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Abstract 
 
Aim: This study aims to further investigate (1) the increased occurrence of coronary artery disease 

(CAD) in patients with rheumatoid arthritis (RA) and (2) Psoriatic Arthritis (PsA) in patients with 

cutaneous-only psoriasis (PsC). The main objective is to apply existing methodologies that have been 

widely used for developing polygenic risk scores and utilizing genetic information, in order to better 

understand potential causal factors. These methods have not yet been specifically applied to assess 

the relationship between RA and CAD or PsA and psoriasis. This doctoral project aims to further 

investigate the intricate associations between multiple health conditions in Musculoskeletal disorders.  

 
Methods: First, a systematic literature review was conducted. Second, a genome-wide meta-analyses 

was conducted on a large number of participants, including patients with PsA, healthy controls, and 

patients with PsC from the UK biobank. Biological pathways that distinguish between PsA and PsC were 

identified using Priority Index software. To assess the generalizability of previously published risk 

prediction models for predicting the development of PsA, external validation techniques were 

employed. Third, utilizing longitudinal data from the Norfolk Arthritis Register (NOAR), a predictive 

model for development of CAD was developed using conventional risk factors and multiple CAD 

Polygenic risk scores by leveraging effect sizes obtained from three extensive genome-wide association 

studies within a subset of NOAR patients with available genetic information. Cox proportional hazards 

models were utilized to derive risk equations for evaluating an individual's 10-year likelihood of 

developing CAD. Finally,a causal relationship was estimated using two-sample MR using large-scale 

summary-level genetic data.    

 
Results: The study identified a novel genome-wide significant susceptibility locus for the development 

of PsA on chromosome 22q11 (rs5754467; P = 1.61 × 10−9) and key pathways that differentiate PsA 

from PsC, including NF-κB signaling (adjusted P = 1.4 × 10−45) and Wnt signaling (adjusted P = 9.5 × 

10−58). Using NOAR, the inclusion of a CAD meta-GRS improved Harrell’s C-statistics to 0.79 (95% CI 

0.78, 0.80), explaining more of the variance at 81% (95% CI 79, 82%) with a calibration slope of 0.93. 

A likelihood ratio test indicates that the integrated model is a better fit (p = 0.04). When estimating 

causal association, the combined odds ratios showed an increase in CAD risk by 1.06 per unit rise in 

log odds of RA seropositive individuals (95% Confidence interval [1.05-1.07, P = 0.04).  

 
Conclusion: The inclusion of genetics in risk assessment has been shown to significantly improve 

prediction accuracy for patients with PsC and RA. This highlights the importance of further exploring 

the underlying biological pathways involved in these disorders to gain a more profound understanding 

and develop robust predictive models that are applicable across diverse populations. 
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Journal format 
 

This doctoral dissertation is structured in the journal format style. The primary objective of this thesis 

can be divided into three distinct aims, each answering a specific research question. 

1. The first objective was to discern genetic risk factors and pathways that differentiate PsA from 

PsC. Additionally, this study aimed to test the effectiveness and accuracy of a predictive model 

for PsA risk in patients with psoriasis (Chapter 3). 

2. The second objective was to estimate the improvement in risk classification for CAD in people 

with RA when integrating PRS risk with traditional CAD risk elements (such as QRISK3), while 

assessing its reproducibility through validation methods(Chapter 4). 

3. The third objective was to apply Mendelian randomization techniques in order to determine 

if RA plays a causal role in CAD(Chapter 5). 

 

 As a result, the individual chapters presenting the results (Chapters 3, 4, and 5) are designed to meet 

the requirements for publication in scholarly journals. Each chapter includes its own set of tables and 

figures as well as reference lists. It is worth noting that Chapters 1 and 3 have already been published 

while Chapters 4 and 5 will be submitted for publication. 
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Chapter 1 
 

“All illnesses have some heredity contribution. It's been said that genetics loads the gun and 

environment pulls the trigger.” 

 

 
According to Dr. Francis Collins, the director of the National Institutes of Health (NIH) Human Genome 

Project, genetics alone are not solely responsible for certain outcomes. Instead, genetics and 

environmental factors interact with each other. Therefore, we are conducting more comprehensive 

research to examine the relationship between genes and the environment. This approach represents 

the future direction, and the concept of "systems epidemiology" should incorporate both genomic and 

environmental factors. 
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Context 

Classifying patients into high or low risk for disease onset or outcomes is a major focus of epidemiology 

and clinical prediction modeling. While some diseases lend themselves to clinically useful risk 

predictions using traditional factors like body mass index, lipid levels, smoking status, family history as 

well as genetics in certain cases such as BRCA1/2 gene mutations in breast cancer, numerous other 

disorders are more elusive. Recently genome-wide association studies (GWAS) have been utilized with 

promising results leading to the identification of common risk loci for many traits and outcomes 

offering insight into potential new approaches towards predicting these illnesses within a clinical 

context.  

 
This research examines the various methods of evaluating the precision in predicting diseases through 

genetic loci and assesses their effectiveness in identifying comorbidities in musculoskeletal conditions 

(MSK). The study reveals that the accuracy level of models with inclusion of genetic risk factors plus 

environmental risk factors varies depending on the disease but are comparable to non-genetic 

prediction models. It also explores factors influencing differences in predictive accuracy and evaluates 

how significant these predictions are compared to conventional tests. Moreover, it scrutinizes 

potential uses as well as drawbacks of theoretical risk-prediction models while anticipating realistic 

expectations for future clinical integration of genetic risk-prediction strategies based on current 

findings. 
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Psoriatic Arthritis 

Psoriatic Arthritis (PsA) is a persistent and systemic disease of the musculoskeletal system which is 

associated with the presence of psoriasis and potentially can lead to significant disability 1–3. The 

prevalence of PsA is widespread globally1 and can lead to severe arthritis symptoms that limit 

movement and can cause substantial physical deformity. Moreover, the resultant decreased quality of 

life associated with PsA underscores its clinical significance. Notably, comorbidities linked to PsA 

heighten mortality rates while increasing socio-economic burdens on society at large2. 

 
Hackett et al. 3  highlights the importance of timely PsA treatment, revealing that even a minor delay 

in diagnosis by just six months can considerably decrease its effectiveness. Moreover, research 

suggests that nearly 30% of individuals with psoriasis will develop PsA after an average period of seven 

years 4,5, further emphasizing the urgency for early intervention in at-risk patients. While current 

diagnostic approaches include laboratory tests, clinical assessments, clinical screening tools e.g., The 

Psoriasis Epidemiology Screening Tool (PEST), and imaging features to detect symptoms before they 

become visible, there are limited structured methods available to identify high-risk candidates before 

any signs or indications emerge. Nevertheless, considering the strong heritability associated with this 

disease, evaluating genetic markers along with relevant clinical factors could potentially aid healthcare 

professionals in assessing the likelihood of developing PsA. A deeper understanding through 

comprehensive evaluations could enable health experts to offer personalized preventive measures 

accordingly and prevent potential irreversible damages caused by delaying medical attention when 

needed most. 

 
According to a comprehensive study conducted by Tam et al. 6, it has been found that the occurrence 

of PsA among psoriasis patients is at its lowest in Asia. This observation raises intriguing questions 

regarding the underlying factors responsible for such regional variations in disease prevalence. Existing 

research, on the other hand, highlights strong genetic components as significant determinants of PsA 

development 7–9. Further investigation reveals that Human Leukocyte Antigen (HLA)-C*06 expression 

or frequency is generally higher amongst white individuals with psoriasis compared to Asians 10; thus, 

pointing towards potential ancestral influences on disease susceptibility. The identification of HLA-B7, 

HLA-B27 and HLA-B39 as being strongly linked with PsA also underscores possible genetic 

predispositions exclusive to this specific condition11. Remarkably though data have shown higher 

occurrences of HLA-B27 in non-Hispanic whites - leaving open pertinent questions about how these 

findings relate to PsA incidence trends in different ancestral groups. 
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Undiagnosed PsA.  

A recent meta-analysis carried out by Villani et al. 12 noted that approximately 15.5 percent of PsA 

patients remain undiagnosed. The process of identification of PsA with the help of different tools (e.g., 

Disease Activity in PsA (DAPSA), The PsA Disease Activity Score (PASDAS), and The PsA impact of 

Disease (PsAID12 and PsAID9) has somewhat improved over recent years. Nevertheless, since there is 

a relatively high prevalence of people that remain undiagnosed—it underlines the fact that there is 

room for further improvement.  

Evidently, the epidemiology of PsA is confounded by multiple factors; resultantly impacting the actual 

prevalence and incidence of the disease13,14. Therefore, presented data needs to be interpreted in the 

context of the lack of a uniform case definition, setting, and study design14. 

 
Variation in the treatment response for joint inflammation and skin 

There are several treatments available for PsA; these treatments aim to alleviate symptoms, slow or 

halt disease progression, and improve quality of life. Details of the treatment for PsA stratified by 

symptoms is described in Figure 1.1. The latest treatments are focused on targeting specific molecules 

or pathways in the immune system that contribute to the inflammation seen in PsA17. Figure 1.1 shows 

the new therapies and treatments introduced in the last few years for PsA. Here are some examples of 

the latest treatments for PsA: 

 

1. Janus kinase (JAK) inhibitors: These medications work by blocking the action of specific 

proteins involved in the body's immune response. Two JAK inhibitors, tofacitinib and 

upadacitinib17,18, have been approved for treating PsA that has not responded to other 

treatments. 

 

2. Tumor necrosis factor (TNF) inhibitors: These medications are used to treat a variety of 

autoimmune diseases, including PsA. Examples of TNF inhibitors used for PsA include 

adalimumab, etanercept, and infliximab17,19. 

 
3. Interleukin (IL)-17 inhibitors: These drugs target a cytokine called IL-17, which plays a key role 

in the inflammation seen in PsA. Examples of IL-17 inhibitors approved for PsA include 

ixekizumab and secukinumab17,20. 

 

4. Interleukin (IL)-23 inhibitors: These medications target another cytokine, IL-23, which is 

believed to play a role in PsA. Examples of IL-23 inhibitors approved for PsA include 

ustekinumab and risankizumab17,19. 
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Figure 1.1: The above figure shows the new therapies and treatments introduced in the last few years for psoriatic arthritis. 
Each domain is stratified by symptoms.  (The picture is designed by the author and information originated from Coates et 
al., 17).  

In recent years, advancements in the treatment of both psoriasis and PsA have offered hope for 

patients suffering from these debilitating conditions. While there have been notable improvements in 

treating psoriasis with injectable agents and oral medications such as methotrexate and cyclosporine15, 

the story for PsA is far more complex. Despite attempts to improve therapeutic response through 

approaches like conventional synthetic DMARDs, many individuals with PsA see little or no clinical 

improvement.  
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As a result, experts are calling for a new strategy that can identify those at risk of developing PsA before 

symptoms even appear16. This approach would allow healthcare professionals to target inflammation 

during early stages of disease progression while optimizing patient responses to treatment. Although 

success rates vary widely depending on specific treatments employed, researchers remain hopeful 

about future developments aimed at improving outcomes for all those affected by these chronic 

autoimmune disorders. Such a strategy seems to be appealing and may yield successful therapeutic 

interventions, because:  

 
1. PsA is a strongly identifiable marker or risk factor of psoriasis.  
 
2. There is evidence of the time for transition into PsA; such a delay or timeframe provides a perfect 

opportunity to target PsA risks and for early and meaningful therapeutic intervention. 

 
 Risk biomarkers of PsA. The presence of a high genetic component for the transition of PsA from 

psoriasis provides a perfect window of opportunity to investigate the important cellular and molecular 

architecture that is responsible for progression. However, psoriatic skin phenotypes are not sufficient 

for predicting the risk of PsA8. Several environmental, clinical, and immune factors are also involved 

in the advancement of psoriasis into PsA21 as shown in Figure 1.2.   

 
According to research, the annual occurrence rate of PsA among psoriasis patients is approximately 

3%, which is relatively low22–24. Conducting studies on diseases with low incidence rates can be costly. 

As a result, researchers may find it more practical to create risk prediction models that accurately 

consider all relevant predictors (such as clinical, genetic, and phenotypic features) that contribute to 

the progression of psoriasis to PsA. This approach can lead to better performance measures. 
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Figure 1.2: illustrates the varying stages of psoriatic arthritis, as well as associated risk factors and comorbid conditions. 
This informative visual was created by the author, drawing from research presented in a paper by Mrowietz et al.26. 

 
 
Risk Factors for PsA Transition 

PsA is a complex disease that arises from psoriasis, and predicting its occurrence requires an in-depth 

understanding of the interplay between various risk factors21. The emergence or probability of PsA 

among those with psoriasis hinges upon a delicate balance between multiple modifiable and non-

modifiable factors25. These contributing elements can be categorized into two groups based on their 

level of malleability - ones that are alterable by lifestyle changes (modifiable), such as obesity, smoking 

habits, infections, stress levels etc., while others like genetics or age are fixed throughout one's lifetime 

(non-modifiable)25 as shown in detail in Figure 1.3. Only through studying these intricate interactions 

can we gain insights necessary to prevent the onset of this debilitating condition effectively.
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Figure 1.3: The hierarchical sphere diagram is showing the different risk factors associated with psoriatic arthritis disease and compares which ones are modifiable and which ones are non-
modifiable. The above figure is redesigned by the author, originating from the paper written by Solmaz and colleagues 20.  
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Challenges, gaps, and Opportunities 

The identification of risk factors associated with psoriasis is a vital step in evaluating patients who may 

be at an increased risk of developing PsA. Although there has been much research done on the topic25–

27, there is still a need for an integrated strategy that incorporates both genetic and clinical data to 

allow for early assessment of disease development. The importance of such an approach cannot be 

overstated; indeed, preventive studies conducted in the field of rheumatoid arthritis have shown its 

effectiveness28. However, there remains a notable gap in the existing literature when it comes to 

integrating genetic and clinical data to assess PsA risk in individuals with psoriasis, highlighting the 

necessity for further investigation in this area. Understanding the risk factors associated with psoriasis 

is essential for evaluating patients who may be at a higher risk of developing PsA.However, 

implementing these strategies poses many challenges - one significant obstacle being acquiring high-

quality data. While electronic health records and clinical databases are valuable sources for gathering 

information on patient outcomes, they can also present numerous hurdles along the way. For instance, 

it may not always be possible to follow up with patients over extended periods (often 5-7 years), 

leading to issues like inadequate sample sizes which hinder accurate analysis and interpretation 

thereof. 

 
Overall, then, the integration of various approaches combining genetics-based evaluation together 

with insights drawn from long-term medical history will provide clinicians with a better understanding 

of the risk factors associated with PsA and enable them to provide early detection, targeted 

intervention, and preventative measures. 

 
To better understand the development and progression of PsA, further research is necessary to identify 

the impact of clinical and genetic risk factors. Although the genetic risk is unmodifiable, identifying it 

can aid in the evolution of precision medicine. Additionally, targeting certain environmental risk factors 

can mitigate the risk of developing PsA. Establishing an efficient framework for preclinical research is 

essential for risk assessment and investigation. National and international groups such as The 

Classification for Psoriatic Arthritis Criteria (CASPER)29, Group for Research and Assessment of Psoriasis 

and Psoriatic Arthritis (GRAPPA)17, and The Preventing Arthritis in a Multicentre Psoriasis At-Risk cohort 

(PAMPA)30 etc., are currently studying the preclinical phase of PsA. 
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Genetics – Manuscript 1: literature review 

Abstract 

Purpose: Approximately 30% of patients with psoriasis will develop psoriatic arthritis (PsA), leading to 

a de- creased quality of life for the patient caused by increasing disability and additional health 

complications. The identification of risk factors for the development of PsA would facilitate the 

development of risk prediction models in which patients with psoriasis at high risk of developing PsA 

could be targeted in a stratified medicine approach, enabling early intervention and treatment. PsA is 

known to have a genetic contribution to susceptibility, and the identification of genetic risk factors that 

differentiate PsA from cutaneous-only psoriasis is a key area of research. This narrative review 

summarizes the discovery of genetic risk factors and, with the aid of a primer on risk prediction models, 

discusses their potential role for the classification of PsA risk and diagnosis.  

Methods: All relevant research articles were identified through searches of the PubMed database for 

literature published up until December 2022. Search terms included psoriatic arthritis, genetic 

susceptibility, genetic association, genome-wide association study, GWAS, prediction, and polygenic 

risk score.  

Findings: The current literature reveals considerable overlap between the genetic susceptibility loci for 

PsA and psoriasis. Several PsA-specific genetic risk factors have been reported, and most notably these 

implicate the HLA- B and IL23R genes. Efforts to include genetic risk factors in prediction models for 

the development of PsA have reported good discrimination.  

Implications: Key messages emerging from this narrative are as follows: the limited number of PsA-

specific sus- ceptibility loci reported to date suggest larger studies are required, facilitated by 

international collaboration, to achieve the power to detect further genetic factors; the early promising 

results for genetic-based risk prediction require further validation in independent datasets; and risk 

prediction models combining clinical and genetic risk factors have yet to be explored. 

Introduction 

Psoriatic arthritis (PsA) is a chronic inflammatory disease affecting the joints and is associated with the 

presence of psoriasis which potentially leads to significant disability.31,32 The prevalence of PsA is 

widespread globally and can lead to severe arthritis symptoms that limit movement and cause 

substantial physical deformity. Moreover, the resultant decreased quality of life associated with PsA 

underscores its clinical significance. Notably, comorbidities linked to PsA heighten mortality rates while 

increasing socio-economic burdens on society at large31. 
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Haroon et al. highlights the importance of timely PsA treatment, revealing that even a minor delay in 

diagnosis by just six months can considerably decrease its effectiveness32. Moreover, research suggests 

that nearly 30% of individuals with psoriasis will inevitably develop PsA after an average period of 

seven years33, further emphasizing the urgency for early intervention in at-risk patients. While current 

diagnostic approaches include laboratory tests, clinical assessments, and imaging features to detect 

symptoms before they become visible, there are limited structured methods available to identify high-

risk candidates before any signs or indications emerge. A recent meta-analysis carried out by Villani et 

al. noted that approximately 15.5 percent of PsA patients remain undiagnosed indicating a relatively 

high prevalence of people that remain undiagnosed, summarised in figure 1.434. The accurate 

diagnosis of PsA is confounded by multiple factors which impact the reported prevalence and incidence 

rates of the disease. Therefore, presented data needs to be interpreted in the context of the lack of a 

uniform case definition, setting, and study design35. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 
 

 
 
Figure 1.4: Summary of the studies showing the prevalence rate of undiagnosed psoriatic arthritis in psoriasis patients in 
different countries by years. The highest prevalence of undiagnosed PsA in psoriasis patients is proved to be USA (Made by 
the author on the tableau, Data from Solmaz et al.). CASPAR: Classification Criteria for Psoriatic Arthritis; GRAPPA: Group for 
Research and Assessment of Psoriasis and Psoriatic Arthritis; PsA: Psoriatic Arthritis; UK: United Kingdom; USA: United States 
of America. 

 
Genetic risk factors for PsA 

Heritability: PsA is known to have a substantial heritable genetic component where original family-

based aggregation studies estimated the heritability of PsA to far exceed that of psoriasis vulgaris (PsV) 

where the relative risk (λ) of PsA for siblings (λs > 30) was much higher than estimated in psoriasis (λs 
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< 10)36,37. This evidence supported the notion that there were additional genetic risk factors leading to 

the development of PsA in patients with PsV38,39. However, these family-based estimates are known to 

be overestimated when the population disease prevalence is underestimated. More recent estimates 

of heritability based on data from genotyping arrays, which measure the proportion of phenotype 

variation attributable to additive genetic effects, have shown that the heritability estimates of PsA are 

much closer, or slightly less than PsC40. 

 
Major histocompatibility complex (MHC): The largest genetic effects for both PsV and PsA map to the 

human leukocyte antigen (HLA) class I genes within the MHC on chromosome 641,42. Significant 

associations to HLA alleles have been consistently reported for PsA in particular to the four-digit HLA 

allele HLA-C*0602. These associations are complex and have presented researchers with a major 

challenge, particularly in the presence of clinical heterogeneity 43. This complexity deepens with the 

presence of PsA-differentiating effects and the need to disentangle these from the strong PsV effects44–

46. However, recent advances in imputation methodology, such as the software package SNP2HLA, and 

access to large reference panels have facilitated the unlocking of these complex associations by 

allowing the ability to impute single nucleotide polymorphisms (SNPs), amino acids, two- and four-

digit HLA alleles from genome-wide association study (GWAS) genotype data47. The first such study to 

apply these advances was performed by Okada et al which included imputed HLA data for 3,038 PsA 

cases compared to that of 3,098 PsC cases48. Direct comparison of HLA variants between PsC and PsA 

cases identified a genome-wide significant association (p= 2.2x10-11) to the amino acid at position 45 

of HLA-B where the presence of glutamic acid increases risk of PsA (odds ratio (OR) 1.46). Glutamic 

acid at position 45 is carried by the HLA-B*27, HLA-B*38 and HLA-B*39 alleles. Further confirmation 

of the PsA differentiating effect at HLA-B was provided by Bowes et al using an imputed dataset 

containing 1,945 PsA cases and 2,808 PsC cases which, while validating the differential association to 

HLA-B, fine-mapped the signal to the amino acid at position 97 (p=1.54×10−9) where the carriage of 

asparagine (OR 2.46) or serine (OR 1.45) increased the risk of PsA compared to PsC49. Asparagine at 

position 97 is predominately carried on the HLA-B*27 and HLA-B*27:05 two- and four-digit alleles, but 

the association to position 97 was found to independently associated with PsA when conditional 

analysis was performed using HLA-B*27 as a covariate suggesting that the amino acid is the primary 

cause of the association. The amino acid position 97 of HLA-B is the major risk factor for ankylosing 

spondylitis (AS) where, similar to PsA, asparagine increases risk50. 

PsA susceptibility loci: Several GWAS have now been conducted to identify PsA susceptibility loci 

outside of the MHC region. These studies are summarised in Table 1 and here we restrict our discussion 

to those loci reaching genome-wide significance. These original efforts were primarily aimed at 

identifying risk loci for PsV with PsA as a secondary analysis; for example, Nair et al compared 3,523 
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PsC cases to 1,755 PsA cases at 10 known PsV susceptibility loci reporting genome-wide significant 

association for PsA at IL12B and TNIP1 51. Similarly, Stuart et al found genome-wide association to SNPs 

at the FBLXL19 locus to both PsV and PsA.52. The first dedicated PsA GWAS was conducted by Huffmeier 

et al in a discovery cohort of 572 PsA cases and 888 controls with replication in a large collection of 

1,761 PsA cases and 3,727 controls and identified genome-wide significant association to SNPs at the 

TRAF3IP2 gene which was simultaneously reported for PsV providing valuable independent 

validation53,54. Following on from this first-in-field study, Ellinghaus et al performed a meta-analysis of 

PsV GWAS datasets stratified for PsA consisting of 535 PsA case and 3,432 controls with the validation 

of the top two associations in 1,931 PsA cases and 6,785 controls55. This analysis identified genome-

wide association to SNPs at the REL locus. An array-based case-control association study targeting 

candidate regions with previous evidence for association to immune diseases (Immunochip) was 

conducted in a discovery dataset of 1,962 PsA patients and 8,923 controls and reported genome-wide 

association to SNPs at the IL23R, STAT2, TYK2, DENND1B and CSF2 loci56. Follow-up studies pursuing 

regions of interest from these initial studies identified further genome-wide significant associations for 

PsA.  Apel et al reported SNPs within intron 1 of the RUNX3 gene significantly increased risk of PsA, 

this association further highlighted the genetic overlap between PsA and AS57. A follow-up study 

attempting to validate SNPs with suggestive levels of association from the Immunochip study in a 

further dataset of 1177 PsA cases and 2155 controls reported genome-wide significant association to 

NOS2 and PTPN22. This was followed by an exome-wide scan of low frequency variants (minor allele 

frequency < 0.05) performed in 1,980 PsA cases and 5,913 controls which identified an association to 

a SNP (rs35667974) where, upon replication in 2234 PsA cases and 5708 controls, was genome-wide 

significant for association with PsA susceptibility58. This SNP causes a missense mutation, resulting in 

an amino acid substitution of valine for isoleucine (Ile923Val) in the IFIH1 gene and was found to be 

independent of the common variant previously reported for PsA (rs984971). Aterido et al performed 

a large meta-analysis of PsA GWAS and identified genome-wide significance to a SNP at the B3GNT2 

locus. 59. 
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Table 1.1: genome-wide significant associations reported for psoriatic arthritis. Sample numbers reported in the table are 
based on the array-based discovery phase, further information on replication efforts is given in the main text. 

Reference Year PsA PsC Controls Loci 

Liu 2008 91 223 519 None 

Nair et al 2009 2009 1,755 3,523 5,942 IL12B, TNIP1 

Stuart et al 2010 2010 1,747 3,394 7,231 FBXL19 

Huffemier 2010 609 - 990 TRAF3IP2 

Ellinghaus 2012 535 - 3,432 REL 

Bowes 2015 1,962 - 8,923 IL23R, STAT2, TYK2, 

DENND1B,  CSF2 

Bowes 2015 3,139 - 11,078 PTPN22, NOS2 

Stuart 2015 3,061 3,110 13,670  

Budu-Aggrey 2017 1980 - 5,913 IFIH1 

Patrick 2018 3,674 3,566 16,336 NFKBIZ, IL13, PRDX5,  

Aterido 2019 2,174 614 2,871 B3GNT2 

Soomro and Stadler et al  2021 5,065 6,431 21,286 IFIH1, RUNX3, CCDC 

 
PsA-differentiating susceptibility loci: A key goal for PsA genetic research is to identify genetic risk 

factors that can differentiate PsA from cutaneous-only psoriasis and several of the previously described 

GWAS reported evidence to support differential effects for PsA at loci including IL12B, IL23R, FBLXL19, 

5q31, PTPN22, and B3GNT251,52,56,59. PsA differentiating associations are summarised in Table 1.2. The 

first comprehensive assessment of PsA compared to PsC was conducted by Stuart et al and involved 

the genome-wide comparison of effect estimates between PsA and PsC where a powerful bootstrap 

method was employed at regions with prior evidence of association to PsV and identified PsA-

differentiating effects at IL23R and TNFAIP360. Interestingly, that study did not support the prior finding 

of a PsA-specific association at 5q31, as it did not find the differential association to CSF2, or to the 

previously reported differential effects at IL12B and FBXL19, highlighting the potential study design 

limitations of previous studies. More recently studies have been able to directly compare genotypes 

of PsA and PsC individuals. The first of these by Patrick et al included 2703 PsA and 2681 PsC patients 

and confirmed significant effect differences at the HLA region61. However, no non-HLA regions reached 

genome-wide significance in this study. This was followed by the comparison of 4,340 PsA and 6,431 

PsC cases by Soomro and Stadler et al which reported genome-wide significant differences at the HLA 

region and IL23R62. To date the only robust PsA-specific loci that differentiate PsA from PsC across 

multiple independent datasets are IL23R and HLA-B. The association of variants at the IL23R locus are 

of particular interest given the importance of interleukin-23 inhibitors, such as Ustikinumab, however 

it is yet to be determined if this variant influences response to treatment. The results from these GWAS 

experiments are now being explored for potential use in risk prediction models. Prior to discussing 

these advances, we will provide a brief primer of the concepts of risk prediction modelling. 
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Table 1.2: reported evidence for differential associations between cutaneous-only psoriasis and psoriatic arthritis. 

Genetic variant Chromosome Notable gene p-value Independently validated Reference 

rs2082412 5 IL12B 0.01 No Nair 2009 

rs2201841 1 IL23R 0.02 No Nair 2009 

rs10782001 16 FBXL19 0.022 No Stuart 2010 

rs12044149 1 IL23R 2.25x10-15 Yes Bowes 2015a 

rs715285 5 CSF2/P4HA2 2.654E−10 No Bowes 2015a 

rs12044149 1 IL23R 1.8x10-4 Yes Stuart 2015 

rs9321623 6 TNFAIP3 2.2x10-4 No Stuart 2015 

rs10865331 2 B3GNT2 0.029 No Aterido 2019 

rs2476601 1 PTPN22 4.4x10-4 Modest replication by Stuart 

et al p=0.04 

Bowes 2015b 

 
Primer on prediction modelling 

In the times of ‘precision or evidence-based medicine,’ it has become common practice to make 

predictions on the prognosis of the disease, to aid in decision-making for the development of an 

effective intervention for diseases with high-risk groups63. Prognostic statistical models estimate 

probabilities of risk, thereby assisting in decision-making in the field of medicine64. Three key features 

of any prediction model include validation, performance evaluation and clinical utility. 

 
Validation is a crucial part of the process in developing a prediction model64. Validation can be divided 

into three categories, (i) internal validation, (ii) cross-validation and (iii) external validation. The general 

idea behind internal validation is to evaluate the robustness of the model in the dataset in which it 

was created. It ensures that the predictive model developed is reproducible for the underlying 

population. There are several techniques that are used to internally validate the model. The most 

common of these is cross-validation which can be described as the method of evaluating the model’s 

performance in a random part of the sample, with the remaining part for model development. For 

example, ten-fold cross-validation divides the data into deciles where each decile will form the 

validation dataset65. Usually, the larger part of the sample is randomly split for model development, 

i.e., 90% and the remaining 10% for the test set. Ten-fold cross-validation can be performed with the 

procedure repeated many times, and then the model’s performance is evaluated on the test set. 

External validation plays a vital role to ensure the general application and transportability of the 

predictive model with respect to data collected from different scenarios. The internal validation 

method considers random splitting of training and test samples; external validation characterizes the 

patients that are different in some respects from the patient samples in which the model was 

developed. It is important to assess the model's performance on data that was not used during its 

development to determine how well it can make accurate predictions in a new population. This helps 

to test the model's generalizability and reproducibility.66. 

 



39 
 

To quantify the accuracy of the prediction models, and to distinguish the performance during internal 

and external validation, different performance criteria are recommended by Steyerberg67. A model’s 

performance can be described as good, or poor based on the distance between the predicted versus 

actual outcome; a small distance is considered better. There are a number of different statistical tests 

to evaluate a model’s performance. However, calibration and discrimination are the values most widely 

reported. Calibration compares the model’s predicted probabilities with the actual outcome occurring, 

and to assess the similarities calibration is carried out for internal and external validation68,69. At 

internal validation, it is crucial to consider the calibration slope as it provides insight into the necessary 

shrinkage required for developed models. Specifically, this metric represents an average reduction that 

must be applied to predictor effects (e.g., genetic markers) within datasets in order to achieve accurate 

outcomes. Notably, any resulting impacts can be observed through changes in the calibration 

intercept. An intercept close to zero, coupled with a slope of approximately one, suggests strong 

calibration across various individuals or subgroups. Deviation from this value indicates inadequate 

calibration for certain subsets of the population70. Discrimination is calculated across all models to 

evaluate how well the data distinguishes between patients with the disease and without it and is 

generally reported through the receiver operating curve (ROC) curve, which plots sensitivity and 

specificity for the cut-off for the probability of the outcome. The area under the ROC curve (AUROC) is 

used to compare the performance of different classifiers where area under the curve was calculated 

for all models (Figure 1.5). The AUC is a measure for evaluating the precision of diagnostic 

examinations. The degree to which the ROC curve approaches the top left corner on a graph indicates 

higher accuracy, as this region signifies perfect sensitivity (i.e., true positive rate = 1) and specificity 

(i.e., false positive rate = 0). Binary class predictions are made using the standard discrimination 

threshold of 50% or 0.5 to differentiate between PsA and PsC outcomes. Finally, precision denotes the 

degree of correctness in positive predictions, whereas recall refers to their completeness. Ideally, 

attaining high values for both these metrics is desirable; however, certain situations may necessitate a 

trade-off between them. 

 
Potential clinical utility can be assessed using accuracy which is the ratio between correctly classified 

samples and the total number of samples69. It is also essential to consider sensitivity and specificity. 

The sensitivity which is the true positive rate or recall represents the correctly classified positive (PsA) 

samples to the total number of positive samples. Alternatively, specificity or inverse recall can be 

defined as the number of correctly classified negative (PsC) samples to the total number of negative 

samples. 
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Prediction models provide an opportunity for better informed, and evidence-based decision-making 

in healthcare, and it is essential that the results of such studies are sufficiently reported to enable 

validation. The transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis (TRIPOD) statement has been developed for researchers and authors and provides 

information and a checklist for the reporting of diagnostic and prognostic models71. It has been 

recommended by Moons and colleagues that researchers or authors provide a completed checklist of 

TRIPOD statements when reporting the prediction model to ensure transparency of the reporting of a 

prediction model study regardless of the study methods used72. 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: A schematic of the primary ROC curve representing important points, perfect classifier, test classifier, or classifier 
with no predictive value. The y-axis on the graph shows a true positive rate and the x-axis shows a false positive. A commonly 
used visual assessment for evaluation of performance in machine learning and medical decision-making. The above figure 
was produced in R (created by the author). 

 
Genetic prediction modelling in PsA 

Polygenic risk scores (PRSs) calculate weighted sums based on the presence of known GWAS defined 

risk alleles and corresponding weights defined by the loci and their measured effects73. For diseases 

with significant genetic components, such as PsA, PRSs and genetic profiling of patients has the 

potential to enable earlier disease detection, prevention, and intervention. Here we review the use of 

PRS in two settings; firstly, as a tool to predict risk of developing PsA in patients with PsC and, secondly, 

as a tool to help minimise misdiagnosis with other clinically similar diseases. 

 
Although the utility of using PRS to predict risk of PsA at the population level, where prevalence is low, 

has limited value, in a rheumatology clinic where all patients have symptoms and thus an increased 
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pretest probability for disease, genetics and PRSs may be more effective and useful to aid diagnosis73,74. 

A recent study carried out by Patrick and colleagues explored the process of using multiple statistical 

and machine learning algorithms to develop a risk prediction model for PsA solely based on genetic 

markers61. The study used multiple classifiers and machine learning algorithms for the risk assessment, 

and the highest-performing methods were selected and combined to measure the risk of PsA. The 

approach investigated data from six cohorts consisting of over 7000 genotyped PsA and PsC patients 

and by utilizing 200 genetic markers, an area under the receiver operator curve (AUROC) score of 0.82 

was achieved in distinguishing between PsA and PsC. Applying conditional inference forest or shrinkage 

discriminant analysis on the top 5% group of psoriatic patients predicted PsA with over 90% accuracy, 

full specificity, and around a 16% recall rate.  The discriminative ability of the model developed showed 

good performance metrics based on internal validation, however it is crucial to ascertain their clinical 

utility by validating models using independent datasets that are distinct from those used in the 

development process. Only after such validation can generalization of these models to wider 

populations and local implementation be considered feasible75,76. One recent study by Soomro and 

Stadler et al attempted to analyse the two datasets obtained from GWAS and UK biobank by using the 

previously reported model62. However, the model was found to have miscalibration and low 

discrimination ability in the external validation sets. These poorly calibrated models had an area under 

ROC curve values below 0.7 for all internal and external validation pairs examined; the majority 

exhibited discriminatory power close to or even below 0.6. 

 
As discussed previously, the diagnosis of PsA remains a challenge as there are several differential 

diagnoses for patients first presenting to rheumatology clinic with suspected early arthritis including 

PsA; however, initial misdiagnosis can delay treatment and increase the chances of irreversible 

disability, comorbidity, and mortality77,78. Genetic information is not currently used in the 

rheumatology outpatient setting, but, in theory, could help reduce misdiagnosis. Based on this 

premise, a tool to aid diagnosis using existing knowledge of genetic risk loci resulted in the 

development of a genetic probability tool called G-PROB79. G-PROB can be programmed to convert 

genetic information into easily interpretable percentages suggesting likely and unlikely diagnoses 

based on the presence of known genetic risk variants79. It does this by generating G-probabilities which 

are conditional probabilities for multiple diseases, assuming that one of the diseases is present, 

calculating the probabilities based on the presence of known risk variants for each of the diseases of 

interest. In principle, patients would be genotyped prior to their clinic visit, and the clinician would be 

provided with G-probabilities adding up to 100% indicating a breakdown of which diagnoses are most 

likely based on the presence of known disease-associated variants. If G-PROB is well calibrated, 

diseases with low G-probabilities (e.g., <5% or <20%) would be less likely, and those with high G-
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probabilities (e.g. >20% or >50%) would be more likely. This information could complement existing 

investigation and tools such as clinical history and physical examination to aid and improve the 

accuracy of the first provisional diagnosis. 

 
The creators of G-PROB have validated the tool using simulated patients and using real-world data 

from a biobank. PsA was one of the five diseases G-PROB was validated to classify, along with 

rheumatoid arthritis (RA), systemic lupus erythematosus, spondyloarthropathy, and gout. The study 

found that G-PROB was well calibrated, that G-probabilities were concordant with real disease risk, 

and that overall G-PROB had high accuracy in disease discrimination. The results of this study were 

promising and showed for the first time how genetic studies in rheumatological diseases like PsA could 

be incorporated into clinical tools which could be used in routine clinical practice. The next steps will 

be to test G-PROB on a real-world rheumatology outpatient clinic cohort, and in a prospective cohort 

of patients in order to fully understand its potential. However, the results of the G-PROB study do give 

us a glimpse into what the future might look like, where genetic studies may be harnessed in routine 

clinical practice to improve diagnosis and ultimately patient care. 

 
Conclusion 

There are now two well established genetic risk loci that differentiate PsA from PsC, IL23R and amino 

acids in HLA-B. While other loci have been reported, these have not been robustly validated in 

independent datasets. Despite this limited number of genome-wide significant PsA-specific risk factors 

some prediction models using PRS from GWAS have reported promising evidence for accurate 

classification of PsA suggesting the existence of PsA-differentiating loci beyond those mentioned 

above. Large, international, collaborations with well-phenotyped PsA and PsC patients would be 

required to identify these loci and these efforts would consequently improve to the development of 

PRS with the potential for robust external validation. However, the updated heritability estimates for 

PsA suggest that the solution for reliable prognostic models to predict risk of PsA may not entirely rest 

with genetic risk factors and there will be significant benefit from integrating both genetic and clinical 

factors. In particular, an ideal setting would be a longitudinal study design where absolute risk (e.g. 10 

year risk of PsA) could be estimated as opposed to relative risk.  These aspirations would only be met 

with international collaboration.  
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Rheumatoid Arthritis (RA) 

Description 

RA is defined as a chronic inflammatory rheumatic disease that, untreated, can translate into severe 

chronic inflammation of joints, and eventual progression of the disease, which may result in disabling 

joint destruction80. A subset of the RA patients are anti-citrullinated protein antibodies (ACPA) and 

rheumatoid factor (RF) positive, which indicates that RA is an autoimmune disease80. MacGregor and 

colleagues81, in their study of twin data, found that around 60 % of the RA risk is hereditary. Thus, 

genetic factors play a crucial role in RA disease susceptibility and account for a considerable proportion 

of disease liability within the RA population82. RA is considered a complex heterogenic trait that 

involves the interaction of multiple genetic and environmental factors 83. One working hypothesis is 

that symptoms are triggered when an individual’s antibodies mistakenly attack the normal synovial 

joint fluid, causing chronic inflammation, on a permissive genetic background83. 

 
According to CDC (Centre for Disease Control and Prevention) new cases of RA are two to three times 

higher in women than men. Usually, RA affects people between the ages of 30 and 60 years old; 

however, on average, a person may not experience symptoms until the age of 60. According to 

Symmons and colleagues median age at onset is 5584. 

 
There are four categories of risk factors that increase the population risk of developing RA, in general. 

[1] Genetics: people are at four times higher risk of developing RA if a first-degree family member is 

diagnosed with RA. [2] Environmental factors: exposure to environmental factors such as pollution, 

chemicals or traumatic events can stimulate an immune response and initiate symptoms; [3] Hormonal 

factors: due to the fact that more women than men are affected by RA, researchers believe hormonal 

imbalance may contribute to RA risk; [4] Lifestyle: smoking and sedentary lifestyle could be potential 

risk factors that trigger RA  85,86.  

 
There is extensive literature on the increased mortality in individuals with RA as compared to the 

general population 87. A meta-analysis carried out by Dadoun and colleagues 88 reported 1.5 times 

higher mortality rates in RA patients compared with an age-matched population with a consistent, 

systematic pattern over the last five decades. Van den Hoek et al. 89, in a recent prospective cohort 

study, reported 54 percent higher mortality rate in RA than the general population, with major causes 

attributed to cardiovascular diseases (CVD), respiratory diseases, and infections.  
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Figure 1.6: Physiology and pathology of rheumatoid arthritis (made by author information derived from Castro-Sánchez and Roda-Navarro)  
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Epidemiology 

The overall prevalence of RA has been estimated at 0.24 percent based on a 2010 study related to the 

Global Burden of Disease with no change from 1990 to 2010 90. In the United Kingdom (UK) Symmons 

et al. 84 estimated the prevalence of RA to be 0.8%. A study conducted in 2020 by the National Institute 

for Health and Care Excellence (NICE) reported that RA has been diagnosed in approximately 1% of 

the UK population 299. The annual incidence of RA in the United States and North European countries 

is estimated to be approximately 40 per 100,000 persons91. Interestingly, most of the epidemiologic 

studies of RA have been carried out in these regions 92; consequently, epidemiologic estimates of RA 

and identification of risk factors are largely based on these populations. 

 
The incidence and prevalence of RA is much greater in some populations, such as in the Pima Native 

Americans, where rates are up to 10 times higher than those of most population groups 93. RA has a 

predilection to affect women who have incidence and prevalence rates three times higher than men94 

and the lifetime risk of developing RA for women is 3.6 percent, compared with 1.7 percent in men22. 

The maps below in figure: 1.7 shows the prevalence of RA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: The map shows prevalence of RA variation by gender, ethnicity and geographic region, made by author data 
taken from Tobon et al.,23. 
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Symptoms, diagnosis, and classification 

Signs and Symptoms 

The appearance of symptoms of RA varies on an individual basis, as one of the characteristics of RA is 

that it fluctuates. Therefore, some individuals might have a mild disease course with few symptoms, 

while others may undergo worsening problems. The common symptoms present or found in most of 

the patients are tender and swollen joints, and symptoms of systematic inflammation resulting in 

fatigue, stiffness, pain, redness, and warmth 95,96. 

 
RA symptoms usually appear in the hands (metatarsophalangeal (MCP), and proximal interphalangeal 

(PIP)) and feet; however, it can also affect other joints, including elbows, hips, knees, shoulders, and the 

wrists. RA follows a symmetrical pattern, with the same joints on both sides of the body generally 

being affected, like both hips and wrists97. A period of high disease activity (increases in inflammation 

and other symptoms) is known as a flare, and these can last for days or months 98. 

 

Diagnosis of RA 

As discussed in the previous section, there could be multiple symptoms during early stages; thus, signs 

are not specific for RA, which means diagnosis is based on a combination of indications, symptoms and 

further investigations. The diagnosis is usually based on pattern recognition; therefore, clinical 

expertise plays a very important role. For a diagnosis of RA, the rheumatologists usually ask personal 

and family history questions and perform physical examinations, which can be supplemented with 

diagnostic tests based on the outcome from the physical examination 99. Detailed examples of 

diagnostic tests are shown in Figure1.8. 

 
For example, a blood test maybe performed to test for autoantibody called anti-CCP (anti-cyclic 

citrullinated peptide), which is commonly present in 60 to 80 percent of RA individuals from hospital-

based series100. The individual is categorised as high risk for developing RA if anti-CCP levels are higher 

than 20 units per millilitre (u/ml). The C-reactive protein (CRP) and Erythrocyte sedimentation rate 

(ESR) are also tested—higher than normal levels are indicative of inflammation in the body but the 

inflammation could have numerous causes, including viral infections; hence, the tests are non-specific. 
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Figure 1.8: This figure shows the examples of diagnostic tests for RA. Made by author information collected from 
www.arthritis.org.uk 

Classification of RA 

The classification criteria for RA aims to define a homogenous group of patients for clinical, research 

and epidemiological studies. However, if the classification criteria are considered without the clinical 

diagnosis, there is risk of categorizing patients without the disease or having the disease (risk of false-

positive and false-negative classification). 

 
Early classification of RA was based on the 1987 American College of Rheumatology (ACR) criteria101. 

However, this classification system was unable to classify patients with early inflammatory arthritis102. 

Therefore, the ACR and the European league against rheumatism (EULAR) in 2010 developed new 

http://www.arthritis.org.uk/
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criteria which are based on four parameters: joint involvement, serology (RF and anti-cyclic 

citrullinated peptide -anti-CCP), levels of acute-phase reactants and the duration of the symptoms103. 

 
While this updated system improves classification of early RA, it requires highly trained professionals 

who can differentiate early symptoms of RA from other pathology 102. Nevertheless, patients with RA 

cannot be classified as different sub-entities despite the evidence that ACPA-positive and ACPA-

negative are different groups of patients. Individuals in both groups have different genetic risk factors 

for RA development104. Finally, there is a difference in appearance of the symptoms in RA development 

between ACPA-positive and ACPA-negative RA patients 105. Details for 2010 ACR/EULAR classification 

criteria can be found in Figure 1.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: ACR/EULAR Classification criteria for RA1. ACR: American College of Rheumatology; EULAR: European League 
Against Rheumatism; RF: rheumatoid factor; ACPA: anticitrullinated protein antibodies; CRP: C-reactive protein; ESR: 
erythrocyte sedimentation rate; RA: rheumatoid arthritis (Figure adopted from Humphrey et al., 2014 updated by author106). 
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Therapeutic Advances 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 1.10: Algorithm based on the 2016 European League against Rheumatism (EULAR) recommendations on rheumatoid arthritis (RA) management. (Figure modified by author adopted from 
Smolen et al., 107). 
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Advancements in the understanding of the complex molecular pathways underlying RA have greatly 

influenced the development of new and improved treatment options 108. Over two decades, biologic 

disease-modifying antirheumatic drugs (bDMARDs) and targeted synthetic DMARDs (tsDMARDS) have 

emerged as cutting-edge therapies revolutionizing treatment approaches. In addition to widely used 

conventional synthetic DMARDs like methotrexate, sulfasalazine, and leflunomide; other effective 

therapeutic alternatives include glucocorticoids which can provide short term relief during flares 109,110. 

Biologics such as tumor necrosis factor inhibitors [TNFis]: etanercept, adalimumab, rituximab, 

certolizumab pegol among others alongside non-TNF biologics such as tocilizumab, infliximab and 

abatacept are available for those patients not responsive or intolerant to previous therapy options 

while jankus kinase inhibitors (JAK/STAT) serve as an innovative class of tsDMARDS including tofacitinib 

known globally for its best-in-class efficacy supporting a significant improvement in RA symptoms with 

an oral regimen according to recent researche over time demonstrated favorable safety considerations 

incorporating less infections risk than observed with some bDMARDs along with no associated risk of 

reactivation of  latent TB. 

