life of drugs before administration, 

while aggregation in vivo can lead to adverse reaction in the body. Clinical trial failures 

can arise due to poor developability factors which lead to several efficacy or safety 

concerns. Clinical trial failures are costly and result in setbacks for both the pharma 

company developing the drug and patients who are eagerly awaiting new treatment 

options. The risk of late-stage clinical failure of antibody candidates is highly valuable 

as the average cost of biologics development is USD 559 million per drug.230  

1.4.1 Developability assessments at early-stage development 

‘Developability’ refers to the likelihood of mAbs to be successfully developed as safe 

and effective drugs. Overall, good developability of monoclonal antibodies relies on 

various factors such as specificity, stability, safety, formulation, delivery, scalability 

pharmacokinetics, pharmacodynamics, manufacturability, and regulatory compliance.  
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To select the optimal candidate, an increasing amount of attention is being paid to the 

developability characterization of therapeutic antibodies. The insights gained from 

developability assessments help to devise better end-to-end antibody therapeutic drug 

discovery and development strategies. Various experimental platforms and antibody 

informatics tools have been created and employed to identify antibodies with bad or 

non-optimal biophysical properties, also referred to as developability issues.46, 47, 138 

The experimental platforms to evaluate non-specific binding are usually based on 

binding to a panel of antigen mixtures, defined protein reagents, or immobilized 

antibodies in immunosorbent chromatography assays.231-233 Other key developability 

features especially important for concentrated mAb formulations are the propensity of 

self-association and aggregation which are evaluated using dynamic light scattering, 

nanoparticle spectroscopy, or self-interaction chromatography-based assays.234-236 

Several additional experimental assays have also been proposed in early-stage 

discovery such as surface-mediated stress assay and differential scanning fluorimetry. 

High-throughput developability assessments are set to be actively used in biologic 

drug discovery and design to identify potential downstream risks that occur during 

manufacturing, undesired modifications, and aggregation during long-term storage, 

poor colloidal stability, solubility, and high viscosity precluding subcutaneous 

administration, poor pharmacokinetics and in vivo off-target interactions affecting the 

therapeutic objective. High-throughput formulation screening techniques like robotic 

formulation preparation, microfluidics, and automated formulation stability testing 

can assess the compatibility of a candidate molecule with different formulation 

approaches and excipients. Finally, high-throughput ADME assays like microsomal 

stability assays can provide rapid predictions of drug metabolism and clearance. 

1.4.2 Computational approaches towards developability characterization 

Several predictive tools have been developed to complement the cumbersome and 

expensive high-throughput experimentation by providing in silico quantitative 

estimates of developability. Antibody informatics tools are used for the prediction of 

developability issues such as stability, aggregation, and immunogenicity. The core 

concept behind computational developability assessments is to employ computational 

methods to discriminate good drug-like lead antibodies from the candidate library. 

Incorporating developability assessments in early-stage therapeutic development also 
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provides an opportunity to re-engineer the antibody molecules to mitigate any 

sequence or structural liabilities using available antibody engineering techniques.237 

 

Figure 6: Spearman rank correlation matrix for in silico descriptors. (Adapted from Jain238) 

Typical features evaluated using developability assessments include MHC class II 

binding immune epitopes, aggregation-prone regions, motifs for glycosylation, motifs 

for chemical degradation, and presence of non-canonical cysteine residues. Advances 

in structural prediction of antibody variable regions have also encouraged the use of 

new physicochemical descriptors based on Fv models such as VH-VL interface surface 

patches, hydrophobic imbalance, charge symmetry, and other electrostatic properties. 

Quintero et al. have reviewed the spectrum of features currently reviewed in assessing 

developability of biologics - cellular assays, preclinical pharmacokinetic assessment, 

cell line development, manufacturing, and biophysical characterization.239 A recent 

study by Jain et al. has described major in vitro experimental descriptors and in silico 

descriptors to identify developability risks for the clinical progression of antibodies.238  
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They have used hierarchical clustering dendrogram and correlation matrix diagrams 

to group these descriptors for developability assessment. These are shown in Figure 6. 

The general principle in computational developability assessments is to determine 

assay values for clinical or approved mAbs as reference sets and flag those candidates 

that lie at the extreme tail regions of these distributions. A key requirement, therefore, 

is to create reference datasets for approved antibody therapeutics. Several recent 

efforts have been carried out to address this gap. For instance, Martin et al. have 

previously studied the major product characteristics such as types and molecular 

formats, formulation, routes of administration, pharmacokinetics (PK), and product 

presentation of 89 marketed antibody-based biotherapeutics.240 They demonstrate that 

a successful antibody drug candidate is most likely to be a humanized IgG1 kappa 

mAb in a mildly acidic formulation consisting of histidine buffer, sucrose as a 

stabilizer, and polysorbate 80 as a surfactant. Ahmed et al. have also previously 

studied 24 physicochemical descriptors for the variable regions (Fv) found in 77 

marketed antibody-based biotherapeutics.241 Such datasets serve as good references 

for optimal properties and especially are very useful to train machine learning models.  

1.5 Research hypothesis and objectives 

This thesis aims to establish a framework for computational developability assessment 

of therapeutic monoclonal antibodies. The availability of large datasets of antibody 

biophysical properties enables the search for new predictive models and computational 

tools for the developability assessment of biologic candidates. In this work, we apply 

antibody informatics tools for the prediction of developability issues such as stability, 

aggregation, and immunogenicity for several antibody candidates and platforms.  

We believe clinical-stage antibodies serve as a good benchmark of acceptable 

biophysical properties and developability. So, our research hypothesis is that -  

“Computational developability assessment criteria derived from clinical-stage 

antibodies can be successfully employed to estimate the clinical trial success or 

failure of antibody therapeutics”. We hypothesize that a target therapeutic mAb with 

assay scores exceeding multiple threshold criteria is likely to fail due to adverse events 

or high immunogenicity caused by the underlying developability liabilities. We also 

have explored alternate research hypotheses such as: Which developability features 

can best predict the clinical trial success or development attrition of monoclonal 
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antibodies? How do different antibody discovery platforms compare in terms of 

developability profile? What are the possible scope and challenges in the application 

of biopharmaceutical informatics tools for the prediction of biophysical properties?  

The primary objectives of the thesis have been identified as: 

• Research and review the current scope and application of biopharmaceutical 

informatics for antibody therapeutics in industry and academia.   

• Establish the developability guidelines based on clinical-stage antibodies and 

analyze biophysical property distributions of successful antibody therapeutics.  

• Compare the biophysical features and developability profile of major antibody 

discovery platforms. Validate developability assessments with case studies. 

• Train a machine learning classification algorithm to predict the clinical trial 

success outcome based on computational developability assessment results.  

The secondary objectives of the thesis to be considered are: 

• Evaluate the relevance and prediction accuracy of multiple biopharmaceutical 

informatics tools. Propose a framework for the sequential use of these available 

antibody informatics tools for the developability assessment in the triage stage.   

• Apply antibody informatics tools to evaluate the dealmaking trends to explore 

additional applications in the industry beyond developability assessment.  

1.6 Introduction to the thesis 

Accurate developability assessment of antibody therapeutics remains challenging 

because many biophysical features influence antibody developability that are not 

captured by the existing datasets, benchmarks, and experimental methods. Instead, 

computational approaches to developability assessment are important in probing these 

several biophysical features in a fast and reliable manner. Successful implementation 

of computational developability assessment for estimating clinical trial progression 

remains a non-trivial task. We, therefore, approach this problem by creating a new 

computational developability assessment framework for antibody therapeutics 

covering the full spectrum of all mAbs. This thesis presents several approaches to 

predict and quantify several key developability features using biopharmaceutical 

informatics tools for traditional mAbs to novel engineered antibody formats, currently 
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in pre-clinical to advanced clinical or approved stages, and for mAbs originating from 

various antibody discovery platforms.  

Firstly, in Chapter 1, biopharmaceutical informatics resources have been reviewed. 

The databases and tools available for the prediction or assessment of biophysical 

features relevant to antibody-based drugs have been tabulated and discussed. 

Applications of currently available biopharmaceutical informatics tools for the 

assessment of solubility, aggregation, degradation, immunogenicity, post-translational 

modifications, and in vivo safety are discussed in detail. Most importantly, in this 

chapter, based on this review we have introduced and proposed new guidelines for the 

design of developability assessment protocols.  

A combinatorial triage approach based on the orthogonal combination of conceptually 

different algorithms to combine scores and rankings from multiple tools is presented 

that aims to combine scores and rankings from multiple tools together and classify the 

mAbs based on the aggregate result of all developability prediction tools. The final 

section summarizes the emerging trends in the use of biopharmaceutical informatics 

approaches for antibody therapeutics with a future outlook towards new techniques 

such as machine learning and artificial intelligence for antibody gene repertoires. 

In Chapter 2, we have shown the detailed methodology and procedures used in this 

thesis work. This chapter provides insights on the datasets used, data-processing and 

calculations behind the tools used for developability assessments and data analysis.  

In Chapter 3, we present developability guidelines based on clinical-stage antibodies 

that serve as benchmarks for acceptable biophysical properties desired in antibody 

therapeutics and represent the practical guidelines for antibody drug candidates in 

preclinical development. We discuss computational developability assessment results 

for two datasets of clinical-stage antibodies. Their biophysical property distributions 

are used to decide the assay thresholds to establish the developability criteria.  

Next, we have compared the clinical-stage therapeutics and human immune repertoire 

dataset. A case study on True Human™ antibody therapeutics is also presented to 

demonstrate the unique developability considerations for natural human antibodies. 

Overall, the developability benchmarks based on clinical-stage mAbs established in 

this chapter will inform future developability predictions of preclinical antibodies and 

other therapeutic proteins. These criteria have been used throughout the next chapters.  
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In Chapter 4, we apply the developability assessment criteria on novel engineered 

antibodies and other next-generation antibody formats. We compare different antibody 

discovery platforms and discuss the trends among the several categories of engineered 

antibodies to capture their differences in biophysical performance. Firstly, we create 

and curate datasets for three unique antibody discovery platforms namely – bispecific 

antibodies, phage display antibodies, and transgenic mice antibodies. 

Next, we compare the developability profiles of these antibody platform technologies 

and provide insights on which is the suitable platform technology in each category for 

a desired application. Overall, this chapter can be a valuable resource to select or filter 

appropriate platform technology for creating the required engineered antibodies with 

optimal biophysical properties during antibody drug discovery. This chapter serves as 

an example of how computational developability assessment can be used to guide the 

selection of platform technologies for creating next-generation biotherapeutics. 

In Chapter 5, we have created and implemented various machine learning algorithms 

to train a prediction algorithm in MATLAB for estimating the clinical trial progression 

of preclinical antibody candidates. The resulting ROC curves and model performance 

for machine learning classification algorithms concluded that some other key factors 

beyond biophysical properties influence the outcome of clinical trials like therapeutic 

efficacy, adverse events, and clinical trial design.  

Chapter 6 is a conclusion and summary of our findings with outlook towards possible 

future directions from the methods developed and insights gained in this work. We 

have, in particular, identified the limitations of current computational developability 

assessments and highlighted the key gaps that need to be addressed for the successful 

implementation of antibody informatics tools in the development of biologics.  
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2 Methodology 

The methodology of this thesis work can be summarized as using the clinical-stage 

antibodies as a reference for successful developability and obtaining developability 

assay cutoffs from their biophysical performance distributions. The next step has been 

to apply and demonstrate the utility and accuracy of these developability criteria on 

multiple antibody datasets such as the human immune repertoire dataset, phage display 

antibodies dataset, transgenic mice antibodies dataset, failed antibodies dataset and 

other case studies. This methodology is formulated by reviewing literature and other 

recent works that support the concept of using clinical or approved mAbs as reference 

sets and flag those candidates that lie at the extreme tail regions of these distributions.  

2.1 Clinical-stage antibodies datasets:   

We have used two datasets representing approved or clinical-stage antibodies – Jain 

Dataset1 and TheraSabDab dataset2. These two comprehensive datasets were selected 

as they are widely recognized and annotated datasets for clinical-stage mAbs.  

2.1.1 Jain Dataset 

Supplementary information from the Jain publication1 was extracted to obtain the 

sequence information and assay values on 12 biophysical assays for 137 antibodies. 

(Available at https://www.pnas.org/doi/abs/10.1073/pnas.1616408114) We used the 

Supplementary information Table S2: Sequence information for the 137 antibodies 

and Supplementary information Table S3: Results of 12 assays for 137 antibodies. We 

imported and created a merged Jain dataset file with the clinical-stage information, VH 

and VL sequence information and the measured experimental values for 12 assays.  

Methodology of 12 biophysical assays selected and done by the Jain publication:1  

1. HIC - The HIC assay was done with 5 μg IgG samples (1 mg/mL) that were spiked 

in with a mobile phase A solution (1.8 M ammonium sulfate and 0.1 M sodium 

phosphate at pH 6.5) to achieve a final ammonium sulfate concentration of about 1 M 

before analysis. A Sepax Proteomix HIC butyl-NP5 column was used with a liner 

gradient of mobile phase A and mobile phase B solution (0.1 M sodium phosphate, 

pH 6.5, flow rate -1 mL/min) over 20 min with UV absorbance monitoring at 280 nm. 
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2. SMAC - The SMAC assay was performed with 2 μg of samples that were injected 

into a Zenix SEC-300 column (213300-4630; Sepax Technologies). A flow rate of 

0.35 mL/min with the running buffer containing 150 mM sodium phosphate at pH 7.0 

was used. Retention time for each sample was assigned based on the major peak. 

3. SGAC - The SGAC-SINS assay was performed with gold nanoparticles (15705; 

Ted Pella Inc.) coated with 80% capturing anti-human goat IgG Fc (109-005-098; 

Jackson ImmunoResearch) and 20% with polyclonal goat nonspecific antibody (005-

000-003; Jackson ImmunoResearch). The antibodies of interest were then incubated 

with the particles for 30 min. The samples were then diluted with varying ranges of 

ammonium sulfate (300–1,000 mM in 100-mM steps) and incubated for an additional 

1.5 h. The wavelength shift was measured using Molecular Devices SpectraMax M2 

with SoftMax Pro6 software. The SGAC100 was obtained by graphing the wavelength 

shifts of a sample against the ammonium sulfate concentration and extrapolating the 

concentration at which the shift was 560 nm. For antibodies where the shift was below 

560 nm at the the highest salt concentration a value of 1,000 mM was assigned. 

4. CIC - The CIC column was prepared by coupling ∼30 mg of human serum 

polyclonal antibodies (I4506; Sigma) to a 1-mL HiTrap column (17-0716-01; GE 

Healthcare), followed by quenching with ethanolamine. Approximately 5 μg of each 

antibody was tested at a flow rate of 0.1 mL/min using PBS as a mobile phase on an 

Agilent 1100 series HPLC system.  

5. CSI-BLI - The CSI-BLI assay was carried out as previous described (7). Briefly, 

human IgG was loaded to an AHQ biosensor (ForteBio) to ∼1 nm, followed by sensor 

blocking with human IgG1 Fc. The self-association was performed at 1 μM solution 

concentration of IgG for 300s on an Octet HTX system (ForteBio). The binding 

response from association was subtracted from that of a reference IgG (adalimumab). 

6. AC-SINS - The AC-SINS assay was performed with gold nanoparticles (15705; 

Ted Pella Inc.) that were coated with 80% capturing anti-human goat IgG Fc (109-

005-098; Jackson ImmunoResearch) and 20% with polyclonal goat nonspecific 

antibody (005-000-003; Jackson ImmunoResearch). The antibodies of interest were 

then incubated with the particles for 2 h and the wavelength shift was measured using 

Molecular Devices SpectraMax M2 with SoftMax Pro6 software. The self-interacting 

clones show a higher wavelength shift away from the PBS sample.  
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7. HEK titer expression - The antibodies were expressed in HEK293 cells. The VH and 

VL encoding gene fragments (Integrated DNATechnologies) were subcloned into the 

heavy- and light-chain pcDNA 3.4+vectors (ThermoFisher). All mAbs were expressed 

as IgG1 isotype. The corresponding vectors were cotransfected into HEK293 

suspension cells. After 6 d of growth, the cell culture supernatant was harvested by 

centrifugation and passed over Protein A agarose (MabSelect SuRe; GE Healthcare). 

8. PSR - The PSR assay was done with soluble membrane proteins prepared from 

CHO cells. The enriched membrane fraction was biotinylated using NHS-LCBiotin 

(Pierce, 21336; Thermo Fisher). This polyspecificity reagent was incubated with IgG-

presenting yeast, followed by washing. Then secondary labeling mix (Extravidin-R-

PE, antihuman LC-FITC, and propidium iodide) was added to the mixture. Samples 

were analyzed on FACSCanto (BD Biosciences) using an HTS sample injector. Flow 

cytometry data were analyzed for median fluorescence intensity (MFI) in the R-PE 

channel to assess nonspecific binding. MFI values were normalized from 0 to 1 based 

on three reference antibodies exhibiting low, medium, and high PSR MFI values.  

9. ELISA - The ELISA protocol was done with six different antigens, cardiolipin (50 

μg/mL, C0563; Sigma), KLH (5 μg/mL, H8283; Sigma), LPS (10 μg/mL, tlrl-eblps; 

InvivoGen), ssDNA (1 μg/mL, D8899; Sigma), dsDNA (1 μg/mL, D4522; Sigma), 

and insulin (5 μg/mL, I9278; Sigma), were coated onto ELISA plates (3369; Corning) 

individually at 50 μL per well overnight at 4 °C. Plates were blocked with PBS with 

0.5% BSA at room temperature (RT) for 1 h, followed by three washes with PBST 

(PBS plus 0.1% Tween 20). Fifty microliters of 100 nM testing antibody solution was 

added to each well and incubated at RT for 1 h. The absorbance was read at 450 nm 

and score determined by normalizing absorbance with no test antibody control wells. 

10. BVP - The BVP assay used 50 μL baculovirus particles (BlueSky Biotech) stock 

that was diluted with equal volume of 50 mM sodium carbonate (pH 9.6) per well and 

incubated on ELISA plates (3369; Corning) at 4 °C overnight. The next day, unbound 

BVPs were aspirated from the wells. All remaining steps were performed at room 

temperature. One hundred microliters of blocking buffer (PBS with 0.5% BSA) was 

added and let incubate for 1 h before three washes with 100 μL of PBS. Next, 50 μL 

of 1 μM testing antibodies in blocking buffer was added to the wells and incubated for 

1 h followed by six washes with 100 μL of PBS. Fifty microliters of diluted anti-
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human IgGHRP conjugate (81-7120; ZyMax) was added to the wells and incubated 

for 1 h followed by six washes as before. Finally, 50 μL of TMB substrate (34021; 

Fisher Scientific) was added to each well and incubated for 10–15 min. The reactions 

were stopped by adding 50 μL of 2 M sulfuric acid to each well. The absorbance was 

read at 450 nm and BVP score determined by normalizing absorbance by control wells 

with no test antibody. 

11. DSF - The Tm with DSF was determined using a CFX96 Real-Time System from 

BioRad, based on the protocol described earlier (32). Briefly, 20 μL of 1 mg/mL 

sample was mixed with 10 μL of 20× SYPRO orange. The plate was scanned from 40 

°C to 95 °C at a rate of 0.5 °C/2 min. The Fab Tm was assigned using the first 

derivative of the raw data from the BioRad analysis software. 

12. ACC STAB - Samples were kept 1 mg/mL at 40 °C for 30 d in HBS (25 mM 

Hepes and 150 mM sodium chloride, pH 7.3). Time points were taken at day 0, 5, 20, 

and 30, and the samples were then analyzed by SEC (0022855; Tosoh Bioscience). 

For SEC analysis, the running buffer composition was 200 mM sodium phosphate and 

250 mM sodium chloride, pH 7.0. A long-term stability slope was calculated from the 

percent aggregated, measured on the SEC that was used as the final ACC STAB score.  

2.1.2 TheraSabDab Dataset 

The Therapeutic Structural Antibody Database (TheraSabDab) tracks all antibody and 

nanobody-related therapeutics recognized by the World Health Organisation (WHO) 

with accompanying metadata. The TheraSabDab is available as a free online web 

server at https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/therasabdab/search/. 

Raw TheraSabDab dataset was extracted from the online resource on 6 January 2022. 

The downloaded TheraSabDab dataset had variable domain sequence information 

with accompanying metadata for 658 clinical-stage antibody-based biotherapeutics as 

of January 2022. TheraSabDab dataset contains the following columns - Name, 

Format, Clinical trial status, Target, Year, and sequence information for all antibodies. 

No data was excluded here to capture the full landscape of antibody therapeutics. The 

dataset visualization for Figure 10 and Figure 11 in Chapter 3 were performed using 

Power BI 2.118. 286.0. Here, advanced plotting was performed using the Power 

stacked bar graph feature with Clinical trial status in legend and format as the x-axis.  
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2.2 Human immune repertoire dataset:  

The Observed Antibody Space (OAS) database contains annotated immune repertoires 

that cover one billion sequences from over 80 different studies. OAS is accessible via 

a web-based server at https://opig.stats.ox.ac.uk/webapps/oas/. The OAS search was 

customized for healthy non-vaccinated human immune repertoires. The search terms 

were human (Species); undefined (Age); all (BSource); all (BType); None (Vaccine); 

None (Disease); undefined (Subject). So, immune repertoires of recently vaccinated 

or individuals that were diseased at the time of sequencing were excluded. The OAS 

search returned 350,980 filtered paired sequences from two studies – Eccles and Jaffe. 

The raw variable domain sequence files were downloaded in 14 batch files in the csv 

format and then merged together manually into a single input file in a fasta format.  

2.3 Multispecific format antibodies dataset: 

We used a comprehensive manual search procedure using several online resources to 

create a new multispecific formats antibody dataset. Firstly, we used the International 

ImMunoGeneTics Information System (IMGT) database.3 The IMGT/mAb-DB query 

search terms were modified for Development technology by selecting BiTE®, 

DuoBody®, Dual-Affinity Re-targeting (DART®), CrossMAb technology, Triomab, 

Pentambody™, and DVD-Ig™. The search yielded 132 antibody fragments across all 

the development technologies. There were 41 antibodies here with missing sequence 

information. Next, we checked for these missing mAb sequence information by online 

searches at AdisInsight (Link 1); Google Patents (Link 2); Antibody Resource (Link 

3) for each antibody name. The company websites were also used where applicable to 

insert the sequence information. Finally, we excluded 29 antibody results with missing 

sequence information and obtained the final dataset of 103 engineered scFv fragments. 

The multispecific format antibodies dataset results are shown in Table 10, Chapter 4.  

2.4 Phage display antibodies dataset: 

We used a comprehensive manual search procedure using several online resources to 

create a new phage display antibodies dataset. Firstly, we used the International 

ImMunoGeneTics Information System (IMGT) database.3 The IMGT/mAb-DB query 

search terms were modified for Development technology with prefix Antibody phage 

display by selecting the CAT phage library, MorphoSys's HuCAL®, Dyax library, and 

Artificial Human library. The search yielded 62 antibody fragments across all phage 

https://adisinsight.springer.com/
https://patents.google.com/
https://www.antibodyresource.com/antibody-database.html
https://www.antibodyresource.com/antibody-database.html


89 
 

display development technologies. Here, there were 27 antibody results with missing 

sequence information. Next, we checked for these missing mAb sequence information 

by online searches at the resources - AdisInsight (Link 1); Google Patents (Link 2); 

Antibody Resource (Link 3) for each antibody name. The company websites were also 

used where applicable to insert the sequence information. Finally, we excluded 22 

antibody results with missing sequence information and obtained the final dataset of 

40 phage display scFv fragments. The phage display antibodies dataset results with 

information on name, clinical status, and company are shown in Table 11, Chapter 4.  

2.5 Transgenic mice antibodies dataset: 

We used a comprehensive manual search procedure using several online resources to 

create a new transgenic mice antibodies dataset. Firstly, we used the International 

ImMunoGeneTics Information System (IMGT) database.3 The IMGT/mAb-DB query 

search terms were modified for Development technology with prefix Transgenic mice 

by selecting Abgenix's XenoMouse®, Medarex’s UltiMAb®, Medarex's HuMAb-

Mouse®, and VelocImmune®. The search yielded 66 antibody fragments across all the 

development technologies. There were 25 antibody results here with missing sequence 

information. Next, we checked for these missing mAb sequence information by online 

searches at AdisInsight (Link 1); Google Patents (Link 2); Antibody Resource (Link 

3) for each antibody name. The company websites were also used where applicable to 

insert the sequence information. Finally, we excluded 20 antibody results with missing 

sequence information and obtained the final dataset of 46 transgenic mice fragments. 

The transgenic mice antibodies dataset results are shown in the Table 12, Chapter 4.  

2.6 AbPred Calculations and Application on datasets:  

The AbPred tool calculates the predicted performance on 12 biophysical platforms, 

using machine learning algorithms trained on experimental data from the Jain dataset.4 

We have used the variable domain sequence information for separate datasets as inputs 

to the AbPred tool. The input fasta files were run on the Dockerhub platform available 

at https://hub.docker.com/r/maxhebditch/abpred that generates 12 output assay scores.  

The web application for the sequence-based algorithms is also available online at the 

protein-sol webserver, at https://protein-sol.manchester.ac.uk/abpred, with models 

and virtualisation software available at https://protein-sol.manchester.ac.uk/software. 

The software is shell/perl based and should be simple to run on any Unix-like system. 

https://adisinsight.springer.com/
https://patents.google.com/
https://www.antibodyresource.com/antibody-database.html
https://adisinsight.springer.com/
https://patents.google.com/
https://www.antibodyresource.com/antibody-database.html
https://www.antibodyresource.com/antibody-database.html
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Overall, the AbPred models have been developed from sequences of the (heavy and 

light chain) variable domains, using 35 sequence features namely the 20 amino acid 

compositions and 15 other sequence-derived features that represent physicochemical 

properties, with the machine-learning models being trained on the variation in those 

properties between the CDRs of the 137 mAbs from the Jain dataset.  

Procedure to generate AbPred calculations for a dataset: (Docker Link)  

Step 1 – Name the input fasta file as abpred.fasta in current directory.  

Step 2 – Open Dockerhub. Import code with docker pull maxhebditch/abpred:latest.  

Step 3 – Run docker code using run --rm -v $(pwd)/:/abpred/host maxhebditch/abpred. 

Step 4 – Wait for output. Predictions from the machine learning models will be in a 

directory called abpred_outputs in your current directory.  

AbPred Flow Diagram for Computational Developability Assessment: 

 

Figure 7: Application of AbPred for Computational Developability Assessment of antibodies. 

The AbPred machine-learning models trained on Jain dataset generate the 12 assay scores 

based on 35 sequence feature calculations of the input Fv sequences. These assay scores are 

finally compared with the clinical-stage computational developability assessment guidelines.     

AbPred models have used 35 sequence features to understand the variance in 12 

different biophysical characterisation assays often used in developability assessments. 

The 35 features are composed of the standard 20 amino acid propensities, followed by 

7 amino acid composite scores (KmR = K-R, DmE = D-E, KpR = K+R, DpE = D+E, 

PmN = K+R-D-E, PpN = K+R+D+E, aro = F+W+Y) and further 8 sequence features, 

https://hub.docker.com/r/maxhebditch/abpred


91 
 

fld = folding propensity5, dis = disorder propensity6, bet = beta strand propensities7, 

mem = Kyte-Doolittle hydropathy8, sequence entropy, pI, and absolute charge that are 

reflecting different biophysical calculations across the input variable sequence.  

These 35 sequence features are used as input to the machine learning algorithms which 

are either the elastic net algorithm9, or other non-linear algorithms like support vector 

machines10 (SVM) and random forest algorithm11. These algorithms were selected as 

they had the lowest mean average error to the Jain experimental dataset. A summary 

of the algorithm performance used by AbPred for each assay is provided in Table 3. 

Here, the R2 and p-value correspond to the overall fit of the machine learning models.   

AbPred Assay Algorithm R2 p-value 

Hydrophobic Interaction  

Chromatography (HIC)  

Elastic net 0.391 2.33E–17 

Standup Monolayer Absorption  

Chromatography (SMAC) 

Elastic net 0.353 7.33E–15 

Cross-Interaction Chromatography (CIC) SVM 0.306 4.46E–17 

Affinity-Capture Self-Interaction 

Nanoparticle Spectroscopy (AC-SINS) 

Elastic net 0.268 6.46E–14 

Enzyme-Linked Immunosorbent  

Assay (ELISA) 

Random forest 0.383 4.95E–77 

Baculovirus Particle (BVP) assay Random forest 0.355 6.85E–68 

Salt-Gradient Affinity-Capture  

Spectroscopy (SGAC) 

SVM 0.215 2.30E–39 

Poly-Specificity Reagent (PSR) assay SVM 0.316 2.39E–10 

Expression Titer in HEK cells (HEK) SVM 0.1121 1.87E–09 

Differential Scanning Fluorimetry (DSF) SVM 0.13 4.49E–08 

Clone Self-Interaction by Biolayer 

Interferometry (CSI BLI) 

SVM 0.169 1.24E–05 

Accelerated Stability (ACC STAB) assay SVM 0.086 2.82E–01 

Table 3: AbPred machine learning algorithm summary for each of the 12 biophysical assays.  

The feature selection stage of the machine learning methods gives an indication of the 

sequence-based features that are correlated with a particular developability assay. The 

heat map visualization of the Pearson correlation coefficient between the Fv sequence 
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composition scores (35 sequence features) used in the AbPred algorithms and the score 

on each of the 12 biophysical assays for the mAb137 Jain dataset are shown in Figure 

8. Here, the dark red values indicate a stronger positive correlation, while the dark blue 

values indicate a stronger negative correlation. For instance, the HIC assay has a strong 

positive correlation to the sequence length and the aromatic amino acid content (aro). 

Other assays such as ELISA and PSR have a strong positive correlation to the charge-

based features like lysine and arginine content (KpR) and the overall charge (PmN).  

 

Figure 8: Heat map visual of the Pearson correlation coefficient between the Fv sequence 

composition scores (35 sequence features) used in the Abpred algorithms and the score on 

each of the 12 biophysical assays for the mAb137 Jain dataset. Dark red values indicate a 

stronger positive correlation, and dark blue values indicate a stronger negative correlation.  

So, the general equation of an AbPred assay score is Assay Score = ∑ βk(Propertyk) 

where k ranges from 1 to 35 to capture all sequence properties and βk represents the 

coefficient assigned by the machine learning regression algorithm to each sequence 

property from the Jain experimental dataset fit. The full details of the machine learning 

equations and the optimization/minimization source code are available at Github .  

A general machine learning regression algorithm estimates the mapping function (f) 

of output variables (Y) given input variables (X) that can be summarized by the general 

equation Y = f(X). Here, we provide an example of the neural networks that are at the 

core of several machine learning algorithms such as random forests and artificial 

neural networks. The machine learning algorithms are usually composed of layers of 

nodes that attempt to simulate the decision process in the networks of neurons of the 

biological central nervous system. The first layer of a neural net is called the input 

layer, followed by hidden layers, then finally the output layer. Each node receives one 

https://github.com/maxhebditch/abpred
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or more input signals. These input signals can come from either the raw data set or 

from neurons positioned at a previous layer of the neural net. The AbPred algorithms 

use the 35 sequence features as input signals. Each node then calculates an output 

signal based on either a linear combination of the input factors shown as ∑xn*wn or 

through an activation function which limits the output amplitude depending on the 

machine learning algorithm subtype choice. Here, xn represent the inputs to the model, 

while wn represent the factor weights which multiply the corresponding input signal 

that are assigned by the model. The output signal is then either captured as the final 

output score as in the case of AbPred or sent to nodes deeper in the neural net in case 

of more complex models such as the artificial neural networks. So, each node in the 

AbPred algorithms processes an arriving signal by multiplying it to the factor weights 

(wn) that may have a positive or negative multiplier value depending on the influence 

of each sequence feature towards the biophysical assay. A linear combiner then sums 

up the 35 input signals, weighted by the respective factor weights to generate the final 

output AbPred assay score. In case of AbPred tool, the factor weights were calculated 

from a previous model training step on the Jain experimental dataset1 which decided 

the model architecture and the factor weight values for each assay. Figure 9 below has 

shown a general overview about the data processing in machine learning algorithms.  

 

Figure 9: Overview of a general machine learning algorithm. xn represent the inputs to the 

model, wn represent the factor weights which multiply the corresponding input signal that are 

assigned by the model. Finally, the output signal (y) is either summed by a linear combination 

of the input factors ∑ xn wn or further connected to an activation function which limits the 

output amplitude depending on the algorithm choice. Image from www.freecodecamp.org. 

Elastic net regression is a penalized linear regression model that is a statistical hybrid 

method which combines two regularized linear regression techniques - lasso and ridge, 

to deal with the multicollinearity issues that arise between predictor variables.12 This 
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algorithm adds a penalty term to the standard least-squares objective function. Elastic 

net algorithm can perform robust feature selection by shrinking the coefficients of 

irrelevant variables to zero that results in a model with fewer variables, which is easier 

to interpret and less prone to overfitting. The elastic net regression is used for the HIC 

SMAC and AC-SINS assays in the AbPred tool. Next, the Support Vector Machine 

(SVM) is a supervised machine learning algorithm used for both classification and 

regression.13 The objective of the support vector machine algorithms is to minimize 

the margin that is the distance between the support vectors and hyperplane that 

distinctly classifies the data points in an N-dimensional space (N here represents the 

number of features). Since the SVM algorithms are very effective in high dimensional 

spaces, most of the AbPred assays namely – CIC, SGAC, PSR, HEK, DSF, CSI-BLI 

and ACC-STAB use the SVM algorithm. Finally, the random forest algorithm uses 

the decision tree framework to create multiple randomly drawn decision trees from the 

data for regression.14 ELISA and BVP assays use random forests regression in AbPred.  

2.7 TAP Calculations and Application on datasets:  

The Therapeutic Antibody Profiler15 (TAP) calculates five developability metrics for 

an input heavy and light chain sequence. These five metrics are namely - Total CDR 

Length; Patches of Surface Hydrophobicity (PSH) metric; Patches of Positive Charge 

(PPC) metric; Patches of Negative Charge (PNC) metric and the Structural Fv Charge 

Symmetry Parameter (SFvCSP). The heavy and light chain sequences were used as 

input to the TAP tool available online at https://opig.stats.ox.ac.uk/webapps/sabdab-

sabpred/sabpred/tap. TAP outputs a detailed profile of an antibody with a typical 

runtime of less than 30s with five metric scores, ABodyBuilder structural model and 

an interactive visual representation of the hydrophobic/charge patches on the antibody 

model. TAP uses ABodyBuilder to generate a model structure of the input antibody.  

ABodyBuilder is a homology modelling program for antibody Fv modelling. It is a 

deep learning-based CDR loop structure prediction tool with the model trained on the 

position of the backbone atoms for all six CDR loops plus two anchor residues at either 

end. The TAP tool calculates the five scores across the CDR vicinity which comprises 

every surface-exposed IMGT-defined CDR and anchor residue, and all other surface-

exposed residues with a heavy atom within a 4-A° radius. To calculate the five metric 

scores, the following charges were assigned by sequence: aspartic acid (−1); glutamic 

acid (−1); lysine (+1); arginine (+1); and histidine (+0.1). Salt-bridge residues were 
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assigned a charge of 0 and Tyrosine hydroxyl deprotonation was not considered. The 

PPC and PNC metrics are based on calculating the absolute value of the charge 

assigned to residue R represented as |Q(R)|. The general equation for both PPC and 

PNC score can be represented as ∑|Q(R1)| |Q(R2)| ÷ r2
12 where R1 and R2 are any two 

surface-exposed residues with a closest heavy-atom distance, r12, <7.5 A°. The PSH 

metric is calculated similarly with the normalized hydrophobicity score for residue R 

in scheme S represented as H(R,S) replacing the |Q(R)|. Finally, the SFvCSP values 

were calculated as ∑RH|Q(RH)| *∑RL|Q(RL)| where RH and RL are surface-exposed VH 

and VL residues, respectively. Here, the residues defined as ‘surface-exposed’ have a  

>7.5% relative exposure across side-chain atoms, compared with the open-chain form 

alanine-R-alanine. The full details and model information are available at the GitHub 

repository available at https://github.com/orgs/oxpig/repositories.  

2.8 T20 Humanness Score Calculation:  

The T20 score analyzer is a tool that calculates the humanness of monoclonal antibody 

variable region sequences. The T20 score is scaled from 0 to 100, where a higher score 

is a more human-like antibody. In general, full-length sequences that score above 80 

are considered human-like, while framework-only sequences that score above 85 are 

considered human-like. The online tool available at https://sam.curiaglobal.com/t20/ 

was used to calculate the T20 humanness score.  

To calculate the T20 scores, an input variable region protein sequence is first assigned 

the Kabat numbering and CDR residues are identified. The full-length sequence or the 

framework only sequence with CDR residues removed is compared to every sequence 

in the respective antibody database using the blastp protein BLAST algorithm16. The 

sequence identity match between each pairwise comparison is isolated, and after every 

sequence in the database has been analyzed, the sequences are sorted from high to low 

based on the sequence identity to the input sequence. The percent identity of the Top 

20 matched sequences is averaged to obtain the final T20 score. The output generated 

by the T20 tool include – the T20 score representing the humanness score on a 0-100 

scale; BLAST results; and the FASTA sequences representing the  FASTA formatted 

sequences of the top 20 antibodies that were used to calculate the T20 score.  

2.9 Master training dataset for machine learning classification:  
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A combined excel sheet that had the calculated scores from AbPred and TAP were 

created to establish the training dataset for machine-learning algorithms. We evaluated 

a total of 52 properties that included Abpred assay scores (12), Protein-Sol sequence 

features (35), and finally the TAP scores (5). All these scores were evaluated for the 

TheraSabDab dataset which contains information on 658 antibodies in clinical trials 

or approved stages. This created ‘Master training dataset’ was a representation of the 

computational developability assessment results for the clinical-stage antibodies. This 

training dataset was imported in MATLAB and 5-fold cross-validation was performed 

to prepare the dataset for machine-learning training step. Here, the data is partitioned 

into 5 randomly chosen subsets (or folds) of roughly equal size. One subset is used to 

validate the machine learning model that is trained using the remaining subsets. This 

process is repeated 5 times so that we ensure that each subset is used exactly once for 

validation. MATLAB R2021a was used throughout this work for machine learning.  

2.10 Application of machine learning classification algorithms for 

estimating the clinical trial progression of antibody therapeutics:  

We have used the Machine Learning Toolbox™ and the new Classification Learner 

App in MATLAB R2021a (https://uk.mathworks.com/help/stats/classificationlearner-

app.html) to train machine learning models of all the major classifiers: decision trees, 

discriminant analysis, support vector machines, logistic regression, nearest neighbors, 

naive Bayes, ensemble, and neural networks. The Classification Learner App performs 

supervised machine learning by supplying a known set of input data (observations or 

examples) and known responses to the data (labels or classes) to train a model that 

generates predictions for the response to new data. In our work, the known ‘Clinical 

Trial Status’ of antibodies from the TheraSabDab annotation were used as the labels 

while the master training dataset of 52 antibody variable region properties were used 

as the input data observations. The app also displays the results of the validated model. 

Diagnostic measures such as model accuracy, scatter plot or the confusion matrix chart 

reflect the validated model results.  

Procedure to run machine-learning classification algorithms: 

Step 1 – MATLAB Workspace >> Apps tab >> Machine Learning and Deep Learning 

group >> Click Classification Learner tab to open the Classification Learner app.  



97 
 

Step 2 – Choose a classifier. Learn tab >> Models section >> Click a classifier type. 

Additional information for Manual Classifier Training - To see all available classifier 

options, click the arrow on the far right of the Models section to expand the list of 

classifiers. The nonoptimizable model options in the Models gallery are preset starting 

points with different settings, suitable for a range of different classification problems. 

Step 3 – After selecting a classifier, we can train the model. Train section >> Click 

Train All >> Select Train Selected. Repeat the process on different classifiers. Finally, 

select one of the All options in the Models gallery to try all nonoptimizable models of 

the same or different types. To automatically tune hyperparameters of a specific model 

type, we select the corresponding Optimizable model and perform hyperparameter 

optimization. After training step,  we compare and improve the Classification Models. 

Step 4 – Examine the Accuracy (Validation) score reported in the Models pane for 

each model. Click models in the Models pane and open the corresponding plots to 

explore the results. Compare model performance by inspecting the results in the plots. 

Compare the models by using Sort by >> Models pane. We select the best model in 

the Models pane and then try including and excluding different features in the model. 

Step 5 – Learn tab >> Options section >> Feature Selection. Use the available feature 

ranking algorithms to select features. We improve the model by removing the features 

with low predictive power and compare results among the models in the Models pane. 

Step 6 – We save the final machine-learning algorithms and compile the results.  

We generated and tested over 38 machine learning classification models to predict 

clinical trial progression which were tested across TheraSabDab clinical-stage dataset. 

Overall, the models with best percentage accuracy (validation) score were optimized 

further using the manual classifier training procedures mentioned above. Diagnostic 

measures, such as model accuracy, and plots, such as a scatter plot or the confusion 

matrix chart, reflect the validated model results. Full detailed information is available 

at https://uk.mathworks.com/help/stats/classificationlearner-app.html.  

We utilized a variety of classifier types across the 38 machine learning models. Firstly, 

we used the decision tree algorithms which are non-parametric supervised learning 

algorithms based on hierarchical tree structures that consists of a root node, branches, 

internal nodes and leaf nodes.17 Here, three decision subtypes were explored - Coarse 

Tree, Medium Tree and Fine Tree. Next, we used Linear Discriminant and Quadratic 

Discriminant classifier types which assume that different classes generate data based 
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on different Gaussian distributions.18 To train a classifier, the fitting function estimates 

the parameters of a Gaussian distribution for each class. Next, we used the Logistic 

Regression Classifiers that model the output class probabilities as a function of the 

linear combination of predictors. Next, Gaussian Naive Bayes and Kernel Naive Bayes 

classifiers were explored. The naive Bayes algorithms leverage the Bayes theorem and 

makes the assumption that predictors are conditionally independent, given the class.19 

We then explored six subtypes of Support Vector Machines (SVMs) in Classification 

Learner: Linear SVM; Quadratic SVM; Cubic SVM; Fine Gaussian SVM; Medium 

Gaussian SVM; and Coarse Gaussian SVM. SVM classifies data by finding the best 

hyperplane that separates data points of one class from those of the other class.20 The 

best hyperplane for an SVM means the one with the largest margin between the two 

classes. Margin means the maximal width of the slab parallel to the hyperplane that 

has no interior data points. Next, Nearest neighbor classifiers were used that categorize 

query points based on their distance to points or neighbors in a training dataset with 

use of various metrics to determine the distance.21 Finally, Neural Network Classifiers 

were used for classification.22 The first fully connected layer of the neural network has 

a connection from the network input (predictor data), and each subsequent layer has a 

connection from the previous layer. Each fully connected layer multiplies the input by 

a weight matrix and then adds a bias vector. An activation function follows each fully 

connected layer. The final fully connected layer and the subsequent softmax activation 

function produce the output, namely the classification scores and the predicted labels. 

2.11 Developability criteria assessment by Failed antibody dataset:  

We used a comprehensive manual search procedure using several online resources to 

create a new failed antibodies dataset. The failed antibodies dataset was focused on 

antibodies that were withdrawn or discontinued due to safety, low efficacy, or other 

reasons. Firstly, we used the International ImMunoGeneTics Information System 

(IMGT) database.3 The IMGT/mAb-DB query search terms were modified for 

Development status by selecting Discontinued and Withdrawn. The search yielded 47 

antibody fragments across both development status. However, there were 35 antibody 

results here with missing sequence information. The missing sequence information 

was a major problem encountered in building the failed antibodies dataset. So, next 

we checked for these missing mAb sequence information by manual online searches 

at AdisInsight (Link 1); Google Patents (Link 2); Antibody Resource (Link 3) for each 

https://adisinsight.springer.com/
https://patents.google.com/
https://www.antibodyresource.com/antibody-database.html
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antibody name. We also added 18 new failed antibodies with sequence information by 

searches on the Clinical trial database (Link4) and Fierce Biotech (Link5). Finally, we 

excluded 27 antibody results with missing sequence information and obtained the final 

dataset of 38 failed antibody fragments. The failed antibodies dataset results are shown 

in the Table 16, Chapter 5. We then obtained AbPred scores for all these 38 antibodies. 

The computational developability criteria performance was evaluated by calculating 

the 5% and 10% threshold cutoff values of clinical-stage antibodies and flagging the 

number of features failed by each failed antibody as shown in Figure 46. The threshold 

values for each assay are presented in Table 6. We next created in MATLAB a custom 

binary classification algorithm based on these cutoff values in Table 6. The AbPred 

scores for the failed antibodies dataset was then used as input to our custom binary 

classification algorithm. Finally, the confusion matrix plot was generated using the 

command confusionmat(g1,g2) in MATLAB. The final plot is shown in Figure 51.  

2.12 Kolmogorov-Smirnov test (K-S test) Statistics:  

The Kolmogorov-Smirnov test is a two-sample test to compare cumulative distribution 

functions. We have used K-S test to determine and validate if two samples appear to 

follow the same distributions. We used AbPred raw data input to the R-module code 

obtained from https://www.wessa.net/rwasp_Reddy-Moores%20K-S%20Test.wasp/. 

For shorter datasets like transgenic mice and phage display library dataset the online 

tool was used with each AbPred score data series entered as column delimited by a 

space or Tab. Chart options were selected for Width:600 and Height: 400. The tool 

returned two outputs - the K-S Test Statistic value and the P-value that were noted.   

2.13 Supplementary Information – MATLAB Codes 

Biopharmaceutical Informatics MATLAB Livescript 

Computational Developability Assessment Codes  
Part 1: Import the Data  
This section imports the data using a function generated by the Import Tool.  
 

Set up the Import Options and import the AbPred data 

%PhD work Matlab Codes  

%Created by Rahul Khetan.  

%PhD Student at The University of Manchester 

%Contact - rahul.khetan@manchester.ac.uk 

 

http://www.clinicaltrials.gov/
https://www.fiercebiotech.com/
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opts = spreadsheetImportOptions("NumVariables", 15); 

 

% Specify sheet and range 

opts.Sheet = "AbPred"; 

opts.DataRange = "A2:O659"; 

 

% Specify column names and types 

opts.VariableNames = ["SNo", "Therapeutic", "HIC", "SMAC", "SGAC", 

"CIC", "CSIBLI", "ACSINS", "HEK", "PSR", "ELISA", "BVP", "DSF", 

"ACCSTAB", "ClinicalTrial"]; 

opts.VariableTypes = ["double", "string", "double", "double", 

"double", "double", "double", "double", "double", "double", "double", 

"double", "double", "double", "categorical"]; 

 

% Specify variable properties 

opts = setvaropts(opts, "Therapeutic", "WhitespaceRule", "preserve"); 

opts = setvaropts(opts, ["Therapeutic", "ClinicalTrial"], 

"EmptyFieldRule", "auto"); 

 

% Import the data 

TheraSabDabML1 = readtable("D:\Rahul 

Khetan\Desktop\ACADEMICS\clubs\Curriculum vitae\Manchester 

PhD\Computational Developability assessment\Year 3 work\MATLAB Data 

Science and ML\TheraSabDab ML.xlsx", opts, "UseExcel", false) 

 

%Clear temporary variables 

clear opts 

 

Set up the Import Options and import the TAP data 

opts = spreadsheetImportOptions("NumVariables", 6); 

 

% Specify sheet and range 

opts.Sheet = "Sheet1"; 

opts.DataRange = "A2:F528"; 

 

% Specify column names and types 

opts.VariableNames = ["CST", "TotalCDRLength", "PSH", "PPC", "PNC", 

"SFvCSP"]; 

opts.VariableTypes = ["string", "double", "double", "double", 

"double", "double"]; 

 

% Specify variable properties 

opts = setvaropts(opts, "CST", "WhitespaceRule", "preserve"); 

opts = setvaropts(opts, "CST", "EmptyFieldRule", "auto"); 

 

% Import the data 

TheraSabDabTAP = readtable("D:\Rahul 

Khetan\Desktop\ACADEMICS\clubs\Curriculum vitae\Manchester 



101 
 

PhD\Computational Developability assessment\Year 3 work\MATLAB Data 

Science and ML\TheraSabDab TAP.xlsx", opts, "UseExcel", false) 

 

%Clear temporary variables 

clear opts 

 

opts = spreadsheetImportOptions("NumVariables", 7); 

 

% Specify sheet and range 

opts.Sheet = "Sheet1"; 

opts.DataRange = "A2:G423"; 

 

% Specify column names and types 

opts.VariableNames = ["CST", "TotalCDRLength", "PSH", "PPC", "PNC", 

"SFvCSP", "Status"]; 

opts.VariableTypes = ["string", "double", "double", "double", 

"double", "double", "categorical"]; 

 

% Specify variable properties 

opts = setvaropts(opts, "CST", "WhitespaceRule", "preserve"); 

opts = setvaropts(opts, ["CST", "Status"], "EmptyFieldRule", "auto"); 

 

% Import the data 

TheraSabDabTAP2 = readtable("D:\Rahul 

Khetan\Desktop\ACADEMICS\clubs\Curriculum vitae\Manchester 

PhD\Computational Developability assessment\Year 3 work\MATLAB Data 

Science and ML\TheraSabDab TAP2.xlsx", opts, "UseExcel", false) 

 

clear opts 

Part 2: Visualizing Multidimensional Data 

This section is used to visualize the distributions and relationships of biophysical 

properties and developability assays.  

% 12 biophysical assays + 35 ProteinSol properties  

% 5 Therapeutic Antibody Profiler (TAP)  

figure 

scatterhistogram(TheraSabDabML1,'HIC','SMAC') 

figure 

scatterhistogram(TheraSabDabML1,'ACSINS','SMAC') 

%12*12 = 144 such plots! Relationship between all assays 

 

%TheraSabDabML1.ClinicalTrial = categorical(ClinicalTrial,'Phase-

I','Phase-II','Phase-III','Approved','Preregistration','Phase-

I/II','Phase-II/III','Unknown'); 

scatterhistogram(TheraSabDabML1,'HIC','SMAC',... 

                    'GroupVariable','ClinicalTrial',... 

                    'LegendVisible','on',... 

                    'ScatterPlotProportion',0.6,... 
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                    'HistogramDisplayStyle',"bar"); 

 

scatterhistogram(TheraSabDabML1,'ACSINS','SMAC',... 

                    'GroupVariable','ClinicalTrial',... 

                    'LegendVisible','on',... 

                    'ScatterPlotProportion',0.6,... 

                    'HistogramDisplayStyle',"bar"); 

%12*12 = 144 such plots! Clinical Trial status as Legend.  

 

%Therapeutical Antibody profiler (TAP) plots 

%Creating Scatterplot matrix 

contvars = ["TotalCDRLength", "PSH", "PPC", "PNC", "SFvCSP"]; 

X = TheraSabDabTAP:,contvars; 

gplotmatrix(X,[],[],[],("*"),[],[],'hist',contvars) 

 

%Scatterplot matrix with Clinical Trial legend 

contvars = ["TotalCDRLength", "PSH", "PPC", "PNC", "SFvCSP"]; 

X = TheraSabDabTAP2(:,contvars); 

gplotmatrix(X,[],TheraSabDabTAP2.Status,[],("*"),[],[],'hist',contvar

s) 

 

%Input assay pairs of your choice to assess other plots  

Part 3: Feature Engineering 

To obtain features that are better predictors of developability than original AbPred/TAP 

variables alone. We apply the following three feature generation approaches: 

transforming variables, discretization, and summarizing groups.  

% Visualizing each assay in a separate plot 

  %stackedplot(TheraSabDabML1); 

  StackedTheraSabDab = TheraSabDabML1(:,3:14); 

  figure(); 

  stackedplot(StackedTheraSabDab) 

  xlabel("TheraSabDab antibody number") 

  %ylabel("Developability Assay") 

   

% k-means clustering algorithm 

  %idxC5 = 

kmeans(TheraSabDabML1,5,"Distance","sqeuclidean","Replicates",15); 

  %[silh5,h] = silhouette(X,idxC5,"sqEuclidean"); 

  %idxCL5 = 

kmeans(TheraSabDabTAB,5,"Distance","sqeuclidean","Replicates",15); 

  %[silh5,h] = silhouette(X,idxCL5,"sqEuclidean"); 

  %clustevQ = evalclusters(X,"kmeans","silhouette","KList",2:6) 

  %kmeanbest = clustev.OptimalK 

   

% Variance Thresholding for Continuous Features 

  %figure; 

  %bar(V); 
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  %hold on; box on; grid on; 

  %plot(V,"r.-","LineWidth",2,"MarkerSize",20); 

  %hold off; 

  %set(gca,"Xtick",1:length(cvars),"XTickLabel",cvars(idx)); 

  %title("Variance proportion by feature") 

  

% Principal Component Analysis  

 X = StackedTheraSabDab; 

 mu = mean(X); % Row vector of column (feature) means 

 r = range(X); % Row vector of column ranges 

 X = (X-mu)./r; % Scaled feature matrix 

 [P,S,V] = pca(X); 

 Vnorm = V/sum(V); % Normalize the variance so the total is 1 

 figure; hold on; 

 bar(Vnorm); 

 %stairs(0.5:59.5,cumsum(Vnorm)); 

 grid on; box on; hold off; 

 set(gca,"XTick",0:5:60) 

 %legend(Component Variance,"FontSize",12) 

 %xlabel(Component) 

  

 VOrigNorm = var(X); 

 [VOrigNorm,idx] = sort(VOrigNorm,"descend"); 

 VOrigNorm = VOrigNorm/sum(VOrigNorm); % Normalize the variance so 

the total is 1 

 figure; hold on; 

 bar(VOrigNorm); 

 %stairs(0.5:59.5,cumsum(VOrigNorm)); 

 grid on; box on; hold off; 

 

%set(gca,"XTick",0.5:59.5,"XTickLabel",tbl.Properties.VariableNames(id

x),"XTickLabelRotation",45) 

 set(gcf,"units","normalized","OuterPosition",[0 0 1 1]) 

 %legend(Cumulative Variance,"FontSize",12,"Location","east") 

 %xlabel(Feature) 

 %ylim([0,1]) 

  

 %figure; 

 

%heatmap(P,"XDisplayLabels","P"+(1:60),"YDisplayLabels",tbl.Properties

.VariableNames,"Title","Component Weights","Colormap",hot(50)); 

 %set(gcf,"units","normalized","outerposition",[0 0 1 1]) 

 

 figure; 

 scatter3(S(:,1),S(:,2),S(:,3)) 

 xlabel("$P^1$","FontSize",16,"Interpreter","latex") 

 ylabel("$P^2$","FontSize",16,"Interpreter","latex") 

 zlabel("$P^3$","FontSize",16,"Interpreter","latex") 

 axis equal; 
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Part 4: Machine Learning 

We apply several supervised machine learning approaches for classification of: 1. Clinical 

Trial Status from Developability Assays/Features and 2. Development Technology from 

Biophysical Data.  

%%Classification 1 

%%Clinical Trial Status 

% Set up the Import Options and import the data 

opts = spreadsheetImportOptions("NumVariables", 20); 

opts.Sheet = "Master Dataset"; 

opts.DataRange = "A2:T452"; 

opts.VariableNames = ["SNo", "Therapeutic", "HIC", "SMAC", "SGAC", 

"CIC", "CSIBLI", "ACSINS", "HEK", "PSR", "ELISA", "BVP", "DSF", 

"ACCSTAB", "TotalCDRLength", "PSH", "PPC", "PNC", "SFvCSP", 

"ClinicalTrial"]; 

opts.VariableTypes = ["double", "string", "double", "double", 

"double", "double", "double", "double", "double", "double", "double", 

"double", "double", "double", "double", "double", "double", "double", 

"double", "categorical"]; 

opts = setvaropts(opts, "Therapeutic", "WhitespaceRule", "preserve"); 

opts = setvaropts(opts, ["Therapeutic", "ClinicalTrial"], 

"EmptyFieldRule", "auto"); 

ML1MasterSheet = readtable("D:\Rahul 

Khetan\Desktop\ACADEMICS\clubs\Curriculum vitae\Manchester 

PhD\Computational Developability assessment\Year 3 work\MATLAB Data 

Science and ML\ML1 Master Sheet.xlsx", opts, "UseExcel", false); 

clear opts 

 

%Classification Learner app 

[trainedClassifier, validationAccuracy] = 

trainClassifier(trainingData) 

% Extract predictors and response 

inputTable = trainingData; 

predictorNames = ['HIC', 'SMAC', 'SGAC', 'CIC', 'CSIBLI', 'ACSINS', 

'HEK', 'PSR', 'ELISA', 'BVP', 'DSF', 'ACCSTAB', 'TotalCDRLength', 

'PSH', 'PPC', 'PNC', 'SFvCSP']; 

predictors = inputTable(:, predictorNames); 

response = inputTable.ClinicalTrial; 

isCategoricalPredictor = [false, false, false, false, false, false, 

false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Train a classifier 

% This code specifies all the classifier options and trains the 

classifier. 

classificationTree = fitctree(... 

    predictors, ... 

    response, ... 

    'SplitCriterion', 'gdi', ... 
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    'MaxNumSplits', 4, ... 

    'Surrogate', 'off', ... 

    'ClassNames', categorical({'Approved'; 'Phase-I'; 'Phase-I/II'; 

'Phase-II'; 'Phase-II/III'; 'Phase-III'; 'Preregistration'; 

'Unknown'}x)); 

 

% Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

treePredictFcn = @(x) predict(classificationTree, x); 

trainedClassifier.predictFcn = @(x) 

treePredictFcn(predictorExtractionFcn(x)); 

 

% Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'ACCSTAB', 'ACSINS', 'BVP', 

'CIC', 'CSIBLI', 'DSF', 'ELISA', 'HEK', 'HIC', 'PNC', 'PPC', 'PSH', 

'PSR', 'SFvCSP', 'SGAC', 'SMAC', 'TotalCDRLength'}; 

trainedClassifier.ClassificationTree = classificationTree; 

trainedClassifier.About = 'This struct is a trained model exported 

from Classification Learner R2021a.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a 

new table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with 

the name of the variable that is this struct, e.g. ''trainedModel''. 

\n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 

must match the original training data. \nAdditional variables are 

ignored. \n \nFor more information, see <a 

href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an 

exported model</a>.'); 

 

% Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = ['HIC', 'SMAC', 'SGAC', 'CIC', 'CSIBLI', 'ACSINS', 

'HEK', 'PSR', 'ELISA', 'BVP', 'DSF', 'ACCSTAB', 'TotalCDRLength', 

'PSH', 'PPC', 'PNC', 'SFvCSP']; 

predictors = inputTable(:, predictorNames); 

response = inputTable.ClinicalTrial; 

isCategoricalPredictor = [false, false, false, false, false, false, 

false, false, false, false, false, false, false, false, false, false, 

false]; 

 

% Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationTree, 

'KFold', 3); 

 

% Compute validation predictions 
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[validationPredictions, validationScores] = 

kfoldPredict(partitionedModel); 

 

% Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 

'ClassifError'); 

Machine Learning Classification Algorithms 

%%K-Nearest Neighbor(KNN) Algorithm 

classificationKNN = fitcknn(... 

    predictors, ... 

    response, ... 

    'Distance', 'Euclidean', ... 

    'Exponent', [], ... 

    'NumNeighbors', 100, ... 

    'DistanceWeight', 'Equal', ... 

    'Standardize', true, ... 

    'ClassNames', categorical({'Approved'; 'Phase-I'; 'Phase-I/II'; 

'Phase-II'; 'Phase-II/III'; 'Phase-III'; 'Preregistration'; 

'Unknown'})); 

 

%%Support Vector Machine (SVM) Algorithm 

template = templateSVM(... 

    'KernelFunction', 'linear', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 'auto', ... 

    'BoxConstraint', 1, ... 

    'Standardize', true); 

classificationSVM = fitcecoc(... 

    predictors, ... 

    response, ... 

    'Learners', template, ... 

    'Coding', 'onevsone', ... 

    'ClassNames', categorical({'Approved'; 'Phase-I'; 'Phase-I/II'; 

'Phase-II'; 'Phase-II/III'; 'Phase-III'; 'Preregistration'; 

'Unknown'})); 

 

%%Neural Network Algoritm 

classificationNeuralNetwork = fitcnet(... 

    predictors, ... 

    response, ... 

    'LayerSizes', 25, ... 

    'Activations', 'relu', ... 

    'Lambda', 0, ... 

    'IterationLimit', 1000, ... 

    'Standardize', true, ... 

    'ClassNames', categorical(['Approved'; 'Phase-I'; 'Phase-I/II'; 

'Phase-II'; 'Phase-II/III'; 'Phase-III'; 'Preregistration'; 

'Unknown'])); 
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predictorExtractionFcn = @(t) t(:, predictorNames); 

neuralNetworkPredictFcn = @(x) predict(classificationNeuralNetwork, 

x); 

trainedClassifier.predictFcn = @(x) 

neuralNetworkPredictFcn(predictorExtractionFcn(x)); 

 

%%Naive Bayes Classification 

if any(strcmp(distributionNames,'Kernel')) 

    classificationNaiveBayes = fitcnb(... 

        predictors, ... 

        response, ... 

        'Kernel', 'Normal', ... 

        'Support', 'Unbounded', ... 

        'DistributionNames', distributionNames, ... 

        'ClassNames', categorical({'Approved'; 'Phase-I'; 'Phase-

I/II'; 'Phase-II'; 'Phase-II/III'; 'Phase-III'; 'Preregistration'; 

'Unknown'})); 

else 

    classificationNaiveBayes = fitcnb(... 

        predictors, ... 

        response, ... 

        'DistributionNames', distributionNames, ... 

        'ClassNames', categorical({'Approved'; 'Phase-I'; 'Phase-

I/II'; 'Phase-II'; 'Phase-II/III'; 'Phase-III'; 'Preregistration'; 

'Unknown'})); 

end 

 

predictorExtractionFcn = @(t) t(:, predictorNames); 

naiveBayesPredictFcn = @(x) predict(classificationNaiveBayes, x); 

trainedClassifier.predictFcn = @(x) 

naiveBayesPredictFcn(predictorExtractionFcn(x)); 

 

%Contact Rahul Khetan for full MATLAB codes of all ML algorithms 

%Total 38 machine learning models trained on ML1MasterSheet.xlsx 
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3 Computational developability assessment framework and 

guidelines based on clinical-stage antibody therapeutics  

3.1 Introduction 

Clinical-stage antibodies serve as benchmarks for acceptable biophysical properties 

desired in antibody therapeutics and represent the practical guidelines for antibody 

drug candidates in preclinical development. Approved and clinical-stage antibodies, 

therefore, serve as a reference for successful developability, providing the desired 

thresholds for biophysical properties. In this chapter, we have leveraged two datasets 

of clinical-stage antibodies namely – the Jain dataset (137 antibodies) and the 

TheraSAbDab dataset (658 antibodies) for computational developability assessment.  

The main objective of this chapter is to establish benchmark thresholds for biophysical 

assay performance based on the approved and clinical-stage mAbs which serve as a 

reference for successful developability. These biophysical assay benchmarks would 

serve as the computational developability assessment criteria for antibodies. This 

chapter also aims to evaluate the developability of natural human antibodies and 

validate the developability potential of human immune repertoire using a case study.  

This chapter starts with a general overview of how clinical-stage antibodies can be 

employed as benchmarks for antibody informatics studies. The two main datasets 

representative of approved and clinical-stage antibodies used in this study are outlined 

in section 3.3. Next, two main informatics tools for computational developability 

assessment benchmarking are discussed in section 3.4. We then provide computational 

developability assessment results and benchmark thresholds in section 3.5. Next, the 

developability criteria based on clinical-stage antibodies are compared to the human 

immune repertoire dataset in section 3.6. A case study on True Human™ antibody 

therapeutics is presented to demonstrate the unique developability considerations for 

natural human antibodies. Finally, the developability criteria are summarized and a 

computational developability assessment framework is proposed in the remainder of 

the report outlined in section 3.7. Overall, the developability benchmarks established 

in this chapter will inform future developability predictions of preclinical antibodies 

and other engineered antibody formats in early R&D and lead optimization stages.  

3.2 Methods   
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Preparation and curation of Clinical-stage datasets: Raw TheraSabDab data was 

extracted from https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/therasabdab/ on 6 

February 2022. Jain dataset sequence information and 12 assays experimental datasets 

were extracted from the supplementary information in the Jain publication. Dataset 

visualization in Figure 10 and Figure 11 were performed using Power BI 2.118. 286.0.  

AbPred measurements on clinical-stage datasets: VHVL sequence information for 

separate clinical-stage datasets were saved as input fasta files. The Abpred predictions 

were generated from the dockerhub source code available at docker pull 

maxhebditch/abpred using run command docker run --rm -v $(pwd)/:/abpred/host 

maxhebditch/abpred. More details at https://hub.docker.com/r/maxhebditch/abpred.  

TAP measurements on clinical-stage datasets: We used web sequence submission 

form and the GitHub repositories at https://github.com/orgs/oxpig/repositories to get 

the five metric values for 658 input sequences from the TAP tool available at 

https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred. Also, the homology Fv 

models generated by ABodyBuilder2 were downloaded for future structural analysis.  

Kolmogorov-Smirnov test (K-S test) Statistics: The Kolmogorov-Smirnov Test R 

module from http://www.wessa.net/rwasp_Reddy-Moores%20K-S%20Test.wasp 

was used to generate the K-S test Statistic and P-value from histogram raw data input. 

Creation of Human Immune Repertoire Dataset: The Observed Antibody Space 

(OAS) database contains annotated immune repertoires that cover one billion 

sequences from over 80 different studies. OAS is accessible via a web server at 

https://opig.stats.ox.ac.uk/webapps/oas/. The OAS search was customized for healthy 

non-vaccinated human immune repertoires. The OAS search returned 350,980 filtered 

paired sequences from two studies – Eccles and Jaffe. The same procedure of AbPred 

and TAP predictions was carried out on this human repertoire dataset for comparison. 

Principal Component Analysis (PCA) of biophysical assay features: The PCA 

analysis was carried out in MATLAB using the command coeff = pca(X) that returns 

the principal component coefficients, also known as loadings, for the n-by-p data 

matrix X. Each column of coeff contains coefficients for one principal component, 

and the columns are in descending order of component variance. By default, pca 

centres the data and uses the singular value decomposition (SVD) algorithm.  
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3.3 Datasets representing clinical-stage antibody therapeutics 

3.3.1 Jain Dataset: Biophysical performance of clinical-stage antibodies 

The Jain dataset1 contains experimental assay measurements across 12 different 

biophysical characterization platforms for 137 late-stage clinical therapeutics. Jain 

Dataset comprises of 137 clinical-stage antibodies including 48 approved antibodies. 

Jain et al. have provided experimental biophysical measurements on a dozen assays 

commonly used to evaluate the ‘developability’ of antibodies.1 These observed 

metrics for clinical-stage antibodies serve as benchmarks for acceptable biophysical 

properties desired in antibody therapeutics and represent the practical guidelines for 

antibody drug candidates in preclinical development.  

The Jain dataset has 48 approved antibodies, 46 phase II stage antibodies, and the 

remaining 43 antibodies out of the total 137 antibodies are in phase III clinical trials 

which provides a balanced representation of approved and advanced clinical stage 

antibodies. The most common mAb isotype is the “IgG1” format with a total of 87 

antibodies out of 137 total (63.5%). Other mAb formats captured in Jain dataset are 

“IgG2” (21), “IgG4” (23), and six other formats such as “IgM”, “Fab” and “scFv-Fc”. 

Therefore, novel synthetic formats are underrepresented in this dataset. The dataset 

has 124 antibodies of kappa (κ) isotype, while the remaining 13 antibodies have 

lambda (λ) light chains. The Jain clinical-stage antibodies originate from diverse 

sources – 58 (42%) are classified as “fully human” (with -UMAB suffix), 67 (49%) 

are “humanized” (with –ZUMAB suffix), and 12 (9%) have “chimeric” origin with at 

least one fully non-human variable region (with –XIMAB or –XIZUMAB suffix). 

The twelve biophysical characterization assays evaluated in the Jain dataset are well-

established for therapeutic antibody characterization. It is likely that these or related 

assays are generally used in the early stages of an antibody discovery cascade. An 

overview and the biophysical significance of each assay have been provided below:  

Hydrophobic Interaction Chromatography (HIC): The hydrophobic interaction 

chromatography (HIC) is a powerful technique used for the analytical characterization 

of monoclonal antibodies in a panel of developability assessments and other liquid 

chromatographic applications. HIC is a good technique for separating the different 

populations of antibody molecules while maintaining biological activity due to the use 

of conditions and matrices that operate under less denaturing conditions. So, the main 
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advantage of HIC compared to other known chromatography procedures is that it is 

non-denaturating, so the native forms of the proteins are expected to be maintained. 

HIC separates molecules based on differences in their surface hydrophobicity.2-4 The 

HIC media are composed of alkyl or aryl ligands coupled to an inert, porous matrix 

which are then packed into a chromatography column in a packed bed arrangement. 

Samples are loaded on the column using a mobile phase with a high salt concentration 

and then salt concentration is gradually lowered to start eluting proteins. HIC utilizes 

a reversible interaction between the proteins and the hydrophobic ligand of a HIC 

resin. The most hydrophobic protein is bound to a hydrophobic ligand on the HIC 

resin, so the protein with the lowest degree of hydrophobicity is eluted first. Therefore, 

the manipulation of salt gradients allows differential elution of the proteins where the 

antibodies are separated in the order of increasing surface hydrophobicity.   

The Jain experimental values for HIC are measurements of the HIC retention time in 

the order of minutes. Therefore, a lower retention time corresponding to a low degree 

of hydrophobicity is desired for an antibody drug candidate. A high hydrophobic 

interaction chromatography assay value is unfavourable and represents potential 

concerns regarding the high hydrophobicity that may lead to formation of aggregates 

and other consequences of sticky hydrophobic interactions.  

Standup Monolayer Absorption Chromatography (SMAC):  Standup monolayer 

absorption chromatography (SMAC) is an alternative high-performance liquid 

chromatography (HPLC) based screening method to assess non-specific interactions 

and other correlated developability factors.5 The particular resin in a SMAC assay is 

a hydrophobic standup monolayer with terminal hydrophilic groups that cause delayed 

retention of ‘sticky’ antibodies. Any non-specific interactions of injected antibodies 

with the column matrix cause high retention time in standup monolayer adsorption 

chromatography (SMAC). So, the antibodies prone to precipitation or aggregation are 

retained longer on the column with broader peaks. The retention times in SMAC assay 

for antibodies are inversely related to their colloidal stability. A previous study has 

shown that the CamSol scores show a strong correlation with the SMAC 

measurements.6 Therefore, SMAC is an indirect method for predicting protein 

solubility and generic aggregation propensity for an antibody drug candidate. 
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Salt-Gradient Affinity-Capture Spectroscopy (SGAC): The Salt-gradient affinity 

capture self-interaction nanoparticle spectroscopy (SGAC-SINS) is an assay to 

quantify the interaction between antibodies bound to the surface of gold nanoparticles 

by measuring the wavelength shift with varying ranges of ammonium sulfate (300 –

1,000 mM in 100-mM steps). The SGAC100 is obtained by graphing the wavelength 

shifts of a sample against the ammonium sulfate concentration and extrapolating the 

concentration at which the shift was 560 nm. For antibodies where the shifts are below 

560 nm at the highest salt concentration a value of 1,000 mM is assigned. SGAC assay 

measures the salt concentration (mM) as an indirect estimate of the wavelength shift. 

The mAbs with low self-association have lower wavelength shifts and high salt 

concentration values. Therefore, high salt concentration (mM) measurements reflect 

optimal biophysical profiles for an antibody candidate while low SGAC assay values 

correspond to unfavourable developability properties. This trend is opposite to that 

observed in other assays where low assay values implied better biophysical properties.  

Cross-Interaction Chromatography (CIC): The cross-interaction chromatography 

(CIC) assay is designed to measure the weak cross-interactions of a mAb with 

polyclonal human serum antibodies that are bound to the stationary phase of a 

chromatography resin.7 Antibodies with high cross-interaction propensity due to 

exposed interaction-prone surfaces are eluted later. Such antibodies with high 

retention time are likely to interact with several different in vivo targets and represent 

antibodies with a low degree of specificity.  

Low retention times are desired for antibody drug candidates in a CIC assay. So, a 

high CIC assay value demonstrates an unfavourable developability profile. A previous 

study has established strong correlations between cross-interaction assay retention 

time measurements and clearance rates for human IgG1 antibodies.8 

Clone Self-Interaction by Biolayer Interferometry (CSI BLI): A reliable assay for 

real-time observation of self-association and dissociation of antibodies has been clone 

self-interaction-biolayer interferometry (CSI BLI). It is a high-throughput method that 

uses a label-free technology to measure self-interaction for mAbs.9 Control antibodies 

are loaded onto a biosensor tip followed by directional capture of antibody Fc region. 

Next, the binding response of the mAb is captured by an internal reflection 

interference pattern. The binding response from the association step is subtracted from 
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that of reference clinical-stage IgG - adalimumab. Finally, the interference pattern 

shifts by an amount proportional to the change in thickness of the biological layer 

when self-interaction occurs. Therefore, CSI BLI allows for direct monitoring of 

antibody self-binding rather than relying on the cumulative effects of interactions on 

retention time in the chromatographic methods.  

CSI BLI assay is measured in terms of BLI response units. Antibodies with low degree 

of self-association generate a low self-binding response in this assay and generally 

have high solubility. On the other hand, antibodies with strong self-association 

behaviour have high BLI response unit values and exhibit poor solubility. Therefore, 

low CSI BLI assay values are desired for antibody drug candidates in preclinical stages 

as low BLI assay values correspond to optimal developability profiles.  

Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS): 

Another powerful technique targeting self-interaction measurements for selection of 

mAbs with excellent biophysical properties during early antibody discovery is the 

affinity-capture self-interaction nanoparticle spectroscopy (AC-SINS). In this assay, 

gold nanoparticles coated with anti-Fc or polyclonal antibodies specific for human 

mAbs are added to dilute antibody solutions. Next, the wavelength of maximum 

absorbance for antibody–gold conjugates is measured that shifts as the distance 

between particles is reduced due to attractive mAb self-interactions. The mAbs prone 

to self-association cause clustering of nanoparticles, which can be monitored by 

plasmon wavelength shift.10, 11 Antibodies with low degree of self-association have 

lower plasmon wavelength shift in AC-SINS assay, therefore, lower AC-SINS assay 

values are desired of therapeutic antibodies while very high AC-SINS assay values 

indicate potential self-interaction liabilities for antibody drug candidates.  

Expression Titer in HEK cells (HEK): The degree of expression of an antibody in 

human embryonic kidney cells is representative of the ease of scalability for high-

throughput in vitro manufacture of the antibody. A high expression level 

corresponding to a high concentration of the harvested supernatant is desired for any 

antibody drug candidate. Therefore, a low HEK assay value indicates an antibody with 

poor expression levels with unfavourable developability.  

Poly-Specificity Reagent (PSR): The poly-specificity reagent (PSR) binding assay 

evaluates the antigen binding properties and non-specific interactions for an 
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antibody.12 Overall, this method leverages the high-throughput capacity of flow 

cytometry to profile antigen and non-specific binding in parallel. This approach 

employs a polyspecificity reagent (PSR) that is generated via biotinylation of soluble 

membrane proteins from eukaryotic cell lines. This polyspecificity reagent is 

incubated with IgG-presenting yeast, followed by washing. Next, fluorescence-

activated cell sorting (FACS) is used to determine the median fluorescence intensity 

(MFI). Finally, the MFI values were normalized from 0 to 1 based on three reference 

antibodies exhibiting low, medium, and high PSR MFI values. Polyspecificity is a 

highly undesirable property that has been linked to poor antibody pharmacokinetics. 

A high MFI value in a PSR assay corresponds to polyspecificity and non-specific 

binding. So, a low PSR assay value is desired for an antibody drug candidate while 

high PSR values are flags for non-specific antigen binding.  

Enzyme-Linked Immunosorbent Assay (ELISA): Enzyme-linked immunosorbent 

assay (ELISA) is a very popular assay that is widely used to identify antibody-antigen 

binding. ELISA is a labelled immunoassay to analyze antibody-antigen interactions.13 

In an ELISA protocol, a set of antigens are fixed on the wells of the plate. Next, 

antibody candidate coupled with enzyme is added into the plate wells and incubated 

for about an hour before washing step. Finally, the fluorescence intensity of the plate 

is detected by an absorbance reading at 450 nm after an appropriate substrate is added 

to the sample. A high ELISA assay value represents multiantigen nonspecificity 

issues. Therefore, a low ELISA assay value is desired for a therapeutic antibody drug 

candidate while high ELISA values are indicative of polyspecificity liabilities.  

Baculovirus Particle (BVP) assay: The baculovirus particle enzyme-linked 

immunosorbent assay is a similar ELISA-based approach that uses the membrane 

proteins presented on the surface of a baculovirus particle (BVP) as a reagent to 

capture mAbs with cross-interaction propensity.14 A low BVP assay value is desired 

in this polyspecificity screening assay for antibody drug candidates. Kelly et al. have 

demonstrated strong correlations of non-specificity ELISA binding score using 

baculovirus particles (BVP) with PSR assay and antibody clearance rates in humans.8 

Therefore, BVP ELISA is closely linked to other assays measuring cross-reactivity 

and polyspecificity of antibodies.    
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Differential Scanning Fluorimetry (DSF): Differential scanning fluorimetry (DSF) 

is a powerful high-throughput assay widely used to evaluate the thermal stability of an 

antibody. DSF measures protein unfolding by monitoring changes in fluorescence as 

a function of temperature. Firstly, the target antibody is mixed with a fluorescent dye 

specific for hydrophobic regions such as SPYRO orange. Next, the temperature is 

increased and as the protein begins to unfold, buried hydrophobic residues become 

exposed and the level of fluorescence is measured to get the melting temperature (Tm). 

An antibody with low thermal stability will likely spontaneously unfold and become 

immunogenic. Therefore, a high Tm is desired for any antibody drug candidate while 

low DSF assay values represent low thermodynamic stability.  

Accelerated Stability (ACC STAB): The percentage of monomeric species assessed 

by size-exclusion chromatography (SEC) in the context of an accelerated stability 

study (ACC STAB) is a reliable technique to measure the size, aggregation propensity, 

and long-term stability of antibodies. In ACC STAB, samples are stored for 30 days 

and analyzed by SEC at separate intervals to detect the fraction of monomeric protein. 

Finally, the long-term stability slope is calculated from the percent aggregated 

measured on the SEC. Size exclusion chromatography separates antibody molecules 

based on their size. The monomeric antibodies are trapped in the stationary phase pore 

system while the aggregated antibodies will flow through the column more rapidly.  

ACC STAB assay measurement for the Jain dataset is the long-term stability slope. 

So, a low ACC STAB assay value is desired for antibody drug candidates as a low 

slope value represents minimal aggregation and long-term stability.  

3.3.2 TheraSabDab: A database of clinical-stage antibody therapeutics 

The Therapeutic Structural Antibody Database (TheraSabDab) tracks all antibody and 

nanobody-related therapeutics recognized by the World Health Organisation (WHO) 

with accompanying metadata. The TheraSabDab is available as a free online web 

server at https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/therasabdab/search/. 

TheraSabDab Dataset contains the names, sequences, molecular formats, and clinical 

trial status information for 658 clinical-stage antibody-based biotherapeutics as of 

2023. Of them, 96 (14.5%) have been “approved” for human use, while it has 123 

(18.7%) antibodies in “phase-I” trials, 29 (4.4%) antibodies in “phase-I/ II” trials, 230 
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(34.9%) antibodies in “phase-II” trials, 12 (1.8%) antibodies in “phase-II/ III” trials 

and 84 (12.8%) antibodies in phase-III clinical trials. The remaining antibodies are 

either being investigated in uncategorized clinical trials or have unknown clinical trial 

status due to simultaneous trials for multiple indications. Figure 10 summarizes the 

distribution of antibodies as per their clinical trial status in TheraSabDab.  

In the TheraSabDab dataset, 584 (89%) are full-length monoclonal antibodies (Whole 

mAb) and 74 (11%) are antibody fragments in several molecular formats such as Fab 

Fusion antibodies, bispecific scFvs and nanobodies. The clinical trial status for 

different antibody formats is shown in Figure 11. Bispecific antibody formats such as 

bispecific mAbs and bispecific scFvs are mostly in Phase-I or Phase-II early-stage 

clinical trials due to the growing popularity of bispecific antibody formats in recent 

years. Engineered scFvs have the highest approval rate (25%) among all antibody 

formats which demonstrates the higher clinical efficiency achieved for these formats 

due to customized optimization of developability liabilities. 

 

Figure 10: Clinical Trial Status of the TheraSabDab dataset of 658 clinical-stage antibodies 

and antibody fragments. (TheraSabDab dataset as of February 2023).  

The TheraSabDab biotherapeutics in advanced clinical stages are being investigated 

for treatment in several therapeutic areas including oncology, autoimmune disorders, 

infectious diseases, and chronic diseases, among others. They have diverse molecular 
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targets which provide a comprehensive representation of all the possible applications 

of antibody therapeutics.  

The TheraSAbDab is updated whenever a new WHO International Non-proprietary 

Name (INN) list is released, adding all therapeutics with an accompanying variable 

domain sequence. Also, the clinical trial status is updated for all actively-developed 

therapeutics according to the latest updates on AdisInsight. The up-to-date lists of 

therapeutic sequences with metadata are available online at the TheraSAbDab search 

page. It also provides additional functionality by allowing users to search for sequence 

identity to other known therapeutics in the Structural Antibody Database (SAbDab).  

 

Figure 11: Distribution of clinical-stage antibodies in TheraSabDab database according to 

their clinical trial status for different antibody formats shown along the x-axis. (Feb 2023).  

 

3.4 Antibody informatics tools for evaluating clinical-stage mAbs  

3.4.1 AbPred – Machine learning algorithms on the Jain dataset 

AbPred15 utilizes machine learning algorithms trained on the Jain dataset. AbPred tool 

is based on sequence trained models for all 12 biophysical measurements which make 

it a reliable antibody informatics tool for predicting the performance on biophysical 
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characterization platforms. Finally, the tool also provides a meta score that provides 

an average rank by combining scaled rankings from multiple biophysical platforms.  

Hebditch et al. have previously described the 35 sequence features for predicting 

protein solubility from sequence in Protein–Sol tool.16 These 35 features are composed 

of 20 amino acid compositions; 7 composite scores of amino acid combinations (KmR 

= K-R, DmE = D-E, KpR = K+R, DpE = D+E, PmN = K+R-D-E, PpN = K+R+D+E, 

aro = F+W+Y); and 8 other sequence features (length, pI, kyte-doolittle hydropathy, 

absolute charge at pH 7, fold propensity, disorder propensity, sequence entropy, and 

β-strand propensity. So, in addition to charge-based features like KmR, DmE, DpE, 

PmN, and PpN the model also contains non-polar features such as aromatic (F+W+Y) 

composition and eight known sequence property features. The Abpred tool is trained 

on 12 biophysical characterization assays for 137 clinical-stage antibodies in the Jain 

dataset based on these same sequence features from the Protein-Sol tool. 

The algorithms with the lowest mean average error were chosen for each assay based 

on training on sequence composition scores of 137 Jain dataset variable region 

sequences in CDRs and transformed experimental measurements provided by the Jain 

dataset. Overall, the HIC, SMAC, and AC-SINS have been trained on Elastic net 

algorithms, ELISA and BVP have been captured using Random Forest algorithms 

while the remaining assays have been trained using Support Vector Machine (SVM) 

algorithms. A summary of chosen machine-learning algorithm for each assay has been 

provided in Table 3. The AbPred predictions of 12 biophysical assays for Jain dataset 

antibodies are reliable for all assays except DSF and ACC STAB. The AbPred 

predictions for enzyme-linked immunosorbent assay (ELISA) and baculovirus particle 

(BVP) assay have the highest R2 values of 0.9215 and 0.8963 respectively.  

The AbPred tool to predict these assay values from variable chain sequence is now 

openly available as a web application at https://protein-sol.manchester.ac.uk/abpred.  

3.4.2 TAP – Five developability properties based on TheraSabDab 

The Therapeutic Antibody Profiler17 (TAP) is a computational tool for comparing 

selected antibody variable domain structural properties with post phase-I clinical-stage 

antibodies. TAP tool utilizes five developability guidelines based on variable region 
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properties derived from clinical-stage therapeutics in the TheraSabDab database. The 

tool is available at https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred/tap.  

It uses antibody variable domain sequence (both heavy and light chain sequence) input 

to generate a structural variable fragment (Fv) model using structural modelling 

algorithms based on deep-learning known as ABodyBuilder.18 Next, the TAP tool 

calculates five structural measures linked to poor developability namely - Total CDR 

Length (L), Patches of Surface Hydrophobicity Metric (PSH), Patches of Positive 

Charge Metric (PPC), Patches of Negative Charge Metric (PNC) and Structural Fv 

Charge Symmetry Parameter (SFvCSP). Finally, it compares these scores against 

guideline thresholds of 658 clinical-stage therapeutic Fv domains. It also reports 

potential sequence liabilities that relate to post-translational modifications, non-

CDRH3 loop canonical forms, and 3D structural visualization of the variable regions. 

The CDR length feature links to developability insights as it can capture the binding-

site shape and CDRH3 loop features. The Patches of Surface Hydrophobicity Metric 

(PSH) indicates the level of clustering of hydrophobic residues with high scores being 

representative of large hydrophobic patches in the CDR Vicinity. The CDR Vicinity 

encompasses all surface-exposed IMGT CDR and anchor residues, as well as other 

surface exposed residues with at least one heavy atom within a radius of 4Å. The PSH 

metric thus provides a measure of hydrophobicity in the CDR regions which can be 

used to estimate aggregation propensity of antibodies. The surface charge metrics used 

here are patches of positive charge (PPC) and patches of negative charge (PNC) which 

represent the normalized sum of charged residues for a target protein sequence. Both 

these charge-based metrics are linked to several developability related measures such 

as colloidal stability, polyspecificity, and self-association. Finally, the Structural Fv 

charge symmetry parameter (SFvCSP) is the product of surface-exposed net charges 

of VH and VL chains. A previous study by Sharma et al. has revealed that oppositely 

charged VH and VL chains are linked to high viscosity and poor biophysical 

performance.19 Therefore, highly negative SFvCSP scores indicate that the target 

antibody may exhibit charge asymmetry and poor developability.  

The correlation between both the antibody informatics tools are captured in Table 4 

which are calculated from the TheraSabDab dataset. Overall, there are no major direct 

correlations that suggest that these two tools are independent and measure different 
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features. However, as expected for biophysical property measurements we observed 

overlap among certain features. Firstly, the CDR length and PSH metric from the TAP 

tool are fairly correlated to the HIC and SMAC assays from the AbPred tool. This is 

expected as all these features are known to be dependent on hydrophobicity and other 

biophysical behaviour related to stickiness of an antibody. Next, the SFvCSP feature 

from TAP tool is somewhat predictive of self-association and cross-reactivity assays 

namely CIC, CSI BLI, AC SINS, and PSR assays from the AbPred tool. A possible 

explanation is that the surface-exposed net charges of the variable regions in SFvCSP 

calculation are decided by the charged amino acid composite scores which have a high 

weightage in AbPred model for most of self-association and cross-reactivity assays. 

 

Table 4: Correlation between AbPred assay scores and TAP five metric scores for mAbs. The 

12 biophysical assays are presented as rows and 5 TAP metrics are presented as columns. 

The five TAP metrics used here are Total CDR Length, Patches of Surface Hydrophobicity 

Metric (PSH), Patches of Positive Charge Metric (PPC), Patches of Negative Charge Metric 

(PNC) and Structural Fv Charge Symmetry Parameter (SFvCSP).   

Finally, the total CDR length feature from TAP tool is fairly correlated to most liquid 

chromatography assays in AbPred. This high influence of antibody sequence length 

derived features on the chromatography assays can be because larger molecules have 

more binding regions and are retained longer in the chromatography column. Overall, 
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we conclude that a combination of sequence and structural features influence the target 

monoclonal antibody biophysical performance on all major developability assays.    

3.5 Developability criteria based on clinical-stage antibodies  

In our effort to establish suitable developability criteria for clinical-stage antibodies, 

we tested multiple biopharmaceutical informatics tools listed in Table 2. The search 

for right antibody informatics tools for benchmarking clinical mAbs was challenging. 

AbPred and TAP emerged as reliable tools in our analysis as they are unambiguous, 

appropriate, complete, and reflective of biophysical performance.15, 17 So, firstly, we 

used AbPred tool predictions on the larger TheraSabDab dataset of 658 clinical-stage 

antibody therapeutics to establish the thresholds of biophysical assay performance.   

 

Figure 12: Histograms of 12 biophysical assay values for clinical-stage antibodies. The blue 

histograms represent the experimental values (Abpred transformed) of 137 Jain antibodies, 

while the grey histograms represent the assay values of 658 TheraSabDab antibodies. The 

arrows next to assay names indicate the direction of unfavourable values for each assay. 

We observe that the histogram distributions of all 12 biophysical characterization 

assays are asymmetrically long-tailed for the clinical-stage antibodies dataset. Most of 

these distributions are asymmetrically long-tailed in the unfavourable direction as 
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shown in the Figure 12. Here, an arrow at the top corner of each chart represents the 

direction of unfavourable values. A high assay value is desired for three assays namely  

- SGAC, HEK, and DSF indicated by a left arrow while a low assay value is favourable 

for the remaining nine assays shown by a right-facing arrow in Figure 12.  

Most importantly, these distributions are consistent between the Jain dataset of 137 

antibodies (shown in blue) and the TheraSabDab dataset of 658 antibodies (shown in 

grey). Previous studies have demonstrated the accuracy and precision of the AbPred 

tool with the Jain dataset experimental measurements which confirm the consistency 

of AbPred assay predictions with the observed experimental reality.15 Our approach 

in this study has been to use these reliable assay predictions on a larger dataset of 

TheraSabDab clinical-stage antibodies which is much more comprehensive compared 

to the Jain dataset. This approach provides a strong rationale and evidence to reliably 

benchmark clinical-stage therapeutic antibodies for establishing a new computational 

developability assessment focusing on antibody therapeutics.  

We used the Kolmogorov-Smirnov test (K-S test) for statistical validation of our result 

that the TheraSabDab distributions are consistent with the Jain experimental results.20  

Assay 
K-S Test 
Statistic 

P-value 
Mean 

Jain dataset 
Mean 

TheraSabDab 
Difference 

HIC 0.094891 0.56814 10.116 10.047 0.068838 

SMAC 0.065693 0.92899 0.01022 -0.038099 0.048319 

SGAC 0.168274 0.05872 610.46 611.11 -0.64415 

CIC 0.062485 0.91572 -0.06228 -0.01872 -0.043554 

CSI – BLI 0.11679 0.30756 -0.00061 0.02032 -0.020932 

AC SINS 0.13942 0.11846 0.023368 -0.038516 0.061884 

HEK 0.10219 0.47177 146.84 146.43 0.41275 

PSR 0.11679 0.30756 0.27655 0.28993 -0.013382 

ELISA 0.092483 0.54925 1.9909 2.0959 -0.10497 

BVP 0.12879 0.22365 3.5762 3.6255 -0.049276 

DSF 0.13139 0.18775 71.109 70.743 0.3664 

ACC STAB 0.12574 0.04522 0.045229 0.045156 7.2886e-05 

Table 5: Kolmogorov-Smirnov test statistical analysis result for comparison of histograms. A 

high P-value is desired which proves the consistency between the two histogram distributions. 

All assays except ACC STAB have a K-S test p-value > 0.05 which prove consistency between 

the Jain dataset (actual experimental reality) and the TheraSabDab dataset calculations.  
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The two-sample Kolmogorov-Smirnov test is a well-recognized nonparametric test 

that compares the cumulative distributions of two data sets. The null hypothesis in the 

K-S test is that both input data groups were sampled from populations with identical 

distributions. It tests for any violation of that null hypothesis in terms of differences 

in medians, different variances, or different distributions. So, a high P-value is desired 

while a small P-value means that the two input data groups represent populations with 

different distributions which may differ in median, variability, or the shape of the 

distribution. The used R module based statistical tool21 provided the following results 

shown in Table 5. Most of the assays have a high P-value as desired which proves the 

consistency between the two histogram distributions. Only the SGAC and ACC STAB 

assays have small P-values which indicate substantial differences between shape and 

spread for Jain and TheraSabDab dataset assay output histograms in these two assays. 

These may be due to lower AbPred prediction accuracy for these assays. However, the 

P-values for these two assays are not too far from the significance threshold of 0.05.  

We used 10% and 5% as the two guideline cutoffs for each assay. This was to capture 

the extremes of each histogram distribution. Here, a 10% cutoff is equivalent of a soft 

threshold while a 5% cutoff is hard threshold to flag mAbs with developability issues. 

These cutoffs have been provided in the Table 6. A high difference between the 5% 

cutoff and 10% cutoff indicates an assay distribution with high kurtosis: a measure of 

tailedness or the likelihood of extreme outcomes. This high kurtosis is observed for 

SGAC, ELISA, and BVP distributions which concludes that these assays have wide 

tail distributions and are the most sensitive to selection of the % criteria for the cutoffs.  

Biophysical Assay 10% Cutoff 5% Cutoff 

Hydrophobic Interaction Chromatography (HIC) HIC > 10.8482 HIC > 11.1490 

Standup Monolayer Absorption Chromatography (SMAC) SMAC > 0.6047 SMAC > 0.7943 

Salt-Gradient Affinity-Capture Spectroscopy (SGAC) SGAC < 234.1128 SGAC < 78.0115 

Cross-Interaction Chromatography (CIC) CIC > 0.6425 CIC > 1.0554 

Clone Self-Interaction by Biolayer Interferometry (CSI BLI) CSI BLI > 0.4564 CSI BLI > 0.5635 

Affinity-Capture Self-Interaction Nanoparticle 
Spectroscopy (AC-SINS) 

AC-SINS >  
0.9858 

AC-SINS > 
1.5725 

Expression Titer in HEK cells (HEK) HEK < 128.2454 HEK < 121.6744 

Poly-Specificity Reagent (PSR) assay PSR > 0.4204 PSR > 0.4396 

Enzyme-Linked Immunosorbent Assay (ELISA) ELISA > 3.8382 ELISA > 6.8259 

Baculovirus Particle (BVP) assay BVP > 7.4012 BVP > 14.1383 

Differential Scanning Fluorimetry (DSF) DSF < 68.7440 DSF < 68.0450 

Accelerated Stability (ACC STAB) A STAB > 0.0458 A STAB > 0.0461 

Table 6: Computational Developability assessment criteria for clinical-stage antibodies based 

on Abpred biophysical assay thresholds. Worst 10% cutoff and 5% cutoff values are provided. 



126 
 

We tested our hypothesis that the therapeutic antibodies that fall within the 10% cutoff 

(and 5% cutoff) values exhibit optimal developability on trastuzumab (Herceptin). We 

have used trastuzumab as a reference because it is well-recognized among industry 

professionals to possess good biophysical properties and optimal developability. The 

assay values for trastuzumab are respectively 9.9091 (HIC); -0.0191 (SMAC); 

763.3616 (SGAC); -0.1244 (CIC); 0.0953 (CSI BLI); 0.0267 (AC SINS); 157.3354 

(HEK); 0.2681 (PSR); 1.3187 (ELISA); 1.7005 (BVP); 72.8277 (DSF) and 0.0452 

(ACC STAB). All of these assay values are well within the threshold limits provided 

in Table 6. We also have further validated these threshold limits with other datasets of 

engineered antibodies, human antibodies, and failed antibodies in later chapters.  

The approved and clinical-stage antibodies capture a broad spectrum of biophysical 

properties. Envafolimab; a single domain antibody against programmed death ligand 

1 (PD-L1) fused with human Fc, has the lowest hydrophobicity prediction among our 

results with the lowest HIC score of 2.91. Also, Envafolimab has the lowest SMAC 

score of – 5.94 which indicates lowest aggregation propensity and a very high colloidal 

stability. These assay scores explain how Envafolimab became the first and only 

globally approved subcutaneously injectable PD-L1 antibody therapeutic as optimal 

hydrophobicity and colloidal stability features are supportive of the subcutaneous 

administration. While, on the contrary, Lesofavumab; a monoclonal antibody for the 

treatment of Influenza B infection has the highest HIC score of 11.68.  

Similarly, a detailed analysis of other assays revealed important insights and safety 

information. For instance, teclistamab (Tecvayli), a therapy for relapsed or refractory 

multiple myeloma had the maximum CIC score of 1.40 which obviously lies above 

the 5% cutoff in our benchmark (CIC > 1.0554). In a previous phase 1/2 study, 

teclistamab demonstrated frequent grade 3 and above common adverse events such as 

cytokine release syndrome (72.1% patients); neutropenia (70.9% patients); anemia 

(52.1% patients); thrombocytopenia (40.0% patients) and infections (76.4% patients) 

with five deaths overall related to teclistamab.22 The observed cytokine release 

syndrome and immune effector cell-associated neurotoxicity are most likely due to 

high cross-reactivity and off-target binding of teclistamab to immune cells. Thus, our 

developability assessment could have flagged such therapeutics due to breach of 5% 

threshold in CIC assay and saved phase 1-2 trial cost and more importantly lives of 

those five patients in the study. Teclistamab was also flagged by other related assays 
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like CSI BLI and AC SINS where the biophysical assay scores were among the worst 

5% scores among all clinical-stage therapeutic antibodies.   

Next, we have calculated 10% cutoff and 5% cutoff values for the five developability 

metrics proposed by Therapeutic Antibody Profiler (TAP).17 These threshold cutoffs 

for CDR length, PSH, PPC, PNC, and SFvCSP metrics are presented in Table 7. Our 

benchmarking is different from the amber flag region and red flag region cutoffs 

proposed in previous work by Raybould et al. The red flag cutoff represents the 

maximum or minimum value observed while the amber flag region represents a region 

of extreme outcomes equivalent to our 5% cutoff. We have changed the benchmarking 

framework as their red flag benchmarking is too strict, where the use of maximum or 

minimum values is very sensitive to the clinical stage mAb outliers and may also lead 

to many false negatives. The biophysical assay measures for new mAb candidates in 

advance stages are often overlapping with the observed ranges for clinical-stage mAbs 

as the drug discovery and optimization process is derived from clinical-stage mAb 

backbones with the same underlying main building blocks. So, the use of 5% and 10% 

cutoffs instead of amber and red flags would ensure that we don’t miss out on many 

promising candidates in our computational developability screening process for mAbs.  

TAP Property 10% Cutoff 5% Cutoff 

Total CDR Length (L) 53 ≤ L or L ≤ 44 54 ≤ L or L ≤ 42 

Patches of Surface Hydrophobicity (PSH) 144.63 ≤ PSH 156.20 ≤ PSH 

Patches of Positive Charge (PPC) 1.14 ≤ PPC 1.25 ≤ PPC 

Patches of Negative Charge (PNC) 1.30 ≤ PNC 1.84 ≤ PNC 

Structural Fv Charge Symmetry Parameter (SFvCSP) SFvCSP ≤ - 4.00 SFvCSP ≤ - 6.30 

Table 7: Computational Developability assessment criteria for clinical-stage antibodies based 

on TAP scores for five poor developability metrics. Worst 10% cutoff and 5% cutoff values 

are provided. The CDR length metric has both an upper threshold and lower threshold value.  