 
Treatment of RA has advanced over the past two decades, with new drugs that have substantially 

improved care for patients living with this chronic autoimmune disease. The primary objective of 

treatment is to decrease and manage the symptoms associated with RA while preventing damage to 

bones and cartilage in affected joints. Additionally, effective treatment aims at restoring normal 

physical function as well as social participation among patients to improve their health-related quality 

of life. 

 
As per guidelines from ACR 2015 and EULAR 2019, methotrexate is recommended as a first-line drug 

therapy strategy for early-stage RA patients. However, moderate or high disease activity along with 

poor prognosis necessitates combination therapy using methotrexate alongside bDMARDs, or targeted 

synthetic DMARDS (tsDMARDs). If prior therapies prove inadequate in such cases, switching 

bDAMRD/tsDMARDS becomes mandatory109,111; recommending molecules employing different 

mechanisms of action. TNF-inhibitor therapy remains the commonest first-choice bDMARD; hence 

non-TNF targeting medications like second JAK inhibitor, or other biologics are recommended for 

patients whose disease activity fails to respond to TNFi treatement. 

 
Effects of the RA drug treatment and comorbidities 

Despite the availability of a variety of options, there is a gap in the systematic understanding of the 

adverse effects, contraindication, and safety of prescribing these drugs in a heterogenous disease like 

RA. As a result, selecting the optimal treatment for an individual patient remains a challenging task. 
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Humphreys et al. 112have demonstrated that co-morbidities in RA patients might be occurring as a 

result of the adverse effect of biologic therapies and have also reported that effective treatment with 

any conventional synthetic disease-modifying antirheumatic drugs (csDMARD) reduces the risk of 

Cardiovascular diseases (CVD)113. Conversely, some other published studies identified life-threatening 

cardiac arrhythmias and various degrees of heart block in RA patients after receiving the treatment 

with anti-TNF monoclonal antibodies and B-cell inhibitor, rituximab, and infliximab, respectively114–117 

as shown in figure 1.11. 

 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 1.11: Treatment pattern for Rheumatoid Arthritis (Figure modified by author information derived from Kern et al.,118. 

 

Mortality due to comorbidities in RA with specific focus on CVD 

The cause of increased mortality in RA patients could be attributed to the contribution of multiple 

comorbidities such as CVD, respiratory diseases, hematologic disorders, infectious diseases, 

malignancies, pulmonary disease, stroke, angina, depression, panic disorder, neurological disorders, 

genitourinary, and gastrointestinal disorders, in particular119. Of these conditions, CVD is recognized as 

the highest contributing individual risk towards excess mortality rate, with an approximately 40 

percent risk in RA when compared to the general population120. For example, a meta-analysis reported 

higher RA mortality attributable to CVD alone121. 

 
There is disagreement in the literature regarding the improvement or any change in CVD management 

in terms of RA patients. A meta-analysis integrated the published data over 50 years, reported no 

decrease in CVD mortality rate in patients with RA up to the year 2005122. By contrast, a study of 

inflammatory arthritis found a reduction in overall CVD mortality from 8.78/1000 person-years in 
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1990-1994 to 7.07/1000 person-years in 2000-2004106. More recently, similar results from other 

studies have also reported a decline in CVD mortality in recent years 123. Notably, there is still an 

increased all-cause specific mortality rate in RA in comparison to the general population, and no 

improvement has been identified in the mortality gap so far 123,124. 

 
This information suggests that risk factors of unknown and unaddressed etiology play a contributing 

factor in excess CVD mortality in RA compared to the general population and such risk factors may 

include genetics, autoimmune inflammatory burden, and comorbidities. However, it requires further 

research and investigation to understand the underlying pathophysiology and mechanisms that cause 

excessive mortality gap in RA. Detailed risk factors contributing to CVD in RA are presented in figure 

1.12. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Risk Factors contributing to CVD in rheumatoid arthritis. Arrows describe studied associations between various 
risk factors (i.e., the interaction between genetic and traditional risk factors such as smoking and its association with RA 
disease activity) 

 
Cardiovascular deaths in rheumatoid arthritis 

A significantly increased risk of CVD mortality and morbidity has been reported in the literature for 

individuals who have RA126–128. Even five decades ago, studies reported the association of RA with 

premature deaths, accounting for approximately 50% deaths from CVD alone 121,122. 
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Patients with RA who are seropositive for RF have higher excess risk of CVD than seronegative 

patients129. The overall relative risk for early CVD death is higher in young adults age<55 and females 

80.. Moreover, research has shown that there is an elevated risk of CVD mortality following the 

development of RA. For instance, cohort studies from both an English and Dutch population found 

increased CVD mortality after 10 years of follow-up after the onset of RA in men (hazard ratio [HR] 

1.58, 95% confidence interval [95% CI] 1.35-1.85) and women (HR 1.21, 95% CI 1.04-1.42) 130. More 

recently, a study conducted by Myasoedova and colleagues 131 concluded the hospitalization rates 

following heart failure diagnosis was higher in RA versus non-RA patients regardless of sex and age. 

 
Coronary Artery disease in rheumatoid arthritis 

Atherosclerotic coronary artery disease (CAD) is one of the major causes of mortality worldwide, 

including Western and developing countries. CAD is caused by plaque buildup inside the arteries of 

the heart (atherosclerosis) and is highly complex chronic inflammatory disease that may eventually 

lead to an acute clinical adverse event, such as acute coronary syndrome (ACS)132. 

 
Moreover, the rupture of atherosclerotic plaque can cause adverse clinical events and hardens the 

arteries, which causes the blockage of the blood vessel, increasing the risk of blood clots, which can 

damage the vital organs. Inflammation is considered an independent risk factor for plaque 

erosions133,134. Inflamed RA synovium and atherosclerosis share the same pathological processes, such 

as the involvement of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα), Interleukin-

6, and matrix metalloproteinase 135–137. 

 
CAD is also a major contributing factor to the increased risk of CVD morbidity and mortality in patients 

with RA. A retrospective cohort international study reported an overall increased risk of acute 

myocardial infarction (AMI) of 38% in RA patients138. Avina-Zubeita et al. 121, in a meta-analysis study, 

reported a 68% estimated increased risk of AMI in patients with RA. High-risk plaque features increase 

the overall burden of CAD in RA patients than in non-RA patients, which may, in turn, contribute to 

increased risk of myocardial infarction (MI) in RA patients than in the general population139. 

 
Batko et al.,140 have attempted to identify the burden of developing co-morbidities in RA and found 

that hypertension, diabetes, and CAD to be the most prevalent conditions in RA, with an odds ratio 

(OR) of 18.5 percent for CAD (95% CI, 16.8-20.3). Whether CAD preceedes RA remains disputed in the 

literature with some studies reporting that it does138 whilst others have found no association with 

timings and onset of CAD progression139. 
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Furthermore, individuals diagnosed with RA may face a noteworthy risk for CAD, thus leading to an 

elevated occurrence of sudden cardiac death (SCD). There is a growing body of literature that has 

reported that RA patients are twice as likely to suffer from SCD than the general population. Meredith-

Kremers et al.,141 demonstrated the occurrence of SCD with HR 1.94, 95 percent CI 1.06-3.55, for 

instance. Moreover, it was reported in the same study that RA patients had fewer angina symptoms 

and a higher risk of unknown MI, suggesting that CAD manifestations differ in RA patients than non-

RA and is more likely to result in death. 

 
Table 1.3: The prevalence of CAD in RA patients is higher than those without any autoimmune disease (Figure made by 
author information derived from alkhawam et al.,142). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The increased risk of CAD could be attributed to multiple factors, where pathogenesis shared by CAD 

and RA plays a fundamental role, including inflammation, certain genetic polymorphism, conventional 

risk factors, biologic agents, and anti-rheumatic drugs114. 

 
Other factors may also explain the increased risk, such as variation in the management of CVD in RA 

patients in comparison to the general population, which has been subject of considerable discussion. 

Several published studies have identified that patients with RA are less likely to undergo thrombolysis 

and acute percutaneous coronary intervention (PCI) and are also less likely to receive beta-blockers 

and lipid-lowering treatment in comparison to non-RA individuals 143. By contrast, some studies have 

not found that to be the case; for example, a study from Minnesota did not find any significant 

difference in the management of MI in RA patients144. Despite the importance of treatment of CVD in 
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RA patients, there remains a lack of evidence, and further investigation is required to unveil the role 

of therapeutic disparities in CVD management and their implications on CVD events in RA patients. 

To summarise, previous research supports that there is a potentially significant burden of nearly all 

forms of CVD, which contributes towards the excess mortality in RA patients. A systematic evaluation 

of CVD shared pathogenesis mechanism with RA, its premature development, atypical clinical 

characteristics, risk of fatal outcomes, and unequal treatment interventions is needed to help guide 

management in RA patients who are at a significant disadvantage when it comes to CVD control. 

Therefore, RA is considered as an independent risk factor for CVD that provides compelling reasons for 

considering early risk prediction of CVD in RA; the identification of patients with RA at high risk of CVD 

would provide an opportunity for prevention. 

 
Coronary Artery Disease (CAD) 

Coronary artery disease in patients with RA compared with the general population. 

Traditional CAD risk factors are found to be strongly associated with CVD events and outcomes, and 

etiology for CAD risk factors is now well understood; abnormal lipid metabolism, age, male sex, 

hypertension, diabetes, obesity, and smoking are all recognized risk factors in the general 

population145. Figure 1.13 illustrates the major CAD risk factors and how each is measured in a clinical 

setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1.13: Traditional versus non-traditional risk factors for coronary artery disease (CAD). BNP = B-type natriuretic peptide; 
HIV = human immunodeficiency virus infection (Figure taken from https://emedicine.medscape.com/article/164163-
overview) 

https://emedicine.medscape.com/article/164163-overview
https://emedicine.medscape.com/article/164163-overview
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However, the implication of these risk factors on CVD mortality and morbidity in RA is not fully 

understood and cannot explain the higher risk of CAD in the RA population. Evidence suggests that 

disease-related factors like systematic inflammation and autoimmune activation may play a significant 

role in the early development of atherosclerosis in the RA population145–148. 

 
Since RA patients have different risk profile than the general population, the ‘competing risk’ between 

conventional and disease-related factors suggest that conventional risk factors contribute less to the 

overall risk of CAD in these patients145. Additionally, apart from lower contribution, the distribution of 

classic CAD risk factors appears to be somewhat different in RA compared to the general population; 

for instance, smoking, family history of CAD, and male sex present lower risk than in the general 

population147,149,150. It should be noted that some of these risk factors change with time and become 

predictive in later life; therefore, they have lower predictive ability at younger ages, specifically in the 

RA population. 

 
The conventional cardiovascular risk factor in patients with RA – smoking, hypertension, diabetes, 

hyperlipidemia, obesity 

The distribution of classic CVD risk factors is different amongst the RA and non-RA population. In 

comparison to the general population, RA patients have different risk profiles, where conventional 

cardiovascular risk factors confer notably lower influences in RA patients 151,152. CVD is a broad term 

that encompasses various medical conditions involving the narrowing or blockages of blood vessels. 

This may ultimately lead to severe complications such as heart attack or stroke, making CVD among 

the leading causes of death worldwide. Specifically, these conditions include atherosclerosis 

(hardening and thickening of arterial walls), CAD (blockage in the arteries supplying blood to the heart) 

and cerebrovascular disease (disorders affecting blood flow to brain)153. 

 
Indeed, the systematic inflammatory process exacerbates the adverse effect of these risk factors on 

vasculature 153; nonetheless, it functions differently in RA patients. As outlined above, several studies 

have published data on the weaker association of classic cardiovascular risk factors and CAD events in 

RA patients compared to the general population154,155. This concurs with the published data that 

existing cardiovascular risk calculators underestimate the risk of CAD events in RA 156,157 and suggests 

that RA-specific risk factors may contribute to the proportion of this increased risk after adjusting for 

the traditional CVD risk factors. 

 

Smoking 

There is a growing body of literature that recognizes an association between smoking and both RA and 

CVD, as smoking is known to accelerate the atherosclerosis process158,159. Not only does smoking 
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exacerbate other risk factors, it is associated with the presence of RF and ACPA, but also disrupts the 

expression of genes involved in both the conditions158,159. Hyrich et al. observed lower response to 

anti-TNF drugs in RA individuals with a history of smoking160 and, as a modifiable risk factor, it is 

important to determine whether the risk is different in RA patients with CAD compared to the general 

population. 

 

Hypertension 

Hypertension is considered as one of the major modifiable risk factors for CVD in the general 

population, and the risk of CVD could substantially be decreased by controlling the high blood pressure 

in non-RA individuals 161. However, the RA literature suggests contradictory results. Panoulas and 

colleagues, for example, found no significant link between hypertension and other diseases and 

conclude that there is a lower contribution of high blood pressure for CVD risk in RA patients despite 

the higher prevalence of hypertension 162. Another study reported a strong association of hypertension 

with subclinical atherosclerosis in RA, with relative risks ranging between 1.49 to 4.3163. Thus, variation 

in the results of existing literature may be attributed to unrecognized, poorly diagnosed, and untreated 

hypertension with unexamined gene-environment interaction or other confounding factors like 

smoking. 

 

Diabetes, insulin resistance, and obesity 

RA shares many pathophysiological mechanisms with metabolic syndromes, such as insulin resistance, 

high blood pressure, and obesity164. Diabetes is more prevalent in RA than in the general population, 

and the magnitude of CVD risk in RA is the same as diabetes 165. Insulin resistance is a major risk factor 

for developing type 2 diabetes and, as a metabolic syndrome, plays a crucial role in developing CVD 

risk in the RA population 166,167. Evidence suggests association of insulin resistance with RF 

seropositivity but a complicated relationship with the inflammatory process168. Some genes, such as 

the adipokine family genes and IL-6 cytokines, may influence insulin sensitivity, which, in turn, affects 

inflammation. A study reported multiple pleiotropic effects of adipokines, for example, with vascular 

injury in RA169. However, further research is required to explore this association. 

 
There is no association of high body mass index (BMI) with CAD in RA; however, central obesity, such 

as increased abdominal visceral fat in RA, is linked with fatal CV outcomes, independent of BMI 170. 

This high risk is attributed to high waist circumference, insulin resistance, and lower levels of high-

density lipoproteins (HDL). 
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Dyslipidaemia 

Individuals with RA have higher prevalence of dyslipidaemia in comparison to the general population, 

with up to 50% of RA individuals having dyslipidaemia 165. When RA is in its active state, lipid levels are 

decreased; however, high-density lipoprotein cholesterol (HDL-c) is reduced more than low-density 

lipoprotein cholesterol (LDL-c), and the ratio between them results in an atherogenic profile 171. The 

lower LDL levels in RA individuals also influence the high CAD risk; this has been termed as the lipid 

paradox. In this regard, the Apolipoprotein-related mortality risk (AMORIS) study confirmed that RA 

patients with lower lipid levels have a greater risk of MI than non-RA individuals 172. Moreover, there 

is a significant negative correlation between levels of HDL cholesterol and C-reactive protein in 

individuals with RA, indicating that pro-inflammatory HDL contributes to the advancement of plaque 

formation among RA sufferers. 

 
However, it remains unclear whether variation observed in the lipid levels is caused by genetic makeup 

or the presence of an inflammatory state before the onset of RA disease. A study conducted by Liao 

and colleagues 173 found a significant association of RA risk alleles with lower LDL-c levels, while 

another study reported HDL-c relation to Interleukin (IL-6) cytokines 174. 

 
Shared risk factors for CAD and RA 

RA and CAD not only share the same pathomechanistic appearance, but the two conditions also have 

common risk factors. The link between these risk factors, if present, will influence the development 

and promotion of both the diseases. Therefore, this section will focus on how each of these risk factors 

plays their role, and how they impact on each of these conditions. 

 

Genetic susceptibility and autoimmunity factors 

The advent of Genome-wide association studies (GWAS) has paved the way for the exploration of novel 

genetic risk markers for both RA and CAD. Since then, several studies have identified the crucial role 

of genetics as potential risk factors for both diseases 175–178. Recent research has made significant 

progress in identifying genomic risk factors for RA and CAD. A comprehensive metanalysis of worldwide 

genetic studies identified 124 loci with a p-value less than 5 × 10−8, including 34 novel loci associated 

with RA175. Meanwhile, another study systematically characterized over 250 risk loci correlated to CAD 

to provide more information on the causal mechanisms behind this condition177. These findings have 

critical implications for experimental approaches targeting these specific risks during treatment. 

 
The findings from the existing literature are summarised in Table 1.5. It is clear that the genetic 

mechanism involved in CAD and RA is complicated, where the influence of single gene is relatively 

small and may be the result of gene-gene interaction triggered by environmental factors. Nonetheless, 
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the additive effect from multiple loci, gene groups, or pathways, together contributes towards the 

increased disease risk. For instance, Torkamani et al. 179 found 55 disease-associated single nucleotide 

polymorphism (SNP) that were shared by both CAD and RA from polygenic pathways of complex 

diseases. A summarised table of studies for genetic risk factors of atherosclerosis and CVD in RA can 

be found in Table:1.5.  

 
In summary, there is a lack of evidence in the literature regarding the management of conventional 

CVD risk factors in RA. If inflammation is a contributing factor for the risk of CVD in RA, then controlling 

inflammation should decrease the risk and there is some evidence to support that, given patients 

treated with TNFi have lower CV mortality than those on csDMARDs 180. There is an ongoing debate 

about the effectiveness of different drugs prescribed for RA. For instance, methotrexate was found to 

reduce CVD risk in RA181,182; however, corticosteroids (glucocorticoids) have been linked to increased 

CV events risk 183–185. TNFi drug therapy also have conflicting results published in their effectiveness 

and side-effects186,187. On this note, Joint British Societies has recommended the use of steroids to 

reduce inflammation in RA patients for decreasing the overall cardiac risk 188. Nonetheless, how these 

different drug interventions respond in RA patients with higher CVD risk remains unclear. 

 
Disappointingly the CVD mortality gap is still wider in the RA population. Some RA patients, even 

though with low-grade inflammation and disease activity, have increased CRP levels, thus, higher risk 

of CVD than the general population. Therefore, more intensive treatment may be required in RA 

patients. 

 
Congruence of risk prediction for CAD in RA 

Clinicians and patients require reliable information or data samples of individuals to predict the risk of 

their having a particular disease. In an ideal scenario, they would have perfect data on patients and a 

perfect risk prediction model that would use this data to estimate risk. 

 
Clinical prediction models (CPM) are used to predict the presence (diagnostic) or future occurrence 

(prognostic) of an outcome or state of interest 189,190. These models are developed on a single dataset 

by estimating the association between disease (outcome) and multiple risk factors (predictors). Risk 

prediction models are routinely used for clinical decision making based on the probability of illness or 

future events191,192. Recently, the assessment and methodological derivation of risk prediction tools 

have gained fresh prominence in medical and statistical literature. Owing to that fact, the guidelines 

have also been published for transparent reporting of prediction models and a framework detailing 

the prognostic research themes 193–196. 
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Over the last two decades, several risk factors or predictors have been identified for the whole 

population to predict risk of CVD which has led to development and use of many risk estimation tools 

for CVD, for example, QRISK3, Systematic coronary risk evaluation (SCORE), Framingham Risk Score 

(FRS) and Reynolds risk Score (RRS)197–199. Since these risk prediction tools are developed for the 

general population, they often fail to accurately estimate the CVD risk in individuals with chronic 

diseases. In this context, patients with diabetes mellitus (DM) serve as an example since these patients 

also have increased CVD risk. Thus, for the assessment of the same specific risk score, the UK 

Prospective Diabetes Study (UKPDS) has been developed for these patients 200.  A study from the 

Netherlands developed a separate tool where the SCORE risk model is used by adjusting for age with 

the addition of 15 years, because the increased CVD risk of DM patients is similar to non-DM persons 

15 years older201. 

 
RA patients have a similar problem as their CVD risk is the same as that of non-RA vascular age of 10-

15 years older. Based on related facts, the EULAR guidelines recommend the use of a multiplication 

factor of 1.5 to traditional cardiovascular risk factors for the assessment and management of CVD in 

the RA population. However, at the time of writing, no evidence has been reported to support this 

arbitrary weighting recommendation and no CVD risk prediction tool or multiplier adjusted method 

has been shown to adequately estimate the CVD risk in RA. On the contrary, several studies have 

reported how these risk models either over or underestimate the CVD risk in RA patients202–206. 

 
The importance of CVD management in RA is also emphasized in the published treatment guidelines 

from the EULAR155,207. However, the evidence relating to the prevention of CVD in RA is lacking, both 

in clinical and research settings. Conventional cardiovascular risk factors only contribute a small 

proportion towards this risk, and non-traditional genetic and RA-related factors have significant 

contribution towards increased CVD risk, too. Therefore, the risk estimator used in the general 

population underestimates the actual CVD risk in RA, which uses only traditional risk factors. Thus, 

there is a heightened need to develop an adequate cardiovascular risk stratification tool that uses 

broad spectrum of risk factors to evaluate the CVD risk in RA, thereby leading towards accurate 

identification of those at high risk and paving the way for the development of optimal cardiovascular 

preventive strategies. 

 
Challenges of CVD in RA 

As previously indicated, classic cardiovascular risk factors have a lower contribution to the CVD risk in 

RA than the non-RA population. The CVD risk algorithms used for the general population 

underestimate CVD risk in RA (e.g., QRISK3, Score and FMS) for the reason that non-traditional 
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cardiovascular risk factors are not taken into consideration for RA157,173,208,209,210. For instance, the 

Reynold score, after adjusting for inflammation in terms of CRP, underestimated the CVD risk in RA, as 

demonstrated by Crowson and colleagues208. Some new CVD risk estimation tools also overestimated 

the cardiovascular risk in RA patients, potentially leading to over-treatment of patients 156,173,211.For 

instance, Arts et al. 157 observed that QRISK2 overestimates the CVD risk in RA. 

 
Moreover, many of the recommendations are based on expert opinion, and it remains unclear if 

adjustment for RA can predict the true cardiovascular risk. The EULAR guidelines recommended the 

use of CVD risk prediction tools for RA individuals with the following characteristics: (1) Disease 

duration of greater than 10 years; (2) Extra-articular manifestation; and (3) Positive RF. However, the 

suggested criteria not only underestimate but also overestimates the CVD risk in RA, dependent on 

the algorithm used to estimate risk. For instance, a study observed that only 2% of total RA patients 

were classified as moderate risk for CVD by SCORE but were re-categorized into a high and very high-

risk group by mSCORE212. 

 
The unstable plaques involved in both conditions induced either by genetic or non-genetic factors, 

support the notion that even patients with seronegative RF with relatively short disease duration and 

without extra-articular manifestations might also be at increased risk of developing CVD. Hence, these 

patients will not qualify for cardiovascular risk prevention or early management according to the 

criteria used by EULAR213,214. 

 
The CVD risk score for the patients may change over time, for example, in the case of inflammatory 

activity with different drug treatments or lifestyle changes. Therefore, it seems plausible to add genetic 

risk factors that do not change over time and can be identified early on. Finally, it seems sensible to 

use genetic risk estimator as an additional tool to predict each RA patient’s probability of progression 

towards CVD based on their genetic background. 

 
In summary, current cardiovascular risk estimation tools underperform in classifying patients with high 

CVD risk. Accordingly, an appropriate solution to CVD risk stratification in RA would be to include these 

three steps: 

1. Collect clinical and demographic data (including age, sex, disease duration, RF, anti-CCP, 

ethnicity, conventional cardiovascular risk factors, and information on intake of different drug 

treatments). 

2. Obtain blood sample collection to obtain genetic data and selection of the biomarkers most 

influential on both the conditions. 
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3. Follow patients longitudinally to observe CV events in order to determine predictors; ideally, 

a surrogate endpoint before a clinical event would be used such as a non-invasive assessment 

for carotid plaques. 

 
The combination of these three areas would lead us to a better cardiovascular risk prediction models 

and thereby better cardiovascular risk stratification in RA. Eventually, it would lead to better and 

personalized targeted interventions on each patient, thus, reducing and preventing CVD from the 

onset. 

 
The rationale for the use of CVD risk assessment tools in RA 

Several treatment options are available for CAD, including drug therapy or lifestyle modification. CAD 

in RA can further be improved and adequately managed by precise evaluation and prediction of CV 

risk in RA. In essence, it is worth noting that the effect of drug therapy is proportional to the patient’s 

absolute risk of CAD in RA. However, lifestyle changes can be seen more in patients categorized for 

high risk. Additionally, a biased model leads toward the exacerbation of inequalities in RA patients, for 

example, underestimating or overestimating the CAD risk in RA, which may be exacerbated in 

socioeconomically deprived patients and in those from non-Caucasian ethnicities.   

 
Given the importance of CVD in the general population, several tools have been devised and clinically 

implemented. However, in the context of RA, problems remain unresolved as there are no customized 

and evidence-based approaches for using these calculations in RA, for instance; 

 
1. How should the risk of CVD be estimated in RA patients? Currently, there exists no expert 

consensus as to which is the most accurate model in terms of CAD in RA, for use either at the 

international level or in the United Kingdom (UK). 

2. Which risk predictors ought to be included for CVD risk evaluation in RA? As discussed in the 

previous sections, classic CVD risk factors contribute less, and there remains uncertainty for 

the potential role of other novel blood-borne biomarkers for risk estimation and classification 

of individuals at higher risk.  

3. Can genomic information or scores improve CVD risk prediction for RA? Most of the existing 

risk estimation tools leave an important proportion of variance in CVD risk in RA unexplained, 

and very few include the family history information. The information on genetic risk factors for 

both CAD and RA is increasing, and if these can be integrated into the models in the form of 

polygenic risk scores, performance may be improved.  

 



63 
 

Evaluation of the existing risk prediction models for CVD in RA 

Existing Gaps in the evaluation of CVD risk prediction models for RA 

It is crucial that risk prediction models are assessed and evaluated before being implemented for 

clinical use.  Steyerberg and colleagues65 suggested four techniques for the measurement of clinical 

utility for prediction models: decision curve analysis, net benefit, impact on decision making, and cost-

effectiveness. However, good discrimination and calibration do not always mean good clinical utility. 

 
The lack of a clear definition in the framework for guidelines or conditions that need to be met by 

prediction models and scarce availability of proper study designs and data serve as a hindrance in 

effective clinical translation of these models215. In this respect, apart from the literature that exists on 

better practices on model evaluation, guidelines called TRIPOD have also been developed to improve 

transparent reporting of prediction models216,217. 

 
Similarly, the same rules apply when it comes to prediction tools used for CAD in RA; there is paucity 

of literature about the evaluation of existing CVD risk prediction tools when used for RA patients. For 

instance, a study conducted by Crowson and colleagues218, evaluated CVD risk algorithms designed for 

the general population in RA patients; the overall results suggested no improved performance for CVD 

risk prediction among RA when compared to the general population. In particular, they exacerbated 

health inequalities in these patients. The reason is that the overall prevalence of RA is low, and RA 

patients differ from many groups across these tools (e.g., SCORE, QRISK, and ASSIGN (Assessing 

cardiovascular risk by using SIGN)) to which findings from it have been applied; important risk factors 

such as genetic risk factors, socio-economic deprivation, and family history are absent from these 

models and susceptibility to risk factors is different between populations.   

 
Finally, not only there are challenges in the development of a CVD risk prediction in RA, but the 

implementation of these tools in clinical practice is also challenging. A risk estimation tool that includes 

both cardiovascular and rheumatologic factors might need to be integrated with decision making and 

care from both a rheumatologist and a cardiologist or general practitioners to obtain all the required 

measures to evaluate it. 

 
The role of genetics 

Advantages of genomic prediction 

It is a well-established fact that genetics plays a crucial role in influencing biological risk and, therefore, 

can significantly contribute towards better risk prediction. There are three broad methods by which 

genetics can be used for the evaluation of risk for different disease traits. 
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Analysis of small number of genes.   

This method is used when there are only handful of known high-penetrant variants that are associated 

with the risk. These methods are used in the management of many common diseases, such as testing 

for BRCA1/2 (breast cancer gene) for the individual females considered at increased risk of cancer 219. 

 

Analysis of multiple genetic loci. 

In order to estimate the effect of each SNP on risk, the first method used is called polygenic scoring. 

PRS, sometimes known as genomic risk scores (GRS), is one such approach to predict an individual’s 

genetic predisposition for the disease. In its simplest and most common form, PRS sums the effects of 

SNPs, based on the estimated SNP effect sizes ˆ β (obtained from GWAS summary statistics), 

 

 

 

 

Where xij is the genotype for the ith individual and jth SNP (usually encoded as 0, 1or 2 for the effect 

allele dosage). Typically, these scores include hundreds-to-thousands of SNPs, considering the 

literature and information showing that many diseases are polygenic 220,221. 

 

Integrated risk prediction. 

This method combines both conventional and genetic risk information to evaluate the risk of disease. 

However, the use of such technique is limited to high-risk individuals. For instance, risk tools such as 

BOADICEA (the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) 

and TyrerCuzik (International Breast Intervention Study (IBIS) breast cancer risk evaluation tool 

developed by and named after Professor Jack Cuzick) are integrated with genetic risk factors 222,223. 

 
There is a growing interest in improving the predictive ability of risk tools by integrating genetic risk 

scores for CVD in the current clinical risk scores for common, complex conditions. Research studies on 

GRS for CVD have used survival modeling because data is longitudinal and fulfills the requirement of 

dealing with censoring. These models are mostly based on PRS approaches, use small numbers of SNPs 

identified to be significant by GWAS, and then these scores are integrated with other risk factors224–228. 

Whilst the GRS are found to be significantly associated with CVD in these studies, the integration of 

clinical and genomic information has managed to achieve only modest predictive power229,230. A study 

conducted by Yarwood et al. could be cited as an example; it developed a risk prediction model for risk 

assessment of RA by using weighted GRS for non-HLA susceptibility loci, imputed amino acids at HLA-

DRB1, HLA-DPB1, HLA-B1, and gender and achieved modest performance model 231. 
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Regardless of the small improvement in prediction, the cumulative effect of genomic scoring is 

significant for a lifetime. For instance, a recent study on a 12 SNP GRS for atrial fibrillation observed a 

twofold cumulative increased risk of CVD from 6% at baseline to 12% by 15 years 232. Similarly, another 

study demonstrated an association between 32 SNPS GRS on blood pressure with CAD and stroke233. 

As RA and CAD may share some genetic basis this is suggestive of the fact that GRS can be useful in the 

risk prediction of CVD in the RA population. 

 
Polygenic risk scores for CAD risk 

For the reason that diseases are polygenic in nature, Khera and colleagues 2018 developed and 

validated genome-wide polygenic risk scores for five common diseases. They observed 8.0%, 6.1%, 

3.5%, 3.2% and 1.5% of the population at higher than the three-fold increased risk for coronary artery 

disease (CAD), atrial fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer, 

respectively. For CAD, this prevalence is 20-fold higher than the carrier frequency of rare monogenic 

mutations conferring comparable risk234. More recently, highly predictive PRS for CAD, have been 

demonstrated to be associated with CAD independent of familial heredity235,236. Since family history 

includes an environmental as well as genetic component, it is expected that as PRS get more powerful, 

they will work better to capture the common genetic component of family history, without affecting 

the shared environment or the monogenic (rare) element. Thus, it is likely that for prediction purposes, 

models combining both family history and PRS will be stronger than either factor alone, and that family 

history will not be made redundant by PRS 221. 

 
Many studies have focused on CAD so that actual risk factors, including genetics, can be identified. As 

the genetic architecture for CAD is the most researched of all cardiovascular conditions, and there are 

a number of large-scale datasets available, the construction of polygenic scores is most advanced in 

this area (summarized in Table 1.4). 
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Overview of current PRS in CVD risk 

 

Table 1.4: This is illustrative as opposed to an exhaustive or comprehensive list of available models. Performance metrics for individual models are not included as they are not directly comparable 
between models/studies due to different intended uses, populations. 

Brief summary of models examined 

Publication Purpose Models No. of variants 
in PRS model 

Outcome tested 
by models 

Test 
population 

Inouye et al. 
2018227 

Construct a PRS for CAD and estimate its 
potential as a screening tool for primary 

Prevention 

PRS adj. for sex, age, PC, genotyping array Clinical 
risk factors only (smoking, diabetes, family 

history, BMI, hypertension, high cholesterol) 
Combined model (PRS and clinical risk factors) 

1,745,180 Prediction of 
incident CAD 

UK Biobank 

Khera et al. 
2018234 

 
 

Develop and validate PRS for five common 
diseases (including CAD) 

PRS and age, sex and PC 6,630,150 Prediction of CAD UK Biobank 

Natarajan et al. 
2017236 

Examining the impact of statin treatment at 
different levels of genetic risk 

PRS adj. for age, sex, diabetes, smoking, LDL, 
HDL, BP, antihypertensive use and family history 

of MI or stroke 

38-63 Incident nonfatal MI 
or death caused by 

CHD 

WOSCOPS 

Abraham et al. 
2016235 

Construct and externally validate a CHD-PRS, 
examining lifetime CHD risk and comparison 

to traditional clinical risk factors 

PRS 
PRS and FRS 

PRS plus ACC/AHA13 risk score 

49,310 Time to CHD event Three FINRISK 
cohorts and 

two FHS 
cohorts 

Khera et al. 
2016237 

 

Examining the relationship between genetic 
risk, CAD and healthy lifestyle 

PRS up to 50 Composite of CAD 
events (MI, coronary 
revascularization, and 

coronary cause 
death) 

Tested in ARIC, 
WGHS, MDCS, 

Bioimage 

Tada et al.,2016232 Examining improvements in CHD risk 
prediction by inclusion of more SNPs and 

relationship with family history of CHD 

PRS and age, BP, antihypertensive 
use, smoking, apolipoprotein A and B, diabetes 

27 and 50 Time to first event 
of CHD 

MDCS 
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Conclusion 

As noted, the mortality rate for RA is consistently higher in the RA population when compared to the 

general population with the standardized mortality rates of 1.28 to 2.98239. Thus, researchers have 

focused on investigating the underlying cause of increased mortality and observed that this is mostly 

attributable to CVD; in particular, CAD mortality is 59% higher in the RA population than non-RA 

individuals 240. 

 
In fact, the inflammatory pathomechanism involved in both RA and the atherogenic process involved 

in CAD share many features. During the inflammatory process, activation of inflammatory cells such as 

Macrophages, mast cells, and T -cells takes place in both in RA and atherosclerosis. Moreover, the 

production of cytokines, TNF-a, and leukocyte proliferation is also similar206,241,242. Not only does 

inflammation exacerbate the progression of atherosclerosis process but it also promotes the 

development of plaque rupture and destabilization. In comparison to the general population, RA 

patients show more signs of inflammation and instability in the atherosclerotic lesions243.  

 
The risk of CAD in RA patients is contributed to by conventional CAD risk factors, especially when 

initiated by the inflammatory process147,209. Nonetheless, the overall CAD risk in RA is not explained by 

these risk factors. Due to similarity between inflammatory processes in both the conditions, RA-related 

risk factors have also been found to be significantly associated; for instance, increased level of 

erythrocyte sedimentation rate (ESR), CRP, severe RA or high disease activity, low functional status 

measured using health assessment questionnaire (HAQ) have all been associated with increased risk 

of CVD morbidity and mortality (Table: 1.5). From literature, the association of RF-positive as a 

significant factor for high CAD risk in RA has been widely confirmed by most 141,244,245 but not all studies. 

246. Hence, it is unclear if RF has some influential role in the progression of CAD or if higher disease 

activity and inflammation is due to the presence of RF in the subgroup of RA individuals. Further, ACPA-

positivity is also found to be significantly associated with increased CAD risk in the general 

population168,247 as well as a higher risk of ischemic heart disease (IHD), endothelial dysfunction and 

overall atherosclerotic burden in RA population248. 

 
Some of the published studies of risk factors for CVD mortality in RA are presented in table:1.5. Most 

of these studies have used CVD as a composite outcome, including several subtypes of the disease. 
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Table 1.5: Previously published studies of risk factors for cardiovascular disease and cardiovascular death in rheumatoid arthritis 

AUTHOR YEAR OF RA- 

DIAGNOSIS 

STUDY DESIGN INCIDENT RA DISEASE 

DURATION 

MEAN/MEDIAN 

FOLLOW-UP 

MEAN/ 

MEDIAN 

AGE AT STUDY ENTRY 

OUTCOMES RISK FACTORS RELATIVE RISK (95% Cl) 

Farragher et al., 2008249 1989 -1994 Cohort Yes 5 (2-12) mo N/A 55 (41-66) CV Death HLA-DRB1 HR 3.0 (1.4-6.7) c 

Curtis et al., 2018250 2010-2014 Longitudina
l cohort 

study 

N/A 12 mo N/A 69(11) yr MI TNF-RI IR 0.28 (0.69 to 0.97) 

IL-6 HR 1.09* (0.97 to 1.23) 

CHD events CRP IR 1.13 (0.98 to 1.31) 

Resistin HE 1.09*(0.98 to 1.22) 

Leptin 

Meissner et al., 2016251 2001-2013 Nested 
case-

control 

N/A 5 yr N/A         63.7(9.1) yr MI  CRP OR 1.47 (1.00 to 2.16) 

DAS28 No association 

Gonzalez-Gay et al., 
2007252 

N/A Cohort No 8 (4-14) yr 13 (10-16) yr 61 (51-70) CVD RF+B HR 2.4 (0.7-7.9) 

Mean CRPB HR 1.1 (1.0-1.1) 

Mean SR8 HR 1.0 (1.0-1.1) 

ExRA HR 1.7 (0.9-3.4) 

HLA-DRB1 HR 1.8 (0.9-3.6) 

CV Death RF+B HR 3.2 (0.4-24.9) 

Mean CRPB HR 1.1 (1.1-1.2) 

Mean SR8 HR 1.1 (1.0-1.1) 

ExRA HR 1.8 (0.7-4.7) 

HLA-DRB1*04 HR 4.2 (1.2-15.0) 
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AUTHOR 
YEAR OF RA- 

DIAGNOSIS 

STUDY 

DESIGN 
INCIDENT RA 

DISEASE 

DURATION 

MEAN/MEDIAN 

FOLLOW-UP 

MEAN/MEDIAN AGE AT 

STUDY ENTRY 
OUTCOMES 

RISK 
FACTORS 

RELATIVE RISK (95% 

Cl) 

Radovits et al., 
2008130 

1985 - N/A Case- control Yes N/A N/A N/A CVD DAS28 
Baseline 

OR 1.2 (0.6-2.4) 

        DAS28 AUC OR 1.1 (0.8-1.4) 

Innala et al., 2011253 1995-2008 Cohort Yes 6.6 ± 3.3 mo 5 yr 55 ±14 CVD DAS28 
AUC 6mo 

HR 1.01 (1.0-1.1) 

        DAS28 
AUC 6 mo 

+ HT present 

HR 3.6 (2.0-6.4) 

Farragher et al., 
2007249 

1990-1994 Cohort Yes 4 (2-10) mo 10.3 (10.1-10.8) 
yr 

54 (41-66) CV Death HAQB HR 1.2 (0.9-1.6)  

HAQyear 1 RF+ 

 

HR 1.6 (1.2-2.1) 

DAS283  

 

HR 2.2 (1.4-3.5) 

DMARD- HR 1.1(1.0-13) 

treatment yrl HR 1.6 (1.0-2.5) 

Maradit- 

Kremers et al., 
2005254 

1955-1995 Cohort Yes N/A 15 ± 10 yr 58 ±15 CV Death ESR >60°  HR 2.1 (1.6-2.9) 

RF+ HR 1.6(1.2-2.3) 

Destructive 

changes x-  rayD 

HR 1.4 (1.0-2.0) 

Rheumatoid HR 1.6 (1.1-2.2) 

nodules0  

Davis et al., 2007255 1955-1995 Cohort Yes N/A 13 (8-21) yr 58 ±15 CVD 

CV Death 

GC >7.5mg/day 

(vs. no GC) 

All HR 2.0 

(1.3-33) 

RF+HR 3.1 

(1.7-5.6) 

Teruel et al., 2011256 N/A Case- 

control 

No N/A 11 ±8yr 54 ± 15 CVD ACP1 

polymorphism 

OR 2.6 (1.2-5.5) 
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AUTHOR 
YEAR OF RA- 

DIAGNOSIS 

STUDY 

DESIGN 
INCIDENT RA 

DISEASE 

DURATION 

MEAN/MEDIAN 

FOLLOW-UP 

MEAN/MEDIAN AGE AT 

STUDY ENTRY 
OUTCOMES 

RISK 
FACTORS 

RELATIVE RISK 

(95% Cl) 

Mantel et al.,2017257 2006-2012 Case-control Yes 3.4 Years 5 years 60(51-70) Heart Failure Rheumatoid 

factor 

(Rheumatoid 

Arthritis) 

-positive 

HR 1.45; 95% CI: 

1.9-1.78 

Khalid et al.,2018258 2008-2012 Cohort Yes 5.9 Years 10 years 48.3(17.8) Heart Failure Gender 

Rheumatoid 

Arthritis 

IRR 1.30 
(CI, 1.17-1.45) 

Gabriel et al., 2010239 1987-2010 Cohort Yes N/A 14.2 years (40-80) Heart Failure Diabetes  

NSAIDs 

 

 

Hypertension 

nnn 

 

RR .02(0.84, 1.25) 

Body Mass 

Index 

Sedimentation 

RR 1.79 (0.28,2.54) 

hyperlipidemia RR 0.75 (0.61, 0.91) 

Primdahl et al., 
2013127 

2011-2012 Case-control No 9(5-17) 64.3 years 1-66(22-80) CVD 
death 

Low-density 

lipoproteins 

cholesterol 

(mM/L) 

High-density 

lipoproteins 

cholesterol 

(mM/L) 

IQR 3.0 (2.4-3.7) 

Body Mass 

Index (Kg/m2) 

IQR 26.5 (23.5-30.3) 

Exercise <5 

times a week 

IQR 5.52 (66%) 

Ajeganova et al., 
2013259 

1993-1999 Cohort Yes N/A 13 (2-17) yr 55 ± 15 CVD 
CV Death 

RF+B HR 1.2 (0.9-1.6) 

CRP AUC 2 yrs HR 1.0 (1.00-1.1) 

ESR AUC 2 yrs HR 1.0 (1.0-1.1) 

HAQ AUC yrs HR 1.1 (1.0-1.3) 

GC yrs HR 1.7 (1.2-2.3) 
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AUTHOR 
YEAR OF RA- 

DIAGNOSIS 

STUDY 

DESIGN 
INCIDENT 

RA 
DISEASE 

DURATION 

MEAN/MEDIAN 

FOLLOW-UP 

MEAN/ 

MEDIAN 

AGE AT STUDY ENTRY 

OUTCOMES RISK FACTORS RELATIVE RISK (95% Cl) 

Mattey et al., 2007260 1986-1997 Cohort No 6 (4-11) yr N/A 57 (45-66) CV Death DRB1-2 

alleles 

HR 2.0 (1.0-3.9) 

Panoulas et al., 
2009162 

2004-2006 Cohort No 10 (4-18) yr N/A 63 (56-70) CVD IL-6-174G/C 

Polymorphism 

OR 1.9 (1.0-3.6) 

Panoulas et al., 
2008261 

 Case-
control 

No 10 (4-18) yr N/A 63 (56-70) CVD Lymphotoxin 

252A>G 

Polymorphism 

OR 2.6 (1.1-5.9) 

Palomino- 

Morales et al., 
2010262 

1996-2006 Case-
control 

No N/A 14 ± 9 yr N/A CVD MTHFR 

A1298C 

Polymorphism 

5 yr OR 1.5 (1.0-2.1) 10 

yr OR 1.6 (1.1- 2.4) 

Gonzalez et al., 
2008263 

1955-1995 Cohort Yes N/A 16 yrs RF+57 RF- 60 CV Death RF RF+SMR 1.4 (1.0- 1.9) 

RF- SMR 1.0 (0.7- 1.4) 

Turesson et al., 
2007264 

1939-2001 Cohort No N/A N/A N/A CVD ExRA HR 3.8 (2.0-7.2) 

Lopez-Longo et al., 
2009265 

1988-2003 Cohort No 11 ± 8 yrs N/A 52 ±13 IHD ACPA+ OR 2.6 (1.2-5.7) 

Goodson et al., 
2005245 

1990-1992 Cohort Yes 5.5 (2.9-12) mo 10 (9-11) yr 55 (42-68) CV Death CRP >16B Men HR 4.0 (1.1-15.2) 

Women HR 3.0 (0.9- 9.8) 

 RF+ HR 6.4 (1.3-30.8) RF- 

2.2 (0.7-7.0) 

 
Inflammatory polyarthritis BAt baseline/study recruitment CHLA-DRB1*01I*04 compared to 0 or 1 SE allele *Symptom duration for inception cohort and disease duration for prevalent non-
inception cohorts.  
DTime-dependent covariates 
Mo, months; yr, years; HR, Hazard ratio; OR, Odds ratio; SMR, standardized mortality ratio; CVD, cardiovascular disease; IHD, ischemic heart disease; PE, Pulmonary embolism; DVT, deep venous 
thrombosis; HT, hypertension; DAS28, Disease activity score: HAQ, Health assessment questionnaire; GC - Glucocorticoids; DMARD, disease modifying antirheumatic drug; ExRA, extra articular 
disease manifestations; RF+, rheumatoid factor positivity; RF-, rheumatoid factor negativity. 
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Various genetic biomarkers have been linked with higher CVD risk in RA. For instance, among the HLA-

DRB1 genes, in particular, HLA-DRB1*04 shared epitope (SE) allele is considered the risk factor for both 

disease susceptibility and its effect on the progression of CV disease in RA population252,266,267. 

Moreover, any individual with RA carrying two copies of SE has a 2-fold high risk of CV mortality268,269. 

An association between clinical atherosclerosis in RA patients has been reported in that HLA-

DRB1*0404 was associated with endothelial dysfunction185,270 and carotid plaques271. Polymorphism 

of several genes have also been found to be associated with higher CVD risk in RA, and some of these 

gene association studies are summarized in Table 1.6. 
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Table 1.6: Genetic association studies in CVD disease in patients with RA. 