Patches of positive charge (PPC) represents regions or areas on the surface of a 

biomolecule that have a net positive charge which are characterized by an excess of 

positively charged amino acid residues or groups, such as lysine (Lys) or arginine 

(Arg) in the protein structure. Highly positively charged patches cause aggregation. 

Otilimab, a monoclonal antibody therapy for rheumatoid arthritis had the highest score 

in PPC Metric with a value of 3.58 which is much higher than our threshold cutoffs of 

1.14 (10% cutoff) and 1.25 (5% cutoff) respectively. GSK recently terminated the 
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Otilimab program and declined the regulatory submissions as it failed to reach its 

primary endpoint in the Phase III ContRAst-3 study.23 Therefore, a very high PPC 

score not consistent with other clinical-stage mAbs could have been indicative to GSK 

team of a possible attrition in clinical trials during the developability assessment steps.  

Another example is brolucizumab, a proposed treatment for neovascular age-related 

macular degeneration which had the second highest PNC score with a value of 3.72. 

Several serious adverse events were observed in clinical trials for brolucizumab such 

as intraocular inflammation and retinal vasculitis.24 Novartis later halted three phase 

3 studies of brolucizumab in patients with retinal diseases due to these safety concerns. 

The presence of several patches of high negative charge indicated by high PNC score 

could have triggered these inflammatory responses by the immune system in patients. 

A high PNC score can trigger inflammatory cells such as blood cells that may adhere 

to the negative surface of the antibody which will facilitate the recruitment of immune 

cells to the site of cell adhesion. A high PNC score may also activate the complement 

system or activate cytokine storm by interaction with the positively charged cells. 

Therefore, these computational developability assessment tools can serve as valuable 

resource to mitigate clinical trial failures and flag associated developability concerns.   

3.6 Human immune repertoire dataset 

Human antibody repertoires have emerged as a reliable and comprehensive resource 

to probe the diversity of human antibodies. The entire set of antibodies produced in an 

individual is called their antibody repertoire, also referred to as Immunoglobulin (Ig) 

repertoire or the B-cell receptor (BCR) repertoire.25, 26  

Billions of unique antibodies are secreted every day by different white blood cells in 

the human body. This comprehensive molecular diversity of circulating antibodies is 

fundamental to our immune system to ward off against infectious diseases and toxic 

threats. Such antibody diversity is possible by V(D)J recombination – a unique genetic 

mechanism that enables mammalian cells to generate an almost unlimited number of 

different light and heavy chains in a remarkably economical way. An unlimited array 

of antibody repertoire is formed from B lymphocytes by rearranging, recombining, 

and mutating the genetic code. This genetic mechanism is a hallmark of the immune 

physiology of most vertebrates to achieve multiple antigen-binding sites.  
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An elegant feature of vertebrate immune physiology is the selection of antibody 

proteins that are specific, safe, and tolerated by the body. Studies have shown that the 

B lymphocytes which produce “good” and acceptable antibodies are stimulated to 

proliferate while B lymphocytes that shuffled gene sequences to produce “bad”, 

intolerable or autoreactive (targeting the body’s own tissue) antibodies were subjected 

to programmed cell death.27, 28 This selection is a fundamental step in human antibody 

engineering to enable the body to produce an enormous antibody library without 

creating antibody molecules that cause any harm or trigger immunogenic reaction. 

A previous work had compared the post phase-1 therapeutics to Vander Heiden’s 

human immunoglobulin gene sequencing (Ig-seq) models.17 Overall, Raybould et al. 

concluded that a subset of natural human antibodies were unsuitable for therapeutic 

use. They observed shorter mean CDRH3 loop length for therapeutics than human-

expressed antibodies with an increase in the CDR lengths with more humanization. 

Also, the therapeutic antibodies had lower mean hydrophobicity than natural human 

antibodies which was the main differentiation between the two datasets. However, the 

charge-based structural features like PPC, PNC, and SFvCSP were similar between 

therapeutic antibodies and natural human antibody repertoire.  

3.6.1 OAS: Observed Antibody Space database 

The Observed Antibody Space (OAS) database contains annotated immune repertoires 

that cover one billion sequences from over 80 different studies.26 OAS is accessible 

via a web server at https://opig.stats.ox.ac.uk/webapps/oas/. It contains both unpaired 

and paired (VH/VL) sequence data with filters on sequence attributes such as chain 

type, species, and disease state. Thus, OAS repertoires cover diverse immune states, 

organisms (primarily human and mouse), and individuals. It serves as an excellent tool 

for the data mining of immune repertoires for an improved understanding of immune 

response and the development of better biotherapeutics. 

We have selected a subset representing the natural human immune system from the 

available millions of sequences in BCR-seq datasets. The chosen filters were selective 

for healthy non-vaccinated human immune repertoires in the entire OAS dataset. The 

search yielded 350,980 filtered paired sequences from two previous BCR-seq studies 

namely Eccles_202029 and Jaffe_202230. The search results are presented in Table 8.  
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Table 8: OAS search results for healthy non-vaccinated human immune repertoires. The OAS 

search returned 350,980 filtered paired sequences from two studies – Eccles and Jaffe. 

It is important to note the huge size of this human immune repertoire dataset with over 

350,000 sequences which is more than 2500 times the Jain dataset and more than 500 

times the TheraSabDab dataset. It makes the human immune repertoire dataset very 

computationally expensive and unique in size and storage requirements.  

 

Figure 13: Histograms of 12 biophysical assay values for human immune repertoire (blue) 

and clinical-stage antibodies (red). The arrows next to assay names in top corner indicate the 

direction of unfavourable values. The frequency on y-axis is expressed as % of total count. 

In this work, we have employed AbPred predictions on this compiled human immune 

repertoire dataset and compared the assay scores with the TheraSabDab clinical-stage 
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antibodies. This provided us insights into the difference in the biophysical properties 

between natural human antibodies and commercial antibody therapeutics in advanced 

clinical stages. The final results are shown in Figure 13. The histogram distributions 

show the human immune repertoire dataset in blue and clinical-stage antibodies in red. 

We observe that the natural human antibodies distribution spanned the range covered 

by TheraSabDab antibodies which confirm that the variation and diversity of human 

antibodies is quite vast and not restrictive to a particular biophysical range. Overall, 

the natural human antibodies were also asymmetrically long-tailed but exhibited 

different skewness and peak location in the histogram distributions.  

We used again the Kolmogorov-Smirnov test (K-S test) for statistical comparison of 

the two distributions. Interestingly, for most of the assays, we observed a high K-S 

test statistic and a low P-value which rejects the standard null hypothesis that both are 

similar distributions. The high difference in medians for both distributions for most 

assays except one further bolster this trend. From this, we conclude that human 

antibodies differ from clinical-stage antibody therapeutics in most biophysical assays.  

Assay 
K-S Test 
Statistic 

P-value 
Median 

Human OAS 
Median 

TheraSabDab 
Difference 

HIC 0.28607 1.0325e-14 10.5375 10.1444 0.3931 

SMAC 0.34498 0 0.4572 0.0222 0.4350 

SGAC 0.23404 4.4409e-16 554.8119 645.0108 -90.1989 

CIC 0.35714 0 0.4070 0.0127 0.3943 

CSI – BLI 0.12614 5.6773e-05 0.0585 -0.0120 0.0705 

AC SINS 0.30547 0 0.5677 0.0493 0.5185 

HEK 0.18693 2.068e-10 152.7021 147.8285 4.8737 

PSR 0.19301 4.5241e-11 0.3077 0.2734 0.0343 

ELISA 0.050152 0.37952 1.6454 1.6855 -0.0402 

BVP 0.1383 6.8452e-06 3.9264 3.3635 0.5630 

DSF 0.089666 0.010081 71.2242 70.9381 0.2861 

ACC STAB 0.093607 0.043077 0.0452 0.0452 0 

Table 9: Kolmogorov-Smirnov test results for comparison of human and clinical-stage mAbs. 

A low P-value is observed for all assays except ELISA which proves that human antibodies 

differ from clinical-stage antibody therapeutics histograms in most biophysical assays.  

However, ELISA was an outlier with this trend with a high and statistically significant 

P-value of 0.379 which indicates strong similarity in ELISA assay scores for both 
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distributions. ELISA, which is a measure of the antigen specificity for an antibody has 

an overlap between natural human antibodies and clinical-stage antibodies. It is a very 

interesting result which proves that the natural human immune repertoire antibodies 

perform at par with clinical-stage antibodies in the specificity assays. This is indeed 

expected as the natural human antibodies are designed by our immune system to be 

very specific for a particular antigen target through V(D)J recombination. 

A detailed analysis of each assay distribution reveals the proportion of human immune 

repertoire above the proposed developability cutoffs. 18.06% of human antibodies are 

above the 5% threshold cutoff (11.149) for the HIC assay. This subset of natural 

human antibodies has a very high hydrophobicity making some of them unsuitable for 

commercial use. 23.16% of human antibodies are above the 5% threshold cutoff 

(0.7943) for the SMAC assay; 10.38% are below the 5% threshold cutoff (78.011) for 

the SGAC assay; 3.93% are above the 5% threshold cutoff (1.0554) for the CIC assay; 

1.22% are above the 5% threshold cutoff (0.5635) for the CSI BLI assay; 3.09% are 

above the 5% threshold cutoff (1.5725) for the AC SINS assay; 1.48% are below the 

5% threshold cutoff (121.674) for the HEK assay; 4.13% are above the 5% threshold 

cutoff (0.4396) for the PSR assay; 7.09% are above the 5% threshold cutoff (6.8259) 

for the ELISA assay; 7.54% are above the 5% threshold cutoff (14.1383) for the BVP 

assay; 1.74% are below the 5% threshold cutoff (68.045) for the DSF assay and 

10.77% are above the 5% threshold cutoff (0.0461) for the ACC STAB assay.  

A lower percentage than the 5% cutoff means that the natural immune repertoire 

antibodies have better developability for that assay as less proportion of antibodies 

breach the threshold criteria. While a higher percentage than the 5% cutoff means that 

the human antibodies assay value distribution is skewed in the unfavourable direction 

and represents poor developability properties compared to clinical-stage therapeutic 

mAbs. Therefore, the above analysis and comparison with threshold cutoffs for the 

clinical-stage therapeutics suggest that the natural human antibodies have better 

biophysical properties in assays like CIC, CSI BLI, AC SINS, and PSR that measure 

cross-interaction, self-association, and other binding properties. Human antibodies are 

also predicted to display better expression levels in HEK titer with only 1.48% subset 

of human antibodies below the clinical-stage benchmark. However, we observed poor 

developability for human antibodies in terms of assays measuring hydrophobicity and 

stability such as HIC, SMAC, SGAC, and ACC STAB. Especially, with over 18% of 
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human antibodies falling above the 5% threshold in HIC and SMAC, hydrophobicity 

looks to be the key feature to target in antibody engineering for biotherapeutics.  

3.6.2 Case Study: True Human™ antibody therapeutics 

True Human™ antibodies reproduce the extraordinary genetic diversity among the 

human antibody genes by utilizing the incredibly diverse repertoire of unique B 

lymphocytes created by the fundamental biology of natural antibody production. 

Bermekimab (commonly known as MABp1 or Xilonix™) is a first-in-class True 

Human™ monoclonal antibody targeting anti-interleukin-1-alpha (IL-1α) that is being 

evaluated in phase III trials as of 2023 for late-stage colorectal cancer by XBiotech.31  

MABp1 is a natural antibody derived from an affinity-matured in vivo human immune 

response without any sequence modifications. This human monoclonal autoantibody 

is generated by Epstein-Barr virus-immortalization and CD40-activation of B cells 

from an individual with circulating anti-IL-1α that acts as a high-affinity IL-1α 

specific inhibitor.32 True Human™ antibodies, therefore, harness the naturally 

occurring immunity sustained by billions of different antibodies that circulate through 

our blood. XBiotech has employed high stringency antibody mining technologies to 

identify a single clinically relevant antibody from billions of antibody molecules 

present in a blood donor sample.  
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Figure 14: AbPred prediction results for Bermekimab. The provided Meta score combines 

and averages multiple biophysical platforms. Overall heatmap (green) shown in the bottom.  

We checked the developability of this lead True Human™ candidate on AbPred. The 

results have been provided in Figure 14. Overall, the True Human™ antibody had an 

excellent developability performance in all assays. This is captured in the Meta score 

which combines and averages multiple biophysical platforms. It had a good rank of 

42/100 in the Group X assays (charge-based assays) – ELISA, BVP ELISA, PSR, CSI, 

ACC STAB, CIC, and a rank of 47/100 in Group Y assays (two hydrophobicity-based 

assays described in AbPred tool) – HIC and SMAC. It also had all the assay scores 

within the 10% developability thresholds confirming no biophysical liabilities.  

The safety, tolerability, and pharmacokinetic profile of True Human™ antibody 

therapeutics have been characterized in several previous clinical studies.33, 34 The first 

study showed that True Human™ antibodies are well tolerated in metastatic cancer 

patients with no dose-limiting toxicities or immunogenicity.33 The pharmacokinetic 

data for MABp1 were consistent at all dose levels and showed no evidence of 

accumulation or increased clearance at increasing doses. Also, there were no serious 

treatment-related adverse events for all 42 patients in the study. The next study 

assessed the treatment of Staphylococcus aureus Bacteremia infection with 514G3 – 

a True Human™ antibody targeting Staphylococcus Protein A which was isolated 

from a healthy human donor.34 514G3 was safe and well tolerated at all dose levels 

tested in this phase I, double blind, multicenter, randomized, placebo controlled, dose 

escalation study in patients hospitalized with S. aureus infections. Finally, other True 

Human™ antibodies by XBiotech are also being investigated in advanced clinical 

trials for multiple clinical indications such as Atopic Dermatitis, IL-1⍺-related 

inflammations,  Hidradenitis Suppurativa and Type 2 Diabetes. Therefore, the optimal 

developability profile is clinically validated for True Human™ antibodies. 

A similar optimal developability profile was observed in the TAP results. The overall 

results are shown in Figure 15. The TAP scores for the five metrics were respectively: 

49 for Total CDR length; 160.0458 for PSH; 0.2813 for PPC score; 0.0 for PNC score 

and 6.71 for SFvCSP score. All these values lie within the amber and red flag threshold 

regions as per the five computational developability guidelines. Figure 15 shows the 

histogram distributions for each metric. So, we conclude that the lead True Human™ 
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antibody candidate displays the right CDR length, optimal charge, and hydrophobicity 

in the CDR vicinity, and charge symmetry between the heavy and light chain arms.   

 

Figure 15: Therapeutic Antibody Profiler (TAP) results for Bermekimab. Part A shows the 

plots for five structural metrics and the TAP score (green line) along with the amber and red 

flags. Part B shows the TAP score values for each assay and the corresponding flag colour.  

The computational developability assessment results and clinical data for True 

Human™ antibody therapeutics suggest a unique safety profile for biotherapeutics 

cloned from the natural human immune response. Such antibodies extracted from 

human immune repertoire have the potential to emerge as the best tolerated therapies 

in oncology and beyond, making them ideally suited for treating patients with reduced 

tolerance to other immunogenically sensitive therapies in current practice.  

True Human™ antibody therapeutics created by engineering natural human antibodies 

have high developability. So, this case study demonstrates that naturally occurring 

human immune repertoire antibodies can be successfully engineered as commercial 

therapeutics that display optimal biophysical properties. We expect more such novel 

approaches like True Human™ technology to emerge as we gain deeper understanding 

of natural human immunity and advance new antibody mining technologies focused 

on immune repertoires to identify more clinically relevant antibodies. 

3.7 Conclusion 

We have analyzed several biophysical features linked to developability across known 

clinical-stage therapeutics and human immune repertoire datasets. The main outcome 
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was to establish benchmark thresholds for biophysical assay performance based on 

approved and clinical-stage mAbs which are assumed to have good developability 

characteristics for therapeutic development.  

This analysis concluded that the biophysical property distributions are asymmetrically 

long-tailed in the unfavourable direction for clinical-stage mAbs. We then proposed 

new developability criteria derived from the worst 10% and 5% cut-off values for 

twelve biophysical assays and five variable region properties for TheraSabDab 

clinical-stage antibodies. Finally, we used these threshold criteria to compare natural 

human antibodies to commercial therapeutics and validated the developability 

potential of human immune repertoire using a case study.  

 

Figure 16: Stacked plot of biophysical assay values for TheraSabDab clinical stage antibodies 

Figure 16 provides a summary of the biophysical assay performance for TheraSabDab 

clinical-stage antibodies. Overall, the stacked plot and Pearson correlation coefficients 

(R-squared > 0.7 for each pair) show that the assay groupings are Group A: HIC, 

SMAC and SGAC; Group B: CIC, CSI BLI and AC SINS; Group C: ELISA and BVP-
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ELISA; and Group D: DSF and ACC STAB for the TheraSabDab dataset. However, 

HEK and PSR are independent assays that have unique trends and don’t belong to any 

of the above groupings. This clustering into the above groups is possibly explained by 

the measurement of similar underlying biophysical properties for each group. For 

instance, the Group A assays - HIC, SMAC and SGAC are all known to measure the 

“stickiness” of the antibodies either directly or indirectly. The Group B assays - CIC, 

CSI BLI and AC SINS are all well-established assays to measure the interaction and 

association properties of the antibodies. So, the underlying self-association or binding 

measurements overlap between these assays. Next, Group C assays - ELISA and BVP-

ELISA are both labelled immunoassays with the same setup with the only difference 

in using baculovirus particle (BVP) as the reagent in BVP-ELISA assay. So, the key 

underlying biophysical measurement is polyspecificity for both the assays. Finally, 

ACC and DSF both measure unfolding stability and are grouped together in Group D.  

This is also confirmed by the results of Principal Component Analysis (PCA). PCA is 

a dimensionality reduction method that extracts features that successively maximize 

variance. We have used the PCA function in MATLAB which uses the singular value 

decomposition (SVD) algorithm to rank the feature columns in the descending order 

of component variance. The PCA results for the entire matrix of 12 biophysical assay 

values for TheraSabDab antibodies are shown in Figure 17. We conclude that the four 

assay groups and two distinct assays make a total of six assay groups that explain over 

75% data variance. The MATLAB codes for PCA are documented in Chapter 2.  

 

Figure 17: Principal Component Analysis (PCA) results for 12 biophysical assay features 

The comparison of natural human antibodies with clinical-stage therapeutics suggests 

that human immune repertoire derived antibodies have exceptional specificity, binding 
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and interaction properties but a subset may have poor hydrophobicity and long-term 

stability. So, human-expressed antibodies are highly vulnerable to protein unfolding 

and aggregation under a shear stress environment and high-concentration storage 

conditions often encountered during manufacturing and shipping of therapeutic mAbs. 

Evidence from our case study on True Human™ antibody therapeutic further supports 

successful engineering of the human immune repertoire antibodies towards clinically 

relevant commercial therapeutics that display optimal biophysical properties.  

Finally, this work has demonstrated several real-world examples where the proposed 

computational developability criteria were able to predict clinical trial attritions, flag 

developability concerns, or even predict the likelihood of success towards approval. 

This new developability criteria established in Chapter 3 has been further validated in 

Chapter 5 to evaluate a failed antibodies dataset and detailed statistical metrics on the 

model performance of a binary classification algorithm have been provided in Chapter 

5. Our detailed insights into TheraSabDab, Jain assays, and new OAS subset can guide 

experimental design or future computational developability assessment frameworks. 
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4 Computational developability assessment of engineered 

antibodies and next-generation biotherapeutics  

4.1 Abstract 

The evolution of antibody engineering to alter antibody size, shape, and valency has 

yielded a large diversity of new antibody formats. These new improvements have 

greatly increased the chance to engineer antibodies with desired biophysical properties 

while achieving optimal drug-like properties and high-potency. This chapter aims to 

characterize and compare the developability and biophysical behaviour of multiple 

categories of new engineered antibody formats. We have used the computational 

developability assessment criteria established in the previous chapter to assess 

multispecific formats such as DuoBody®; BiTEs; CrossMabs; DART® that represent 

different structures of antibody therapeutics, and then two technologies namely – (1) 

Phage display formats such as CAT phage library; MorphoSys HuCAL®; Dyax 

library, and next (2) Transgenic mice formats such as XenoMouse®; UltiMAb®; 

VelocImmune® and HuMAb-Mouse® using the available antibody informatics tools. 

Our results highlight the best platform for the desired application in each case.  

4.2 Introduction 

Novel antibody discovery and optimization technologies have emerged in the past two 

decades.1 This development of next generation of antibody-based biologics is driven 

by the desired enhancement in functional affinity and modality of current therapeutics. 

These next-generation antibody therapeutics span multiple new formats such as IgG, 

Fc fusion proteins, scFv, recombinant antibody fragments, antibody-drug conjugates, 

immune cells expressing CAR antibodies, immunocytokines, radioimmunoglobulins, 

and other new engineered variants. These formats are referred to as ‘engineered’ 

antibodies throughout this chapter to differentiate these new alternative formats.  

The first wave of antibody engineering approaches were focused on the manipulation 

of the variable regions for humanization and affinity-maturation.2-4 The next wave of 

approaches were to generate different types of antibody fragments such as scFvs5, 

single domain antibodies6, diabodies7, TandAbs8, and PEGylated Fabs9. An important 

engineering approach to improve the functional affinity of antibodies was to introduce 

multivalency in antibody formats by combining multiple binding domains using 

techniques such as domain swapping, antibody domain fusion, or self-assembly of 
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heavy and light chains into new formats.10-12 These new formats also provide novel 

mechanisms for disease intervention by their inherent ability to bind multiple antigens. 

For example, novel bispecific antibodies enable the use of complex mechanisms such 

as immune cell redirected tumour killing13, receptor cross-linking14, and enhanced cell 

specificity15 in cancer and autoimmunity. Over the years, several technologies have 

been implemented in order to generate new alternate engineered therapeutics such as 

scFv-based formats, hetero-dimerization domains, quadroma technology, human 

phage display technology, and transgenic mice technology.  

The desirable attributes in an engineered antibody include high solubility, low 

aggregation, high thermal stability, low viscosity, and high chemical stability. A major 

rate-limiting step in the adoption of these new engineered therapeutic formats is the 

validation of the developability potential for these new antibody formats. Therefore, 

the developability characteristics and validation studies of novel engineered antibodies 

and antibody fragments are receiving increased attention.  

This chapter starts with a general overview of the engineered antibodies and the special 

developability considerations required for these new and emerging special therapeutic 

modalities. Next, computational developability assessment results are presented for a 

compiled dataset of engineered antibodies created from the IMGT® database - the 

International ImMunoGeneTics Information System® database in section 4.4. Here, 

we have compared and discussed the developability trends among different categories 

of engineered antibodies to capture their differentiation in key biophysical features. A 

special case study on all available bispecific antibodies is also presented to explore the 

biophysical performance of bispecific formats in section 4.4.2. We use this framework 

to comment on the developability and clinical success of a new engineered antibody 

drug discovery platform - Azymetric™ technology in our case study in section 4.4.3. 

A similar strategy is employed with a human antibody phage display library dataset in 

section 4.5 and transgenic mice antibodies dataset in section 4.6 to gain understanding 

of the unique developability profile of various engineered antibody platforms. Finally, 

we provide insights and conclusions from these biopharmaceutical informatics results 

about the challenges of using engineered antibody formats as therapeutic candidates. 
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4.3 Methods 

Creation of antibody datasets: We have used International ImMunoGeneTics 

Information System (IMGT) database and manual online resources to create three 

datasets of antibody therapeutics – (Part 1) multispecific formats such as DuoBody®; 

BiTEs; CrossMabs; DART®, and (Part 2.1) phage display formats such as CAT phage 

library; MorphoSys HuCAL®; Dyax library, and (Part 2.2) transgenic mice formats 

such as XenoMouse®; UltiMAb®; VelocImmune® and HuMAb-Mouse® using the 

relevant keyword search filters. IMGT is available at https://www.imgt.org/mAb-DB/. 

AbPred measurements on engineered mAb datasets: VHVL sequence information 

for separate engineered datasets were saved as input fasta files. The Abpred 

predictions were generated from the dockerhub source code available at docker pull 

maxhebditch/abpred using run command docker run --rm -v $(pwd)/:/abpred/host 

maxhebditch/abpred. More details at https://hub.docker.com/r/maxhebditch/abpred.  

TAP measurements on engineered datasets: We used web sequence submission 

form and the GitHub repositories at https://github.com/orgs/oxpig/repositories to get 

the five metric values for the input sequences from the TAP tool available at 

https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred. Also, the homology Fv 

models generated by ABodyBuilder2 were downloaded for future structural analysis.  

Kolmogorov-Smirnov test (K-S test) Statistics: The Kolmogorov-Smirnov Test R 

module from http://www.wessa.net/rwasp_Reddy-Moores%20K-S%20Test.wasp 

was used to generate the K-S test Statistic and P-value from histogram raw data input. 

Azymetric™ platform technology case study: The antibody sequence information 

was extracted from Patent number: 11306156 (Modified antigen binding polypeptide 

constructs and uses thereof). https://patents.google.com/patent/WO2015181805A1.  

Protein-Sol measurements on bispecific case study dataset: Full antibody sequence 

information was saved as input fasta files. These fasta files were used on the web-

based Protein-Sol tool available at https://protein-sol.manchester.ac.uk/. The Protein-

Sol sequence algorithm calculates 35 sequence features and provides an output table 

in excel. A docker container was also used to create a local instance of the protein-sol 

solubility algorithm. The patches tool was used to visualize the surface patches of 

potential and hydrophobicity for PDB structure of bispecific antibodies in Figure 23.   
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Part 1 – Evaluating different antibody structural formats: 

4.4 Engineered antibody fragments dataset  

A dataset of over a hundred engineered antibodies for multiple clinical indications and 

originating from diverse development technologies was extracted from the IMGT® 

database. We then compiled the sequence and 3D structure information for these 

antibodies from several online resources. The engineered antibodies with missing 

sequence information were discontinued for further analysis while the scFv fragment 

from each engineered antibody was used as a separate query in computational 

developability assessments. Finally, we had an annotated dataset of 103 engineered 

scFv fragments for analysis using antibody informatics tools such as ProteinSol, 

AbPred, and TAP. These were applied sequentially to the entire antibody dataset.  

Engineered antibodies dataset (Table 10) collates publicly available information on 

various engineered antibody therapeutics that were available in the market or were 

being investigated in human clinical trials as of 2023. Figure 18 shows the clinical trial 

status for different categories of engineered antibodies. Among these 103 antibodies, 

majority of the antibodies (70%) are in early-stage clinical trials with 58 antibodies in 

phase - I clinical trials and 14 in phase - II clinical trials. It is expected since engineered 

antibodies are recent innovations departing from the conventional mAbs that have 

been launched in clinical development only in recent years. Therefore, only six of 

these engineered antibodies in the dataset have been approved and have received the 

formal marketing authorizations namely – blinatumomab (BLINCYTO®), faricimab 

(VABYSMO™), catumaxomab (REMOVAB®), amivantamab (RYBREVANT™), 

emicizumab (HEMLIBRA®) and tebentafusp (KIMMTRAK®).  

INN 
(International 

Non-proprietary 
Name) 

Common name / Proprietary 
name 

Company Clinical 
indication 

 Highest 
Clinical 

Trial 

Development Technology : BiTE® (Bispecific T cell Engager) technology 
Antibody Format: (scFv - heavy - kappa) - (scFv - heavy - lambda) – scFc 

acapatamab AMG-160 Amgen  
(Thousand Oaks CA USA) 

Cancers, 
prostate, 

metastatic 

Phase I 

blinatumomab BLINCYTO®,  
AMG103, BITE MT-103, 

bscCD19xCD3 
MEDI-538, MT103 

MedImmune (Gaithersburg 
MD USA) (US) / Amgen  

(Thousand Oaks CA USA) 
(US) / AstraZeneca  

(London UK) 

Lymphoblastic 
leukemia (B cell 

ALL) 

Approved 

eluvixtamab AMG-330, MT-114 Amgen  
(Thousand Oaks CA USA) 

Acute myeloid 
leukemia (AML) 

Phase I 

emerfetamab AMG-673 Amgen  
(Thousand Oaks CA USA) 

Acute myeloid 
leukemia (AML) 

Phase I 
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emirodatamab AMG 427 Amgen 
 (Thousand Oaks CA USA) 

Acute myeloid 
leukemia (AML) 

Phase I 

etevritamab AMG 596 Amgen 
 (Thousand Oaks CA USA) 

Glioblastoma Phase I 

gresonitamab AMG 910 Amgen 
 (Thousand Oaks CA USA) 

GE Junction 
Cancer 

Phase I 

pacanalotamab AMG-420, BI-836909 Amgen 
 (Thousand Oaks CA USA) 

Multiple 
myeloma (MM) 

Phase I 

pasotuxizumab AMG 212, BAY 2010112 Amgen (Thousand Oaks CA 
USA) / Bayer HealthCare 

Pharmaceuticals (Leverkusen 
Germany) / Micromet 
Inc. (Munich Germany) 

Cancers, 
prostate 

Phase I 

pavurutamab AMG-701, BCMA HLE-BiTE Amgen  
(Thousand Oaks CA USA) 

Multiple 
myeloma (MM) 

Phase I 

solitomab AMG 110 Micromet AG (Munich 
Germany)/ Amgen (Thousan

d Oaks CA USA) 

Solid tumours Phase I 

tarlatamab AMG-757 Amgen 
 (Thousand Oaks CA USA) 

Cancers, small 
cell lung (SCLC) 

Phase I 

vepsitamab AMG 199 Amgen 
 (Thousand Oaks CA USA) 

GE Junction 
Cancer 

Phase I 

N/A AMG 211 Amgen 
 (Thousand Oaks CA USA) 

Adeno 
carcinoma 

Phase I 

Development Technology : CrossMAb technology 
Antibody Format: IgG1 - kappa - lambda with half-IG VL-CH1/VH-CK crossover 

faricimab VABYSMO™ Roche, F. Hoffmann-La 
Roche Ltd. (Basel 

Switzerland) 

Age-related 
macular 

degeneration 
(AMD) 

Approved 

vanucizumab RG-7221 Roche, F. Hoffmann-La 
Roche Ltd. (Basel 

Switzerland) 

Cancers, 
colorectal (CRC) 

Phase II 

Development Technology : Dual Variable Domain immunoglobulin (DVD-Ig™) 
Antibody Format: [VH - VH' - H-Gamma1_VL - VL' - C-kappa] - dimer 

lutikizumab ABT-981 AbbVie Inc. 
 (North Chicago IL USA) 

Osteoarthritis 
(OA) 

Phase II 

remtolumab ABT-122, A-1230717 AbbVie Inc. 
 (North Chicago IL USA) 

Rheumatoid 
arthritis (RA), 

Psoriatic 
arthritis (PSA) 

Phase II 

romilkimab SAR156597 Sanofi (Paris France) Idiopathic 
pulmonary 

fibrosis 

Phase II 

Development Technology : Dual-Affinity Re-targeting (DART®) 
Antibody Format: V-Lambda - VH _ V-Kappa - VH' or [V-kappa’-VH-h-CH2-CH3_V-kappa-VH’]2 

duvortuxizumab JNJ-64052781, MGD011, 
RES192M1.2, hBU12(2.4)-hXR32-

MP3 M1.2 

MacroGenics Inc. (Rockville 
MD USA) / Janssen 
Pharmaceuticals, 

inc. (Titusville NJ USA) 

lymphoblastic 
leukemia (B cell 

ALL) 

Phase I 

flotetuzumab MGD-006, RES234 MacroGenics Inc. 
 (Rockville MD USA) 

Acute myeloid 
leukemia (AML) 

Phase I 

lorigerlimab MGD 019 MacroGenics Inc. 
 (Rockville MD USA) 

Solid tumours Phase I 

obrindatamab MGD009, RES281 M1.1 MacroGenics Inc. 
 (Rockville MD USA) 

Solid tumours, 
Advanced 
Cancers 

Phase I 

Development Technology : DuoBody® 
Antibody Format: IgG1 - lambda – kappa or IgG1 – kappa – kappa 

acasunlimab BNT-311, 
DuoBody-PD-L1x4-1BB,  

GEN-1046 

Genmab A/S (Copenhagen 
Denmark) / BioNTech 
SE (Mainz Germany) 

Solid tumours Phase I/II 

tecaginlimab GEN-1042, BNT-312 Genmab A/S  
(Copenhagen Denmark) 

Solid tumours Phase I/II 

Development Technology : Nanobody® 
Antibody Format: VH - VH' and other formats.  
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gefurulimab ALXN-1720, CON-9978 Alexion Pharmaceuticals 
Inc. (New Haven CT USA) 

Complement 
component 
deficiency 

Phase I 

isecarosmab M-6495 Merck KgaA  
(Darmstadt Germany) 

Solid tumours Phase I 

ozoralizumab ATN-103 Ablynx  
(Ghent/Zwijnaarde Belgium) 

Rheumatoid 
arthritis (RA) 

Phase III 

sonelokimab M-1095, MSB-0010841 Merck & Co., Inc. 
 (Whitehouse Station NJ 

USA) 

Psoriasis Phase I 

vobarilizumab ALX-0061,  
20A11-9mer-ALB11 

Ablynx (Ghent/Zwijnaarde 
Belgium) / AbbVie 

Inc. (North Chicago IL USA) 

Rheumatoid 
arthritis (RA), 
Inflammatory 

conditions 

Phase II 

Development Technology : Other formats such as Triomab®, Pentambody™, ADAPTIR™ Bispecific etc.  
Antibody Format: [scFv]2 - Fc - [scFv]2, IgG2a - kappa / G2b – lambda and other multispecific formats.  

zenocutuzumab MCLA-128, PB4188, 
R040517 

Merus NV 
 (Utrecht Netherlands) 

Solid tumours Phase I/II 

N/A ES414 Emergent Biosolutions 
 (Rockville MD USA) 

Cancers, 
prostate 

Phase I 

fidasimtamab BH-2950, IBI-315 Hanmi Pharmaceutical (Seoul 
Korea) / Innovent 

Biologics (Suzhou China) 

Solid tumours Phase I 

vixtimotamab AMV-564, TandAb T564 Amphivena 
Therapeutics (South San 

Francisco CA USA) 

Acute myeloid 
leukemia (AML) 

Phase I 

catumaxomab REMOVAB®,  
TPBs01, Musmus G2a kappa 

Fresenius Biotech 
GmbH (Bad Homburg 

Germany) / TRION 
Pharma (Munich Germany)  

Cancers, 
ovarian, Gastric 

Cancers  

Approved 

ertumaxomab REXOMUN® Fresenius Biotech 
GmbH (Bad Homburg 

Germany) / TRION 
Pharma (Munich Germany) 

Cancers, breast Approved 

alnuctamab CC-93269, EM-901 Celgene corporation 
 (Summit USA) 

Multiple 
myeloma (MM) 

Phase I 

amivantamab RYBREVANT™,  
JNJ-61186372, JNJ-6372, 

amivantamab-vmjw 

Janssen Research & 
Development, LLC 
 (Raritan NJ USA) 

Cancers, non-
small cell lung 

(NSCLC) 

Approved 

bafisontamab EMB-01, FIT-013a EpimAb Biotherapeutics  
 (Shangai China) 

Cancers, non-
small cell lung 

(NSCLC) 

Phase I/II 

bavunalimab XmAb-22841 Xencor Inc.  
(Monrovia CA USA) 

Solid tumours Phase I 

cadonilimab AK-104 Akeso Biopharma, Inc.  
(Fremont CA USA) 

Cancers, non-
small cell lung 

(NSCLC) 

Phase II 

cevostamab BFCR-4350-A, BFCR-4350A, 
RG-6160, RO-7187797 

Genentech Inc.  
(San Francisco CA USA) 

Multiple 
myeloma (MM) 

Phase I 

cibisatamab RO-6958688, CEA-TCB,  
RG-7802 

Roche Ltd. (Basel 
Switzerland) / Genentech 

Inc. (San Francisco CA USA) 

Solid tumours 
Cancers 

Phase I 

cinrebafusp alfa PRS-343 Pieris Pharmaceuticals, Inc.  
(Boston MA USA) 

Solid tumours Phase I 

dilpacimab ABT-165, PR-1283233 AbbVie Inc.  
(North Chicago IL USA) 

Solid tumours Phase I 

efdamrofusp alfa ACVP-1, IBI 302 Innovent Biologics 
 (Suzhou China) 

Age-related 
degeneration 

(AMD) 

Phase I 

elranatamab PF-06863135, PF-3135 Pfizer  
(New York NY USA) 

Multiple 
myeloma (MM) 

Phase I 

emicizumab HEMLIBRA®, 
 ACE-910, RG6013, 

Chugai Pharmaceutical Co., 
Ltd. (Tokyo Japan) / Roche, F. 

Hoffmann-La Roche 
Ltd. (Basel Switzerland) 

Coagulation 
factor VIII 
deficiency 

(Hemophilia A) 

Approved 

ensomafusp alfa CD19-4-1BBL, RG 6076, 
RO-7227166 

Roche, F. Hoffmann-La 
Roche Ltd. (Basel 

Switzerland) 

Lymphoma, B 
cell 

Phase I 
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epcoritamab GEN3013 Genmab A/S  
(Copenhagen Denmark) 

B-cell 
malignancies 

Phase II 

erfonrilimab KN-046 Alphamab Co.,Ltd 
 (Suzhou China) 

Cancers, non-
small cell lung 

(NSCLC)  

Phase II 

glofitamab CD20-TCB (2:1), RG-6026 Roche, F. Hoffmann-La 
Roche Ltd. (Basel 

Switzerland) 

Lymphoma, B 
cell 

Phase I 

gremubamab MEDI3902 MedImmune 
 (Gaithersburg MD USA) 

Nosocomial 
pneumonia 

Phase I 

istiratumab MM-005, MM-141 Merrimack Pharmaceuticals 
 (Cambridge MA USA) 

Hepatocellular 
carcinoma 

(HCC) 

Phase II 

ivonescimab AK 112 Akeso Biopharma, 
Inc. (Fremont CA USA) 

Cancers, non-
small cell lung 

(NSCLC) 

Phase II 

izuralimab XmAb-23104 Xencor Inc.  
(Monrovia CA USA) 

Solid tumours Phase I 

mosunetuzumab BTCT4465A, 
RG-7828, 

RO7030816 

Roche Ltd. (Basel 
Switzerland) / Genentech 

Inc. (San Francisco CA USA) 

Cancers, blood 
Lymphoma, 
follicular (FL) 

Phase I 

navicixizumab OMP-305B83 OncoMed Pharmaceuticals 
 (Redwood City CA USA) 

Solid tumours Phase I 

nivatrotamab Hu3F8-BsAb Memorial Sloan-Kettering 
Cancer Center (NY USA) 

Neuroblastoma Phase I/II 

odronextamab REGN-1979 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Chronic 
lymphocytic 

leukemia (CLL) 

Phase I 

petosemtamab MCLA-158 Merus NV 
 (Utrecht Netherlands) 

Cancers, 
colorectal (CRC) 

Phase I 

plamotamab XmAb-13676 Xencor Inc.  
(Monrovia CA USA) 

Hematologic-
blood cancer 

Phase I 

rovelizumab LEUKARREST™,  
Hu23F2G 

Eli Lilly  
(Indianapolis IN USA) 

Multiple 
sclerosis (MS), 

Ischemic stroke 

Phase III 

runimotamab BTRC-4017A, RG-6194 Genentech Inc. (S. San 
Francisco CA USA) 

Solid tumours Phase I 

simridarlimab IBI 322 Innovent Biologics 
 (Suzhou China) 

Solid tumours Phase I 

sonelokimab M-1095, MSB-0010841 Merck & Co., Inc. 
 (Whitehouse Station NJ 

USA) 

Psoriasis Phase I 

talquetamab JNJ-64407564 Janssen Research & 
Development, LLC 
 (Raritan NJ USA) 

Relapsed 
multiple 
myeloma 

Phase I 

tebentafusp KIMMTRAK® Immunocore Ltd 
 (Abingdon UK) 

Melanoma, 
malignant 

Approved 

tebotelimab MGD-013 MacroGenics Inc. 
 (Rockville MD USA) 

Solid tumours, 
Hematologic-
blood cancer 

Phase I 

teclistamab JNJ-64007957 Janssen Research & 
Development, LLC 
 (Raritan NJ USA) 

Multiple 
myeloma (MM) 

Phase I 

tepoditamab MCLA-117, PB9122 Merus NV 
 (Utrecht Netherlands) 

Acute myeloid 
leukemia (AML) 

Phase I/II 

tibulizumab LY 3090106 Eli Lilly  
(Indianapolis IN USA) 

Sjögren's 
syndrome (SjS) 

Phase I 

tidutamab XmAb-18087 Xencor Inc.  
(Monrovia CA USA) 

Cancers, 
gastrointestinal 

Phase I 

ubamatamab REGN4018 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Cancers, 
ovarian 

Phase II 

vibecotamab XmAb14045 Xencor Inc. 
 (Monrovia CA USA) 

Acute 
lymphocytic 

leukemia (ALL) 

Phase I 

voxalatamab JNJ-63898081, JNJ-8081 Janssen Research & 
Development, LLC 
 (Raritan NJ USA) 

Solid tumours Phase I 
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vudalimab XmAb-20717 Xencor Inc.  
(Monrovia CA USA) 

Solid tumours Phase I 

N/A 4F2 MRC Technology (London 
UK) / Merck 

KgaA (Darmstadt Germany) 

Cancers Phase I 

N/A 4D5-8, UCHT1, BsF(ab')2 v1, 
F(ab’)2 4D5-8/UCHT1-v1 

Charing Cross Sunley 
Research Centre (UK) 

/ Genentech Inc. (S. San 
Francisco CA USA)  

Cancers 
(overexpressing 

ERBB2) 

Phase II 

N/A MDX-H210, 520C9XH22 Medarex (Princeton NJ USA) Cancers, 
prostate 

Phase II 

N/A MDX-447, F(ab’)2 H425 (anti-
EGFR)/H22 (anti-FcγRI) 

Genmab A/S (Copenhagen 
Denmark) / Medarex  

(Princeton NJ USA) 

Cancers Phase II 

N/A MDX-220, F(ab’)2 HCC49 (anti-
TAG-72)/H22 (anti-FcγRI) 

Genmab A/S (Copenhagen 
Denmark) / Medarex  

(Princeton NJ USA) 

Acute myeloid 
leukemia (AML) 

Phase I 

N/A MM-111 Merrimack Pharmaceuticals  
(Cambridge MA USA) 

Cancers, gastric Phase II 

N/A REGN1979 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Lymphoma, 
diffuse large B 

cell (DLBCL) 

Phase I 

Table 10: Engineered antibodies dataset. The information is extracted from publicly available 

online resources such as AdisInsight, IMGT® database, and ClinicalTrials.gov database.  

 

 

Figure 18: Distribution of engineered antibodies according to their clinical trial status for 

different categories of novel development technologies extracted from the IMGT® database. 

Among the full-length mAbs, 27% are IgG1s, 8% are IgG2s, and 7% are IgG4s. An 

explanation of this trend can be the differences in the molecular attributes and effector 
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functions between these IgG subclasses. IgG1 has the highest FcγR-binding affinity, 

followed by IgG3, IgG2, and IgG4.16 So, these IgG subclasses differ in triggering 

FcγR-expressing cells, which result in phagocytosis or antibody-dependent cell-

mediated cytotoxicity and activating complement. These four subclasses - IgG1, IgG2, 

IgG3, and IgG4, are highly conserved, but differ in their constant region, particularly 

in their hinges and upper CH2 domains. A previous study has demonstrated that IgG1 

mAbs are more prone to hinge region fragmentation compared to IgG2 and IgG4 

mAbs under heat, and pH-related stress conditions.17 So, IgG2 and IgG4 formats 

would be preferred under high thermal stress and long-term cold storage conditions. 

The remaining engineered biotherapeutics are various engineered Fabs and engineered 

scFv formats unique to each platform technology. The light chains for 78% of the 103 

engineered antibody therapeutics are of kappa (κ) isotype, and the remaining 22% are 

lambda (λ) isotype. The engineered biotherapeutics serve several disease areas and 

clinical indications including cancers, solid tumours, multiple myeloma, acute 

myeloid leukaemia, and rheumatoid arthritis. A summary of all the major engineered 

antibody platform technologies has been provided below.  

BiTE® (Bispecific T cell Engager): BiTE (bispecific T-cell engager) technology is a 

targeted immuno-oncotherapy platform that recruits patients' own cytotoxic T cells to 

tumour cells.18 BiTEs consist of one arm with designed specificity towards antigen on 

tumour cells and other arm engineered to bind with a surface molecule on T cells 

linked by a peptide linker. BiTEs direct T cells' cytotoxic activity to eliminate tumour 

cells when both targets are engaged by their respective scFv arms. Blinatumomab was 

the first canonical BiTE molecule that targets CD19 surface antigens on B cells 

approved for the treatment of acute lymphocytic leukaemia (ALL) in December 

2014.19 The tumour-binding arm can be engineered to target different types of cancer. 

A considerable number of related bispecific T cell-recruiting antibodies which are 

potentially effective in tumour immunotherapy have been derived from BiTEs.20 

CrossMAb technology: CrossMab technology uses crossover of different domains 

within the Fab-fragment within one arm of a bispecific IgG antibody to enable correct 

chain association while employing knob-into-hole technology to achieve correct 

heterodimerization of the heavy chains.21, 22 CrossMabs have no chemical linkers or 

connectors. Overall, the CrossMab technology results in the correct assembly of the 

desired bispecific antibody especially due to use of domain crossover in the Fab region 
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to enforce correct light chain pairing. CrossMab technology has evolved in the past 

decade to be one of the most versatile and broadly applied technologies with nearly 

20 bispecific antibodies developed by Roche and others have advanced to clinical 

trials.23 Notably, the Ang-2/VEGF bispecific antibody Faricimab marketed as 

Vabysmo™ has been approved in 2022 and CD20/CD3 T cell bispecific antibody 

Glofitamab is currently in pivotal Phase 3 trials. 

Dual Variable Domain immunoglobulin (DVD-Ig™): The DVD-Ig is an IgG-like 

molecule designed by inserting two variable domains in tandem through a short 

peptide linkage in the heavy and light chains.24, 25 Overall, the target-binding variable 

domains of two mAbs are combined to create a dual-targeting tetravalent molecule. 

The fusion orientation of the two variable domains and the choice of linker sequence 

are critical to the functional activity and efficient expression of the DVD-Ig antibody. 

The domain flexibility in the DVD-Igs allows antigen binding with minimal steric 

hindrance. A DVD-Ig has many desirable properties of a normal IgG-like mAb such 

as high in vivo stability, excellent physicochemical and pharmacokinetic properties, 

good expression in mammalian cells, and amenability to large-scale manufacturing.26  

Dual-Affinity Re-targeting (DART®): DART is an alternative bispecific antibody 

platform each Fv is formed by the association of a VL partner on one chain with a VH 

partner on the second chain in a VLA-VHB + VLB-VHA configuration.27 Therefore, the 

heterobispecific DART structure consists of two covalently linked chains each with a 

unique binding site. MacroGenics’ internal pipeline has over 100 DART molecules in 

preclinical and early clinical trials for multiple clinical indications such as cancer, 

autoimmune disorders, and infectious diseases. Previous studies have demonstrated an 

increased level of potency, higher magnitude of T cell activation, favourable safety, 

and pharmacokinetic properties for DART antibodies.28 However, most of the DART 

molecules have been discontinued in Phase 2 and Phase 3 trials by the company.  

DuoBody®: The Genmab DuoBody® platform is a versatile technology for creating 

bispecific antibodies by employing controlled fab arm exchange to combine two 

distinct binding specificities within the same molecule.29 This controlled fab arm 

exchange is achieved by single matched mutation in the CH3 region of each parental 

IgGs that ultimately results in the heterodimerization of the heavy chain-light chain 

pairs. DuoBody antibodies, therefore, retain native IgG structure and are compatible 
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with additional Fc engineering strategies to form high purity bispecifics capable of 

large-scale manufacturing. In 2021, RYBREVANT™ received the U.S. FDA approval 

which is the first among the therapies created using DuoBody technology platform.30 

Nanobody®: Nanobodies or VHH fragments are the recombinant variable domains of 

heavy-chain-only antibodies with many unique properties such as small size, superior 

stability and solubility, minimal cross-reactivity, and deep tissue penetration.31, 32 

Nanobody molecules are derived from llamas, alpacas, and other species that have 

only "heavy-chain" peptides. Such heavy chain fragments when connected like beads 

on a string, exhibit multivalent binding to many different targets at once.  

Several other mature commercial technology platforms are available in the market for 

generation of multispecific antibodies.33 Some of the key other formats from over 30 

formats are ADAPTIR, ART-Ig, BEAT, DAF, DutaFab, Hetero-Ig, IgG-scFv, 

Multiclonics, Pentambody, Tandab, Triomab, XmAb, VELOCI-Bi, and WuxiBODY.  

 

Figure 19: Common engineered bispecific and multispecific antibody formats. The dark blue 

and dark green represent the heavy chains, while the lights blue and green colour chains 

represent the light chains. Image adapted from Suurs, Frans V., et al review.34  

The first subset of engineered antibody formats is the engineered antibody fragments 

which use Fabs, Fc region, and scFvs as the building block. These engineered antibody 
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fragments are linked by short peptide sequences which can be made into bivalent, 

trivalent, or tetravalent formats. Antibody discovery technologies such as dual affinity 

re-targeting (DART), bispecific T-cell engager (BiTE), tandem antibodies (TandAbs), 

and nanobody platforms fall in this category.  

The next engineered antibodies subset contains multivalent IgG-like antibodies with 

heterodimeric heavy chains. The knobs-into-holes (kih), Duobody, Triomab, and other 

similar technologies created to promote correct heavy and light chain pairing fall in 

this category. Next category is IgG fusion antibodies and chemically coupled antibody 

fragments. These are comprised of IgGs with other binding domains fused to either 

the N or C terminus of either the heavy or light chains. So, these may take form of 

IgG-scFv; IgG-dAb; MAbtyrin, and DVD-Ig antibodies. Finally, fusion proteins and 

related formats such as Fc-fusions, kih-Fc fusions, and bispecific-Fc fusions are very 

popular as they provide the ability to combine additional receptor binding sites within 

the final antibody structure. These engineered formats are shown in Figure 19.  

  

Figure 20: Engineered antibodies platforms in  IMGT® database for top pharma companies.  

Our created engineered antibodies dataset has been sourced from various development 

technologies that are proprietary platform technologies in antibody discovery for top 

pharma and biotechnology companies. Figure 20 above shows the allotment of various 

antibody platform technologies between the pharma and biotech companies. Roche 
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and Amgen are the key players in the development of engineered antibodies. Amgen 

is pioneering BiTE® technology to advance the immuno-oncology field and bring new 

therapeutic approaches to patients. BiTE® (Bispecific T-cell Engagers) are the most 

abundant engineered antibodies in clinical trials representing 14% of antibodies in this 

dataset. Currently, Amgen is designing BiTE® molecules with additional features to 

extend the serum half-life by a few hours.  

Roche has new CrossMAb antibodies under development and has been also advancing 

other formats such as DutaMab™ technology acquired from Dutalys in 2014. Genmab 

has also developed a robust pipeline of products using DuoBody®, HexaBody®, and 

DuoHexaBody® platforms. MacroGenics is also advancing multi-specific platforms 

such as DART® and TRIDENT®. Several other novel formats have been included as 

well in our dataset under others category. So, overall, the dataset is well balanced with 

sufficient representation from all major platform technologies in commercial use.  

4.4.1 Computational developability analysis of biophysical performance 

We started the computational developability assessment of the engineered antibodies 

dataset with the AbPred tool. Figure 21 shows the AbPred scores for some biophysical 

assays across different engineered antibody formats. It has different categories on the 

x-axis in the order starting from left namely - BiTE®, CrossMAb, DART®, DuoBody®, 

DVD-Ig™, Nanobody®, and others. The y-axis shows assay scores with the arrow on 

y-axis indicating the direction of unfavourable assay values. Also, the 5% and 10% 

cutoff values from our previous developability assessment benchmarks are shown in 

yellow and red colour respectively for each biophysical assay.  

We observe interesting developability insights for each technology from below results. 

CrossMAb and Nanobody®  antibodies displayed very high hydrophobicity in the HIC 

assay. All the CrossMab format antibodies breached the 10% cutoff (in yellow) from 

clinical-stage therapeutics with 75% of the CrossMab antibodies above even the 5% 

cutoff (in red). All other platform technologies except nanobodies had excellent HIC 

performance with most antibodies within the 10% cutoff threshold value (10.848) – 

BiTE (100%); DART (100%); Duobody (100%) and DVD-Ig (100%). A similar trend 

was observed for the SMAC assay with CrossMab and Nanobody® above 10% cutoff. 
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However, the SGAC assay values were comparable and optimal within the 10% cutoff 

for all platforms. So, the SGAC assay scores indicate that all engineered antibody 

platforms have very low self-association and thus we expect good colloidal stability 

for these engineered antibodies. We hypothesize that this optimal self-association 

property may be explained by the inherent engineering of binding domains to not self-

interact often through a constrained pairing of heavy and light chains. So, there are 

fewer unpaired binding sites and ‘charge hotspots’ in the engineered antibodies that 

result in minimal self-association.  

 

Figure 21: AbPred scores for four developability assays for different categories of engineered 

antibodies shown on x-axis. The arrow on y-axis indicates the direction of unfavorable values. 

Further evidence of low self-association in engineered antibodies is also seen in CSI 

BLI assay results where all platforms have values under the 10% cutoff representing 

comparable self-association to successful clinical-stage antibodies. For the PSR assay 

measuring the polyspecificity, we observe that a fraction (21%) of the BiTE antibodies 

were above the 10% cutoff but not above the 5% cutoff which indicates a concern for 



156 
 

off-target effects in clinical trials for BiTEs. Interestingly, the antibody platform with 

the most optimal PSR assay performance was CrossMAb with possibly the lowest off-

target binding. CrossMab antibodies also had the best performance in the ELISA 

assay, which is another measure of multiantigen nonspecificity. So, this implies that 

the CrossMAb engineering has designed the antibody molecules for lower off-target 

binding but at a corresponding risk of high hydrophobicity, established earlier.  

The DVD-Ig platform had the best overall developability profile among all categories 

because it was mostly within the 10% threshold cutoffs for all assays while the other 

formats breached the 10% cutoffs in more than one assay. It had the lowest values in 

the CIC assay representing the lowest cross-reactivity among all formats. DVD-Ig 

antibodies had the lowest mean (-0.55); quartile 1 (-1.00); median (-0.55); quartile 3 

(-0.08) and upper whisker (-0.07) values for the CIC assay as shown in Figure 22. 

 

Figure 22: Cross-Interaction Chromatography (CIC) assay values for different categories of 

engineered antibodies. The arrow on y-axis indicates the direction of unfavorable values.  
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A similar trend is observed for the AC-SINS assay with DVD-Ig platform showing 

the lowest self-association behaviour. This validates an excellent interaction and 

binding profile for the DVD-Ig antibodies. Overall, there were no developability 

issues identified for DVD-Ig antibodies from our developability assessment.  

We therefore conclude that DVD-Ig™ platform has lowest non-specific interactions 

and cross-reactivity reflecting best overall developability profile among all engineered 

antibody platforms. A possible explanation is that the scFv-based constructs may have 

constraints imparted by the linker sequences and a tendency to form aggregates due to 

domain exchange of the variable regions with partners from other molecules leading 

to a poor developability profile. While DVD-Ig antibodies have a similar configuration 

to a conventional IgG with IgG-like features and exceptional domain flexibility.35  

An extensive literature review revealed a possible mechanistic insight into the superior 

developability profile for the DVD-Ig™ platform. A previous study has suggested the 

role of the additional variable domain region via linkers that imposes limits on target 

size and location, and limits conformational changes (stabilization) upon target 

binding.24 Therefore, by design since DVD-Ig antibodies have an addition of the first 

variable domain to the second variable domain via a flexible linker sequence, they 

achieve lower non-specific interactions with overall excellent developability.  

4.4.2 Case Study 1: Bispecific antibody formats  

This case study aims to characterize the biophysical behaviour of bispecific antibody 

formats specifically such as dual-scFv, BiTEs, CrossMab Fabs, and DART molecules 

using available developability assessment tools. In this case study, we evaluated the 

structural features such as surface patches, charge, and hydrophobicity for a custom 

bispecific antibody dataset. We have then used antibody informatics tools such as 

ProteinSol and AbPred to identify the key biophysical features that decide bispecific 

antibody developability. The results were used to interpret the sequence and structural 

liabilities which are then used to guide future antibody engineering approaches.   

An extensive search was performed on PDB for engineered antibody fragments and 

10 engineered antibody fragments which have bispecific functionality were shortlisted 

for analysis. We characterized the charge and hydrophobicity of all available 10 

bispecific antibody fragments.  
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Figure 23: Protein-Sol visualization of charged and hydrophobic surface patches on each 

bispecific antibody. (A) The Fab is colour-coded from negatively charged (red) to positively 
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charged (blue). (B) The Fab is colour-coded from polar (purple) to non-polar (green) where 

the scale value represents the patch NPP ratio.  

These are represented by the following PDB IDs: 

1. 3BDY - Dual specific bH1 Fab (HER2 X VEGF) 

2. 3P0V - Anti-EGFR/HER3 Fab DL11 

3. 4IML - Anti-Ang2 CrossFab 

4. 4UB0 - Monovalent bispecific IgG ‘DuetMab’ 

5. 4ZFF - Dual-acting Fab 5A12 (Two-in-One VEGF/angiopoietin 2) 

6. 5FCS - PF-06671008, Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule 

7. 5WHZ - PGDM1400-10E8v4 CODV Bispecific Fab 

8. 6BAN – ROR1 BiTE, T-Cell Engaging Bispecific Antibody 

9. 6GHG – Roche CrossMab 

10. 6O89 - Anti-CD28xCD3 CODV Fab 

 

Figure 23 presents the visualization of charged and hydrophobic surface patches for 

each bispecific antibody. These figures are visualized using the embedded NGL 

viewer on the ProteinSol patches software available online at Protein-Sol tool.36  

We have used the ProteinSol patches software to quickly identify hotspots of relative 

hydrophobicity (higher NPP ratio). The 10 antibody fragments have been colour-

coded red for negatively charged to blue for positively charged surface patches. Also, 

for the hydrophobicity visuals the antibody fragments are colour-coded purple for 

polar to green for hydrophobic patches where the scale represents the polarity ratio. 

Next, we used AbPred tool to predict biophysical properties for 12 known biophysical 

platforms. Figure 24 shows the final heatmap image for all 10 bispecific antibodies. 

The heatmap is colour coded for each scFv dependent on a threshold value calculated 

by taking the worst 10% cutoff for the predicted Jain dataset values. If the predicted 

value is above the threshold value for the experiment, the corresponding square is 

coloured red, otherwise coloured green. So, here green squares represent good 

developability while red squares indicate poor developability profile. 

The protein-sol sequence algorithm calculates 35 sequence features:- Composition of 

the standard 20 amino acids, sequence length (len), Lysine minus Arginine (KmR), 

Aspartic Acid minus Glutamic Acid (DmE), Lysine plus Arginine (KpR), Aspartic 
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Acid plus Glutamic Acid (DpE), K+R-D-E (PmN), K+R+D+E (PpN), Phenylalanine 

+ Tryptophan + Tyrosine (aro), folding propensity (fld), Disorder propensity (dis), 

Beta strand propensities (bet), Kyte-Doolittle hydropathy (mem), pI, Sequence 

entropy (ent), Absolute charge at pH 7 (abs).37 So, we have characterized the sequence 

feature scores of our selected 10 bispecific fragments based on these 35 sequence 

features calculated by the ProteinSol algorithm. A previous work by Hebditch et al. 

has correlated the 35 sequence features to the 12 Abpred assays which will be used to 

interpret the underlying sequence features that are the reason for poor developability.38 

  

Figure 24: Predicted performance on 12 Jain biophysical platforms for bispecific antibody 

fragments. The 10 bispecific formats under study are represented by their 4-digit PDB codes. 

We conclude that three bispecific antibodies namely 3P0V (Anti-EGFR/HER3 Fab 

DL11), 4ZFF (Dual-acting Fab 5A12), and 5FCS (Anti-P-cadherin/Anti-CD3 DART 

molecule) have developability liabilities. Another bispecific antibody in our dataset, 

5WHZ (PGDM1400-10E8v4 CODV Bispecific Fab) is also predicted to have poor 

HEK titer expression and thermal stability but optimal other biophysical features. The 

anti-EGFR/HER3 Fab (3P0V) is predicted to have an unfavourable performance on 

SGAC-SINS, CSI-BLI, AC-SINS, ELISA, BVB, and DSF. So, using the Pearson 
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correlation coefficient matrix38 by Hebditch et al we attribute the poor developability 

to high net absolute charge (abs), low content of aspartic acid (D), and high arginine-

lysine content (KpR). This is further validated by a high value of KpR (1.312) and a 

high value of absolute charge (+0.148) from the Protein-Sol score. We also find these 

positive charge hotspots for 3P0V on the patches visualization. So, future protein-

engineering efforts for this anti-EGFR/HER3 Fab must be directed towards increasing 

the aspartic acid content, lowering arginine-lysine residues, and thus lowering charge.   

The dual-acting Fab 5A12 (4ZFF) is predicted to have an unfavourable performance 

on HIC, SMAC, and SGAC assays. So, using the Pearson correlation coefficient 

matrix we attribute the poor developability to a high aromatic amino acid 

(aro=F+W+Y) content with a score of 2.547 and an excess of Tyrosine (Y). So, future 

protein-engineering efforts for 4ZFF must be directed towards lowering the aromatic 

amino acid content to achieve optimal biophysical properties. 

The anti-P-cadherin/anti-CD3 DART bispecific antibody (5FCS) is predicted to have 

a poor performance on SMAC, SGAC, CIC, AC-SINS, and PSR. So, using the 

Pearson correlation coefficient matrix we attribute the poor developability to net 

absolute charge (abs), the content of tyrosine (Y) and aromatic amino acids (aro), the 

content of aspartic acid (D) and PmN (K+R-D-E). Low Protein-Sol scores in aromatic 

amino acid content (0.713) and aspartic acid (-1.75) for this DART antibody were the 

key sequence liabilities. So, proposed further optimization in DART format pipeline 

is to add aromatic amino acids and aspartic acid residues to the Fab or linker region. 

Finally, the 10E8v4 CODV Bispecific Fab (5WHZ) is predicted to have a poor 

performance on HEK and DSF assays. So, using the Pearson correlation coefficient 

matrix we attribute the problem to beta-strand propensity (bet) and low alanine (A), 

proline (P), and glutamine (Q). Low Protein-Sol scores of alanine (-2.132), glutamine 

(-0.66), and beta-strand propensity (-0.462) for 5WHZ bispecific confirm the sequence 

liabilities. So, future protein-engineering efforts must be directed towards increasing 

beta-strand propensity along with alanine and glutamine content. 

4.4.3 Case Study 2: Azymetric™ antibody therapeutics 

Zymeworks’ Azymetric™ drug discovery platform enables the transformation of 

monospecific antibodies into bispecific and multispecific antibodies using proprietary 
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amino acid modifications.39 The Azymetric™ technology is based on a spontaneous 

assembly of two different Fab domains consisting of unique heavy-chain and light-

chain pairings into a single molecule based on a library of proprietary amino acid 

substitutions. Such novel bispecific antibodies designed using Azymetric™ platform 

resemble conventional monospecific antibodies in structural features while having a 

bispecific functionality. Azymetric™ bispecific technology enables the development 

of biotherapeutics with unique mechanisms of action not accessible through typical 

monospecific antibodies. The engineered bispecific dual-targeting properties are used 

for synergistically blocking multiple signalling pathways, increasing tumour-specific 

targeting, recruiting immune cells to tumours, and enhancing receptor clustering.  

Bispecific antibodies sourced from the first-generation engineered mAb platforms 

have a significantly divergent structure from usual monoclonal antibodies and often 

require complex manufacturing processes. In contrast, Azymetric™ bispecifics retain 

the desirable developability properties and qualities such as high stability, long serum 

half-life, and low immunogenicity risk which are similar to their monospecific 

counterparts. Azymetric™ bispecifics in the preclinical development have excellent 

manufacturability as they are compatible with standard manufacturing processes with 

high yields and purity, which accelerates manufacturing timelines and reduces costs.  

In this case study, we have performed a computational developability assessment on 

Zanidatamab – a HER2 x HER2 Azymetric™ bispecific lead that is currently being 

evaluated in Phase 1 / Phase 2 clinical trials as a best-in-class treatment for patients 

with human epidermal growth factor receptor 2 (HER2) expressing cancers, including 

biliary tract, gastroesophageal adenocarcinomas, breast, and other tumour types.40  

The Abpred scores and ranking relative to Jain clinical-stage mAbs for Zanidatamab 

are shown in Figure 25. We observe an excellent rank of this Azymetric™ bispecific 

antibody in all 12 assays – HIC (51/100); SMAC (48/100); SGAC (50/100); CIC 

(38/100); CSI BLI (43/100); AC-SINS (51/100); HEK (43/100); PSR (79/100); 

ELISA (67/100); BVP (34/100); DSF (37/100) and ACC STAB (51/100). These are 

normalized ranks scored out of 100 relative to Jain dataset clinical-stage antibodies. 

We, therefore, conclude that the Azymetric™ bispecific antibody performs at par with 

the clinical-stage antibodies in all biophysical assays. So, the transformation from a 

monospecific to a bispecific format did not hamper the biophysical performance.  
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Zanidatamab Azymetric™ antibody also has excellent META scores of 38/100 for the 

Group X assays and 36/100 for the Group Y assays as shown in Figure 26. Here, the 

META score combines and averages multiple biophysical platforms. The meta score 

is calculated by ranking the Jain dataset results in order from best to worst rank, and 

then calculating where the input candidate sequence falls within that ranking for each 

biophysical platform. Group X consists of charge-based assays namely ELISA, BVP 

ELISA, PSR, CSI, ACC STAB, and CIC. Group Y consists of hydrophobicity-based 

assays SMAC and HIC. The green heatmap also provides the confirmation that all 

Azymetric™ antibody scores are within the worst 10% cutoff for Jain dataset values.  

Next, we evaluated Zanidatamab using the Therapeutic Antibody Profiler (TAP). The 

TAP results are shown in Figure 27. Zanidatamab had an excellent score in all five 

structural TAP metrics – Total CDR length (47); PSH (121.464); PPC (0.3201); PNC 

(0.1336) and SFvCSP (8.0). These scores are also within the amber flag and red flag 

cutoffs shown in Figure 27 as colour-coded vertical lines on the x-axis. 

 

Figure 25: AbPred scores for Azymetric™ antibody on 12 developability assays. Heatmap 

rank provided at the bottom for each assay. Zanidatamab – the lead Azymetric™ antibody is 

shown in red while Jain clinical stage antibodies are shown in green in each scatter plot.  
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Figure 26: Meta score which combines and averages multiple biophysical platforms for the 

Azymetric™ antibody. Group Y: HIC and SMAC. Group X: Other Charge based assays.  

 

Figure 27: TAP results for the Azymetric™ antibody. Part A – Score histograms for all five 

developability metrics. Part B – Summary of TAP scores and flag colour for Zanidatamab.  

Therefore, we conclude from our computational developability assessment results that 

the Azymetric™ antibodies have an excellent developability profile. No sequence and 

structural liabilities were observed across any tool. So, we predict favourable clinical 

trial success towards approval for Zanidatamab in current phase II clinical trials. Such 

traction is evident in Zymeworks’ licensing deals with key pharma/biotech partners.  
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Part 2 – Evaluating different antibody discovery technologies: 

4.5 Antibody phage display library dataset 

Phage display has emerged as a powerful platform for the discovery of therapeutic 

antibodies since antibody phage display was first developed by George P. Smith and 

Sir. Gregory Winter in the beginning of the 1990s, who were eventually awarded the 

Nobel Prize in Chemistry in 2018 for their work on development of phage display of 

peptide and antibodies. Antibody phage display libraries involve the isolation of fully 

human-derived mAbs from large Ig gene repertoires displayed on the surface of 

bacteriophages. Therefore, antibody phage display technology creates combinatorial 

antibody libraries on filamentous phages for generating desired antigen specific mAbs. 

The phage display technology is based on the fundamental biology of filamentous 

phages which are able to display a peptide of interest on their surfaces after inserting 

a foreign DNA fragment into the filamentous phage coat protein gene.41 Phage 

libraries generated from human rearranged V-gene repertoires are constructed from 

mRNA or RNA extracted from B cells of immunized or native donors. Construction 

of immunized or native libraries involves using reverse transcription polymerase chain 

reaction (RT-PCR) to prepare the cDNA template. This is followed by the 

amplification of the repertoire of VL and VH genes by PCR, before cloning into the 

phagemid.42 Antibody phage display is a versatile, in vitro selection technology that 

can be utilized to discover high-affinity antibodies specific to a wide variety of 

antigens. A previous review has detailed all the approved mAbs derived from phage 

display technology.43 However, it is important to note that the success of isolating 

useful antibodies in phage display is highly dependent on the quality and the nature of 

the targeted antigen used in biopanning and the size and quality of the library. 

A dataset of over fifty antibodies derived from phage display libraries for multiple 

clinical indications and originating from diverse development technologies was 

extracted from the IMGT® database. We then compiled the VH-VL sequence and 3D 

structure information for these antibodies from several online resources. The phage 

display antibodies with missing sequence information were removed for further 

analysis while scFv fragment from each phage display antibody was used as a separate 

query in the computational developability assessments. Finally, we had a dataset of 40 

phage display scFv fragments shown in Table 11 for evaluating developability.  
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Our antibody phage display library dataset provides publicly available information on 

various phage display antibody therapeutics that were available in the market or were 

being investigated in human clinical trials as of 2023. In this dataset, there are a total 

of 40 antibodies with 11 (27.5%) in phase-I trials, 17 (42.5%) in phase–II trials, and 7 

(17.5%) in phase-III clinical trials. Five phage display antibodies have been approved 

and have received the regulatory and marketing authorizations for various clinical 

indications – adalimumab (HUMIRA®), romiplostim (NPLATE®), tralokinumab 

(ADBRY™), atezolizumab (TECENTRIQ®), and tafasitamab (MONJUVI®).   

INN 
(International 

Nonproprietary 
Name) 

Common name / Proprietary 
name 

Company Clinical 
indication 

 Highest 
Clinical 

Trial 

Artificial human phage display library 
lesabelimab LDP Dragon Sail Pharmaceutical 

Co. Ltd. (Shanghai China) 
Cancers Phase II 

reozalimab IBI 318 Innovent Biologics (Suzhou 
China) 

Cancers,   
NSCLC 

Phase I 

atezolizumab TECENTRIQ®,  
MPDL3280A 

Roche Ltd. (Basel 
Switzerland) / Genentech 

Inc. (San Francisco CA USA) 

Cancers, breast 
Solid tumours 

Approved 

fazpilodemab BFKB8488A Roche Ltd. (Basel 
Switzerland) 

Diabetes 
mellitus (DM) 

Phase I 

trontinemab RG-6102, RO7126209  Roche Ltd. (Basel 
Switzerland) 

Dementia, 
Alzheimers 

Phase I/II 

Cambridge Antibody Technology (CAT) human antibody phage display library 
adalimumab HUMIRA®  (EU/US) Cambridge Antibody 

Technology (Cambridge UK) 
Crohn's disease, 

Rheumatoid 
arthritis (RA) 

Approved 

belimumab BENLYSTA®,  
LymphoStat-B 

GlaxoSmithKline (Brentford 
UK) / Human Genome 
Sciences Inc. (HGSI)  
(Rockville MD USA) 

Systemic lupus 
erythematosus 

(SLE), 
Vaculitis 

Approved 

bertilimumab CAT-213, iCo-008 iCo Therapeutics Inc. 
 (Vancouver BC Canada) 

Crohn's disease, 
Colitis, 

ulcerative (UC) 

Phase II 

fresolimumab GC-1008 Genzyme Corp. (Cambridge 
MA USA) / Cambridge 
Antibody Technology  

(Cambridge UK) 

Idiopathic 
pulmonary 

fibrosis 

Phase I 

mapatumumab HGS-ETR1, 
TRM-1 

Cambridge Antibody 
Technology (Cambridge UK) 
/ Human Genome Sciences 
Inc. (HGSI) (Rockville MD 

USA) 

Cancers, 
colorectal (CRC) 
Non-Hodgkin's 

lymphoma 
(NHL) 

Phase II 

mavrilimumab CAM-3001 MedImmune (Gaithersburg 
MD USA) 

/ AstraZeneca (London UK) 

Rheumatoid 
arthritis (RA) 

Phase II 

tralokinumab ADBRY™,  
CAT-354, 

MedImmune (Gaithersburg 
MD USA) 

/ AstraZeneca (London UK) 
/ LEO pharma (France 

Versailles) 

Atopic 
dermatitis (AD), 

Idiopathic 
pulmonary 

fibrosis 

Approved 

Dyax human antibody phage display library 

cixutumumab IMC-A12, LY3012217 Eli Lilly (Indianapolis IN USA) 
/ ImClone Systems 

Inc. (Somerville NJ USA) 

Cancers, non-
small cell lung 

(NSCLC) 

Phase II 

necitumumab PORTRAZZA™,  
IMC-11F8, 
LY3012211 

Eli Lilly (Indianapolis IN USA) 
/ ImClone Systems 

Inc. (Somerville NJ USA) 

Cancers, 
colorectal (CRC) 

Approved 
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opicinumab BIIB-033 Biogen, Inc.  
(Cambridge MA USA) 

Multiple 
sclerosis (MS) 

Phase II 

ramucirumab CYRAMZA™, 1121B, 
IMC-1121B, LY3009806 

Eli Lilly (Indianapolis IN USA) 
/ ImClone Systems 

Inc. (Somerville NJ USA) 

Cancers, 
bladder 

Solid tumours 

Approved 

seribantumab MM-121, SAR256212 Sanofi (Paris France)  
 Merrimack Pharmaceuticals  

(Cambridge MA USA) 

Cancers, 
ovarian  

Cancers, breast 

Phase II 

Other human antibody phage display technologies 

adecatumumab MT201 Micromet AG (Munich 
Germany) 

Breast Cancer,  
Prostate Cancer 

Phase II 

avelumab BAVENCIO®, 
MSB-0010718C, 

MSB0010682 

Merck Serono International 
S.A. (Geneva Switzerland) 

Cancers, non-
small cell lung 

(NSCLC) 

Phase III 

camoteskimab AEVI-007, AVTX-007, 
CERC-007, CERC007 

Avalo Therapeutics 
 (Wayne PA USA) 

Adult-onset 
Still’s disease  

(AOSD) 

Phase I 

carlumab CNTO 888 Centocor Inc.  
(Horsham PA USA) 

Cancers,  
Pulmonary 

Fibrosis 

Phase II 

namilumab MT203 Micromet Inc. (Munich 
Germany) / Nycomed (Zurich 

Switzerland) 

Rheumatoid 
arthritis (RA), 

Multiple 
sclerosis (MS) 

Phase I 

orticumab BI-204, R-7418 BioInvent (Lund Sweden) Atherosclerosis,  
Acute coronary 
syndrome (ACS) 

Phase II 

izalontamab SI-1, SI-1X6.4, SI-B001 Systimmune Inc  
(Redmond WA USA) 

Cancers, 
colorectal (CRC) 

Phase II 

MorphoSys's HuCAL® phage library technology 

anetumab 
ravtansine 

BAY 94-9343 ImmunoGen Inc. 
 (Cambridge MA USA)  

Solid tumours, 
Mesothelioma 

Phase I 

bimagrumab BYM338 Novartis Pharmaceuticals 
Corp. (East Hanover NJ USA) 

/ MorphoSys  
(Martinsried/Pla Germany) 

Type 2 diabetes 
(T2 DM), 

Musculoskeletal 
diseases 

Phase III 

elgemtumab LJM716, NVS201010 Novartis Pharmaceuticals 
Corp. (East Hanover NJ USA) 

Cancers, breast 
Cancers, gastric 

Phase I 

gantenerumab R1450 Roche Ltd. (Basel 
Switzerland) / MorphoSys 

 (Martinsried/Pla Germany) 

Alzheimer's 
disease (AD) 

Phase III 

guselkumab TREMFYA™,  
CNTO-1959 

MorphoSys 
 (Martinsried/Pla Germany) 

Psoriatic 
arthritis (PSA) 

Approved 

otilimab GSK3196165,  
MOR-04357, MOR103 

GlaxoSmithKline 
 (Brentford UK)  
/ MorphoSys  

(Martinsried/Pla Germany) 

Rheumatoid 
arthritis (RA), 
Osteoarthritis 

(OA) 

Phase II 

setrusumab BPS-804, MOR-05813 Mereo Biopharma (London 
UK) 

Osteogenesis 
imperfecta (OI) 

Phase II 

tarextumab OMP-59R5 GlaxoSmithKline (Brentford 
UK) / OncoMed 

Pharmaceuticals (Redwood 
City CA USA) 

Cancers, 
pancreatic 

Cancers, small 
cell lung (SCLC) 

Phase I 

tesidolumab LFG 316 Novartis Pharmaceuticals 
Corp. (East Hanover NJ USA) 

/ Alcon Laboratories, 
Inc. (Fort Worth TX USA) 

Age-related 
macular 

degeneration 
(AMD) 

Phase II 

utomilumab PF-05082566, PF-2566 Pfizer 
 (New York NY USA) 

Non-Hodgkin's 
lymphoma 

(NHL) 

Phase I 

vantictumab OMP-18R5 OncoMed Pharmaceuticals  
(Redwood City CA USA) 

Solid tumours Phase I 

xentuzumab BI 836845 Boehringer Ingelheim 
Pharmaceuticals 

 (Ridgefield CT USA) 

Solid tumours Phase I 

Felzartamab MOR202 MorphoSys 
 (Martinsried/Pla Germany) 

Multiple 
myeloma (MM) 

Phase II 
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tafasitamab MONJUVI®, MOR-00208,  
XENP-5574, XmAb®5574, 

MorphoSys (Martinsried/Pla 
Germany) / Xencor 

Inc. (Monrovia CA USA) 

Chronic 
lymphocytic 

leukemia (CLL) 

Approved 

Peptide phage display library technology 

romiplostim NPLATE® ,  
AMG 531 

Amgen 
 (Thousand Oaks CA USA) 

Chronic ITP Approved 

trebananib AMG 386, 2xCon4C Amgen 
 (Thousand Oaks CA USA) 

Cancers, 
ovarian 

Phase III 

Table 11: Antibody phage display library dataset. The information is extracted from publicly 

available online resources such as AdisInsight, IMGT® database, and ClinicalTrials.gov.  

The majority of the phage display antibodies are generated by three company-owned 

libraries - Cambridge Antibody Technology (CAT), Dyax, and MorphoSys’s human 

combinatorial antibody libraries (HuCAL®). A summary of major human antibody 

phage display technologies is provided below. 

Cambridge Antibody Technology (CAT) human antibody phage display library: 

Cambridge Antibody Technology (CAT) displays naïve scFv antibody domains on the 

surface of fd bacteriophage to generate combinatorial libraries. CAT involves creating 

a large library of phages, each of which displays a different human antibody fragment 

on its surface. In the CAT libraries, variable chain (V) gene repertoires are made in 

vitro by combining unrearranged V genes with D and J segments and cloning the final 

gene sequence in a bacteriophage.44 The final result is a highly diverse collection of 

human antibody fragments that are expressed on the surface of phage. The library is 

entirely derived from human antibody sequences, which reduces the risk of immune 

reactions when used as therapeutic agents. Cambridge Antibody Technology (CAT) 

has the highest number of approved mAbs including several blockbuster drugs like 

HUMIRA®, BENLYSTA®, ADBRY™, LumoxitiTM, ABthrax®, and Gamifant®.  

Dyax human antibody phage display library: Dyax’s human antibody phage 

display libraries combine immunoglobulin gene fragments from human donors with 

strategically designed synthetic DNA to generate semi-synthetic Fabs. Dyax's state-

of-the-art antibody phage display library contains over 10 billion unique clones that 

allow for rapid isolation of fully human target-specific antibodies.  Dyax library has 

been used to identify high-affinity human antibodies that bind to numerous therapeutic 

targets. Dyax has made its technology widely available through nonexclusive licenses 

in three areas: therapeutic products; in vitro diagnostics; and research products to 

major firms like Genzyme, Merck, and Novagen.45 Kalbitor®, Takhzyro®, Portrazza®, 

and Cyramza™ are some of the approved therapeutics derived from the Dyax library.  
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MorphoSys's HuCAL® phage display library technology: MorphoSys's Human 

Combinatorial Antibody Libraries (HuCAL) technology is an advanced version of 

phage display technology to generate HuCAL PLATINUM® library that contains 

approximately 45 billion different fully human antibodies. The unique feature about 

this library is that all CDRs here are diversified by trinucleotide-directed mutagenesis 

method (TRIM) that has yielded up to a 25-fold greater diversity.46 Also, additional 

sequence optimization has been carried out in HuCAL library to enhance mammalian 

cell expression levels and eliminate the undesirable motifs that limit expression rates. 

MorphoSys has created a pipeline of more than 60 drug candidates. MorphoSys’s 

HuCAL has the highest number of mAbs in clinical development among all categories 

with TremfyaTM, Monjuvi®, and Ilumya® as the approved therapeutics. 

Other artificial human phage display libraries: Earlier, the commercial use of 

phage display was restricted to only a few selected biopharmaceutical companies with 

rights to the phage display intellectual property. However, most of the key patents 

covering phage display technology have expired in the US and Europe, providing 

incentives to academic and biotech start-ups to design, construct and screen their own 

artificial human phage display libraries. Therefore, several other artificial human 

phage display libraries such as the SuperHuman™ library have been introduced that 

are based on a set of modular framework master genes with highly diversified CDRs 

to capture the structural immune repertoire.  

Several other antibody drugs are developed by in vitro affinity maturation using phage 

display technology. In this approach, synthetic gene libraries are constructed using 

random mutagenesis or site-specific mutagenesis in the antigen-binding regions such 

as the VH and VL sequences. These libraries are then displayed on the phages, and 

finally antibodies with high affinity for the antigens are isolated by biopanning. We 

have included such company reported affinity maturation subsets in “others” category.  

4.5.1 Computational developability analysis of biophysical performance 

We started the computational developability assessment of the phage display library 

dataset with the AbPred tool. The AbPred scores were evaluated for all 12 biophysical 

assays across different antibody phage display platform technologies. We observed 

interesting insights for each phage display library from the below results. The HIC 

assay values were comparable and mostly within the 10% cutoff value (10.848) for all 
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antibody phage display platforms – CAT (100%); Dyax (80%); MorphoSys (85%) and 

Artificial (100%). A similar trend was observed for the SMAC assay with most phage 

display antibodies below the 10% cutoff value. 

However, CAT phage display antibodies displayed highest scores in the SGAC assay 

which indicate low self-association and excellent colloidal stability for CAT phage 

display antibodies. The minimum SGAC score of 656.45 for CAT antibodies is well 

above the 10% cutoff value (< 234.11) which suggests minimal self-association. The 

relative comparison of SGAC assay values between antibody phage display platforms 

is shown in Figure 28. Here, the y-axis shows assay scores with the arrow on the y-

axis indicating the direction of unfavourable assay values. Also, the 5% and 10% 

cutoff values from our previous developability assessment benchmarks are shown in 

yellow and red colour horizontal lines respectively for each biophysical assay. 

 

Figure 28: Salt-Gradient Affinity-Capture Spectroscopy (SGAC) values for different antibody 

phage display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

A similar trend was observed for the Cross-Interaction Chromatography (CIC) assay. 

All CAT antibodies had negative scores (normalized AbPred score) in the CIC assay 

which represent quick elution time in the chromatography column and therefore 

minimal cross-reactivity. The relative CIC assay values between all antibody phage 

display platforms are shown in Figure 29.  
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Figure 29: Cross-Interaction Chromatography (CIC) assay values for different antibody 

phage display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

Further evidence of the lowest self-association in CAT phage display antibodies is 

seen in AC-SINS results. The relative AC-SINS results are captured in Figure 30.  
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Figure 30: Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS) assay 

values for different categories of antibody phage display platforms. The arrow on y-axis 

indicates the direction of unfavorable values.  

However, CAT antibodies had the worst HEK assay performance which suggests a 

low degree of expression in human embryonic kidney cells. So, the CAT phage display 

antibodies may relatively have high-throughput manufacturability issues that make 

CAT technology a commercially less viable option among phage display technologies. 

 Overall, all CAT antibodies are above the 10% cutoff value (< 128.25) which 

indicates that this is an acceptable titer value in comparison to overall clinical-stage 

antibodies. In general, this high degree of expression for phage display library 

antibodies may be attributed to the natural functional expression of bacteriophage 

genes for coat proteins and surface markers which result in high HEK titer values. 

CAT phage display antibodies also had a good performance in the PSR assay 

measuring polyspecificity with all antibodies within 10% cutoff values. Interestingly, 

the phage display platform with the most optimal PSR assay performance was the 

Dyax library. Dyax library also showed slightly better performance than CAT library 

in ELISA and BVP assays. It implies Dyax library antibodies by design have the 

lowest off-target binding and lowest multiantigen nonspecificity.  

The CAT phage display platform had the best overall developability profile among all 

categories. A clear relative advantage is observed for three assays - SGAC, CIC, and 

AC-SINS. However, other phage display technologies probably have a better HEK 

expression profile and overall commercial manufacturability. Therefore, future CAT 

technology phage display optimization and engineering approaches should be directed 

towards increasing the degree of expression to improve ease of manufacturability. 

There were no major developability issues identified for CAT antibodies from our 

AbPred assessment as even the HEK liability was insignificant in the overall scenario.  

4.5.2 TAP: Therapeutic Antibody Profiler results 

We next calculated the Therapeutic Antibody Profiler (TAP) scores for each phage 

display platform. The full results for TAP scores are shown in Figure 31. All phage 

display technologies have similar scores in the CDR length, Patches of Surface 

Hydrophobicity Metric (PSH), and Patches of Positive Charge (PPC) metric. Each 
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phage display platform antibodies are within the 10% cutoff value (53 ≤ L or L ≤ 44) 

for CDR length - CAT (100%); Dyax (79%); MorphoSys (77%) and Artificial (100%).  

 

Figure 31: TAP scores for five structural metrics related to developability for different 

categories of phage display antibodies shown on x-axis. TAP scores are shown on the y-axis. 

However, phage display antibodies breached the 10% cutoff value from clinical-stage 

therapeutics for PSH (144.63 ≤ PSH). We observe that 60% of CAT; 80% of Dyax; 

54% of MorphoSys and 50% of Artificial antibodies are above this 10% cutoff. Also, 

many phage display antibodies even breached the 5% cutoff value from clinical-stage 

therapeutics (156.20 ≤ PSH). We observe that 20% of CAT; 40% of Dyax; 31% of 

MorphoSys and 25% of Artificial antibodies are above this 5% cutoff. It indicates that 

the phage display antibodies in general have high patches of surface hydrophobicity. 

But this result is in contrast to our equivalent Abpred predictions for hydrophobicity 

in HIC and SMAC assays. Earlier, we observed optimal and similar hydrophobicity 

profiles for all phage display categories.  

TAP results also diverge in the Patches of Negative Charge (PNC) metric. Here, CAT 

antibodies display the worst performance with over 60% of the dataset above the 10% 

threshold (1.30 ≤ PNC), while mAbs from the other phage display technologies are 

mostly within this 10% threshold. The PNC metric scores for different phage display 
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antibodies are shown in Figure 32. As per these TAP results, CAT antibodies have 

many patches of negative charge that should result in lower colloidal stability and poor 

biophysical performance. But the AbPred predictions earlier were quite opposite to 

this with no developability issues identified for CAT antibodies. This inconsistency is 

also seen for the Structural Fv Charge Symmetry Parameter (SFvCSP) where the CAT 

antibodies again display the worst performance with over 40% of the dataset below 

the 10% cutoff (SFvCSP ≤ - 4.00). The SFvCSP scores for different phage display 

platforms are shown in Figure 33.  

A possible explanation for this inconsistency is a potential homology modelling error 

in ABodyBuilder. Since the TAP tool uses ABodyBuilder - a deep-learning based 

structural modelling algorithm to generate a structural homology model for the input 

antibody variable domain sequence, we believe that this algorithm is not accurate for 

phage display antibody datasets. It can be because of the absence of phage display 

libraries in the training subset for this deep-learning algorithm. Therefore, TAP is not 

fit for use on antibody phage display libraries, a concept which has emerged recently.   

 

Figure 32: Patches of Negative Charge (PNC) metric values for different categories of phage 

display antibodies. PNC is calculated across the CDR vicinity. 
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Figure 33: Charge Symmetry (SFvCSP) values for different phage display antibodies.  

We conclude from the above computational developability assessment results that the 

Cambridge Antibody Technology (CAT) phage display antibodies have the best 

overall developability profile among all phage display categories. They demonstrate 

lowest self-associations and cross-reactivity with optimal biophysical performance. 

However, the only tradeoff with CAT antibodies is a relatively low expression titer in 

HEK assay compared to other phage display technologies but acceptable and fair 

enough in comparison to clinical-stage benchmarks. However, Therapeutic Antibody 

Profiler has contrasting results where CAT antibodies are predicted to have patches of 

negative charge and charge asymmetry in the heavy and light chain that usually leads 

to high viscosity and colloidal instability. We believe this discrepancy arises due to 

low homology modelling accuracy for phage display antibodies in TAP.  

We observed that the Dyax library antibodies had the best performance in assays 

measuring polyspecificity – PSR, ELISA, and BVP. A detailed literature search 

revealed that Dyax libraries combine immunoglobulin sequences from human donors 

with strategically designed synthetic DNA.47 This provides Dyax antibodies by design 

with synthetic targeting in key antigen contact sites in the heavy-chain complementary 

determining regions CDR1 and CDR2. So, we expect higher efficacy and lower 
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adverse events being reported for Dyax library antibodies in advanced clinical trials. 

For instance, we expect clinical-trial success towards approval for Opicinumab - a 

Dyax antibody in phase II studies that is being investigated as a treatment to promote 

myelin repair in Multiple Sclerosis. Our results show that it had the lowest PSR assay 

score (0.1953); lowest ELISA score (1.1558) and the lowest BVP score (1.4846) 

among the entire phage display antibody dataset.   

MorphoSys's HuCAL library antibodies demonstrate highest expression level in the 

HEK assay compared to all other platforms as evidenced by the highest Maximum and 

Quartile 3 values of 184.35 mg/L and 171.09 mg/L respectively. This result justifies 

the HuCAL library approach to remove the sequence liabilities that limit expression 

in the HuCAL GOLD® and HuCAL PLATINUM® libraries. Therefore, our AbPred 

predictions are consistent with the company claims of a more optimized phage library.  

The differences can also be attributed to the inherent differences in the antibody 

structure formats for different phage display libraries. For instance, mAbs isolated 

from the CAT libraries belong to two IgG subclasses, IgG1 and IgG4, with the 

majority being IgG1-λ. On the other hand, mAbs from Dyax libraries belong to IgG1 

and IgG2 with the majority being IgG1-К. The selection of desired phage display 

platform technology for antibody discovery depends on the preferences in the required 

biophysical performance and the intended application of the selected antibody 

therapeutic. Antibody discovery scientists need to consider the trade-off between 

colloidal stability, polyspecificity, and expression levels in making the phage display 

platform selection.  

4.6 Transgenic mice antibodies dataset 

Murine-derived mAbs have potential problems such as limited therapeutic efficacy 

and immunogenicity in human trials. Previous studies have indicated that patients 

treated with murine-derived mAbs may develop a human antimouse antibody 

(HAMA) response, which accelerates mAb clearance and could result in undesirable 

allergic reactions upon repeated administration.48 Also, mouse-derived mAbs can 

cause serious adverse events such as hypersensitivity. Therefore, antibody engineering 

techniques have been subsequently utilized to create chimeric or humanized antibodies 

by combining the murine CDRs or antigen-binding regions with human Fc constant 
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regions. Such antibodies with engineered human constant regions are known to 

maintain target specificity as well as reduce the HAMA response.49-51  

Fully human antibodies are now generated using hybridoma technology in transgenic 

mice models whereby the mouse immunoglobulin (Ig) gene loci have been replaced 

with human loci within the transgenic mouse genome.52-54 The transgenic mice 

technology harnesses the natural recombination and affinity maturation machinery to 

generate high-affinity functional human antibodies. A plethora of human antibodies 

from transgenic mice are now in preclinical and early clinical stages.55 Currently, 74% 

of fully human mAb therapies approved by US Food and Drug Administration (FDA) 

are derived from transgenic animal platforms.56 The real-world data accumulated from 

patients to date suggests that these antibodies are meeting the expectations for lack of 

immunogenicity and pharmacokinetic characteristics, firmly establishing transgenic 

mice drug discovery platforms within the pharmaceutical industry.  

A dataset of over fifty antibodies derived from transgenic mice platforms for multiple 

clinical indications was extracted from the IMGT® database. We then compiled the 

VH-VL sequence and 3D structure information for these antibodies from several online 

resources. The transgenic mice antibodies with missing sequence information were 

removed for further analysis while the scFv fragment from each transgenic mice 

antibody was used as a separate query in computational developability assessments. 

Finally, we had a dataset of 46 transgenic mice scFv fragments shown in Table 12 for 

evaluating developability using available biopharmaceutical informatics tools. 

Our transgenic mice antibodies dataset provides publicly available information on 

various transgenic mice antibody therapeutics that were available in the market or 

were being investigated in human clinical trials as of 2023. In this dataset, there are a 

total of 46 antibodies with 7 (15.2%) in phase-I trials, 9 (19.5%) in phase–II trials, and 

9 (19.5%) in phase - III clinical trials. Since the transgenic mice technology has been 

a well-known method of antibody discovery and generation, there are 21 (45.6%) 

transgenic mice antibodies that have been approved for various clinical indications. 

These include several popular blockbuster drugs such as brodalumab (SILIQ™) for the 

treatment of psoriasis, erenumab (AIMOVIG™) for migraine, daratumumab 

(DARZALEX™) for multiple myeloma, and durvalumab (IMFINZI™) for cancers.  
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INN 
(International 

Nonproprietary 
Name) 

Common name / Proprietary 
name 

Company Clinical 
indication 

 Highest 
Clinical 

Trial 

Abgenix's XenoMouse® technology 
brodalumab SILIQ™,  

AMG827 
MedImmune  

(Gaithersburg MD USA) 
AstraZeneca (London UK)  

Psoriasis Approved 

conatumumab AMG 655, TRAIL-R2mAb Amgen  
(Thousand Oaks CA USA) 

Cancers, non-
small cell lung 

(NSCLC) 

Phase II 

denosumab XGEVA®,  
PROLIA® 

Amgen 
 (Thousand Oaks CA USA) 

Osteoporosis, 
skeletal-related 

events 

Approved 

durvalumab IMFINZI™, 
 MEDI4736 

MedImmune 
 (Gaithersburg MD USA) 

/ AstraZeneca (London UK) 

Cancers, non-
small cell lung 

(NSCLC) 

Approved 

erenumab AIMOVIG™, 
 AMG 334 

Novartis Pharmaceuticals (NJ 
USA) / Amgen (Thousand 

Oaks CA USA) 

Migraine Approved 

evolocumab REPATHA™,  
AMG 145 

Amgen  
(Thousand Oaks CA USA)  

Hyperlipidemia, 
Stroke 

Approved 

fulranumab 4D4, AMG-403,  
JNJ-42160443 

Johnson & Johnson  
(PA USA) / Amgen 

 (Thousand Oaks CA USA) 

Osteoarthritis 
(OA) 

Phase III 

glembatumumab 
vedotin 

CDX-011, CR011-vcMMAE Celldex Therapeutics, 
Inc. (Needham MA USA) 

Cancers, breast  Phase III 

lucatumumab HCD122, CHIR-12 Novartis Pharmaceuticals 
Corp. (East Hanover NJ USA) 

/ Xoma (Berkeley CA USA) 

Chronic 
lymphocytic 

leukemia (CLL) 

Phase I 

panitumumab VECTIBIX®,  
ABX-EGF 

Amgen  
(Thousand Oaks CA USA) 

Cancers, 
colorectal (CRC) 

Approved 

prezalumab AMG-557 Amgen (Thousand Oaks CA 
USA) / AstraZeneca  

(London UK) 

Systemic lupus 
erythematosus 

(SLE) 

Phase I 

rilotumumab AMG102 Amgen  
(Thousand Oaks CA USA) 

Cancers, gastric Phase III 

secukinumab COSENTYX® Novartis Pharmaceuticals 
Corp. (East Hanover NJ USA) 

Psoriatic 
arthritis (PSA) 

Approved 

tremelimumab CP-675 MedImmune 
 (Gaithersburg MD USA) 

/ AstraZeneca (London UK) 

Melanoma Phase III 

vixarelimab KPL-716 Kiniksa Pharmaceuticals 
Ltd. (Bermuda USA) 

Prurigo Phase II 

Medarex’s UltiMAb® technology 

anifrolumab SAPHNELO™, MDX-1333 MedImmune 
 (Gaithersburg MD USA) 

/ AstraZeneca (London UK) 

Systemic lupus 
erythematosus 

(SLE) 

Approved 

canakinumab ILARIS®, ACZ885 Novartis Pharmaceuticals 
Corp. (East Hanover NJ USA) 

Systemic 
juvenile 

idiopathic 
athritis (SJIA) 

Approved 

eldelumab BMS-936557, MDX-1100 Bristol-Myers 
Squibb (Princeton NJ USA) 

Rheumatoid 
arthritis (RA) 

Phase II 

golimumab SIMPONI®, 
 CNTO 148 

Centocor Ortho Biotech 
Inc. (Horsham PA USA)  

Rheumatoid 
arthritis (RA) 

Approved 

inclacumab LC1004-002, RO4905417 Roche Ltd. (Basel 
Switzerland) 

Myocardial 
infarction 

Phase II 

ipilimumab YERVOY®,  
BMS-734016 

Bristol-Myers 
Squibb (Princeton NJ USA)  

Renal cell 
carcinoma 

(RCC) 

Approved 

iratumumab MDX-060 Medarex  
(Princeton NJ USA) 

Hodgkin's 
disease (HD) 

Phase II 

lirilumab BMS-986015 Bristol-Myers 
Squibb (Princeton NJ USA)  

Acute myeloid 
leukemia (AML) 

Phase II 

nivolumab OPDIVO®,  
BMS-936558 

Bristol-Myers 
Squibb (Princeton NJ USA) 

Cancers Approved 



179 
 

olaratumab LARTRUVO™ Eli Lilly (Indianapolis IN USA) 
/ ImClone Systems 

Inc. (Somerville NJ USA) 

Soft-tissue 
sarcoma (STS)  

Approved 

teprotumumab TEPEZZA®,  
RO4858696-000 

Genmab A/S (Copenhagen 
Denmark) / Horizon 

Therapeutics (Dublin Ireland) 

Thyroid eye 
disease (TED) 

Approved 

urelumab BMS-663513 Bristol-Myers 
Squibb (Princeton NJ USA) 

Tumors Phase II 

ustekinumab STELARA®, 
 CNTO 1275 

Medarex (Princeton NJ USA) 
/ Janssen Biotech, 

Inc (Horsham PA USA) 

Crohn's disease  Approved 

Medarex’s HuMAb-Mouse® technology 

actoxumab MBL-CDA1, CDA-1,  
MDX-066, 

Merck & Co., Inc. 
 (NJ USA) 

Clostridium 
difficile 

diarrhea 

Phase III 

bezlotoxumab ZINPLAVA™, CDB-1, 
MDX-1388, MK-6072 

Merck & Co., Inc 
 (NJ USA) 

Clostridium 
difficile 

diarrhea 

Approved 

daratumumab DARZALEX™,  
HuMax-CD38 

Genmab A/S (Copenhagen 
Denmark) / Janssen Biotech, 

Inc (Horsham PA USA) 

Multiple 
myeloma (MM) 

Approved 

ofatumumab ARZERRA®,  
KESIMPTA®, 

 HuMax-CD20® 

Genmab A/S 
 (Copenhagen Denmark) 

/ GlaxoSmithKline  
(Brentford UK)  

Chronic 
lymphocytic 

leukemia (CLL) 

Approved 

zalutumumab HuMaX-EGFR™ Genmab A/S 
 (Copenhagen Denmark) 

Cancers, head, 
and neck 

Phase III 

zanolimumab HuMax-CD4® Genmab A/S (Copenhagen 
Denmark) / TenX BioPharma 

(Philadelphia USA) 

Lymphoma, 
cutaneous T cell 

(CTCL) 

Phase III 

Other transgenic mice technologies 

inezetamab  AMG-994 Amgen (Thousand Oaks CA 
USA) 

Solid tumors Phase I 

pelgifatamab BAY-2315158 Bayer AG (Leverkusen 
Germany) 

Cancers, 
prostate, 

metastatic 

Phase I 

VelocImmune® technology  
alirocumab PRALUENT® 

REGN727, SAR-236553 
Regeneron Pharmaceuticals 

Inc. (Tarrytown NY USA)  
Atherosclerosis Approved 

dupilumab DUPIXENT®,  
CD124, REGN668, 

Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA)  

Asthma, Atopic 
dermatitis (AD) 

Approved 

enoticumab REGN-421, SAR153192 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Cancers Phase I 

fasinumab REGN475, SAR164877 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Osteoarthritis 
(OA) 

Phase III 

intetumumab CNTO 095, CNTO-95 Johnson & Johnson  
(Langhorne PA USA) 

Solid tumors Phase II 

nesvacumab REGN-910 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Solid tumors 
(Treatment) 

Phase I 

sarilumab KEVZARA® Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 
/ Sanofi (Paris France) 

Rheumatoid 
arthritis (RA) 

Approved 

suptavumab REGN-2222, SAR-438584 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 

Respiratory 
Syncytial Virus 
(RSV) infection 

Phase III 

trevogrumab REGN-1033 Regeneron Pharmaceuticals 
Inc. (Tarrytown NY USA) 
/ Sanofi (Paris France) 

Sarcopenia Phase II 

Table 12: Transgenic mice antibodies dataset. The information is extracted from publicly 

available online resources such as AdisInsight, IMGT® database, and ClinicalTrials.gov. 