Author Gene 
CV (cardiovascular) variable 

analysed 
Results 

Gonzalez-Gay et al., 2007272 HLA-DRB1: Human 
leukocyte antigen 

-CV mortality, CV events -*0404 ↑ CV events and mortality, 2 copies of the SE (shared epitope) are related 
to higher CV mortality, *01/04 offers the highest CV risk 

Faragher et al., 2008273 HLA-DRB1: Human 
leukocyte antigen 

-CV mortality, CV events 2 copies of the SE are related to higher CV mortality, *01/04 offers the highest CV 
risk 

Mattey  et al., 2007274 HLA-DRB1: Human 
leukocyte antigen 

-CV mortality, CV events mainly IHD (ischaemic heart disease), *01/04 offers the highest CV risk 

Gonzalez-Juanatey et al., 2003275 HLA-DRB1: Human 
leukocyte antigen 

-FMD (endothelial dependent 
vasodilation) 

-*0404 ↓ FMD 

Gonzalez-Gay  et al., 2004244 HLA-DRB1: Human 
leukocyte antigen 

-FMD -*0404 ↓ FMD 

Rojas-Villarraga et al., 2008271 HLA-DRB1: Human 
leukocyte antigen 

-FMD, cIMT (intima–media 
thickness), carotid plaques 

-*0404 ↑carotid plaques 

Rodríguez-Rodríguez et al., 2011276 TNFA: Tumor necrosis 
factor-alpha 

-CV events, FMD, cIMT -rs1800629A mutant allele ↑ CV complications in patients carrying at least a 
copy of the SE 

Vallvé  et al., 2008277 TNFA: Tumor necrosis 
factor-alpha 

-Atherogenic measures -rs1799964C mutant allele ↑ pro-atherogenic lipid profile 

Panoulas et al., 2008261 LTA: Lymphotoxin alpha -CV events -rs909253GGmutant genotype ↑MI (myocardial infarction) risk 

Genre et al., 2014278 OPG: Oste-oprotegerin -CV events -Protective effect of CGA haplotype against CVA (cerebrovascular accident) in 
anti-CCP (anti-cyclic citrullinated peptide antibodies) negative patients 

Ärlestig  et al., 2012279 CD40: Ligand -ATM (atherothrombotic 
manifestations) 

-rs1535045 and rs3765459 are related to CV disease. 
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Author Gene 
CV (cardiovascular) variable 

analysed 
Results 

García-Bermúdez et al., 2014280 IRF5: Interferon regulatory 
factor 5 

-CV events -Protective effect of rs2004640GG, rs10954213GG and GTG haplotype against CV events 

López-Mejías  et al., 2015281 IL33: Interleukin 33 
 

-cIMT -Protective effect of rs3939286T mutant allele. No association of rs7025417 and rs7044343 

López-Mejías et al., 2012282 NFKB1: Factor nuclear NF-
kappa-B 

-CV events -NFKB1–94 (rs28362491) deletion/deletion ↑ CV risk 

Chen  et al., 2012283 TGFB1: Transforming growth 
factor-beta 1 

-CV events -rs1800470TC genotype and smoking combination ↑ IHD and MI 

García-Bermúdez  et al., 2013284 SMAD3: Mothers against 
decapentaplegic homolog 3 

-CV events -rs17228212Cmutantallele ↓ CVA risk and subclinical ATS (atherosclerosis) in anti-CCP 
negative patients 

Rodríguez-Rodríguez et al., 
2011285 

CCR5: C-C chemokine 
receptor type 5 

-CV events, FMD, cIMT -Carriers of CCR5Δ32 deletion showed ↑ FMD 

Charles-Schoeman et al., 2013286 PON1: Paraoxonase 1 -Carotid plaques -rs662RR mutant genotype ↓ carotid plaques 

Rodríguez-Carrio et al., 2016287 PON1: Paraoxonase 1 -CV disease -Anti-HDL (high-density lipoproteins) antibodies may be pivotal players in the link between 
PON1 and CV disease 

López-Mejías et al., 2016288 VDR: Vitamin D receptor -Carotid plaques -↑ carotid plaques frequency in patients who carried the GATG haplotype 
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Author Gene 
CV (cardiovascular) variable 

analysed 
Results 

Gonzalez-Gay et al., 2009289 NOS: Nitric oxide synthase -CV events -Interaction between NOS and HLA-DRB1 ↑ CV events risk 

Palomino-Morales et al., 2010262 MTHFR: 
Methylenetetrahydrofolat

e reductasee 

-CV events, FMD -1298C mutant allele ↑ CV events risk (after 5 and 10 years of follow-up) and ↓ 
FMD. No association of C677T 

García-Bermúdez  et al., 2012290 MSRA: Methionine 
sulfoxide reductase A 

-CV events -rs10903323A mutant allele ↑ CV events (mainly IHD) 

Mejias et al., 2019291 RARB: Retinoic acid 
receptor beta 

-cIMT values -(rs116199914) was associated with CIMT values at the genome- wide level of 
significance (minor allele [G] β coefficient 0.142, P = 1.86 × 10−8). 

López-Mejías et al., 2012292 PSRC1-CELSR2-SORT1: 
Proline/serine-rich coiled-
coil 1-cadherin EGF LAG 

seven-pass G-type 
receptor 2-sortilin 1 

-FMD -rs599839G mutant allele ↓ FMD 

López-Mejías et al., 2013293 ZC3HC1: Zinc fingerC3HC-
typecontaining1 

-cIMT -rs11556924T mutant allele ↑ cIMT values 

López-Mejías et al., 2013294 ZNF259-APOA5-A4-C3-A1: 
Zinc fingerprotein259-

apolipoproteinA-V-IV-C-III-
A-I; 

-CV events -rs964184G mutant allele ↑CV events in Spanish patients 

Ibrahim I et al., 2015295 XCL12: C-X-C motif 
chemokine ligand 12 

-CV events -rs1746048T mutant allele ↑ CV events in UK patients 

García-Bermúdez et al., 2012296 CD40: Ligand -CV events, FMD, cIMT -rs1535045T mutant allele ↓ cIMT. No association of rs1883832 and rs4810485 

Panoulas et al., 2009162 IL6: Interleukin 6 -CV disease -rs1800795C mutant allele ↑ the CV risk 
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From the sources mentioned in above table:1.6, it can be concluded that the development of CVD in 

the RA population is at least partly attributable to non-traditional CVD risk factors other than the classic 

CVD risk factors. In this regard, the existing CVD risk stratification in RA is based on strategies used for 

the general population and the use of traditional CAD risk factors. For instance, the SCORE project is 

based on a pool of datasets from 12 European cohort studies carried out in the general population297. 

 
On the other hand, the Framingham risk score (FRS) used in North America is based on a gender-

specific algorithm198, and QRISK3 is developed for UK population 298. Further examples of risk scores 

with their advantages and disadvantages are illustrated in the figures and appended in supplementary 

material. Nevertheless, sufficient CVD risk prediction for RA is still far from being completely 

established. The algorithms that are based on traditional risk factors, as mentioned in the literature 

above, underestimate the CVD risk in RA; for example, it has been reported that some patients who 

were classified as having low CVD risk by modified SCORE went on to develop a complication from 

ischemic heart disease (IHD). 

 
Therefore, the search for additional tools that may help to identify high-CVD risk RA patients, who may 

benefit from active therapy to prevent CVD events, is needed. Since CAD in RA is the result of a complex 

interaction between classic CAD risk factors, a genetic component, and inflammation, the search for 

additional markers of CVD is of significant importance. As discussed throughout the review, several 

genetic factors exert influence with different effects on the risk of CAD in RA.  

 
Consequently, an important step forward is to create a consistent set of genetic markers that would 

eventually be used to calculate PRS and serve as a guide for the CAD risk stratification of patients with 

RA. Therefore, a GRS-based estimation tool shall be used as an additional tool to predict each RA 

patient’s probability of developing CV disease based on the genetic background. 

 
A thorough assessment of the application of PRS for CVD risk suggests that this is a promising area of 

development. Research indicates that a PRS for CAD can improve stratification, and hence potentially 

support more effective prevention. Nevertheless, there are still considerable gaps in knowledge, such 

that PRS are not likely to be ready for implementation in clinical practice. There are many potential 

applications of PRS information for the prevention of cardiovascular disease, ranging from standalone 

risk prediction tools to incorporation alongside other factors as part of an integrated tool. From the 

future perspective, the highest added value from PRS is likely to arise from integrating these scores 

with currently used disease risk evaluation tools. Such tools are already a part of established clinical 

practice and used in prioritizing and planning primary prevention interventions. They are regarded as 

having clinical utility, even though empirical evidence supporting their use and the impact of 
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cardiovascular risk tools is limited. The addition of PRS could improve the predictive performance of 

these tools, which may be regarded as beneficial if the cost and effort required to obtain a PRS is 

considered acceptable. 

 
This scenario would enable a move towards predictive prevention but would also require careful 

consideration of interventions to be offered to individuals identified at elevated risk and 

demonstration of beneficial health impacts. As many primary preventive interventions rely on behavior 

change (whether addressing lifestyle factors or compliance with treatments), further research is 

required for the techniques that support achieving these goals. 

 

Study Aims 

This project aims to develop an effective screening tool by using large-scale genetic data to accurately 

estimate the risk of CAD in the RA population and the use of genetic information to understand the 

causal role of potential risk factors. Additionally, it also aims to identify novel risk biomarkers for the 

prediction of PsA in patients with PsC. The co-occurrence of these conditions is hypothesized to have 

a shared biological mechanism contributed to by the interaction of genetic and environmental factors. 

 

Objectives 

1. The Genetic Analysis of PsA and Psoriasis for the Discovery of Genetic Risk Factors and Risk 

Prediction Modeling (Chapter 3). 

 
 Gap in the literature:  

 PsA is a multifactorial disease, where susceptibility hinges on various factors including 

environmental, and lifestyle choices, and genetic predisposition. Familial studies conducted in 

the past have suggested that the heritability of PsA surpasses that of psoriasis alone. This 

finding indicates the presence of a stronger genetic component in PsA development. 

Identifying these specific genetic risk factors can be valuable for distinguishing patients at high 

risk for developing PsA by incorporating them into CPMs. 

 

 Hypothesis:  

 PsA has been recognized to have a substantial genetic component, necessitating the 

identification of specific genetic risk factors associated with its development. This knowledge 

would be valuable in identifying individuals with psoriasis who are at an increased risk of 

developing PsA, which is estimated to be approximately 30%. The primary objectives of this 

study were two-fold: firstly, to identify the particular genetic risk factors and pathways that 
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distinguish PsA from psoriasis limited only to skin involvement; and secondly, to evaluate the 

efficacy of existing prediction models in determining an individual's susceptibility for 

developing PsA. By accomplishing these aims, it is anticipated that the ability to accurately 

predict high-risk patients will be enhanced, leading to timely interventions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.14: Research stage 1: represent the method pipeline used to identify new risk biomarker and validate existing models 
for the prediction of PsA in PsC.  
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2. Evaluating the Use of Genetic Risk Scores as Part of an Integrated Risk Tool for Predicting CAD 

in Patients with RA (Chapter 4). 

 
Gap in the literature:  

Patients with chronic inflammatory joint diseases, such as RA, are at a higher risk of developing 

CAD compared to the general population. This increased prevalence of CAD contributes 

significantly to the early mortality observed in these patients. While the risk factors for CAD 

are well understood and screening tools exist for estimating this risk in the general population, 

they do not effectively assess CAD risk in individuals with RA, even after modifications. In order 

to improve care and prevent cardiovascular complications in RA patients, it is crucial to develop 

more accurate methods for assessing their specific risk of developing CAD.  

 

Hypothesis:  

It is hypothesized that the elevated risk of CAD seen in patients with RA can be accurately 

assessed by utilizing extensive genetic data to create an efficient screening tool. By harnessing 

advancements in genetic research, this study aims to fill significant knowledge gaps and 

improve our understanding of the underlying factors contributing to the heightened mortality 

and morbidity rates experienced by individuals with inflammatory joint conditions like RA. This 

investigation will focus on developing and evaluating risk prediction tool with inclusion of PRS 

for stratifying risks associated with CAD. 
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Figure 1.15:  Research stage 2: represents the method pipeline used to evaluate the inclusion of PRS in the existing prediction 
model to accurately estimate the risk of CAD in RA. 
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3. To evaluate the causal role of RA on CAD by performing Mendelian randomization and to 

estimate the overall genetic correlation between RA and CAD (Chapter 5). 

 
Gap in the literature:  

RA is linked to a heightened susceptibility to CVD, particularly CAD, among individuals who test 

positive for specific antibodies. The association between RA and CAD comprises both genetic 

and environmental factors; however, it remains uncertain whether the increased risk in 

individuals with RA stems from the condition itself or shared risk elements with CAD. To 

explore the causal link between genetic predisposition to RA and the likelihood of developing 

CAD, Mendelian randomization offers a valuable approach. 

 

Hypothesis:  

This study hypothesizes that there is a potential cause-and-effect connection between being 

seropositive for RA and elevated susceptibility to CAD. Consequently, this investigation intends 

to undertake Mendelian randomization (MR) study in order to evaluate the possible causal 

association between RA and CAD. 
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Figure 1.16: Research stage 3:  represent the method pipeline to estimate the causal association between RA and CAD
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Supplementary Material 

  

QRISK 1,2 and recently QRISK 3 (UK)  
https://qrisk.org/ 

Types of risk prediction output 
outcomes 

Estimate the 10-year risk of CVD in women and men (CHD, stroke, 
and transient ischemic attack) 
Fatal CVD 

Risk factors 

Age, ethnicity, deprivation, systolic blood pressure, body mass index, 
total cholesterol (high density, lipoprotein, cholesterol ratio), 
smoking, family history of coronary heart disease in a first degree 
relative aged less than 60 years, type 1 and 2 diabetes, treated 
hypertension, rheumatoid arthritis, atrial fibrillation (AF), chronic 
kidney disease (stage 4 or 5) 
QRISK 3 added, Chronic kidney disease (stage 3), a measure of 
systolic blood pressure variability (standard deviation of repeated 
measures), migraine, corticosteroids, systemic lupus erythematosus 
(SLE), atypical antipsychotics, severe mental illness, erectile 
dysfunction 

Guidelines 

NICE guidelines: Lipid modification: cardiovascular risk assessment 
and the modification of blood lipids for the primary and secondary 
prevention of cardiovascular disease and the Public Health England 
(PHE) NHS Health Check: best practice guidance 

Study design(s) Prospective 

Data source(s) 
QRESEARCH database -includes health records of general practioners 
in the United Kingdom 

Population 

QRISK1, N: 1.28 million, Median age: 48-49  
QRISK2, N: 1.58 million, Median age: 48-49  
QRISK3, 7.89 million, Mean age: 42.6-43.3 
Ethnic variables include: White, Indian, Pakistani, Bangladeshi, Black 
Caribbean, Black African, Chinese Other 

Follow-up period 

QRISK1: 6.5 years (median)  
QRISK2: 7.3 years (mean) 
QRISK3: 4.4 years 
(median); at least 3 million patients had more than 10 years of 
follow-up 

Format used guidelines. color charts, 
or calculators 

Online calculator extensively reviewed and externally validated used 
in quality and outcomes framework the national institute for health 
and care excellence guide- lines department of health vascular 
guidance the NHS incorporations including all general practioners 
systems 

Advantages 
Derived and validated in large studies, includes ethnicity, 
socioeconomic, and chronic diseases as risk factors. Provides 
patients with a time specific and lifetime risk prediction. 

Dis- advantages 
Was shown to underestimate certain European groups. Data derived 
exclusively from the United Kingdom. 
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Framingham risk score  
https://www.framinghamheartstudy.org/fhs-about/ 

Types of risk prediction output 
outcomes 

Estimates risk of developing CVD or a component of CVD (such as 
coronary heart disease, stroke, peripheral vascular disease, or heart 
failure) over a fixed time, for example the next 10 years or lifetime 
risk. 

Risk factors 
Sex, age, systolic blood pressure, total cholesterol, high-density 
lipoprotein cholesterol, smoking, diabetes status. 

Guidelines 

5-year Framingham risk score in the National Vascular Disease 
Prevention Alliance guidelines 
(Australia) Guidelines for the management of absolute cardiovascular 
disease risk 
2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular 
Disease: A Report of the American College of Cardiology/American 
Heart Association Task Force on Clinical Practice Guidelines 

Study design(s) Prospective 

Data source(s) Framingham Heart Study and Framingham Offspring Study 

Population 
N: 8491, Males: 3969, Females: 4522, Mean Age: 49 years 
Ethnicity: majority were of white race, but was validated to be 
representative across different origins 

Follow-up period 14 years 

Format used guidelines. color charts, 
or calculators 

Utilized in several guidelines, Joint British Society (JBS), New Zealand 
guidelines, AHA (American Heart Association), NCEP (National 
Cholesterol Educational Program), Available as an online / portable 
calculator. https://www.framinghamheartstudy.org/fhs-risk-
functions/hard-coronaryheart-disease-10-year-risk/ 
https://www.mdcalc.com/framingham-coronary-heart-disease-risk-
score 

Advantages 
Validated and updated in different countries. Provides fatal and non-
fatal outcomes. 

Dis- advantages 
Does not consider ethnicity or socioeconomic variables. Derived from 
a smaller sample size Patient were mainly of white race and of 
middle-income society. 
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Assessing Cardiovascular Risk using Scottish Intercollegiate Guidelines Network (ASSIGN)  
http://www.assign-score.com/ 

Types of risk prediction output 
outcomes 

10-year risk estimation. 
Fatal and non-fatal cardiovascular events. 

Risk factors 
Age, sex, total cholesterol, systolic blood pressure, high density 
lipoprotein, diabetes, smoking, family history of myocardial 
infarction, area based deprivation index. 

Guidelines 
Scottish Intercollegiate Guidelines Network: Risk esti- mation and the 
prevention of cardiovascular disease. A national clinical guideline. 

Study design(s) Prospective 

Data source(s) Scottish eart health extended cohort 

Population 
N: 13297, Mean age: 48.8 
Randomly selected from the general population. Does not include 
ethnicity as a risk factor/variable. 

Follow-up period 10 years (mean) 

Format used guidelines. color charts, 
or calculators 

Online calculator used by the Scottish Intercollegiate Guidelines 
Network (SIGN) 
http://www.assign-score.com/estimate-the-risk/ 

Advantages 
Includes socioeconomic and rheumatoid arthritis as predictor 
variables. 

Dis- advantages 
Not enough studies on validation using the ASSIGN- SCORE. 
Disregards BMI and ethnicity as a risk factor. Developed from a 
Scottish sample. 
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Chapter 2 

2. Methods 

 
This chapter of the thesis deals with the approaches and techniques applied to this research, including 

coverage of the general rules, theory and methodology and the purpose of each calculated algorithm. 

Details of their outcomes to specific research questions are detailed in the subsequent chapters. 

 
Description of datasets 

This thesis focuses on the genetic analysis of inflammatory arthritic diseases. For PsA, the aim was to 

identify genetic risk factors and validate a risk prediction pipeline. In Chapter 3, two GWAS studies 

were used for PsA and cutaneous-only psoriasis (PsC) to achieve this objective. To investigate if 

combining PRSs with clinical risk factors can enhance CAD prediction in patients with RA, Chapter 4 

utilized data from the Norfolk arthritis register (NOAR). Moreover, Chapter 6 examined the causal 

associations between CAD and RA progression by exploring recent GWAS studies on both these 

conditions. Each dataset is described in subsequent sections to provide comprehensive insights into 

our study's methodology. 

 
Summary Statistics and validation datasets for Psoriatic Arthritis 

Chapter 3 relied on summary statistics extracted from GWAS that analysed data from 3,609 individuals 

diagnosed with PsA and another 2,085 cases of PsC. The group of patients affected by PsA came mainly 

from rheumatology centres located in the UK, Ireland, and Australia. To qualify for inclusion, patients 

had to present symptoms that were consistent with both psoriasis and inflammatory arthritis and have 

a clinician diagnosis of PsA regardless of their RF status. In general terms, all these patients experienced 

peripheral arthritis problems at various times throughout their medical history. Additionally, the 

majority also met the CASPAR (Classification Criteria for Psoriatic Arthritis) classification criteria 1. 

 
Patient data used for PsC analysis originated exclusively through enrolment into the Biomarkers 

Systemic Treatment Outcomes research project (BSTOP), which was established to investigate 

treatment-related outcomes in people with psoriasis. Additional selection criteria were applied to 

remove those subjects with any prior diagnoses or prehistory involving signs resembling those 

classified under the diagnosis of PsA. 

 

The validation dataset comprised 425 cases of PsA and 760 cases of PsC, which were extracted from 

UK Biobank participants. The identification process involved the use of ICD10 codes L40.5 and L40 for 

PsA and PsC, respectively, to ensure high phenotype specificity. 
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Norfolk Arthritis Register (NOAR) 

Chapter 4 of the thesis utilized the extensive data gathered by the NOAR, which is one of the largest 

and most comprehensive observational studies focused on early inflammatory arthritis. Initiated in 

1989, NOAR enlists subjects from Norfolk who exhibit inflammation and swelling of the joints lasting 

4 or more weeks. The primary objective of this research is to investigate natural progression and 

identify genetic and non-genetic factors that may influence treatment response, long-term effects, and 

disease advancement. Previous studies 2–4 conducted on cohorts enlisted under NOAR have suggested 

a possible link between higher CAD risk among individuals with inflammatory arthritis over time; 

hence, current efforts are directed towards identifying high-risk groups for CAD development within 

those diagnosed with arthritis. Specifically, examined demographic details such as age, gender, 

smoking habits, BMI, and socio-economic status (SES) of participants who were enrolled between 1990 

and 2008. Further details about the all cause and CVD specific deaths are presented in Table2.1. 

 
Table 2.1: All-cause and cardiovascular-specific deaths after 7 years of follow-up2- 

No. of observed deaths 

 EIA 2010 RA criteria 
positive 

2010 RA criteria  
negative 

RF/ACPA positive EIA 

All cause      

Cohort 1 141 91 28 55 1.21 (1.02–1.41) 

Cohort 2 123 75 36 44 1.17 (0.98–1.40) 

Cohort 3 82 44 25 36 1.06 (0.85–1.32) 

Total 346 210 89 135 1.16 (1.04–1.29) 

Cardiovascular           

Cohort 1 58 36 9 29 1.16 (0.90–1.50) 

Cohort 2 45 26 15 12 1.07 (0.80–1.43) 

Cohort 3 29 15 9 10 1.02 (0.71–1.47) 

Total 132 77 33 51 1.09 (0.92–1.30) 

95% CI = 95% confidence interval; EIA = early inflammatory arthritis; RA = rheumatoid arthritis; RF = 

rheumatoid factor; ACPA = anti– citrullinated protein antibody. 

 
Summary Statistics for RA and CAD 

Chapter 5 utilized data from a recent GWAS of RA, which included an extensive sample size of 276,020 

individuals across five ancestral groups. These ancestral groups consisted of individuals with European 

(EUR), East Asian (EAS), African (AFR), South Asian (SAS), and Arab (ARB) ancestries. To investigate this 

further, the GWAS initially included all RA cases and then focused on only the seropositive RA 

subgroup. The multi-ancestry meta-analysis identified novel loci with significant association with RA 

susceptibility(<5x10-8), including TNIP2, TNFRSF11A, and WISP1; the identification of these novel gene 

loci suggested essential roles for these immune system-related-genes or joint tissue-specific genes in 

the etiology of RA and resulted in a total of 124 loci being confirmed to be associated with RA 

susceptibility. This study included 35,871 individuals with RA and 240,149 control individuals from 

various ancestries. There were 22,350 instances of RA in the EUR groups, 11,025 in eight EAS groups, 

999 in two AFR groups, 986 in one SAS group, and 511 in one ARB group. Among the 31,963 (89%) 
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cases, RA-specific serum antibodies were measured, with 27,448 (86%) being seropositive and 4,515 

(14%) being seronegative. 

 
In Chapter 5, to further investigate the possible link between RA and CAD the CARDIoGRAMC4D GWAS 

meta-analysis of 22 GWAS studies of European descent, which involved 22,233 cases and 64,762 

controls imputed to HapMap 2, was used. The study analysed 14 GWAS of CAD, followed by genotyping 

of top association signals in 56,682 additional individuals. The analysis identified 13 newly associated 

loci with CAD at P < 5 × 10−8 and confirmed the association of 10 of 12 previously reported CAD loci. 

The risk allele frequencies of the 13 new loci ranged from 0.13 to 0.91 and were associated with a 6% 

to 17% increase in the risk of CAD per allele. Additionally, this study identified five new CAD risk loci 

that showed pleiotropic effects and were strongly associated with various other human diseases or 

traits. 

 
Overview 

To model a quantitative trait for the phenotype of the individual, one would want to reproduce the 

phenotype from variables that can be measured from a person including the individual SNPs values 

(individual genotypes).  In order to do that, certain parameters are required to be determined in the 

model. Those parameters are called effect sizes. However, most of the effect sizes would be zero for a 

particular phenotype where only a small proportion will affect the disease trait. The major challenge 

is to determine which SNPs have actual effects and what is the appropriate effect size. 

 
In this regard, GWAS has discovered the association of a large number of genetic variants (specifically 

SNPs) across complex disease traits5. However, most of these variants contribute small effects leading 

to limited predictive power. PRS is a technique that combines the information from genotypes across 

SNPs and assigns the GRS to individuals to predict the development of a certain disease. There are 

several approaches to calculate PRS, which will be discussed in detail. 
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Quantitative Phenotype Model 

In its simplest form, suppose y is an N×1 phenotype vector and X is an N×M genotype matrix, where: 

N = Number of Individuals 

G= Individual genotype (e.g., list of 1M SNPs) 

M= Number of genetic variants 

 
Let us assume that individual phenotype y and individual genetic variant G have been mean-centered 

and standardized to have variance 1. Then the equation, 

 
2) 𝒀 = ∑ 𝒎𝒊=𝟏  𝑮𝒊𝜷𝒊 + 𝒆 

where Gi represents the ith genetic variant, βi is its actual effect, and e is the contribution made by noise 

in the environment. The least-square estimate of an individual variant is given by, 

3) 𝜷𝒊 =  𝑮𝒊′𝒀/𝑵 

The summary statistics from GWAS includes the direction of effect sizes and p-values, and from that, 

it is possible to calculate the standardized effect estimates. In the first instance, all the ambiguous 

markers are removed and then z-scores are obtained from p-values and then multiplied by the sign of 

effects, given by the equation, 

4) 𝜷𝒊 = 𝑺𝒊 (𝒁𝒊√𝑵) 

The calculation of PRS 

PRS can be defined as the estimation of liability of an individual's risk to a particular trait. It can be 

computed by the sum of GWAS genotypes, scaled and shrunk, weighted by their corresponding effect 

sizes which are obtained from GWAS summary statistics. 

 
There are two main requirements to input the datasets for PRS calculation: 

1) Summary statistics for data of genotype-phenotype associations at genetic variants. 

2) Validation data which contains genotypic and phenotypic information in individuals for a 

certain trait. 

The challenge of computing a PRS is finding the optimal parameters for inclusion of most associated 

SNPs. 

There are several approaches to calculate PRS for individuals. The key factors to obtain PRS are: 
 

1) The tailoring of PRS in terms of the target population. 

2) The application of methods like shrinkage to adjust for the GWAS effect sizes. 

3) The issue of dealing with the linkage disequilibrium (LD). 
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In the coming sections, all these techniques and their corresponding limitations will be discussed, 

regardless of the specific software used. Detailed method pipeline for calculating PRS is given in figure 

2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: This figure represents the steps required to calculate PRS (made by author information obtained from Choi et al.,6) 

 
Clumping Threshold 

The most common technique to derive PRS is clumping+thresholding (C+T).  It is a univariate approach 

that uses GWAS summary statistics. Generally, in GWAS, the regression coefficients are obtained from 

the corresponding p-value for each SNP. The SNPs are clumped to keep only weakly correlated loci with 

one another, an approach referred to as SCLUMPING. Subsequently, the SNPs with larger p-values (user-

defined) are removed. Finally, the PRS is defined as the sum of allele counts of the rest of the remaining 

SNPs weighted by their coefficients and given by the equation: 

 
1) 𝑷𝑹𝑺𝒋 = ∑ 𝑺𝒄𝒍𝒖𝒎𝒑𝒊𝒏𝒈 𝜷𝒋𝑮𝒊,𝒋 

2) 𝑷𝒋 < 𝑷𝑻      

where βj are effect sizes estimated from GWAS. Here, clumping scores can be measured and reported 

at the different values of r2 within different regions.  
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This conventional approach to computing PRS has some limitations. Firstly, the use of p-values might 

lead to less predictive power or include under/over representative variants. In essence, it is always 

hard to find the perfect set of thresholds, which can result in obtaining under-predictive PRS. Secondly, 

the assumption of linearity to calculate the weights through univariate analysis ignores joint effects 

between variants. 

 

From Marginal effects to Joint effects 

Here, this section will explain how joint effects are calculated from summary statistics and correlation 

matrix R. Let S be the diagonal matrix with a standard deviation of m variants and y be the phenotype 

vector and G be the genotype matrix of n individuals and m variants. 

 

In a joint model with all variants and an intercept α, then the joint effect can be calculated by; 

3) [ �̂�
�̂�𝒋𝒐𝒊𝒏𝒕

] = ([𝟏 𝑮]𝑻[𝟏 𝑮])−𝟏[𝟏 𝑮]𝑻 𝒚 

Applying the Woodbury formula, results in, 

4) �̂�𝒋𝒐𝒊𝒏𝒕 = (𝑮𝑻𝑪𝒏𝑮)−𝟏𝑮𝑻𝑪𝒏𝒚 

The marginal effect after assuming no covariate, by fitting each variant separately from GWAS yields, 

5) �̂�𝒎𝒂𝒓𝒈 =
𝟏

𝒏−𝟏
𝑺−𝟐𝑮𝑻𝑪𝒏𝒚 

Furthermore, the correlation matrix G is, 

6) 𝑹 =
𝟏

𝒏−𝟏
𝑺−𝟏𝑮𝑻𝑪𝒏𝑮𝑺−𝟏 

So, 

7) �̂�𝒋𝒐𝒊𝒏𝒕 = 𝑺−𝟏𝑹−𝟏𝑺�̂�𝒎𝒂𝒓𝒈 

For the marginal effect of variants, then after centering the phenotypes and genotypes vectors, the 

following equation results:  

8) (𝒔𝒆(�̂�𝒋))𝟐 =
(�̌�−�̂�𝒋�̌�𝒋)𝑻(�̌�−�̂�𝒋�̌�𝒋)

(𝒏−𝑲−𝟏)�̌�𝒋ᵀ�̌�𝒋
≈

�̌�𝑻�̆�

𝒏�̌�𝒋ᵀ�̌�𝒋
≈

𝒗𝒂𝒓(𝒚)

𝒏 𝒗𝒂𝒓(𝒈𝒋)
 

 
Therefore, a vector of 22*4*7*4*50 = 123200 is computed for PRS. In this study, all PRSs will be stacked 

and these scores will be applied as explanatory variables with the phenotype as the outcome in the 

regression setting. For each C+T score, a weight is applied by using an efficient penalized regression. 
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As a result, a linear combination of variants of C+T scores, and a single vector of effect size is obtained. 

This new single vector of effect sizes is then validated in an independent test dataset. This method is 

usually referred to as “SCT (stacked clumping and thresholding)”. 

 
LDPred Bayesian approach in the presence of linkage disequilibrium 

Given some statistical data under an assumed model, the optimal linear prediction is the posterior 

mean prediction. It minimizes the prediction error variance, so the quantitative posterior mean 

phenotypic model given the LD and GWAS summary statistics can be given by, 

 

9) 𝑬(𝒀|�̃�, �̂�) = ∑ 𝑿′𝒊𝑬(𝜷𝒊|�̃�, �̂�)𝑴
𝒊=𝟏  

where, 
 
β͠    =   Vector of marginally estimated least-squares calculated from GWAS summary statistics. 

D^ = Genome-wide LD matrix in the training data. 

 
Henceforth, the quantity of interest is to obtain the posterior mean effect marker given the available 

information for LD from the GWAS sample and summary statistics. In practice, it is recommended to 

use validation data as an LD reference to obtain unbiased estimates for the PRS and improve accuracy. 

 

The variance of the trait can be divided into two parts, heritability, and the noise, given by the 

equation, 

 

10) 𝑽𝒂𝒓(𝒀) = 𝒉𝒈
𝟐 𝞗 + (𝟏 − 𝒉𝒈

𝟐 )𝑰, 

Here, 

H2
g = Heritability explained by the genotyped variant. 

Θ   = the SNP-based genetic relationship matrix. 

 

Hence, the beta coefficients are sampled independently with mean 0 and variance H2
g/M, I can estimate 

the desired covariance structure of the trait. Where all the markers are causal and unlinked, the 

samples are independent and effects are drawn from a Gaussian distribution, then this is an 

infinitesimal model described by; 

11) 𝑬(𝜷𝒊|�̃�) = 𝑬(𝜷𝒊|�̃�𝒊) = (
𝒉𝒈

𝟐

𝒉𝒈
𝟐 +

𝑴

𝑵

) �̃�𝒊 

with unlinked markers, i.e., 
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12) (
𝒉𝒈

𝟐

𝒉𝒈
𝟐 +

𝑴

𝑵

) 𝒉𝒈
𝟐  

 
The infinitesimal shrinkage factor times the heritability is the expected squared correlation between 

the phenotype and the unlinked makers independent of the underlying genetic architecture. However, 

a non-infinitesimal model only considers a fraction of markers as causal. Under this model, the 

posterior mean can be derived as, 

13) 𝑬(𝜷𝒊|�̃�𝒊) = (
𝒉𝒈

𝟐

𝒉𝒈
𝟐 +

𝑴𝒑

𝑵

) �̅�𝒊�̃�𝒊 

 
This is referred to as Bpred Bayesian shrink without LD.  

 
When loci are linked, then under gaussian infinitesimal prior the posterior mean effect can be 

computed analytically, which is a special case of LDpred and can be called LDpred-inf (infinitesimal) 

method. In general, the LD pattern is unknown in the training data and LD is estimated from a reference 

panel.  

 
Under a Gaussian mixture prior model (non-infinitesimal), it is difficult to derive an analytical 

expression for the posterior mean effect, and therefore LDpred calculates it by approximating Markov 

chain Monte Carlo (MCMC) Gibbs sampler. Similarly, the Gauss-Seidel method uses the same 

approach, the only difference being instead of using a posterior mean to update the effect size it uses 

posterior distribution. As a result, it leads to better model convergence.  

 
Two parameters are considered important when LDpred is applied to real-world data.  The first 

parameter is to adjust the number of SNPs on each side of a given SNP, i.e., LD radius. However, there 

is a trade-off on considering the range for LD radius; a larger LD radius results in a lower effect estimate 

and poor convergence. Conversely, a smaller radius means ignoring the LD between linked loci. In 

practice, Vilhjahmsson et al.,7 found and recommended using the LD radius of M/3000, where M 

represents the number of SNPs, with 2MB LD window on average in the genome.  

The second parameter is to select a priori the fraction of P of non-zero effects. This parameter is similar 

to the p-value thresholding method. Vilhjahmsson et al.,7 suggested using a range of different p-values, 

which will give 11 sets of SNP weights, applied to obtain PRS. Then the independent validation data is 

used to select the optimal parameters. 
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Estimating the posterior mean effect phenotype 

Let’s assume that the phenotype model is linear and has an additive genetic architecture, then the 

posterior mean effect can be estimated by summing the posterior mean effect of each SNP and their 

contribution to the risk score.   

 
Posterior Mean Effects considering an infinitesimal model with unlinked markers 

Consider the infinitesimal model where all variants in the genetic architecture are causal. The model 

assumes that genotypes are unlinked and after normalizing by allele frequency the effect sizes have a 

Gaussian distribution. 

 

With the variance, Var (βi) ~1, then the posterior distribution for βi is, 

14) 𝜷𝒊|�̃�𝒊~𝑵 ((
𝟏

𝟏+
𝑴

𝒉𝟐𝑵

) �̃�𝒊,
𝟏

𝑵
(

𝟏

𝟏+
𝑴

𝒉𝟐𝑵

)) 

Then the uniform Bayesian shrink by a factor of      

15) 
𝟏

𝟏+
𝑴

𝒉𝟐𝑵

 

and is appropriate under Fisher’s infinitesimal model. 

 
Posterior Mean Effects considering a non-Infinitesimal model with unlinked markers 

Mostly traits do not follow Fisher’s infinitesimal model. Instead, a non-infinitesimal model is assumed, 

where only a few variants are causal and affect the trait. By using the mixture distribution and 

parameters p (fraction of causal markers), one can model non-infinitesimal genetic architecture.  Then 

the equation for posterior mean can be written as: 

16) 𝑬(𝜷𝒊|�̃�𝒊) = (
𝟏

𝟏+
𝑴𝒑

𝒉𝟐𝑵

) �̅�𝒊�̃�𝒊 

Posterior Mean Effects considering an Infinitesimal Model with linked markers 

Yang et al.,8 obtained the joint least-squares effect estimates as 

 

17) �̂�𝒋𝒐𝒊𝒏𝒕 = 𝑫−𝟏�̃�𝒎𝒂𝒓𝒈, 

Where, 
 
D = XX’/N is the LD correlation matrix. 

β͠͠ = The vector of marginal least-squares for linked makers. 

 
Then multivariate Gaussian with mean and variance is given by: 
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18) 𝑬(𝜷|�̃�) = (
𝟏

𝟏−𝒉𝒊
𝟐 𝑫 +

𝑴

𝑵𝒉𝟐 𝑰)
−𝟏

�̃�, 

19) 𝑽𝒂𝒓(𝜷|�̃�) =
𝟏

𝑵
(

𝟏

𝟏−𝒉𝒊
𝟐 𝑫 +

𝑴

𝑵𝒉𝟐 𝑰)
−𝟏

 

 
When the training sample size grows the posterior mean approaches the maximum-likelihood 

estimator.  

Posterior Mean Effects considering a non-Infinitesimal Model with linked markers 

Vilhjahmsson et al., 7 observed convergence issues with the Gauss-Seidel method due to its underlying 

model assumption that the LD matrix used is different from the actual LD matrix in the training data. 

Therefore, another approach, called an approximate MCMC Gibbs sampler, is used by LDpred, which 

instead of inferring posterior mean, uses posterior distribution. This is given by the equation, 

 

20) 𝜷𝒊|�̃�𝒊, 𝜷−𝒊 ≠ 𝟎~𝑵 ((
𝟏

𝟏+
𝑴

𝒉𝟐𝑵

) �̃�𝒊,
𝟏

𝑵
(

𝟏

𝟏+
𝑴

𝒉𝟐𝑵

)) 

Other considerations 

The main objective of LDpred is to obtain a posterior mean phenotype (the best-unbiased prediction) 

given all the assumptions hold true. Specifically, with the large sample size, LDpred is known to be 

sensitive to inaccurate LD estimates. In order to resolve this issue and improve the robustness of 

LDpred, the probability of effect size can be set to 0 when the Markov chain is at least 5%.   

 
In case of convergence issues, then higher values for 0-jump probabilities can be considered. In 

practice, it is possible that training data might not contain LD information. Therefore, LD information 

can be estimated from the reference panel given it is representative of the population and contains at 

least 1,000 individuals.   

 
Limitations of LDpred 

LDpred offers a considerable improvement when it comes to calculating PRS by using summary 

statistics, but it has certain limitations7. First, the prediction performance suffers if LD information is 

not a good match from the population from which summary statistics are obtained. Second, the point-

normal mixture prior to distribution can lead to an inaccurate model. Third, heterogeneity across 

cohorts can compromise prediction performance. Fourth, the LD reference panel is not adequate for 

rare variants. Finally, LDpred suffers from instability issues9  and results in discrepancies in prediction 

accuracies. In particular, it does not incorporate a window size that is large enough when it comes to 

long-range LD regions such as the HLA region of chromosome 6. This problem has led to the removal 

of such important regions during the analysis10,11.  It is evident from the literature that these regions 
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are particularly important, as they contain a lot of markers associated with many diseases and traits, 

which are essential for predicting risk12,13. 

 
LD Pred2 models 

LDpred2 is an extended version of LDpred that addresses the problems or gaps in LDpred1 and has 

shown considerable improvement in its computational efficiency9. LDpred2 has two new options: first, 

it provides “sparse” options, where it fits some effects to zero and creates a sparse vector of effects; 

second, it provides an “auto” option, where it automatically estimates the SNP heritability h2 and 

sparsity p and does not need validation data for parameter tuning. Florian et al.,9 have shown that in 

the presence of causal variants in regions of long-range LD, or when the fraction of causal variants is 

small, then LDpred2 has better predictive performance in comparison to LDpred1.  

 
LDpred2 provides four methods of analysis. 
 
1) LDpred2-inf, which provides analytical solutions under the infinitesimal model of LDpred1. 

2) LDpred2-grid (main LDpred model), where hyperparameters p and h2 are tuned on the validation 

dataset. 

3) LDpred2-sparse, offering sparse effects that can be exactly 0. 

4) LDpred2-auto, which automatically estimates p and h2, and no tuning of parameters is required. 

 
For the first extension, to estimate p in the LDpred2, it counts the number of causal variants given by 

the equation, 

21) 𝑴𝒄 = ∑ (𝜷𝒋 ≠ 𝟎)𝒋  

 
Let us assume that, 

22) 𝑴𝑪~𝑩𝒊𝒏𝒐𝒎(𝑴, 𝒑) 
 
So, if I place p a priori, 

23) 𝒑~𝑩𝒆𝒕𝒂(𝟏, 𝟏) ≡ 𝒖(𝟎, 𝟏) 
 
 
Then a p can be sampled from the posterior, 
 

24) 𝒑~𝑩𝒆𝒕𝒂(𝟏 + 𝑴𝒄, 𝟏 + 𝑴 − 𝑴𝒄) 
 
In the algorithm, the parameters p and h2 are updated after the inner loop, and new values are added 

in the outer loop.  

 
The objective of the second extension, LDpred2-sparse, gives the sparse effect size estimates, i.e., 

some resulting in the exact value of 0. 

 



119 
 

Local correlations 

In LDpred, there is a requirement to set a window size parameter; given a variant, the correlation 

between remaining variants that are outside of this window is considered to be 0. In practice, 

Vilhjahmsson et al. 7 advised using the window size value of the total number of variants divided by 

3000, which has a radius of 2MB. However, Florian et al, 9concluded that this value of window size is 

not big enough to accommodate the HLA region of chromosome 6, which is 8MB long. Instead, 

LDpred2 uses genetic distances, which has the advantage of capturing the same LD using a smaller 

window size. Therefore, LDpred2 uses a function to easily insert physical position (in bp (base pair)) to 

genetic positions (in cM(centimorgans)). 

 
New Strategy 

 
It is advised by Florian et al.,9 to run the LDpred2 analysis chromosome by chromosome. Whilst it can 

be run genome-wide, that approach has two main limitations. First, it is not computationally and 

memory efficient.  It takes around 32GB memory to store the 1M × 1M sparse correlation matrix of 

around one million (1M) variants and squaring it to 2M variants would require 128GB memory. Second, 

the genetic architecture of traits may vary by chromosomes. For instance, Shi et al.,14 demonstrated 

that chromosome 6 contributes towards a larger fraction of heritability of autoimmune diseases in 

comparison to other chromosomes. Therefore, the genome-wide analysis could result in poor 

prediction performance and model misspecification.  

 
Penalized regression 

PRS methods encompass several techniques for shrinkage, which aim to provide a more 

comprehensive understanding of the genetic liability associated with complex traits or diseases. These 

methods often employ statistical shrinkage or regularization approaches such as LASSO (least absolute 

shrinkage and selection operator), ridge regression, and Bayesian methods that incorporate prior 

distribution specifications. 

Shrinkage techniques in PRS enable researchers to estimate effect sizes more accurately by adjusting 

for potential overestimation or underestimation biases15. Various approaches and parameter settings 

within these shrinkage methods yield different degrees of effect estimates. Some methodologies 

effectively eliminate small effect sizes by forcing their estimates close to zero or entirely removing 

them from the overall scoring process. Conversely, other approaches focus on shrinking smaller 

effects while allowing larger effects to contribute more prominently. Therefore, this section focuses 

on regularisation techniques to calculate effect sizes for PRS: 
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For, PRS to minimize the regular loss function the beta coefficients are given by the equation,  

25) 
𝑳(𝝀,𝜶)=− ∑ (𝒚𝒊 𝐥𝐨𝐠(𝒛𝒊)+(𝟏−𝒚𝒊) 𝐥𝐨𝐠(𝟏−𝒛𝒊))𝒏

𝒊=𝟏

𝑳𝒐𝒔𝒔 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏
 

26) 
+𝝀((𝟏−𝜶)

𝟏

𝟐
ǁ𝜷ǁ

𝟐

𝟐
+𝜶ǁ𝜷ǁ𝟏

𝑷𝒆𝒏𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏
 

 
Where, 

27) 𝒛𝒊 = 𝟏/(𝟏 + 𝒆𝒙𝒑 (−(𝜷𝒐 + 𝒙𝒊
𝑻𝜷))) 

 

X = the genotypes and covariates (e.g., principal components) 

Y = the disease status or trait to predict 

α = the regularization hyperparameters 

 
One of the main advantages of using different regularization is to prevent overfitting of the model. The 

L2-regularization15 is ideally used when variants are drawn from Gaussian distribution and shrink 

coefficients (α = 0). The L1-regularization15 can be used for variable selection as it forces some of the 

coefficients to zero, thereby leading to sparse models (α = 1).  The compromise between the L1 and L2 

penalty is called elastic-net and can be used when the number of SNPs p are higher than individuals n, 

or any situation with many correlated variables (0 < α < 1). 

 
Then, grid search over α = {1, 0.5, 0.05, 0.001} is used, to build many regularization paths. Then the 

method called cross model selection and averaging16 is used, because the resulting vector of estimated 

effect sizes is sparse. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Mean squared error (MSE) of the ten-fold cross-validated elastic-net regularized model against the 
magnitude of regularization parameter (x-axis), and the efficacy of the model selection, i.e., the number of non-
trivial coefficients (top-axis. The dashed vertical lines represent an optimal range for the penalty term and the 
number of features (Created by author by coding in R from the given dataset). 
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Prediction accuracy metrics 

In this report, we used one measure for prediction accuracy. The metric used was the area under the 

receiving operating curve (ROC) Curve (AUC)17. AUC is the degree of separability, or in other words, it 

quantifies the model's ability to discriminate between classes. In the current study, it can be defined 

as the probability that a polygenic score is greater for cases than controls. It indicates how good the 

polygenic score is in discriminating cases against controls.  The AUC is computed through its statistical 

definition as probability and considers equality between scores as a 50% probability of one is greater 

than the other: 

28) 𝑷(𝒔𝒄𝒐𝒓𝒆(𝒙_{𝒄𝒂𝒔𝒆}) > 𝒔𝒄𝒐𝒓𝒆(𝒙_{𝒄𝒐𝒏𝒕𝒓𝒐𝒍})) 

 
Additionally, a number of bootstrap samples are used to evaluate the 95% Confidence interval (its 2.5% 

and 97.5% quantiles).  

 
Mendelian Randomization 

Mendelian randomization (MR) is a powerful method that serves two essential purposes. Firstly, it 

allows us to evaluate whether a causal relationship exists between two traits of interest. By utilizing 

genetic variants, MR examines the association based on the principles outlined in Mendel's laws of 

inheritance18–20. Secondly, if there is indeed evidence indicating causality between these variables, MR 

enables estimation of the magnitude or strength of this causal effect. This gives researchers valuable 

insights into understanding and quantifying the impact exerted by modifiable risk factors on specific 

outcomes or traits. Through its unique approach rooted in genetics and inheritance patterns, MR offers 

an avenue for assessing causation while minimizing confounding factors and addressing issues such as 

reverse causality often observed in traditional observational studies. 