A major advantage of the transgenic mice approach is that natural diversification and 

selection can be exploited under the control of the animal immune system. The 

integrated human immunoglobulin (Ig) loci can undergo normal biological processes 
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of DNA rearrangement and hypermutation. So, antibodies derived from transgenic 

mice or other living animals have passed the nature-selection. A summary of major 

transgenic mice antibody platforms is provided below.  

Abgenix's XenoMouse® technology: Abgenix's approach to generating fully human 

antibodies employs genetically engineered strains of mice in which endogenous mouse 

antibody gene expression is suppressed by removing the J-chain, effectively disabling 

the antibody-generating system of the host.57 The XenoMouse® technology is based 

on the introduction of human germline loci by Yeast Artificial Chromosomes (YACs) 

into the mouse germline with inactivated mouse antibody machinery. Finally, these 

YAC transgenes are integrated into the mouse chromosome with superior genetic 

stability. XenoMouse® technology has evolved to be a highly reliable antibody 

discovery platform since the approval of first transgenic mice antibody - Panitumumab 

(Vectibix®) a fully human antibody directed against epidermal growth factor receptor 

(EGFR) for the treatment of advanced colorectal cancer. 

Medarex’s UltiMAb® technology: Medarex's new proprietary UltiMAb® technology 

employs engineered transgenic mice for producing the entire spectrum of human 

antibodies ranging from IgG1, IgG2, IgG3, IgG4, and IgA antibodies, all from a single 

fusion. In brief, the UltiMAb platform uses yeast artificial chromosome encompassing 

heavy-chain and light-chain transgenes to express the human IgGκ repertoire instead 

of the murine immunoglobulin repertoire.58 The transgenic mice are then immunized 

with a recombinant human antigen (eg IL-1β) to generate hybridomas which are 

selected and cloned to purify the final antibody by affinity chromatography on a 

protein A column. This validated technology platform has produced over 8 approved 

compounds which are currently approved and marketed therapies like SIMPONI™, 

STELARA™, and ILARIS®. Medarex’s UltiMab® platform has produced more 

approved drugs than any other human antibody platform in the industry.  

Medarex’s HuMAb-Mouse® technology: Medarex’s HuMAb-Mouse® technology 

now owned by Bristol-Myers-Squibb has the proven ability to generate fully human 

antibodies with affinities in the picomolar range in response to immunization. In 

HuMAb-Mouse®, the mouse immunoglobulin genes are disrupted by homologous 

recombination and human heavy/light chain transgenes, including constant (C), 

variable (V), diversity (D), and joining (J) regions.59 HuMAb-Mouse® has been a very 
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successful platform for antibody discovery with three superstar marketing approvals 

such as ZINPLAVA™, DARZALEX™, and ARZERRA®.  

VelocImmune® technology: VelocImmune® a proprietary technology by Regeneron 

creates a multitude of optimized antibody drug candidates efficiently and directly from 

immunized mice. Unlike the other transgenic mic antibody platforms with inactivated 

antibody machinery, the VelocImmune mice have a completely normal immune 

system and are indistinguishable from wild-type mice in antigen response. In 

VelocImmune®, only the mouse variable region is replaced with human heavy and 

light chain counterparts. However, VelocImmune mice retain the mouse heavy chain 

constant regions, therefore, preserving the normal mouse B-cell signalling and 

maturation.60 VelocImmune technology has been used to create multiple antibodies 

including Libtayo® (Cemiplimab), Praluent® (Alirocumab), and Kevzara® (Sarilumab) 

which are approved in multiple countries around the world.55 Recently in 2022, FDA 

approved Dupixent® (Dupilumab) for the treatment of moderate-to-severe Atopic 

Dermatitis in children.  

Other transgenic mice technologies: One issue that has hampered wide adoption of 

transgenic mice as platforms for antibody discovery is the commercial rights to the 

proprietary technology. However, other new in vivo mouse technologies such as 

AlivaMab® Mouse, MeMo® Transgenic Mouse, Kymouse™, and Crescendo Mouse 

have established themselves as successors in transgenic mice technologies.  

4.6.1 Computational developability analysis of biophysical performance 

We started the computational developability assessment of the transgenic mice dataset 

with the AbPred tool. AbPred scores were evaluated for all 12 biophysical assays 

across different transgenic mice platform technologies. We observe some interesting 

developability insights for each transgenic mice platform from the above results. The 

HIC assay values were comparable and mostly within the 10% cutoff value (10.848) 

for all transgenic mice platforms – XenoMouse® (87%); HuMAb-Mouse® (100%); 

UltiMAb® (77%); VelocImmune® (100%) and Others (100%). A similar trend was 

observed for the SMAC assay with most transgenic mAbs below the 10% cutoff value. 

However, VelocImmune® transgenic mice antibodies displayed the highest scores in 

the SGAC assay which indicate low self-association and excellent colloidal stability 
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for VelocImmune® antibodies. The minimum SGAC score of 573.95 for 

VelocImmune® antibodies is well above the 10% cutoff value (< 234.11) which 

suggests that these have minimal self-association. The relative comparison of SGAC 

assay values between phage display platforms is shown in Figure 34. VelocImmune® 

antibodies have a mean SGAC assay score of 731.51 with an interquartile range (IQR) 

of 215.99 which are the best SGAC scores among all transgenic mice antibodies.   

 

Figure 34: Salt-Gradient Affinity-Capture Spectroscopy (SGAC) assay values for transgenic 

mice platform categories. The arrow on y-axis indicates the direction of unfavorable values. 

A similar trend was observed for the Cross-Interaction Chromatography (CIC) assay. 

Most VelocImmune® antibodies had negative scores (normalized AbPred score) in the 

CIC assay which represents quick elution time and therefore minimal cross-reactivity. 

The relative CIC assay values between transgenic mice antibody platforms are shown 

in Figure 35. It is important to also note that all other transgenic mice platforms mostly 

have values within the 10% cutoffs for CIC, CSI BLI, AC-SINS, and HEK assays that 

suggest comparable interaction and expression profiles to successful clinical-stage 

antibodies. VelocImmune® antibodies also had an excellent performance in the PSR 
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assay that measures polyspecificity. All transgenic mice antibodies were within the 

10% cutoff value (PSR > 0.4204). The relative PSR assay values between transgenic 

mice antibody platforms are also shown in Figure 35.  

 

Figure 35: Cross-Interaction (CIC) and Poly-Specificity (PSR) assay values for different 

transgenic mice platforms. The arrow on y-axis indicates the direction of unfavorable values. 

The VelocImmune® platform had the best overall developability profile among all the 

transgenic mice categories. A clear relative advantage is observed for three assays – 

PSR, SGAC, and CIC. A possible explanation is that in VelocImmune mice, only a 

small 6Mb variable portion of the mouse immunoglobulin (Ig) loci is humanized that 

retains mouse heavy chain constant regions.61 Therefore, all humanized mouse lines 

preserve the normal mouse maturation and Fc-mediated effector functions. There were 

no developability issues identified for VelocImmune® antibodies from our assessment.  

4.6.2 TAP: Therapeutic Antibody Profiler results 

The TAP scores were comparable for all transgenic mice platforms across all five 

developability metrics namely total CDR length; patches of surface hydrophobicity 

(PSH); patches of positive charge (PPC); patches of negative charge (PNC) and 

structural Fv charge symmetry parameter (SFvCSP) as shown in Figure 36. Overall, 

the TAP results were inconclusive for any relative distinction between transgenic mice 

platforms. Also, all transgenic mice antibodies were within the 10% cutoff guidelines 

derived from clinical-stage antibodies - 53 ≤ L or L ≤ 44; 144.63 ≤ PSH; 1.14 ≤ PPC; 

1.30 ≤ PNC and SFvCSP ≤ - 4.00. This optimal developability profile for transgenic 

mice antibodies can be attributed to ‘ELISA-based selection and purification’ of the 

target antibody in the final step of the transgenic mice antibody discovery process. 
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Figure 36: TAP scores for five structural metrics related to developability for different 

categories of transgenic mice antibodies shown on x-axis. TAP scores are shown on y-axis. 

 

4.7 Conclusion 

A major challenge in developing engineered antibody therapeutics is the selection of 

the ideal molecular format from many structurally diverse alternatives that can support 

a wide range of different biophysical and pharmacological properties. The selected 

format is best chosen to match the proposed mechanisms of action and the specific 

clinical application.62 The final antibody discovery platform and format are chosen 

after detailed in vitro and in vivo functional characterizations. In this work, we have 

evaluated the developability of major antibody formats across three major antibody 

discovery technologies – multispecific engineering, phage display, and transgenic 

mice. Our analysis has compared the key developability considerations across various 

mAb formats which can accelerate the functional characterization and final selection.  

The computational developability assessment results show that the DVD-Ig™ 

platform has the best overall developability profile among all multispecific engineered 

antibody platforms with the lowest non-specific interactions and cross-reactivity. It is 

because DVD-Ig™ antibodies have a similar configuration to conventional IgGs while 

the scFv-based constructs have linker sequence constraints and a tendency to form 

aggregates due to domain exchange of the variable regions. The phage display 

platform selection depends on the trade-off between colloidal stability, 

polyspecificity, and expression levels. The CAT antibodies are preferable for 

therapeutic applications requiring high colloidal stability, while Dyax antibodies are 
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preferred for low polyspecificity and MorphoSys's HuCAL® antibodies are suitable 

for obtaining high expression levels.  

The VelocImmune® mouse technology antibodies have the best developability profile 

among the transgenic mice platforms owing to their lowest polyspecificity and non-

specific interactions in PSR, CIC, and SGAC assays. This can be attributed to normal 

maturation and Fc-mediated effector functions retained in the VelocImmune® edits. 

Antibodies derived from phage display technology offer several advantages compared 

to other antibody discovery platforms such as the ability to generate conformation-

specific antibodies, bypassing animal immunization, and most importantly the ability 

to isolate antibodies against toxic or non-immunogenic antigens. However, the vast 

majority of the approved therapeutic antibodies are derived from immunized mice 

technologies despite these several advantages of antibody phage display.  

The post-translational modifications and tuning process imposed by the mammalian 

immune system creates antibodies with better biophysical attributes compared to 

phage display antibodies. For instance, E. coli derived phage display antibodies are 

not glycosylated which results in poor binding and pharmacokinetics when used as 

therapeutics in humans. We conclude that antibodies directly discovered by phage 

display exhibit significant developability risks compared to those derived from 

immunized mice. A previous investigation had found that phage display derived 

therapeutic antibodies have higher self-interaction and poly-reactivity due to the 

higher percentage of aliphatic residues in their CDRs compared to the non-phage 

derived antibodies.63 Our results are consistent with these previous findings as the 

phage display library dataset antibodies have the assay scores skewed towards an 

unfavourable direction in AC-SINS and PSR assays respectively.  

Naive phage antibody libraries generally contain antibodies in either the scFv or Fab 

format. The Fab antibody format is generally preferred over the scFv format. There is 

a stronger association between the two chains of a Fab fragment compared to the 

pairing of the variable regions of antibody heavy and light chains (VH and VL) in a 

scFv fragment essential for effective antigen binding. The spatial separation and 

orientation of the antigen-binding sites between different formats are key features that 

decide overall developability. Therefore, screening new formats for their PPC, PNC, 

and SCFvCSP scores from TAP tool can be important for developability assessment. 
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New emerging antibody modification technologies and novel discovery platforms are 

anticipated to significantly expand the repertoire of engineered antibody therapeutics 

against the vast range of diseases. There is tremendous potential for most engineered 

antibody formats as next-generation biopharmaceuticals with superior developability 

profiles or as robust diagnostic reagents in other applications such as biosensors. 
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5 Machine learning approaches to estimate clinical trial 

success from computational developability assessments  

5.1 Abstract 

This chapter aims to use computational developability assessments to estimate the 

clinical trial progression of candidate antibodies. We have used machine learning and 

other data science algorithms to determine the biophysical features which determine 

the clinical trial progression of therapeutic mAbs. Firstly, we have tested the ability of 

the 50+ sequence or structural features employed in our computational developability 

assessment analysis to classify mAbs as per their clinical trial progression. We have 

then used feature engineering techniques and other data transformation approaches to 

optimize the biophysical assay features to predict the clinical trial progression. Next, 

we have explored other additional features and tools known in biopharmaceutical 

informatics to obtain the T20 score as a reliable estimate of clinical trial progression 

for mAbs. Finally, we have used a new dataset of failed antibodies to flag mAbs with 

a low clinical trial success rate based on our computational developability framework.  

5.2 Introduction 

A major focus of this chapter is to use biopharmaceutical informatics resources to 

predict the clinical trial success of therapeutic mAbs. Monoclonal antibodies undergo 

several stages of clinical trials before they are approved for use. These stages are 

designed to evaluate the safety, efficacy, and dosage regimens of the mAbs. The 

starting work to support clinical development and ensure patient safety of mAbs are 

the mandatory nonclinical safety studies.1 These preclinical studies are strategically 

designed to anticipate the dose, concentration, schedule, route of administration and 

duration to be used in the clinical studies. A Pre-IND meeting with the Food and Drug 

Administration (FDA) or other regulatory agencies prior to the initiation of nonclinical 

safety studies is also common and highly recommended in drug development.  

The data from laboratory research and animal studies are then submitted to regulatory 

authorities for approval to proceed to clinical trials. The Phase 1 trials involve a small 

number of healthy volunteers or patients and focus primarily on assessing the safety 

and tolerability of the mAb. These are often dose escalation studies with investigation 

of potential side effects on around 10 to 50 people. The primary objectives of Phase 1 

trials are to determine the maximum tolerated dose (MTD), pharmacokinetics, and 
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pharmacodynamics of the mAb. Phase 1 trials also provide initial evidence of the 

target mAb's potential efficacy and help identify any side effects or adverse reactions.  

The Phase 2 trials involve a larger group of patients who have the condition or disease 

targeted by the mAb. Phase 2 trials may also explore different patient populations, 

dosing regimens, and potential combinations with other treatments. These trials aim 

to further evaluate the safety and efficacy of the mAb, determine the optimal dosage, 

and identify potential adverse effects. Phase 2 trials are usually randomized, controlled 

studies evaluating the safety and efficacy of a drug for a particular condition and 

involve participants selected using narrow criteria, to allow close monitoring of a 

relatively homogenous patient population. Phase 2 is more focused on the therapeutic 

efficacy in a particular patient population to establish whether or not the drug may 

ultimately benefit patients and provides a basis for decision-making regarding the 

mAb's further development in Phase 3 clinical trials.  

Phase 3 trials involve a larger population of patients and are designed to confirm the 

mAb's efficacy, further assess its safety profile, and evaluate its overall risk-benefit 

ratio. Phase 3 trials involve comparing the mAb to a placebo or an existing standard 

of care to generate statistically significant data on the mAb's therapeutic benefits, 

optimal dosage, and potential adverse events. Sometimes the Phase 3 trials involve 

thousands of people in many different hospitals and even different countries. The 

results from Phase 3 trials are crucial for regulatory submissions and determining the 

mAb's approval for commercial use in each jurisdiction. 

The manufacturer can submit a new Biologics License Application (BLA) or a similar 

regulatory submission to the appropriate regulatory authorities such as U.S. Food and 

Drug Administration (FDA) or the European Medicines Agency (EMA). After review, 

if the regulatory agency determines that the benefits outweigh the risks, they grant 

approval for the mAb's marketing and use. Post-marketing surveillance may then be 

conducted to gather additional information about the approved mAb's long-term 

safety, effectiveness, and optimal use in larger patient populations. Full detailed 

information and clinical trials guidance documents for US submission are available at 

https://www.fda.gov/regulatory-information/search-fda-guidancedocuments/clinical-

trials-guidance-documents and at https://euclinicaltrials.eu/guidance-and-q-as/ for 

new submissions in the European Union (EU) region.  
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5.3 Methods 

Creation of master training dataset: We created a combined Excel sheet that had 

the calculated scores from AbPred, Protein-Sol, and TAP. We evaluated a total of 52 

properties that included Abpred assay scores (12), Protein-Sol sequence features (35), 

and the TAP scores (5). All these scores were evaluated for the TheraSabDab dataset 

which consists of information on 658 antibodies in clinical trials or approved stages. 

This sheet was a representation of the computational developability assessment results 

for clinical-stage antibodies. This training dataset was imported in MATLAB and 5-

fold cross-validation was performed on this training dataset. Here, the data is 

partitioned into 5 randomly chosen subsets (or folds) of roughly equal size. One subset 

is used to validate the machine learning model trained using the remaining subsets. 

This process is repeated 5 times so that each subset is used exactly once for validation. 

Machine Learning Classification algorithms for clinical trial progression: We 

have used the Machine Learning Toolbox™ and the new Classification Learner App 

in MATLAB to train machine learning models of all major classifiers: decision trees, 

discriminant analysis, support vector machines, logistic regression, nearest neighbors, 

naive Bayes, ensembles, and neural networks. The code generated and tested over 38 

machine learning models which were tested across the TheraSabDab clinical-stage 

dataset. The features used in the model are Abpred assay scores (12), Protein-Sol 

sequence features (35), and the TAP scores (5). The models with the best percentage 

accuracy (validation) score were optimized further using manual classifier training 

procedures. Diagnostic measures, such as model accuracy, and plots, such as a scatter 

plot or the confusion matrix chart, reflect the validated model results. Full detailed 

information is available at https://uk.mathworks.com/help/stats/train-classification-

models-in-classification-learner-app.html. and https://uk.mathworks.com/help.html.   

Performance assessment using Failed antibody dataset: Failed antibodies dataset 

was created manually by compiling information from PubMed, Clinical trial database 

(www.clinicaltrials.gov), patents, regulatory filings, company websites, media news, 

and the ImMunoGeneTics information system. Antibodies withdrawn or discontinued 

due to safety, low efficacy or other strategic reasons were included in the dataset. See 

Table 16. The computational developability criteria performance was evaluated by 

calculating the 5% and 10% threshold cutoff values of clinical-stage antibodies and 

flagging the number of features failed by each failed antibody shown in Figure 46.  
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Scatterplot matrix of clinical trial status: We used gplotmatrix(X,[],group) function 

in MATLAB to obtain a matrix of scatter plots for the AbPred, Protein-Sol, and TAP 

results respectively. Each off-diagonal plot in the resulting figures is a scatter plot of 

a column of X against another column of X. Also, each diagonal plot represented the 

histogram for each feature under consideration. We have also highlighted clinical trial 

progression categories in different colours in the legend in all scatterplot figures.  

AbPred measurements on antibody datasets: VHVL sequence information for 

separate antibody datasets were saved as input fasta files. The Abpred predictions were 

generated from the dockerhub source code available at docker pull 

maxhebditch/abpred using run command docker run --rm -v $(pwd)/:/abpred/host 

maxhebditch/abpred. More details at https://hub.docker.com/r/maxhebditch/abpred.  

TAP measurements on antibody datasets: We used web sequence submission form 

and the GitHub repositories at https://github.com/orgs/oxpig/repositories to get the 

five metric values for the input sequences from the TAP tool available at 

https://opig.stats.ox.ac.uk/webapps/sabdab-sabpred/sabpred. Also, the homology Fv 

models generated by ABodyBuilder2 were downloaded for future structural analysis. 

Protein-Sol measurements on antibody datasets: We extracted the full antibody 

sequence information from the TheraSabDab database which was saved as input fasta 

files. The docker container was then used to create a local instance of the protein-sol 

solubility algorithm. The fasta files having sequence information were used as input 

on the docker program for the Protein-Sol algorithm that calculates 35 sequence 

features and provides an output table in Excel. The web-based Protein-Sol tool is also 

available at https://protein-sol.manchester.ac.uk/ for additional information.  

Biopharmaceutical Informatics tools Calculations: Sequence information or the 

corresponding structural homology models from ABodyBuilder2 (inbuilt in the TAP 

calculations) were used as inputs to respective informatics tools outlined in Table 15.  

Humanness Score Calculations: The T20 score analyzer is a tool that calculates the 

humanness of monoclonal antibody variable region sequences. The T20 score is scaled 

from 0 to 100, where a higher score is a more human-like antibody. In general, full-

length sequences that score above 80 are considered human-like, while framework-

only sequences that score above 85 are considered human-like. We used the online 

web tool available at https://sam.curiaglobal.com/t20/ to calculate the T20 score.  
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5.4 Developability assessments for estimating clinical trial success 

In our endeavour to use developability features for estimating the clinical trial success 

and progression, we started with the five Therapeutic Antibody Profiler (TAP) features 

namely the Total CDR Length (L), Patches of Surface Hydrophobicity Metric (PSH), 

Patches of Positive Charge Metric (PPC), Patches of Negative Charge Metric (PNC) 

and Structural Fv Charge Symmetry Parameter (SFvCSP).  

Each of these features is likely related to an underlying biophysical and developability 

aspect. For instance, the CDR length feature links to developability insights as it can 

capture the binding-site shape and CDRH3 loop features. A possible hypothesis is that 

a shorter CDR length is representative of a concave shape while a longer CDR length 

tends to have a convex binding site during epitope interaction. Further experimental 

studies such as antibody-antigen binding imaging and mapping studies for multiple 

CDR length profiles can help unravel more insights into the role of CDR length on 

developability. To evaluate the role of these features, we have created, refined, and 

implemented various machine-learning classification algorithms in MATLAB for 

estimating the clinical trial progression of TheraSabDab antibodies. Firstly, we have 

used the scatterplot matrices tool in MATLAB to visualize this multidimensional data.  

 

Figure 37: Scatterplot matrix of TAP metrics for TheraSabDab clinical-stage antibodies.  
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Figure 37 shows the scatterplot matrix of TAP metrics for TheraSabDab clinical-stage 

antibodies dataset. It depicts the relationship between the five Therapeutic Antibody 

Profiler (TAP) parameters for clinical-stage antibodies dataset. We observe a positive 

linear correlation between ‘Total CDR Length’ and ‘PSH’ features. It is likely because 

there is increase in the number or size of hydrophobic patches on the surface of the 

longer CDR as the length of the CDRs increase. A higher PSH score is representative 

of a higher aggregation propensity of antibodies. High PSH scores due to hydrophobic 

surface patches lead to unfavourable hydrophobic interactions with the antigen and 

formulation buffer that promote self-association, clustering, and aggregation of the 

antibody. The binding affinity, specificity and stability are negatively impacted by the 

presence of these hydrophobic surface patches which decrease overall stability profile. 

Other feature pairs exhibited weak or no correlation with distributed scatter plots. We 

found an interesting observation that for many scatter plots the antibodies dataset TAP 

scores cluster into 2-3 distinct groups. This trend was highly evident in the plots for 

Patches of Positive Charge (PPC) and Patches of Negative Charge (PNC) scores.  

 

Figure 38: Scatterplot matrix of TAP features for TheraSabDab as per clinical trial status.  

An initial hypothesis was that these clusters represent antibodies in different stages of 

clinical trials namely Phase 1, Phase 2, and Phase 3. Such a relationship if true would 
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have suggested the importance of positive or negative charge categories to classify 

clinical progression. Therefore, we annotated the clinical trial stage for each antibody 

in Figure 38. It shows the TAP scores along with the different stages of clinical trial 

progression in the legend namely – Approved, Phase 1, Phase 1/2, Phase 2, Phase 2/3, 

Phase 3, and others. Here we observe overlap among different categories of clinical 

trial stages for Therapeutic Antibody Profiler (TAP) scores. There are no visible 

distinct clusters or boundaries that separate TheraSabDab antibodies in different 

phases of clinical trials in Figure 38. 

We also checked the overlap among the histogram distributions for different clinical 

trial stages with the Kolmogorov-Smirnov (K-S) test. The p-values from the K-S test 

for each of the five TAP property was less than 0.05 which suggests overlap in the 

score distributions. We, therefore, conclude that TAP scores cannot be solely used to 

predict the possible clinical trial stage outcome for a target antibody candidate. Next, 

we extended our analysis to the 12 AbPred developability assay features as well. We 

evaluated 12 biophysical assay feature scores namely HIC, SMAC, SGAC, CIC, CSI 

BLI, AC SINS, HEK, PSR, ELISA, BVP, DSF, and ACCSTAB from the AbPred tool. 

 

Figure 39: A sample scatter histogram for HIC and SMAC assay features for TheraSabDab. 
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The AbPred scatterplot matrices were created and analyzed for a total of 144 (12*12) 

pairs of biophysical assays. Here, we again had an overlap among the different stages 

of clinical trials with a low K-S test statistic p-value. So, we infer that none of these 

12 AbPred assay features can solely estimate clinical trial progression. For example, 

Figure 39 shows a pair scatterplot histogram of the HIC and SMAC assay feature pair.   

The HIC scores shown in Figure 39 are mostly between 9 to 11 while the SMAC scores 

are mostly between 1 to -1 for TheraSabDab clinical-stage antibodies. We can clearly 

see that histogram distributions for the approved (shown in green), phase 1 (shown in 

purple), phase 2 (shown in yellow), and phase 3 (shown in blue) are overlapping in 

these score ranges with a low K-S test statistic p-value of 4.3873 e-05 (p-value <0.05).  

 

Figure 40: A sample scatter histogram for SMAC and AC-SINS features for TheraSabDab. 

A similar trend of overlapping histograms was seen in all other 144 assay feature pairs. 

For example, Figure 40 shows overlapping distributions for SMAC and ACSINS assay 

pairs. These 12 assay features represent a range of biophysical properties ranging from 

hydrophobicity, aggregation propensity, solubility, colloidal stability, self-interaction, 

and long-term stability. However, none of these biophysical assay features can be used 

to predict the clinical trial stage of the target mAb candidate. A possible explanation 
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is that the assay biophysical features play a key role in preclinical safety and stability 

evaluation during the screening and optimization stages. However, once the mAb is 

ready for the clinical studies, it already is selected for the best manufacturability.  

We also performed an analysis of 35 Protein-Sol sequence feature scores for all 658 

TheraSabDab clinical-stage antibodies. These 35 Protein-Sol features are composed 

of 20 amino acid compositions; 7 composite scores of amino acid combinations (KmR 

= K-R, DmE = D-E, KpR = K+R, DpE = D+E, PmN = K+R-D-E, PpN = K+R+D+E, 

aro = F+W+Y); and 8 other sequence features (Length, pI, Kyte-Doolittle hydropathy, 

Absolute charge at pH 7, Fold propensity, Disorder propensity, Sequence entropy and 

β-strand propensity). Here we again observed an overlap among the sequence feature 

scores for mAbs in different clinical trial stages. So, we conclude that sequence-based 

features such as amino acid compositions and sequence-derived properties are not 

solely a predictor of clinical trial progression for therapeutic mAbs.  

 

Figure 41: A sample scatter histogram for ‘Charge’ and ‘aromatic content’ for TheraSabDab. 

We evaluated a total of 1225 sequence feature pairs (35*35) for all clinical-stage 

antibodies. A sample scatter histogram for charge (PmN) and aromatic amino acid 

content (aro) has been shown in Figure 41. Previous studies by our group have 
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suggested that charge and hydrophobicity based assays are key features for predicting 

the biophysical properties of clinical-stage antibodies.2 We, therefore, checked in this 

study if we could predict the clinical trial progression stage based on the charge and 

hydrophobicity sequence features. However, we observe an overlap in the histogram 

distribution with a low K-S test p-value of 3.5872 e-08. This suggests that charge and 

hydrophobicity features calculated from sequence information are not sufficient to 

reliably estimate the clinical trial progression stage of monoclonal antibodies.  

We have tabulated the K-S test p-value statistical measure for all features in Table 13. 

Overall, we conclude that all 50+ developability features used in our computational 

developability assessment workflow are unable to estimate clinical trial progression 

stage of therapeutic mAbs. It is therefore possible that many other factors apart from 

developability features and biophysical assay performance influence the likelihood of 

clinical trial success for any antibody therapeutic. We hypothesize from these results 

that it is not possible to predict a clinical trial stage based on just biophysical features. 

Feature P-value Feature P-value Feature P-value 

CDR Length 2.5817 e -05 Cysteine (C) 5.3526 e -08 Tyrosine (Y) 5.7418 e -05 

PSH 1.7389 e -06 Glycine (G) 2.9369 e -08 K minus R 1.2862 e -08 

PPC 3.8632 e -02 Histidine (H) 3.6392 e -07 D minus E 1.3648 e -08 

PNC 5.7916 e -02 Isoleucine (I) 7.1225 e -06 K plus R 3.8465 e -07 

SFvCSP 6.7527 e -05 Leucine (L) 1.4263 e -08 D plus E 6.7253 e -08 

HIC 4.3383 e -05 Methionine (M) 9.1412 e -08 PmN (Charge) 1.8229 e -08 

SMAC 4.9097 e -07 Proline (P) 8.6045 e -09 PpN 7.8212 e -05 

SGAC 7.2803 e -07 Serine (S) 2.2853 e -06 Aro (F + W + Y) 1.7643 e -08 

CIC 4.3095 e -06 Threonine (T) 7.2752 e -07 folding (fld) 2.9332 e -08 

CSI BLI 8.1164 e -06 Valine (V) 8.8264 e -08 disorder (dis) 5.8657 e -07 

AC SINS 2.2567 e -07 Aspartate (D) 5.3318 e -06 beta strand (bet) 8.1334 e -08 

HEK 3.8273 e -06 Glutamate (E) 3.7528 e -08 Length 4.1092 e -05 

PSR 5.2681 e -06 Phenylalanine (F) 9.4193 e -08 pI 3.5818 e -06 

ELISA 1.2903 e -07 Lysine (K) 4.8169 e -07 entropy (ent) 7.1295 e -08 

BVP 4.3529 e -06 Asparagine (N) 8.1827 e -08 Charge ph7 6.4205 e -07 

DSF 5.8267 e -05 Glutamine (Q) 7.2482 e -06 Kyte-Doolittle 1.7304 e -08 

ACC STAB 6.7914 e -06 Arginine (R) 5.4292 e -08   

Alanine (A) 9.4822 e -08 Tryptophan (W) 3.4138 e -08   

Table 13: K-S test statistic p-value for used tool features. All have p-values < 0.05.(Overlap)  

Indeed, some previous studies have demonstrated that clinical trial design, therapeutic 

area, location of trial, primary outcome measure and are some other key factors beyond 
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biophysical properties that influence the outcome of clinical trials.3-5 Other parameters 

such as disease type, industry sponsor, biomarker, lead indication status, and time are 

also important in deciding the clinical trial outcome.6 These can be subjective features 

that are unrelated to any developability measure and can be highly variable between 

different clinical trials. So, these other factors need to be accounted for to estimate the 

clinical trial progression for an antibody candidate. However, we know from industry 

application perspective that only developability-related features can be controlled in 

the antibody design and engineering process to optimize the clinical stage outcome. 

5.5 Feature engineering and machine learning classification of the 

developability assay properties for clinical trial progression 

Feature engineering is the process of selecting, manipulating, and transforming raw 

data and variables into features that can be used for creating a predictive model using 

machine learning. Since our 50+ sequence or structural features used in computational 

developability assessments were not able to predict clinical trial progression of mAbs, 

in this section we have used feature engineering techniques to create new variables 

that can potentially predict clinical trial stage outcomes of therapeutic mAbs. We used 

three major feature generation approaches: transforming variables, discretization, and 

summarizing groups. We utilized the feature selection functions available in Statistics 

and Machine Learning Toolbox™ in MATLAB and the Classification Learner App. 

The feature selection algorithms search for a subset of predictors that optimally models 

measured responses, subject to constraints such as required or excluded features and 

the size of the subset. In Classification Learner, we evaluated the different features (or 

predictors) to include in the model while also testing multiple machine learning 

classification model types. The Classification Learner app has in-built algorithms to 

train machine learning models of all major classifiers: decision trees, discriminant 

analysis, support vector machines, logistic regression, nearest neighbors, naive Bayes, 

ensembles, and neural networks. Finally, the best percentage accuracy (validation) 

score was compared for different ML algorithms and the results were summarized.  

The automated classifier trained a selection of different types of classification models 

on our full dataset for 52 features using 5-fold cross-validation. We created and tested 

over 38 machine-learning models. (See methods). These included basic linear models 

such as linear discriminant to complex models such as trilayered neural networks and 
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cubic KNN method. We observed that the maximum achieved accuracy was 43.7% 

for coarse KNN, linear discriminant, SVM, and ensemble methods. Neural network 

methods performed comparatively poorly with a maximum model accuracy achieved 

of 41.2%. Figure 42 presents the neural network model 3.1 results for our dataset with 

data categorized as per their clinical trial progression. We observe that most of the 

predictions are incorrect (shown in a cross) rather than antibodies classified correctly 

(shown in dots). Even with the manual fine-tuning, we were unable to find a reliable 

machine-learning classification algorithm that could predict clinical trial progression. 

 

Figure 42: Classification Learner interface in MATLAB for creating and analyzing machine 

learning algorithms for the clinical-stage antibodies developability dataset. The HIC vs SMAC 

plot from the neural network model 3.1 is shown in the above figure that is classified according 

to different stages of clinical trials. Model accuracy and other information is shown on left.   

The Receiver Operator Characteristic (ROC) curve is a well-established evaluation 

metric for classification problems. It is a probability curve that plots the True Positive 

Rate (TPR) against the False Positive Rate (FPR) at the various threshold values. True 

Positive Rate (TPR) is also known as sensitivity or recall. TPR represents the 

proportion of actual positive instances correctly classified as positive by the model. It 

is calculated as TP / (TP + FN), where TP is the number of true positives and FN is 

the number of false negatives. The False Positive Rate (FPR) is the proportion of actual 

negative instances incorrectly classified as positive by the model. It is calculated as 

FP / (FP + TN), where FP is the number of false positives and TN is the number of 

true negatives. The Area under the ROC Curve (AUC) metric measures the entire two-

dimensional area underneath the entire ROC curve. The AUC-ROC curve is created 
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by plotting the TPR on the y-axis against the FPR on the x-axis, with each point 

representing a different classification threshold. The curve ranges from (0,0) to (1,1), 

where (0,0) represents a perfect classifier and (1,1) represents a random classifier.  

The area under the curve (AUC) is a metric used to summarize the performance of the 

model. A perfect classifier has an AUC of 1, while a completely random classifier has 

an AUC of 0.5. Generally, a higher AUC indicates that the model is more accurate at 

distinguishing between positive and negative instances. Figure 43 shows the output 

AUC-ROC curves for the best performing machine learning classification algorithms 

created from the Classification Learner app in MATLAB. We observe that the AUC 

values for the models are low and near 0.5. For instance, the Naïve Bayes Classifier 

has an AUC of 0.56 for clinical-stage dataset. It suggests that our classification models 

have no discrimination capacity to distinguish between different clinical trial stages.  

 

 

Figure 43: Receiver Operating Characteristic (ROC) curves and model performance for all 

machine learning algorithm types implemented using the Classification learner in MATLAB.  

A confusion matrix is another performance evaluation tool commonly used in machine 

learning to assess the accuracy of a classification model. It is particularly useful when 

dealing with multi-class classification problems. Figure 44 shows the confusion matrix 

for the fine Gaussian SVM classifier for our computational developability assessment 

dataset on clinical-stage mAbs. The y-axis in the figure shows the actual ‘true’ labels 

while the x-axis shows the ‘predicted’ clinical-stage labels by the SVM classifier.  
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The confusion matrix is a table that summarizes the performance of a classification 

model by comparing the predicted class labels with the actual class labels of the test 

data. We observe high False Negative Rates (FNR) for all categories of clinical-stage 

antibodies. The approved antibodies had a false negative rate of 61.8% which implied 

that our algorithm would miss the true positives 61.8% of the time with being accurate 

in the prediction of true positives only 38.2% of the time which is very low. The Phase 

1 labelled antibodies had FNR of 100% which means that our algorithms completely 

classified the actual Phase 1 antibodies wrongly into other clinical-stage categories. 

The Phase 2 labelled antibodies had a high FNR of 54.3% while the Phase 3 labelled 

antibodies also had a very high FNR of 85.5%. Therefore, we conclude our machine 

learning algorithms perform very poorly in classifying therapeutic mAbs as per their 

clinical trial progression status. This poor performance of our classifiers is very likely 

due to other features beyond developability that impact the clinical trial progression. 

 

Figure 44: Confusion matrix of clinical stage outcomes for the fine Gaussian SVM algorithm. 

Overall, the feature engineering and machine learning classification results suggest 

that the features derived from biophysical properties or developability assays are not 

reliable to classify therapeutic antibodies as per their clinical-trial progression stage. 

Previous studies have shown that several other factors such as clinical trial design, 

therapeutic area, location of trial, and primary outcome measure impact the clinical 
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trial progression of therapeutic antibodies.3-5 Also other external elements associated 

with biology, mechanism of action, and risk vs benefit profile of a biological drug 

candidate for an indication can also significantly affect its clinical trial progression.  

Therefore, we conclude that clinical trial design, location, disease area, drug biology, 

primary outcome measure, and others are some factors beyond biophysical properties 

that may influence the outcome of clinical trials. Only the developability scores and 

features are not solely predictive of clinical trial progression as verified by ROC curves 

and model performance for our machine learning classification algorithms. Any future 

machine learning algorithms should incorporate these additional factors to obtain a 

reliable classification of the clinical trial progression for therapeutic antibodies.  

5.5.1 Evaluation of multiple biopharmaceutical informatics tools    

We evaluated new features from other biopharmaceutical informatics tools to compare 

the predictive ability of these new features to estimate clinical trial progression since 

the previous tools were not successful in estimating clinical trial progression. These 

new tools explore a range of biophysical properties such as aggregation, solubility, 

post-translational modifications, and immunogenicity. Table 14 shows the new tools 

used to predict clinical trial progression of therapeutic antibodies.  

 

Table 14: List of biopharmaceutical informatics tools and features evaluated in this project 

➢ T20 Score 
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CamSol is a tool for solubility screening of protein libraries that uses features related 

to proximity of the amino acids in the three-dimensional structure and for their solvent 

exposure. SODA is another tool for protein solubility based on disorder and 

aggregation. It introduces new features related to disorder, aggregation, helix, and 

strand propensity differences. SOLpro, SOLart, and Solubis are other well-known 

solubility predictors available as publicly available biopharmaceutical informatics 

resources for solubility assessment. We have also utilized tools for aggregation 

prediction. AggScore is a tool to identify aggregation-prone regions based on features 

like intensity and relative orientation of hydrophobic and electrostatic surface patches. 

Another similar tool is Aggrescan 3D that uses solvent-exposed aggregation-prone 

regions as the main feature for selection. We have especially looked at additional tools 

for prediction of immunogenicity risk in this comparative analysis. ANTIGENpro is a 

sequence-based web tool that predicts protein antigenicity using protein microarray 

data features. COBEpro is another SVM-based tool that has been used in 

computational immunology for predicting continuous B-cell epitopes. The COBEpro 

tool uses epitopic propensity scores as the main feature for peptide fragments and 

residues within a sequence. These tools have been reviewed previously in detail in 

Chapter Two and listed in Table 2 for additional information.  

Tool Name Main biophysical property   Phase -1 Phase -2 Phase -3 

CamSol7 Solubility Score −0.531 ± 0.124 −0.582 ± 0.358 −0.447 ± 0.286 

SODA8 Solubility Score 62 ± 35 58 ± 47 74 ± 39 

SOLpro Solubility Score N/A N/A N/A 

SOLart9 Solubility Score 71% ± 28% 79% ± 16% 75% ± 18% 

ANTIGENpro10 Protein Antigenicity 0.04 ± 0.01 0.04 ± 0.015 0.04 ± 0.01 

COBEpro11 Epitopic propensity scores 25 ± 8 37 ± 14 28 ± 12 

SAP Aggregation propensity score 0.12 ± 0.29 0.18 ± 0.35 0.14 ± 0.22 

Solubis12 Aggregation propensity score 61.73 ± 34.59 59.16 ± 42.03 64.82 ± 31.58 

GAP13 β-strand aggregation 0.851 ± 0.416 0.912 ± 0.394 0.837 ± 0.208 

Aggrescan 3D14 Aggregation (A3D) score −1.64 ± 0.62 −1.81 ± 0.54 −1.69 ± 0.85 

DiscoTope15 discontinuous epitopes score −11.67 ± 7.16 −14.81 ± 8.62 −13.44 ± 11.09 

ElliPro16 discontinuous epitopes score 0.574 ± 0.215 0.519 ± 0.202 0.538 ± 0.281 

Aggscore17 Aggregation score 82.9 ± 63.2 102.3 ± 78.5 87.2 ± 54.6 

PASTA 2.018 PASTA Energy Unit (PEU) 2.8 ± 1.5 2.3 ± 1.1 2.9 ± 1.5 

TANGO aggregation tendency N/A N/A N/A 

MusiteDeep19 No. of PTM sites 2 ± 2 3 ± 3  3 ± 3 

SVMTriP linear antigenic epitopes N/A N/A N/A 

AbAdapt antibody-antigen docking N/A N/A N/A 
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SCWRL4.0 side-chain conformations 79.1% ± 11.5% 74.1% ± 12.4% 78.0% ± 13.9% 

MUpro Single Site Mutations N/A N/A N/A 

PEARS Side chain prediction N/A N/A N/A 

NetMHCIIpan20 % MHC II binding score 9.47 ± 5.83 10.32 ± 7.02 10.16 ± 7.54 

RANKPEP % MHC II binding score 8.86 ± 6.91 10.67 ± 8.48 9.34 ± 6.70 

T20 Score21 Humanness score 77.46 ± 16.16 81.67 ± 15.13 84.64 ± 14.88 

Table 15: Evaluation of average ± standard deviation for multiple tools across clinical stages. 

5.5.2 Humanness Score: A reliable estimate of clinical trial progression 

Our comparative analysis in Table 15 revealed that the ‘T20 Humanness Score’ was 

the most reliable feature among all tools for estimating the clinical trial progression of 

mAbs. The T20 score quantifies the humanness of the variable region of monoclonal 

antibodies which is derived by comparing the sequence identity of an input sequence 

to a large database of ~38,700 human antibody variable region sequences.  

 

Figure 45: T20 score box and whisker plots for antibodies in different clinical trial stages.  

The Protein BLAST methods are used to determine the percent identities of the top 20 

matched sequences which are then averaged to obtain the T20 score. The T20 score is 

scaled from 0 to 100, where a higher score is a more human-like antibody. Gao et al. 
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have previously demonstrated that a high T20 score is correlated with decreased 

immunogenicity.21 The rationale for using the T20 humanness score is that a more 

human-like antibody with a corresponding high T20 score is likely to have few B-cell 

epitopes and T-cell epitopes that trigger an inflammatory immune response and cause 

immunogenicity upon antibody administration. Also, non-human sequences would 

likely be identified as foreign proteins by our immune system and patches of unusual 

residues on the surface may lead to immune response. So, high T20 scores are desired.  

We analyzed the T20 humanness score for all categories of clinical stages. The results 

are summarized in Figure 45. We observe enrichment of human regions as antibodies 

progress through clinical trials with an increase in T20 score from Phase 1 to approved 

therapeutic antibodies. Phase 1 antibodies have a mean score of 77.46 with the lower 

whisker at 61.30. Phase 2 antibodies have a mean score of 81.67 with the lower 

whisker now increased to 66.54. Phase 3 antibodies have a mean score of 84.64 and a 

lower whisker at 69.76. Approved antibodies have a mean T20 score of 84.87 with the 

highest T20 scores among all categories. Immunogenic antibodies face attrition as they 

progress through clinical trials. Therefore, among all biophysical features the T20 

humanness score is the most appropriate to get a fair estimate of which stage the target 

antibody would at least achieve in clinical trials. However, as discussed before more 

subjective features beyond biophysical properties would ultimately decide the clinical 

trial progression or the final clinical outcome of therapeutic monoclonal antibodies. 

5.6 Failed antibodies dataset of withdrawn and discontinued mAbs 

The machine learning classification algorithms were not able to distinguish between 

different stages of clinical trials. So, in this final section, we have tested the ability of 

a custom binary classification algorithm based on our computational developability 

assessment criteria from Chapter 3 Table 6 to flag the mAbs that failed clinical trials.  

We have manually created a novel dataset of the withdrawn and discontinued mAbs 

in clinical trials. This data was obtained from different sources including PubMed, the 

Clinical trial database (www.clinicaltrials.gov), patents, regulatory filings, company 

websites, media news and the ImMunoGeneTics information system (www.imgt.org). 

Table 16 shows this new dataset of withdrawn or discontinued therapeutic antibodies. 

Many drugs are withdrawn, at various stages, with several potential reasons for limited 

success in clinical trials, including insufficient therapeutic effect or, in some cases the 
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antibody being poorly tolerated. Here, we have selected antibodies that are part of this 

natural attrition pipeline. These antibodies faced attrition from clinical trials either due 

to safety reasons, low therapeutic efficacy, financial, commercial, or strategic reasons.  