 
MR, as a statistical technique, incorporates the two fundamental principles. First, Mendel's Law of 

segregation which implies that the alleles inherited from parents are randomly distributed and do not 

depend on environmental confounders21–23. In simpler terms, which allele is passed down from either 

the father or mother occurs through an unbiased process unrelated to any external factors. Second, 

Mendel's second Law of inheritance, known as the law of independent assortment. According to this 

principle, each locus segregates independently from other regions in the genome. Consequently, 

alleles at a specific locus exhibit separate patterns compared to genetically influenced traits found 

elsewhere in Deoxyribonucleic acid (DNA). MR ensures that genetic variants used for causal inference 

analysis possess certain characteristics such as robustness against confounding variables commonly 

encountered in traditional observational epidemiological investigations23. 
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To gain a better understanding of MR, it is constructive to draw parallels with randomized control trials 

(RCTs). RCTs involve the random assignment of individuals into distinct treatment and placebo 

groups18. This allocation process ensures that both groups are comparable in terms of known, as well 

as unknown, confounding factors. Consequently, when we observe these two groups at a later time 

point and notice any discrepancies between them, we can confidently attribute those differences to 

the specific intervention being studied. In essence, this allows us to establish a causal relationship by 

asserting that the employed treatment directly influences the observed outcome. Henceforth, 

considering MR as nature's own version of an RCT offers valuable insights. 

 
MR applies the principles derived from Mendel’s laws of segregation and independent assortment to 

effectively allocate individuals into exposed and control groups. The process involves assigning 

functional alleles in the exposed group, while null alleles are assigned to the control group24. 

Importantly, this random segregation and independent assortment guarantee that both groups are 

comparable in terms of known and unknown confounding factors on average. Consequently, when 

comparing these two groups with regard to a particular outcome of interest, any observed difference 

provides compelling evidence suggesting a causal association between the exposure under 

investigation and the outcome. Details differentiating both RCT and MR are given in the figure: 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: This figure represents the method pipeline to differentiate between MR and RCT 

 
MR can also be conceptually understood through a directed acyclic graph, which provides a visual 

representation of the relationships between variables. In this framework, the key question is whether 
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a specific SNP associated with an exposure of interest is also linked to an outcome indirectly through 

its relationship with that exposure. The directed acyclic graph (DAG) serves as a helpful tool for 

illustrating and describing the three fundamental assumptions underlying MR19,25,26 (summarized in 

figure:2.4) 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Directed acyclic graph (DAG) for the relationship between RA and CAD. 

 
The first assumption states that there exists an association between the SNP and the exposure under 

investigation - typically supported by evidence from genome-wide association studies. A replicated 

GWAS implies that any chosen SNP would exhibit a robust correlation with the targeted exposure. The 

second core assumption posits that the SNP in question should not have any associations with 

confounding factors or other variables involved in determining both exposure and outcome. While 

this assumption cannot be proven definitively, it is supported by Mendel's laws of segregation and 

independent assortment. To strengthen our confidence in this assumption, we can consider a group 

of known confounding variables for the exposure-outcome association. By testing for an association 

between these confounders and the selected SNPs, we can assess whether there exists any significant 

relationship. If no significant associations are observed, it would increase our confidence that 

assumption two holds true26,27. However, it is important to note that due to practical limitations in 

measurement, we cannot establish with absolute certainty that every possible confounding variable 

has been accounted for. Therefore, while strongly implied by Mendel's laws, assumption number two 

remains subject to some inherent uncertainty. In MR studies, addressing potential confounding due 

to population stratification is crucial. It is recommended to conduct the study on a sample of 

individuals who share a similar ancestral background, or, at the very least, appropriate adjustments 

should be made for population stratification. One effective strategy is including ancestrally 
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informative principal components in the analysis as covariates. By doing so, any variation that can be 

attributed to differences in genetic ancestry across individuals will be accounted for and minimized. 

This ensures that the instrumental variables used in the study are not influenced by underlying 

population structure and strengthens the validity of causal inference. 

 
The third core assumption is that the SNP's association with the outcome occurs solely through its 

connection to the exposure. This assumption plays a vital role in MR and often poses challenges for 

those who question or critique this method27,28. Specifically, it asserts that there are no pleiotropic 

relationships between the SNP and the outcome; in other words, all causal effects operate exclusively 

through modifications of exposure levels. It is important to note that substantiating this assumption 

beyond doubt is not feasible. However, we can employ various sensitivity analyses to identify potential 

issues related to pleiotropy within our dataset and utilize correction methods or adjust our 

interpretations accordingly. Now if we have a genetic variant that satisfies those three core 

assumptions, then we say that the genetic variant is an instrumental variable or a good instrument. 
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Abstract 

Objectives 

Psoriatic arthritis (PsA) has a strong genetic component, and the identification of genetic risk factors 

could help identify the ~30% of psoriasis patients at high risk of developing PsA. Our objectives were 

to identify genetic risk factors and pathways that differentiate PsA from cutaneous-only psoriasis (PsC) 

and to evaluate the performance of PsA risk prediction models. 

 
Methods 

Genome-wide meta-analyses were conducted separately for 5,065 patients with PsA and 21,286 

healthy controls and separately for 4,340 patients with PsA and 6,431 patients with PsC. The 

heritability of PsA was calculated as a single-nucleotide polymorphism (SNP)–based heritability 

estimate (h2SNP) and biologic pathways that differentiate PsA from PsC were identified using Priority 

Index software. The generalizability of previously published PsA risk prediction pipelines was explored, 

and a risk prediction model was developed with external validation. 

 
Results 

We identified a novel genome-wide significant susceptibility locus for the development of PsA on 

chromosome 22q11 (rs5754467; P = 1.61 × 10−9), and key pathways that differentiate PsA from PsC, 

including NF-κB signaling (adjusted P = 1.4 × 10−45) and Wnt signaling (adjusted P = 9.5 × 10−58). The 

heritability of PsA in this cohort was found to be moderate (h2SNP = 0.63), which was similar to the 

heritability of PsC (h2SNP = 0.61). We observed modest performance of published classification 

pipelines (maximum area under the curve 0.61), with similar performance of a risk model derived 

using the current data. 

 

Conclusion 

Key biologic pathways associated with the development of PsA were identified, but the investigation 

of risk classification revealed modest utility in the available data sets, possibly because many of the 

PsC patients included in the present study were receiving treatments that are also effective in PsA. 

Future predictive models of PsA should be tested in PsC patients recruited from primary care. 

 

 

 

 



129 
 

Introduction 

Psoriatic arthritis (PsA) is a chronic inflammatory condition characterized by the presence of peripheral 

arthritis, dactylitis, enthesitis, and axial spondylarthritis 1. PsA affects between 14% and 30% of 

patients with psoriasis, leading to significant disability and a reduced quality of life 1–3. The ability to 

identify patients with psoriasis who are at a high risk of developing PsA is an important goal for clinical 

research, as this would allow early intervention to reduce the impact of PsA and ultimately lead to 

preventative treatments. 

 
PsA is a typical complex disease in which susceptibility is influenced by a combination of 

environmental, lifestyle, and genetic risk factors. Previous family pedigree studies have estimated that 

the heritability of PsA far exceeds that of psoriasis alone, providing evidence of an increased genetic 

component which, once identified, could help to differentiate those patients at high risk of developing 

PsA by inclusion of genetic risk factors in clinical prediction models 4–6. However, the results of these 

family studies have been challenged by data from large-scale case–control studies analyzing variations 

in single-nucleotide polymorphisms (SNPs), in which only limited differences in heritability estimates 

have been demonstrated between patients with PsA and patients with psoriasis 7. Several studies have 

identified genetic risk factors that are specific to PsA, including amino acids within HLA–B and variants 

at the IL23R gene, and the current aim is to translate these genetic discoveries into improved clinical 

outcomes 8–12. A recent study demonstrated high performance in accurately distinguishing PsA from 

cutaneous-only psoriasis (PsC) using prediction models based on genetic risk factors. Although this 

study demonstrated validity by internal cross-validation methods, assessment of these models for 

generalizability in external data sets is still warranted13. 

 
To help further our understanding of the genetic basis for PsA, we have constructed a large integrated 

genetic data set of PsA patients, PsC patients, and population controls imputed to the latest 

population reference panels. We supplemented this data set by performing a meta-analysis using UK 

Biobank data, allowing us to contrast PsA patients with population controls and PsC patients, and to 

explore differences in the genetic architecture of the 2 traits that could explain the progression to PsA. 

These data can be used to further our understanding of key genes and biologic pathways important in 

psoriatic disease using state-of-the-art bioinformatics tools and could be further used to explore the 

utility of genetic risk prediction models for classifying PsA. 
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Patients and Methods 

PsA genome-wide association study (GWAS) cohort 

A total of 4,072 patients with PsA were recruited from rheumatology centers in the UK, Ireland, and 

Switzerland, from the prospective Swiss Clinical Quality Management (SCQM) registry, and from 

Australia. Patients recruited in Manchester were diagnosed by a rheumatologist based on the 

presence of both psoriasis and inflammatory peripheral arthritis, regardless of rheumatoid factor 

status. While the majority of patients satisfied the CASPAR (Classification of Psoriatic Arthritis) 

classification system14, some were recruited prior to the introduction of this classification system. All 

patients provided written informed consent (UK PsA National Repository Multicentre Research Ethics 

Committee reference no. 99/8/84). Samples from the Axial Disease in Psoriatic Arthritis Study 

(ADIPSA) cohort were collected with ethics approval from the French Regional Ethics Committee 

(reference no. 12/SW/0110). The Leeds cohort comprises adult patients with a clinical diagnosis of PsA 

fulfilling the CASPAR classification criteria who were recruited as part of an in-house biobank study 

investigating SNPs of immune response genes in patients with psoriasis, patients with PsA, and 

patients with ankylosing spondylitis and their relationship to disease susceptibility, articular and 

extraarticular manifestations, and response to treatment (Research Ethics Committee reference no. 

04/Q1205/65, IRAS project no. 232680). All patients provided written informed consent. 

 
A total of 283 patients with PsA were recruited from St. Vincent’s University Hospital observational 

PsA cohort. All patients met the CASPAR criteria. The study protocol received approval from the local 

ethics committee of St. Vincent’s University Hospital. Written informed consent was obtained from all 

patients. In addition, a total of 272 patients with PsA were recruited from the prospective SCQM 

registry in which diagnosis was based on the CASPAR criteria. The study protocol received approval 

from the local ethics committee of the University Hospital of Geneva (protocol no. 10-089) and the 

SCQM Biobank Scientific Advisory Board and followed the Guidelines for Good Clinical Practice. 

Written informed consent was obtained from all patients. A summary of available clinical phenotype 

data for this cohort is given in Supplementary Table S3.8 (available on the Arthritis & Rheumatology 

website at http://onlinelibrary.wiley.com/doi/10.1002/art.42154). 

 
Psoriasis GWAS cohort 

We had access to data from 2,086 psoriasis patient samples obtained through the Biomarkers of 

Systemic Treatment Outcomes in Psoriasis study (BSTOP) described previously9. Analysis of patients 

was restricted to those with no previous diagnosis of PsA, and we refer to this sample group as having 

cutaneous-only psoriasis (PsC). Patients with psoriasis requiring systemic therapy who also consented 

to enrolment in the British Association of Dermatologists Biologics Interventions Registry (a UK 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154


131 
 

pharmacovigilance registry) were recruited to BSTOP from over 60 secondary and tertiary care 

outpatient dermatology departments throughout the UK including centers in London, Manchester, 

Nottingham, and Liverpool. All patients provided written informed consent (BSTOP Ethics reference 

no. 11/H0802/7). Classification of PsC in the BSTOP cohort is based on information collected at 

multiple follow-up consultancies (one every 6 months in the first 3 years and then once annually) 

during which a research nurse or clinician actively investigated the patient’s medical records for the 

presence of a PsA diagnosis made by a rheumatologist. On average, patients in this cohort had a 

psoriasis disease duration of 27 years without a recorded PsA diagnosis (see Supplementary Figure 

S3.1A, available at http://onlinelibrary.wiley.com/doi/10.1002/art.42154) and had been participants 

in the British Association of Dermatologists Biologic and Immunomodulators Register (BADBIR) study 

for ~7 years (Supplementary Figure S3.1B) with an average of 8 follow-up consultancies. 

 
Control population GWAS cohort 

As controls, genotype data were available for 9,965 general population subjects from the UK 

Household Longitudinal Study (https://www.understandingsociety.ac.uk/), accessed through the 

European Genotype-phenome Archive. Samples were genotyped at the Wellcome Trust Sanger 

Institute using the Illumina Infinium CoreExome genotyping array. The quality control procedures 

applied to genotyping of control samples were consistent with those described below for patient 

samples. 

 
Genotyping and statistical quality control 

PsA samples were genotyped using the Illumina Infinium CoreExome genotyping array. This was 

performed in accordance with the manufacturer’s instructions, where genotype calling was performed 

using the GenCall algorithm in the GenomeStudio Data Analysis software platform (Genotyping 

Module version 1.8.4). Psoriasis samples were genotyped using the Illumina 

HumanOmniExpressExome-8v1-2_A array performed at King’s College London with quality control as 

previously described 15. The 3 data sets (PsA, PsC, and controls) were combined with the intersection 

of SNPs being retained; hereafter, this is referred to as the PsA-BSTOP GWAS data set. Further details 

are provided in Supplementary Materials and Methods and Supplementary Figure S3.2 (available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). 

 
Imputation 

Imputation was performed for the combined data set of PsA, PsC, and control samples described 

above. Prior to imputation, SNPs with ambiguous alleles (C/G and A/T) were excluded, and the 

remaining SNPs were aligned to the Haplotype Reference Consortium (HRC) panel (version 1.1) using 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154
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the HRC imputation preparation tool (https://www.well.ox.ac.uk/~wrayner/tools/). Imputation was 

performed using the Michigan Imputation server in which phasing was performed with Shapeit2, and 

imputation was performed with the HRC panel. Following imputation, SNPs were excluded based on 

a minor allele frequency (MAF) of <0.01 and imputation accuracy of r2 <0.5. 

 
UK Biobank 

We accessed imputed genotype data from the UK Biobank (application number 799) for self-reported 

outcomes in 731 PsA patients and 3,197 psoriasis patients 16. Control population data were obtained 

using random sampling from the remaining cohort at a ratio of 4 controls to 1 patient to minimize 

inflation of test statistics due to case-control imbalance. All participants were selected from the subset 

of White patients of British ancestry. In addition, we created a data set based on the International 

Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) codes L40 

and L405, which yielded a cohort of 795 psoriasis patients and 435 PsA patients. 

 
PsA Immunochip data set 

Genotype data were available for 1,962 PsA patients and 8,923 controls (controls were recruited from 

the 1958 Birth Cohort and the National Blood Service) 8. Sample overlap with the GWAS and UK 

Biobank data sets was determined using identity by descent analysis (Kinship based Inference for 

GWAS software), and duplicate samples were excluded from the Immunochip data set, leaving a total 

of 725 PsA patients and 8,897 controls. 

 
Association testing and meta-analysis 

Case–control association analyses were performed with the SNPTEST software package (version 2.5.2) 

using their scoring method to account for imputation uncertainty. Meta-analyses were conducted 

using an inverse variance meta-analysis assuming fixed effects with version 2.2.2 of the software 

package Genome-Wide Association Meta-Analysis (GWAMA)17. Lambda genomic control (λgc) 

inflation factor, corrected for sample size (λgc1000), was calculated to test for inflation of test statistics 

attributable to population stratification, and potential inflation of test statistics from other sources. 

An overview of these analyses is available in Supplementary Figure S3.3 and further details are 

provided in the Supplementary Materials and Methods (association testing and meta-analysis) 

(available at http://onlinelibrary.wiley.com/doi/10.1002/art.42154). 

Heritability estimates 

The heritability of PsA and PsC was estimated in the PsA-BSTOP GWAS data set using genome-wide 

complex trait analysis (GCTA software). SNPs were stratified into quartiles based on levels of linkage 

disequilibrium then further stratified into bins according to MAF values (see Supplementary Materials 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154
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and Methods). Calculations were performed with no prevalence specified and with a specified disease 

prevalence of 1% for comparison with previously reported estimates 7. Both calculations were 

repeated with SNPs excluded from the major histocompatibility complex (MHC). 

 
Gene and pathway prioritization 

We prioritized key genes and pathways for psoriatic disease using the priority index (Pi) pipeline18 . 

Genes were prioritized based on the following criteria: 1) proximity of SNPs to genes and localization 

to their topologically associated domain (cell line GM12878); 2) physical interaction determined by 

chromatin conformation (monocytes, macrophages [M0, M1, M2], neutrophils, CD4 T cells [naive and 

total], CD8 T cells [naive and total], or B cells [naive and total]); 3) correlation with gene expression 

(monocytes [unstimulated, lipopolysaccharide (LPS)–stimulated for 2 hours and 24 hours, interferon-

γ (IFNγ)–stimulated for 24 hours], B cells, peripheral whole blood, CD4 T cells, CD8 T cells, neutrophils, 

or natural killer cells). Further scoring was based on gene ontologies for immune function, immune 

phenotype, and rare genetic immune diseases, according to the OMIM. Enrichment in pathways was 

based on Reactome pathways. 

 
Reproducing existing pipelines 

A recent publication reported the performance of an analysis pipeline based on multiple machine 

learning approaches for the classification of PsA in patients with psoriasis, referred to hereafter as the 

Michigan classification pipeline13. Based on the author's recommendations for reproducing this 

pipeline, we trained 2 of the reported best-performing machine learning algorithms (random forest 

and conditional inference forest) in the PsA-BSTOP GWAS data set to capture the cohort-specific 

parameters using the reported model parameters and the sets of genetics features (see 

Supplementary Table S3.2, available at http://onlinelibrary.wiley.com/doi/10.1002/art.42154). The 

models were internally validated using k-fold cross-validation and were trained using the Machine 

Learning in R (MLR) package (see Supplementary Figure S3.4A for an overview and the Supplementary 

Materials and Methods for further details, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). 

  

http://onlinelibrary.wiley.com/doi/10.1002/art.42154
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Model development and validation 

We developed a PsA prediction model using a set of 4,729,872 SNPs with a minimum imputation 

accuracy score of ≥0.9 and call rate of ≥0.99 in both the PsA-BSTOP GWAS and the UK Biobank GWAS 

ICD-10 data sets in which the PsA-BSTOP data set was used as the training data set and the UK Biobank 

ICD-10 data set was used for external validation (see Supplementary Figure S3.4B, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). We utilized a lasso-penalized linear 

regression model using all post–quality control imputed SNPs where the penalty (L1) was tuned with 

10 repetitions of 10-fold cross-validation implemented in the SparSNP software package 19. The best 

model was selected based on the maximal area under the curve (AUC) and classification and 

calibration were evaluated in the validation data set. 

 
Data availability 

Summary statistics of the GWAS analyzed in the current study are available through the National 

Human Genome Research Institute-European Bioinformatics Institute GWAS Catalog at 

https://www.ebi.ac.uk/gwas/downloads/summary-statistics. Control population data were obtained 

from the UK Household Longitudinal Study. Information on how to access the data can be found on 

the Understanding Society website at https://www.understandingsociety.ac.uk/. 

 
Results 

Heritability estimates 

We calculated the SNP-based heritability (h2SNP) of PsA in the PsA-BSTOP GWAS data set of 3,609 

patients and 9,192 controls. The estimated heritability of PsA in the full data set was h2SNP = 0.63 (SD 

0.04), while in analyses using non-MHC SNPs, the estimated heritability was h2SNP= 0.61 (SD 0.04). 

 
In analyses in which the disease prevalence was specified to be 1% (in comparison to previous 

prevalence estimates [7]), the estimated heritability of PsA was h2SNP = 0.43 (SD 0.03), while the 

heritability of PsA in analyses using non-MHC SNPs was h2SNP= 0.41 (SD 0.03). 

 
The heritability of PsC in a population of 2,085 patients and 9,192 controls was estimated to be h2SNP 

= 0.61 (SD 0.05), while in analyses using non-MHC SNPs, the estimated heritability of PsC was h2SNP 

= 0.59 (SD 0.05). With a disease prevalence of 1%, the estimated heritability of PsC was found to be 

h2SNP =0.56 (SD 0.04), while the heritability of PsC in analyses using non-MHC SNPs was h2SNP = 0.54 

(SD 0.05). 

  

https://www.understandingsociety.ac.uk/
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Table 3.1: non-MHC loci with genome-wide significance in the development of PsA identified through a meta-analysis of GWAS 
summary statistics from PsA patients and controls* 

SNP 
Chromo

some 
Base  

position 
Notable 
genes 

Risk/non-
risk allele 

RAF P OR (95% CI) 
P by 

Cochran’s 
Q test 

I2 

rs33980500 6 111913262 TRAF3IP2 T/C 0.07 1.14 × 10−36 1.66 (1.54–1.8) 0.48 0 

rs62377586 5 158766022 IL12B G/A 0.67 8.17 × 10−35 1.36 (1.3–1.43) 0.52 0 

rs2111485 2 163110536 IFIH1 G/A 0.61 1.24 × 10−20 1.25 (1.19–1.31) 0.80 0 

rs12044149 1 67600686 IL23R T/G 0.26 3.84 × 10−20 1.27 (1.2–1.33) 0.27 0.23 

rs76956521 5 150464641 TNIP1 C/A 0.05 2.65 × 10−16 1.49 (1.36–1.64) 0.82 0 

rs848 5 131996500 IL13 C/A 0.82 9.49 × 10−16 1.28 (1.21–1.36) 0.65 0 

rs34536443 19 10463118 TYK2 G/C 0.95 1.16 × 10−14 1.71 (1.49–1.96) 0.70 0 

rs17622208 5 131717050 SLC22A5 A/G 0.48 5.73 × 10−14 1.19 (1.14–1.24) 0.12 0.53 

rs2020854 12 56743367 STAT2 T/C 0.93 1.26 × 10−13 1.43 (1.3–1.57) 0.01 0.78 

rs3794767 17 26124605 NOS2 C/T 0.64 4.73 × 10−13 1.19 (1.14–1.25) 0.83 0 

rs13203885 6 111995127 FYN C/T 0.12 1.55 × 10−11 1.26 (1.18–1.35) 0.74 0 

rs1395621 1 25270572 RUNX3 C/T 0.48 6.48 × 10−11 1.17 (1.12–1.23) 0.65 0 

rs5754467† 22 21985094 CCDC116 G/A 0.19 1.61 × 10−9 1.19 (1.13–1.27) 0.85 0 

rs610604 6 138199417 TNFAIP3 G/T 0.32 7.76 × 10−9 1.15 (1.1–1.21) 0.14 0.50 

 
* Inconsistency metrics (I2) describing the percentage of variation across studies due to heterogeneity were assessed for 
significance by Cochran’s Q heterogeneity test. The threshold for genome-wide significance was P = 5 × 10−8. MHC = major 
histocompatibility complex; GWAS = genome-wide association study; SNP = single-nucleotide polymorphism; RAF = risk allele 
frequency; OR = odds ratio; 95% CI = 95% confidence interval. 
 
† Novel locus not previously identified as significant in the development of psoriatic arthritis (PsA). 
 
 

Association testing and meta-analysis 

We performed a meta-analysis of GWAS summary statistics from a total of 5,065 PsA patients and 

21,286 controls for a maximum of 8,558,403 SNPs using data from the PsA-BSTOP, the UK Biobank, 

and the PsA Immunochip data sets (see Supplementary Figure S3.3A, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). The genomic control inflation factor λgc 

(λgc1000) for the PsA-BSTOP GWAS data set was estimated to be 1.1 (1.01), indicating minimal 

residual population stratification based on inflation of test statistics. We identified 16 non-MHC loci 

with genome wide significance for the development of PsA (P = 5 × 10−8), 15 of which have previously 

been reported as significant in PsA and one which is novel (Table 3.1 and Figure 3.1). This novel 

genome-wide association represents an association with the intergenic SNP rs5754467 (P = 1.61 × 

10−9) on chromosome 22q11 in close proximity to the gene UBE2L3. We also found that the 2 

previously reported PsA-specific susceptibility loci PTPN22 (rs2476601; P = 6.03 × 10−7) and chr5q31 

(rs715285; P = 2.86 × 10−11) had genome-wide significance for the development of PsA. 

 
Next, we performed a meta-analysis of summary statistics for the comparison of PsA to PsC (PsA-

BSTOP and UK Biobank data) to identify PsA-specific susceptibility loci using a population consisting of 

4,340 PsA patients and 6,431 PsC patients (see Supplementary Figure S3.3B, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). We identified significant genome wide 
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association in 2 loci previously reported to be associated with the development of PsA, namely the 

MHC region (rs1050414; P = 8.49 × 10−59) and the IL23R gene (rs72676069; P = 9.94 × 10−9). No other 

regions reached genome-wide significance. However, 4 loci demonstrated evidence of significant 

association in both data sets, with an overall P value in the meta-analysis of P < 5 × 10−6 (Table 3.2), 

giving us confidence in the existence of additional PsA-specific loci. 

 

 

 
 

 

 

 

 

 

 

Figure 3.1: Manhattan plots showing the P values of genome-wide significance from the meta-analysis of summary statistics 
obtained from psoriatic arthritis (PsA) patients compared to population controls (top), and PsA patients compared to 
cutaneous-only psoriasis PsC) patients (bottom). The genome-wide significance threshold was set at P = 5 × 10−8 and is 
indicated by the dashed lines. Each dot represents a single nucleotide polymorphism (SNP). Red dots indicate the most 
significant SNPs in both data sets. 

 

Table 3.2: Loci showing the most significant association with PsA or PsC from the PsA-STOP, UK Biobank, and meta-analysis 
data sets* 

 SNPs 

 rs17194140 rs11665266 rs76800961 rs306281 

Chromosome 3 18 14 7 

Base position 2198673 10441470 85656555 154785362 

Notable genes CNTN4 None None PAXIP1 

Risk/non-risk allele T/C A/G A/C G/A 

P for association, PsA-BSTOP data set 2.75 × 10–5 0.00304 3.33 × 10–5 1.81 × 10–4 

P for association, UK Biobank data set 2.62 × 10–3 6.35 × 10–5 2.30 × 10–2 6.92 × 10–3 

P for association, meta-analysis data set 2.51 × 10–7 1.96 × 10–6 2.61 × 10–6 3.97 × 10–6 

OR (95% CI) 1.2 (1.12–1.29) 1.34 (1.19–
1.51) 

1.39 (1.21–
1.59) 

1.17 (1.09–1.24) 

P by Cochran’s Q test 0.97 0.15 0.60 0.95 

I2 0.00 0.53 0.00 0.00 

 

* The overall P value for the meta-analysis was P = 5 × 10−6. Inconsistency metrics (I2) describing the percentage of variation 

across studies due to heterogeneity were assessed for significance by Cochran’s Q heterogeneity test. See Table 3.1 for 

definitions. 
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Gene and pathway prioritization. We utilized the recently described Pi bioinformatics pipeline to 

identify key genes and pathways in the development of PsA18. Using summary statistics from the meta-

analyses described above for PsA patients versus controls, we found that the most highly ranked gene 

with regard to PsA susceptibility based on the Pi was ICAM1, which has a role in epithelial cell adhesion 

(see Supplementary Table S3.3, available at http://onlinelibrary.wiley.com/doi/10.1002/art.42154). In 

addition, several genes involved in IFN regulation were highly ranked (IRF1, IRF5 and IRF7). Other 

highly ranked genes included UBA52, CNPY2, STAT2, and TYK2. Using the top 1% of ranked genes, we 

found significant enrichment in IFN and interleukin signaling pathways (see Supplementary Table S3.4, 

available at http://onlinelibrary.wiley.com/doi/10.1002/art.42154). These pathways were not found 

to be enriched when using summary statistics from PsA patients compared to those from PsC patients, 

suggesting that these pathways are primarily involved in the pathogenesis of psoriasis (see 

Supplementary Tables S3.5 and S3.6, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). Pathways found to be enriched in the 

comparison of PsA to PsC included multiple pathways for NF-κB signaling (adjusted P = 1.4 × 10−45) 

and Wnt signaling (adjusted P = 9.5 × 10−58), which provides compelling evidence that these pathways 

are potentially involved in the development of PsA. 

 
Risk prediction 

We assessed the ability of the Michigan classification pipeline to discriminate PsA from PsC in our 

available data sets (see Supplementary Figure S3.4A). The 2 reported statistical approaches (the 

random forest model and the conditional inference forest model) performed poorly across both the 

training data set (PsA-BSTOP) and the validation data set (UK Biobank ICD-10), with AUC of <0.6 by 

external validation (Figure 3.2). Each model was characterized by high sensitivity but low specificity, 

indicating a high rate of false positives (see Supplementary Table S3.7, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). In addition, calibration and clinical utility 

were found to be poor for both the random forest model and the conditional inference forest model 

(see Supplementary Figures S5 and S6). The best performing model based on accuracy of 

discrimination in the validation data set was the random forest model, where the C statistic was found 

to be 0.61 (95% confidence interval [95% CI] 0.56–0.76) in internal validation, but which dropped 

considerably to 0.57 (95% CI 0.54–0.61) in external validation. The overall performance of the random 

forest model as measured by the Brier score was similar for internal and external validation, with Brier 

scores of 0.22 and 0.30, respectively, suggesting poor agreement in both data sets. The random forest 

model was also found to be poorly calibrated, with a calibration-in-the-large (CITL) score of 0.27 (95% 

CI –0.13, 0.69) in internal validation and a noticeably worse CITL score of 1.2 (95% CI 0.92–1.51) in 

external validation. 
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Finally, we used the PsA-BSTOP GWAS data set to develop a PsA risk prediction model using a set of 

4,729,872 SNPs and lasso-penalized linear regression (see Supplementary Figure S3.4B, available at 

http://onlinelibrary.wiley.com/doi/10.1002/art.42154). The best model achieved an AUC of 0.66 

when assessed using 10-fold cross-validation and consisted of 118 SNPs, 34 of which mapped to the 

MHC (see Supplementary Figure S3.7). The SNP weights, P values, and model intercept are reported 

in Supplementary Table S3.8, available at http://onlinelibrary.wiley.com/doi/10.1002/art.42154. 

Independent validation of this model in the UK Biobank GWAS data set demonstrated an AUC of 0.57. 

The optimal prediction cutoff value to maximize the true-positive rate and minimize the false-positive 

rate was 0.3, which resulted in a sensitivity of 0.53 and a specificity of 0.58. Calibration of this model 

was found to be poor, with a CITL score of –2.16 (95% CI –2.31, –2.01) (see Supplementary Figure 

S3.8), suggesting a general overestimation of risk, and a calibration slope of 1.41 (95% CI 0.95–1.86), 

suggesting that the predictions were too moderate and showing limited variation in the predicted 

probabilities. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Receiver operating characteristic (ROC) curves showing the sensitivity and specificity of the random forest (RF) and 
the conditional inference forest (CF) machine learning algorithms in discriminating between psoriatic arthritis (PsA) and 
cutaneous-only psoriasis (PsC). Both the RF and CF models showed modest performance across the PsA-Biomarkers of 
Systemic Treatment Outcomes in Psoriasis (PsA-BSTOP) study data set (A) and the UK Biobank International Statistical 
Classification of Diseases and Related Health Problems, Tenth Revision data set (B). The Concordance statistic for each model 
was <0.6 by external validation. 

 
Discussion 

Using a large integrated data set of PsA patients, PsC patients, and controls, we have been able to 

provide accurate heritability estimates, identify a novel susceptibility locus, explore key biologic 

pathways associated with the development of PsA, and explore the utility of prediction models for 

classifying PsA risk. While the individual SNP analysis showed a large overlap between PsC and PsA, 

pathway analysis revealed important differences, including enrichment of PsA-significant SNPs found 

in key pathways such as NF-κB and Wnt signaling. 
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The SNP-based heritability estimates reported herein support recent findings by Li et al7 and show 

comparable heritability of PsA and PsC. Our results do not support the previous family and population 

estimates that suggest a substantially larger heritable component for PsA above that of psoriasis 

alone4-6. Seventeen genome-wide associations were identified, including rs5754467 (P = 1.61 × 10−9) 

which maps to chromosome 22q11 and is near the genes UBE2L3, YDJC, and CCDC116. This SNP has 

not been previously reported in the setting of PsA but is highly correlated (r2 >0.8 based on SNP data 

from a northern European population) with a previously identified psoriasis SNP. This correlation does 

not represent a PsA-specific genetic effect12, but further supports the genetic similarity of psoriasis in 

both patients with PsA and patients with PsC. 

 
We used the Pi pipeline to identify key genes and pathways involved in PsA susceptibility. In analyses 

of PsA patients compared to controls, we replicated the previously reported findings of prioritized 

genes (ICAM1, IRF1, STAT2, and TYK2) and target pathways (IFN and interleukin signaling) for psoriasis, 

further supporting the notion that psoriasis in patients with PsA is genetically and biologically similar 

to psoriasis in patients with PsC. Interestingly, these pathways for PsA development were reported 

previously in a study applying the Pi pipeline to a set of 59 SNPs associated with PsA 20. However, of 

greatest interest is the prioritized target pathways that differ between PsA and PsC, which provide 

insight into the PsA-specific processes whereby we find enrichment in multiple NF-κB signaling 

annotations and the Wnt signaling pathway. 

 
The Wnt signaling pathway plays a key role in bone formation in normal development and in abnormal 

bone formation in diseases such as axial spondyloarthritis and osteoarthritis. The Wnt signaling 

pathway may also be of particular interest in the setting of PsA, where bone formation in peripheral 

joints is included in the CASPAR criteria for the classification of PsA. Blocking of Dkk-1 (an inhibitor of 

Wnt signaling) in mice has been shown to halt progressive and erosive joint destruction in 

inflammatory arthritis by encouraging bone formation 21. Interestingly, a previous study on PsA 

demonstrated that PsA patients had lower levels of Dkk-1 compared to healthy controls, and 

treatment with secukinumab increased these levels over a period of 6 months to normal Dkk-1 serum 

levels 22. In contrast, another study reported no significant difference in levels of Dkk-1 in patients with 

PsA without radiographic axial disease compared to healthy controls23. Therefore, further work is 

required to understand the role of Wnt signaling in PsA. 

 
A previous study by Aterido et al investigated pathways associated with PsA susceptibility and 

reported significant association with the glycosaminoglycan metabolism pathway (Reactome R-HSA-

1630316)24. However, no association between PsA susceptibility and the glycosaminoglycan 



140 
 

metabolism pathway was observed in our data, as none of the highly prioritized genes overlapped 

with genes in this pathway annotation. These differing results could be attributed to differences in the 

methods used for mapping SNPs to genes, as in the study by Aterido et al. SNPs were assigned to genes 

based solely on proximity. It is now well recognized that causal genes are not always those that are 

closest to the GWAS hit, and the causal SNP may exert its regulatory effect on distant genes. The Pi 

pipeline addresses this limitation by including gene expression data and chromatin confirmation data 

in order to capture evidence for SNP–gene physical interactions in addition to proximity information 

18. Aterido et al. also reported that the SNP rs10865331 at the B3GNT2 locus was associated with the 

risk of developing PsA but not PsC (P = 0.029). While we found a significant association with this SNP 

when comparing PsA patients to controls (P = 2.05 × 10−7), we found no evidence that this association 

is PsA-specific based on our stratified analyses comparing PsA to PsC using PsA-BSTOP data (P = 0.41) 

or on the larger meta-analysis using UK Biobank and Immunochip data (P = 0.31). 

 
Our prediction models showed only modest ability to discriminate PsA from PsC in the available data 

sets, which was consistent with the findings of a recently published study by Smith et al 25. For the first 

approach, we attempted to reproduce a previously published classification pipeline by following the 

description and published model parameters, which allowed us to reproduce the workflows13. 

Following the author’s recommendations, we used the 2 sets of genetic features that were selected 

using a well-phenotyped cohort and estimated the model parameters in our data to capture cohort-

specific effects and optimize performance. Second, we attempted to develop a model for our existing 

data sets through external validation. However, neither of these approaches achieved satisfactory 

discrimination either with internal or external validation. Given that the predictive performance of a 

model using the same data on which it was developed (often referred to as apparent performance) 

will tend to give an optimistic estimate of the model’s performance, it is not uncommon for a 

prediction model to achieve lower performance results when applied to an external population. 

 
The lack of discrimination observed in our data sets could be due to the differences in demographic 

and clinical characteristics of participants in our data sets compared to those of the participants in the 

original study. PsA is clinically a heterogeneous disease and differing proportions of patients with 

oligoarticular or polyarticular arthritis mutilans and axial disease (each with potentially differing 

genetic risk factors) could have contributed to the decreased performance of the model. This potential 

issue was recognized by the authors of the original study and, although we followed the author 

recommendations by modeling the effects of these markers in our data to learn these cohort-specific 

parameters, the overall classification performance remained low13 . 

 



141 
 

An important limitation of our study was the potential impact of poor phenotype specificity in the PsC 

cohorts, where the existence of undiagnosed PsA could have confounded the performance of any 

classification models. Although the participants in the BSTOP study were not screened for the absence 

of PsA by a rheumatologist, they were routinely followed up with an average of 8 consultations and 

had a psoriasis disease duration of 27 years without a recorded diagnosis of PsA. Additionally, 

restricting analyses to a subgroup of PsC patients with psoriasis for a duration of ≥10 (to minimize the 

risk of undiagnosed PsA) did not improve the performance of the predictive model (data not shown). 

However, given the extent of undiagnosed PsA in dermatology clinics, we cannot exclude the 

possibility of undiagnosed PsA in this group, which would have impacted both feature selection and 

model performance26. Furthermore, given that patients in the PsC group were treated with biologic 

drugs that are also effective in the treatment of PsA, it is possible that PsA development was prevented 

in susceptible individuals, thus limiting the power of the models to discriminate between groups27. 

 
In conclusion, predicting the risk of PsA development in patients with psoriasis remains an important 

research question, and external validation in addition to statistical validation, is an important step in 

the clinical translation of PsA prediction models, as external validation tests the transportability of 

models to plausibly related populations 28. While polygenic risk scores capture the heritable 

component of disease susceptibility, they fail to capture the more dynamic risk factors that can 

modulate susceptibility, such as environmental and lifestyle risk factors. In addition, studies have 

shown that genetic risk factors can be independent of known clinical risk factors29. This suggests that 

future research on PsA susceptibility in patients with psoriasis should move toward combining clinical 

data and genetics from data collected longitudinally, using a prospective study design in patients with 

clinically well-defined PsC before treatment with biologic drugs, to create an integrated risk score. 

Therefore, these future efforts should also investigate the integration of more dynamic biomarkers, 

such as the host microbiome and immunophenotyping, into the development of PsA risk prediction 

models. 
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Supplementary methods 

Statistical quality control 

Poor quality PsA DNA samples (call rate < 0.90) were excluded using the default Illumina cluster file 

followed by automated reclustering to calibrate genotype clusters on the study samples. Sample-level 

quality control (QC) excluded samples with a call rate < 0.98, outliers based on autosomal 

heterozygosity (2 standard deviations from the mean) and discrepancy between genetically inferred 

sex and database records. SNP QC excluded non-autosomal SNPs, those with a call rate < 0.98 or a 

minor allele frequency < 0.01. 

 
The three datasets (PsA, PsC,and controls) were combined retaining the intersection of SNPs and 

further QC was performed with Identity-by-descent (IBD) which was utilised to identify related 

individuals (kinship coefficient > 0.0884) across all study samples performed with the KING software 

package (version 1.9)30. The sample with the highest call rate was preferentially retained for each 

related pair. Individuals were excluded if they were identified as outliers, based on ancestry using 

principal component analysis (PCA) performed with the flashpca software package (version 2.0) where 

outliers with atypical ancestry, based on the top two principal components, were identified using the 

aberrant clustering algorithm R library (version 1.0)31,32. 

 
Association testing and meta-analysis 

Case-control association testing in the PsA-BSTOP and UK Biobank self-reported datasets was 

performed using the SNPTEST software package (version 2.5.2) using the score method to account for 

imputation uncertainty. Two association tests were conducted in each of these two datasets; PsA 

compared to population controls and PsA to PsC. Three principal components, calculated as described 

above, were included as covariates to account for any residual population structure. A meta-analysis 

of summary statistics from the PsA-BSTOP, UK Biobank and the PsA Immunochip datasets was 

performed for PsA compared to population controls. A separate meta-analysis was conducted of 

summary statistics from the PsA-BSTOP and UK Biobank datasets comparing PsA to PsC. These were 

conducted using an inverse variance meta-analysis assuming fixed effects with the software package 

GWAMA (version 2.2.2)33. Between study heterogeneity of odds ratios was measured with Cochran’s 

Q statistic and the I2 index. Lambda genomic control (GC), corrected for sample size (GC1000), was 

calculated to test for inflation of test statistics attributable to population stratification, and potential 

test statistic inflation from other sources. 
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Heritability estimates 

Heritability of PsA and PsC was estimated in the PsA-BSTOP GWAS dataset using GCTA. SNPs were 

stratified into quartiles based on linkage disequilibrium (LD) then further stratified into minor allele 

frequency (MAF) bins (0.01 < MAF ≤ 0.1; 0.1 < MAF ≤ 0.2, 0.2 < MAF ≤ 0.3; 0.3 < MAF ≤ 0.4; 0.4 < MAF 

≤ 0.5) to create 20 genetic relationship matrices34. Phenotypic variance attributed to imputed SNPs 

was then estimated using GREML with three principal components as covariates35. Estimates were 

calculated with no prevalence specified and repeated with a specified disease prevalence of 1% for 

comparison with previously reported estimates36. Both estimates were re-calculated excluding SNPs 

from the major histocompatibility complex (MHC). 

 
Risk prediction 

The overall model performance was further assessed in the UK Biobank ICD10 dataset as an external 

validation dataset using the Brier score and c-statistic. The Brier score is the squared difference 

between predicted and observed risk and ranges from 0 for a perfect model to 0.25 for an 

uninformative model which has 50 percent incidence of the outcome. Under an uninformative model, 

it can be scaled by maximum Brier score, so that it ranges from 0 to 100%. We further assessed the 

model calibration using simple logistic regression to calculate the difference in the log-odds between 

predictions and outcomes, also called ‘calibration in the large’ (CITL (intercept(a)), to check for 

systematically low or high predictions; the model’s general fit was then determined using the 

calibration slope (b). Calibration (seen on a scatter plot) represents the relationship between observed 

(y-axis) and predicted risk (x-axis), and perfect predictions should lie on the 45° line.  In model 

development, a = 0 and b =1, however, in independent validation, CITL problems are defined if a ≠ 0, 

and if b is greater/less than 1, as this shows under/overprediction issues respectively. Lastly, we 

evaluated the clinical utility of the models using common performance metrics derived from a 

confusion matrix of correct and false predictions per class to calculate the model’s overall accuracy, 

precision, sensitivity, specificity, and the negative predictive value. 
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Figure S 3.1: summary of clinical data from the BSTOP cohort. All clinical data accrued within the BADBIR study is matched 
to BSTOP participants A) disease duration without recording a diagnosis of PsA and B) length of time as a participant of the 
BADBIR study for the cutaneous-only psoriasis patient group. Dashed vertical line indicates mean of the distribution. 

 

 

 

 

 

 

 

 

 

 

 

Figure S 3.2: genotyping and quality control of the PsA-BSTOP dataset. The three datasets were individually QC’d for 
removal of low-quality SNPs and sample (*datasets were received already QC’d). The three datasets were merged on an 
intersection of SNPs and further sample QC was performed to remove related individuals and outliers based on PCA. This 
combined dataset was used for imputation. 
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Figure S 3.3: summary of reported meta-analyses. A) meta-analysis of PsA vs. healthy control data was performed across 
three datasets excluding overlapping and related samples. B) Meta-analysis of PsA vs. PSC was performed over two datasets 
excluding overlapping and related samples. 

 

 

 

 

 

 

 

 

 

Figure S 3.4: summary of prediction analyses. A) external validation of the previously reported Michigan classification pipeline 
was attempted in two independent datasets. B) A newly created prediction model was externally validated in one independent 
dataset. 

 

 

 

 

 

 

 

 

 

 

 

Figure S 3.5: calibration curve for the random forest model. A) internal validation using the PsA-BSTOP GWAS dataset and 
B) external validation using the UK Biobank ICD10 dataset. 
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Figure S 3.6: calibration curve for the conditional inference forest model. A) internal validation using the PsA-BSTOP GWAS 
dataset and B) external validation using the UK Biobank ICD10 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S 3.7: SparSNP AUC results. 10x10 Cross-validation in PsA-BSTOP training dataset. The best model based on 
maximum AUC contained 118 SNPs (AUC = 0.66). 
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Figure S 3.8: SparSNP calibration curve. Applied to the Biobank data. The predicted probabilities are divided into 10 quantiles, 
before plotting each quantile's mean predicted probability against its actual incident rate. The original calibration curve (Blue) 
shows poor calibration, with probabilities being greatly overestimated when compared to the actual rate of positives. After 
recalibrating the model for the new population, the curve (Orange) lays closer along the ideal (dotted diagonal). However, 
even after recalibration, the model clearly fails to predict high probabilities, which helps explain the low AUC. 
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Table S 3.1: Summary of clinical phenotype data for available psoriatic arthritis patients 

Characteristic   data availability (n) 

Female gender, n (%) 1204 (51) 2353 

Caucasian, n(%) 2033 (99.8) 2037 

Body mass index median (IQR) 29 (26-33) 363 

Baseline smoking status, n(%)   1790 

Non-smoker 866 (48)   

Smoker 545 (30)   

Ex-smoker 379 (21)   

Age of skin symptoms n(%), yrs   2091 

Less than 40 1322 (63)   

More than 40 769 (37)   

Age of arthritis symptoms n(%), yrs   2235 

Less than 40 1059 (47)   

More than 40 1176 (53)   

Psoriasis at baseline n(%) 128 (72) 178 

Ever had psoriasis n(%) 1759 (100) 1759 

Family history of psoriasis n(%) 87 (49) 178 

Psoriatic nail dystropy n(%) 1034 (59) 1758 

Current dactylitis n(%) 574 (33) 1762 

Ever had dactylitis n(%) 646 (86) 752 

Juxtaarticular new bone formation n(%) 93 (10) 913 

Joint involvement n(%)   1941 

Mixed axial and peripheral 449 (23)   

Pure peripheral joint involvement 1448 (75)   

Pure spinal involvement 44 (2)   

Baseline PASI score median (IQR) 1.2 (0-2.7) 178 

Baseline swolllen joint count (0-66) median (IQR) 0 (0-1) 178 

Baseline tender joint count (0-66) median (IQR) 3 (0-8) 178 

Baseline Leeds Enthesitis Score 0 (0-1) 178 

Baseline enthesitis present n(%) 276 (15) 1890 

Baseline HAQ score median (IQR) 0.875 (0.25-1.75) 1735 

Ever had inflammatory bowel disease n(%) 46 (2) 1985 

Ever had uveitis n(%) 50 (1) 1799 

Sacro-iliac joint erosions present n(%) 38 (11) 358 

 

A Percentage of the individuals for whom information on the characteristic was available 
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Table S 3.2: Two sets of genetic features used within the Michigan classification pipeline 

Random forest Conditional inference forest 

Chr Position Alleles Chr Position Alleles 

6 31324207 HLA-B(AA:L95) 6 31323039 TGAAGGGCTCCA/T 

6 31376928 C/T 6 31377817 C/T 

6 31323039 TGAAGGGCTCCA/T 6 31377851 A/G 

6 31377974 T/C 5 107654074 TA/T 

1 67627292 CTA/C 9 81186382 A/C 

18 71038706 C/G 6 31300297 T/C 

1 55518752 T/C 11 86495697 T/C 

6 29944004 A/C 8 55078876 A/G 

6 32337392 T/C 3 67271303 C/T 

3 67211884 C/T 14 34275727 G/C 

6 31324851 AT/A 9 125311082 T/TTTG 

5 40207083 G/T 2 182484053 CTT/CT 

6 31321407 T/C 7 5873245 C/T 

8 56647774 G/T 9 18436598 T/C 

1 19313343 A/G 9 111060196 A/G 

5 140851530 C/T 14 65708746 CA/C 

9 14455821 A/G 9 90809598 A/G 

1 97146047 A/G 1 103154054 T/C 

3 104170137 A/G 1 21017520 A/G 

9 4301392 G/A 4 155762272 T/C 

11 128276297 CT/C 1 67627292 CTA/C 

5 57165599 A/G 9 38409663 C/T 

8 79529798 C/T 20 55403586 C/CT 

21 30922000 T/G 9 832133 A/T 

12 124528178 A/G 4 61573229 G/A 

16 11794895 T/C 17 80899811 A/T 

6 31344252 G/C 1 205619184 A/C 

6 31324003 HLA-B(AA:E163) 11 26543031 A/G 

2 233137319 A/G 15 55388244 C/T 

6 159522796 T/A 10 805389 T/C 

5 96369780 A/G 16 13803530 C/CA 

6 30842753 G/T 5 140851530 C/T 

5 54195147 T/TC 17 50381798 A/G 

11 81578888 A/T 13 103058594 T/C 

21 38255101 C/T 1 186284338 CA/C 

5 108516901 C/T 9 122048516 CT/C 

6 137977695 T/C 2 153856491 G/A 

10 99773047 T/C 16 7458057 T/C 

8 96251303 A/C 8 70912829 C/T 

16 75390809 C/CTTTTTTTTTTTT 15 34867342 T/C 

13 47654068 T/C 15 26903815 A/T 

5 158381287 C/A 1 102903054 T/C 

22 45727688 A/C 6 32398648 A/G 

11 71099057 A/G 10 53068604 T/C 

6 31347538 T/G 5 78697485 C/T 

1 200925992 A/G 6 80317983 T/C 

2 207989470 C/T 11 44306907 T/C 

6 20533736 G/GT 5 62307392 T/C 

1 67820194 T/C 3 183158125 AT/ATT 

2 33719473 T/C 6 99319240 A/T 

1 22690417 T/C 15 100798776 T/C 

13 67560612 C/T 2 233144018 A/G 

16 57482861 G/A 3 156756843 A/T 

6 31327170 A/G 2 96179305 T/A 

9 8203648 A/G 1 234241703 T/A 

4 48308223 A/G 2 108016563 <CN0>/T 
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7 123412353 A/G 1 109116348 G/A 

7 26637664 T/C 9 15612156 T/C 

22 35343077 A/G 1 81138156 T/C 

16 10918995 C/CA 7 137461416 A/G 

8 18590928 G/A 6 131573349 C/G 

1 81085263 T/G 4 100387950 TAA/TA 

9 126791907 T/C 2 171615106 A/G 

11 97407844 A/G 6 110229956 G/A 

9 90792863 T/C 13 78521453 C/T 

12 19509905 T/A 4 130558604 T/A 

5 96077584 T/C 7 77603243 ATT/A 

4 25222016 A/G 5 38343268 A/G 

2 23178053 T/G 3 20699684 G/C 

8 101816418 G/C 2 103908982 A/G 

10 110164436 G/A 14 75875225 G/A 

2 135283024 T/G 10 4331726 A/G 

18 67546689 T/C 14 87896543 T/G 

5 10505467 G/A 18 8488788 G/C 

19 55845386 G/A 4 127995476 A/T 

3 126405059 C/G 3 42930458 T/C 

4 96532828 A/G 6 88904444 T/C 

1 152686773 T/G 15 27436754 C/T 

1 180575168 A/G 7 8981801 C/G 

1 114468256 A/T 22 27670645 TGGG/T 

6 76272310 T/C 6 150892649 C/T 

8 10607906 T/C 5 96369780 A/G 

6 32186348 T/C 10 77551330 T/C 

4 46980679 T/G 18 4089791 A/G 

2 207490386 C/T 21 37854171 A/G 

17 44070583 G/A 5 179270055 G/A 

8 79343069 G/A 6 148639757 C/T 

12 24869514 G/A 16 72349121 TAAAACAAAAC/T 

14 78118334 C/T 5 97546357 G/A 

2 43908477 C/T 8 16580763 T/C 

4 177258839 A/G 4 138211632 GTATA/G 

1 238670539 G/A 3 197143019 CT/CTT 

15 86288267 C/A 6 68352062 ATT/A 

8 73002280 A/ACC 14 95828984 T/C 

18 13255156 T/G 5 1697239 A/G 

1 237929556 G/T 6 45389142 C/CT 

8 22432377 A/C 8 87093275 C/T 

14 79003623 T/C 11 82241328 T/C 

6 31270451 T/C 4 169756372 A/G 

8 18998870 A/G 8 73064714 C/T 

7 140532269 C/G 20 15518426 T/C 

4 155597624 A/T 10 12871169 G/C 

3 148903923 A/G 4 120278153 A/G 

10 96421416 G/A 20 56668517 CT/C 

15 24126620 C/G 9 15114269 A/G 

8 55835446 C/G 17 17316631 A/G 

1 77729669 T/C 6 111364344 T/A 

4 146524560 G/T 19 39575176 A/AG 

3 33000357 CAA/C 4 100725248 C/T 

8 119885879 C/T 10 123857554 G/T 

2 41925981 T/C 5 65889329 C/A 

19 49448440 C/T 2 123500110 C/T 

11 76343549 A/T 8 125785784 TTTTAATCCCCA/T 

4 100351436 A/C 11 24347770 C/CGT 

8 12712011 A/G 3 35450033 G/T 

16 49530740 T/C 3 176102604 T/A 
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11 44302338 A/G 22 45727688 A/C 

7 157700614 T/C 3 64183364 C/G 

2 101054149 G/T 16 72806434 A/C 

8 66679221 C/A 5 31748347 AT/A 

19 57656429 T/G 10 128214487 A/G 

15 46963798 G/A 5 122618100 G/C 

3 33672032 T/C 9 95990157 G/A 

1 7952137 T/C 21 27846053 A/G 

18 8479685 T/C 22 19914311 C/A 

9 13806091 T/C 7 128078177 T/C 

2 134793572 G/A 14 96583359 A/G 

1 167568441 T/C 19 29367937 C/G 

14 24372307 TCC/T 13 26536373 C/A 

12 96271658 T/G 7 27527646 C/A 

7 147407076 T/G 22 42134539 T/C 

2 234569137 A/G 8 130635018 C/G 

7 153867574 T/C 16 78147088 T/C 

3 143389746 G/C 4 21239185 A/C 

1 7870048 C/T 1 213570063 G/C 

3 101393583 A/C 6 164518080 A/G 

9 4099566 T/C 13 59033020 C/T 

5 7890892 A/T 3 118166055 T/C 

16 89806347 T/A 8 17182541 A/G 

4 118608729 T/C 4 106199328 CAT/C 

9 85899893 C/G 17 55616505 T/C 

1 38473463 T/C 18 38038290 G/A 

5 62810669 G/T 3 76440573 A/T 

19 5066330 A/G 3 978500 G/A 

2 43360962 G/A 15 78290944 G/A 

9 93515638 C/T 2 23170082 CT/C 

19 11175409 C/T 7 52904446 G/C 

6 125015138 T/C 5 40081675 C/CT 

7 107476870 G/C 17 67877119 A/C 

10 101271789 C/A 3 14483960 T/C 

1 117032783 A/G 3 116728168 A/AC 

10 60078795 A/G 4 61925972 G/A 

10 59842445 G/A 10 83915568 C/A 

4 183881718 G/T 2 212048407 C/G 

12 48295133 T/C 7 122801292 T/C 

6 83526701 TTA/T 2 10312800 A/G 

11 42808742 G/A 6 18384236 A/G 

6 32109938 T/G 8 128990632 A/C 

6 32681928 T/G 4 99749736 G/A 

1 30459797 A/G 9 114011408 T/TA 

14 43517217 G/A 22 44295495 G/C 

11 97321326 C/T 11 113111320 T/C 

5 178552518 G/A 3 4629151 A/C 

8 129031106 G/A 4 38076385 CT/CTT 

7 147851734 A/G 10 53287405 T/G 

2 25159372 A/G 11 132707559 C/A 

2 190646207 C/T 1 15123100 A/G 

4 104904765 A/G 7 105579952 C/T 

9 96679448 A/G 6 44517438 C/T 

18 53111322 G/A 14 59295366 G/A 

19 55058269 A/G 14 23904148 A/G 

4 4883736 G/T 3 1622190 T/G 

17 54859055 A/T 6 152086488 C/A 

5 1705513 C/A 2 161760489 T/C 

12 117661748 T/C 8 1295882 A/G 

10 16221561 G/A 9 22541383 G/A 
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17 32497214 C/T 6 85695180 A/G 

8 4816363 T/C 2 44192157 C/T 

11 79446422 A/C 3 63269031 CA/C 

14 76914497 G/A 17 55961471 A/G 

16 56917245 T/A 1 156882996 C/G 

2 134994754 C/T 1 116306007 T/G 

1 197766291 G/A 19 51816319 T/C 

4 168641015 T/G 16 66122498 C/T 

10 14116573 T/C 4 165697380 A/G 

2 109625736 C/T 13 98960284 T/TCTC 

5 157553602 T/C 4 86874895 T/G 

16 58041836 G/A 20 61999769 A/G 

4 82519888 G/T 20 16102316 A/C 

5 72532174 T/C 7 131986888 C/T 

7 18337611 C/T 20 40964651 T/C 

6 14595376 CT/C 15 61919026 T/G 

3 88529242 T/A 16 84257998 T/C 

6 31613991 G/A 5 156627387 A/G 

21 35732456 G/A 14 59776695 G/T 

14 62869137 C/T 6 75947129 T/C 

4 189026673 G/A 14 62725664 GT/G 

3 58553850 G/A 2 60291353 A/T 

13 30498148 G/A 9 8815084 A/G 

8 59498685 G/T 5 174039157 G/A 
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Table S 3.3: Priority Index gene prioritisation of PsA compared to population controls (top 100) 

Name Rank Rating Description seed nGene cGene eGene dGene pGene fGene 

ICAM1 1 5 intercellular adhesion molecule 1 Y 0 10 1 1 0 1 

IRF1 2 4.940393318 interferon regulatory factor 1 Y 0 7 3 1 0 1 

UBA52 3 4.352710402 ubiquitin A-52 residue ribosomal protein fusion product 1 N 0 0 0 0 0 0 

HINT1 4 4.309093195 histidine triad nucleotide binding protein 1 Y 0 11 0 0 0 0 

CNPY2 5 4.174831518 canopy FGF signaling regulator 2 Y 1 6 9 0 0 0 

HLA-A 6 4.159790954 major histocompatibility complex, class I, A Y 0 0 2 1 1 1 

HLA-DRB1 7 4.159072563 major histocompatibility complex, class II, DR beta 1 N 0 0 0 0 0 0 

PA2G4 8 4.046486201 proliferation-associated 2G4 Y 0 11 0 0 0 0 

MRPL4 9 3.97810986 mitochondrial ribosomal protein L4 Y 0 10 0 0 0 0 

RPL41 10 3.861949122 ribosomal protein L41 Y 0 11 0 0 0 0 

ADRA1B 11 3.835200191 adrenoceptor alpha 1B Y 0 9 0 1 0 0 

STAT2 12 3.808056606 signal transducer and activator of transcription 2 Y 1 0 3 1 0 0 

TYK2 13 3.710202808 tyrosine kinase 2 Y 1 2 1 1 1 0 

GBP2 14 3.708148907 guanylate binding protein 2 N 0 0 0 0 0 0 

ERBB3 15 3.685908689 erb-b2 receptor tyrosine kinase 3 Y 0 6 0 0 0 0 

IRF7 16 3.675547334 interferon regulatory factor 7 N 0 0 0 0 0 0 

IRF5 17 3.666140058 interferon regulatory factor 5 N 0 0 0 0 0 0 

IL4 18 3.650803919 interleukin 4 Y 1 0 0 1 0 1 

HLA-B 19 3.617212967 major histocompatibility complex, class I, B N 0 0 0 0 0 0 

RELA 20 3.61546983 RELA proto-oncogene, NF-kB subunit Y 0 0 1 1 0 1 

HLA-C 21 3.612631951 major histocompatibility complex, class I, C N 0 0 0 0 0 0 

IRF3 22 3.611664817 interferon regulatory factor 3 N 0 0 0 0 0 0 

SOCS3 23 3.607290059 suppressor of cytokine signaling 3 N 0 0 0 0 0 0 

IRF6 24 3.60570456 interferon regulatory factor 6 N 0 0 0 0 0 0 

LYRM7 25 3.594091272 LYR motif containing 7 Y 0 11 0 0 0 0 

MT2A 26 3.592569158 metallothionein 2A N 0 0 0 0 0 0 

CDNF 27 3.588160281 cerebral dopamine neurotrophic factor N 0 0 0 0 0 0 

GBP1 28 3.587127914 guanylate binding protein 1 N 0 0 0 0 0 0 
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IRF8 29 3.586834423 interferon regulatory factor 8 N 0 0 0 0 0 0 

IRF4 30 3.586444244 interferon regulatory factor 4 N 0 0 0 0 0 0 

IFI30 31 3.585611872 IFI30, lysosomal thiol reductase N 0 0 0 0 0 0 

CDC34 32 3.57583334 cell division cycle 34 N 0 0 0 0 0 0 

IRF2 33 3.561728682 interferon regulatory factor 2 N 0 0 0 0 0 0 

MANF 34 3.559485537 mesencephalic astrocyte derived neurotrophic factor N 0 0 0 0 0 0 

BCKDHA 35 3.559459285 branched chain keto acid dehydrogenase E1, alpha polypeptide N 0 0 0 0 0 0 

IRF9 36 3.550137564 interferon regulatory factor 9 N 0 0 0 0 0 0 

OAS3 37 3.544629939 2'-5'-oligoadenylate synthetase 3 N 0 0 0 0 0 0 

ICAM4 38 3.542940216 intercellular adhesion molecule 4 (Landsteiner-Wiener blood group) Y 0 2 0 0 0 1 

OAS2 39 3.535934279 2'-5'-oligoadenylate synthetase 2 N 0 0 0 0 0 0 

OAS1 40 3.533267389 2'-5'-oligoadenylate synthetase 1 N 0 0 0 0 0 0 

STAT5A 41 3.520790538 signal transducer and activator of transcription 5A Y 0 0 1 0 0 0 

OASL 42 3.519954602 2'-5'-oligoadenylate synthetase like N 0 0 0 0 0 0 

BIRC3 43 3.501149194 baculoviral IAP repeat containing 3 Y 0 0 1 0 1 1 

SP100 44 3.490506429 SP100 nuclear antigen N 0 0 0 0 0 0 

UBE2L3 45 3.469638952 ubiquitin conjugating enzyme E2 L3 Y 1 0 8 0 0 0 

XAF1 46 3.452209601 XIAP associated factor 1 N 0 0 0 0 0 0 

HIST1H4I 47 3.44707419 histone cluster 1 H4 family member i N 0 0 0 0 0 0 

ICAM3 48 3.446472953 intercellular adhesion molecule 3 Y 1 0 0 1 0 1 

B2M 49 3.44642201 beta-2-microglobulin N 0 0 0 0 0 0 

PTAFR 50 3.438886044 platelet activating factor receptor N 0 0 0 0 0 0 

IFIT3 51 3.425874558 interferon induced protein with tetratricopeptide repeats 3 Y 0 0 1 1 0 0 

SMARCC2 52 3.417587703 SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin subfamily c member 2 

Y 0 4 0 0 0 0 

IFIT1 53 3.408096976 interferon induced protein with tetratricopeptide repeats 1 N 0 0 0 0 0 0 

IL23A 54 3.399631448 interleukin 23 subunit alpha Y 1 3 0 1 0 1 

MYLIP 55 3.38611654 myosin regulatory light chain interacting protein N 0 0 0 0 0 0 

LRRTM4 56 3.384886631 leucine rich repeat transmembrane neuronal 4 N 0 0 0 0 0 0 

RNASEL 57 3.383931485 ribonuclease L N 0 0 0 0 0 0 

STAT4 58 3.382273889 signal transducer and activator of transcription 4 N 0 0 0 0 0 0 
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RPL10 59 3.363527835 ribosomal protein L10 N 0 0 0 0 0 0 

ISG20 60 3.361389542 interferon stimulated exonuclease gene 20 N 0 0 0 0 0 0 

TLR5 61 3.359550553 toll like receptor 5 N 0 0 0 0 0 0 

IL12B 62 3.354868142 interleukin 12B Y 1 0 0 1 1 1 

NFKB1 63 3.349414247 nuclear factor kappa B subunit 1 N 0 0 0 0 0 0 

HDAC1 64 3.346823476 histone deacetylase 1 N 0 0 0 0 0 0 

HLA-F 65 3.342030103 major histocompatibility complex, class I, F Y 0 0 1 0 0 1 

CIITA 66 3.340438408 class II major histocompatibility complex transactivator N 0 0 0 0 0 0 

IL23R 67 3.332593164 interleukin 23 receptor Y 1 0 0 1 1 1 

IFNAR2 68 3.32737032 interferon alpha and beta receptor subunit 2 N 0 0 0 0 0 0 

CCND1 69 3.302125935 cyclin D1 N 0 0 0 0 0 0 

HDAC2 70 3.300024732 histone deacetylase 2 N 0 0 0 0 0 0 

MX1 71 3.29103665 MX dynamin like GTPase 1 N 0 0 0 0 0 0 

ESM1 72 3.289181307 endothelial cell specific molecule 1 N 0 0 0 0 0 0 

CTSS 73 3.279879127 cathepsin S N 0 0 0 0 0 0 

IFI6 74 3.278752484 interferon alpha inducible protein 6 N 0 0 0 0 0 0 

IFITM3 75 3.274479208 interferon induced transmembrane protein 3 N 0 0 0 0 0 0 

IFI35 76 3.269138309 interferon induced protein 35 N 0 0 0 0 0 0 

IFITM2 77 3.266840418 interferon induced transmembrane protein 2 N 0 0 0 0 0 0 

IFI27 78 3.261846502 interferon alpha inducible protein 27 N 0 0 0 0 0 0 

STAT1 79 3.26125912 signal transducer and activator of transcription 1 N 0 0 0 0 0 0 

CDKN1A 80 3.26083937 cyclin dependent kinase inhibitor 1A Y 0 0 1 1 1 0 

SRC 81 3.255832321 SRC proto-oncogene, non-receptor tyrosine kinase N 0 0 0 0 0 0 

CLEC4A 82 3.255591433 C-type lectin domain family 4 member A N 0 0 0 0 0 0 

STAT5B 83 3.253886479 signal transducer and activator of transcription 5B N 0 0 0 0 0 0 

TP53 84 3.253233158 tumor protein p53 N 0 0 0 0 0 0 

IFNB1 85 3.246657929 interferon beta 1 N 0 0 0 0 0 0 

HMGB1 86 3.24420588 high mobility group box 1 N 0 0 0 0 0 0 

ESYT1 87 3.241897194 extended synaptotagmin 1 Y 0 10 0 0 0 0 

RSAD2 88 3.237154139 radical S-adenosyl methionine domain containing 2 N 0 0 0 0 0 0 

IFITM1 89 3.234173445 interferon induced transmembrane protein 1 N 0 0 0 0 0 0 
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IL7R 90 3.228321104 interleukin 7 receptor Y 0 0 1 1 1 1 

EGR1 91 3.228190701 early growth response 1 N 0 0 0 0 0 0 

IFIT2 92 3.226452027 interferon induced protein with tetratricopeptide repeats 2 N 0 0 0 0 0 0 

MX2 93 3.222930533 MX dynamin like GTPase 2 N 0 0 0 0 0 0 

ICAM2 94 3.216931844 intercellular adhesion molecule 2 N 0 0 0 0 0 0 

VCAM1 95 3.213028316 vascular cell adhesion molecule 1 N 0 0 0 0 0 0 

ISG15 96 3.211927723 ISG15 ubiquitin-like modifier N 0 0 0 0 0 0 

IL18 97 3.209932192 interleukin 18 N 0 0 0 0 0 0 

IP6K2 98 3.207454349 inositol hexakisphosphate kinase 2 N 0 0 0 0 0 0 

STAT3 99 3.205733531 signal transducer and activator of transcription 3 N 0 0 0 0 0 0 

STAT6 100 3.203385213 signal transducer and activator of transcription 6 N 0 0 0 0 0 0 

 
 
 

          

 
The nGene column specifies whether or not the nearby gene 
The cGene column shows how many conformation genes (cell types) are identified 
The eGene column shows how many eQTL genes (cell types) are identified 
The seed column specifies whether or not it is a genomic seed gene (nGene, cGene or eGene) 
The dGene column specifies whether or not the disease gene 
The pGene column specifies whether or not the phenotype gene 
The fGene column specifies whether or not the function gene 
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Table S 3.4: Priority Index pathway prioritisation for PsA compared to population controls 

name nAnno nOverlap fc zscore pvalue adjp or CIl CIu distance namespace 

Cytokine Signaling in Immune system 656 95 14.7 35.7 1.30E-92 7.10E-91 44.5 31.3 64 2 Immune System 

Interferon Signaling 186 65 35.4 47.1 2.10E-87 5.80E-86 94.2 63.8 138 3 Immune System 

Interferon alpha/beta signaling 69 47 69 56.5 9.10E-81 1.70E-79 310 175 553 4 Immune System 

Interferon gamma signaling 81 37 46.3 40.8 5.80E-54 8.00E-53 111 67 185 4 Immune System 

Signaling by Interleukins 445 41 9.33 17.8 1.40E-28 1.60E-27 13.6 9.15 20 3 Immune System 

Interleukin-4 and Interleukin-13 signaling 108 23 21.6 21.4 1.20E-24 1.10E-23 31.8 18.5 52.9 4 Immune System 

Innate Immune System 965 41 4.3 10.6 5.40E-16 3.80E-15 5.75 3.89 8.36 2 Immune System 

DDX58/IFIH1-mediated induction of interferon-alpha/beta 75 15 20.3 16.7 5.60E-16 3.80E-15 27.7 14.2 51 3 Immune System 

Adaptive Immune System 679 30 4.48 9.25 3.50E-12 1.90E-11 5.54 3.56 8.4 2 Immune System 

Interleukin-2 family signaling 42 10 24.1 15 7.30E-12 3.70E-11 33.5 14.4 71.4 4 Immune System 

Interleukin-3, Interleukin-5 and GM-CSF signaling 46 10 22 14.3 2.00E-11 9.00E-11 29.7 12.9 62.6 4 Immune System 

Toll-like Receptor Cascades 151 15 10.1 11.2 2.30E-11 9.80E-11 12.2 6.45 21.5 3 Immune System 

Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell 

104 13 12.7 11.9 2.80E-11 1.10E-10 15.6 7.8 28.9 3 Immune System 

Interleukin-12 family signaling 58 10 17.5 12.5 2.30E-10 7.80E-10 22.3 9.85 45.8 4 Immune System 

Antiviral mechanism by IFN-stimulated genes 70 10 14.5 11.3 1.60E-09 4.50E-09 17.8 7.97 36 4 Immune System 

ISG15 antiviral mechanism 70 10 14.5 11.3 1.60E-09 4.50E-09 17.8 7.97 36 5 Immune System 

Toll Like Receptor 3 (TLR3) Cascade 96 11 11.6 10.4 2.60E-09 7.10E-09 13.9 6.55 26.9 4 Immune System 

MyD88-independent TLR4 cascade  97 11 11.5 10.3 2.90E-09 7.20E-09 13.8 6.47 26.6 5 Immune System 

TRIF(TICAM1)-mediated TLR4 signaling  97 11 11.5 10.3 2.90E-09 7.20E-09 13.8 6.47 26.6 6 Immune System 

Toll Like Receptor 4 (TLR4) Cascade 125 12 9.72 9.78 3.70E-09 8.90E-09 11.5 5.63 21.5 4 Immune System 

Toll Like Receptor 7/8 (TLR7/8) Cascade 91 10 11.1 9.68 2.10E-08 4.10E-08 13.2 5.97 26.2 4 Immune System 

MyD88 dependent cascade initiated on endosome 91 10 11.1 9.68 2.10E-08 4.10E-08 13.2 5.97 26.2 5 Immune System 

Toll Like Receptor 9 (TLR9) Cascade 95 10 10.7 9.43 3.20E-08 6.10E-08 12.6 5.69 24.9 4 Immune System 

Fc epsilon receptor (FCERI) signaling 123 10 8.23 8.04 3.80E-07 6.30E-07 9.43 4.31 18.5 3 Immune System 

Class I MHC mediated antigen processing & presentation 335 12 3.63 4.86 1.20E-04 1.50E-04 3.96 1.98 7.24 3 Immune System 

Neutrophil degranulation 445 11 2.5 3.21 0.0047 0.005 2.66 1.29 4.96 3 Immune System 

PIP3 activates AKT signaling 250 18 7.29 10 4.90E-11 1.80E-10 8.7 4.92 14.6 3 Signal Transduction 

Intracellular signaling by second messengers 277 18 6.58 9.36 2.60E-10 8.50E-10 7.78 4.4 13 2 Signal Transduction 

PTEN Regulation 137 11 8.13 8.37 1.10E-07 1.90E-07 9.36 4.46 17.8 4 Signal Transduction 

Signaling by Receptor Tyrosine Kinases 471 18 3.87 6.32 9.30E-07 1.40E-06 4.39 2.5 7.29 2 Signal Transduction 

MAPK family signaling cascades 282 13 4.67 6.21 4.50E-06 6.50E-06 5.21 2.67 9.36 2 Signal Transduction 

MAPK1/MAPK3 signaling 244 11 4.57 5.61 3.10E-05 3.90E-05 5.03 2.42 9.44 3 Signal Transduction 

RAF/MAP kinase cascade 238 10 4.26 5.06 1.30E-04 1.50E-04 4.64 2.15 8.95 4 Signal Transduction 
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Table S 3.5: Priority Index gene prioritisation of PsA compared to PsC (top 100) 

name rank rating description seed nGene cGene eGene dGene pGene fGene 

DCLRE1B 1 5 DNA cross-link repair 1B Y 0 10 0 0 0 0 

UBA52 2 4.975230408 ubiquitin A-52 residue ribosomal protein fusion product 1 N 0 0 0 0 0 0 

PINX1 3 4.956885085 PIN2/TERF1 interacting, telomerase inhibitor 1 N 0 0 0 0 0 0 

HLA-DRB1 4 4.920786032 major histocompatibility complex, class II, DR beta 1 N 0 0 0 0 0 0 

AP4B1 5 4.917912617 adaptor related protein complex 4 beta 1 subunit Y 0 10 0 0 0 0 

PSMD4 6 4.884988197 proteasome 26S subunit, non-ATPase 4Z N 0 0 0 0 0 0 

HIST1H4I 7 4.800472817 histone cluster 1 H4 family member i N 0 0 0 0 0 0 

HSPA8 8 4.628697334 heat shock protein family A (Hsp70) member 8 N 0 0 0 0 0 0 

PSMB8 9 4.57703256 proteasome subunit beta 8 Y 0 0 4 1 1 0 

SLX4 10 4.47732211 SLX4 structure-specific endonuclease subunit N 0 0 0 0 0 0 

HIST1H2BD 11 4.471095379 histone cluster 1 H2B family member d N 0 0 0 0 0 0 

ARF1 12 4.439012004 ADP ribosylation factor 1 N 0 0 0 0 0 0 

AP2A2 13 4.429961417 adaptor related protein complex 2 alpha 2 subunit N 0 0 0 0 0 0 

CD74 14 4.413720058 CD74 molecule N 0 0 0 0 0 0 

AP1M2 15 4.378311175 adaptor related protein complex 1 mu 2 subunit N 0 0 0 0 0 0 

TINF2 16 4.375616635 TERF1 interacting nuclear factor 2 N 0 0 0 0 0 0 

HIST1H2AI 17 4.37367932 histone cluster 1 H2A family member i N 0 0 0 0 0 0 

TERF1 18 4.362849314 telomeric repeat binding factor 1 N 0 0 0 0 0 0 

AP2M1 19 4.347590203 adaptor related protein complex 2 mu 1 subunit N 0 0 0 0 0 0 

AP1M1 20 4.338782427 adaptor related protein complex 1 mu 1 subunit N 0 0 0 0 0 0 

AP4S1 21 4.329961121 adaptor related protein complex 4 sigma 1 subunit N 0 0 0 0 0 0 

AP2S1 22 4.325415762 adaptor related protein complex 2 sigma 1 subunit N 0 0 0 0 0 0 

FANCD2 23 4.319326796 Fanconi anemia complementation group D2 N 0 0 0 0 0 0 

AP2A1 24 4.288109702 adaptor related protein complex 2 alpha 1 subunit N 0 0 0 0 0 0 

RAD50 25 4.273094701 RAD50 double strand break repair protein N 0 0 0 0 0 0 

AP3D1 26 4.251789493 adaptor related protein complex 3 delta 1 subunit N 0 0 0 0 0 0 

TP53 27 4.226906926 tumor protein p53 N 0 0 0 0 0 0 

MSH2 28 4.222006183 mutS homolog 2 N 0 0 0 0 0 0 

AP1S2 29 4.221584618 adaptor related protein complex 1 sigma 2 subunit N 0 0 0 0 0 0 

MRE11 30 4.215482162 MRE11 homolog, double strand break repair nuclease N 0 0 0 0 0 0 

CLTCL1 31 4.214498808 clathrin heavy chain like 1 N 0 0 0 0 0 0 

AP2B1 32 4.212505496 adaptor related protein complex 2 beta 1 subunit N 0 0 0 0 0 0 

CLHC1 33 4.197066907 clathrin heavy chain linker domain containing 1 N 0 0 0 0 0 0 

CLTC 34 4.194192375 clathrin heavy chain N 0 0 0 0 0 0 

AP1S1 35 4.179973071 adaptor related protein complex 1 sigma 1 subunit N 0 0 0 0 0 0 

TERF2 36 4.171809471 telomeric repeat binding factor 2 N 0 0 0 0 0 0 

AP4E1 37 4.165081094 adaptor related protein complex 4 epsilon 1 subunit N 0 0 0 0 0 0 
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AP1G1 38 4.159882807 adaptor related protein complex 1 gamma 1 subunit N 0 0 0 0 0 0 

POT1 39 4.158602366 protection of telomeres 1 N 0 0 0 0 0 0 

H2AFX 40 4.140188325 H2A histone family member X N 0 0 0 0 0 0 

EGFR 41 4.131787228 epidermal growth factor receptor N 0 0 0 0 0 0 

AP4M1 42 4.127111165 adaptor related protein complex 4 mu 1 subunit N 0 0 0 0 0 0 

AP1B1 43 4.0150677 adaptor related protein complex 1 beta 1 subunit N 0 0 0 0 0 0 

PSMA2 44 3.995607473 proteasome subunit alpha 2 N 0 0 0 0 0 0 

AP5M1 45 3.979231907 adaptor related protein complex 5 mu 1 subunit N 0 0 0 0 0 0 

PSMA1 46 3.976644333 proteasome subunit alpha 1 N 0 0 0 0 0 0 

BRCA1 47 3.973286828 BRCA1, DNA repair associated N 0 0 0 0 0 0 

HIST1H3A 48 3.966327722 histone cluster 1 H3 family member a N 0 0 0 0 0 0 

CBL 49 3.961143353 Cbl proto-oncogene N 0 0 0 0 0 0 

HIST3H3 50 3.954073911 histone cluster 3 H3 N 0 0 0 0 0 0 

SH3GL2 51 3.945336353 SH3 domain containing GRB2 like 2, endophilin A1 N 0 0 0 0 0 0 

CLTA 52 3.943787535 clathrin light chain A N 0 0 0 0 0 0 

SHC1 53 3.934436726 SHC adaptor protein 1 N 0 0 0 0 0 0 

FYN 54 3.930766385 FYN proto-oncogene, Src family tyrosine kinase N 0 0 0 0 0 0 

CSNK2A2 55 3.916214587 casein kinase 2 alpha 2 N 0 0 0 0 0 0 

UBE2I 56 3.911282904 ubiquitin conjugating enzyme E2 I N 0 0 0 0 0 0 

HSP90AA1 57 3.910386368 heat shock protein 90 alpha family class A member 1 N 0 0 0 0 0 0 

DNM2 58 3.869353857 dynamin 2 N 0 0 0 0 0 0 

AP1G2 59 3.864232735 adaptor related protein complex 1 gamma 2 subunit N 0 0 0 0 0 0 

RPA1 60 3.863219111 replication protein A1 N 0 0 0 0 0 0 

GAK 61 3.830124263 cyclin G associated kinase N 0 0 0 0 0 0 

RPS6KA3 62 3.823398182 ribosomal protein S6 kinase A3 N 0 0 0 0 0 0 

JUN 63 3.820781958 Jun proto-oncogene, AP-1 transcription factor subunit N 0 0 0 0 0 0 

SH3KBP1 64 3.814962548 SH3 domain containing kinase binding protein 1 N 0 0 0 0 0 0 

CDH1 65 3.795298843 cadherin 1 N 0 0 0 0 0 0 

MDM2 66 3.793510291 MDM2 proto-oncogene N 0 0 0 0 0 0 

MAPK1 67 3.783973404 mitogen-activated protein kinase 1 N 0 0 0 0 0 0 

CD28 68 3.781727097 CD28 molecule N 0 0 0 0 0 0 

SRC 69 3.770876694 SRC proto-oncogene, non-receptor tyrosine kinase N 0 0 0 0 0 0 

PSMC5 70 3.768333807 proteasome 26S subunit, ATPase 5 N 0 0 0 0 0 0 

AKT1 71 3.763080821 AKT serine/threonine kinase 1 N 0 0 0 0 0 0 

H3F3A 72 3.761210909 H3 histone family member 3A N 0 0 0 0 0 0 

UBB 73 3.758235277 ubiquitin B N 0 0 0 0 0 0 

TERT 74 3.755481782 telomerase reverse transcriptase N 0 0 0 0 0 0 

CLINT1 75 3.750480719 clathrin interactor 1 N 0 0 0 0 0 0 

RPS27A 76 3.734271571 ribosomal protein S27a N 0 0 0 0 0 0 

TNKS 77 3.731367667 tankyrase N 0 0 0 0 0 0 
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ERCC2 78 3.731324605 ERCC excision repair 2, TFIIH core complex helicase subunit N 0 0 0 0 0 0 

AP1S3 79 3.722883733 adaptor related protein complex 1 sigma 3 subunit N 0 0 0 0 0 0 

KAT5 80 3.720177436 lysine acetyltransferase 5 N 0 0 0 0 0 0 

EZR 81 3.71900091 ezrin N 0 0 0 0 0 0 

HIST1H2AE 82 3.698656701 histone cluster 1 H2A family member e N 0 0 0 0 0 0 

PSMA3 83 3.697755004 proteasome subunit alpha 3 N 0 0 0 0 0 0 

PSMB9 84 3.697617561 proteasome subunit beta 9 N 0 0 0 0 0 0 

CDKN1A 85 3.688656583 cyclin dependent kinase inhibitor 1A N 0 0 0 0 0 0 

NBN 86 3.683794959 nibrin N 0 0 0 0 0 0 

ITSN1 87 3.668786477 intersectin 1 N 0 0 0 0 0 0 

PSMC2 88 3.654870753 proteasome 26S subunit, ATPase 2 N 0 0 0 0 0 0 

TP63 89 3.653596939 tumor protein p63 N 0 0 0 0 0 0 

MYB 90 3.652249381 MYB proto-oncogene, transcription factor N 0 0 0 0 0 0 

PSMD7 91 3.65160852 proteasome 26S subunit, non-ATPase 7 N 0 0 0 0 0 0 

DNAJC6 92 3.639322686 DnaJ heat shock protein family (Hsp40) member C6 N 0 0 0 0 0 0 

SUMO2 93 3.639188586 small ubiquitin-like modifier 2 N 0 0 0 0 0 0 

DVL2 94 3.631253516 dishevelled segment polarity protein 2 N 0 0 0 0 0 0 

EGF 95 3.63016769 epidermal growth factor N 0 0 0 0 0 0 

ERCC1 96 3.628847963 ERCC excision repair 1, endonuclease non-catalytic subunit N 0 0 0 0 0 0 

PTEN 97 3.625723315 phosphatase and tensin homolog N 0 0 0 0 0 0 

MTOR 98 3.623929143 mechanistic target of rapamycin N 0 0 0 0 0 0 

EPS15 99 3.622676387 epidermal growth factor receptor pathway substrate 15 N 0 0 0 0 0 0 

SSRP1 100 3.620684321 structure specific recognition protein 1 Y 0 0 4 0 0 0 
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Table S 3.6: Priority Index pathway prioritisation for PsA compared to PsC 

name nAnno nOverlap fc zscore pvalue adjp or CIl CIu distance namespace 

Signaling by WNT 290 57 19.9 32.4 9.90E-60 9.50E-58 38.8 26.7 56.1 2 Signal Transduction 

PCP/CE pathway 88 40 46 42.3 2.90E-58 1.80E-56 113 69.2 184 4 Signal Transduction 

TCF dependent signaling in response to WNT 201 48 24.1 33 3.00E-54 5.80E-53 45.6  30.6 67.6 3 Signal Transduction 

Regulation of PTEN stability and activity 68 35 52 42.2 2.00E-53 3.00E-52 138 80.2 238 5 Signal Transduction 

Beta-catenin independent WNT signaling 135 41 30.7 34.7 6.10E-51 6.00E-50 59.6 38.4 91.4 3 Signal Transduction 

Degradation of AXIN 54 31 58 42 2.40E-49 1.90E-48 169 92.2 313 4 Signal Transduction 

PIP3 activates AKT signaling 250 48 19.4 29.3 2.80E-49 2.10E-48 34.5 23.3 50.5 3 Signal Transduction 

Degradation of DVL 56 31 56 41.2 1.20E-48 8.20E-48 156 86.1 286 4 Signal Transduction 

PTEN Regulation 137 39 28.8 32.6 3.90E-47 1.90E-46 53.3 34.3 82.1 4 Signal Transduction 

Asymmetric localization of PCP proteins 61 31 51.4 39.4 4.80E-47 2.40E-46 130 73.5 228 5 Signal Transduction 

Intracellular signaling by second messengers 277 48 17.5 27.7 5.30E-47 2.50E-46 30.4 20.5 44.4 2 Signal Transduction 

MAPK6/MAPK4 signaling 87 34 39.5 36 1.40E-46 5.60E-46 82.5 50 135 3 Signal Transduction 

Degradation of GLI1 by the proteasome 56 30 54.2 39.8 1.80E-46 7.10E-46 144 79.4 263 4 Signal Transduction 

NIK-->noncanonical NF-kB signaling 57 30 53.2 39.5 3.70E-46 1.40E-45 139 76.8 251 4 Immune System 

Dectin-1 mediated noncanonical NF-kB signaling 58 30 52.3 39.1 7.70E-46 2.60E-45 134 74.5 241 5 Immune System 

GLI3 is processed to GLI3R by the proteasome 59 30 51.4 38.8 1.60E-45 5.10E-45 129 72.3 229 4 Signal Transduction 

Hedgehog ligand biogenesis 63 30 48.1 37.5 2.20E-44 6.40E-44 113 64.4 199 3 Signal Transduction 

Fc epsilon receptor (FCERI) signaling 123 36 29.6 31.8 5.90E-44 1.60E-43 54 34.1 84.4 3 Immune System 

Activation of NF-kappaB in B cells 65 30 46.7 36.9 7.60E-44 2.10E-43 106 61.2 186 5 Immune System 

Regulation of RAS by GAPs 67 30 45.3 36.3 2.50E-43 6.00E-43 101 58.1 173 5 Signal Transduction 

Signaling by the B Cell Receptor (BCR) 106 34 32.4 32.5 4.60E-43 1.10E-42 60.7 37.6 96.8 3 Immune System 

Adaptive Immune System 677 61 9.11 21.6 5.20E-43 1.30E-42 16 11.3 22.7 2 Immune System 

Cross-presentation of soluble exogenous antigens 
(endosomes) 

49 27 55.7 38.3 2.60E-42 5.80E-42 149 79.3 285 5 Immune System 

Degradation of beta-catenin by the destruction complex 80 31 39.2 34.2 2.60E-42 5.70E-42 79.4 47.2 133 3 Signal Transduction 

Downstream TCR signaling 92 32 35.2 32.9 7.40E-42 1.60E-41 67.4 40.9 110 4 Immune System 

Hedgehog 'on' state 83 31 37.8 33.6 1.00E-41 2.20E-41 74.8 44.6 123 3 Signal Transduction 

Downstream signaling events of B Cell Receptor (BCR) 78 30 38.9 33.5 7.80E-41 1.60E-40 77.8 45.9 131 4 Immune System 

FCERI mediated NF-kB activation 78 30 38.9 33.5 7.80E-41 1.60E-40 77.8 45.9 131 4 Immune System 

CLEC7A (Dectin-1) signaling 93 31 33.7 31.6 7.20E-40 1.40E-39 62.7 37.9 102 4 Immune System 

Signaling by Interleukins 445 50 11.4 22.2 2.20E-39 4.10E-39 18.5 12.7 26.6 3 Immune System 

TCR signaling 110 32 29.4 29.9 6.00E-39 1.10E-38 51.8 31.9 82.7 3 Immune System 

Interleukin-1 signaling 101 31 31 30.3 1.50E-38 2.70E-38 55.4 33.8 89.6 5 Immune System 

MAPK family signaling cascades 282 42 15.1 23.8 4.90E-38 9.00E-38 23.9 16 35.3 2 Signal Transduction 

C-type lectin receptors (CLRs) 134 33 24.9 27.8 1.80E-37 3.20E-37 41.6 26.1 65 3 Immune System 

TNFR2 non-canonical NF-kB pathway 98 30 31 29.7 2.80E-37 4.90E-37 54.8 33.2 89 3 Immune System 

MAPK1/MAPK3 signaling 244 39 16.2 23.9 1.70E-36 3.00E-36 25.4 16.7 37.9 3 Signal Transduction 

Interleukin-1 family signaling 133 32 24.3 27 5.70E-36 9.70E-36 40 25 62.8 4 Immune System 
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RAF/MAP kinase cascade 238 38 16.1 23.5 1.60E-35 2.70E-35 25.1 16.5 37.6 4 Signal Transduction 

Hedgehog 'off' state 111 30 27.3 27.8 2.00E-35 3.40E-35 46 28.1 73.8 3 Signal Transduction 

Antigen processing-Cross presentation 85 27 32.1 28.8 4.40E-34 7.10E-34 56.4 33.2 94.3 4 Immune System 

Signaling by Hedgehog 145 31 21.6 24.9 4.20E-33 6.70E-33 34 21.2 53.4 2 Signal Transduction 

Cytokine Signaling in Immune system 654 51 7.88 18 2.60E-32 4.10E-32 12.3 8.52 17.6 2 Immune System 

Innate Immune System 965 54 5.66 14.9 4.30E-27 6.20E-27 8.71 6.08 12.4 2 Immune System 

Antigen processing: Ubiquitination & Proteasome 
degradation 

283 30 10.7 16.5 1.30E-22 1.80E-22 14.6 9.25 22.4 4 Immune System 

Class I MHC mediated antigen processing & presentation 335 30 9.05 14.9 1.70E-20 2.30E-20 12.1 7.67 18.4 3 Immune System 

MHC class II antigen presentation 116 20 17.4 17.8 1.40E-19 1.80E-19 23.9 13.5 40.4 3 Immune System 

Signaling by EGFR 38 14 37.3 22.4 3.60E-19 4.60E-19 64.2 30 132 3 Signal Transduction 

EGFR downregulation 23 12 52.8 24.8 6.90E-19 8.70E-19 118 47 303 4 Signal Transduction 

Signaling by Receptor Tyrosine Kinases 471 32 6.87 12.9 3.10E-18 3.90E-18 9 5.82 13.6 2 Signal Transduction 

Signaling by NTRKs 140 18 13 14.3 2.20E-15 2.60E-15 16.6 9.26 28.4 3 Signal Transduction 

Formation of the beta-catenin:TCF transactivating 
complex 

68 13 19.3 15.1 1.00E-13 1.20E-13 25.8 12.6 49.2 4 Signal Transduction 

Signaling by NTRK1 (TRKA) 57 12 21.3 15.3 2.70E-13 3.10E-13 28.9 13.6 57.1 4 Signal Transduction 

Signaling by ERBB2 48 11 23.2 15.4 1.00E-12 1.10E-12 32 14.4 65.6 3 Signal Transduction 

Signaling by Non-Receptor Tyrosine Kinases 53 10 19.1 13.2 9.00E-11 9.60E-11 24.8 10.9 51.4 2 Signal Transduction 

Signaling by PTK6 53 10 19.1 13.2 9.00E-11 9.60E-11 24.8 10.9 51.4 3 Signal Transduction 

Signaling by MET 77 11 14.4 11.8 2.30E-10 2.50E-10 17.9 8.35 35.1 3 Signal Transduction 

Cytosolic sensors of pathogen-associated DNA  67 10 15.1 11.6 1.00E-09 1.10E-09 18.7 8.35 38 3 Immune System 

Neutrophil degranulation 445 20 4.54 7.58 1.60E-08 1.60E-08 5.28 3.09 8.6 3 Immune System 

Negative regulation of the PI3K/AKT network 102 10 9.91 9.03 6.50E-08 6.70E-08 11.6 5.26 22.9 4 Signal Transduction 

RHO GTPase Effectors 285 14 4.97 6.76 9.10E-07 9.20E-07 5.6 2.94 9.88 3 Signal Transduction 

Toll-like Receptor Cascades 151 10 6.7 7.03 2.50E-06 2.60E-06 7.53 3.46 14.7 3 Immune System 

Signaling by Rho GTPases 407 15 3.73 5.57 1.20E-05 1.30E-05 4.14 2.24 7.17 2 Signal Transduction 
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Table S 3.7: Classification performance metrics for random forest and conditional random forest in internal validation (IV) 
using the PsA-BSTOP GWAS and external validation (EV) using the UK Biobank ICD10 dataset 

Measurement Random forest  Conditional inference forest 

IV EV IV EV 

Overall performance         

Scaled Brier 0.043 -0.73 0.015 -0.62 

Brier score 0.22 0.3 0.23 0.32 

Discrimination         

AUC (95% CI) 0.61 (0.56―0.66) 0.57 0.58 0.55 

(0.54―0.61) (0.53 ― 0.63) (0.51 ― 0.58) 