INN 
(International 

Nonproprietary 
Name) 

Common 
name / 

Proprietary 
name 

Company Clinical indication  Highest 
Clinical 

Trial 

Additional 
Information 

Aprutumab BAY-
1179470; 

FGFR2-TTC 

Bayer AG (Germany) Solid tumours Phase-I NCT02368951 
800038337 

Ascrinvacumab PF-03446962 Pfizer (NY USA) Colorectal cancer Phase-II NCT01911273 
27329247/ 

Azintuxizumab ABBV-838 AbbVie Inc. (IL USA) Multiple myeloma Phase-I NCT02462525 

Bapineuzumab AAB-001:  
Bapi 

Pfizer (NY USA) 
Johnson & Johnson 

 (PA USA) 

Alzheimer's disease 
(AD) 

Phase-II reuters.com/a
rticle/ 

Bivatuzumab BIWA4 Boehringer Ingelheim 
Pharmaceuticals 

 (CT USA)  

Cancers, squamous Phase-I 800016679 
 

Bococizumab PF-04950615; 
RN316 

Pfizer (NY USA) Cardiovascular 
diseases 

Phase-III NCT01975376 
fiercebiotech.

com/ 

Briakinumab ABT-874 Abbott GmbH & Co. KG Psoriasis; 
Rheumatoid  arthritis 

Phase-III 800010080 
doi 

Carlumab CNTO-888 Centocor Biotech, Inc. 
MorphoSys AG 

Idiopathic pulmonary 
fibrosis; Ovarian 

cancer; Solid tumours 

Phase-II 800026524 
doi 

Cixutumumab IMC-A12 ImClone Systems 
Eli Lilly and Company  

(IN USA) 

Lung Cancer, 
Malignant Neoplasm, 

Adenocarcinoma 

Phase-II NCT01182883 
doi 

 

Clivatuzumab Clivatuzumab 
90Y-Hpam4 

Immunomedics  
(NJ, USA) 

Pancreatic cancer Phase-III 800018609 
NCT01956812 

Dacetuzumab SGN 14, SGN-
40, huS2C6 

Seattle Genetics  
(WA USA) 

Chronic lymphocytic 
leukaemia 

Phase-II 800014913 
articles/ 

Daclizumab ZENAPAX®  
ZINBRYTA™ 

AbbVie Inc. (IL USA) 
Roche (EU) 

Multiple sclerosis 
(MS) 

Approved  reuters.com/a
rticle 

Demcizumab OMP-18M21;  
OMP-21M18 

Celgene Corporation; 
OncoMed 

Pharmaceuticals 

Fallopian tube cancer; 
Ovarian cancer 

Phase-I 800023162 
doi 

 

Depatuxizumab ABT-414;   
Depatux-M 

AbbVie Inc. (IL USA) Glioblastoma;  
Gliosarcoma 

Phase-III 800035129 
news.abbvie 

Duligotuzumab MEHD-
7945A;  

RO-5541078 

Genentech Inc. (CA USA)  Colorectal cancer;  
Head & neck cancer 

Phase-II 800033001 
doi 

Duvortuxizumab  MGD 011;  
CD3xCD19 

DART 

MacroGenics;  
Janssen Biotech 

 B-cell Malignancies; 
Haematological 

malignancies 

Phase-I NCT02454270 
800042606 

Ecromeximab KW-2871 Kyowa Kirin, Inc. Malignant Melanoma Phase-II NCT00199342 

Efalizumab hu1124 
RAPTIVA® 

Merck (EU)  
Xoma (CA USA) 

Psoriasis (moderate to 
severe infection) 

Approved  fda.gov/raptiv
a 

800007491 

Efungumab HSP90mab, 
Mycograb® 

NeuTec Pharma plc 
(Manchester UK) 

Candidiasis 
 (yeast infection) 

Phase-III ema 
800018318 

Enokizumab MEDI-528 Genaera Corporation 
(PA USA) 

MedImmune (MD USA) 

Asthma Phase-II NCT00590720 
800011810 

Fasinumab REGN 475;  
SAR 164877 

Mitsubishi  Pharma;  
Teva Pharmaceutical 

Osteoarthritis Phase-III NCT00944892 
reuters.com/a

rticle/ 

Figitumumab CP-751871 Pfizer (NY USA)  Non-small cell lung 
cancer; Cancers 

Phase-III 800020634 
reuters.com/a

rticle 

Garivulimab BGB-A333 BeiGene (China) Advanced Solid 
Tumors 

Phase-II 800050989 
NCT03379259 

https://clinicaltrials.gov/ct2/show/NCT02368951
https://adisinsight.springer.com/drugs/800038337
https://clinicaltrials.gov/ct2/show/NCT01911273
https://pubmed.ncbi.nlm.nih.gov/27329247/
https://clinicaltrials.gov/ct2/show/NCT02462525
https://www.reuters.com/article/us-pfizer-alzheimers-idUSBRE8751F120120807
https://www.reuters.com/article/us-pfizer-alzheimers-idUSBRE8751F120120807
https://adisinsight.springer.com/drugs/800016679
https://clinicaltrials.gov/ct2/show/NCT01975376
https://www.fiercebiotech.com/biotech/pfizer-dumps-pcsk9i-inhibitor-bococizumab-after-finding-no-value-med
https://www.fiercebiotech.com/biotech/pfizer-dumps-pcsk9i-inhibitor-bococizumab-after-finding-no-value-med
https://adisinsight.springer.com/drugs/800010080
https://doi.org/10.1111/j.1468-3083.2012.04705.x
https://adisinsight.springer.com/drugs/800026524
https://doi.org/10.1007/s10637-012-9869-8
https://clinicaltrials.gov/ct2/show/NCT01182883
https://doi.org/10.1007/s10637-015-0217-7
https://adisinsight.springer.com/drugs/800018609
https://clinicaltrials.gov/ct2/show/NCT01956812
https://adisinsight.springer.com/drugs/800014913
https://jhoonline.biomedcentral.com/articles/10.1186/1756-8722-7-44#:~:text=Overall%2C%20the%20safety%20profile%20for,%2Drelated%20B%2Dcell%20depletion.
https://www.reuters.com/article/us-biogen-zinbryta/biogen-abbvie-withdraw-multiple-sclerosis-drug-zinbryta-idUSKCN1GE1BV
https://www.reuters.com/article/us-biogen-zinbryta/biogen-abbvie-withdraw-multiple-sclerosis-drug-zinbryta-idUSKCN1GE1BV
https://adisinsight.springer.com/drugs/800023162
https://doi.org/10.1158/1078-0432.CCR-14-1373
https://adisinsight.springer.com/drugs/800035129
https://news.abbvie.com/news/press-releases/abbvie-provides-update-on-depatuxizumab-mafodotin-depatux-m-an-investigational-medicine-for-newly-diagnosed-glioblastoma-an-aggressive-form-brain-cancer.htm
https://adisinsight.springer.com/drugs/800033001
https://doi.org/10.3389/fonc.2016.00232
https://clinicaltrials.gov/ct2/show/NCT02454270
https://adisinsight.springer.com/drugs/800042606
https://clinicaltrials.gov/ct2/show/NCT00199342
https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/efalizumab-marketed-raptiva-information
https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/efalizumab-marketed-raptiva-information
https://adisinsight.springer.com/drugs/800007491
https://www.ema.europa.eu/en/documents/assessment-report/mycograb-epar-refusal-public-assessment-report_en.pdf
https://adisinsight.springer.com/drugs/800018318
https://www.clinicaltrials.gov/ct2/show/NCT00590720
https://adisinsight.springer.com/drugs/800011810
https://clinicaltrials.gov/ct2/show/NCT00944892
https://www.reuters.com/article/us-regeneron-idUKTRE6BQ24920101227
https://www.reuters.com/article/us-regeneron-idUKTRE6BQ24920101227
https://adisinsight.springer.com/drugs/800020634
https://www.reuters.com/article/idUSTRE5BS3XY20091229
https://www.reuters.com/article/idUSTRE5BS3XY20091229
https://adisinsight.springer.com/drugs/800050989
https://clinicaltrials.gov/ct2/show/NCT03379259
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Lexatumumab HGS-ETR2 Cambridge Antibody 
Technology (UK) 

 Solid tumor and 
Lymphoma 

Phase-I 800017268 
NCT00428272 

Lucatumumab CHIR-12,12,  
HCD122 

Xoma (Berkeley CA USA) Follicular lymphoma, 
Multiple Myeloma 

Phase-I 800013077 
NCT00108108 

Matuzumab EMD 72000 Merck 
(Geneva Switzerland) 

Cervical cancer Phase-II 800007164 

Muromonab CD3 OKT3; OKT-3; Johnson & Johnson 
 (PA USA) 

Renal cancer;  
Organ transplant 

Approved  800005151 
Muromonab-

CD3 

N/A CDX-3379 Celldex Therapeutics  
(NJ USA) 

Malignant melanoma 
Head and Neck cancer 

Phase-II ir.celldex.com
/news-

releases/ 

N/A PF-04605412 Pfizer (NY USA) Solid tumours Phase-I NCT00915278 
doi 

N/A Hu3S193 Recepta Biopharma 
 (SP Brasil) 

Breast cancer 
Colorectal cancer 

Phase-II NCT01370239 
doi 

Ocaratuzumab AME-133;  
AME-133v;  
LY 2469298 

Mentrik Biotech; 
Applied Molecular 
Evolution (CA USA) 

Follicular lymphoma;  
Non-Hodgkin's 

lymphoma 

Phase-II 800018236 
doi 

Ozanezumab 1223249; 
GSK1223249 

GlaxoSmithKline 
(Brentford UK) 

Amyotrophic lateral 
sclerosis 

Phase-II 28139349/ 
800033680 

Pinatuzumab  DCDT-2980S;  
FCU-2703;  

RO-5541072;  

Roche  (Basel 
Switzerland),  

Genentech Inc. (CA USA) 

Chronic lymphocytic 
leukaemia; Non-

Hodgkin's lymphoma 

Phase-II PIIS2352-3026 
800027651 

Rilotumumab AMG-102 Amgen (CA USA) Colorectal cancer; 
Gastric cancer 

Phase-II Rilotumumab 
NCT02137343 

Ruplizumab BG 9588; 5c8; 
hu5c8 

Biogen (MA USA) Systemic lupus 
erythematosus 

Phase-II 12632425/ 
800010330 

Solitomab MT110;  
AMG-110 

Amgen (CA USA) Solid tumours Phase-I PMC6136859/ 
800028176 

Theralizumab TGN1412,  
CD28-

SuperMAB 

 TeGenero Immuno 
Therapeutics 

 (Würzburg, Germany) 

 B cell chronic 
lymphocytic leukemia  

Phase-I wiki/ 
ncbi.nlm.nih.g

ov/ 

Vadastuximab  SGN-CD33A; 
33A 

Seattle Genetics  
(WA USA) 

Acute Myeloid 
Leukemia (AML) 

Phase-III NCT02785900 
genengnews.c

om/ 

Vesencumab  MNRP1685A;  
R 7347; 
RG7347 

Roche   
(Basel Switzerland),  

Genentech Inc. (CA USA) 

Advanced solid 
tumors 

Phase-I 24604265/ 
800027393 

 

Visilizumab HuM-291; 
Nuvion 

PDL BioPharma Inc. Crohn's disease;   
Ulcerative colitis 

Phase-III clinicaltrials.g
ov/ 

pdl-hazard 

Zalutumumab HuMax-EGFr Genmab  
(Copenhagen, Denmark) 

Head and neck 
cancer; Other Cancers 

Phase-II 24714973/ 
800015831 

Table 16: Dataset of withdrawn and discontinued antibodies. These antibodies faced attrition 

either due to safety reasons, low therapeutic efficacy, commercial, or strategic reasons.   

A previous review has outlined the important considerations and types of nonclinical 

safety evaluation for therapeutic antibodies.22 An IND-enabling safety package for a 

mAb will most likely include a human tissue cross-reactivity study and a general 

toxicity study in at least one relevant species, most likely a non-human primate (NHP). 

Safety pharmacology and immunotoxicity studies are also usually included in this data 

package to support the clinical development and regulatory filing documents.  

Our computational developability assessment criteria evaluate the corresponding in 

silico features to predict clinical trial attrition of therapeutic antibodies. We evaluated 

these criteria for both the clinical-stage and failed antibodies dataset. The comparative 

performance of our computational developability criteria is shown in Figure 46. We 

https://adisinsight.springer.com/drugs/800017268
https://clinicaltrials.gov/ct2/show/NCT00428272
https://adisinsight.springer.com/drugs/800013077
https://clinicaltrials.gov/ct2/show/NCT00108108
https://adisinsight.springer.com/drugs/800007164
https://adisinsight.springer.com/drugs/800005151
https://en.wikipedia.org/wiki/Muromonab-CD3
https://en.wikipedia.org/wiki/Muromonab-CD3
https://ir.celldex.com/news-releases/news-release-details/celldex-provides-corporate-update-and-reports-second-quarter-1
https://ir.celldex.com/news-releases/news-release-details/celldex-provides-corporate-update-and-reports-second-quarter-1
https://ir.celldex.com/news-releases/news-release-details/celldex-provides-corporate-update-and-reports-second-quarter-1
https://www.clinicaltrials.gov/ct2/show/NCT00915278
https://doi.org/10.1007/s00280-014-2576-8
https://clinicaltrials.gov/ct2/show/NCT01370239
https://doi.org/10.1016/j.ygyno.2015.05.023
https://adisinsight.springer.com/drugs/800018236
https://doi.org/10.3109/10428194.2014.911859
https://pubmed.ncbi.nlm.nih.gov/28139349/
https://adisinsight.springer.com/drugs/800033680
https://www.thelancet.com/journals/lanhae/article/PIIS2352-3026(19)30026-2/fulltext
https://adisinsight.springer.com/drugs/800027651
https://en.wikipedia.org/wiki/Rilotumumab
https://clinicaltrials.gov/ct2/show/NCT02137343
https://pubmed.ncbi.nlm.nih.gov/12632425/
https://adisinsight.springer.com/drugs/800010330
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6136859/
https://adisinsight.springer.com/drugs/800028176
https://en.wikipedia.org/wiki/Theralizumab
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964774/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964774/
https://www.clinicaltrials.gov/ct2/show/NCT02785900
https://www.genengnews.com/topics/drug-discovery/seattle-genetics-halts-enrollment-in-vadastuximab-talirine-trials/
https://www.genengnews.com/topics/drug-discovery/seattle-genetics-halts-enrollment-in-vadastuximab-talirine-trials/
https://pubmed.ncbi.nlm.nih.gov/24604265/
https://adisinsight.springer.com/drugs/800027393
https://clinicaltrials.gov/ct2/results?cond=&term=visilizumab&cntry=&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=&term=visilizumab&cntry=&state=&city=&dist=
https://www.fool.com/investing/high-growth/2007/08/29/pdl-lands-in-the-hazard.aspx
https://pubmed.ncbi.nlm.nih.gov/24714973/
https://adisinsight.springer.com/drugs/800015831
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have checked the count (shown as percentage of total dataset) of the antibodies that 

failed the 10% threshold criteria for each dataset. Most of the clinical antibodies had 

zero flags as 67.3% of TheraSabDab dataset had optimal scores in each of the twelve 

assays. The rest of the clinical-stage dataset had one or two flags with a count of 14.9% 

and 12.2% respectively. An outlier case in the clinical-stage dataset with six flags was 

Murlentamab, a humanized anti-Müllerian hormone receptor antibody that is currently 

being evaluated for colorectal cancer in phase 2 trials and other cancer types in phase 

1 clinical trials. So, only 17.8% (100% – 67.3% – 14.9%) of the clinical-stage dataset 

had two or more flags from our computational developability assessment criteria.  

 

Figure 46: Computational Developability Assessment criteria performance in flagging mAbs 

for clinical-stage antibodies dataset vs failed antibodies dataset. No. of flags shown on x-axis. 

52.6% of the failed antibodies were flagged at least twice by our developability criteria while 

only 17.8% of clinical-stage antibodies were flagged at least twice by our criteria. 

However, for the failed antibodies dataset, we had majority of antibodies being flagged 

at least once with only 26.3% of the failed antibodies having zero flags. 21.1% of the 

failed antibodies were flagged by one assay score, 26.3% of the failed antibodies were 

flagged by two assay scores, 10.5% of the failed mAbs were flagged by three assay 

scores and 13.2% of the failed antibodies were flagged by four assay scores. Also, a 

failed antibody Bococizumab had a total of six flags. Therefore, 52.6% of the failed 
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antibodies were flagged at least twice by our developability criteria while only 17.8% 

of clinical-stage antibodies were flagged at least twice by our developability criteria. 

So, overall, we infer that failing two or more flags can be a reliable criterion that has 

a satisfactory separation and predictability between datasets (% flagged at least twice). 

We tested all these mAbs in the failed antibodies dataset against our developability 

criteria developed based on TheraSabDab clinical-stage antibodies. These criteria are 

detailed previously in Table 6. We observe that our criteria successfully flagged failed 

antibodies with a high accuracy as 28 mAbs out of 38 mAbs in the dataset had at least 

one assay score above the 10% threshold value. Figure 47 below shows an example of 

the successful flagging of failed antibodies that lie beyond the 10% threshold value 

(SGAC < 234.11) or even the 5% threshold (SGAC < 78.01) for the SGAC assay.  

 

Figure 47: Histogram distribution of SGAC assay score for TheraSabDab clinical-stage 

antibodies and visualization of the SGAC score for discontinued and withdrawn antibodies.  

Our criteria were successful in predicting clinical trial attrition by flagging the outlier 

scores of failed antibodies in developability assay metrics. For example, Bococizumab 

a humanized antibody developed by Pfizer for the treatment of high LDL cholesterol 

levels was terminated from Phase III trials in November 2016.23 It is an inhibitor of 

the proprotein convertase subtilisin/kexin type 9 (PCSK9) target. PCSK9 inhibitors 

work by blocking the protein that degrades LDL receptors on the liver that remove the 

LDL cholesterol from the blood. The clinical trials reported a higher degree of 

immunogenicity and a greater incidence of injection-site reactions with bococizumab 
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compared with other drugs in the class. These two key trials, known as SPIRE-1 and 

SPIRE-2, had enrolled over 32,000 patients but unfortunately witnessed major adverse 

cardiovascular events.  

Overall, this failure can be attributed to off-target binding to other regions apart from 

PCSK9 leading to immunogenicity and injection-site reactions. Our developability 

criteria have successfully flagged the corresponding poor biophysical performances 

for Bococizumab in six assays with the worst performances in the PSR, ELISA, and 

BVP assays. Bococizumab had a score of 0.5033 in the PSR assay which is well above 

the 10% threshold criteria (PSR > 0.4204) and 5% threshold criteria (PSR > 0.4396). 

 

Figure 48: Assay scores in PSR, ELISA, and BVP for Bococizumab compared to the 10% and 

5% threshold cutoffs from the developability criteria derived from clinical-stage antibodies. 
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A similar outlier was observed for Bococizumab for the ELISA assay. This failed 

antibody had a very high ELISA assay score of 12.345 which exceeded the 10% 

threshold (ELISA > 3.8382) and 5% threshold values (ELISA > 6.8259). Also, 

Bococizumab had an extremely high value of 16.249 for the BVP assay, much higher 

than the 10% threshold (BVP > 7.4012) and 5% threshold (BVP > 14.1383). A very 

high value in the PSR assay, BVP assay, and ELISA assay is a very clear signal of 

multiantigen nonspecificity since these assays involve measuring the binding profile 

of a target antibody to a panel of antigens. So, our developability criteria successfully 

predicted the off-target binding for this failed antibody as shown in Figure 48. 

We have proved the successful flagging of other liabilities beyond polyspecificity as 

well. For example, Duvortuxizumab, a bispecific antibody by Macrogenics and J&J 

was terminated in the Phase 1 trial due to toxicity concerns.24 Duvortuxizumab, was a 

humanized CD19 x CD3 Dual-Affinity Re-Targeting (DART®) bispecific that was 

being evaluated in Phase 1, first-in-human, open-label, dose-escalation study for major 

B-cell cancers including acute lymphoblastic leukaemia, chronic lymphocytic 

leukaemia, and diffuse large B cell lymphoma. The most common adverse events were 

infusion-related reactions (80%), fever, chills, pyrexia, constitutional symptoms, and 

reversible neurological events. The neurotoxicity seen in this Phase 1 clinical trial of 

duvortuxizumab led to termination of license deal for this asset in B-cell malignancies.  

 

Figure 49: CIC assay score for Duvortuxizumab compared to the 10% and 5% thresholds. 
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Our developability criteria have successfully flagged the corresponding poor 

biophysical performances for Duvortuxizumab in CIC, AC SINS, and PSR assays. 

Duvortuxizumab had a very high value of 1.2124 in the CIC assay which is well above 

the 10% threshold (CIC > 0.6425) and 5% threshold values (CIC > 1.0554) shown in 

Figure 49. It suggests high potential cross-interactions with polyclonal human serum 

antibodies which may explain the adverse events observed in the Phase 1 clinical trials.  

 

Figure 50: AC-SINS and PSR scores for Duvortuxizumab compared to clinical-stage mAbs.  

A similar outlier is seen for the AC-SINS assay where duvortuxizumab had a very 

high score of 2.0923 which is much higher than the 10% threshold (0.985) and 5% 

threshold values (1.572). Also, for the PSR assay duvortuxizumab had a score of 
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0.4660 which exceeded the 10% threshold value (PSR > 0.4204) and 5% threshold 

value (PSR > 0.4396) shown in Figure 50. These results suggest that Duvortuxizumab 

exhibits problematic self-interaction and cross-reactivity profile that may have caused 

the reported adverse events in the Phase 1 clinical trial.  

The confusion matrix from a new binary classification algorithm in MATLAB shown 

in Figure 51 and the corresponding measures shown in Table 17 confirm and validate 

that our binary classification algorithm derived from the computational developability 

assessment criteria has been fairly successful in classifying failed antibodies from the 

clinical-stage antibodies with a high sensitivity (0.5263) and specificity (0.8222). We 

achieved an overall model accuracy of 80.6% with the binary classification criteria 

being that the target antibody is flagged at least twice as per the 10% threshold values. 

   

Figure 51: Confusion matrix of the binary classification algorithm from our computational 

developability assessment criteria for combined failed and clinical-stage antibodies dataset.  

In Figure 51, we have 20 out of the 38 failed antibodies that are correctly classified as 

failed (True Positives: TP); 18 out of 38 failed antibodies that are wrongly classified 

as clinical-stage (False Negatives: FN); 117 out of 658 antibodies that are wrongly 

classified as failed (False Positives: FP); and 541 out of 658 antibodies are correctly 
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classified as clinical-stage (True Negatives: TN). Here, green boxes represent the true 

or correct predictions, while the red boxes represent the false or wrong predictions 

made by our binary classification algorithm. Also, the overall sensitivity, specificity,  

precision, negative predictive value and accuracy values are shown in Figure 51.  

Overall, we infer that our developability criteria are partially successful in flagging 

antibodies that are expected to face clinical trial attrition. A target therapeutic mAb 

with assay scores exceeding multiple threshold criteria is likely to fail due to adverse 

events or high immunogenicity caused by the underlying developability liabilities. 

However, these criteria are not suitable to estimate a clinical trial progression stage.  

Measure Value Derivations 

Sensitivity 0.5263 TPR = TP / (TP + FN) 

Specificity 0.8222 SPC = TN / (FP + TN) 

Precision 0.1460 PPV = TP / (TP + FP) 

Negative Predictive Value 0.9678 NPV = TN / (TN + FN) 

False Positive Rate 0.1778 FPR = FP / (FP + TN) 

False Discovery Rate 0.8540 FDR = FP / (FP + TP) 

False Negative Rate 0.4737 FNR = FN / (FN + TP) 

Accuracy 0.8060 ACC = (TP + TN) / (P + N) 

F1 Score 0.2286 F1 = 2TP / (2TP + FP + FN) 

Table 17: Major binary classification measures for our developability assessment criteria. 

5.7 Conclusion  

Clinical trials are expensive long-term projects and any insights and predictions from 

the available biopharmaceutical informatics resources are highly valuable. Efficient 

management and strategic solutions to clinical trial failures can be a good way to raise 

the R&D productivity and inspire new therapeutic innovation. In this chapter, we have 

employed data science and machine learning classification approaches to predict the 

clinical trial progression stages of antibody therapeutics. An important focus has been 

on validating the accuracy and applicability of our new computational developability 

assessment criteria in discriminating the ‘good’ (clinical-stage) antibodies from the 

‘bad’ (withdrawn or discontinued antibodies) antibodies.  

We started by exploring over 50+ features extracted from the tools used in previous 

work namely – ProteinSol, AbPred, and Therapeutic Antibody Profiler (TAP). We 

https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
https://onlineconfusionmatrix.com/#measures
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found overlap among different stages of clinical-stage antibodies for all these scores. 

This work has demonstrated that none of these 50+ biophysical features could predict 

the clinical trial stage outcome for a target antibody. Our analysis then explored new 

feature engineering techniques and machine learning classification approaches in 

MATLAB to test clinical trial progression. We observed that coarse KNN, linear 

discriminant, SVM and ensemble methods had the best model performance among all 

machine learning algorithms while the neural network algorithms had low accuracy 

due to high model complexity. The model performance metrics like AUC-ROC curves 

and the corresponding confusion matrices concluded that our classification models 

have no discrimination capacity to distinguish between different clinical trial stages.  

The results suggest that other additional factors such as location, clinical trial design, 

therapeutic area, and primary outcome measure also impact the clinical trial 

progression of therapeutic antibodies. Other external elements beyond developability 

associated with biology, mechanism, risk vs benefit profile of a biotherapeutic drug, 

patients, and indication can also significantly affect mAb clinical trial progression.  

We analyzed several additional biophysical features from new tools to find other 

biophysical properties that are most relevant in deciding the clinical trial success.  We 

concluded that only T20 Humanness Score can be potentially used to estimate the 

clinical trial progression of antibody therapeutics as we observed enrichment in the 

human regions (higher T20 humanness score) for mAbs in the advanced stages.  

Finally, we have checked if our developability criteria can flag mAbs that have failed 

clinical trials by introducing a new dataset of failed antibodies that were withdrawn or 

discontinued. We concluded that our criteria were partially successful in flagging 

failed antibodies with a high model accuracy (80.6%). Evidence from our case studies 

on multiantigen nonspecificity in Bococizumab and then non-optimal interactions in 

Duvortuxizumab further support the satisfactory predictability of our developability 

criteria in flagging the failed mAbs in at least two assays. Our detailed insights and 

proposed developability assessment criteria can guide antibody discovery or screening 

by successfully flagging antibodies that are likely to fail while informing any future 

approaches in characterizing the clinical trial progression of therapeutic antibodies. 
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6 Concluding Remarks and Future Work  

In this chapter, we summarize the key findings and conclusions from our work. We 

also provide an outlook towards potential future work to address the additional gaps 

that were not explored in this project. Finally, we comment on what general trends are 

expected to rise in biopharmaceutical informatics for the development of biologics.  

6.1 Summary and Conclusion 

In this work, we have applied computational methods to understand, model, and 

predict the developability characteristics of therapeutic monoclonal antibodies. We 

did this by performing computational developability assessment on several antibody 

datasets, and by studying the biophysical features of these datasets. The model focused 

on developing a better understanding of the sequence or structure-derived features that 

determine the antibody developability profile and biophysical performance. Our final 

developability assessment criteria were based on AbPred score cutoffs on twelve 

standard biophysical assays and five TAP metrics. We have deeply explored how the 

developability profile can be predicted and modelled using in silico tools to accelerate 

antibody therapeutic development and predict any sequence or structural liabilities.  

In the introduction to this thesis, we highlight the scope, background, and challenges 

faced in application of biopharmaceutical informatics approaches for computational 

developability assessment. The current molecular modelling and simulation tools used 

to study antibody therapeutics were discussed. Much of the work conducted for this 

thesis continued the investigation into the sequence-structural context of stability. We 

have captured the previous work done by our and other academic groups in the next 

section. The concept of developability to de-risk antibody development in early stages 

was introduced with subsequent discussion on the role of computational methods to 

aid this developability assessment. In particular, we have documented typical features 

and in silico descriptors used in the available developability assessment tools. Our 

research hypothesis and objectives are then stated to provide context to the readers. 

The main research hypothesis is that a target antibody with assay scores exceeding 

multiple developability criteria thresholds is likely to fail due to adverse events caused 

by the underlying developability liabilities. Our objective is to propose and validate 

new computational developability assessment criteria derived from clinical-stage 

antibodies to estimate the clinical trial success or failure of antibody therapeutics.  
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Continuing this work, in Chapter 1, we performed a comprehensive literature review 

of the current status and utility of biopharmaceutical informatics databases and tools 

for developability assessment. Table 1 and Table 2 have tabulated all major resources 

in biopharmaceutical informatics relevant to antibody-based drugs. Such metadata can 

be a valuable reference for current and future projects in this field. We found that the 

current tools are not solely reliable for estimating the overall developability profiles. 

Therefore, we concluded that an orthogonal combination of conceptually different 

tools and algorithms should be used in the developability assessment protocols to 

reduce method-specific biases. In particular, we have proposed a new combinatorial 

triage approach in computational developability assessment workflow to combine 

scores and rankings from multiple tools together in this chapter.  

In Chapter 2, we have provided full details of the methods and procedures used in 

this work. It provides the methodology of the dataset curation, antibody informatics 

tools and data processing used throughout this project. In particular, this chapter 

provides in depth information about the machine learning algorithms used in AbPred 

tool for estimating the biophysical performance in twelve assays. This chapter also has 

the information on MATLAB codes and procedures used for the machine learning 

classification work for estimating the clinical trial progression of antibodies.  

In Chapter 3, we have analyzed the biophysical property distributions to design the 

developability criteria for clinical-stage antibodies. We concluded that the biophysical 

property distributions are asymmetrically long-tailed in the unfavourable direction for 

clinical-stage mAbs. Furthermore, developability criteria were derived from the worst 

5% and 10% cut-off values in the histogram distributions for each assay score that 

were tabulated in Table 6. These criteria for TheraSAbDab clinical-stage antibodies 

were consistent with the experimental reality of the Jain clinical dataset which was 

statistically validated by the Kolmogorov-Smirnov test.  

We found that our established developability criteria were successfully flagging 

therapeutic antibodies that caused serious adverse events or failure in clinical trials 

such as Teclistamab (Tecvayli), Otilimab (GSK3196165), and Brolucizumab (Beovu) 

while good examples like Trastuzumab (Herceptin) were within threshold limits. Next, 

we compared the human immune repertoire dataset to clinical-stage therapeutics. We 

found that natural human antibodies have better performance in binding and reactivity 
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assays such as CIC, CSI BLI, AC SINS, and PSR but lower performance in assays 

measuring hydrophobicity and long-term stability such as HIC and SMAC. So, from 

this analysis, we concluded that future engineering towards deploying natural human 

antibodies as therapeutics should be on optimizing the hydrophobicity and stability. A 

case study on True Human™ antibody therapeutics validated that naturally occurring 

human antibodies can be successfully engineered as commercial antibody therapeutics 

that display optimal biophysical properties. 

In Chapter 4, we performed computational developability assessment on engineered 

antibodies to guide the selection of platform technologies for creating next-generation 

biotherapeutics. We found that the DVD-Ig™ platform has the lowest non-specific 

interactions and cross-reactivity among all bispecific engineered platforms. This might 

be because scFv-based constructs have constraints imparted by the linker sequences 

and a tendency to form aggregates due to domain exchange of the variable regions. A 

favourable developability profile was predicted for an Azymetric™ antibody case 

study. The CAT phage display platform had the best overall developability profile 

among all categories of phage display platforms. However, we also concluded that 

future CAT technology phage display optimization and engineering approaches 

should be directed towards increasing the degree of expression to improve the ease of 

manufacturability based on HEK assay results. Also, we found that the Therapeutic 

Antibody Profiler (TAP) is not accurate for phage display antibody datasets.  

The developability assessment results also suggested that the VelocImmune® mouse 

technology antibodies have the best developability profile among the transgenic mice 

platforms owing to their lowest polyspecificity and non-specific interactions in PSR, 

CIC, and SGAC assays. This can be attributed to normal maturation and Fc-mediated 

effector functions retained in the VelocImmune® edits by design.  

Chapter 5 presented machine learning classification approaches to predict the clinical 

trial progression of antibody therapeutics. We found overlap among different stages 

of clinical-stage antibodies for TAP, Protein-Sol, and AbPred scores. None of these 

50+ features used in our work could predict the clinical trial stage outcome for a target 

antibody. We conclude that other additional factors such as location, clinical trial 

design, therapeutic area, primary outcome measure beyond developability associated 

with biology, mechanism of action, risk vs benefit profile of a biotherapeutic drug, 
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and patient indication can also significantly affect mAb clinical trial progression. We 

tested several additional biophysical features to find that only T20 Humanness Score 

can be potentially used to estimate the clinical trial stage progression as we observed 

enrichment in the human regions represented by a higher T20 score for phase 3 or 

approved antibodies compared to phase 1 antibodies.  

In summary, sincere efforts have been made in this thesis to contribute to the field of 

biopharmaceutical informatics which can be divided into three general directions: (i) 

Computational developability assessment that estimates clinical success or attrition, 

(ii) Antibody informatics to compare discovery platforms and candidate libraries, and 

(iii) Validation of tools to predict biophysical performance and other assay scores.  

6.2 Limitations of computational developability assessments:  

The computational developability assessment approaches reported in this work have 

several limitations. Firstly, the number of antibody therapeutics available in the market 

are very few in comparison to the small molecule drug products. Also, there are very 

few publicly available experimental datasets on these marketed antibody therapeutics. 

Sequences with information gaps and missing residues are usually discarded, which 

significantly diminishes available data. Therefore, there is an inherent dataset problem 

in using biopharmaceutical informatics for antibody therapeutics. We can tackle these 

limitations by using novel predictive tools to fill the incomplete dataset information. 

For instance, Olsen et al. have demonstrated the use of the AbLang tool to restore 

missing residues in antibody sequences.1 It is a language model trained on the antibody 

sequences in the OAS database to restore residues lost due to sequencing errors.  

Next, generalization of data outside of those used for training remains a challenge for 

many predictive models. Biopharmaceutical informatics tools usually employ a set of 

labeled training data. The model learns to make predictions based on this training data 

and the model’s parameters are tuned until the model predictions and known outcomes 

align. However, if a model has been trained too well on training data, it will be unable 

to generalize for new data. We suggest using data augmentation techniques to prevent 

overfitting and teach the model to make accurate predictions for out-of-sample data. 

Finally, current antibody-based biotherapeutics come in several different molecular 

formats (IgGs, Fabs, ScFvs, and Fvs), formulations (lyophilized powders, liquid), and 

different routes of administration (intravenous, subcutaneous, intramuscular). Our 
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work does not consider these different characteristics specific to individual antibody 

biotherapeutic product classes for each assay. It is possible that a high-concentration 

liquid mAb formulation suitable for subcutaneous administration differs from low-

concentration mAb formulations suitable for intravenous administration in its overall 

developability profile. However, our results in this work show that dividing the dataset 

into such classes does not significantly change the average values of these descriptors. 

Jain et al. have recently performed a detailed review of the ability of in silico and in 

vitro flagging rules to identify the clinical progression of antibodies.2 They have 

demonstrated problems in the reproducibility of assessments due to differences in 

homology modelling, complex in vitro assessments, and curation of experimental data. 

For instance, the HIC prediction model on a set of 152 mAbs with a claimed R2 of 0.6, 

had an unsatisfactory R2 of 0.21 for the predictions on a distinct subset of 64 clinical 

mAbs in this study. The potential concerns on assay reproducibility can possibly be 

addressed by the inclusion of multiple controls with known sequences that span a 

range of measurement values and scenarios.  

It is also important to note that biotherapeutic products span a broad spectrum of 

disease indications, molecular targets, patient populations, mechanisms of action, and 

sequence—structural characteristics. Therefore, data analysis studies involving them 

are inherently subjective. Our study has attempted to mitigate this subjectivity by 

focusing on variable regions of antibody therapeutics and also using manually refined 

comprehensive datasets that have information from multiple data sources. Despite the 

limitations discussed above, our work has important implications for devising rational 

biopharmaceutical informatics approaches toward biologics.  

6.3 Contribution to scientific knowledge 

This thesis work done over the past four years is evidence of original contribution that 

adds to existing scientific knowledge. The key contributions are summarized below: 

1. In this thesis work we have proposed completely original new developability criteria 

thresholds for performance in biophysical assays. Our proposed developability criteria 

is successfully estimating clinical trial attrition or success with a good model accuracy 

(80.6%), high sensitivity (52.6%) and specificity (82.2%) that can accelerate antibody 

drug development and help filter antibody candidates saving valuable time and 

resources. This validation is also demonstrated with several real-world case studies.  
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2. Our work informs the scientific community about the unique developability profile 

of the human immune repertoire. Due to the huge size of the natural human immune 

repertoire, experimental characterization is not possible, but our work is the first study 

ever to provide biophysical assay estimates for the natural human antibodies.   

3. Insights into the developability profiles of several antibody platforms from Chapter 

4 will be a huge help in the experimental design and planning. This chapter guides the 

reader towards selection of antibody platform technology for their desired application.  

4. Next, in terms of published work, the literature review article published in mAbs 

journal has been having a good traction with 24 citations and over 12,000 views since 

the formal publication in January 2022. This is a direct quantitative evidence that this 

research impacted scientific community positively. 

5. Also, this thesis work has undertaken the largest ever machine learning study for 

benchmarking developability from clinical-stage antibodies. All previous scientific 

knowledge on clinical-stage antibodies were never scrutinized from a machine 

learning perspective in a large study. In Chapter 5, we have used biophysical estimates 

of clinical-stage antibodies to train machine-learning classification algorithms for 

estimating clinical trial progression that has generated key insights into the role of key 

biophysical features in clinical trial outcomes.  

6. Finally, this a comprehensive thesis work that proposes key databases, tools and 

new computational  developability assessment framework which serve as a reference 

resource for academic researchers and industrial teams that are commercializing 

antibody therapeutics and undertaking computational assessment projects. Our work 

would serve as an excellent reference resource for obtaining refined and curated 

datasets that would facilitate further scientific research. For instance, the manually 

created failed antibodies dataset would serve as negative control dataset for future 

computational studies evaluating biophysical performance and clinical trial success.  

6.4 Future work 

The task of establishing developability guidelines is becoming more approachable 

with more sequence information and biophysical data becoming publicly available. 

We expect computational developability assessment will play an increasingly larger 

role early in the antibody development process. However, using in silico models may 
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come with inherent challenges such as skewed, incomplete, or non-representative 

datasets, inaccurate or sub-optimal informatics tools, and finally data availability. 

Therefore, it will be important to re-evaluate algorithms, build and curate new datasets. 

Another major hurdle in the implementation of biopharmaceutical informatics is the 

lack of comprehensive and reproducible experimental data obtained under reliable 

conditions and protocols. The ongoing innovation in biophysical characterization and 

digital transformation of the biopharmaceutical industry are expected to ameliorate 

this limitation in the near future. An industry-wide initiative and a collaborative 

consortium between leading institutions to archive and disseminate verified datasets 

can be another great step forward in computational developability assessment goals.  

The structural aspects of CDR and Fv regions such as the three-dimensional locations 

of charged and hydrophobic residues and other valid structural patterns such as the 

aggregation-prone regions, immune epitopes, and antigen-binding interface properties 

can be valuable inputs for antibody informatics tools. The currently used tools have 

none or a very limited use of such structural features which may sometimes contain 

much more valuable insights beyond what can be captured by sequence information.  

Ahmed et al. have previously demonstrated the use of new five structural features for 

lead identification and optimization of biotherapeutic candidates in their work.3 The 

five structural features introduced in this study are namely - Variable Domain Interface 

Stability (BSA VL: VH); Structure-Based pI of Fv Region (pI Fv3D); Ratio of Dipole 

Moment to Hydrophobic Moment (RM); Ratio of Surface Areas of Charged Patches 

to Hydrophobic Patches (RP) and Average Hydrophobic Imbalance (Avg HI). These 

five physicochemical descriptors capture several biophysical properties ranging from 

conformational stability to anisotropy of hydrophobic residues and were derived from 

homology-based models of the Fv regions of 77 marketed antibody therapeutics. So, 

we suggest future work in biopharmaceutical informatics towards incorporating these 

novel structural features and insights into prediction algorithms for better precision.  

Future work after this thesis should attempt to perform experimental confirmation of 

the proposed conclusions and insights from our computational developability results. 

For instance, we have suggested in Chapter 4 that the scFv-based constructs have a 

tendency to form aggregates due to domain exchange of the V regions. It would be 

good to validate this result experimentally with hydrogen-deuterium exchange mass 
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spectrometry (HDX-MS) experiments in the future. Furthermore, other experimental 

techniques like X-ray crystallography for epitope mapping of antibody-antigen 

interactions and surface plasmon resonance (SPR) assay to study the binding kinetics 

of antibodies can be valuable to confirm our conclusions in this thesis.4-6 

 

Figure 52: Research themes for Biopharmaceutical Informatics lab in academic institutions.  

Also, we hope to openly publish the software and developability criteria for use by the 

scientific community. We aim to set up a dedicated GitHub Resource for collaboration 

and knowledge sharing on biopharmaceutical informatics. This can serve as a platform 

to share comprehensive resources like experimental datasets, tools, and algorithms for 

use in computational developability assessments. We also hope to introduce new tools 

focused on the developability score at the Protein-sol website. Our team is currently 

working on adding structural-based calculations to the webserver in AbPred 2.0. We 
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intend to keep updating our resources with the recent data and further the use of our 

web server and GitHub by introducing new features and calculations over time. 

Finally, in future we propose to set up the Biopharmaceutical Informatics Labs at the 

partner academic institutions. This is an inevitable transition to address the expanding 

research in this newly emerging field. The potential major research themes in a 

Biopharmaceutical Informatics lab in academic institutions are shown in Figure 52.  

In summary, the work outlined in this thesis has aimed to investigate the scope and 

role of biopharmaceutical informatics approaches for computational developability 

assessment of antibody therapeutics. Using a combination of biophysical property 

distribution analysis for clinical-stage antibodies, developability comparisons of novel 

engineered antibody formats, and machine learning classification algorithms, we have 

studied how computational resources can be used for developability profiling of input 

antibody therapeutics. Our results suggest that it may be possible to predict some key 

sequence or structural liabilities in antibody candidates under consideration and also 

triage appropriate antibody discovery platform or format for the intended application. 

Accurate estimation of clinical trial progression is a complicated process determined 

by additional factors beyond available in silico descriptors. As a result, there are many 

physicochemical properties still to study, and a comprehensive investigation of all of 

these features is beyond the scope of a single doctoral thesis. We hope, however, that 

the investigation outlined within this work can contribute to a greater understanding 

of the scope of antibody informatics resources toward developability assessments.  
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7 Supplementary Information 

7.1 Approved therapeutic monoclonal antibodies in the market  

S. 

No 

International Non-

Proprietary Name 

Brand Name Therapeutic 

Area 

Clinical Indication First approval 

(country, year) 

1 Abciximab Reopro Hematological 

Disorders 

Prevention of blood clots in 

angioplasty 

US, 1994 

2 Adalimumab Humira Immunology Rheumatoid arthritis US, 2002 

3 Ado-trastuzumab Kadcyla Oncology Breast cancer US, 2012 

4 Aducanumab ADUHELM Neurological 

disorders 

Alzheimer's disease US, 2021 

5 Alemtuzumab Lemtrada Oncology Chronic myeloid leukemia US, 2001 

6 Alirocumab Praluent Other High cholesterol US, 2015 

7 Amivantamab RYBREVANT Oncology NSCLC w/ EGFR exon 20 

mutations 

US, 2021 

8 Amubarvimab (Pending) Infectious 

disease 

SARS-CoV-2 infection China, 2021 

9 Anifrolumab Saphnelo Immunology Systemic lupus 
erythematosus 

US, 2021 

10 Ansuvimab Ebanga Infectious 

Diseases 

Ebola virus infection US, 2020 

11 Atezolizumab Tecentriq Oncology Bladder cancer US, 2016 

12 Atoltivimab Inmazeb Infectious 
Diseases 

Ebola virus infection US, 2020 

13 Avelumab Bavencio Oncology Merkel cell carcinoma US, 2017 

14 Basiliximab Simulect Immunology kidney transplant rejection US, 1998 

15 Belantamab mafodotin BLENREP Oncology Multiple myeloma US, 2020 

16 Belimumab Benlysta Immunology Systemic lupus  US, 2011 

17 Benralizumab Fasenra Immunology Asthma US, 2017 

18 Bevacizumab Avastin Oncology Colorectal cancer US, 2004 

19 Bezlotoxumab Zinplava Infectious 

Diseases 

Clostridium difficile 

infection 

US, 2016 

20 Bimekizumab Bimzelx Immunology Psoriasis EU, 2021 

21 Blinatumomab Blincyto Oncology Acute lymphoblastic 
leukemia 

US, 2014 

22 Brentuximab vedotin Adcetris Oncology Hodgkin lymphoma US, 2011 

23 Brodalumab Siliq Immunology Plaque psoriasis Japan, 2016 

24 Brolucizumab Beovu Ophthalmology Age-related macular  

degeneration 

US, 2019 

25 Burosumab Crysvita Genetic Diseases X-linked hypophosphatemia EU, 2018 

26 Cadonilimab (Pending) Oncology Cervical cancer China, 2022 

27 Camrelizumab AiRuiKa Oncology Hodgkin's lymphoma China, 2019 

28 Canakinumab Ilaris Genetic Diseases Muckle-Wells syndrome US, 2009 

29 Caplacizumab Cablivi Immunology Thrombocytopenic purpura EU, 2018 

30 Casirivimab REGEN-COV Infectious  COVID-19 Japan, 2021 

31 Catumaxomab Removab Oncology Malignant ascites EU, 2009 

32 Cemiplimab Libtayo Oncology Cutaneous cell carcinoma US, 2018 

33 Certolizumab pegol Cimzia Immunology Crohn disease US, 2008 

34 Cetuximab Erbitux Oncology Colorectal cancer EU, 2004 

35 Cetuximab saratolacan Akalux® Oncology Head and neck cancer Japan, 2020 

36 Crizanlizumab Adakveo Hematological  Sickle cell disease US, 2019 

37 Daclizumab Zinbryta Immunology Multiple sclerosis US, 1997 

38 Daratumumab Darzalex Oncology Multiple myeloma US, 2015 
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39 Denosumab Prolia Musculoskeletal 

Disorders 

Bone Loss EU, 2010 

40 Dinutuximab Unituxin Oncology Neuroblastoma US, 2015 

41 Disitamab vedotin Aidixi Oncology Gastric cancer China, 2021 

42 Docaravimab Twinrab Infectious 

disease 

Rabies exposure India, 2019 

43 Donanemab (Pending) Neurological 
disorders 

Alzheimer's disease In review 

44 Dostarlimab Jemerli Oncology Endometrial cancer EU, 2021 

45 Dupilumab Dupixent Immunology Atopic dermatitis US, 2017 

46 Durvalumab IMFINZI Oncology Bladder cancer US, 2017 

47 Eculizumab Soliris Hematological 

Disorders 

Paroxysmal nocturnal 

hemoglobinuria 

US, 2007 

48 Edrecolomab Panorex Oncology Colon cancer EU, 1995 

49 Efalizumab Raptiva Immunology Psoriasis US, 2003 

50 Elotuzumab Empliciti Oncology Multiple myeloma US, 2015 

51 Emapalumab Gamifant Oncology Hemophagocytic 
lymphohistiocytosis 

US, 2018 

52 Emicizumab Hemlibra Hematological 

Disorders 

Hemophilia A US, 2017 

53 Enfortumab vedotin Padcev Oncology Urothelial cancer US, 2019 

54 Envafolimab ENWEIDA Oncology Advanced solid tumors China, 2021 

55 Eptinezumab VYEPTI Neurological  Migraine prevention US, 2020 

56 Erenumab Aimovig Neurological  Migraine prevention US, 2018 

57 Evinacumab Evkeeza Genetic Diseases Homozygous familial 
hypercholesterolemia 

US, 2021 

58 Evolocumab Repatha Other High cholesterol EU, 2015 

59 Faricimab Vabysmo Ophthalmology AMD US, 2022 

60 Fremanezumab Ajovy Neurological  Migraine prevention US, 2018 

61 Galcanezumab Emgality Neurological  Migraine prevention US, 2018 

62 Gemtuzumab Mylotarg Oncology Acute myeloid leukemia US, 2000 

63 Geptanolimab (Pending) Oncology Peripheral T cell lymphoma In review 

64 Glofitamab (Pending) Oncology Diffuse large B-cell 

lymphoma 

In review 

65 Golimumab Simponi Immunology Rheumatoid arthritis US, 2009 

66 Guselkumab TREMFYA Immunology Plaque psoriasis US, 2017 

67 Ibalizumab Trogarzo Infectious 
Diseases 

HIV infection US, 2018 

68 Ibritumomab tiuxetan Zevalin Oncology Non-Hodgkin lymphoma US, 2002 

69 Idarucizumab Praxbind Hematological 

Disorders 

Dabigatran-induced 

anticoagulation 

US, 2015 

70 Inebilizumab Uplizna Immunology Neuromyelitis optica 
spectrum disorders 

US, 2020 

71 Inetetamab Cipterbin Oncology HER2-positive metastatic 

breast cancer 

China, 2020 

72 Infliximab Remicade Immunology Crohn disease US, 1998 

73 Inolimomb (Pending) Immunology Graft vs. host disease In review 

74 Inotuzumab BESPONSA Oncology Acute lymphoblastic 
leukemia 

US, 2017 

75 Ipilimumab Yervoy Oncology Metastatic melanoma US, 2011 

76 Isatuximab Sarclisa Oncology Multiple myeloma US, 2020 

77 Itolizumab Alzumab Immunology Psoriasis India, 2013 

78 Ixekizumab Taltz Immunology Psoriasis US, 2016 

79 Lanadelumab Takhzyro Genetic Diseases Hereditary angioedema  US, 2018 

80 Lecanemab (Pending) Neurological  Alzheimer's disease In review 

81 Levilimab Ilsira Immunology Inflammation  Russia, 2020 
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82 Loncastuximab Zynlonta Oncology Diffuse B-cell lymphoma US, 2021 

83 Margetuximab MARGENZA Oncology Breast cancer US, 2020 

84 Mepolizumab Nucala Immunology Severe eosinophilic asthma US, 2015 

85 Mirikizumab (Pending) Immunology Ulcerative colitis In review 

86 Mirvetuximab (Pending) Oncology Ovarian cancer In review 

87 Mogamulizumab Poteligeo Oncology Mycosis fungoides or 
Sézary syndrome 

Japan, 2012 

88 Mosunetuzumab Lunsumio Oncology Follicular lymphoma EU, 2022 

89 Moxetumomab Lumoxiti Oncology Hairy cell leukemia US, 2018 

90 Muromonab-CD3 Orthoclone 

Okt3 

Immunology Reversal of kidney 

transplant rejection 

US, 1986 

91 Narsoplimab (Pending) Hematological 
Disorders 

Thrombotic 
microangiopathies 

In review 

92 Natalizumab Tysabri Immunology Multiple sclerosis US, 2004 

93 Naxitamab DANYELZA Oncology Refractory osteomedullary 

disease 

US, 2020 

94 Nebacumab Centoxin Infectious 
Diseases 

Gram-negative sepsis EU, 1991 

95 Necitumumab Portrazza Oncology Non-small cell lung cancer US, 2015 

96 Nemolizumab Mitchga. Immunology Pruritus with atopic 

dermatitis 

Japan, 2022 

97 Netakimab Efleira Immunology Plaque psoriasis Russia, 2019 

98 Nimotuzumab TheraCIM Oncology Head and neck cancer Cuba, 2002 

99 Nirsevimab (Pending) Infectious 
diseases 

Respiratory syncytial virus 
infection 

In review 

100 Nivolumab Opdivo Oncology Melanoma, non-small cell 

lung cancer 

US, 2014 

101 Obiltoxaximab Anthim Infectious 
Diseases 

Prevention of inhalational 
anthrax 

US, 2016 

102 Obinutuzumab Gazyva Oncology Chronic lymphocytic 

leukemia 

US, 2013 

103 Ocrelizumab OCREVUS Immunology Multiple sclerosis US, 2017 

104 Ofatumumab Arzerra Oncology Chronic lymphocytic 
leukemia 

US, 2009 

105 Olaratumab Lartruvo Oncology Soft tissue sarcoma US, 2016 

106 Olokizumab ARTLEGIA Immunology Rheumatoid arthritis Russia, 2020 

107 Omalizumab Xolair Immunology Asthma US, 2003 

108 Omburtamab (Pending) Oncology CNS metastasis In review 

109 Oportuzumab (Pending) Oncology Bladder cancer In review 

110 Ormutivimab (Pending) Infectious 

disease 

Post-exposure prophylaxis 

of rabies 

China, 2022 

111 Ozoralizumab (Pending) Immunology Rheumatoid arthritis In review 

112 Pabinafusp alfa IZCARGO Metabolic 
disorders 

Mucopolysaccharidosis 
type II 

Japan, 2021 

113 Palivizumab Synagis Infectious 

Diseases 

Respiratory syncytial virus 

infection 

US, 1998 

114 Panitumumab Vectibix Oncology Colorectal cancer US, 2006 

115 Pembrolizumab Keytruda Oncology Melanoma US, 2014 

116 Penpulimab (Pending) Oncology Metastatic nasopharyngeal 
carcinoma 

In review 

117 Pertuzumab Perjeta Oncology Breast Cancer US, 2012 

118 Polatuzumab vedotin Polivy Oncology Diffuse large B-cell 

lymphoma 

US, 2019 

119 Prolgolimab Forteca Oncology Melanoma Russia, 2020 

120 Racotumomab Vaxira® Oncology Non-small cell lung cancer Cuba, 2013 

121 Ramucirumab Cyramza Oncology Gastric cancer US, 2014 

122 Ranibizumab Lucentis Ophthalmology Macular degeneration US, 2006 

123 Ravulizumab Ultomiris Hematological 
Disorders 

Paroxysmal nocturnal 
hemoglobinuria 

US, 2018 
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124 Raxibacumab (Pending) Infectious  Anthrax infection US, 2012 

125 Regdanvimab Regkirona Infectious  COVID-19 Korea, 2021 

126 Relatlimab Opdualag Oncology Melanoma US, 2022 

127 Reslizumab Cinqaero Immunology Asthma US, 2016 

128 Retifanlimab (Pending) Oncology Carcinoma of the anal canal In review 

129 Ripertamab (Pending) Oncology Non-Hodgkin's lymphoma In review 

130 Risankizumab Skyrizi Immunology Plaque psoriasis Japan, 2019 

131 Rituximab Rituxan Oncology Non-Hodgkin lymphoma US, 1997 

132 Romosozumab Evenity Musculoskeletal Osteoporosis Japan, 2019 

133 Sacituzumab govitecan TRODELVY Oncology Triple-neg. breast cancer US, 2020 

134 Sarilumab Kevzara Immunology Rheumatoid arthritis Canada, 2017 

135 Satralizumab Enspryng Immunology Neuromyelitis optica 
spectrum disorder 

Canada, 2020 

136 Secukinumab Cosentyx Immunology Psoriasis Japan, 2014 

137 Serplulimab (Pending) Oncology Solid tumors China, 2022 

138 Siltuximab Sylvant Immunology Castleman disease US, 2014 

139 Sintilimab Tyvyt Oncology Non-small cell lung cancer In review 

140 Socazolimab (Pending) Oncology Cervical cancer In review 

141 Sotrovimab Xevudy Infectious 

diseases 

COVID-19 Australia, 2021 

142 Spesolimab (Pending) Immunology Generalized psoriasis In review 

143 Sugemalimab Cejemly® Oncology Non-small cell lung cancer China, 2021 

144 Sutimlimab Enjaymo Immunology Cold agglutinin disease US, 2022 

145 Tafasitamab Monjuvi Oncology Diffuse B-cell lymphoma US, 2020 

146 Tebentafusp KIMMTRAK Oncology Metastatic uveal melanoma US, 2022 

147 Teclistamab (Pending) Oncology Multiple myeloma In review 

148 Teplizumab (Pending) Immunology Type 1 diabetes In review 

149 Teprotumumab Tepezza Ophthalmology Thyroid eye disease US, 2020 

150 Tezepelumab Tezspire Immunology Severe asthma US, 2021 

151 Tildrakizumab Ilumya Immunology Plaque psoriasis US, 2018 

152 Tislelizumab (Pending) Oncology Squamous cell carcinoma In review 

153 Tisotumab TIVDAK Oncology Cervical cancer US, 2021 

154 Tixagevimab Evusheld Infectious  COVID-19 EU, 2022 

155 Tocilizumab RoActemra Immunology Rheumatoid arthritis Japan, 2005 

156 Toripalimab Tuoyi Oncology Nasopharyngeal carcinoma In review 

157 Tositumomab-I131 Bexxar Oncology Non-Hodgkin Lymphoma US, 2003 

158 Tralokinumab Adtralza Immunology Atopic dermatitis EU, 2021 

159 Trastuzumab Herceptin Oncology Breast cancer US, 1998 

160 Trastuzumab 
deruxtecan 

Enhertu Oncology Breast cancer US, 2019 

161 Trastuzumab 

duocarmazine 

(Pending) Oncology Breast cancer In review 

162 Tremelimumab (Pending) Oncology Antineoplastic; liver cancer In review 

163 Ublituximab (Pending) Immunology Multiple sclerosis In review 

164 Ustekinumab Stelara Immunology Psoriasis EU, 2009 

165 Vedolizumab Entyvio Immunology Ulcerative colitis US, 2014 

166 Zimberelimab (Pending) Oncology Hodgkin’s lymphoma China, 2021 

Table 18: Therapeutic monoclonal antibodies in approved or review stages (2022). Adapted 

from https://www.antibodysociety.org/resources/approved-antibodies/ and www.fda.gov/. 
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7.2 Full scatterplot matrix for AbPred and ProteinSol features 

 

Figure: Scatterplot matrix of 12 AbPred biophysical features as per clinical trial status.  