Calibration         

CITL (95% CI) 0.27 1.2 0.88 1.31 

(-0.13―0.69) (0.92―1.51) (0.04 ― 1.72) (0.92 ―1.51) 

Calibration slope (95% CI) -1.6 -1.19 -2.6 -1.33 

(- 2.4 ―- 0.89) (-1.68 ― -0.70) (- 4.15 ― - 1.10) (- 1.68 ― - 0.70) 

Hosmer Lemeshow test P–Value P–Value P–Value P–Value 

< 0.05 < 0.05 < 0.05 < 0.05 

Clinical Usefulness         

Sensitivity (TPR) 100% 100% 100% 100% 

Specificity (TNR) 1% 2% 0% 0% 

Accuracy 64% 37% 63% 36% 

Precision 64% 36% 63% 36% 

Fall out 99% 98% 100% 100% 

Negative predictive value 67% 88% - - 

 

 

Table S 3.8: SNP weight for best model from SparSNP cross-validation (intercept = 0.335167696577) 

rsid chromosome position allele weight PAGE_BSTOP_pvalue 

rs1050414 6 31239506 G -0.114679609 1.06E-57 

rs13200569 6 31243615 A -0.039887584 7.35E-50 

rs28368843 6 32452587 T 0.037078621 1.96E-18 

rs9266042 6 31318621 T 0.036446471 2.60E-41 

rs142430718 3 121833096 A -0.034665909 1.03E-05 

rs17219918 6 32734536 A 0.029656454 5.58E-13 

rs28780099 6 30351417 G -0.026923895 3.59E-27 

rs62525611 8 130587749 A -0.025422259 9.44E-06 

rs4992474 6 31318933 T 0.025381784 2.34E-41 

rs9271589 6 32591128 A -0.021899184 1.27E-27 

rs9804640 11 103425084 T -0.020359225 3.63E-06 

rs34277309 6 31329245 G 0.019344699 1.97E-10 

rs34367447 3 14811545 T 0.018800983 6.96E-06 

rs28894993 6 31289714 T -0.018612436 3.59E-55 

rs145975585 2 29470405 T -0.017974822 1.51E-04 

rs17632922 7 53827591 A -0.016983665 6.04E-06 

rs4148872 6 32802807 T 0.016383525 2.81E-15 

rs79194269 7 80969310 C -0.015925994 3.15E-05 

rs2516446 6 31392484 G 0.015334997 2.88E-12 

rs115559682 2 29490497 C -0.014777458 1.30E-04 

rs9373578 6 149194713 T 0.013695151 7.99E-05 

rs28732138 6 31316699 A -0.013252876 6.05E-55 

rs7575369 2 169565265 C 0.012647419 1.06E-05 

rs505920 1 57663090 T 0.012316901 3.65E-05 

rs146551330 2 54464318 C -0.011435356 9.99E-05 

rs72930650 2 205254577 A 0.011333139 0.0012056 

rs28732092 6 31052632 T -0.010896041 9.09E-50 

rs12529559 6 32209198 T 0.009996496 2.58E-13 

rs6440720 3 150899246 C -0.00964749 7.37E-06 
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rs75815464 6 88044314 A 0.00963577 2.95E-05 

rs10212501 3 73346745 A -0.009471677 4.07E-06 

rs13200571 6 31271511 C -0.009302234 9.39E-53 

rs116834013 6 22737787 T 0.009036911 1.13E-04 

rs17475879 6 30364508 T -0.008698548 4.52E-27 

rs7602137 2 197133368 C 0.008453562 4.43E-05 

rs9276826 6 32830568 G 0.008052906 2.77E-15 

rs80053068 6 31270026 C 0.008032296 1.19E-17 

rs12669972 7 81042114 G -0.007912771 5.04E-05 

rs142425912 13 83204936 A -0.007749795 8.40E-05 

rs12572197 10 6110180 T -0.007379361 2.59E-04 

rs113362878 6 93393634 T 0.007351 1.28E-05 

rs4311865 1 166323776 G -0.007227813 5.14E-05 

rs12699985 7 18854401 C 0.007103014 5.20E-05 

rs78462601 21 34824576 T -0.006857017 5.29E-04 

rs61800548 1 93236334 G 0.006268311 1.34E-05 

rs7568419 2 177370519 C -0.006155207 2.51E-04 

rs12358220 10 402317 T -0.006040794 5.67E-05 

rs77636863 1 194463869 C -0.005873146 4.56E-05 

rs1264457 6 30458064 G 0.005856222 1.16E-09 

rs7561698 2 197133470 G 0.005855492 4.35E-05 

rs772075 10 36196822 C 0.005734677 2.46E-05 

rs17644768 7 53863582 T -0.005664697 1.87E-05 

rs191937531 3 166861263 C -0.005495351 0.00212225 

rs60014421 5 157105540 G 0.005441417 2.73E-05 

rs13216197 6 31271018 C -0.005404996 1.63E-52 

rs59110939 11 27376883 G 0.005400055 6.86E-06 

rs4694504 4 73496691 G -0.005295586 2.55E-05 

rs11048659 12 26851607 C 0.005084801 4.99E-05 

rs7532161 1 67642223 A 0.004982442 6.15E-08 

rs28589559 6 32587716 T 0.004949656 2.66E-17 

rs3016635 11 127804345 T -0.004646266 1.59E-04 

rs114936791 6 33106688 A 0.004343472 9.62E-06 

rs4688224 3 65013021 A 0.004270372 1.60E-04 

rs9266225 6 31325193 C 0.00407958 2.71E-09 

rs140705201 19 2908315 G 0.004030814 0.00294328 

rs17206147 6 32665311 C 0.004002274 6.62E-16 

rs9271605 6 32591448 A -0.003998706 1.49E-27 

rs6660812 1 67644173 G 0.003902916 6.02E-08 

rs72742861 15 66280111 T 0.003780954 7.02E-05 

rs137952694 19 45751067 G -0.003727893 6.50E-05 

rs3865185 16 82646462 T 0.003699886 1.74E-04 

rs2490710 10 7026246 T -0.003561375 4.49E-04 

rs76322208 3 57190585 T -0.003532604 2.81E-04 

rs6855247 4 182050254 C -0.003412702 1.30E-05 

rs6660836 1 67827326 A 0.003247229 1.64E-05 

rs116210462 3 31041518 C -0.003218854 1.61E-05 

rs66856851 15 66258023 A 0.003212257 7.37E-05 

rs12104169 19 15639715 A -0.003090901 9.06E-05 

rs2534667 6 31468099 A -0.00307106 5.09E-33 

rs6067846 20 50230076 T -0.003071032 1.11E-04 

rs150031301 1 46749667 G -0.00298121 0.0018058 

rs117642860 8 94262561 T -0.002972433 6.90E-05 

rs74462192 1 93370972 G 0.002971974 2.79E-05 

rs2239312 16 4066435 A -0.002967934 1.26E-04 

rs11085959 19 15641030 C -0.002878241 9.86E-05 

rs79690404 3 2199935 G -0.002726039 3.11E-05 

rs116830898 6 22781722 T 0.002705669 2.04E-04 

rs3804826 3 7738754 A -0.002696782 4.36E-04 

rs9472507 6 45544188 A 0.002649501 9.67E-05 



168 
 

rs62523816 8 130674221 C -0.002611648 4.76E-05 

rs11794374 9 2350882 A 0.002601466 1.08E-04 

rs28780103 6 30420778 A -0.002593702 2.61E-27 

rs9271485 6 32588953 G -0.002573125 8.74E-28 

rs17228760 15 33085963 A -0.002494681 2.15E-04 

rs1495965 1 67753508 C -0.002491024 6.54E-07 

rs72848707 6 31392991 T -0.002459121 1.79E-21 

rs2253487 6 31249127 A -0.002449595 2.07E-38 

rs1967308 16 4065677 T -0.002432188 1.06E-04 

rs78780086 10 33869334 A -0.002429615 6.99E-04 

rs117775603 15 67404435 T -0.002422217 1.34E-04 

rs62306039 4 96486510 C 0.002406486 5.80E-05 

rs114693584 3 145508265 G -0.00238711 0.00138223 

rs114317802 5 13480802 G -0.002379532 3.77E-04 

rs28448830 7 8637245 A 0.002352741 1.19E-04 

rs73159354 3 164218523 A -0.002289422 0.00376709 

rs117689632 17 35119168 C -0.00227377 3.03E-04 

rs9677209 2 103575834 T -0.002268414 2.44E-04 

rs72844399 6 32634264 T 0.002162873 8.91E-14 

rs9271377 6 32587165 G 0.002084989 4.45E-23 

rs7205148 16 82666823 C -0.001996347 1.71E-04 

rs1430509 4 65677447 G 0.001992282 5.85E-04 

rs149367288 1 46827139 T -0.001945101 0.00172638 

rs41396545 1 67689608 G 0.001928853 2.65E-06 

rs9863749 3 14813176 T 0.0018295 7.08E-06 

rs249182 12 95379553 G -0.001817021 3.73E-04 

rs2383062 9 18022795 C 0.001772385 0.00132364 

rs12371513 12 16489362 T -0.001756832 3.74E-04 

rs73804930 5 173097849 A 0.001752681 4.90E-04 

 

 
Appendix A: Additional Results 

 

Main Findings 

This section discusses the performance of benchmarked models on PsA datasets. Different techniques 

discussed in the previous section are applied to calculate the PRS. These additional techniques and 

results were not included in the published manuscript. 

 
In these techniques, all methods were implemented in parallel. The parallelization was performed on 

a grid of hyperparameters and performed chromosome-wise, as each chromosome is processed 

independently for each method. Detailed results can be found in Table no: A 3.1. 

 
This approach runs a set of experiments focusing on how variant sizes of chromosomes affect the 

model performance. Details are provided in the following text. 
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Approach 1: Clumping and Thresholding 

Firstly, the Stacked Clumping and Thresholding (SCT) method was used to compute polygenic risk 

scores. Then, the genotype data was split and used as a proportion to learn the parameters for stacking 

(trainset) and the remaining part was used to validate the statistical properties of PRS (test set).  

 
Set of variants from the clumping procedure were computed by applying different values of hyper-

parameters with repeated iterations. 7 thresholds of correlation for clumping, 4 window sizes, an 

imputation accuracy threshold, and 28 sets of hyper-parameters were used to generate a set of 

clumping variants. 

 
For thresholding, for each chromosome out of 22 chromosomes, C+T scores were computed for each 

set of variants obtained from clumping and for each p-value thresholding.  

 
Finally, for stacking the C+T prediction penalized logistic regression is applied to achieve an optimal 

linear combination of scores. Here, k=10 folds cross-validation was used for fitting the penalized 

regression and derived a unique vector of weights and compared effects resulting from stacking to the 

initial regression coefficients provided as summary statistics.  The vector of variant weights was used 

to compute PRS on the test set and evaluated the area under the curve. 
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Table A 3.1: Results for 22 chromosomes comparing performance metrics from five methods in LDPRED2 software. 

CHROMOSOME 
NUMBER OF 

VARIENTS 

LDpred2 – inf 
AUCboot (95% CI or 

2.5%-97.5% 
Quantiles 

LDpred2-grid 
(sparse=T) 

(AUC) 

LDpred2-grid 
(Sparse = F) (AUC) 

LDpred2- auto 
(AUC) 

H2 
Stacked 

Clumping and 
Thresholding 

Penalized  
Regression 

(P-value 
Thresholding) 

AUC 

1 20,572 53(46 – 60) 46(40 – 53) 42(36 – 49) 50(43 – 56) 3.695542 48(41 – 55) 50% 

2 21,759 47(40 – 53) 48(41 – 55) 49(42 – 56) 47(41 – 54) 3.567696 50(43 – 57) 48% 

3 19,496 50(43 – 57) 43(36 – 50) 43(36 – 49) 49(43 – 56) 3.297774 42(36 – 49) 53% 

4 18,547 55(48 – 62) 52(46 – 59) 51(45 – 58) 56(49 – 63) 3.190915 53(47 – 60) 49% 

5 15,607 46(39 – 53) 42(35 – 49) 41(34 – 48) 45(38 – 51) 2.89667 52(45 – 58) 54% 

6 28,169 51(45 – 58) 52(45 – 59) 52(45 – 59) 50(43 – 57) 4.427987 59(52 – 65) 55% 

7 15,416 50(43 – 57) 50(43 – 57) 49(42 – 56) 48(42 – 55) 2.517996 49(43 – 56) 52% 

8 12,546 42(35 – 48) 47(40 – 54) 46(40 – 53) 43(37 – 50) 2.376509 49(42 – 55) 51% 

9 9,538 50(43 – 57) 49(42 – 56) 50(43 – 57) 51(44 – 58) 1.928904 55(48 – 61) 54% 

10 12,056 45(38 – 52) 48(41 – 54) 44(37 – 51) 46(40 – 53) 2.309362 51(44 – 58) 49% 

11 13,302 50(43 – 57) 45(42 – 56) 49(42 – 56) 50(43 – 57) 2.299478 46(39 – 53) 58% 

12 10,691 54(47 – 61) 52(45 – 58) 52(45 – 59) 52(46 – 59) 2.193842 53(47 – 60) 53% 

13 8,669 46(39 – 53) 49(42 – 55) 52(46 – 59) 47(40 – 54) 1.588669 51(44 – 58) 54% 

14 8,079 47(40 – 53) 52(45 – 58) 51(44 – 57) 46(39 – 52) 1.502334 54(47 – 60) 47% 

15 7,172 45(38 – 51) 45(38 – 52) 45(38 – 52) 45(38 – 51) 1.449598 48(41 – 55) 46% 

16 7,173 50(43 – 57) 53(46 – 60) 52(45 – 58) 49(42 – 52) 1.600186 52(45 – 59) 51% 

17 6,484 49(42 – 56) 49(42 – 56) 49(42 – 56) 47(40 – 54) 1.498141 48(41 – 55) 56% 

18 6,409 63(56 – 69) 50(43 – 57) 54(47 – 60) 62(55 – 68) 1.354451 53(47 – 60) 50% 

19 7,210 45(38 – 52) 48(41 – 55) 47(40 – 54) 46(39 – 53) 1.421546 53(46 – 59) 50% 

20 4,837 53(46 – 56) 50(43 – 56) 52(46 – 59) 53(47 – 60) 1.103089 51(45 – 58) 50% 

21 3,127 48(41 – 54) 48(42 – 55) 49(42 – 56) 48(42 – 55) 0.7124957 52(45 – 58) 50% 

22 2,576 53(46 – 60) 49(42 – 55) 49(42 – 56) 52(45 – 59) 0.5940823 51(44 – 57) 51% 

AUC (Area under the curve),CI (Confidence Interval), H2 (Heritibility) 
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Figure A 3.1: Illustration of one turn of the Cross-Model Selection and Averaging (CMSA) procedure on chromosome 6. First, 
this procedure separated the outer training set in 10 folds. The model that minimizes the loss on the inner validation set is 
selected. Finally, the 10 resulting models were averaged. 

 
In this scenario, the large effect of chromosome 6 can be observed, in comparison to other 

chromosomes, with a mean AUC of 59%. 

 

 

 

 

 

 

 

 

 

 

 

Figure A 3.2: This figure is an illustration of a comparison of effect sizes from GWAS ad new effect sizes resulting from SCT 
for chromosome 6. The x- and y-axes show the estimated effect sizes of SNPs from SCT and in UKBB. Note that these signals 
partially capture a shared signal. Only non-zero effects are represented. The Redline corresponds to the 1:1 line. 

 
The effects resulting from the SCT method are mostly composed between GWAS effects and 0. 
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Figure A 3.3: Illustration of the distribution of predicted probabilities for PsA predictions from chromosome 6 in the UK-
biobank using SCT. This figure depicts the C+T scores when fitting the penalized regression in the stacking step. 

 
 
Approach 2: LDpred2 

Here LDpred2 is presented, which has four options applied on the UK biobank dataset chromosome 

wise. LDpred2-inf, which provides an analytical solution under the infinitesimal model. Firstly, the 

correlation between variants within each chromosome was computed. Then, a recommended window 

size of 3 centimorgans (cM) was used. When comparing to other polygenic score methods, this study 

only reports the best LDpred2 model chosen using the validation dataset for each of the chromosomes 

separately. In this case, chromosome 18 performed well in comparison to other chromosomes, with a 

mean AUC of 63% with 95% CI of 10,000 non-parametric bootstrap replicates of the mean. After 

combining the result from all 22 chromosomes for this model, calculated as a sum of their genome-

wide genotypes weighted by corresponding effect sizes from summary statistics data, a single value 

polygenic score estimate of an individual’s propensity to a phenotype was obtained.   Then logistic 

regression was performed in the target sample, with covariates and PRS as a predictor of the target 

phenotype. However, the overall genome-wide performance for this model showed no discrimination 

with an AUC of 50.8%. 
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Figure A 3.4: The area under the ROC curve, or AUC, which is used to evaluate and compare the overall genome-wide 
performance of LDpred2-inf classification model. 

LDpred2-grid is the main LDpred model where a grid of values of h2 (SNP heritability) and hyper-

parameters p (the proportion of causal variants) are tuned on the test set.  

 
LDpred2-sparse, which is the same as the grid model, offers sparse effects that can be exactly zero. It 

was tested on multiple values of h2 and p. In this scenario, after adjusting for the covariates the best 

model is chosen from z-score of the regression of phenotype by the polygenic scores. Z-score is used 

to choose the best set of parameters. Then this score is used corresponding to this set of parameters 

and calculates the best PRS.  It was observed that chromosome 16 has the best performance than 

other chromosomes in this case. 

 

 

 

 

 

 

 

 

 

 

Figure A 3.5: This graph compares the Z-scores from the regression of the phenotype by the PRS from chromosome 16, with 
multiple values of h2. The left panel represents the scores when spare is false, and the right panel shows the scores when 
the sparse option is true. 
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LDpred2-auto, where a set of values for h2 and p are automatically tuned.  many automatic models in 

parallel were ran with different values of p and verified if the chains “converged.” It was observed that 

chromosome 18 has the best performance with this model with a mean AUC of 62%.  

 

 

 

 

 

 

 

 

 

Figure A 3.6: This plot represents automatic model chains convergence for different initial values of p for chromosome 18. 
This is not the case here, which is probably because data is small. 

 

Approach 3: Penalized Regression 

In this comparative study, the implementation of penalized logistic regression PLR automatically fits a 

method similar to cross-validation to choose the optimal values for hyperparameters lambda and α of 

the elastic-net regularization. First, the maximum value of lambda is computed automatically and then 

200 sequences of nlambda with equal space on a log-scale are used. Here a sequence of α by using a 

grid on a log-scale is used with 10^ (-(0:4)). Then an early stopping criterion was selected as soon as 

the number of lambda values reached the minimum, for which the model was getting worse. In this 

regard, chromosome 11 achieved the best performance than chromosomes with AUC of 58%. 
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Figure A 3.7: This figure shows different values of AUC obtained from penalized logistic regression for chromosome 11. It 
can be seen from the graph as the number of predictors increases value of AUC decreases. 

 
Discussion 

The clinical utility of PRSs is likely to improve as the GWAS sample size increases. Nonetheless, their 

prediction accuracy will suffer if LD information is not considered or modelled appropriately37. The 

focus of this section was on methods that require the use of summary statistics to conduct polygenic 

prediction.  

 
The results show that the LDpred2-inf method, which estimates the posterior mean effect sizes by 

using point normal distribution and LD information from the reference panel, showed poor 

performance. This may be attributed to the fact that genetics is not sufficient to distinguish PsA from 

PsC. A limitation of the LDpred2 method is that it relies on LD information from the reference panel to 

be a good match with the summary statistics of the population. In case of a mismatch, the prediction 

performance might be compromised. Secondly, the point-normal mixture prior distribution used in 

LDpred2 may have failed to accurately model the genetic architecture from the test dataset. Thirdly, 

since the test dataset has raw genotypes available using all variants, if computationally possible, may 

improve the overall performance across all the chromosomes. Fourth, the heterogeneity in the UK 

Biobank cohort may have affected the prediction performance of PRS. Fifth, the poor performance 

may be due to the assumption of LDpred to appropriately correct for the genetic ancestry in the 

summary statistics. As observed from the results, the value of h2 is greater than 1 which means 

observed phenotypic correlations were greater than 50%. In other words, it is acceptable to have h2=1 

but values exceeding 1 is suggestive of the fact that the measurement error is too large in the 

estimation of mixed models and there is greater than expected relatedness between individuals in the 



176 
 

study38. Having said that, once PRS has been calculated, the results can be combined and the 

regression analysis can be performed in the target sample, with covariates and PRS as a predictor of 

the target phenotype from the other LDpred2 models. So that hypotheses can be tested for association 

between PRS and phenotype with standard association metrics (e.g., AUC, p-value, beta estimates, R2, 

Nagelkerke’s R2, or goodness-of-fit test), corresponding to the null hypothesis of no association. And 

the best method can be selected for calculating PRS. 

 
In this comparative study, another efficient method called penalized logistic regression (PLR) was also 

implemented. In the PLR approach, the SNP effects are jointly estimated. In contrast, the SNP effects 

are learned independently for the standard clumping+thresholding approach. However, PLR requires 

a larger sample size and correlated SNPs. Nonetheless, with the smaller sample size, PLR performance 

is lower than the best performing C+T method. From the results, it can be observed that PLR failed to 

show good performance due to the low sample size and low number of SNPs per chromosome. In such 

underpowered scenarios, it becomes difficult for PLR to detect causal variants, and the best possible 

solution would be to include nearly all SNPs and show performance by combining results across all 

chromosomes. 

 
The choice of hyper-parameter values can greatly impact the prediction performance of the 

methods39. In the C+T approach, the two main hyper-parameters were used: the r2 and pT threshold 

that demonstrates how precise are the C+T steps. For instance, it is essential to choose an optimal 

value of r2 threshold for the clumping step. Nonetheless, the selection of low values for this threshold 

will lead to loss of informative correlated SNPs, whereas the choice of higher values for this threshold 

will result in model overfitting (or adds noise to the PRS). Therefore, I used the threshold value of r2= 

0.05 as suggested by Florian et al.,39 to avoid redundancy in the C+T model which is more crucial than 

the inclusion of all causal SNPs. The selection of pT threshold is also important for model performance. 

In this study, I have reported the maximum AUC from 102 p-value thresholds learned on the 

development set. One of the limitations of C+T method is that there are no clear standards on how 

these hyper-parameters should be selected39. Thus, for C+T, I have reported the best AUC on validation 

set, even if it leads to overoptimistic results. 

 
Finally, this section of study did not consider the problem of population structure or nongenetic data 

such as clinical or environmental data. 
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Chapter 4 

4.Integrating polygenic risk scores with clinical risk factors improves risk 

prediction of coronary artery disease in patients with rheumatoid 

arthritis 
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Abstract 

Background/Purpose 

Patients with rheumatoid arthritis (RA) have a higher prevalence of coronary artery disease (CAD) than 

the general population, which contributes to early mortality. However, CAD screening tools developed 

in the general population are less effective for estimating CAD risk in RA patients, due to the differing 

contribution from traditional risk factors and the contribution from disease-specific factors. 

Understanding of the genetic basis of CAD has improved over recent years and shows promise for 

improving risk prediction in the form of polygenic risk scores (PRS), in particular with the development 

of meta-analytic approaches that combine multiple PRS. This study hypothesizes that the development 

of integrated prediction models, which combine PRS with the known clinical risk factors, can improve 

CAD risk prediction in patients with RA. 

 
Methods 

Patients were recruited from the Norfolk Arthritis Register (NOAR), a detailed community-based 

longitudinal observational study focused on the cause and outcome of inflammatory polyarthritis, 

between 1990 to 2017. Analysis was restricted to patients who satisfied the 2010 ACR/EULAR criteria 

for RA cumulatively over five years and had detailed clinical history at baseline and follow-up. We 

developed a prediction model based on traditional risk factors and explored the inclusion of a single 

CAD PRS (1.7M SNPs). We also used a meta-analytic approach to combine multiple CAD PRS using the 

effect sizes from three large-scale, genome-wide and targeted CAD PRS derived from 1,745,179, 

6,630,150, and 40,079 SNPs in a subset of patients with available genetic data. Cox proportional 

hazards models were used to derive risk equations for the evaluation of the 10-year risk of CAD. We 

applied multiple imputations with chained equations using the Random Forest algorithm to replace 

missing values. Measures of calibration and discrimination were determined in the validation cohort 

of 423 individuals. 

 
Results 

A total of 2123 patients were included in the analysis with 136 incident cases of self-reported CAD 

(defined as a composite outcome of myocardial infarction, angina, heart attack, arrhythmia, 

angioplasty, and coronary artery bypass grafting). The model using only traditional risk factors 

achieved a Harrell’s C-statistics of 0.72 (95% CI 0.71, 0.73), with a calibration slope of 1.03, and 

explained approximately 50% (95% CI 0.47, 0.52%) of the variance of the outcome. The hazard ratio 

for age was found to be 1.00 (95% CI 0.99, 1.01) indicating risk remains the same across all age groups. 

The inclusion of a CAD PRS increased the performance with a Harrell’s C-statistic of 0.74 (95% CI 0.73, 

0.75), explaining a variance of 53% (95% CI 49, 56%) but with a slightly worse calibration slope of 0.91. 
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The inclusion of a CAD meta-PRS improved Harrell’s C-statistics to 0.79 (95% CI 0.78, 0.80), explaining 

more of the variance at 81% (95% CI 79, 82%) with a calibration slope of 0.93. A likelihood ratio test 

indicates that the integrated model is a better fit (p = 0.04). 

 
Conclusion 

An integrated risk score, that combines traditional risk factors with a meta-PRS, improves CAD 

prediction in patients with RA. Further research is required to understand better the role of heritable 

components contributing to CAD risk in RA patients. By refining the underlying PRS, risk prediction may 

be further improved through this integrated approach. 

Introduction 

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder affecting around 1% of adult 

populations globally1. While RA primarily affects joints, patients with the disease exhibit an increased 

risk of cardiovascular disease (CVD), which is one of the leading causes of morbidity and mortality in 

patients with RA2. Studies have shown that patients with RA have a 1.5-2-fold increased risk of CVD 

compared to the general population, where the relative risk of CVD-related mortality is highest in 

younger age groups and in women 3. The occurrence of coronary artery disease (CAD) in individuals 

with RA can manifest up to 10 years earlier than in the general population 4, the hastened progression 

of this vascular condition is evident even prior to or simultaneous with the onset of joint symptoms5,6. 

As part of their standard care, the European League Against Rheumatism (EULAR) recommends that 

patients diagnosed with RA undergo periodic evaluations for CAD 7–9. 

 
The risk factors for CAD in the general population include age, male gender, smoking, obesity, 

hypertension, dyslipidaemia, and diabetes mellitus10. However, despite being more prevalent among 

patients with RA, these conventional risk factors do not fully account for the increased prevalence of 

CAD. Systemic inflammation related to the disease is believed to be a significant factor that contributes 

to the increased vulnerability3,4,11,12, creating competing risks between traditional and RA-related 

factors. As such, while traditional risk factors still play a role in predicting CAD outcomes among RA 

patients, their relative contribution is lower compared to other potential causes3,11. Furthermore, 

patients with RA exhibit distinct variations in the manifestation of traditional risk factors as compared 

to the general population; for example, well-established risk determinants such as male gender, 

tobacco consumption, and a history of CAD, confer less risk in patients with RA compared to non-RA 

individuals11,13. Moreover, traditional risk factors for CAD typically show stronger predictive ability in 

older age groups and are not as effective at predicting the occurrence of CAD in individuals with RA 

where CAD has an earlier age of onset. 
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Screening tools for assessing CVD risk, such as QIntervention Cardiovascular Risk Score (QRISK3) and 

Systematic Coronary Risk Evaluation (SCORE), are designed based on traditional risk factors and these 

have been shown to either underestimate or overestimate risk in patients with RA14,15. Some efforts 

have been made to enhance existing screening tools by incorporating a 1.5 multiplication factor into 

the SCORE model suggested by EULAR and introducing RA as an independent diagnosis within the 

QRISK3 model; however, these modifications do not take into account how conventional risk factors 

affect cardiac health among individuals with RA. Indeed, EULAR has recognised that fully validated RA-

specific CAD risk models that improve on population models are currently lacking9. Therefore, it is 

imperative to identify and incorporate RA-specific variables into predictive models for CAD diagnosis. 

 
In recent years, advancements in genetic knowledge have led to the emergence of predictive tools 

based on genetics, such as polygenic risk scores (PRS), as a means by which inherited risks associated 

with complex traits can be quantified and leveraged to improve risk prediction. The techniques 

demonstrate promise in estimating the probability of developing a disease within a population 16.  

Research has shown that their impact is comparable to dominant genetic mutations associated with 

monogenic CAD. These factors can help identify individuals who are four times more susceptible, and 

they can also detect ongoing patterns leading up to the development of arterial plaque build-up.17 

 
The aim of the current study is to explore whether the inclusion of PRS into models based on clinical 

risk factors alone improves CAD risk prediction in patients with RA. If so, then utilization of these 

approaches could facilitate the recognition of individuals with an elevated risk for CAD, ultimately 

leading to timely preventative interventions. This approach may result in better health outcomes and 

reduce the burden associated with CAD by supporting individualized prevention strategies. 

 
Patients and Methods 

Study cohort 

The Norfolk Arthritis Register (NOAR) is a cohort of primary and secondary care patients aged 16 or 

older with at least two swollen joints for four weeks in the former Norwich Health Authority. 

Standardized assessments are conducted by a research nurse annually for three years and again after 

five years, including measurements such as symptom onset and joint counts. Later, this information 

was also extracted from medical notes. NOAR's detailed description can be found in previous 

publications 18,19. An illustration of the study design is given in Supplementary Figure S4.1. 

 
This study analysed 2123 patients with joint pain or swelling onset between January 1990 and 2008, 

who were followed prospectively until their final follow-up in 2017; all patients were notified to NOAR 

within five years of symptom onset. All patients fulfilled the ACR/EULAR 2010 classification criteria 
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within the first 5 years following recruitment into the study. Patients met the 2010 ACR/EULAR criteria 

if they reached ≥6/10 cut-offs. Ethical approval was obtained from Norwich Local Research Ethics 

Committee and written consent was obtained from all patients. 

 
The outcome was CAD, a composite outcome encompassing self-reported heart attack, myocardial 

infarction, arrhythmia, angina, and angioplasty. Data were obtained by the nurse in the clinical 

research facility. This included a predefined table with several comorbidities including CVD. This 

process was repeated annually for the initial three years followed by every five years onwards to ensure 

comprehensive analysis. Consequently, we determined CAD occurrence based on their earliest 

recorded date with the condition as an outcome event. The patients who reported CAD before RA 

symptom onset were excluded from the study. 

 

The predictor variables presented in supplementary table: S4.1 were analysed by considering 

established risk factors already incorporated in risk prediction models, such as QRISK320. The data 

extracted from NOAR included demographic factors, clinical diagnoses, and clinical values such as 

systolic blood pressure, body mass index (BMI), and smoking status, where the latest available records 

since registration were used. C-reactive protein was computed at different intervals throughout the 

follow-up period while the total cholesterol: high-density lipoprotein (HDL) cholesterol ratio was not 

included as these biomarkers were measured for the subset of the population. In order to assess 

changes in systolic blood pressure levels over a period of five years from the date of study entry, a 

standard deviation calculation was conducted, which required at least two recorded values to be 

available within this time frame. 

 
CAD polygenic risk scores 

Pre-specified PRS were sourced from the PGS Catalog21 for three previously published CAD studies 

(PGS00001822, PGS00001317, and PGS0011623).  Raw values for each PRS were obtained using PLINK 2 

software24 using allelic dosages with the cols = scoresums feature. A meta-PRS, was generated by 

aggregating standardized scores of PRS1.7M22, PRS66M17, and PRS49K23 using a weighted average 

approach as described previously22. In our analysis of Cox regression in the training set, we estimated 

univariate log HRs for each score which were 2.83, 0.30, and 0.47 per 1-s.d for PRS1.7M22, PRS66M17, 

and PRS49K23 respectively. The calculated meta-score was expressed through the combined sum of 

SNPs from all three scores with zero-mean unit-variance standardization applied to obtain reliable 

results. 
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Genotyping, imputation, and quality control 

DNA from study participants were genotyped using the Illumina Infinium CoreExome genotyping array, 

and genotype calling was conducted using the GenCall algorithm within the GenomeStudio Data 

analysis platform. All processes were performed in accordance with the manufacturer’s instructions. 

Samples were excluded based on the following criteria: call rate < 0.98, outliers based on autosomal 

heterozygosity (2 standard deviations from the mean), and discordance between genetically inferred 

sex and database records. Related individuals were detected by calculating identity-by-descent (IBD) 

(kinship coefficient > 0.0884) using the KING software package (version 1.9), where one sample from 

the related pair was excluded25.  SNP QC excluded non-autosomal SNPs with a call rate < 0.98 or a 

minor allele frequency < 0.01. 

 
Statistical analysis 

Pre-processing and quality control of clinical risk factors: We developed and validated risk prediction 

models in accordance with the methodology employed for QRISK320. Multiple imputations with 

chained equations (MICE) using the Random Forest machine learning algorithm were used to replace 

missing data points concerning height, weight, and systolic blood pressure. These values were 

subsequently integrated into the main analytical framework. To ensure that the imputed values were 

consistent with the distribution of observed data, logarithmic transformation was applied to non-

normally distributed continuous variables before including them in the imputation model. 

Subsequently, a refined model was created by selecting only statistically significant variables using the 

forward selection method with a p-value threshold of 0.05 and employing the MPR technique which 

involves constraining cubic spline predictor and enforcing Tampascale during the variable selection 

process to ensure enhanced precision and accuracy in modelling26. 

 
In total, twenty-five imputations were performed, each repeated for ten iterations to achieve 

satisfactory efficiency and accuracy. The imputed model considered all available risk factors, as well as 

the interaction between age, the Nelson-Aalen estimator of baseline cumulative hazard, and the 

relevant outcome.  

 
Model Development: Cox's proportional hazards models were utilized to determine the coefficients for 

each variable, and Rubin's rule was employed to combine the results obtained from all the imputed 

datasets. Fractional polynomials were implemented in modelling non-linear risk relationships 

associated with continuous variables through information collected from individuals whose values had 

been recorded, thereby facilitating fractional polynomial terms. Comprehensive models were initially 

fitted and three primary models were subsequently developed: Model A comprised conventional risk 
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factors identical to those found in existing models20 albeit with some variables missing(e.g., HDL and 

LDL Cholesterol); Model B consists of traditional risk factors that met inclusion criteria specific to the 

RA cohort along with a PRS on ~1.7 million  SNPs22; finally, Model C incorporated conventional risks 

meeting requirements applicable specifically for RA cohorts alongside the newly calculated meta-PRS 

for CAD. 

 
Principal Component Analysis (PCA) was used as an additional tool for generating factor loadings 

relating to both PRS profiles and traditional risk factors in order to assess the impact of risk factors on 

CAD susceptibility in the RA population. The degree of representation for each variable in a specific 

component was assessed by square cosine (Cos2), with a low value indicating inadequate 

representation 27. 

 
Validation: Identical pre-processing procedures were performed in the validation cohort. Risk 

equations acquired from training sets were applied to test sets for models and computed measures of 

discrimination such as R2 (a metric for explaining variation in a model attributed to CAD diagnoses 

over time), D statistic (an indicator of discrimination where higher values imply better performance) 

and Harrell's C statistic at 10 years that accounts for data censoring. Calibration was evaluated by 

examining observed risks using Kaplan-Meier estimates after 10 years. In order to ensure a 

comprehensive evaluation of the methods, bootstrap validation was used with 200 replications for the 

purposes of assessing both calibration and discrimination on the complete data. This approach allowed 

an estimation of over-optimism in the results. Using these estimates, a detailed calibration curve was 

constructed to assess the accuracy and reliability of findings. An analysis of deviance was used to 

compare two Cox model fits based on the log partial likelihood (Model A versus Model C). Analysis was 

performed in the R V.4.3.0 computing environment using publicly accessible Libraries. 

 
Results 

Study Population 

The study included a total of 2123 participants who met the 2010 ACR inclusion criteria and were 

registered in the NOAR database. Among them, 1698 (80%) were selected for the derivation (training) 

set, while the remaining 425 (20%) were allocated for the validation set. The data was partitioned 

chronologically. The gender distribution showed approximately 30% men and 70% women. Out of 

these participants, genetic information was available on 1092 individuals. Throughout the study 

duration, there were a total of 136 (6.4%) new cases of self-reported CAD, of which 66 (6%) CAD cases 

had recorded genetic data available. The cases were spread randomly across derivation and validation 

set. 
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Model Development and Validation 

In the derivation cohort, adjusted hazard ratios were computed for model A, while corresponding 

values were determined for models B and C. 

 
Model A (Baseline Model with clinical risk factors) 

A baseline model based on clinical risk factors is represented by Model A. The findings from the study 

revealed that model A had a moderate explanatory power, accounting for 50.0% of the variation in 

time to diagnosis of CAD in RA (R2), with a D statistic value of 1.27 and Harrell's C statistic at 0.72 (see 

table:10). After analysing the calibration results of Model A, it can be observed that the model is 

slightly under-fitted with a calibration slope of 1.03. The corresponding value indicates a marginal 

increase in probability for most risk groups, implying that there may be some degree of misprediction 

by the model. In particular, individuals at high risk of CAD appear to have an underestimated likelihood 

according to this model's predictions. 

 
Model B (Model with single PRS (1.7M SNPs) and clinical risk factors) 

Clinical variables that did not demonstrate statistical significance at the 0.05 level in Model B were 

eliminated as risk factors. Model B exhibited slight improvement in performance metrics, explaining 

53.0% variability with D statistics of 1.37 and Harrell's C statistic of 0.74. the calibration slope was 0.91, 

suggesting overfitting. For the subgroup of individuals with genetic data, adding the PRS derived from 

1,745,179SNPs 22  resulted in a stronger and statistically significant association with CAD in RA patients 

(HR = 2.74, 95% CI 2.60–4.33, per S.D.). 

 
Model C (Model with meta PRS and clinical risk factors) 

Model C explained up to 81% variance with CAD, with a D statistic score of 1.85 and a high Harrell’s C 

statistic of 0.79 indicating improved prediction of CAD in patients with RA compared to Models A and 

B. However, the calibration slope is 0.93, suggesting that risks may be overestimated risks for high-risk 

and underestimated for low-risk patients. After correcting for optimism using bootstrapping 

approaches on complete data, validation provided bias-corrected slope shrinkage (0.99) indicating an 

improved but slightly overfitted model and calibration plot (see Figure :4.2 and 4.3) Harrell’s C statistic 

was 0.78. The apparent correlation (Dxy = 0.54) does hold up after correcting for overfitting (Dxy = 0.53) 

from bootstrap validation obtained via adding the bias-corrected estimates to the original stratified 

Kaplan-Meier estimates. 
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Figure 4.1: Time-dependent ROC (receiver operating curve). The graph gives the prediction performance for the hazard 
(incidence in the risk set) of events at t-year among those who are in the risk set at t. 

 

 

 

  

 

  

 

 

 

 

 

Figure 4.2: To calibrate random predictions, Efron's bootstrap with B=200 resamples was employed. The apparent calibration 
was estimated by adaptive linear spline hazard regression and represented by the smooth black line, while the blue curve 
depicts a bias-corrected estimation obtained through hazard regression to account for overfitting. Perfect calibration is 
indicated by the grayscale line of identity. To assess accuracy in predicting 10-year survival rates, stratification into intervals 
based on predicted values were used; red dots show the mean predicted value within each interval plotted against Kaplan-
Meier estimates of corresponding strata. Bias-corrected Kaplan-Meier estimates are depicted as blue X marks. 

In Model C, hypertension increased CAD risk by 188% in patients with RA. Depression/mental health 

showed a statistically significant correlation, with a 66% increased risk of CAD and smoking status 

demonstrated a comparable relationship resulting in an increase of up to 61%.  Furthermore, 

individuals with a family history of myocardial infarction had a 47% higher risk of developing CAD. No 

notable correlations between age and other risk factors were detected across the three models 

examined. As evidenced by a non-significant p-value for age from model C at p=0.11 and a hazard ratio 
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HR = 1.01 (see supplementary table: S9) alongside a confidence interval of 95% ranging from .99 to 

1.01 which includes one, indicating no significant impact due to age on overall disease risk within this 

patient population over time. 

Table 4.1: Performance evaluation. The pooled D-statistic represents the HR between two groups defined by LP split at the 
median, HR < 1 indicates a small degree of separation between the two prognostic groups defined by LP. Calibration is slightly 
worst for the integrated model indicating overfitting in the validation cohort. 

Statistics 
Model A 

(Traditional Risk 
Factors) 

Model B 
(Traditional Risk 

Factors Plus 
Polygenic Risk 

Scores) 

Model C 
(Traditional Risk Factors Plus 

metaGRS) 

Pooled D statistic* 1.27 1.37 1.85 

Pooled Harrell's C* 0.72 (0.71 , 0.0.73) 0.74 (0.73 , 0.75) 0.79 (0.78 , 0.80) 

Pooled R² 0.50 (0.47 , 0.0.52) 0.53 (0.49 , 0.56) 0.81 (0.79 , 0.82) 

Pooled calibration slope 1.03 0.91 0.93 

Pooled calibration intercept -0.17 -0.16 -0.16 

Likelihood ratio test P < 0.05 `P<0.05 `P<0.05 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Distribution Of Linear predictor and Kaplan–Meier curves for risk groups. Separation across the risk groups appears 
good, which is indicative of the C-statistic and D-statistic values derived from the pooled model. 

In MODEL C, the meta-PRS showed a statistically significant association with CAD (HR = 1.34 per S.D. 

of the GRS, 95% CI 1.19–2.10) (see supplementary table: S4.1). Furthermore, DMARDS use, polygenic 

risk scores, steroids, depression, and methotrexate use exhibited the highest cos2 values implying 

significant contributions to PC1 and PC2 (supplementary figure S4.3); distinct segregation between 

CAD and non-CAD events in RA patients was observed via the first two components (supplementary 
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figure S4.2) which implies that the data and variables used can potentially support prediction models 

with suitable performance. 

 
Discussion 

This study helps to refine our understanding of the risk factors associated with CAD in patients 

diagnosed with RA. By integrating genetic data, in the form of a PRS derived from multiple genetic 

studies of CAD, with traditional risk factors we have shown a significantly improved prediction of CAD 

risk over a 10-year period in patients with RA. The findings highlight the importance of accounting for 

relevant biological markers when examining CAD risk and suggest that an integrated model may better 

capture the complexity underlying this multifactorial condition.  

 
The results presented here highlight some important considerations on the use of the traditional CAD 

risk factors in patients with RA. First, previous studies have reported that traditional risk factors such 

as sex and age are less predictive of CAD in patients with RA13 and this was confirmed in our dataset, 

with the model containing clinical variables only (Model A) accounting for just 50% of the variance in 

CAD risk and underestimating risk in those at highest risk. Second, in contrast to a previous study28 that 

reported weaker associations between the male gender and CAD risk in patients with RA compared 

with the general population, we found females have increased CAD risk. Finally, we found that CAD 

risk was increased across all age ranges within the RA cohort regardless of their specific age group. 

This finding is in keeping with previous research29, which reported that utilizing cardiovascular risk 

algorithms designed for the general population leads to an underestimation of CAD risk among RA 

patients below the age of 55. Furthermore, previous work has found 30 that individuals with RA had a 

comparable absolute risk of developing CAD as those without RA who are 5-10 years their senior. This 

suggests that better models are required to implement CAD screening and preventative strategies in 

patients with RA over and above the use of algorithms incorporating traditional risk factors alone. 

However, traditional risk factors remain important predictors, particularly smoking, depression, and 

hypertension. Such factors are modifiable and important to address for initiating timely and 

customized preventive measures against CAD in RA. 

 
In the current work, the integration of PRS with established traditional risk factors improved the 

accuracy of 10-year CAD risk assessment for RA patients. Moreover, our findings suggest that utilizing 

meta-PRS enables effective stratification of lifetime CAD risks among individuals with RA.  While this 

work focuses on RA, similar approaches could be explored in other chronic conditions with high 

cardiovascular risk. 
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A strength of this study is that the development and testing of these models employed a robust 

methodology similar to that used for other cardiovascular risk prediction calculators commonly utilized 

in clinical settings, such as the QRISK3 model. NOAR is a large-scale real-world study that has an 

extensive follow-up period, lack of selection bias, and high representativeness. However, it is important 

to acknowledge the limitations of our study, most notably, the absence of formal adjudication 

regarding diagnoses. This issue is compounded by the use of self-reported outcomes which may lead 

to information bias while simultaneously increasing potential biases relating to missing data and 

predictors. Moreover, it primarily involved patients of white European ancestry, which may limit its 

generalizability towards individuals from diverse racial and ethnic backgrounds. Additionally, there was 

a lack of comprehensive information available on the socio-economic status variability amongst 

participants in this study. These factors suggest a need for greater diversity when selecting subjects for 

future research studies to ensure more accurate conclusions can be drawn regarding healthcare 

outcomes across various population groups. Furthermore, important variables such as low- and high-

density lipoprotein cholesterol values were collected in only a subset of the population and could not 

be included in the analysis due to more than 50% missing information for the complete data. It is 

possible that if data regarding HDL ratio had been available for analysis on the complete population, 

then predictions could potentially be further improved as evident from previous studies31,32. 

 
Finally, while integrated models perform comparably well overall according to the analysis presented 

here, there is a need for further validation from independent studies before concluding definitively on 

their effectiveness as predictive tools. Ultimately, any algorithmic approach must be viewed as one 

tool among many available methods for assessing CAD risk in RA patients rather than a definitive 

solution. 

 
In conclusion, our study underscores the potential of PRS in improving the prediction of CAD risk 

among RA patients. The results demonstrate that an integrated model which combines both traditional 

and genetic risk factors represent a superior approach for the prediction of CAD risk within this 

population cohort. As such, integrating supplementary variables into predictive models has immense 

potential to enhance our comprehension of the complex cardiovascular risks associated with RA 

patients, opening up new avenues for more targeted interventions and precision medicine approaches 

tailored towards mitigating these risks effectively.  

 

 



189 
 

References 

1.  Finckh A, Gilbert B, Hodkinson B, et al. Global epidemiology of rheumatoid arthritis. Nat Rev 

Rheumatol. 2022;18(10):591-602. doi:10.1038/s41584-022-00827-y 

2.  England BR, Thiele GM, Anderson DR, Mikuls TR. Increased cardiovascular risk in rheumatoid 

arthritis: Mechanisms and implications. BMJ (Online). 2018;361. doi:10.1136/bmj.k1036 

3.  Symmons DPM, Gabriel SE. Epidemiology of CVD in rheumatic disease, with a focus on RA and 

SLE. Nat Rev Rheumatol. 2011;7(7):399-408. doi:10.1038/nrrheum.2011.75 

4.  Skeoch S, Bruce IN. Atherosclerosis in rheumatoid arthritis: Is it all about inflammation? Nat Rev 

Rheumatol. 2015;11(7):390-400. doi:10.1038/nrrheum.2015.40 

5. Hannawi S, Haluska B, Marwick TH, Thomas R. Atherosclerotic disease is increased in recent-

onset rheumatoid arthritis: A critical role for inflammation. Arthritis Res Ther. 2007;9(6). 

doi:10.1186/ar2323 

6.  Agca R, Blanken AB, Van Sijl AM, et al. Arterial wall inflammation is increased in rheumatoid 

arthritis compared with osteoarthritis, as a marker of early atherosclerosis. Rheumatology 

(United Kingdom). 2021;60(7):3360-3368. doi:10.1093/rheumatology/keaa789 

7.  Peters MJL, Symmons DPM, McCarey D, et al. EULAR evidence-based recommendations for 

cardiovascular risk management in patients with rheumatoid arthritis and other forms of 

inflammatory arthritis. Ann Rheum Dis. 2010;69(2):325-331. doi:10.1136/ard.2009.113696 

8.  Drosos GC, Vedder D, Houben E, et al. EULAR recommendations for cardiovascular risk 

management in rheumatic and musculoskeletal diseases, including systemic lupus 

erythematosus and antiphospholipid syndrome. Ann Rheum Dis. Published online 2022. 

doi:10.1136/annrheumdis-2021-221733 

9.  Agca R, Heslinga SC, Rollefstad S, et al. EULAR recommendations for cardiovascular disease risk 

management in patients with rheumatoid arthritis and other forms of inflammatory joint 

disorders: 2015/2016 update. Ann Rheum Dis. 2016;76(1):17-28. doi:10.1136/annrheumdis-

2016-209775 

10.  Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction 

algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 

(Online). 2017;357. doi:10.1136/bmj.j2099 

11.  Nikiphorou E, De Lusignan S, Mallen CD, et al. Cardiovascular risk factors and outcomes in early 

rheumatoid arthritis: A population-based study. Heart. 2020;106(20):1566-1572. 

doi:10.1136/heartjnl-2019-316193 

12.  Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of incident cardiovascular 

events in patients with rheumatoid arthritis: A meta-analysis of observational studies. Ann 

Rheum Dis. 2012;71(9):1524-1529. doi:10.1136/annrheumdis-2011-200726 

13.  Gonzalez A, Maradit Kremers H, Crowson CS, et al. Do cardiovascular risk factors confer the same 

risk for cardiovascular outcomes in rheumatoid arthritis patients as in non-rheumatoid arthritis 

patients? Ann Rheum Dis. 2008;67(1):64-69. doi:10.1136/ard.2006.059980 



190 
 

14.  Arts EEA, Popa C, Den Broeder AA, et al. Performance of four current risk algorithms in 

predicting cardiovascular events in patients with early rheumatoid arthritis. Ann Rheum Dis. 

2015;74(4):668-674. doi:10.1136/annrheumdis-2013-204024 

15. Crowson CS, Gabriel SE, Semb AG, et al. Rheumatoid arthritis-specific cardiovascular risk scores 

are not superior to general risk scores: A validation analysis of patients from seven countries. 

Rheumatology (United Kingdom). 2017;56(7):1102-1110. doi:10.1093/rheumatology/kex038 

16.  Weale ME, Riveros-Mckay F, Selzam S, et al. Validation of an Integrated Risk Tool, Including 

Polygenic Risk Score, for Atherosclerotic Cardiovascular Disease in Multiple Ethnicities and 

Ancestries. American Journal of Cardiology. 2021;148:157-164. 

doi:10.1016/j.amjcard.2021.02.032 

17.  Khera A V., Chaffin M, Aragam KG, et al. Genome-wide polygenic scores for common diseases 

identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219-

1224. doi:10.1038/s41588-018-0183-z 

18. Humphreys JH, Verstappen SMM, Hyrich KL, Chipping J, Symmons DPM. 2010 ACR/EULAR 

classification criteria for rheumatoid arthritis predict increased mortality in patients with early 

arthritis: Results from the Norfolk Arthritis Register. Rheumatology (United Kingdom). 

2013;52(6):1141-1142. doi:10.1093/rheumatology/ket113 

19. Gwinnutt JM, Symmons DPM, MacGregor AJ, et al. Have the 10-year outcomes of patients with 

early inflammatory arthritis improved in the new millennium compared with the decade 

before? Results from the Norfolk Arthritis Register. Ann Rheum Dis. 2018;77(6):848-854. 

doi:10.1136/annrheumdis-2017-212426 

20. Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction 

algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 

(Online). 2017;357. doi:10.1136/bmj.j2099 

21. Lambert SA, Gil L, Jupp S, et al. The Polygenic Score Catalog: an open database for r

 eproducibility and systematic evaluation. doi:10.1101/2020.05.20.20108217 

22. Inouye M, Abraham G, Nelson CP, et al. Genomic Risk Prediction of Coronary Artery Disease in 

480,000 Adults: Implications for Primary Prevention. J Am Coll Cardiol. 2018;72(16):1883-

1893. doi:10.1016/j.jacc.2018.07.079 

23. Elliott J, Bodinier B, Bond TA, et al. Predictive Accuracy of a Polygenic Risk Score-Enhanced 

Prediction Model vs a Clinical Risk Score for Coronary Artery Disease. JAMA - Journal of the 

American Medical Association. 2020;323(7):636-645. doi:10.1001/jama.2019.22241 

24. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: 

Rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1). 

doi:10.1186/s13742-015-0047-8 

25. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship 

inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867-2873. 

doi:10.1093/bioinformatics/btq559 

26. Austin PC, Fang J, Lee DS. Using fractional polynomials and restricted cubic splines to model 

non-proportional hazards or time-varying covariate effects in the Cox regression model. Stat 

Med. 2022;41(3):612-624. doi:10.1002/sim.9259 



191 
 

27. Jollife IT, Cadima J. Principal component analysis: A review and recent developments. 

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering 

Sciences. 2016;374(2065). doi:10.1098/rsta.2015.0202 

28. Davis JM, Roger VL, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. The presentation and 

outcome of heart failure in patients with rheumatoid arthritis differs from that in the general 

population. Arthritis Rheum. 2008;58(9):2603-2611. doi:10.1002/art.23798 

29. Rohrich DC, van de Wetering EHM, Rennings AJ, et al. Younger age and female gender are 

determinants of underestimated cardiovascular risk in rheumatoid arthritis patients: a 

prospective cohort study. Arthritis Res Ther. 2021;23(1). doi:10.1186/s13075-020-02384-9 

30. Pappas DA, Nyberg F, Kremer JM, et al. Prevalence of cardiovascular disease and major risk 

factors in patients with rheumatoid arthritis: a multinational cross-sectional study. Clin 

Rheumatol. 2018;37(9):2331-2340. doi:10.1007/s10067-018-4113-3 

31. Verstappen SMM, Askling J, Berglind N, et al. Methodological Challenges When Comparing 

Demographic and Clinical Characteristics of International Observational Registries. Arthritis 

Care Res (Hoboken). 2015;67(12):1637-1645. doi:10.1002/acr.22661 

32. Nyberg F, Askling J, Berglind N, et al. Using epidemiological registry data to provide background 

rates as context for adverse events in a rheumatoid arthritis drug development program: A 

coordinated approach. Pharmacoepidemiol Drug Saf. 2015;24(11):1121-1132. 

doi:10.1002/pds.3854 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

Supplementary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                Figure S 4.1: An illustration of the study design  
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Figure S 4.2: This figure shows distinct segregation between CAD= 1 and non-CAD = 0 events in RA patients was observed 
via the first two components. 

 

 

 

 

Figure S 4.3: This figure represents the highest cos2 values implying significant contributions to PC1 and PC2 by some of the 
top contributing variables. 
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Table S 4.1: Adjusted pooled hazard ratios (95% confidence interval) for CAD in RA. 

 

CI = Confidence Interval, Nsaid = non-steroidal anti-inflammatory drug, RA= Rheumatoid arthritis, MI 

= Myocardial Infarction, CV = Cardiovascular Disease, PRS_IN = Polygenic risk score by Inouye et al., 

GRS = Genetic Risk Score. 

 

 

 

 

Characteristic 
Pooled HR1  

Model A 

95% CI1  

Model A 

Pooled 

HR¹  

Model B 

95% CI¹  

Model B 

Pooled 

HR¹ 

Model C 

95% CI¹  

Model C 

Body mass index 1.02 1.01, 1.04 1.02 1.01, 1.04 1.02 0.59, 1.77 

Sex 0.77 0.58, 0.01 0.63 0.15, 2.64 0.83 0.58, 1.19 

current employment status 1.08 0.99, 1.18 1.07 0.98, 1.17 1.01 0.90, 1.13 

Second line drugs 1.12 0.80, 1.55 1.14 0.82, 1.59 1.13 0.77, 1.72 

Atrial Fibrillation 1.70 0.42, 6.89 1.88 0.51, 7.00 1.70  0.42, 6.89  

Hypertension 1.89 1.41, 2.52 3.22 2.17, 4.79 2.88 2.07, 4.02 

Stroke 1.05 0.33, 3.38 1.12 0.35, 3.52 1.28 0.51, 3.19 

Diabetic 1.06 0.71, 1.58 0.90 0.60, 1.35 1.01 0.64, 1.59 

Depression Mental illness 1.54 1.12, 2.10 1.59 1.23, 2.07 1.66 1.11, 2.48 

Statins 1.71 1.32, 2.21 2.88 2.21, 3.73 1.56 1.14, 2.14 

smoking status 1.51 1.11, 2.03 1.22 0.89, 1.67 1.61 1.07, 2.42 

ethnic 1.32 1.04, 1.68 1.32 1.04, 1.68 0.62 0.27, 1.41 

steroids 1.20 0.92, 1.58 1.33 0.99, 1.78 1.27 0.89, 1.81 

Methotrexate 0.89 0.69, 1.14 0.91 0.68, 1.24 0.73 0.52, 1.04 

Anti TNF biologic 1.05 0.46, 2.40 1.14 0.49, 2.66 1.95 0.56, 6.78 

Smoke one 1.58 1.15, 2.17 1.93 1.45, 2.58 1.68 1.04, 2.70 

Nsaids 0.80 0.61, 1.05 0.75 0.57, 0.97 1.15 0.76, 1.73 

Family history of RA 1.12 0.80, 1.57 0.84 0.62, 1.15 1.12 0.68, 1.83 

Family history of MI 1.55 1.13, 2.13 1.66 1.27, 2.17 1.47 1.33, 2.31 

Family history of CV 1.16 0.71, 1.90 1.2 0.73, 1.97 1.03 0.52, 2.06 

Biologics 0.81 0.46, 1.42 0.77 0.43, 1.38 0.4 0.13, 1.15 

DMARD's 0.78 0.58, 1.07 0.68 0.52, 0.88 0.89 0.60, 1.33 

Age registration 1.01 1.00, 1.02 0.98 094, 1.02 1.01 0.99, 1.02 

standard deviation of blood 

pressure 
1.21 1.11, 1.32 1.18 0.97, 1.44 1.06 0.92, 1.21 

PRS_IN N/A N/A 2.74 2.60, 4.33 N/A N/A 

metaGRS N/A N/A N/A N/A 1.34 1.19, 2.10 
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Table S 4.2: Baseline characteristics of patients aged 17.9-91 years without cardiovascular disease and not using statins at 
study entry. Values are numbers (percentages) of patients unless stated otherwise.  

Characteristics Without CAD With CAD Overall 

(N=1987) (N=136) (N=2123) 

Gender    

  Male 588 (29.3%) 57 (41.9%) 645 (30.1%) 

  Female 1399 (70.4%) 79 (58.1%) 1478 (69.6%) 

Corticosteroids Use    

  No 1598 (80.4%) 102 (75.0%) 1700 (80.1%) 

  Yes 389 (19.6%) 34 (25.0%) 423 (19.9%) 

Hypertension    

  No 1864 (93.8%) 117 (86.0%) 1981 (93.3%) 

  Yes 123 (6.2%) 19 (14.0%) 142 (6.7%) 

Stroke    

No 1978 (99.5%) 133 (97.8%) 2111 (99.4%) 

Yes 9 (0.5%) 3 (2.2%) 12 (0.6%) 

Diabetic    

  No 1852 (93.2%) 120 (88.2%) 1972 (92.9%) 

  Yes 135 (6.8%) 16 (11.8%) 151 (7.1%) 

Chronic Kidney Disease (Stage 3,4, and 

5) 

   

  No 1982 (99.7%) 135 (99.3%) 2117 (99.7%) 

  Yes 5 (0.3%) 1 (0.7%) 6 (0.3%) 

Depression    

  No 1628 (81.9%) 96 (70.6%) 1724 (81.2%) 

  Yes 359 (18.1%) 40 (29.4%) 399 (18.8%) 

Height(meters)    

  Mean (SD) 1.81 (13.7) 1.70 (20.4) 1.91 (14.3) 

  Median [Min, Max] 1.65 [1.28, 1.85] 1.66 [1.45, 1.72] 1.65 [1.28, 1.97] 

  Missing 274 (13.8%) 7 (5.1%) 281 (13.2%) 

Weight(kilograms)    

  Mean (SD) 77.3 (17.5) 82.2 (16.8) 77.6 (17.5) 

  Median [Min, Max] 75.2 [37.7, 178] 81.3 [47.7, 170] 76.0 [37.7, 178] 

  Missing 283 (14.2%) 6 (4.4%) 289 (13.6%) 

Smoking Status    

  No 1687 (84.9%) 108 (79.4%) 1795 (84.6%) 

  Yes 300 (15.1%) 28 (20.6%) 328 (15.4%) 

Systolic Blood Pressure    

  Median [Min, Max] 136 [75.0, 100] 138 [88.0, 179] 137 [75.0, 150] 

  Missing 763 (38.4%) 44 (32.4%) 807 (38.0%) 

Diastolic Blood Pressure    

  Median [Min, Max] 80.0 [67.0, 100] 79.0 [51.0, 109] 80.0 [67.0, 109] 

  Missing 761 (38.3%) 44 (32.4%) 805 (37.9%) 

Methotrexate Use    
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  No 1372 (69.0%) 101 (74.3%) 1473 (69.4%) 

  Yes 615 (31.0%) 35 (25.7%) 650 (30.6%) 

Smoke(1/day)    

  No 1407 (70.8%) 68 (50.0%) 1475 (69.5%) 

  Yes 580 (29.2%) 68 (50.0%) 648 (30.5%) 

Non-steroidal anti-inflammatory drugs 

(NSAIDs) Use  

   

  No 1444 (72.7%) 89 (65.4%) 1533 (72.2%) 

  Yes 543 (27.3%) 47 (34.6%) 590 (27.8%) 

Age (Years)    

  Mean (SD) 54.0 (14.4) 58.6 (13.7) 54.3 (14.4) 

  Median [Min, Max] 54.1 [17.9, 91.4] 58.5 [22.1, 86.9] 54.5 [17.9, 91.4] 

  Missing 10 (0.5%) 3 (2.2%) 13 (0.6%) 

Family history of Rheumatoid Arthritis    

  No 1739 (87.5%) 101 (74.3%) 1840 (86.7%) 

  Yes 248 (12.5%) 35 (25.7%) 283 (13.3%) 

Family history of Myocardial Infarction    

  No 1690 (85.1%) 92 (67.6%) 1782 (83.9%) 

  Yes 297 (14.9%) 44 (32.4%) 341 (16.1%) 

Family history of cardiovascular disease    

  No 1923 (96.8%) 123 (90.4%) 2046 (96.4%) 

  Yes 64 (3.2%) 13 (9.6%) 77 (3.6%) 

Biologics Use    

  No 1917 (96.5%) 133 (97.8%) 2050 (96.6%) 

  Yes 70 (3.5%) 3 (2.2%) 73 (3.4%) 

Disease-modifying antirheumatic drugs 

(DMARDs) Use 

   

  No 482 (24.3%) 40 (29.4%) 522 (24.6%) 

  Yes 1505 (75.7%) 96 (70.6%) 1601 (75.4%) 

Body Mass Index    

  Mean (SD) 27.9 (6.25) 28.7 (6.50) 28.0 (6.27) 

  Median [Min, Max] 27.2 [16, 54.1] 28.2 [16, 43.3] 27.3 [16, 54.1] 

  Missing 289 (14.5%) 8 (5.9%) 297 (14.0%) 
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Appendix B: Additional material 

In this section, additional graphs are provided to assess the quality of imputation. It should be noted 

that determining whether the MICE algorithm has converged does not have a definitive method. 

Typically, one approach is to plot one or more parameters against the iteration number and diagnose 

convergence when the variance between different sequences becomes no larger than the variance 

within each individual sequence. Careful inspection of these plots may help identify any specific issues. 

For instance, our analysis indicates that passive imputation necessitates careful configuration of the 

predictor matrix in order to ensure accurate results. Figure: A 4.1 illustrates a healthy convergence of 

variables. The model fitted here has minimal trends, and the streams blend seamlessly from the 

beginning. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 4.1: The graph shows the non and healthy convergence of MICE algorithm for height, weight, and BMI when 
plotted against the iteration number. 

 

 

 

 

 

 

 

 

 

Figure A 4.2: The figure shows the log transformation of continuous variables that were not normally distributed as a part of 
pre-processing the data. 
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Figure A 4.3: This figure shows the missing data pattern for all the variables. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure A 4.4: The figure shows the cumulative hazard which is commonly used to estimate the hazard 

probability. In other words, it corresponds to the number of events expected for each individual by time t if the 

event were a repeatable process. The horizontal axis (x-axis) represents time in years, and the vertical axis (y-

axis) shows the probability of surviving or the proportion of people surviving. The lines represent the survival 

curves of the two groups (Male = 1, Female = 2). A vertical drop in the curves indicates an event. The vertical tick 

mark on the curves means that a patient was censored at this time. 

 



199 
 

Chapter 5 

5.Assessing the causal relationship between serologically stratified 

rheumatoid arthritis and coronary artery disease: a Mendelian 

randomization study 

 
 
Publications 

 
Mehreen Soomro1, Steven Zhao, Suzanne Verstappen1, Anne Barton1 and John Bowes1, 1The 
University of Manchester, Manchester, United Kingdom 
 

Authorship contribution statement 
 
Mehreen Soomro: Writing, original draft, Writing, review & editing, Analysis, and interpretation. Anne 

Barton: Conceptualization, Writing, review & editing. John Bowes: Conceptualization, Supervision, 

Writing – original draft, Writing – review & editing. 

 

  



200 
 

Abstract 

Introduction 

Rheumatoid arthritis (RA) is associated with an increased risk of developing cardiovascular diseases 

such as coronary artery disease (CAD), especially in those who are seropositive. The relationship 

between RA and CAD involves genetic and environmental factors, but it is unclear if the increased risk 

in RA patients stems from the condition itself or other shared risk factors with CAD. Mendelian 

randomization (MR) is useful in studying the causal relationship between genetic predisposition to RA 

and the risk of developing CAD. The study aims to examine the causal relationship between RA and 

CAD. Emphasis is placed on investigating both seropositive and seronegative RA patients in order to 

enhance comprehension of the relationships according to disease subtype. 

 
Method 

The study utilized a genome-wide association meta-analysis that included 31,313 RA cases (68% 

seropositive) and approximately 1 million controls from North-western Europe to select 32 

independent single-nucleotide polymorphisms, strongly associated with RA, as instrumental variables. 

Summary-level data for CAD were obtained from meta-analyses of genetic studies from Cardiogram 

international genetic consortia. The causal relationship was estimated using two-sample MR.   In order 

to test the accuracy and validity of the results, sensitivity analyses, including the weighted median, 

MR-Egger, MR-PRESSO, and contamination mixture methods1, were applied. 

 
Results 

Individuals with seropositive RA have a higher risk of developing CAD due to genetic predisposition. 

The combined odds ratios showed an increase in CAD risk by 1.06 per unit rise in log odds of RA 

seropositive individuals (95% Confidence interval [1.05-1.07, P = 0.04). There was no observed 

association between genetic susceptibility to RA among seronegative patients and the occurrence of 

CAD.  

 
Conclusion 

In conclusion, individuals with a genetic predisposition to seropositive RA are more likely to develop 

CAD. Therefore, it is important to conduct thorough monitoring and intervention in order to manage 

any potential risks of CAD for patients with this predisposition. No significant association was found 

between the occurrence of CAD and those who have seronegative RA.  
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Introduction 

Rheumatoid arthritis (RA) is a chronic inflammatory disorder that affects approximately 1% of the adult 

population worldwide 2. RA is characterized by synovial inflammation, autoantibody production, and 

joint damage. RA patients have a higher risk of developing cardiovascular disease (CVD), including 

coronary artery disease (CAD) 3. Studies have consistently reported that RA patients who are 

seropositive for rheumatoid factor (RF) and anti-cyclic citrullinated peptide (CCP) antibodies have an 

even higher risk for CAD4,5. For example, one study investigated the extent and reasons behind the 

increased mortality rate seen in the initial years of inflammatory polyarthritis (IP) using the Norfolk 

arthritis registry (NOAR) of patients who were recruited with early IP and followed prospectively; they 

found that RA patients who were seropositive for RF and anti-CCP antibodies had a higher prevalence 

of CAD in both males and females compared to RA patients who were seronegative6. Meta-analyses 

have confirmed an elevated incidence of CAD among patients living with RA, which leads to potential 

cardiovascular events like myocardial infarction and premature mortality 7–9. A population-based 

cohort study of 375 participants with RA in whom carotid ultrasound scans were performed has also 

shown a higher prevalence of subclinical atherosclerosis 10. These associations raise concerns for 

clinicians since CAD is one of the leading causes of morbidity in RA. Indeed, the updated clinical 

guidelines of both the European Alliance of Associations for Rheumatology11 and the European Society 

of Cardiology12 recommend that patients with RA undergo routine cardiovascular risk assessments 

every 5 years, whereby traditional CVD risk factors should be multiplied by 1.5 to account for RA as an 

additional factor13. 

 
It should be noted, however, that establishing a definitive causal relationship between RA and CAD is 

challenging due to the presence of confounding factors; specifically, both RA and CAD share similar 

conventional cardiovascular risk factors like dyslipidaemia, hypertension, and diabetes mellitus. In 

exploring the greater prevalence of these conditions, it is possible to identify a multitude of 

explanations. It may be that their occurrence can be linked to shared risk factors such as smoking or 

hypertension, thus leading them to co-occur through chance alone. However, further investigation into 

the complex interplay between environmental and genetic influences could provide deeper insight into 

this phenomenon. Alternative explanations include a direct causal effect of RA on the development of 

CAD or vice-versa; the latter is less likely due to the temporal relationship between the two conditions, 

but it should be noted that previous studies have identified subclinical CAD in patients presenting with 

RA14. 

 
Some studies have attempted to account for the co-occurrence of conventional risk factors through 

adjustment for confounding factors in the analysis of data. For example, a recent study analysing data 



202 
 

from angiographic investigations adjusted for conventional risk factors such as obesity and smoking, 

and still revealed higher rates of CAD in patients with RA compared to those without13.  

 
Mendelian Randomization (MR) is an approach that can be used to clarify causality by using genetic 

variations as instrumental variables to diminish potential confounding effects1. For example, using MR 

approaches researchers have consistently found evidence that instrument variables from 50 genes 

linked to lower LDL (low-density lipoprotein) cholesterol levels are causally associated with a reduced 

risk of CAD 14. These findings add depth and nuance to our understanding of how genetics play a role 

in cardiovascular health. Moreover, MR studies have helped resolve uncertainties surrounding the 

relationship between HDL (high-density lipoprotein) cholesterol and CAD. Previous research suggested 

that higher levels of HDL were associated with decreased risk for CAD; however, large-scale analyses 

challenged this notion by revealing no significant link between increased plasma HDL and reduced risk 

for CAD15. 

 
The MR approach has been used in recent studies to investigate the causal relationship between RA 

and CAD 16. However, patients were not stratified by autoantibody status so understanding whether 

the same causal association exists across RA as a whole or in specific subsets remains unclear. 

Furthermore, MR is useful for understanding links between RA and CAD but has limitations. MR 

assumes genetic variants used are not affected by other factors1, which may bias results. Some 

assumptions must be met to ensure a reliable result through instrument variables 1. Pleiotropy is one 

such concern as it leads to impact on outcomes beyond the exposure under study, thus requiring 

thorough testing of statistical processes 17,18. 

 
In this study, we undertook a comprehensive 2-sample Mendelian randomization analysis to 

investigate the causal association between genetic predisposition to RA and CAD and stratified RA 

patients to test whether the association was confined to the seropositive subgroup.  

 
Materials And Methods 

Study design. The study used summary-level data from cardiogram international consortia 19, the UK 

Biobank20, and the FinnGen consortium20,21. All included studies had obtained ethical permissions from 

corresponding ethics committees. The UK Biobank received ethical permits from the National Bioethics 

Committees in Iceland, Denmark, and the National Committee on Health Research Ethics and Norway. 

Informed consent was obtained from all cohorts through approved procedures by institutional ethical 

committees. The study followed MR guidelines for accuracy and precision in its findings16. 
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Instrumental variable selection.  

Single-nucleotide polymorphisms (SNPs) strongly associated with RA (P < 5 × 10−8) were obtained from 

a genome-wide association meta-analysis that included total of 31,313 cases of RA (with approximately 

68% testing positive for seropositivity) were included in the study, along with a control group 

comprising around one million individuals from Northwestern Europe23. Furthermore, this study also 

utilized data from a recent GWAS of RA, resulting in 43 SNPs, which included an extensive sample size 

of 276,020 individuals across five ancestral groups. These ancestral groups consisted of individuals with 

European (EUR), East Asian (EAS), African (AFR), South Asian (SAS), and Arab (ARB) ancestries. To 

investigate this further, the GWAS initially included all RA cases and then focused on only the 

seropositive RA subgroup. The multi-ancestry meta-analysis identified novel loci with significant 

association with RA susceptibility(<5x10-8), including TNIP2, TNFRSF11A, and WISP1; the identification 

of these novel gene loci suggested essential roles for these immune system-related-genes or joint 

tissue-specific genes in the etiology of RA and resulted in a total of 124 loci being confirmed to be 

associated with RA susceptibility. This study included 35,871 individuals with RA and 240,149 control 

individuals from various ancestries. There were 22,350 instances of RA in the EUR groups, 11,025 in 

eight EAS groups, 999 in two AFR groups, 986 in one SAS group, and 511 in one ARB group. Among the 

31,963 (89%) cases, RA-specific serum antibodies were measured, with 27,448 (86%) being 

seropositive and 4,515 (14%) being seronegative. 

 
 All RA patients met the 1987 American College of Rheumatology (ACR) criteria or the 2010 ACR/the 

European League Against Rheumatism criteria (EULAR) or were clinically diagnosed by a 

rheumatologist/self-reported. Estimations for linkage disequilibrium in specific SNPs were calculated 

using data from the European reference panel of 1000 Genomes. To exclude high linkage 

disequilibrium, any SNP with an r2 above 0.01 or clump windows exceeding 10,000 kb were discarded; 

only genome-wide significant (5x10-8) SNPs were selected as relevant instruments; the occurrence rate 

was determined using both electronic health records and International Classification Diseases codes 

including ICD-9 714.0, ICD-10: M05 or M06. 

 
Data Sources for Outcome.  

Supplementary Tables S5.1, S5.2, and S5.3,, present a detailed summary of the associations between 

CAD and SNPs related toseropositive RA obtained from meta-analyses conducted by international 

genetic consortia cardiogram and studies utilizing UK Biobank data. The genome-wide association 

analysis included information about case and control numbers, covariates adjustments, and other 

relevant details listed in Table 5.1. Notably, there was little overlap between sample sets used for 

exposure versus outcome analyses. 
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Table 5.1: Details of the datasets used in the present Mendelian randomization study. 

 

Exposure/outcomes: Consortium/cohort: Participants: Exposure/Outcome Definition: Web sources 

Rheumatoid arthritis Iceland, UK Biobank, FinnGen, The 

population-based EIRA case-control 

study, parallel Swedish EIMS study, 

Umea biobank, the Swedish 

Rheumatology Quality Register 

Biobank, Danish Rheumatological 

Biobank, and clinical data in the 

Danish Rheumatology Quality 

Register, DANBIO, The Copenhagen 

Hospital Biobank, the TARCID 

cohort, The nationwide Danish 

Blood Donor Study, and Oslo RA 

cohort 

896066 European-

descent individuals, 

130624 NR 

Cases with RA were diagnosed by 

rheumatologists and/or captured 

through the nationwide 

Scandinavian rheumatology quality 

registries and/or the 10th revision 

of the International Statistical 

Classification of Diseases (ICD-10) 

code-based registration of all 

inpatient and outpatient healthcare 

visits. 

https://www.decode.co

m/summarydata/  

Rheumatoid arthritis  

(rheumatoid factor  

and/or anti-cyclic  

citrullinated peptide  

seropositive) 

Iceland, UK Biobank, FinnGen, The 

population-based EIRA case-control 

study, parallel Swedish EIMS study, 

Umea biobank, the Swedish 

Rheumatology Quality Register 

Biobank, Danish Rheumatological 

Biobank, and clinical data in the 

Danish Rheumatology Quality 

Register, DANBIO, The Copenhagen 

Hospital Biobank, the TARCID 

cohort, The nationwide Danish 

Blood Donor Study, and Oslo RA 

cohort 

860811 European-

decent 

individuals,148812 NR 

Cases with RA were diagnosed by 

rheumatologists and/or captured 

through the nationwide 

Scandinavian rheumatology quality 

registries and/or the 10th revision 

of the International Statistical 

Classification of Diseases (ICD-10) 

code-based registration of all 

inpatient and outpatient healthcare 

visits. If available, RF and anti-CCP 

measurements were used to define 

the seropositive RA subsets, 

according to classification criteria 

ACR/EULAR. 

https://www.decode.co

m/summarydata/  

Rheumatoid arthritis  

(rheumatoid factor  

and/or anti-cyclic  

citrullinated peptide  

seronegative) 

Iceland, UK Biobank, FinnGen, The 

population-based EIRA case-control 

study, parallel Swedish EIMS study, 

Umea biobank, the Swedish 

Rheumatology Quality Register 

Biobank, Danish Rheumatological 

Biobank, and clinical data in the 

Danish Rheumatology Quality 

Register, DANBIO, The Copenhagen 

Hospital Biobank, the TARCID 

cohort, The nationwide Danish 

Blood Donor Study, and Oslo RA 

cohort 

879238 European-

decent 

individuals,144748 NR 

Cases with RA were diagnosed by 

rheumatologists and/or captured 

through the nationwide 

Scandinavian rheumatology quality 

registries and/or the 10th revision 

of the International Statistical 

Classification of Diseases (ICD-10) 

code-based registration of all 

inpatient and outpatient healthcare 

visits. If available, RF and anti-CCP 

measurements were used to define 

the seronegative RA subsets, 

according to classification criteria 

ACR/EULAR. 

https://www.decode.co

m/summarydata/  

https://www.decode.com/summarydata/
https://www.decode.com/summarydata/
https://www.decode.com/summarydata/
https://www.decode.com/summarydata/
https://www.decode.com/summarydata/
https://www.decode.com/summarydata/
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Rheumatoid arthritis  
(rheumatoid factor  
and/or anti-cyclic  
citrullinated peptide  
seropositive) 

GWAS of RA 35,871 patients with RA 
and 240,149 control 
individuals, 22,350 
cases of RA European-
decent individuals. 
Among them 27,448 
(86%) were 
seropositive. 

All RA cases fulfilled the 1987 
American  
College of Rheumatology (ACR) 
criteria  
or the 2010 ACR/European League  
Against Rheumatism criteria or 
were  
diagnosed with RA by a 
professional  
rheumatologist. 

https://data.cyverse.org
/dav-
anon/iplant/home/kazu
yoshiishigaki/ra_gwas/r
a_gwas-10-28-2021.tar.  

Rheumatoid arthritis  
(rheumatoid factor  
and/or anti-cyclic  
citrullinated peptide  
seropositive) 

FinnGen 4594 cases, 214196 
controls of European-
descent individuals 

The 10th revision of the 
International Statistical 
Classification of Diseases (ICD-10) 
code-based registration of all 
inpatient and outpatient healthcare 
visits. M05-M14 

 
https://risteys.finngen.fi
/endpoints  

Coronary artery 
disease 

Coronary ARtery DIsease Genome-
wide Replication and Meta-analysis 
plus The Coronary Artery Disease 
Genetics (CARDIoGRAMplusC4D) 
consortium and UK biobank 

296525 individuals 
(34541 cases of 
coronary artery disease 
and 261984 non-cases) 

Myocardial infarction, acute 
myocardial infarction, acute 
coronary syndrome, and chronic 
stable angina 

www.cardiogramplusc4
d.org/ 

 
GWAS = genome-wide association study; CARDIoGRAMplusC4D = Coronary Artery Disease Genome-wide Replication and 
Meta-analysis plus The Coronary Artery Disease Genetics consortium; UKBB = UK Biobank; CAD = coronary artery disease;NR 
= Not reported. 

 
 
Statistical Analysis 

SNPs were harmonised across datasets based on allele coding and frequency. In the event of missing 

outcome data for any individual SNPs, proxy SNPs were utilized instead; these proxies were identified 

via https://ldlink.nci.nih.gov/, with a rigorous setting of r2 > 0.8 applied in reference groups drawn 

from European populations. Any remaining missing SNPs without valid proxies were subsequently 

excluded from consideration altogether.  

 
We utilized the same inverse variance weighted (IVW) method under the multiplicative random effects 

model as the previous study16  as our primary approach to determining associations between genetic 

liability and outcomes for RA, including seropositive and seronegative subtypes, with CAD. This method 

produces precise estimates yet remains vulnerable to horizontal pleiotropy as well as outliers that may 

affect results. To ensure the validity of findings while minimizing these risks, additional sensitivity 

analyses were conducted; these included the weighted median 20, MR-Egger21, MR-PRESSO22, and 

contamination mixture methods1. These approaches allowed us to examine consistency across 

different measures as well as detect and account for horizontal pleiotropy when present. Specifically, 

https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar
https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar
https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar
https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar
https://data.cyverse.org/dav-anon/iplant/home/kazuyoshiishigaki/ra_gwas/ra_gwas-10-28-2021.tar
https://risteys.finngen.fi/endpoints
https://risteys.finngen.fi/endpoints
https://risteys.finngen.fi/endpoints
http://www.cardiogramplusc4d.org/
http://www.cardiogramplusc4d.org/
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we utilized the weighted median analysis which is effective in producing consistent causal estimates 

so long as over half of the weight derives from valid SNPs21. Additionally, we made use of MR-Egger 

regression to identify potential instances where horizontal pleiotropy might be present; this was 

accomplished through an intercept test followed by correction for any negative impacts caused by 

these effects. 21. Based on a comparative analysis, it has been determined that the IVW method is 

generally more effective in detecting causal effects than the MR-Egger method when considering 

various pleiotropy conditions and adherence to Instrument Strength Independent of Direct Effect16,21. 

Nevertheless, an alternative technique for remedying horizontal pleiotropy involves using the MR-

PRESSO procedure which detects and removes outlier SNPs from consideration16,22. In cases where 

multiple genetic instruments are utilized, contamination mixture methodology may prove 

advantageous since it can still yield dependable causal estimates despite containing non-valid SNP1,16. 

With the understanding that genetic regions such as Human leukocyte antigen(HLA)genes are shared 

among various autoimmune diseases23, a thorough sensitivity analysis was conducted by eliminating 

SNPs found within those specific gene regions, specifically variants located in HLA-A, HLA-B, HLA-C, 

HLA-DPA1, HLA-DPB1, HLA -DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, and HLA–DRB3 to ensure accurate 

results in studying the linkage between RA and other types of autoimmune disorders. 

 
In addition, the pairwise covariance between SNP associations was assumed to be zero in the primary 

analysis. We tested this assumption using a range of covariance values. Conditional instrument 

strength was quantified using the modified F-statistic. When the value of the F-statistic in the first stage 

falls below 10, it suggests that there is a weak instrument24. 

 
In addition to fixed-effects meta-analysis, we incorporated scatter plots as a visualization tool for 

assessing heterogeneity in estimates of the SNPs used. This method allowed us to determine whether 

certain SNPs were driving the association. The combination of estimates from various datasets with 

different sample sizes was achieved by weighting study-specific estimates based on a given amount of 

information captured by that specific study. Notably, large studies with more participants carried more 

weight than small-scale ones. 

 
In this study, we also employed Cochran’s Q statistic and calculated the P-value to rigorously assess 

heterogeneity and horizontal pleiotropy in the MR-Egger intercept. All analyses were performed using 

TwoSampleMR and MendelianRandomization packages in R 25,26  

 
Results 

A total of 32 independent SNPs18 were identified that had beta and SE coefficients scaled to log-

transformed odds of RA, as indicated in Supplementary Table S5.1. After stratification, seropositive 
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cases retained 28 instrument variables, while seronegative cases retained seven instrument variables. 

The analysis of genetic instruments for all individuals with RA (without stratification by serological 

status) did not show a significant association between RA and CAD, with an OR value of 1.05 (P=0.08). 

Genetic instruments for RA seropositive explained 6.9% of its variance, with a univariable F-statistic of 

40 which suggests strong instrument variables and that there was a significant causal association 

between genetic susceptibility to seropositive RA and an increased risk of CAD, as demonstrated in 

Figure 24. The odds ratios for CAD were consistently higher when there was a 1-unit increase in log 

odds of seropositive RA with OR values of 1.06 (P =0.04). However, no significant association existed 

among patients with RA who were seronegative with OR values of 1.03 (P=0.4).  Full results are 

presented in Table 5.2. The results obtained through sensitivity analyses, remained consistent without 

horizontal pleiotropy evident from MR-Egger intercept tests where p>0.04 displayed analogous 

patterns. Although several outliers were detected through MR-PRESSO during our test on CAD, the 

connections between RA seropositivity stayed consistent even after excluding those cases. In scatter 

plots of associations with CAD and seropositive RA, we did not observe any SNPs that drove the overall 

positive associations (Figure 5.1 and S5.1). MR sensitivity methods generally did not change the causal 

direction of estimates. There was significant heterogeneity for all MR analyses but no evidence of 

directional pleiotropy. Importantly, there was no evidence of reverse causation in reverse MR.  
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Table 5.2: Associations of RA by instrument variables with CAD. 

 

Outcome Method Beta SE P value 
SNP
s 

Egger, 
P value 

RA_decode(Seropositive) MR Egger 0.432522 0.182631 0.0255877 28  

RA_decode(Seropositive) Weighted median 0.0306948 0.0232515 0.1867961 28  

33RA_decode(Seropositive) Inverse variance weighted 0.0691294 0.0337174 0.0403391 28 0.0536983 

RA_decode(Seropositive Inverse variance weighted 
(multiplicative random effects) 

0.06913 0.03372 0.04034 28  

RA_decode(Seropositive Inverse variance weighted 
(fixed effects) 

0.06913 0.01379 5.362e-7 28  

RA_decode(Seropositive) Simple mode 0.0291987 0.0423335 0.49625 28  

RA_decode(Seropositive) Weighted mode 0.0200546 0.0392637 0.6136655 28  

RA_decode Seronegative MR Egger 0.1289801 0.1175928 0.3528659 5  

RA_decode Seronegative Weighted median 0.0067922 0.0290349 0.8150379 5  

RA_decode Seronegative Inverse variance weighted 0.0315781 0.0447846 0.4807415 5 0.4346171 

RA_decode Seronegative Inverse variance weighted 
(multiplicative random effects) 

0.03158 0.04478 0.4807 5  

RA_decode Seronegative Inverse variance weighted 
(fixed effects) 

0.03158 0.02338 0.1768 5  

RA_decode Seronegative Simple mode 0.0002654 0.0412789 0.9951774 5  

RA_decode Seronegative Weighted mode -0.0025714 0.0368215 0.947677 5  

RA_decode(Full) MR Egger 0.3164823 0.1788691 0.0870011 32  

RA_decode(Full) Weighted median 0.0277769 0.0222566 0.2120199 32  

RA_decode(Full) Inverse variance weighted 0.0549788 0.0322389 0.088128 32 0.1478739 

RA_decode(Full) Inverse variance weighted 
(multiplicative random effects) 

0.05498 0.03224 0.08813 32  

RA_decode(Full) Inverse variance weighted 
(fixed effects) 

0.05498 0.01311 0.00002728 32  

RA_decode(Full) Simple mode 0.0494479 0.0455216 0.2857426 32  

RA_decode(Full) Weighted mode 0.0344814 0.0401308 0.3968127 32  

RA_Ishigaki(Seropositive) MR Egger 0.02059 0.01101 0.06862 43  

RIshigaki(Seropositive) Weighted median 0.02209 0.007111 0.00189 43  

RA_Ishigaki(Seropositive) Inverse variance weighted 0.02368 0.007156 0.0009345 43 0.711 

RA_Ishigaki(Seropositive) Inverse variance weighted 
(multiplicative random effects) 

0.02368 0.007156 0.0009345 43  

RA_Ishigaki(Seropositive) Inverse variance weighted 
(fixed effects) 

0.02368 0.004718 5.183e-7 43  

RA_Ishigaki(Seropositive) Simple mode 0.02557 0.01741 0.1494 43  

RA_Ishigaki(Seropositive) Weighted mode 0.01985 0.006282 0.002929 43  

RA_Finngen(Seropositive) MR Egger 0.08399 0.0266 0.02515 7  

RA_Finngen(Seropositive) Weighted median 0.04403 0.01355 0.001154 7  

RA_Finngen(Seropositive) Inverse variance weighted 0.05539 0.01106 5.507E-07 7 0.293 

RA_Finngen(Seropositive) Inverse variance weighted 
(multiplicative random effects) 

0.05539 0.01106 5.507e-7 7  

RA_Finngen(Seropositive) Inverse variance weighted 
(fixed effects) 

0.05539 0.009737 1.283e-8 7  

RA_Finngen(Seropositive) Simple mode 0.05188 0.02272 0.06253 7  

RA_Finngen(Seropositive) Weighted mode 0.03933 0.01988 0.09521 7  

 
IVW, inverse-variance weighted; MR-PRESSO, Mendelian randomization Pleiotropy RESidual Sum and Outlier; MVMR, 
multivariable Mendelian randomization. 

 



209 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5.1: Scatter plots of associations with coronary artery disease and rheumatoid arthritis. SNP = single-nucleotide 
polymorphism; CARDIoGRAMplusC4D = Coronary Artery Disease Genome-wide Replication and Meta-analysis plus The 
Coronary Artery Disease Genetics consortium; MR = Mendelian randomization. 
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Discussion 

To enhance our understanding of the plausible causal connection between RA and CAD, an extensive 

Mendelian randomization study was performed.  Convincing evidence was detected to support that 

genetically inherited susceptibility for RA increases the likelihood of developing CAD among 

seropositive individuals. These results are unconfounded by the role of shared risk factors. Our results 

remained consistent across several data sources outside HLA gene regions upon the exclusion of 

specific SNPs using advanced multivariable MR analysis techniques. 

 
Exploring the augmented susceptibility to CVD among patients diagnosed with RA is challenging due 

to the intricate relationship between conventional and new CVD risk factors as well as RA pathology. 

A remarkable clinical feature of seropositive RA involves heightened levels of autoantibodies, such as, 

but not limited to, anti-CCP antibodies and RF. Further research is needed to determine the specific 

contribution made by these autoantibodies that elevate CVD risk. Although certain studies suggest 

that elevated RF levels may not predict an increase in CVD occurrence or progression rate 27, a few 

findings indicate a direct association between higher-than-average increments of RF levels and 

incident CAD in those with RA4. Moreover, another study has revealed that RF and anti-CCP 

autoantibodies have an additive effect on inflammation and disease activity in RA28. A recent review 9 

further substantiated this finding through reference to ten studies documenting cardiovascular 

outcomes dependent on RF autoantibody status29–38. RF autoantibody presence may trigger a rise in 

the risk of various total cardiovascular events or CVD, including but not restricted to cardiac failure 

leading to death among patients who recently underwent high-dose exposure to glucocorticoids30. 

These results indicate that RA patients with positive test results for both RF and anti-CCP antibodies 

may face elevated risks of contracting potentially severe systemic complications other than joint 

damage. They may serve as indicators of a more severe inflammatory condition, which can 

subsequently result in heightened CAD due to inflammation. 

 
This research has revealed a causal association between RA and CAD, with evidence suggesting that 

RA may play a causal role in driving CAD, especially in seropositive individuals. However, it is important 

to note that the effect size we observed was relatively modest at 6%, although higher than the effect 

observed in previous studies that did not consider autoantibody status 16. Our findings may have been 

influenced by differences in outcome definitions between our study and earlier research on CAD 

(details in Table 5.1), variations in population health levels included across studies, as well as distinct 

approaches taken to calculate risk based on log odds of RA. Nevertheless, the overall evidence still 

indicates a higher incidence of CAD among RA seropositive individuals. While our results suggest a 

causal link between RA seropositive and increased incidence/severity of cardiovascular complications 
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like CAD, further investigation is required to confirm causality beyond doubt due to complexities 

surrounding the identification of indirect relationships via associated demographics and lifestyle 

behaviours. 

 
It would be critical to identify the underlying pathophysiology associated with increased risks of 

developing these conditions to advance clinical care beyond the current treatment options. Research 

efforts may involve identifying new biomarkers that aid diagnosis, advancing targeted gene therapy 

techniques improving disease prevention strategies, among other approaches. Overall, deeper 

research into the connection between RA and CAD has significant implications for improving patient 

outcomes through more effective management and treatment options. 

 
Our study has uncovered compelling MR evidence, which for the first time, shows that RA seropositive 

is a key driving factor behind increased cardiovascular risk. This discovery underscores the crucial need 

to manage this high-risk population with greater vigilance, particularly individuals who exhibit positive 

autoantibodies. Our findings are consistent with existing clinical guidelines that advocate for 

aggressive treatment of rheumatic disease activity, given its close link to lowering cardiovascular risk. 

We acknowledge there is currently much debate over effective management strategies since some 

therapies have been found to trigger unfavourable cardiovascular effects. 

 
The present study exhibits multiple strengths that add depth to its findings. Firstly, the study design 

utilizes MR and builds on it by utilizing multiple genetic instruments for accuracy. Secondly, the data 

sources were varied to ensure dependable outcomes. Thirdly, a multivariable MR analysis was 

conducted which helped in exploring potential mechanisms behind the observed results. Additionally, 

it is noteworthy that this study maintains population confinement limited exclusively to individuals of 

European descent; thus, reducing any potential biases stemming from population structure differences 

across different ethnicities or races. 

 
However, it should be noted that there are certain limitations to our findings. One of the limitations of 

this study is that there were a limited number of instrument variables available for seronegative RA. 