 

 

Figure: Scatterplot matrix of 35 ProteinSol sequence features as per clinical trial status. 
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7.3 Biopharma licensing and Merger and Acquisition (M&A) trends 

in the 21st-century landscape  

This chapter was published in the Journal of Commercial Biotechnology as Khetan, 

Rahul. "Biopharma licensing and M&A trends in the 21st-century landscape." Journal 

of Commercial Biotechnology 25.3 (2020). doi: https://doi.org/10.5912/jcb943  

7.3.1 Abstract: 

The declining in-house R&D productivity has compelled the biopharmaceutical firms 

to supplement their innovation pipelines with well-managed licensing or acquisition 

deals. The reliance on new licensed products and acquired technologies continues to 

increase across the biotech industry to support pipeline expansion and technological 

diversification. In this article, we present another application of biopharmaceutical 

informatics to study licensing and merger and acquisition (M&A) trends across the 

biopharmaceutical industry by examining the partnering activities of major 

biopharmaceutical companies and analyzing the trends in the business development 

transactions of biotechnology companies worldwide. The information has been 

extracted from various public and proprietary sources such as company annual reports, 

Industry reports, and press releases from biopharmaceutical companies. The 

transaction data and partnership information has been analyzed over a contiguous 

twenty-year time period of 2000–2020 to understand the change in strategic focus in 

dealmaking and trends over the past two decades.  

7.3.2 Introduction: 

The global pharmaceutical market is estimated to be worth nearly 1,430 billion 

USD($) by 2020.1 In the last decade, the R&D expenditure of biopharmaceutical 

companies exceeded half a trillion USD resulting in advances and discoveries that will 

make a huge difference in millions of patients’ lives.2 In this new era of medicine, 

many diseases previously regarded as deadly are now manageable and potentially 

curable. Novartis (10.5), Roche (9.1), Pfizer (7.5), Merck & Co. (7.1), J&J (6.7), 

Sanofi (6.1), AstraZeneca (5.6) and Glaxo-SmithKline (5.4) are expected to invest 

more than 5 billion USD on R&D in 2020 with an industry-wide forecasted total R&D 

spend of USD 160 billion by 2020.3 In the United States, VC investments in the 

biopharmaceutical industry have doubled between 2010 and 2015 from $3.7 billion to 

$8.2 billion.4 Industry analysts predict that 80% of the revenues for 

https://doi.org/10.5912/jcb943
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biopharmaceuticals and diagnostics in 2030 will be driven by advances in biologic 

drugs that were not on the market by 2010.5  

Pavlou and Belsey have reviewed biopharma licensing and M&A trends in 2005 where 

they have discussed the reliance of the leading US and European pharma players on 

licensing and M&A, types of M&A deals in the industry and their contribution to total 

M&A value.6 Gautam et al. have also previously reviewed the key trends in R&D 

portfolio mix, revenue distribution and operational model over the 1995–2015 period 

that have impacted and transformed the top 12 big-pharma companies.7 They 

concluded that the pharmaceutical companies are now adapting their strategic focus 

towards their areas of strength, consolidating R&D towards hotspots, shifting towards 

specialty drugs and recognize the emerging markets as major revenue drivers. Third-

party collaborations are now an essential part of biopharmaceutical companies’ 

strategy to supplement product pipelines and to maximise revenues using commercial 

deals.8 For instance, Boehringer Ingelheim data from 2003 depicted that over two-

thirds of sales of three pharmaceutical companies among top 15 were from in-licensed 

products. This reliance on licensed products and acquired technologies continues to 

increase across the industry to support expansion and technological diversification. 

 

Figure 53: NMEs and Biologicals approved by the FDA over the last two decades. Source: 

US Food and Drug Administration (FDA) reports and Evaluate Pharma database search.  
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7.3.2.1 Overview of Licensing and M&A in the Biotechnology Industry 

Most early-stage biotechnology companies lack sufficient funds and experience to 

sustain their discoveries through complex and expensive clinical testing and 

subsequent regulatory approval hurdles. Further, these companies don’t have the sales 

and marketing competence needed to bring their approved drugs swiftly into the 

market. So, they mostly rely on much larger pharmaceutical companies to finance and 

conduct clinical testing and to market the drugs once they have received regulatory 

approval. This is achieved sometimes through a license agreement and sometimes 

through outright acquisition of the biotechnology pioneer by a larger and established 

pharma company.9  

Intellectual Property (IP) can be effectively commercialized and exploited through 

licensing the IP by the owner (the licensor) to another company (the licensee) which 

would carry out the marketing, distribution, and sales activities. ‘Licensing Out’ an IP 

means that the licensor retains the ownership of the IP and allows the licensee to use 

the IP. On the contrary, ‘Licensing In’ refers to the act of securing rights to use the IP 

from the licensor by a licensee. Selling IP to a third party is technically known as an 

‘assignment’ where ownership is transferred to a new party with outright disposal of 

the IP by the owner. In the biopharmaceutical industry, spin-out companies are 

actively involved in licensing to commercialize research and innovation. This is 

usually in the form of an exclusive License or an assignment as any company investors 

may insist that the company should own the IP rights. However, in some cases where 

the assignment is not feasible, the spin-out company may instead take a sole or non-

exclusive license of the IP. The value, commercialization viability, company strategy 

and licensing/assignment costs determine the approach adopted in transferring an IP 

in the biotechnology sector.  

The traditional operational model in big pharmaceutical companies has been that of a 

fully integrated company. Every operation in R&D, sales and marketing were carried 

out within the company. Big pharma now lays far greater emphasis on external 

collaborations to procure and develop new medicines and therapies. In 2010, for 

example, big pharma GlaxoSmithKline’s Chief Executive Officer (CEO) Andrew 

Witty announced further cuts to the company’s in-house R&D organisation, focusing 

the company strategy towards a “more virtual, more partner-orientated” model. 

Witty’s remarks echoed with his counterparts across the industry, all now disinvesting 
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from the traditional research model in favour of in-licensing drug candidates while 

outsourcing development work.10 Also, the current GlaxoSmithKline’s CEO Emma 

Walmsley has also been focused on creating strategic and operational synergies to 

build broad industry portfolio while maintaining a leading position in therapeutic areas 

such as HIV, respiratory and pain relief.  The leading big pharma companies such as 

GSK are likely to continue pursuing external collaborations and in-licensing of 

technologies with their BD&L strategy in the next few decades.  

Morgan Stanley economic value analysis report from 2010 also supports divestment 

of in-house R&D. The report suggests that every $1 invested in licensed drugs will on 

average deliver three times as much more value as $1 invested in R&D within the 

company.11 Major pharma companies have echoed this suggestion and have declared 

disinvestment in early-stage research in several disease areas in the previous two 

decades. They are being more reliant on external sources for maintaining their drug 

innovation pipeline. For instance, in 2010, the same year when Morgan Stanley report 

was released, AstraZeneca closed down discovery research in 10 therapeutic 

categories affecting nearly 3500 R&D jobs in the UK, Sweden and the US.  

7.3.2.2 Scope of Business Development deals in Biotechnology industry 

Business development deals in the biotechnology industry fall into one of two broad 

categories—asset-based and non-asset-based. The asset-based partnerships include 

acquisitions and licensing of drugs, technology, and patented innovations whereas the 

non-asset-based partnerships include joint ventures, consortia, and collaborations 

where two parties pool resources to achieve a common goal. The types of deals can 

range from simple patent licensing deals to complex co-development deals, co-

promotion deals and commercialisation deals.12 These collaborative R&D deals 

(discovery or preclinical-stage) are considered in the licensing section of our study. 

The motive behind these deals is to develop external collaborations to obtain products 

to supplement the internal R&D pipeline.  

In our study, M&A is defined as outright acquisitions that result in the exit of the target 

firm. However, it must be considered that outright acquisition is one extreme variant 

of the range of pharmaceutical-biotech and biotech-biotech relationships, including 

the purchase of a major equity stake (e.g. Roche-Genentech), co-development 
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alliances and co-commercialization or marketing agreements. This continuum of 

activity makes the definition of merger /acquisition somewhat arbitrary. 

Danzon et al. have analyzed the scope, determinants and effects of significant M&A 

transactions over the period 1988–2000 using a multinomial logit model to test several 

competing hypotheses to explain the M&A activity across the entire pharma–

biotechnology industry.13 They have concluded that pharmaceutical acquisitions of 

biotechnology companies are consistently driven by an asset-specific motive, such as 

cross-national acquisitions, assuming that it is a cheaper, quicker and more effective 

way to buy a local company with established connections rather than building a foreign 

subsidiary.  

The ’valley of death’ between drug discovery and its ability to attract formal venture 

capital has been widening. In particular, the venture capital for early-stage 

biopharmaceutical companies must compete with alternative low-risk profile 

opportunities that consistently offer high returns in the near-term. Many bioscience 

venture capitalists are increasingly focusing their investments in emerging life science 

companies only once their drug candidates enter clinical trials.14 Finally, it has been 

evident from previous studies that solely trusting the valuations from the hired 

investment banks for due diligence can be misleading. So, all the large companies now 

have business development & licensing teams to search, evaluate and negotiate deals. 

The implementation of a business development strategy depends on the availability 

and ability to identify opportunities and execute them at acceptable costs.  

7.3.3 Key licensing trends: 

7.3.3.1 Reliance on licensed life-science products and technologies 

Post-patent-expiration price competition has become more intense, compelling the 

pharmaceutical companies to either innovate or indulge in licensing deals to replace 

innovations in the R&D pipeline. Table 19 provides an overview of the key licensing 

deals in the biopharmaceutical industry from the 21st century with an overall value of 

over 500 million USD. We have only included the deals involving a preclinical 

compound or drugs in advanced clinical trials. So, we have excluded discovery stage 

collaboration deals or any commercial rights deals for proper representation of the 

biopharmaceutical dealmaking landscape.  
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Table 19: Key licensing deals from the 21st century.  

S.No Year Licensee Licensor Value Description 

1. 2017 Merck AstraZeneca 8500 million 
USD 

Strategic oncology 
collaboration with MSD to co-
develop and co-commercialise 

AstraZeneca’s Lynparza for 
multiple cancer 

types. 

2. 2019 AstraZeneca Daiichi Sankyo 6900 million 
USD 

License of HER2-targeted 
antibody-drug conjugate 

Trastuzumab deruxtecan for 
breast cancer 

3. 2018 Merck Eisai  5755 million 
USD 

Strategic collaboration for 
LENVIMA® (lenvatinib 

mesylate), an orally available 
tyrosine kinase inhibitor. 

4. 2018 Roche Affirmed 5096 million 
USD 

License to commercialize novel 
NK cell engager-based 

immunotherapeutics to treat 
multiple cancers. 

5. 2019 Gilead Sciences Galapagos NV 5050 million 
USD 

License of phase 3 candidate 
for idiopathic pulmonary 

fibrosis known as GLPG1690 

6. 2019 GlaxoSmithKline Merck KGaA 4200 million 
USD 

License of M7824 (bintrafusp 
alfa) a bifunctional fusion 

protein-based cancer 
immunotherapy for solid 

tumours 

7. 2020 AbbVie Genmab 3800 million 
USD 

License of bispecific drugs led 
by CD3xCD20 bispecific 
antibody epcoritamab 

8. 2018 BMS Nektar Therapeutics 3630 million 
USD 

Worldwide license and 
collaboration for immuno-

oncology program, NKTR-214 

9. 2018 Gilead (Kite Pharma) Sangamo Therapeutics 3160 million 
USD 

Exclusive license for cell 
therapies using zinc finger 

technology. 

10. 2014 Pfizer Cellectis 2885 million 
USD 

Partnership to develop 
Chimeric Antigen Receptor T-

cell (CAR-T) cancer 
immunotherapies 

11. 2014 Pfizer Merck KGaA 2850 million 
USD 

Partnership to co-develop and 
co-commercialize 
MSB0010718C, an 

investigational anti-PD-L1 
antibody 

12. 2019 Roche (Genentech) Sarepta Therapeutics 2850 million 
USD 

License of Duchenne muscular 
dystrophy gene therapy SRP-

9001 

13. 2018 Allogene Cellectis 2800 million 
USD 

Exclusive license for UCART Cell 
therapies 

14. 2017 Sanofi Ablynx 2700 million 
USD 

Exclusive worldwide license of 
Nanobody®-based therapeutics 

15. 2019 Gilead Sciences Nurix 2350 million 
USD 

License of Nurix Protein 
degradation technology for 

multiple therapeutic categories 

16. 2015 BMS uniQure 2307 million 
USD 

Global license and 
commercialization rights for 

gene therapies against 10 
cardiovascular targets 

17. 2014 AstraZeneca Almirall 2095 million 
USD 

Divestment of Almirall's 
respiratory assets including the 

marketed drug Eklira plus 
pipeline candidates. 

18. 2015 Sanofi Regeneron 2000 million 
USD 

License of clinical-stage 
bispecific antibodies for cancer 

immunotherapy. 
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19. 2015 Amgen Xencor 1745 million 
USD 

License for Xencor's Preclinical 
CD38 Bispecific T Cell Engager 

for Multiple Myeloma 

20. 2014 BMS Five Prime 
Therapeutics 

1740 million 
USD 

Partnership to co-
commercialize phase I 

cancer/immunology compound 
FPA008 and other CSF1R 

compounds.  

21. 2015 Sanofi Lexicon 1700 million 
USD 

Exclusive license for 
Sotagliflozin, an oral treatment 

for Diabetes.  

22. 2019 Neurocrine 
Biosciences 

Xenon 
Pharmaceuticals 

1700 million 
USD 

Exclusive license to Nav1.6 
sodium channel inhibitor 

candidate, XEN901 for epilepsy 
treatment. 

23. 2015 Eli Lilly Innovent Biologics 1456 million 
USD 

Multiple drug development 
collaborations to enter Chinese 

oncology market 

24. 2012 Johnson & Johnson Genmab 1100 million 
USD 

Global license and 
development agreement for 

daratumumab (HuMax®-CD38), 
a human CD38 

monoclonal antibody 

25. 2016 BMS Nitto Denko 998 million USD Exclusive worldwide license 
agreement for siRNA molecules 

targeting HSP47 

26. 2007 Novartis Antisoma Plc. 990 million USD License deal of vascular 
disrupting agent AS1404 a 
promising oncology drug 

27. 2020 Sanofi Kiadis Pharma 986 million USD License deal of K-NK004, 
modified NK cells to prevent 

the expression of CD38 

28. 2016 BMS PsiOxus Therapeutics 936 million USD Exclusive worldwide license of 
NG-348, a Tumour-Specific 

Immuno-gene Therapy (T-SIGn) 

29. 2016 Takeda 
Pharmaceuticals 

Crescendo 
Biologics 

790 million USD License for discovery, 
development, and 

commercialisation of 
Humabody®-based 

therapeutics 

30. 2017 Sanofi Principia Biopharma 765 million USD Exclusive worldwide license of 
PRN2246 

31. 2016 J&J MacroGenics 740 million USD Global license to MGD015, a 
preclinical DART® (dual-affinity 

re-targeting) molecule for 
various hematological 
malignancies and solid 

tumours 

32. 2015 AstraZeneca Inovio 
Pharmaceuticals 

728 million USD License agreement for clinical-
stage INO-3112 HPV cancer 

vaccine 

33. 2017 BMS CytomX 723 million USD Exclusive worldwide license to 
develop and commercialize 

Probody therapeutics for eight 
additional targets. 

34. 2017 Biogen BMS 710 million USD License of Phase 2 anti-eTau 
compound for Progressive 

Supranuclear Palsy. 

35. 2007 Sanofi-Aventis Oxford BioMedica 690 million USD License of cancer 
immunotherapeutic TroVax 
(vaccinia-delivered tumour-

associated antigen 
5T4) 

36. 2007 Schering-Plough Anacor 
Pharmaceuticals 

625 million USD License of its phase 2 
antifungal ANA2690 retaining 
the rights to copromote it in 

the US. 

Note: Only Licensing deals with an overall value of over 500 million USD considered. Deals without financial terms 

have been excluded. Only the deals involving drugs in advanced clinical trials are included in this Table.  
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7.3.3.2 Objectives and nature of the Licensing deals 

Companies often employ a licensing strategy for therapeutic areas of challenging 

scientific nature such as oncology and infectious diseases to hedge against clinical 

failure. In fact, the proportion of biopharma revenue generated by in-licensed or 

acquired compounds rose from 41% in 2005 to 50% in 2014.15 Generic makers are 

signing distribution and marketing contracts to reach foreign regulated and developing 

markets such as the recent out-licensing deals between Pfizer & Aurobindo and 

GlaxoSmithKline & Dr Reddy’s Labs to expand in emerging markets such as India. 

This trend is expected to increase even further due to a large number of drugs with 

pending patent expiration in the next few years.  

AstraZeneca has been the most prolific pharmaceutical dealmaker in terms of the 

completed number of deals. AstraZeneca signed a record 169 agreements in total 

between 2014-2018, 66 of which were out-licensing deals. Such a leading dealmaking 

rate is also demonstrated when AstraZeneca completed five late-stage deals in 2010, 

including a 1.24 billion USD deal with Targacept and the 350 million USD acquisition 

of Novexel, to develop two late-stage antibiotics in partnership with Forest 

Laboratories. The mean transaction value of licensing deals in 2019 was 455 million 

USD, a 41% increase from the mean value of 322 million USD in 2018. Also, there 

was a staggering rise in the value of the mean Upfront payment of the licensing deals, 

changing 48% from the value of 32.6 million USD in 2018 to 48.3 million USD in 

2019.16 Big Pharma companies signed two-to-three times as many in-licensing 

agreements as out-licensing deals annually between 2011 and 2015. The majority of 

the licensing deals throughout the 21st century were in the Discovery and Pre-clinical 

stages which represent the interest of Licensors in capturing the early-stage assets at a 

lower price and utilizing the in-house expertise in later developmental stages.  

In particular, the early-stage deals that offer access to novel technology platforms and 

next-generation biologics are very popular amongst large pharmaceutical companies. 

Last year, in 2019, Gilead was the leading dealmaker with three deals collectively 

worth almost $10 billion. These three deals are Gilead Sciences-Galapagos, Gilead 

Sciences-Nurix and Gilead Sciences-Goldfinch Bio. The Gilead Sciences-Galapagos 

deal for late-stage idiopathic pulmonary fibrosis (IPF) drugs, in particular, has the 

biggest upfront payment at $3.95 billion. Gilead has emerged actively in the licensing 
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market with such high-value deals ever since the company recently appointed Gilead’s 

Chief executive Daniel O’ Day. 

In April 2014, Novartis and GlaxoSmithKline agreed to swap a series of assets where 

Novartis acquired GlaxoSmithKline's marketed oncology portfolio for $16 billion and 

sold its vaccines business to GlaxoSmithKline for $7.1 billion, a deal that reshaped 

two of the world’s biggest drugmakers. Similarly, in 2017, Sanofi acquired Boehringer 

Ingelheim’s consumer healthcare (CHC) business in exchange for Sanofi’s Animal 

Health business (Merial). This strategic asset swap was valued at a combined total of 

24 billion USD. Such ‘exchange deals’ seem to be an attractive alternative for business 

development transactions in biotechnology in upcoming years since it helps the firms 

focus on their key business areas. The big pharma has started to embrace a focused 

strategic approach on their key therapeutic areas while divesting non-core assets. 

7.3.3.3 Statistics on Licensing deals by sector/focus area 

Oncology, and the field of immuno-oncology in particular, has continued to dominate 

the dealmaking landscape, while some noteworthy early-stage deal activity for novel 

biological programs across a variety of therapy areas was observed throughout the 

decade. The rise of immuno-oncology as a therapeutic strategy is reflected in the 

number of licensing deals in the biotechnology industry such as the global strategic 

Oncology collaboration between Merck and Eisai for LENVIMA© in 2018. Analysts 

predict that Oncology will continue to lead all the therapy areas and would represent 

17.5% of all prescription/OTC drug sales by 2022, more than the next three highest 

therapy areas combined.17  

The largest CAGR growth in the top 15 therapy categories except oncology is 

predicted to be from immunosuppressants, dermatologicals and anti-coagulants. CNS 

diseases, infectious diseases, endocrine diseases, and cardiovascular diseases were the 

next prevalent therapy areas after oncology for dealmaking. Gene therapy has also 

emerged as a top priority focus area in licensing deals. The global personalized 

medicine market is forecasted to reach $2.4 trillion with projected sales of $118.15 

billion in 2022 at a CAGR of 11.8%, double the projected 5.2% annual growth rate 

for the overall health care sector. Also, worldwide Medtech sales are forecasted to 

grow at an annual compound growth rate of 5.1%, reaching US$521.9 billion by 2022 
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where In-vitro diagnostics is estimated to be the largest Medtech segment with annual 

sales of more than USD $70 billion by 2022.  

Table 20: Therapy Area and Projected sales in 2022 for pharma assets (USD billion)  

S.No Therapeutic focus area Average Number 
of Deals per year  

No. of R&D 
products in 2019  

Projected sales 
in 2022 

1. Oncology 1040 2731 192.2 billion USD 

2. Antidiabetics 430 571 57.9 billion USD 

3. Anti-inflammatory 390* 473 55.4 billion USD 

4. Anti-virals 410* 439 42.8 billion USD 

5. Vaccines 440* 364 35.3 billion USD 

6. Bronchodilators 170* 480 30.1 billion USD 

7. Sensory organs 220 459 28.3 billion USD 

8. Immunosuppressants 370 511 26.3 billion USD 

9. Anti-hypertensives 290 412 24.4 billion USD 

10. Anti-coagulants 210 410 23.2 billion USD 

11. Musculoskeletal 200 461 21.7 billion USD 

12. Dermatologicals 250* 200* 19.9 billion USD 

13. Anti-fibrinolytics 230* 210* 17.1 billion USD 

14. Anti-hyperlipidemics 240* 200* 13.4 billion USD 

15. Anti-bacteria 140 270* 12.8 billion USD 

 Top 15 5030 8191 601 billion USD 

 Total 5800* 9500* 1100 billion USD 

Source: EvaluatePharma, 2017 for projected sales. IQVIA™ Pharma Deals Half-Year Review of 

2018/2019 and Author’s calculations for Licensing statistics.*represent estimated projections of global 

deal count. Note: Deals covering more than one therapeutic area are counted more than once (in each 

relevant therapeutic area). 

 

7.3.3.4 Challenges to successful execution of Licensing deals 

The expected benefits of the licensing transactions may never be fully realized or may 

even take longer to realize than expected due to 10-15 year development timelines, 

extensive R&D costs, and high rates of scientific & regulatory uncertainty. Also, 

competition from possible generic or biosimilar alternatives has to be taken into 

account. When a drug expires from patent protection, the owner loses some market 

share through generics. For instance, Pfizer lost the US patent protection for their top-

selling drug Lipitor in November 2011 which dwindled Lipitor sales from 5 billion 

USD per year to only 0.93 million USD the year after the patent expired. So, any 

unforeseen delay such as the COVID-19 pandemic in 2020 can jeopardize the drug 

development/clinical programs while the nearing patent expiry date would continue to 

decrease the revenue generated after product launch. 

The COVID-19 pandemic has disrupted several other industries such as in the 

hospitality sector, however, we have witnessed active dealmaking in the 

pharmaceutical healthcare sector even during this global pandemic. For instance, 
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Gilead acquired cancer drugmaker Forty Seven for $4.9 billion in April 2020 adding 

Forty Seven’s investigational lead product Magrolimab to their immuno-oncology 

portfolio. The statistics have shown that the number of deals has been unchanged but 

the overall deal values and upfront payment values have declined in the second quarter 

of 2020. Big pharma companies have been resilient in this crisis by redirecting 

resources towards developing drugs and vaccines against the SARS-CoV-2 virus. 

Licensing deals can often involve extensive clinical development programs across 

multiple indications which may involve co-development and co-commercialisation 

roles between the licensor and the licensee. This presents a unique challenge to the 

licensing dealmaking since adequate involvement of both parties is required for the 

success of the target product. Furthermore, in recent years, increased access to capital 

for early-stage companies continues to slow down the licensing activity. The investor 

sentiment towards biotech companies has been increasingly bullish overall owing to 

the huge return on investment provided by several blockbuster drugs. Early-stage 

biotechnology companies now have a variety of funding options available to them to 

fund their pipeline programs for longer. This allows them to retain the rights to their 

pipelines in the development phase in the hope of achieving higher returns in the 

clinical stage. Finally, several intangible liabilities such as lawsuits and binding long-

term contracts can hamper licensing or acquisition deals.  

7.3.3.5 Licensing litigation activity and trends 

The licensing deals are often disrupted by various lawsuits, claims, government 

investigations and other legal proceedings that arise in the business development 

transactions. Such legal proceedings can involve various types of parties such as 

governments, competitors, customers, suppliers, service providers, licensees, 

employees, or shareholders. These legal disputes usually involve patent infringement, 

antitrust, securities, pricing, sales and marketing practices, environmental, 

commercial, contractual rights, licensing obligations, health and safety matters, 

consumer fraud, employment matters, product liability and insurance coverage. 

Moreover, failure to enforce the patent rights likely results in substantial decreases in 

the respective product revenues from generic competition. 

Last year in 2019, Sanofi terminated a 1.7 billion USD licensing deal with Lexicon 

Pharmaceuticals due to unsatisfactory results in Phase III trials of Sotagliflozin. 
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Lexicon accused Sanofi of ‘breach of contract’ by ending the partnership. Sanofi has 

contractual obligations to fund ongoing clinical trials for a specified period following 

termination as per documents with US SEC. This incident has shown the importance 

of properly discussing and agreeing upon the restrictions and obligations involved in 

any licensing deal in case of deal termination. The same year, Amgen and Novartis 

entered a legal dispute regarding the collaboration agreements of the migraine drug 

Aimovig (FDA approved drug). Amgen terminated the partnership alleging that 

Novartis was in breach of the collaboration agreements for entering into a new joint 

development agreement with Alder BioPharmaceuticals, innovating a potential rival 

to Aimovig. However, Novartis accused Amgen of attempting to back out of their 

partnership and keep all the profits from the drug’s sales and considered the notice of 

termination “unjustified and without legal merit”.18 Here the conflict arose due to 

Novartis’ involvement with Alder’s development of a similar drug to Aimovig, so the 

licensing and M&A deals should avoid any overlapping projects to avoid litigations.  

Every deal structure carries different tax and accounting implications. M&A, for 

example, may add tax benefits if the target company bears net operating losses. Also, 

R&D incentives can be utilized to reduce cash taxes by the acquiring company. 

However, M&A can negatively impact the financial statements because it requires 

consolidation of assets, liabilities, and other financial items of two or more entities 

into one. Proper due diligence should unearth any issues which can cause legal 

disputes after the completion of any deal. Furthermore, risk management through the 

use of IP insurance can be very helpful for firms involved in licensing deals. 

7.3.3.6 Strategies for successful licensing deals 

Initial stage assignment deals usually provide the least return in the longer term, as IP 

tends to become more valuable as it is developed further and commercialized. Besides, 

the valuation of early-stage innovations is very challenging which increases the risk 

involved in selling an IP at an undervalue or overpaying for an economically 

unrewarding IP. However, licensing has shown a satisfactory track record for early-

stage patented innovations. Licensing out of an IP minimizes the capital investment 

and maximizes the return on IP for the owner by creating an additional income stream 

while retaining the ownership. Out-licensing has also emerged as a viable option to 

offload non-core assets and share development risks. 
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An established firm already has its own marketing team, salesforce, distribution 

channels and a well-respected brand and reputation. These will enable it to access the 

market for an IP product very effectively; by contrast, commercialising the IP through 

a start-up company will require the IP owner to create his access to the marketplace 

from scratch. In such situations, an optimal licensing deal is a win-win for both parties. 

Financial rewards from successful licensing are usually not immediate but can build 

up to respectable levels over the years. Therefore, a business development executive 

can seek to reduce the cash at risk by using deal structures that make payment 

contingent upon hitting specific milestones. 

Another important strategy is to negotiate licenses with the technology transfer offices 

within the research institutions. This would enable companies to invest in potential 

early-stage inventions at a much lower capital investment which can be financially 

very rewarding. So, for advancing innovative biopharmaceutical solutions, academic 

collaborations should be an integral part of the business development strategy. For 

instance, Merck & Co. have launched academic partnerships with universities and 

academic institutes, such as the California Institute for Biomedical Research (Calibr), 

to accelerate the commercialization of academic research.  

Current practices in due diligence are varied across the biotechnology industry. For 

example, Bristol-Myers Squibb ranking of potential licensing deals is based on three 

measures: Probability of technical and regulatory success, Expected NPV and Risk-

adjusted internal rate of return calculated for each asset. Novo Nordisk and Celgene 

were ranked in top with the best positive partnering attributes in BCG survey of 

Biotechnology CEOs and Licensing Executives, 2012 reflecting the trend towards 

inclination of big-pharma to partner with these two companies. Also, the survey 

indicated that GSK, Merck, and Roche were the preferred buy-side companies for 

licensors. Thus, the partnering characteristics of a company also influence the business 

development deals in the biotechnology industry.  

7.3.4 Key M&A trends: 

7.3.4.1 Reliance on M&A for Biotechnology and Pharma companies 

Big pharmaceutical companies use M&A deals to access strategically important 

intellectual property (IP), enter new therapeutic areas and fill R&D pipeline gaps in 

the company. Major pharmaceutical companies have broadened their R&D portfolio 
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by accessing research projects and drug candidates from mergers and acquisitions of 

external sources. M&A activity in the pharmaceutical–biotechnology industry during 

the last decade of the 20th century (1988-2000) had exceeded 500 billion USD. 

Whereas, the aggregate value of all M&A deals in 2010-2020 has exceeded 1200 

billion USD.19 Table 21 below summarizes the key M&A deals from the 21st century.  

Table 21: Key M&A deals from the 21st century. 

S.No Year Parent Company Target Company Value  
(billion $) 

Description 

1 2000 Pfizer Warner-Lambert 111.8 Pfizer acquired Warner-
Lambert and gained product 

lines such as Parke-Davis 
branded pharmaceuticals 

2 2000 Glaxo Wellcome 
Plc 

SmithKline Beecham 76.0 Merger of two UK-based 
drugmakers to form the new 

company known as 
GlaxoSmithKline 

3 2019 Bristol-Myers 
Squibb 

Celgene 74.0 Definitive merger agreement 
expected to achieve $2.5 

Billion Run-Rate Cost 
Synergies by 2022 

4 2004 Sanofi Aventis 73.5 Birth of Sanofi-Aventis by 
merger of France’s largest 

drugmaker. 

5 2015 Actavis Allergan 70.5 The merger provided 
dominant position in 

segments like Eyecare, 
Neurosciences, Dermatology, 

Gastroenterology and 
Urology 

6 2009 Pfizer Wyeth 68.0 Merger for Diversification of 
the in-line and pipeline 

patent-protected portfolio of 
biopharmaceuticals 

7 2003 Pfizer Pharmacia 64.3 Pfizer-Pharmacia merger was 
fueled by the Arthritis drugs 
Celebrex and Bextra, which 

were expected to have $3.75 
billion in sales per annum 

8 2018 Takeda 
Pharmaceutical 

Shire 62.0 Acquisition focused on four 
therapeutic areas - 

Oncology, Neuroscience, 
Rare diseases, and Plasma-

derived therapies 

9 2016 Bayer Monsanto 54.5 Acquisition to create the 
world's biggest agro-

chemical and seed company 

10 2010 Novartis Alcon 52.5 Novartis expands reach in 
eye-care business by buying 

Alcon shares from Nestlé 

11 2009 Merck & Co. Schering-Plough 47.1 A reverse merger to obtain 
market rights for Infliximab 

(Remicade) 

12 2009 Roche Genentech 46.8 Consolidated 1990 
acquisition of Genentech 

13 2014 Medtronic Covidien 42.3 Mergers of two giants in 
medical device community – 

Spinal Implants, Heart 
devices and Insulin pumps 

14 2015 Teva 
Pharmaceutical 

Industries 

Actavis 40.5 Increased scale and pricing 
power in the generics market 

was the deal driver.  
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15 2016 Shire Baxalta 32.0 Merger focused on rare 
disease products – HAE, 
Endocrine diseases, and 

lysosomal storage diseases. 

16 2017 Johnson & 
Johnson 

Actelion 30.0  Four focused therapeutic 
areas: Cardiovascular 

disorders, CNS disorders, 
Immunological disorders, 

and Orphan diseases. 

17 2006 Boston Scientific 
Abbott 

Laboratories 

Guidant 27.2 Merger for medical devices 
portfolio especially 

cardiovascular devices 

18 2000 Pharmacia & 
Upjohn 

Monsanto 25.2 The company retained 
Monsanto's pharmaceutical 
division (Searle) and spun off 

the remaining interests 

19 2017 Abbott 
Laboratories 

St Jude Medical 25.0 Merger to create a diverse 
portfolio of devices, 

diagnostics, Nutritionals and 
branded generic 
pharmaceuticals 

20 2015 AbbVie Pharmacyclics 21.0 Focus on Imbruvica® 
(ibrutinib), a Bruton’s 

tyrosine kinase inhibitor 
approved for the treatment 

of certain B-cell malignancies 

21 2014 Actavis Forest Laboratories 20.7 Merger to Strengthen 
Actavis' Specialty Brands 

Business 

22 2011 Sanofi Genzyme Corporation 20.1  France’s pharmaceutical 
company Sanofi acquisition 
of Genzyme is symbolic of 

the Pharma ‘shift’ into 
Biotechnology 

23 2012 Johnson & 
Johnson 

Synthes 19.7 Synthes integrated with 
DePuy franchise to establish 

the DePuy Synthes 
Companies of Johnson & 

Johnson. 

24 2006 Bayer Schering 18.4 Created Bayer-Schering 
Pharmaceuticals 

headquartered in Berlin 

25 2016 Quintiles IMS Health 17.6 Created IQVIA, one of the 
world's largest contract 
research organizations 

26 2015 Pfizer Hospira 17.0 Expanded business in 
Injectable drugs, Biosimilars 

and Infusion technologies 
market 

27 2015 Merck Group Sigma-Aldrich 17.0 New entity to enhance 
product range, capabilities, 

and geographic reach 

28 2001 Amgen Immunex 16.8 Immunex's key product 
Enbrel, a rheumatoid 

arthritis drug was a key 
driver 

29 2006 Johnson & 
Johnson 

Pfizer Consumer 
Health 

16.6 All-cash transaction which 
provided a boost to global 

personal care and OTC 
medicines business 

30 2014 Novartis GlaxoSmithKline 
Oncology 

16.0 Newly-acquired therapies 
such as Tafinlar®, Votrient® 

and Promacta® 

31 2015 Valeant Salix Pharmaceuticals 15.8 Created a new speciality 
platform for growth in U.S. 

Gastrointestinal Market 

32 2007 AstraZeneca MedImmune 15.6 Acquisition of U.S. 
biotechnology company 
MedImmune to expand 
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towards vaccines and 
biologicals 

33 2007 Schering Plough Organon International 14.5 The acquisition added five 
drugs in Phase III 

development 

34 2014 Bayer Merck & Co Consumer 
Health 

14.2 The acquisition significantly 
enhanced Bayer's OTC 

business across multiple 
therapeutic categories and 

geographies 

35 2016 Pfizer Medivation 14.0  Acquired promising late-
stage oncology pipeline to 

accelerate position in 
Oncology 

36 2015 Zimmer Inc. Biomet Inc. 13.4 Created the Zimmer Biomet 
Holdings, a leader in 

musculoskeletal healthcare 
market 

37 2019 Amgen Otezla  
(drug program) 

13.4 Otezla® (apremilast) 
acquired from Celgene in 

connection with its merger 
with Bristol-Myers Squibb 

38 2006 Merck Group Serono 13.2 Merck's Pharma Ethicals 
division combined with 

Serono to create Merck-
Serono Biopharmaceuticals 

39 2018 GlaxoSmithKline Novartis Consumer 
Healthcare 

13.0 Buyout of Novartis’ 36.5% 
stake in the Consumer 

Healthcare Joint Venture 

40 2017 Gilead Sciences Kite Pharma 11.9 Acquisition aimed to position 
Gilead as a Leader in Cell 

Therapy  

41 2018 Sanofi Bioverativ 11.6  Creating a Leading 
Hemophilia Portfolio by 

acquiring therapies in rare 
blood disorders. 

42 2019 Pfizer Array BioPharma 11.4  Acquisition to bolster cancer 
treatment portfolios 

43 2011 Gilead Sciences Pharmasset 11.2 Acquisition directed towards 
the promising Hepatitis C 

treatment portfolio 

44 2013 Amgen Onyx Pharmaceuticals 10.4 Oncology Portfolio and 
Pipeline such as Multiple 
Myeloma drug Kyprolis® 
were the key deal driver 

45 2019 Novartis The Medicines 
Company 

9.7  Inclisiran was the target drug 
to expand cardiovascular 

disease R&D portfolio 

Source: Mergers and Innovation and Media release event study by the author. Note: We have NOT 

considered Net Present value (NPV) of the deals and the actual deal figures are shown. Only deals with 

an overall value above 9 billion USD have been considered. 

 

7.3.4.2 Objectives and nature of the M&A deals 

The mean transaction value of M&A deals was 2690 million USD in 2019 compared 

to 1613 million USD in 2018 indicating a positive trend in dealmaking activity across 

the industry. Pfizer has been the most active in BD&L transactions in the first decade 

of the 21st century with some high-value M&A deals. Pfizer acquired three large 

companies — Warner-Lambert (in 2000), Pharmacia (in 2003) and Wyeth (in 2009) 

— and multiple smaller companies, such as Vicuron, Rinat and Esperion to meet its 

business objectives. However, in the second decade, acquisitions were largely driven 
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by the strategic rationale to build complementary capabilities rather than a desire to be 

massive. For instance, AbbVie acquired Pharmacyclics to enhance AbbVie's scientific 

and commercial presence in oncology with the addition of Imbruvica®, a blockbuster 

drug approved in multiple indications for blood cancers. 

In March 2009, Roche announced a $46.8 billion deal to acquire full ownership of 

Genentech which has been a key pharma industry merger. This acquisition was 

strategically directed towards Genentech's three best-selling products — the cancer 

drugs Avastin, Herceptin and Rituxan. Their Swiss rival Novartis AG. announced $39 

billion takeover of U.S. eye care company Alcon the same year. Also, in the ‘merger 

wave’ of 2009, Pfizer acquired Wyeth for $68 billion, while Merck paid $41 billion to 

acquire Schering-Plough to diversify their pipeline with the addition of Remicade and 

Simponi. 

Mergers can intensify the research performance of the transacting firms by creating 

large knowledge synergies, optimizing R&D expenditure, and improving the research 

productivity. The M&A dealmaking trends indicate that the big pharma has 

transitioned into a leaner and focused model by divesting non-core assets and focusing 

on their speciality therapeutic areas. In 2019, Bristol-Myers Squibb acquired Celgene 

for a massive 74 billion USD because of enhanced margins, highly complementary 

portfolios, strong combined cashflows and revenue potential of more than 15 billion 

USD of six near-term product launches. Therefore, in such cases, the resulting 

synergies in R&D, administrative and market from an M&A deal usually make the 

resulting combined company greater than the ‘sum of the parts’.  

Mean upfront payments for clinical-stage assets have also increased markedly over 

the 2011-2015 time period. However, discovery and preclinical projects continue to 

be popular among dealmakers. The level of M&A and licensing activity for preclinical 

assets has been dominant over the deal volume for clinical or approved products. Also, 

the dealmaking activity for Phase I and Phase II assets was lower than Phase III and 

pre-registration assets which demonstrates the reluctance of investors to cashing-in on 

the riskier Phase I and II projects. Some may argue that the trend of sole interest in 

late-stage innovations is detrimental to drug discovery in biotechnology industry 

because then fewer funds are available for early-stage research projects. However, 

owing to the very low success probability (<5%) of drug development projects, such 
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early-stage projects should be funded primarily by government and philanthropic 

organizations. This ensures that a single company does not bear any loss for 

undertaking drug discovery initiatives and the underlying risk is shared by the use of 

public funds. On the contrary, the pharmaceutical companies should focus their 

investments and resources in accelerating late-stage projects by adopting rigorous 

licensing and acquisition strategies. The logic of comparative advantage strongly 

favours big pharma companies in acquiring the late-stage projects. So, this current 

financial landscape at various stages of drug development does facilitate innovation 

with more emphasis towards bringing the medicine to market.  

7.3.4.3 Statistics on M&A deals by sector/focus area 

Oncology remained a priority but other areas of research that gained momentum in 

both licensing and M&A were neuroscience, infectious diseases, cardiovascular and 

gene therapies. This inclination towards oncology is reflected in a recent acquisition 

of Array Biopharma by Pfizer for 11.4 billion USD to enrich Pfizer’s R&D pipeline 

with high-potential targeted investigational cancer therapies such as BRAFTOVI® and 

MEKTOVI® for metastatic colorectal cancer. In 2018, a wave of M&A deals emerged 

in oncology such as 9 billion USD acquisition of Juno Therapeutics by Celgene and 5 

billion USD acquisition of Tesaro by GlaxoSmithKline.  

The first decade of the 21st century had deals directed towards diversification into new 

therapeutic areas and were majorly driven by key blockbuster drugs that could provide 

entry into a new therapeutic area. For instance, Merck had succeeded with the 

transformational acquisition of Serono in 2007 driven by blockbuster drugs such as 

Rebif®, a treatment for relapsing-remitting multiple sclerosis. Similarly, Merck & Co. 

had a reverse merger deal with Schering-Plough in 2009 which doubled their number 

of late-stage drugs in development. New innovative therapies emerged in the second 

decade such as cell-based therapies in 2011 with Provenge and gene-based therapies 

in 2012 with Glybera. In the recent years, the total value of Medtech venture financing 

deals has increased drastically, since exponential advances in machine learning and 

Artificial intelligence (AI) technology has converged digital health technologies with 

Medtech which has attracted more venture capital investment. M&A deals relating to 

biomarkers, biosensors and companion diagnostics were also very popular. New 

alliances with Artificial intelligence (AI) technology developers to accelerate drug 

discovery and improve R&D productivity and efficiency have become more common. 
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For example, AstraZeneca collaborated with BenevolentAI in 2019 to use AI and 

machine learning for the discovery and development of new treatments for chronic 

kidney disease and idiopathic pulmonary fibrosis. 

7.3.4.4 Challenges to successful M&A deals 

Big mergers reshape the R&D and growth of the therapeutic areas targeted in M&A 

strategy. They are likely to raise anticompetitive concerns and may provide fewer 

incentives to innovate in the long-run. Licensing deal involves working with a licensor 

who is committed to the continued success of the asset. Such a structure creates more 

accountability for both the licensee and licensor to hit key milestones in the 

development and launch of the asset. However, In M&A, if the strategic focus of the 

acquiring company changes, the assets could linger in development pipelines without 

being progressed or terminated, especially in phase I or II.  

In 2015, Pfizer attempted to acquire Allergan Biologics Ltd, the maker of Botox for 

160 billion USD which would have been the largest pharmaceutical deal ever. The 

plan was to move Pfizer to where Allergan was located in Ireland so that the company 

could pay the Irish corporate tax rate of 12.5% instead of America’s 35% corporate 

rate. The deal was contingent on several factors including shareholder agreement, US, 

and EU approval. This deal was structured as a reverse merger so that the smaller 

Allergan was technically acquiring the much larger Pfizer. However, the deal 

ultimately fell through because of new laws that were introduced by U.S. President 

Barack Obama to limit corporate tax inversions.  

Furthermore, key talent or capabilities could be lost in M&A transactions, potentially 

disrupting R&D with a substantial negative impact on the momentum of research 

programs. The integration demands of acquisition must not be underestimated, and a 

thoughtful post-merger integration planning should be implemented for the success of 

the acquired assets. Finally, novel and highly sought-after assets are usually tied up in 

licensing agreements with other companies early on in development, which causes 

acquisition deals to be overpriced to gain majority equity of the Intellectual property.  

7.3.4.5 Corporate Strategies for successful M&A deals 

The percentage of the profit received by both parties in a merger situation will be less 

than if the initial owner were to commercialize the IP solely, as the financial rewards 

will be shared between the partners. So, if the IP owner is confident with the success 
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of the IP and has the economic resources to commercialize the IP by itself then diluting 

the profits by a merger with another company should be avoided. However, only if the 

merger adds extra value to the commercialization of IP such as market penetration into 

new geographical locations/access to new customer segments which compensates for 

the ownership share loss, the owner should proceed towards a merger deal. The deals 

where multiple assets are involved, such as megamergers are complicated to evaluate 

but offer a balanced R&D portfolio. 

Often a life-sciences IP will require extensive R&D and a large Infrastructure to be 

developed and enhanced, which is very expensive. Also, commercialization of this IP 

may require complementary IP, products and services which are present and owned 

by established firms. In these circumstances, it makes sense to seek to place the IP in 

that context through M&A, rather than try to raise capital via a spin-out company and 

ultimately to compete with established players. Therefore, M&A is an optimal exit 

strategy for small firms in such situations.  

Biopharma companies should also consider thorough due diligence and integration 

planning in advance of the transaction to help increase the success of assets sourced 

through M&A. M&A should be strategically used to expand the number of projects in 

R&D portfolio to compensate for individual project failures and maximize ROI 

expected by investors. Currently, the corporate R&D pipelines of the top companies 

include more than 150 drug projects in development phases, with GSK (261), Roche 

(248), Novartis (223), and Pfizer (205) having more than 200 projects in portfolio. 

Table 22: Key products from M&A and Licensing deals for top 20 biopharma companies 

S.No Company Products / Technologies Net Sales 
(2019) 

1. Roche Ocrevus®, Hemlibra®, Alecensa®, 
RoActemra® 

53.36 billion 
USD 

2. Pfizer Eliquis®, Enbrel®, XTANDI®, Celebrex® 51.75 billion 
USD 

3. Novartis Promacta®, Jakavi®, Lucentis®, Gilenya® 47.44 billion 
USD 

4. Merck & Co. KEYTRUDA®, BRIDION®, SIMPONI® 46.80 billion 
USD 

5. GlaxoSmithKline Zejula®, BREO™ ELLIPTA™  44.17 billion 
USD 

6. Sanofi Lemtrada®,Libtayo®,Eloxatin®, Aubagio® 42.78 billion 
USD 

7. Johnson & 
Johnson 

IMBRUVICA®, DARZALEX®,  INVOKANA® 42.19 billion 
USD 
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8. AbbVie Humira®, Mavyret®, Imbruvica® 33.26 billion 
USD 

9. Takeda VELCADE®, ADYNOVATE®, TRINTELLIX® 30.87 billion 
USD 

10. Bristol-Myers 
Squibb 

OPDIVO®, Eliquis®, YERVOY®, EMPLICITI® 26.14 billion 
USD 

11. AstraZeneca CRESTOR®, Lumoxiti™, FARXIGA®, 
ONGLYZA® 

24.38 billion 
USD 

12. Amgen KANJINTI™, Otezla®, KYPROLIS®, Aimovig™ 23.36 billion 
USD 

13. Boehringer-
Ingelheim 

Trajenta®, JARDIANCE®, BASAGLAR® 22.49 billion 
USD 

14. Gilead YESCARTA® , HARVONI®, Nurix DELIGASE™ 22.45 billion 
USD 

15. Eli Lilly & Co. Humalog®,VITRAKVI®,QBREXZA® 22.31 billion 
USD 

16. Bayer EYLEA®, NEXAVAR®, BETAFERON® 21.27 billion 
USD 

17. Novo Nordisk Macrilen™, INDiGO®, Dicerna GalXC™ 18.29 billion 
USD 

18. Teva Truxima®, BENDEKA®, Attenukine™ 16.88 billion 
USD 

19. Biogen TECFIDERA®, Spinraza®, Tysabri® 14.37 billion 
USD 

20. Otsuka Visterra HIEROTOPE®, ABILIFY MYCITE®, 
REXULTI® 

13.11 billion 
USD 

Source: Company Annual Reports 2019. Only the Pharmaceutical division is considered for net sales. 

 

7.3.5 Conclusion: 

In conclusion, over this decade, there have been numerous suggestions of the radical 

ways in which pharma industry can re-structure itself. Critics have suggested that big 

pharma companies should go so far as to divest themselves completely of all R&D 

functions, and simply become companies which acquire new drugs and then market 

them. The previous trends have indicated that late-stage licensing deals have been a 

priority for large pharma over preclinical licensing deals. This shift in focus from in-

house research to late-stage deals is also reflected from the current trends in licensing 

and M&A from Table 19 and Table 21. However, in the past 15 years, the M&A and 

licensing activity for preclinical assets has been dominant over the deal volume for 

late-stage or approved products. Therefore, most of the big pharma companies have 

reshaped their BD&L strategy towards creating strategic and operational synergies to 

bolster their drug pipeline at the preclinical level.  
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The pressure from investors to launch new products, imminent blockbuster patent 

expiries and fewer returns from in-house R&D spending has caused the major pharma 

companies to remain dependent on licensing and M&A deals for supplementing their 

innovation pipelines. We expect this reliance on licensed products and technologies 

will continue to increase in the next few decades because of the increasing complexity 

of innovations in biotechnology can never be sufficiently addressed without external 

collaborations. Each pharma company does maintain their excellence and leadership 

in certain therapeutic areas, but the firms need external innovations to stay competitive 

in the biopharmaceutical industry. We also observed a continued inclination towards 

oncology in both licensing and M&A deals which is reflected in the higher deal count 

and mean deal values of the oncology deals. However, other promising areas in 

dealmaking have been CNS diseases, infectious diseases, endocrine diseases, and 

cardiovascular diseases. Digital health technologies and medical devices have also 

emerged as promising areas for M&A and licensing. 

The current forecasts suggest that Novartis, Pfizer, and Roche would dominate the 

pharmaceutical market with expected sales of $49.8 billion, $49.7 billion, and $49.6 

billion respectively by 2022. So, these three companies are expected to be the key 

players in M&A deals for the next few years.  A previous study showed that for deals 

executed between 2007 and 2012, a greater percentage of assets sourced through 

licensing (22%) made it to market than assets sourced through M&A (14%). This is a 

result of higher accountability in a licensing deal and a drive to hit the key milestones 

to gather the next stage funding inherent to the licensing deal structures. Out-licensing 

of non-core assets would continue to be significant in the next few decades while we 

project the in-licensing of new innovative products and technologies to be more 

prominent in the future. So, commercial biotechnology projects directed towards the 

development of novel technologies are likely to be preferred for in-licensing or 

acquisition. For instance, recently, AbbVie entered into a collaboration with Genmab 

for three of Genmab's next-generation bispecific antibodies, including Epcoritamab.  

Scenario planning using the licensing and M&A data from this review could help 

organizations deal with uncertainty and prepare for the future. The best deals are likely 

to bring synergies in therapeutic areas and build on a life sciences company’s 

strengths. Divestitures, in the areas where a life sciences company is weak or where 

an acquisition is not performing, are likely opportunities for growth. Pharma licensing 
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and acquisition deals are now far more flexible and creative with opportunities to 

capture value through co-development/co-marketing rights and retaining geographical 

rights in the deal.20 Therefore, the licensors can shift from pure licensing deals to deals 

involving retention of commercial and geographical rights. A key challenge in M&A 

and licensing over the coming decade will be external collaborations to expand the 

sales into the emerging markets which have shown to be a major contributor to the big 

pharma revenue. Finally, wisely positioned licensing deals by pharma companies that 

complement their R&D innovation synergistically would be important in deciding 

their market capitalization growth in the biopharmaceutical industry.  
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7.4 Computational Developability Assessment Full Results  

 

 

Figure: AbPred scores for 12 developability assays for different categories of engineered 

antibodies shown on x-axis. The arrow on y-axis indicates the direction of unfavorable values. 
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Figure:AbPred scores for 12 developability assays for different categories of phage display 

antibodies shown on x-axis. The arrow on y-axis indicates the direction of unfavorable values. 
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Figure: AbPred scores for 12 developability assays for different transgenic mice antibody 

platforms shown on x-axis. The arrow on y-axis indicates the direction of unfavorable values. 
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Hydrophobic Interaction Chromatography (HIC) assay values for different categories of 

engineered antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 10.30 11.28 10.13 10.30 9.75 11.59 10.09 

Quartile 1 10.14 11.10 10.00 10.10 9.43 9.47 9.84 

Median 10.44 11.32 10.17 10.36 9.74 11.47 10.08 

Quartile 3 10.47 11.46 10.26 10.45 9.89 13.71 10.49 

Maximum 10.77 11.46 10.51 10.62 10.55 13.97 11.46 

Minimum 9.50 11.03 9.67 9.91 9.17 9.47 8.27 

IQR 0.34 0.36 0.26 0.35 0.46 4.24 0.65 

Upper Whisker 10.77 11.46 10.51 10.62 10.55 13.97 11.46 

Lower Whisker 9.50 11.03 9.67 9.91 9.17 9.47 8.27 

AbPred results for Hydrophobic Interaction Chromatography (HIC). 
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Standup Monolayer Absorption Chromatography (SMAC) values for different categories of 

engineered antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.07 1.02 0.00 0.33 - 0.31 1.76 0.02 

Quartile 1 - 0.10 0.90 - 0.19 - 0.01 - 0.71 - 0.07 - 0.21 

Median 0.03 1.05 0.04 0.30 - 0.36 1.57 0.01 

Quartile 3 0.06 1.14 0.16 0.71 0.00 3.58 0.36 

Maximum 0.94 1.15 0.56 0.71 0.32 3.98 1.15 

Minimum - 0.51 0.83 - 0.58 - 0.02 - 0.73 - 0.09 -1.58 

IQR 0.17 0.24 0.34 0.72 0.71 3.65 0.57 

Upper Whisker 0.94 1.15 0.56 0.71 0.32 3.98 1.15 

Lower Whisker - 0.51 0.83 - 0.58 - 0.02 - 0.73 - 0.09 -1.58 

AbPred results for Standup Monolayer Absorption Chromatography (SMAC). 
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Salt-Gradient Affinity-Capture Spectroscopy (SGAC) assay values for different categories of 

engineered antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 567.89 472.25 594.46 613.87 588.55 628.59 544.78 

Quartile 1 441.94 362.10 437.83 549.65 369.40 601.53 389.37 

Median 443.51 448.93 607.04 600.81 572.31 628.59 618.50 

Quartile 3 606.52 582.39 692.21 674.88 810.19 655.65 690.95 

Maximum 968.45 663.22 990.48 763.36 856.48 655.65 1584.17 

Minimum 376.40 327.91 290.99 493.70 350.62 601.53 -268.87 

IQR 164.57 220.28 254.37 125.24 440.79 54.12 301.58 

Upper Whisker 968.45 663.22 990.48 763.36 856.48 655.65 1584.17 

Lower Whisker 376.40 327.91 290.99 493.70 350.62 601.53 -268.87 

AbPred results for Salt-Gradient Affinity-Capture Spectroscopy (SGAC).  
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Cross-Interaction Chromatography (CIC) assay values for different categories of engineered 

antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.19 0.26 0.36 - 0.05 - 0.55 0.19 0.14 

Quartile 1 - 0.48 0.14 0.07 - 0.12 - 1.00 0.12 - 0.25 

Median - 0.05 0.25 0.32 - 0.10 - 0.55 0.18 0.09 

Quartile 3 1.15 0.38 0.70 0.02 - 0.08 0.27 0.59 

Maximum 1.15 0.45 0.83 0.42 - 0.07 0.32 1.40 

Minimum - 0.74 0.10 - 0.14 - 0.38 - 1.05 0.10 -1.30 

IQR 1.63 0.24 0.63 0.14 0.92 0.15 0.84 

Upper Whisker 1.15 0.45 0.83 0.42 - 0.07 0.32 1.40 

Lower Whisker -0.74 0.10 - 0.14 - 0.38 - 1.05 0.10 -1.30 

 AbPred results for Cross-Interaction Chromatography (CIC).  
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Clone Self-Interaction by Biolayer Interferometry (CSI BLI) assay values for different 

categories of engineered antibodies. The arrow on y-axis indicates the direction of 

unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean - 0.17 - 0.13 - 0.08 0.19 0.20 - 0.11 - 0.01 

Quartile 1 - 0.23 - 0.17 - 0.29 0.04 - 0.07 - 0.23 - 0.16 

Median - 0.14 - 0.15 - 0.17 0.21 0.20 - 0.09 - 0.03 

Quartile 3 - 0.10 - 0.09 0.16 0.33 0.45 0.02 0.17 

Maximum 0.05 - 0.03 0.43 0.46 0.59 0.05 0.59 

Minimum - 0.43 - 0.20 - 0.50 - 0.14 - 0.16 - 0.29 - 0.79 

IQR 0.14 0.08 0.45 0.29 0.52 0.24 0.33 

Upper Whisker 0.05 - 0.03 0.43 0.46 0.59 0.05 0.59 

Lower Whisker - 0.43 - 0.20 - 0.50 - 0.14 - 0.16 -0.29 - 0.79 

AbPred results for Clone Self-Interaction by Biolayer Interferometry (CSI BLI).  
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Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS) assay values for 

different categories of engineered antibodies. The arrow on y-axis indicates the direction of 

unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.49 0.19 0.52 0.47 - 0.06 0.62 0.39 

Quartile 1 - 0.58 0.06 0.03 0.03 - 0.27 0.49 - 0.19 

Median 0.61 0.24 0.59 0.26 0.21 0.66 0.28 

Quartile 3 1.57 0.32 1.03 1.20 0.32 0.75 0.75 

Maximum 1.57 0.35 1.66 1.20 0.43 0.82 2.15 

Minimum - 0.63 - 0.07 - 0.82 - 0.15 - 1.26 0.32 - 0.96 

IQR 2.15 0.26 1.00 1.17 0.58 0.26 0.94 

Upper Whisker 1.57 0.35 1.66 1.20 0.43 0.82 2.15 

Lower Whisker - 0.63 - 0.07 - 0.82 - 0.15 - 1.26 0.32 - 0.96 

AbPred results for Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS).  
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Expression Titer in HEK cells (HEK) assay values for different categories of engineered 

antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 148.86 141.17 140.09 156.02 153.15 164.11 147.57 

Quartile 1 145.22 139.63 128.77 144.85 147.20 128.29 139.39 

Median 149.07 141.88 141.21 161.00 152.85 164.93 146.31 

Quartile 3 157.83 142.71 148.46 164.67 161.90 199.94 154.96 

Maximum 168.80 143.39 163.16 166.52 166.52 205.10 179.61 

Minimum 113.78 137.53 120.70 138.07 137.56 121.49 125.61 

IQR 12.61 3.09 19.69 19.82 14.70 71.65 15.57 

Upper Whisker 168.80 143.39 163.16 166.52 166.52 205.10 179.61 

Lower Whisker 113.78 137.53 120.70 138.07 137.56 121.49 125.61 

AbPred results for Expression Titer in HEK cells (HEK).   
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Poly-Specificity Reagent (PSR) assay values for different categories of engineered antibodies. 

The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.34 0.19 0.30 0.26 0.27 0.28 0.31 

Quartile 1 0.25 0.15 0.23 0.24 0.22 0.24 0.25 

Median 0.34 0.20 0.30 0.24 0.29 0.28 0.31 

Quartile 3 0.44 0.24 0.35 0.27 0.32 0.31 0.36 

Maximum 0.44 0.24 0.50 0.37 0.32 0.32 0.54 

Minimum 0.15 0.14 0.14 0.22 0.18 0.22 0.14 

IQR 0.19 0.09 0.13 0.03 0.10 0.08 0.11 

Upper Whisker 0.44 0.24 0.50 0.37 0.32 0.32 0.54 

Lower Whisker 0.15 0.14 0.14 0.22 0.18 0.22 0.14 

AbPred results for Poly-Specificity Reagent (PSR).   

 



272 
 

 

Enzyme-Linked Immunosorbent Assay (ELISA) values for different categories of engineered 

antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 1.79 1.41 2.31 1.74 2.98 5.77 2.59 

Quartile 1 1.27 1.36 1.57 1.37 1.43 2.41 1.33 

Median 2.07 1.42 2.23 1.81 2.47 5.74 1.77 

Quartile 3 2.11 1.45 3.08 1.84 3.62 9.13 2.46 

Maximum 2.17 1.47 3.50 2.29 6.71 9.22 8.99 

Minimum 1.15 1.32 1.25 1.32 1.20 2.37 1.06 

IQR 0.85 0.08 1.52 0.47 2.18 6.72 1.13 

Upper Whisker 2.17 1.47 3.50 2.29 6.71 9.22 8.99 

Lower Whisker 1.15 1.32 1.25 1.32 1.20 2.37 1.06 

AbPred results for Enzyme-Linked Immunosorbent Assay (ELISA).   
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Baculovirus Particle (BVP) assay values for different categories of engineered antibodies. 

The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 3.72 3.23 4.51 3.46 6.20 11.45 4.65 

Quartile 1 2.45 2.67 3.59 2.09 2.21 4.67 2.57 

Median 4.15 2.99 4.73 3.58 3.85 11.79 3.81 

Quartile 3 4.85 3.80 5.53 4.04 8.80 18.22 4.90 

Maximum 4.85 4.32 6.13 5.75 16.31 18.39 15.80 

Minimum 2.14 2.64 2.21 1.70 2.15 3.80 1.70 

IQR 2.40 1.14 1.94 1.95 6.59 13.55 2.33 

Upper Whisker 4.85 4.32 6.13 5.75 16.31 18.39 15.80 

Lower Whisker 2.14 2.64 2.21 1.70 2.15 3.80 1.70 

AbPred results for Baculovirus Particle (BVP) assay.  
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Differential Scanning Fluorimetry (DSF) assay values for different categories of engineered 

antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 71.39 72.20 70.07 70.87 71.48 72.49 71.03 

Quartile 1 70.03 71.86 69.26 69.65 69.69 68.22 69.28 

Median 71.02 72.20 69.75 70.44 71.51 72.63 71.33 

Quartile 3 72.56 72.54 70.80 72.63 73.08 76.75 72.08 

Maximum 75.21 72.79 71.76 72.83 73.54 76.81 75.38 

Minimum 69.27 71.63 69.15 69.26 69.56 67.88 66.74 

IQR 2.53 0.68 1.54 2.97 3.39 8.54 2.80 

Upper Whisker 75.21 72.79 71.76 72.83 73.54 76.81 75.38 

Lower Whisker 69.27 71.63 69.15 69.26 69.56 67.88 66.74 

AbPred results for Differential Scanning Fluorimetry (DSF) assay.  
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Accelerated Stability (ACC STAB) assay values for different categories of engineered 

antibodies. The arrow on y-axis indicates the direction of unfavorable values.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Nanobody® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.05 0.05 0.04 0.05 0.05 0.05 0.05 

Quartile 1 0.04 0.04 0.04 0.04 0.05 0.05 0.04 

Median 0.04 0.05 0.04 0.05 0.05 0.05 0.05 

Quartile 3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Maximum 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Minimum 0.04 0.04 0.04 0.04 0.05 0.04 0.04 

IQR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Upper Whisker 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Lower Whisker 0.04 0.04 0.04 0.04 0.05 0.04 0.04 

AbPred results for Accelerated Stability (ACC STAB) assay.  
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Total CDR length metric values for different categories of engineered antibodies. 

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 52 54 51 48 49 50 

Quartile 1 48 50 50 47 48 47 

Median 55 54 51 47 49 50 

Quartile 3 55 58 52 49 50 52 

Maximum 55 58 58 50 53 57 

Minimum 45 50 47 47 46 44 

IQR 7 8 3 2 2 5 

Upper Whisker 55 58 58 50 53 57 

Lower Whisker 45 50 47 47 46 44 

Therapeutic Antibody Profiler (TAP) statistics for Total CDR length.  
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Patches of Surface Hydrophobicity (PSH) metric values for different categories of engineered 

antibodies. PSH is calculated across the CDR vicinity.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 153.87 146.20 142.08 138.09 146.32 135.29 

Quartile 1 127.58 130.35 130.78 123.78 138.34 124.04 

Median 157.17 148.07 143.57 135.88 145.48 135.50 

Quartile 3 184.23 162.06 148.93 155.76 160.05 144.85 

Maximum 184.23 162.27 174.62 155.76 173.21 182.46 

Minimum 94.44 126.41 115.46 121.46 115.36 97.82 

IQR 56.66 31.71 18.16 31.98 21.70 20.81 

Upper Whisker 184.23 162.27 174.62 155.76 173.21 182.46 

Lower Whisker 94.44 126.41 115.46 121.46 115.36 97.82 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Surface Hydrophobicity (PSH) 

metric.  
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Patches of Positive Charge (PPC) metric values for different categories of engineered 

antibodies. PPC is calculated across the CDR vicinity.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.22 0.00 0.80 0.07 0.11 0.56 

Quartile 1 0.00 0.00 0.20 0.00 0.04 0.00 

Median 0.16 0.00 0.36 0.03 0.05 0.11 

Quartile 3 0.48 0.00 1.44 0.06 0.21 1.13 

Maximum 0.48 0.00 2.37 0.32 0.28 4.38 

Minimum 0.00 0.00 0.02 0.00 0.04 0.00 

IQR 0.47 0.00 1.23 0.05 0.17 1.13 

Upper Whisker 0.48 0.00 2.37 0.32 0.28 4.38 

Lower Whisker 0.00 0.00 0.02 0.00 0.04 0.00 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Positive Charge (PPC) metric.   
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Patches of Negative Charge (PNC) metric values for different categories of engineered 

antibodies. PNC is calculated across the CDR vicinity.  

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.40 0.80 0.41 0.69 0.82 0.25 

Quartile 1 0.00 0.02 0.02 0.00 0.04 0.00 

Median 0.17 0.81 0.09 0.71 0.68 0.00 

Quartile 3 0.34 1.58 0.23 1.29 1.41 0.24 

Maximum 2.17 1.58 2.61 1.46 2.10 1.73 

Minimum 0.00 0.00 0.00 0.00 0.00 0.00 

IQR 0.34 1.56 0.21 1.29 1.37 0.24 

Upper Whisker 2.17 1.58 2.61 1.46 2.10 1.73 

Lower Whisker 0.00 0.00 0.00 0.00 0.00 0.00 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Negative Charge (PNC) metric.  
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Structural Fv Charge Symmetry Parameter (SFvCSP) values for different categories of 

engineered antibodies.   

 

 BiTE® CrossMAb DART® DuoBody® DVD-Ig™ Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 4.72 - 3.29 4.59 2.40 - 0.48 5.40 

Quartile 1 0.22 - 5.70 - 1.84 0.00 0.00 0.22 

Median 3.90 - 3.84 5.35 1.55 2.21 5.00 

Quartile 3 9.30 - 0.88 8.65 4.20 5.51 8.20 

Maximum 9.30 0.22 16.40 8.00 6.71 25.01 

Minimum - 2.90 - 5.70 - 4.00 - 0.88 - 19.50 - 12.00 

IQR 9.08 4.82 10.50 4.20 5.51 7.98 

Upper Whisker 9.30 0.22 16.40 8.00 6.71 25.01 

Lower Whisker - 2.90 - 5.70 - 4.00 - 0.88 - 19.50 - 12.00 

Therapeutic Antibody Profiler (TAP) statistics for Structural Fv Charge Symmetry Parameter 

(SFvCSP).  
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Hydrophobic Interaction Chromatography (HIC) values for different categories of antibody 

phage display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 9.99 10.31 10.36 10.02 

Quartile 1 9.67 9.93 9.88 9.56 

Median 9.74 10.49 10.37 9.97 

Quartile 3 10.40 10.54 10.63 10.49 

Maximum 10.47 11.26 11.41 10.63 

Minimum 9.66 9.35 9.61 9.52 

IQR 0.72 0.61 0.75 0.93 

Upper Whisker 10.47 11.26 11.41 10.63 

Lower Whisker 9.66 9.35 9.61 9.52 

AbPred results for Hydrophobic Interaction Chromatography (HIC). 
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Standup Monolayer Absorption Chromatography (SMAC) assay values for different 

categories of antibody phage display platforms. The arrow on y-axis indicates the direction 

of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean - 0.01 0.31 0.22 0.03 

Quartile 1 - 0.08 - 0.17 - 0.11 - 0.33 

Median - 0.06 0.47 0.23 0.02 

Quartile 3 0.00 0.60 0.43 0.40 

Maximum 0.21 0.84 0.88 0.46 

Minimum - 0.12 - 0.22 - 0.51 - 0.36 

IQR 0.08 0.77 0.55 0.74 

Upper Whisker 0.21 0.84 0.88 0.46 

Lower Whisker - 0.12 - 0.22 - 0.51 - 0.36 

AbPred results for Standup Monolayer Absorption Chromatography (SMAC).  
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Salt-Gradient Affinity-Capture Spectroscopy (SGAC) values for different categories of 

antibody phage display platforms. The arrow on y-axis indicates the direction of unfavorable 

values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 735.94 474.44 527.97 548.73 

Quartile 1 662.97 380.21 328.35 353.00 

Median 738.20 464.00 652.88 631.07 

Quartile 3 765.58 622.91 710.66 744.46 

Maximum 856.48 899.37 824.59 820.43 

Minimum 656.45 5.70 83.61 112.36 

IQR 102.62 242.70 382.31 391.46 

Upper Whisker 856.48 899.37 824.59 820.43 

Lower Whisker 656.45 5.70 83.61 112.36 

AbPred results for Salt-Gradient Affinity-Capture Spectroscopy (SGAC).  
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Cross-Interaction Chromatography (CIC) assay values for different categories of antibody 

phage display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean - 0.31 - 0.11 0.29 0.13 

Quartile 1 - 0.33 - 0.54 0.04 - 0.47 

Median - 0.31 - 0.05 0.33 0.05 

Quartile 3 - 0.16 0.22 0.58 0.73 

Maximum - 0.08 0.51 0.80 1.06 

Minimum - 0.69 - 0.72 - 0.30 - 0.62 

IQR 0.18 0.77 0.54 1.20 

Upper Whisker - 0.08 0.51 0.80 1.06 

Lower Whisker - 0.69 - 0.72 - 0.30 - 0.62 

AbPred results for Cross-Interaction Chromatography (CIC).  
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Clone Self-Interaction by Biolayer Interferometry (CSI BLI) assay values for different 

categories of antibody phage display platforms. The arrow on y-axis indicates the direction 

of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 0.07 0.03 - 0.07 0.07 

Quartile 1 - 0.07 - 0.01 - 0.13 - 0.12 

Median 0.01 0.06 - 0.09 0.03 

Quartile 3 0.32 0.07 0.17 0.26 

Maximum 0.51 0.25 0.32 0.46 

Minimum - 0.42 - 0.24 - 0.48 - 0.26 

IQR 0.39 0.08 0.30 0.38 

Upper Whisker 0.51 0.25 0.32 0.46 

Lower Whisker - 0.42 - 0.24 - 0.48 - 0.26 

AbPred results for Clone Self-Interaction by Biolayer Interferometry (CSI BLI).   
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Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS) assay values for 

different categories of antibody phage display platforms. The arrow on y-axis indicates the 

direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean - 0.16 0.00 0.45 0.40 

Quartile 1 - 0.61 - 0.18 0.19 - 0.23 

Median 0.03 0.15 0.63 0.30 

Quartile 3 0.09 0.17 0.78 1.03 

Maximum 0.32 0.61 1.34 1.50 

Minimum - 0.61 - 0.74 - 0.44 - 0.50 

IQR 0.70 0.34 0.59 1.27 

Upper Whisker 0.32 0.61 1.34 1.50 

Lower Whisker - 0.61 - 0.74 - 0.44 - 0.50 

AbPred results for Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS).   
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Expression Titer in HEK cells (HEK) assay values for different categories of antibody phage 

display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 151.45 162.51 158.71 156.57 

Quartile 1 142.05 160.56 156.05 147.81 

Median 147.20 161.60 159.23 150.78 

Quartile 3 156.77 162.93 171.09 165.33 

Maximum 172.29 166.93 184.35 178.52 

Minimum 138.95 160.55 130.43 146.21 

IQR 14.72 2.37 15.03 17.52 

Upper Whisker 172.29 166.93 184.35 178.52 

Lower Whisker 138.95 160.55 130.43 146.21 

AbPred results for Expression Titer in HEK cells (HEK).   
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Poly-Specificity Reagent (PSR) assay values for different categories of antibody phage display 

platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 0.28 0.24 0.30 0.34 

Quartile 1 0.24 0.20 0.25 0.29 

Median 0.26 0.25 0.31 0.34 

Quartile 3 0.29 0.27 0.35 0.39 

Maximum 0.39 0.29 0.45 0.43 

Minimum 0.23 0.20 0.21 0.24 

IQR 0.05 0.07 0.10 0.10 

Upper Whisker 0.39 0.29 0.45 0.43 

Lower Whisker 0.23 0.20 0.21 0.24 

AbPred results for Poly-Specificity Reagent (PSR).  
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Enzyme-Linked Immunosorbent Assay (ELISA) values for different categories of antibody 

phage display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 2.06 1.55 2.66 2.67 

Quartile 1 1.43 1.17 1.38 2.26 

Median 2.02 1.28 1.61 2.74 

Quartile 3 2.46 1.40 2.08 3.08 

Maximum 3.10 2.76 10.08 3.09 

Minimum 1.29 1.16 1.22 2.10 

IQR 1.03 0.23 0.70 0.83 

Upper Whisker 3.10 2.76 10.08 3.09 

Lower Whisker 1.29 1.16 1.22 2.10 

AbPred results for Enzyme-Linked Immunosorbent Assay (ELISA).  
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Baculovirus Particle (BVP) assay values for different categories of antibody phage display 

platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 5.14 3.75 5.05 5.31 

Quartile 1 3.07 1.96 2.24 4.05 

Median 5.55 2.39 2.75 4.70 

Quartile 3 7.40 2.95 4.68 6.57 

Maximum 7.42 9.96 17.60 8.18 

Minimum 2.27 1.48 1.78 3.66 

IQR 4.33 0.99 2.44 2.52 

Upper Whisker 7.42 9.96 17.60 8.18 

Lower Whisker 2.27 1.48 1.78 3.66 

AbPred results for Baculovirus Particle (BVP).  
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Differential Scanning Fluorimetry (DSF) assay values for different categories of antibody 

phage display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 69.87 70.81 70.12 70.51 

Quartile 1 69.21 70.57 69.60 69.13 

Median 70.50 70.62 70.09 70.66 

Quartile 3 70.61 72.06 70.49 71.89 

Maximum 70.63 72.62 71.48 72.64 

Minimum 68.40 68.18 69.17 68.09 

IQR 1.41 1.49 0.89 2.76 

Upper Whisker 70.63 72.62 71.48 72.64 

Lower Whisker 68.40 68.18 69.17 68.09 

AbPred results for Differential Scanning Fluorimetry (DSF).  
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Accelerated Stability (ACC STAB) assay values for different categories of antibody phage 

display platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 0.05 0.05 0.05 0.05 

Quartile 1 0.05 0.05 0.04 0.04 

Median 0.05 0.05 0.04 0.04 

Quartile 3 0.05 0.05 0.05 0.05 

Maximum 0.05 0.05 0.05 0.05 

Minimum 0.04 0.04 0.04 0.04 

IQR 0.00 0.00 0.00 0.00 

Upper Whisker 0.05 0.05 0.05 0.05 

Lower Whisker 0.04 0.04 0.04 0.04 

AbPred results for Accelerated Stability (ACC STAB).  
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Total CDR length metric values for different categories of phage display antibodies.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 50 49 48 49 

Quartile 1 48 46 45 47 

Median 51 48 47 50 

Quartile 3 52 51 49 52 

Maximum 52 59 54 52 

Minimum 48 43 43 46 

IQR 4 5 4 5 

Upper Whisker 52 59 54 52 

Lower Whisker 48 43 43 46 

Therapeutic Antibody Profiler (TAP) statistics for Total CDR length metric. 
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Patches of Surface Hydrophobicity (PSH) metric values for different categories of phage 

display antibodies. PSH is calculated across the CDR vicinity. 

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 153.49 153.00 147.41 146.83 

Quartile 1 142.36 142.01 134.01 133.42 

Median 150.59 142.43 148.11 142.89 

Quartile 3 155.83 179.82 156.26 160.25 

Maximum 182.55 181.13 186.14 168.98 

Minimum 136.13 119.59 123.38 132.57 

IQR 13.47 37.81 22.26 26.83 

Upper Whisker 182.55 181.13 186.14 168.98 

Lower Whisker 136.13 119.59 123.38 132.57 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Surface Hydrophobicity (PSH) 

metric.  
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Patches of Positive Charge (PPC) metric values for different categories of phage display 

antibodies. PPC is calculated across the CDR vicinity. 

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 0.35 0.26 0.63 0.08 

Quartile 1 0.00 0.00 0.01 0.00 

Median 0.04 0.00 0.19 0.00 

Quartile 3 0.58 0.05 1.12 0.16 

Maximum 1.15 1.24 3.53 0.32 

Minimum 0.00 0.00 0.00 0.00 

IQR 0.58 0.05 1.11 0.16 

Upper Whisker 1.15 1.24 3.53 0.32 

Lower Whisker 0.00 0.00 0.00 0.00 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Positive Charge (PPC) metric.  
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Patches of Negative Charge (PNC) metric values for different categories of phage display 

antibodies. PNC is calculated across the CDR vicinity. 

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean 1.47 0.23 0.37 0.05 

Quartile 1 1.26 0.00 0.04 0.00 

Median 1.41 0.07 0.08 0.00 

Quartile 3 1.62 0.38 0.20 0.11 

Maximum 1.83 0.71 2.45 0.21 

Minimum 1.20 0.00 0.00 0.00 

IQR 0.36 0.38 0.16 0.11 

Upper Whisker 1.83 0.71 2.45 0.21 

Lower Whisker 1.20 0.00 0.00 0.00 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Negative Charge (PNC) metric.  
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Structural Fv Charge Symmetry Parameter (SFvCSP) values for different categories of phage 

display antibodies.  

 

 CAT phage library Dyax phage library MorphoSys's HuCAL® Artificial Human library 

Median Type Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max 

Mean - 6.56 - 0.32 2.98 5.25 

Quartile 1 - 8.40 - 1.89 0.21 2.10 

Median - 2.88 2.00 3.00 4.30 

Quartile 3 - 2.00 2.00 6.00 8.40 

Maximum 0.00 2.31 10.20 12.40 

Minimum - 19.50 - 6.00 - 5.70 0.00 

IQR 6.40 3.89 5.79 6.30 

Upper Whisker 0.00 2.31 10.20 12.40 

Lower Whisker - 19.50 - 6.00 - 5.70 0.00 

Therapeutic Antibody Profiler (TAP) statistics for Structural Fv Charge Symmetry Parameter 

(SFvCSP).  
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Hydrophobic Interaction Chromatography (HIC) assay values for different categories of 

transgenic mouse platforms. The arrow on y-axis indicates the direction of unfavorable 

values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 10.29 9.96 10.19 9.90 9.37 

Quartile 1 9.97 9.66 9.98 9.48 8.97 

Median 10.14 9.95 10.21 9.88 8.97 

Quartile 3 10.56 10.29 10.46 10.46 9.57 

Maximum 11.36 10.35 11.42 10.58 10.16 

Minimum 9.36 9.57 8.86 9.10 8.97 

IQR 0.59 0.63 0.48 0.98 0.60 

Upper Whisker 11.36 10.35 11.42 10.58 10.16 

Lower Whisker 9.36 9.57 8.86 9.10 8.97 

AbPred results for Hydrophobic Interaction Chromatography (HIC). 
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Standup Monolayer Absorption Chromatography (SMAC) assay values for different 

categories of transgenic mouse platforms. The arrow on y-axis indicates the direction of 

unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.24 - 0.02 0.06 0.00 - 0.34 

Quartile 1 0.04 - 0.04 - 0.17 - 0.49 - 0.69 

Median 0.16 0.05 0.12 - 0.05 - 0.69 

Quartile 3 0.56 0.09 0.40 0.46 - 0.17 

Maximum 0.94 0.24 0.93 0.57 0.35 

Minimum - 0.58 - 0.51 - 1.17 - 0.57 - 0.69 

IQR 0.52 0.13 0.57 0.96 0.52 

Upper Whisker 0.94 0.24 0.93 0.57 0.35 

Lower Whisker - 0.58 - 0.51 - 1.17 - 0.57 - 0.69 

AbPred results for Standup Monolayer Absorption Chromatography (SMAC).  
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Salt-Gradient Affinity-Capture Spectroscopy (SGAC) assay values for different categories of 

transgenic mouse platforms. The arrow on y-axis indicates the direction of unfavorable 

values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 582.16 697.74 489.20 731.51 3.06 

Quartile 1 457.05 677.62 325.04 639.41 - 180.31 

Median 696.70 743.19 470.67 697.74 - 180.31 

Quartile 3 751.57 769.39 736.59 855.40 94.75 

Maximum 867.59 841.67 866.33 862.54 369.81 

Minimum 14.57 411.39 38.53 573.95 - 180.31 

IQR 294.52 91.77 411.55 215.99 275.06 

Upper Whisker 867.59 841.67 866.33 862.54 369.81 

Lower Whisker 14.57 411.39 38.53 573.95 - 180.31 

AbPred results for Salt-Gradient Affinity-Capture Spectroscopy (SGAC).  
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Cross-Interaction Chromatography (CIC) assay values for different categories of transgenic 

mouse platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.13 - 0.04 0.03 - 0.20 - 0.17 

Quartile 1 - 0.08 - 0.22 - 0.43 - 0.56 - 0.35 

Median 0.09 0.01 0.02 - 0.05 - 0.35 

Quartile 3 0.36 0.16 0.38 0.06 - 0.07 

Maximum 0.98 0.35 0.68 0.35 0.20 

Minimum - 1.04 - 0.54 - 0.77 - 1.26 - 0.35 

IQR 0.45 0.38 0.81 0.62 0.28 

Upper Whisker 0.98 0.35 0.68 0.35 0.20 

Lower Whisker - 1.04 - 0.54 - 0.77 - 1.26 - 0.35 

AbPred results for Cross-Interaction Chromatography (CIC).  
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Clone Self-Interaction by Biolayer Interferometry (CSI BLI) assay values for different 

categories of transgenic mouse platforms. The arrow on y-axis indicates the direction of 

unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean - 0.01 0.01 - 0.01 - 0.11 0.29 

Quartile 1 - 0.17 - 0.18 - 0.16 - 0.18 0.23 

Median 0.03 0.01 - 0.11 - 0.01 0.39 

Quartile 3 0.13 0.20 0.12 0.01 0.39 

Maximum 0.38 0.30 0.46 0.22 0.39 

Minimum - 0.38 - 0.30 - 0.23 - 0.76 0.07 

IQR 0.30 0.38 0.28 0.19 0.16 

Upper Whisker 0.38 0.30 0.46 0.22 0.39 

Lower Whisker - 0.38 - 0.30 - 0.23 - 0.76 0.07 

AbPred results for Clone Self-Interaction by Biolayer Interferometry (CSI BLI).   
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Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS) assay values for 

different categories of transgenic mouse platforms. The arrow on y-axis indicates the direction 

of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.13 0.00 0.00 - 0.28 0.60 

Quartile 1 - 0.07 - 0.20 - 0.45 - 0.43 0.53 

Median 0.08 0.01 - 0.07 - 0.12 0.53 

Quartile 3 0.35 0.12 0.26 0.06 0.63 

Maximum 1.22 0.58 0.96 0.41 0.73 

Minimum - 0.80 - 0.54 - 0.76 - 1.63 0.53 

IQR 0.41 0.32 0.71 0.49 0.10 

Upper Whisker 1.22 0.58 0.96 0.41 0.73 

Lower Whisker - 0.80 - 0.54 - 0.76 - 1.63 0.53 

AbPred results for Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS).   
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Expression Titer in HEK cells (HEK) assay values for different categories of transgenic mouse 

platforms. The arrow on y-axis indicates the direction of unfavorable values. 

  

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 150.32 151.07 156.06 148.71 166.85 

Quartile 1 144.47 143.56 149.69 139.59 163.28 

Median 150.65 150.33 154.59 152.61 174.00 

Quartile 3 155.32 158.86 165.23 155.58 174.00 

Maximum 167.26 160.95 171.06 167.96 174.00 

Minimum 138.46 142.38 139.63 121.67 152.55 

IQR 10.85 15.30 15.54 15.99 10.73 

Upper Whisker 167.26 160.95 171.06 167.96 174.00 

Lower Whisker 138.46 142.38 139.63 121.67 152.55 

AbPred results for Expression Titer in HEK cells (HEK).   
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Poly-Specificity Reagent (PSR) assay values for different categories of transgenic mouse 

platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.28 0.25 0.26 0.21 0.30 

Quartile 1 0.21 0.17 0.18 0.19 0.29 

Median 0.30 0.25 0.28 0.20 0.31 

Quartile 3 0.33 0.29 0.30 0.23 0.31 

Maximum 0.38 0.37 0.36 0.28 0.31 

Minimum 0.18 0.16 0.14 0.15 0.28 

IQR 0.12 0.12 0.12 0.04 0.02 

Upper Whisker 0.38 0.37 0.36 0.28 0.31 

Lower Whisker 0.18 0.16 0.14 0.15 0.28 

AbPred results for Poly-Specificity Reagent (PSR). 
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Enzyme-Linked Immunosorbent Assay (ELISA) values for different categories of transgenic 

mouse platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 2.23 1.89 1.97 2.54 2.94 

Quartile 1 1.31 1.28 1.33 1.30 2.61 

Median 1.58 1.52 1.54 1.72 3.61 

Quartile 3 2.33 2.69 1.84 2.00 3.61 

Maximum 7.07 3.12 6.85 9.16 3.61 

Minimum 1.12 1.21 1.23 1.19 1.61 

IQR 1.02 1.41 0.50 0.69 1.00 

Upper Whisker 7.07 3.12 6.85 9.16 3.61 

Lower Whisker 1.12 1.21 1.23 1.19 1.61 

AbPred results for Enzyme-Linked Immunosorbent Assay (ELISA).  
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Baculovirus Particle (BVP) assay values for different categories of transgenic mouse 

platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 4.79 3.64 3.23 4.82 3.54 

Quartile 1 2.53 2.95 2.23 2.30 3.33 

Median 3.32 3.05 2.92 2.66 3.33 

Quartile 3 5.79 4.47 3.52 4.05 3.65 

Maximum 14.14 6.13 6.37 18.32 3.96 

Minimum 1.48 2.19 1.87 2.09 3.33 

IQR 3.26 1.52 1.29 1.75 0.32 

Upper Whisker 14.14 6.13 6.37 18.32 3.96 

Lower Whisker 1.48 2.19 1.87 2.09 3.33 

AbPred results for Baculovirus Particle (BVP).  
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Differential Scanning Fluorimetry (DSF) assay values for different categories of transgenic 

mouse platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 71.07 69.98 70.59 70.25 72.32 

Quartile 1 70.09 69.03 70.28 69.50 72.29 

Median 71.36 69.58 70.57 70.53 72.37 

Quartile 3 72.25 71.41 71.40 71.40 72.37 

Maximum 73.73 71.92 72.27 72.16 72.37 

Minimum 68.30 68.35 67.70 67.98 72.21 

IQR 2.16 2.38 1.12 1.89 0.08 

Upper Whisker 73.73 71.92 72.27 72.16 72.37 

Lower Whisker 68.30 68.35 67.70 67.98 72.21 

AbPred results for Differential Scanning Fluorimetry (DSF).  
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Accelerated Stability (ACC STAB) assay values for different categories of transgenic mouse 

platforms. The arrow on y-axis indicates the direction of unfavorable values.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.05 0.04 0.05 0.05 0.05 

Quartile 1 0.04 0.04 0.05 0.04 0.05 

Median 0.05 0.04 0.05 0.05 0.05 

Quartile 3 0.05 0.05 0.05 0.05 0.05 

Maximum 0.05 0.05 0.05 0.05 0.05 

Minimum 0.04 0.04 0.04 0.04 0.04 

IQR 0.00 0.00 0.00 0.00 0.00 

Upper Whisker 0.05 0.05 0.05 0.05 0.05 

Lower Whisker 0.04 0.04 0.04 0.04 0.04 

AbPred results for Accelerated Stability (ACC STAB).  
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Total CDR length metric values for different categories of transgenic mouse platform 

antibodies.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 50 48 48 49 49 

Quartile 1 48 47 45 47 47 

Median 50 49 46 49 50 

Quartile 3 52 49 51 50 51 

Maximum 60 52 54 57 52 

Minimum 43 42 39 43 44 

IQR 5 2 6 3 4 

Upper Whisker 60 52 54 57 52 

Lower Whisker 43 42 39 43 44 

Therapeutic Antibody Profiler (TAP) statistics for Total CDR length metric. 
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Patches of Surface Hydrophobicity (PSH) metric values for different categories of transgenic 

mouse platform antibodies. PSH is calculated across the CDR vicinity. 

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 147.13 137.18 137.84 140.69 151.51 

Quartile 1 129.20 132.30 119.63 132.56 144.29 

Median 149.76 133.88 139.92 138.95 146.55 

Quartile 3 161.67 151.32 147.84 147.11 156.24 

Maximum 197.02 158.29 185.35 167.18 165.93 

Minimum 114.20 113.43 112.11 112.15 142.03 

IQR 32.47 19.02 28.21 14.55 11.95 

Upper Whisker 197.02 158.29 185.35 167.18 165.93 

Lower Whisker 114.20 113.43 112.11 112.15 142.03 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Surface Hydrophobicity (PSH) 

metric.  
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Patches of Positive Charge (PPC) metric values for different categories of transgenic mouse 

platform antibodies. PPC is calculated across the CDR vicinity. 

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.23 0.02 0.39 0.10 0.13 

Quartile 1 0.00 0.00 0.00 0.00 0.04 

Median 0.05 0.00 0.00 0.04 0.04 

Quartile 3 0.18 0.00 0.29 0.11 0.18 

Maximum 1.38 0.12 2.29 0.39 0.32 

Minimum 0.00 0.00 0.00 0.00 0.04 

IQR 0.18 0.00 0.29 0.11 0.14 

Upper Whisker 1.38 0.12 2.29 0.39 0.32 

Lower Whisker 0.00 0.00 0.00 0.00 0.04 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Positive Charge (PPC) metric.  

 

 



313 
 

 

Patches of Negative Charge (PNC) metric values for different categories of transgenic mouse 

platform antibodies. PNC is calculated across the CDR vicinity. 

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 0.18 0.40 0.21 0.67 0.07 

Quartile 1 0.00 0.00 0.00 0.08 0.05 

Median 0.00 0.03 0.13 0.23 0.06 

Quartile 3 0.14 1.17 0.25 1.20 0.09 

Maximum 1.22 1.18 1.13 2.65 0.12 

Minimum 0.00 0.00 0.00 0.00 0.04 

IQR 0.14 1.17 0.25 1.11 0.04 

Upper Whisker 1.22 1.18 1.13 2.65 0.12 

Lower Whisker 0.00 0.00 0.00 0.00 0.04 

Therapeutic Antibody Profiler (TAP) statistics for Patches of Negative Charge (PNC) metric.  
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Structural Fv Charge Symmetry Parameter (SFvCSP) values for different categories of 

transgenic mouse platform antibodies.  

 

 XenoMouse® HuMAb-Mouse® UltiMAb® VelocImmune® Others 

Median Type Inclusive Inclusive Inclusive Inclusive Inclusive 

Whisker Type Min/Max Min/Max Min/Max Min/Max Min/Max 

Mean 5.27 2.44 5.12 0.17 5.30 

Quartile 1 1.20 0.00 2.00 - 1.00 3.30 

Median 4.00 2.05 4.10 2.10 6.00 

Quartile 3 7.30 4.00 6.20 3.10 7.65 

Maximum 20.40 6.51 15.00 6.00 9.30 

Minimum - 1.90 0.00 - 3.80 - 12.00 0.60 

IQR 6.10 4.00 4.20 4.10 4.35 

Upper Whisker 20.40 6.51 15.00 6.00 9.30 

Lower Whisker - 1.90 0.00 - 3.80 - 12.00 0.60 

Therapeutic Antibody Profiler (TAP) statistics for Structural Fv Charge Symmetry Parameter 

(SFvCSP). 

 

 