Furthermore, the sample size for seronegative RA was smaller compared to that for seropositive RA, 

which may have limited the power to detect association. This may be due to the fact that previous 

studies focusing on SNP-based heritability estimates in seropositive RA have yielded consistent results 

(0.19)39, while findings regarding seronegative RA are scarce and suggest lower heritability estimates 

(0.099)18. Secondly, we detected moderate heterogeneity in the study outcomes related to CAD across 

different data sets like CARDIoGRAMplusC4D Consortium, UK Biobank, and FinnGen. Nonetheless, this 

bias due to horizontal pleiotropy appeared minimal based on MR-Egger regression analyses which did 
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not show any significant impact of such biases; thus, suggesting possible balanced horizontal 

pleiotropy effects. Consistent outcomes regarding CAD were observed throughout various sensitivity 

analyses performed using multiple datasets under varying assumptions even when outlier 

observations detected through MR-PRESSO were excluded. The generalizability of our results to 

populations outside of European descent is limited due to the study's focus on this specific group. A 

power calculation could not be conducted for this analysis as information regarding the phenotypic 

variance in RA explained by the utilized SNPs was unavailable, thereby hindering confirmation of our 

null outcomes. Obtaining such crucial data would aid future studies beyond the current sample 

population in validating these findings. 

 
Conclusion 

In summary, this study has identified that patients with seropositive RA, have a causal increased 

susceptibility to CAD. Thus, closely monitoring and managing these patients is crucial to mitigate 

adverse outcomes in these patients. Effectively addressing this issue may lead to improved outcomes 

in patient care and quality of life for individuals diagnosed with rheumatic diseases and the general 

population without such conditions through an enhanced understanding of underlying mechanisms 

responsible for CV risk related to autoimmunity. 

 
Data Availability 

All data used in this study are in the public domain (or will be shortly). Supplementary Tables describe 

the data used and relevant information to retrieve the summary statistics. 
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Supplementary material 

Table S 5.1: Associations between RA (seropositive Finngen)-related SNPs and CAD with 17 instrument variables 

 
          RA_Finngen (Seropositive)   CAD 

SNP Chr EA OEA   BETA SE P   BETA SE P 

rs11571293 2 T G   -0.155 0.0242 1.61E-10   -0.0011 0.0058 0.8533 

rs2523572 6 T C   0.3559 0.0256 6.25E-44   0.0121 0.0061 0.0490298 

rs3093017 6 G C   -0.1356 0.0227 2.24E-09   -0.0073 0.0057 0.2008 

rs3117134 6 C T   -0.2435 0.0232 1.16E-25   -0.0103 0.006 0.0894602 

rs34536443 19 C G   -0.4029 0.0681 3.25E-09   -0.0258 0.016 0.1064 

rs3778754 7 G C   0.1262 0.0226 2.47E-08   0.0017 0.0057 0.7615 

rs6679677 1 A C   0.4608 0.0325 9.48E-46   0.0437 0.0088 7.07E-07 

rs7731626 5 A G   -0.1397 0.0251 2.46E-08   0.0112 0.0062 0.0714908 

rs9264277 6 C T   0.1958 0.0261 6.61E-14   0.0128 0.0061 0.0361402 

rs11571293 2 T G   -0.155 0.0242 1.61E-10   -0.00878429 0.00707851 0.21 

rs2523572 6 T C   0.3559 0.0256 6.25E-44   0.012696 0.00729833 0.0819993 

rs3093017 6 G C   -0.1356 0.0227 2.24E-09   -0.01046 0.0070253 0.14 

rs3117134 6 C T   -0.2435 0.0232 1.16E-25   -0.00969325 0.00715702 0.18 

rs34536443 19 C G   -0.4029 0.0681 3.25E-09   -0.0159798 0.0176275 0.36 

rs3778754 7 G C   0.1262 0.0226 2.47E-08   0.00384136 0.00698532 0.58 

rs6679677 1 A C   0.4608 0.0325 9.48E-46   0.0464592 0.0118257 8.50E-05 

rs7731626 5 A G   -0.1397 0.0251 2.46E-08   0.013823 0.0072309 0.0560003 

rs9264277 6 C T   0.1958 0.0261 6.61E-14   0.0129935 0.00721169 0.0719996 

 
SNP=Single nucletoid polymorphism,Chr=Chromosomes,EA=Allele,OEA=Other allele,SE=Standard 

error,P=P-value 
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Table S 5.2: Associations between RA(Seropositive_Ishigaki)-related SNPs and CAD with 43 intrument variables. 

          RA_biobank_Japan (Seropositive)   CAD 

SNP Chr EA OEA   BETA SE P   BETA SE P 

rs10790268 11 G A   0.1593 0.02022 3.35E-15   0.0024 0.0071 0.7356 

rs10985070 9 A C   -0.08656 0.01535 1.72E-08   -0.0029 0.0052 0.584201 

rs11085727 19 T C   -0.11612 0.01778 6.62E-11   -0.0166 0.0063 0.00885809 

rs11102694 1 A G   0.32599 0.01895 2.63E-66   0.0335 0.0074 5.07E-06 

rs11574914 9 A G   0.11847 0.01603 1.49E-13   -0.0033 0.0055 0.5472 

rs11751696 6 T G   0.22055 0.02118 2.13E-25   0.0119 0.0086 0.1642 

rs12764378 10 A G   0.13358 0.01817 1.92E-13   -0.0078 0.0069 0.2544 

rs13330176 16 A T   0.1172 0.02039 9.02E-09   -0.0027 0.0069 0.693201 

rs13426947 2 A G   0.13316 0.019 2.36E-12   0.0166 0.0071 0.01948 

rs1571878 6 T C   -0.12182 0.01556 4.87E-15   -0.0077 0.0057 0.173 

rs1858037 2 A T   -0.10039 0.01621 5.90E-10   0.0111 0.006 0.0627596 

rs187786174 1 A G   -0.11442 0.01803 2.22E-10   -0.0025 0.0058 0.6652 

rs2069235 22 A G   0.10531 0.01673 3.03E-10   -0.0064 0.0061 0.2974 

rs2105325 1 C A   0.1024 0.01788 1.01E-08   0.0011 0.0066 0.8641 

rs212389 6 A G   0.09868 0.01618 1.07E-09   0.0032 0.0059 0.584901 

rs2233434 6 G A   0.2849 0.05158 3.33E-08   0.0051 0.0139 0.7126 

rs2240336 1 T C   -0.10103 0.0167 1.43E-09   0.0059 0.0057 0.2983 

rs2523668 6 A C   0.48212 0.01952 1.20E-134   0.0207 0.0086 0.0154198 

rs2561477 5 A G   -0.10385 0.01672 5.17E-10   -0.0117 0.0062 0.0580497 

rs28411352 1 T C   0.10876 0.01862 5.21E-09   -0.0184 0.0066 0.00501903 

rs28635831 13 G A   -0.10645 0.01635 7.59E-11   0.0013 0.0059 0.8242 

rs3087243 2 A G   -0.14051 0.01544 9.23E-20   -0.0051 0.0051 0.319 

rs34695944 2 C T   0.11793 0.01563 4.44E-14   0.0069 0.0061 0.2633 

rs3778753 7 G A   0.11128 0.01605 4.18E-12   0.0017 0.0058 0.7633 

rs4239702 20 C T   0.13357 0.01768 4.24E-14   -0.0052 0.0063 0.4082 

rs425482 6 C T   0.14635 0.01733 2.97E-17   -0.0077 0.0061 0.2053 

rs4452313 3 T A   0.10995 0.01742 2.74E-10   0.009 0.0061 0.1365 

rs4777188 15 C G   0.1171 0.01584 1.41E-13   -8.00E-04 0.0056 0.8809 

rs4936059 11 G A   0.09158 0.01676 4.64E-08   0.0019 0.0059 0.749601 

rs537544 10 T C   -0.112 0.01722 8.02E-11   -0.0016 0.0059 0.783599 

rs58721818 6 T C   0.34724 0.03975 2.41E-18   -0.0125 0.0168 0.456 

rs592390 18 C T   -0.09095 0.01543 3.81E-09   -0.004 0.0057 0.483499 

rs59716545 17 G T   0.09246 0.01542 2.04E-09   -0.0065 0.0058 0.255 

rs624988 1 C T   -0.08585 0.0157 4.56E-08   -0.0075 0.0057 0.1858 

rs706778 10 T C   0.10647 0.01553 7.13E-12   0.0151 0.0057 0.00743807 

rs7731626 5 A G   -0.19311 0.01964 7.93E-23   0.0112 0.0062 0.0714908 

rs7770501 6 G C   -0.47351 0.02765 1.00E-65   -0.0163 0.0087 0.0609298 

rs8026898 15 A G   0.14416 0.01701 2.37E-17   -0.0014 0.0064 0.8304 

rs8032939 15 C T   0.12131 0.01731 2.40E-12   0.0277 0.0064 1.51E-05 

rs8133843 21 A G   0.09493 0.01632 6.00E-09   0.007 0.0058 0.2316 

rs9268645 6 G C   0.56426 0.01576 1.00E-200   0.0135 0.006 0.02585 

rs9275512 6 G A   0.82757 0.01705 1.00E-200   0.0084 0.0071 0.2381 

rs9310852 3 G A   0.08654 0.01565 3.24E-08   0.0125 0.0057 0.0301301 

rs9653442 2 T C   -0.10642 0.0153 3.55E-12   -0.0107 0.0057 0.06017 
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Table S 5.3: Associations between RA (seropositive decode)-related SNPs and CAD with 28 intrument variables 

 
          RA_decode(Seropositive)   CAD 

SNP Chr EA OEA   BETA SE P   BETA SE P 

rs10517086 4 A G   0.107059072 0.013255511 6.20E-16   -0.0033 0.0063 0.597901 

rs11102660 1 G A   -0.083381609 0.014922154 2.30E-08   -0.0242 0.0071 0.000703493 

rs113949610 7 C T   0.108854405 0.018686394 5.70E-09   0.0156 0.0094 0.0952796 

rs11571297 2 C T   -0.110931561 NA 2.90E-20   -0.0031 0.0057 0.587801 

rs11636401 15 G A   -0.099820335 0.012159071 2.00E-16   -7.00E-04 0.0056 0.8984 

rs12718260 7 G T   0.076961041 0.012597131 1.00E-09   -0.0066 0.0062 0.2864 

rs1471293 8 A G   0.074179398 0.012047409 7.40E-10   0.0019 0.0057 0.740099 

rs1538981 10 C T   -0.091019398 0.012186926 8.10E-14   -0.0155 0.0056 0.00590405 

rs2208397 14 T G   -0.075801713 0.01338883 1.50E-08   -0.0081 0.0064 0.2029 

rs2409780 8 C T   0.083421608 0.013688734 1.10E-09   0.0128 0.0065 0.0489598 

rs34536443 19 C G   -0.371063681 NA 2.70E-27   -0.0258 0.016 0.1064 

rs36084352 1 C T   -0.072570693 0.012234593 3.00E-09   0.024 0.0058 3.49E-05 

rs3757387 7 C T   0.085259844 0.012153981 2.30E-12   0.0023 0.0058 0.693201 

rs4073285 1 T C   -0.109814866 NA 1.10E-16   -0.0031 0.0059 0.595799 

rs42031 7 T A   0.086177696 0.014712469 4.70E-09   -0.0163 0.0072 0.0237799 

rs4323544 9 C T   0.088926209 0.012312219 5.10E-13   0.0094 0.006 0.1129 

rs474247 1 T C   0.085259844 0.015502063 3.80E-08   0.0051 0.0072 0.4783 

rs479777 11 C T   -0.075801713 0.012742204 2.70E-09   -0.0034 0.0061 0.5755 

rs4851273 2 A G   0.074179398 0.012770631 6.30E-09   0.0082 0.006 0.1672 

rs4853458 2 A G   0.107957142 0.014342839 5.20E-14   0.0123 0.0067 0.0660602 

rs4948498 10 A G   0.069526063 0.012280364 1.50E-08   -0.0207 0.0059 0.000414295 

rs56199187 1 T C   0.113328685 0.018638839 1.20E-09   9.00E-04 0.0098 0.925 

rs6032660 20 G A   -0.085557888 0.014202482 1.70E-09   0.0023 0.0065 0.7205 

rs62045818 16 C T   -0.076881044 0.012545897 8.90E-10   0.0077 0.0064 0.2263 

rs653178 12 C T   0.099845335 0.012162116 2.60E-16   0.0546 0.0054 1.13E-23 

rs6679677 1 A C   0.464991087 NA 3.90E-161   0.0437 0.0088 7.07E-07 

rs6700964 1 G C   0.070458464 0.012765412 3.40E-08   0.0149 0.006 0.01335 

rs67574266 2 A G   0.076961041 0.012442652 6.20E-10   0.0071 0.0061 0.2505 

rs6780559 3 C G   0.082501222 0.014396288 1.00E-08   -0.0124 0.0066 0.0602199 

rs706778 10 T C   0.082501222 0.012167941 1.20E-11   0.0151 0.0057 0.00743807 

rs7117261 11 T C   -0.109814866 0.015595091 1.90E-12   -0.0035 0.0072 0.630001 

rs72836346 2 C G   0.129272336 0.020431906 2.50E-10   -0.0225 0.0115 0.0495701 

rs73013527 11 C T   0.076961041 0.012186843 2.70E-10   -0.0079 0.0059 0.1747 

rs76428106 13 C T   0.303063174 0.046414623 6.60E-11   0.0628 0.0276 0.0231798 

rs7731626 5 A G   -0.138113302 NA 1.10E-26   0.0112 0.0062 0.0714908 

rs8002731 13 C A   -0.080126044 0.012769422 3.50E-10   1.00E-04 0.006 0.9806 

rs9939427 16 A G   0.09531018 0.014517717 5.20E-11   1.00E-04 0.007 0.989 

 
SNP=Single nucletoid polymorphism,Chr=Chromosomes,EA=Allele,OEA=Other allele,SE=Standard 

error,P=P-value 
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 Figure S 5.1: Forest plots of associations with coronary artery disease and rheumatoid arthritis. SNP = single-nucleotide 
polymorphism; CARDIoGRAMplusC4D = Coronary Artery Disease Genome-wide Replication and Meta-analysis plus The 
Coronary Artery Disease Genetics consortium; MR = Mendelian randomization. 
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Chapter 6 

6.Discussion 

 
The aims of this thesis were to enhance our understanding of the progression of PsA in individuals 

with PsC and of CAD in individuals with RA, respectively.  

The main focus of this thesis was divided into three specific objectives. 

1. The first objective was to discern genetic risk factors and pathways that differentiate PsA from 

PsC. Additionally, this study aimed to test the effectiveness and accuracy of a predictive model 

for PsA risk in patients with psoriasis. 

2. The second objective was to estimate the improvement in risk classification for CAD in people 

with RA when integrating PRS risk with traditional CAD risk elements (such as QRISK3), while 

assessing its reproducibility through validation methods. 

3. The third objective was to apply Mendelian randomization techniques in order to determine 

if RA plays a causal role in CAD. 

 

Summary of Findings 

The following sections will summarise the results into three main themes:  

i. The genetic analysis of PsA and psoriasis for the discovery of genetic risk factors and risk 

prediction modeling. 

ii. Evaluating the use of genetic risk scores as part of an integrated risk tool for predicting 

CAD in patients with RA. 

iii. Estimating the causal role of RA on CAD by performing Mendelian randomization and to 

estimate the overall genetic correlation between RA and CAD 

. 
The Genetic Analysis of Psoriatic Arthritis and Psoriasis for the Discovery of Genetic Risk Factors 

and Risk Prediction Modeling 

In Chapter 3, the study delved deeper into understanding the heritability estimates for PsA and PsC. 

The findings indicated a higher genetic component in PsA as compared to psoriasis. Despite limited 

differences, SNP analysis of large-scale case-control studies showed significant variation between 

individuals affected by these two diseases.  On the observed scale the heritability estimates were 

similar and on the liability scale they were higher in PsC. 
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In addition to identify susceptibility loci and relevant biological pathways, prediction models were 

validated in independent dataset. Early diagnosis and management are key since disease severity at 

presentation may be indicative of morbidity rates.  

 
The use of risk prediction models in clinical decision-making and modern medicine has grown 

significantly in importance, offering potential benefits for patients1. However, these models need to 

prove their clinical usefulness by validating them independently beyond the datasets used to develop 

them before they can be reliably applied to populations2,3. Unfortunately, a systematic review by Hues 

et al. found4 that more than half of published prediction models lacked adequate reporting and failed 

to follow TRIPOD guidelines, ultimately undermining their effectiveness. To increase transparency in 

reporting on prediction models, it is crucial to adhere to the TRIPOD guidelines, regardless of the 

research methodology. The TRIPOD Statement offers an extensive 22-item checklist that serves as a 

valuable resource in ensuring the transparent and thorough reporting of studies focused on the 

development or validation of multivariable prediction models4.The TRIPOD Statement is designed to 

enhance the transparency of reporting in prediction model studies, regardless of the methods 

employed. It is recommended to complement the use of the TRIPOD Statement with reference to its 

accompanying explanation and elaboration document4.After conducting an in-depth analysis of PsA 

data, Chapter 3 discovered evidence showing the flaws of prediction models (PMs) created outside of 

their development cohort. Despite following the methodology and approach of Patrick and colleagues 

5, which gave priority to selected genetic features in determining their significance, these models were 

found to have poor calibration and a low ability to differentiate between internal and external 

validation sets. This highlights the importance of stronger evaluation techniques when testing 

predictive methodologies in different cohorts with varying conditions. In Chapter 3, we provide a 

thorough overview of how all PMs perform across various datasets with regard to specific features. 

Additionally, readers can find detailed graphs and tables in the supplementary material of chapter 3 

for further analysis. However, our observations indicate that there is a lack of alignment between the 

expected and observed risks from these models across different strata, indicating poor calibration. 

Most PMs show poor results in this regard. The area under the ROC curve was disappointingly low, 

averaging around 0.6 or even as low as 0.5 for both internal and external validation. However, elastic-

net regression stands out as an exception, exhibiting discrimination rates up to about 61% during 

testing. Overall, our findings suggest that using genome-wide significant locus without controlling 

confounding factors (e.g., age) before selecting presented features may be less effective. 

 
Although there are undoubtedly many risk factors associated with PsA development, current psoriasis 

patients may represent a particularly high-risk group concerning predictions based on genetics alone. 
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Still, it should always be kept in mind that confounding effects play critical roles in influencing any 

genetic studies' findings. Indeed, Bowes and colleagues6 previously demonstrated the relationship 

between the timing of disease onset and fine-mapping associations in the MHC region. In addition, 

different biases stemming from failure-to-control-for-confounding issues seen throughout various 

types of predictive modelling efforts across many fields including medicine. 

 
Therefore, even if overall performance metrics seem achievable through some proposed modelling 

approach or algorithm used – without having properly established controls addressing potential 

sources contributing conflicting information (only at worst producing highly biased estimates), such 

approaches ultimately have little clinical utility or scientific merit beyond intellectual exercise where 

future progress towards discovering reliable markers will likely stem from prior work. 

 
In order to create effective PsA-PMs for the future, we must thoroughly analyse and use current 

datasets while taking age into consideration as a significant confounding factor. This will ensure that 

only relevant genetic markers are selected as outcome predictors. To ensure accurate results, it is 

important to follow the TRIPOD guidelines when reporting prediction models, including external 

validation and calibrated metrics7. Proper calibration allows for performance comparisons and 

determines whether the PMs are effective when implemented8. Precision in predicting outcomes is 

crucial, and utilizing contemporary data sources while adhering to industry standards like the TRIPOD 

guidelines can prevent issues such as publication bias. Consistent reporting across journals increases 

reliability over time. 

 
Based on our analysis and findings discussed in Chapter 3, it is clear that while evaluating genetic risk 

factors external validation becomes necessary, particularly when estimating the risk before disease 

symptoms appear. Instead of developing entirely new models, updating current PsA-PMs through 

techniques such as model transportation or implementation could prove fruitful in novel national 

cohorts. By reconfiguring existing models based on characteristics unique to a population, such as age, 

gender demographics, and CVD, refining performance by performing variable selection will not only 

advance predictions but may also prove invaluable clinically. Further comprehensive exploration into 

this area of research is fundamental to realizing its potential success. 

 
How could this be moved forward? With the aim of improving predictive accuracy for PsA 

susceptibility in patients with psoriasis, it is suggested that future research should incorporate clinical 

data and genetics collected longitudinally through a prospective study design on clinically well-defined 

PsC patients before biologic drug treatment. This combination will create an integrated risk score, 

providing more precise predictions of individual patient outcomes. Furthermore, the inclusion of 
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dynamic biomarkers like host microbiome and immunophenotyping into the development of PsA 

prediction models could significantly enhance their efficacy in predicting disease progression48. Such 

efforts would enable timely interventions and lead to improved therapeutic outcomes by delivering 

personalized care based on accurate risk assessments tailored to each patient's specific needs. 

 
Evaluating the Use of Genetic Risk Scores as Part of an Integrated Risk Tool for Predicting Coronary 

Artery Disease in Patients with Rheumatoid Arthritis 

Chapter 4 explores the hypothesis that the heightened risk of CAD faced by patients with RA can 

potentially be estimated with greater accuracy through extensive genetic data analysis. By 

incorporating meta-PRS derived from numerous CAD-related genetic studies along with traditional 

predisposing factors, Chapter 4 unveils a more improved PM for assessing CAD vulnerability in RA 

patients over a decade-long period. 

 
Recent research on risk prediction models that used only conventional risk factors reveals that no 

singular model consistently delivers optimal results9, and it is challenging to endorse one approach 

above another due to its less-than-perfect discriminatory capabilities. Therefore, further refinement 

of these models specifically aimed at this patient cohort remains crucial.  

 
To effectively prevent CAD in individuals with RA there are two main strategies that have been 

implemented. The first approach entails a population-wide strategy, which involves identifying and 

targeting the general population at large for risk assessment and intervention. The second approach 

is through high-risk-group strategies, where individuals who are most likely to develop CAD due to 

their RA condition or related factors are specifically identified10. 

 
To identify which individuals may be at a higher risk of developing CAD, various methods can be used. 

One such method is systematically evaluating primary care records for relevant information regarding 

an individual's health status and medical history. Alternatively, offering regular health screening tests 

to those over 40 years old via programs like the National Health Services (NHS) Health Checks program 

can help detect early warning signs of heart disease or calculate 10-year risk via existing CAD 

prediction tools (e.g., QRISK3). In order to determine appropriate personal interventions aimed at 

preventing CAD in RA based on each individual's level of risk, conducting comprehensive assessments 

using validated scoring systems plays an essential role.        

 
However, risk assessment for identifying such persons may not be adequate as they use only 

traditional predictors like age, sex, smoking habits, lipid levels, and blood pressure which can 

underestimate or miss a considerable proportion of people who will suffer from coronary events in 
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individuals with RA9,11. To address this issue effectively in clinical practice while complementing 

existing methods for identifying those at elevated risk levels based solely on their lifestyle factors (i.e., 

population-wide strategies promoting healthy living), there is an imperative need to utilize more 

advanced approaches. Ideally, these would pave the way for early detection and intervention aimed 

specifically at apparently young adults before they show any signs indicating poor cardiac health. 

Chapter 4 successfully determined that genetics in the form of a PRS plus traditional risk factors could 

act as a novel biomarker to identify those at increased risk at a younger age, prior to the development 

of clinical symptoms. 

 
Integrating PRS into conventional risk assessment tools shows promise in enhancing clinical decision-

making by enabling more accurate identification and stratification of individuals at high risk for CAD. 

While the standalone use of PRSs has demonstrated considerable efficacy12–14, incorporating them 

with traditional risk factors yielded significant improvement in this study. It is important to note that 

the effectiveness PRS based prediction tools may be influenced by the age demographics; If most 

subjects are over the age of 40 years this can skew results since this group already demonstrates a 

higher likelihood of developing CAD due to their advanced age.  

 
The validation of PRS has been a subject of study by various research endeavors12,15,16. Studies often 

carry out validation by testing a subset of the cohort that was originally used for developing or testing 

the model with limited external cohorts subsequently validated. However, it is crucial to note that 

conducting extensive and rigorous validations in independent populations poses challenges due to 

limited access to available genotyped dataset., which was the case in this study as well. It is important 

for researchers to ensure validation is carried out on diverse population groups independently from 

discovery or testing datasets while keeping appropriate representation factors into account. For 

instance, if research involves validating using a dataset such as the UK Biobank data set, its 

effectiveness may be reflective primarily on individuals aged between 40-69 years old and mostly 

those belonging European ancestry group. 

 
Currently, most PRS analyses, including this study, are conducted on samples that predominantly 

consist of European ancestry individuals, which may limit generalizability to other ethnicities. Some 

initial evaluations suggest that these scores can still distinguish between high and low-risk groups in 

other ethnicities; however, performance is not optimal compared to a largely homogenous sample 

17,18. Efforts are underway to address this issue by recalibrating the existing PRSs through adjustment 

of variant weightings or creating new sets for more diverse populations19. Nevertheless, it remains 

challenging to develop valid PRS models with sufficient predictive power without first conducting 
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large-scale genome-wide association studies on representative cohorts combining data across 

multiple population ancestries. We must make progress towards diversifying GWAS research efforts 

because such diversity provides an opportunity for researchers seeking novel insights into associations 

between genetic loci and traits/diseases across different racial/ethnic groups20–22. With a rich dataset 

involving several ancestral backgrounds included adequately, rather than just one predominant group, 

there will hopefully be enough genomic coverage for accurate estimation of effects observed within 

each cohort. It is crucial to note that the applicability of these integrated risk scores across all 

populations necessitates further empirical research with diverse sample groups before implementing 

these tools in clinical practice. While this study provides promising results, they only showcase the 

potential of polygenic scores rather than presenting concrete evidence for their readiness towards 

practical implementation in healthcare settings. More extensive investigations are required to validate 

and fine-tune this approach so that it can be used effectively in clinical practice. 

 
To evaluate the causal role of RA on CAD by performing Mendelian randomization and to estimate 

the overall genetic correlation between RA and CAD. 

In Chapter 5, the association between RA and CAD was explored. The study discovered that individuals 

who are RA seropositive have higher risk of developing CAD because of their genetic predisposition. 

To better understand the relationship between genetics and these diseases, this Chapter employed 

causal inference methodology to examine whether genetic variants influenced the development of 

CAD through pathways unrelated to intermediate phenotypes. This approach provided valuable 

insight by demonstrating that SNPs associated with both exposure and outcome primarily affect each 

phenotype directly, rather than being mediated by pleiotropy. These findings highlight the importance 

of considering direct effects when studying complex diseases like RA and CAD with overlapping genetic 

components. This informative piece highlights the effectiveness of MR in determining a causal 

relationship between a phenotype and the incidence of disease. The MR framework utilizes genetic 

variants as proxies for testing whether an intermediate factor veritably affects the target 

characteristic, thus establishing causation23. 

 
Researchers have utilized MR to explore myocardial infarction risk by examining how LDL and HDL 

levels affect it24. The findings from this MR study revealed that only LDL levels are causative factors 

while HDL, on the other hand, did not significantly impact myocardial infarction risk.  This 

counterintuitive finding suggests that low HDL levels may be a symptomatic indication, rather than 

the cause, of risks associated with myocardial infarctions. This challenges the traditional belief that 

higher cholesterol levels uniformly decrease this risk category. 
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While MR may seem scientifically advanced, it is important to note the caution raised by 

VaanderWeele et al.25 regarding its limitations and assumptions. Careful consideration should be 

taken when interpreting results obtained through experimental design in gene association studies 

related to environmental factors affecting health outcomes. 

 
As research into genetic associations with complex traits such as autoimmune diseases, cancers, and 

neuropsychiatric disorders advances, it becomes more evident that a single variant can have 

pleiotropic effects on multiple phenotypes26. The widespread nature of these pleiotropic effects 

indicates the need for novel methodologies and frameworks to systematically detect them in studies. 

Although challenging to achieve, successful interpretation of cross-phenotype (CP) results could allow 

us greater insight into the underlying mechanisms by which genes influence human health outcomes. 

 
Pleiotropy is a complex phenomenon that can be differentiated based on its various forms, which 

indicate distinct molecular mechanisms and have diverse implications for disease risk and 

pathogenesis. In order to accurately identify pleiotropic effects, it is crucial to employ careful study 

design strategies that minimize the identification of false positive associations resulting from 

artefactual confounding. Fine mapping techniques may also prove useful in discriminating between 

spurious and biological pleiotropy by locating causal genetic variants within a given region. 

 
If single or closely linked variants within one gene are found to be responsible for multiple disease 

outcomes, this suggests biological pleiotropy is at play27. However, if different genes containing causal 

variants that are in linkage disequilibrium with one another seem to affect the same set of diseases or 

traits identified through cross-phenotype analysis, this indicates likely spurious correlations rather 

than true biologic harmonization across these phenotypes26,27. Employing an approach such as 

Mendelian randomization could further aid investigators working towards isolating genuine source-

to-outcome determinants involved in disease development along different points of action 

throughout multi-faceted cascades underlying chronic illnesses like CVDs. 

 
Fine mapping is a crucial technique that can aid in differentiating between the various types of 

biological pleiotropy. This method helps identify whether the observed cross-phenotype association 

stems from one or multiple variants within the same gene associated with diverse phenotypes28. 

However, this process may prove challenging if two variants situated on the same gene are in strong 

linkage disequilibrium and correspond to varying diseases since they tend to coexist within individuals, 

making it hard to isolate each variant's effects accurately. 
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Finally, it is essential to note that the determination of whether a variant is genuinely causal cannot 

be solely established by fine mapping. Though statistical fine-mapping aids in identifying potential 

variants for follow-up experiments, discerning the precise function of each variant demands additional 

biological and animal studies. These further investigations serve as an integral step towards conclusive 

validation and translating genetic associations into new therapeutic targets or biological insights for 

diseases. 

 
In order to fully utilize genetic associations and translate them into effective clinical practice, it is 

crucial to accurately characterize the effects of pleiotropy. This involves distinguishing between 

biological and mediated pleiotropy to ensure that the information obtained from these studies can be 

properly interpreted26. By identifying specific variants that directly impact diseases like CAD through 

RA seropositivity factors or other pathways, clinicians are better equipped with knowledge on how 

best they can prevent future occurrences amongst high-risk populations. 

 
Furthermore, understanding whether cross phenotyping effects stem from a single variant or multiple 

variants also plays an important role in improving the accuracy of testing methods used in assessing 

risk for particular conditions. Research has shown that even when a gene appears implicated across 

different ailments, distinct variations within those genes could have varying levels of association with 

each condition; conducting tests using both variations enable separate identification and 

management plans for each disease29. Therefore, drawing detailed conclusions about the intricate 

relationships between genetic mutations and various illnesses will continue to be instrumental in 

guiding medical practitioners toward more personalized treatment options based on their patient's 

individual risk profiles. 

 
Strengths and limitations of the analyses 

There are strengths and limitations of the current research that need to be discussed. Chapters 2, 3, 4, 

and 5 provide detailed elucidation on these aspects that are pertinent to understanding the research 

outcomes. Nonetheless, taking into consideration various factors that could have influenced the 

study's overall internal validity such as accurate measurement of intended variables along with 

external validity which establishes how applicable findings are to the population under scrutiny is 

crucial for a comprehensive interpretation of said outcomes. 

 
Choice of Datasets 

This study utilized a diverse range of datasets to examine the chosen topics. However, the usage of 

different types and sources of data creates a potential for inconsistent research findings due to 

measurement differences or bias in each dataset used. In Chapter 3, while sourcing data from both the 
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UK Biobank and GWAS observational cohort studies provided valuable insight into their chosen topic, 

such cross-sectional designs have some limitations and require careful interpretation due to issues 

related to causality inference. Chapter 4 used a dataset from NOAR, a large longitudinal cohort study 

with a maximum follow-up of 20 years. The use of longitudinal studies is just one aspect demonstrating 

the comprehensive approach taken by this study, affording this research numerous advantages such 

as analysing incident cases and temporal changes over time while investigating links between 

prognosticators and outcome variables. However, longitudinal data obtained from NOAR might not be 

reflective across other populations with varying socio-demographic characteristics. Nonetheless due 

to its inherent nature as an observational construct, it must be mentioned that absolute certainty over 

any discovered relationship cannot be rendered conclusive without further refinement through 

empirical experimentation or potentially other means beyond pure observation alone. Lastly, caution 

is needed when interpreting results attained in Chapter 5 through a Genome-wide association meta-

analysis conducted on people of European ancestry who are suffering from RA. Such genomic analysis 

was limited by its scope as it did not account for potentially meaningful genetic variants outside 

European populations that could impact risk factors associated with RA development amongst non-

European individuals. Ultimately this discrepancy highlights a need for cautious consideration about 

consistency/validity across datasets sourced throughout various chapters. 

 
Sampling and Misclassification Bias 

Selection effect/sampling bias can greatly impact the external validity and generalizability of research 

findings. This issue is especially critical in this doctoral study, where a comprehensive approach must 

be taken to ensure that all relevant demographic groups are included in the sample selection process. 

It has been reported that certain populations, such as those from low socioeconomic backgrounds or 

ethnic minorities, may face unique barriers which might limit their participation in studies due to 

physical obstacles like distance or lack of access. Additionally, they may also encounter language 

barriers owing to cultural differences that could hinder their willingness to participate fully in a given 

study. Therefore, it is essential for any study to always give more attention to improving inclusivity by 

addressing these factors proactively while framing our methodology and sampling strategies for 

meaningful analysis outcomes. Regrettably, bias due to the selective nature of sample populations was 

also present in the doctoral study. 

 
In our analyses, it was noted that the majority of participants came from Caucasian backgrounds. 

However, to ensure the validity and accuracy of findings related to diseases such as RA and PsA, it is 

essential to consider diversity in terms of ethnicity within the samples. Limited information about the 

prevalence of RA and PSA among different ethnicities in the UK emphasizes this need for inclusion. 
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Furthermore, relevant studies conducted in the US have found higher rates of both types of arthritis 

amongst African Americans and Native Americans compared to European populations30,31; therefore, 

raising concerns over possible selection bias present within our sample group composition. The 

potential similarity between populations in regard to this phenomenon means that exploratory 

research involving various demographic groups would be instrumental in obtaining more universal 

results concerning disease burden among vulnerable communities. 

 
The NOAR dataset possesses a limitation in that all recorded outcome diagnoses were based on self-

reporting rather than clinical verification. As such, inaccuracies may have arisen due to recall bias 

resulting from misclassification of the reported diagnoses. Notably, this type of error was likely non-

differential; meaning it affected both CAD and non-CAD groups similarly without skewing towards any 

specific demographic. In effect, underestimation of the true impact is possible due to increased 

similarity between exposed and unexposed participants caused by non-differential classification 

errors. It's worth noting that differentiation in classifications would lead to either over or 

underestimated effects depending upon which group presents pronounced discrepancies between its 

composition before and after classification correction has been applied. Although there are limitations 

in this study, the use of self-reported CAD diagnoses is still valuable as previous research suggests that 

the overestimation of diagnosis reporting is minimal32. Therefore, despite some uncertainty 

surrounding the accuracy of measurements and challenges associated with using them across diverse 

populations and research protocols, comparable incidence rates were found in other studies. However, 

caution should be taken when interpreting results due to these uncertainties regarding measurement 

accuracy. 

 
Missing Data Problem 

Although multiple imputations by chained equations were used to address missing data from 

participants not completing certain questions, it is important to note that the results may still be 

biased. The imputation models used for this process might have been incorrectly specified and failed 

to accurately reflect the true nature of the missing data. Additionally, if the missing data were not 

randomly distributed but instead related to unobserved characteristics of participants, then they could 

be classified as missing not at random (MNAR) rather than missing at random (MAR) which would also 

introduce bias into our findings. Therefore, in order to ensure greater accuracy alternative methods 

such as sensitivity analyses or model adjustments were also used. 

 



230 
 

Repercussions for public policy, population health, and healthcare practices 

There exist wide claims stating that the disclosure of genetic risk data can initiate enhancements in 

public health by providing more individualized healthcare service, patient-specific information, and 

empowering individuals to take better control over their well-being. To determine whether such 

favourable predictions are truly valid, it is crucial to conduct a meticulous evaluation of underlying 

hypotheses, empirical proof, and theories supporting these statements. 

 
In the following discourse, we explore two possible approaches in which findings from this Ph.D. study 

can enhance public healthcare: 

 
1. by increasing the precision of risk calculations, and consequently offering a valuable approach 

towards preventative medicine; and  

2. through prompting high-risk patients to make lifestyle changes aimed at reducing their risks 

such as adopting healthy habits including proper diet and exercise. 

 
Alongside these potential advantages, it is crucial to deliberate over probable drawbacks as well since 

these forms an integral part of clinical usefulness. 

 
Enhanced precision 

An integrated tool for disease risk prediction comprising of PRS is highly advantageous in clinical 

management as it enables accurate risk estimation, an essential component for effective decision-

making. The efficiency of the risk assessment improves significantly with such a tool aiding both 

healthcare providers and patients alike. This improved accuracy can yield downstream benefits such 

as precise resource allocation to individuals that are most likely to benefit, thereby potentially delaying 

or averting illness onset altogether. It is crucial though to ensure suitability across different populations 

while developing these tools by incorporating diversity in research and development practices. 

 
Alteration of Behaviour 

Although there is a justifiable benefit of improved accuracy in risk assessment through genetic variants 

and integration of PRS, the topic of predictive genetics often includes discussions around how such 

information 'empowers' patients to take action towards reducing their risk, particularly in this case 

developing comorbidities associated with inflammatory arthritis. For instance, possible ways by which 

individuals can reduce their disease risks include behaviour modification strategies like adopting 

healthy lifestyles and taking statins if they develop CAD due to RA. However, it is vital to assess whether 

this hypothesis of empowerment holds up under scrutiny. To do so requires an examination of the 

available empirical evidence on behaviour change interventions and human behavioural models that 
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guide healthcare practices aimed at encouraging positive life choices among individuals. Although 

several theoretical frameworks exist that envisages helping people make healthier lifestyle decisions 

when provided with personalized polygenic data test results; many have not been empirically validated 

yet. 

 
Therefore, any discussion about genetic risk assessment to empower patients should consider two 

essential components: first - validate these theories against scientific research focusing explicitly on 

real-life conditions where inflammation or chronic diseases are likely risks for driving adverse patient 

outcomes. To achieve optimal personalization and effectively influence individual behavioral changes 

based on population heterogeneity, it is important to understand the types of approaches that would 

be most effective. 

 
Empirical Evidence for Outcomes 

Genetic information has been a widely researched area in the context of behaviour change. Early 

investigations predominantly focused on how standalone PRSs for common complex disease 

susceptibility could impact behaviour, but results have suggested that simply being labelled as "high 

risk" did not result in significant or sustainable changes to lifestyle33–35. These findings have been 

supported by several systematic reviews and are frequently cited in relevant literature36,37. However, 

these negative outcomes may partly be influenced by a limited predictive performance from early 

polygenic scoring models. Other studies have concentrated on exploring both psychological and 

behavioural effects associated with genetic testing for high penetrance variants that increase the 

likelihood of developing diseases such as familial hypercholesterolemia38. 

 
Studies on genetic susceptibility testing for complex diseases have undergone significant evolution, 

with more recent studies incorporating a higher number of SNPs and exploring the impact of genetic 

risk information in combination with other risk factors39. It is possible that earlier studies may not be 

directly comparable to current behavioural studies due to differences in the nature of the information 

presented--with present-day research offering greater certainty about risk estimates--, as well as 

population selection--where only families known to have high cholesterol were formerly offered such 

testing. 

 
Despite these changes, there remains limited evidence demonstrating robust clinical improvements or 

therapeutic interventions resulting from genotypic information use40. Past findings do suggest that 

communicating genomic-based estimations does not significantly change the propensity towards 

health behaviours attributable to reduced risks; however, an updated systematic review contains some 

newer scientific data supporting individual behaviour changes depending on unique cases41. 
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Furthermore, upon examination of the MI-GENES study, it appears that individuals who received a PRS 

in addition to a conventional risk estimate for coronary heart disease experienced positive 

outcomes42,43. Specifically, these participants exhibited lower LDL-C levels six months after disclosure 

than those who solely received a conventional risk score. This preliminary evidence is promising and 

warrants further investigation into how PRS can be utilized as an effective tool for improving 

cardiovascular health outcomes. This can further imply improved disease outcomes over time if social 

prescriptions align better alongside genomic insights regarding predispositions relating specifically to 

diabetes, heart disease, or cancer probability reductions through effective practicality shifts 

incorporated into family routines and lifestyles over time would also add cumulatively positive value 

in reduction prospects. 

 
Added Value of Genetic Information 

PRSs have vast potential in the prevention of diseases as they can be utilized as standalone risk 

prediction tools or integrated with other factors to form a comprehensive tool. However, determining 

the true value and worth of such information requires careful consideration of clinical significance, 

taking into account where it fits into existing pathways for preventative measures. 

 
Based on previous studies, integrating PRS information with current disease risk assessment tools 

seems like the most promising approach for immediate benefits14,39,44. Nonetheless, understanding 

how this integration provides added value in improving healthcare practices is necessary to establish 

its full potential in promoting healthier lifestyles and reducing disease incidence rates. Although 

empirical evidence supporting their efficacy and impact is limited, tools for prioritizing and planning 

primary prevention interventions are already part of established clinical practice45. These tools have 

been deemed clinically useful, but the predictive accuracy of disease risk assessments could be 

improved by incorporating PRS. Provided that obtaining a PRS is deemed acceptable in terms of cost 

and effort required, this may prove advantageous. 

 
Polygenic Scores and disease prevention 

The stability of genetic determinants of disease risk starting from birth has caused a growing interest 

in using PRS as a potential biomarker for the early identification of high-risk individuals prior to clinical 

manifestation. In the case of CVD in RA, it has been demonstrated that plaque accumulation 

(atherosclerosis) can begin during pre-adolescent years and remain present throughout life46,47. By 

utilizing individual genetic data, there is a possibility to detect predisposition to such progression even 

before plaques initiate formation in childhood and thereby intervene with preventive measures at an 

earlier stage among susceptible persons. 
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Managing individuals who are at high risk due to their genetics may involve continuous monitoring, 

adjustments in lifestyle choices, or administration of medications. As genotyping technology advances, 

it becomes plausible that a person's genomic data can be used to calculate multiple PRS relevant to 

various health conditions and specific phenotypes. This would pave the way for personalized early 

interventions based on genetic predisposition but requires careful evaluation of healthcare delivery 

models and the development of ethics-legal standards around genomics-based decision-making 

biases. The ability to predict and prevent diseases would be a significant advancement in the field of 

healthcare, but it requires careful planning to effectively manage individuals with high-risk scores. 

Additionally, interventions for primary prevention often involve modifying behaviour related to 

lifestyle factors or treatment compliance. Therefore, more research is necessary on strategies that 

assist people in achieving these goals, especially among younger populations. It is crucial also to 

investigate public attitudes towards prevention-focused programs compared with early detection 

approaches and assess their societal impact through thorough research and evaluation. 

 
Future work 

This thesis contributed to the current understanding of identifying genomic risk factors associated with 

comorbidities and inflammatory arthritis. While this research has its limitations, it also opens up 

numerous avenues for further investigation in the field. 
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Figure 6.1: This figure represents the method pipeline as the next steps for this research (future work).  
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Independent Validation 

Previous sections have identified the strengths and limitations of using NOAR in this thesis. To mitigate 

some of these drawbacks, it is imperative to replicate the findings obtained from this study.  in  

Chapter 4 research with other datasets sourced from demographically diverse populations (e.g., 

younger age groups and ethnic minorities), which will provide evidence regarding whether or not these 

results are generalizable across wider UK demographics. By utilizing different datasets, it may be 

possible to overcome certain shortcomings associated with NOAR such as lower event numbers, self-

reported CAD diagnosis, and constraints surrounding mortality information. Furthermore, future 

investigations should ascertain clinical feasibility by employing decision curve analysis methodology. 

 
Recognizing shared underlying causes 

A substantial obstacle that researchers face when studying comorbid diseases is the difficulty in 

identifying causal mechanisms shared among the involved organs and ailments. Pinpointing these 

common pathways in the future would allow for therapeutic interventions targeting both conditions, 

providing a significant advantage in the treatment. An effective tool to gain insight into underlying 

etiological relationships is through estimating the degree of genetic correlation between complex 

traits, which could reveal pleiotropy comprised of shared causal genes or biological pathways. 

Moreover, by considering all SNP effects, we can gauge genome-wide correlations to determine 

proportionate pleiotropy with directional trends. Thus, the findings on genetic correlations will be 

highly valuable as they may open up doors towards addressing links between different diseases while 

advancing understanding about their pathogenesis at the molecular level. 

 
Moreover, to gain a more comprehensive understanding of the relationship between different traits 

or diseases, it is crucial for future studies to investigate overlaps at specific genetic loci. It should be 

noted that pleiotropy - the phenomenon in which one gene influence multiple traits/diseases - may 

exist even without genome-wide genetic correlation. Therefore, focusing on certain candidate genes 

could aid in identifying potential overlap among them. Notably, the interleukin-6 receptor (IL6R) gene 

could serve as a compelling candidate locus for exploratory research considering its reported 

association with both RA and CAD. Of particular interest is the fact that treatment with Tocilizumab – 

an antibody known to block IL6R – has been found effective against RA; such findings highlight 

opportunities for cross phenotype studies aimed toward drug repurposing initiatives. 

 
Future Work and PsA: Prospective Studies and GWAS 

Future work in the field of PsA should focus on prospective studies and GWAS to further understand 

the pathogenesis, natural course, and genetic factors associated with PsA. Prospective studies are 
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crucial in determining the long-term outcomes and natural history of PsA. By following patients with 

psoriasis longitudinally, researchers can identify individuals who develop PsA and study the 

progression of the disease. Additionally, conducting more GWAS in PsA cohorts is essential to identify 

genetic variants associated with the development and progression of PsA. 

Final conclusions 

This thesis aimed to understand advances in genetic research to address important gaps in knowledge 

and understanding of the causes of the increased mortality and morbidity in patients with 

inflammatory joint diseases, represented by RA and PsC, which is attributable to PsA and CAD by; (1) 

developing novel risk stratification tools, (2) inferring causal relationships and (3) exploring shared 

biological mechanisms. In Chapter 3, it was established that the prediction of PsA occurrence in 

patients diagnosed with psoriasis is still a significant area of research. For the successful clinical 

implementation of PsA-PMs, external validation along with statistical validation plays an imperative 

role. Although PRSs effectively account for the genetic basis of disease susceptibility, they lack the 

ability to consider fluctuating risk factors like environmental and lifestyle-related ones which influence 

disease predisposition over time. Chapter 4 findings suggested that better predictive accuracy can be 

achieved by combining PRS data with an environmental factor-based modeling approach. 

The outcomes presented in Chapter 5 offer novel insights into causal mechanisms on how RA patients 

with positive autoantibodies may be at risk for developing CAD. The results emphasize the importance 

of examining shared biological and environmental pathways among inflammatory disorders to better 

understand their etiology. Additional research is necessary to advance our understanding in this realm 

and uncover new insights into disease prevention and management strategies. 
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