
NEURAL NETWORKS FOR
ITERATIVE FEATURE IMPORTANCE

ANALYSIS OF DEEP LEARNING
MODELS

A thesis submitted to the University of Manchester for the degree of
DOCTOR OF PHILOSOPHY

in the Faculty of Science and Engineering

2023

Maksymilian A. Wojtas

The School of Engineering
Department of Computer Science

Contents

1 Introduction 10

1.1 Population-wise Feature Selection 11

1.2 Instance-wise Feature Importance Ranking 11

1.3 Group Population-wise Feature Selection 12

1.4 Scope Of The Thesis . 12

1.5 Contributions Of The Thesis . 13

1.6 Publications Included In The Thesis 14

2 Background & Related Work 16

2.1 Motivation For Explainable AI . 16

2.2 XAI For DL Through Feature Importance 18

2.3 Population Feature Selection Methods 20

2.3.1 Wrapper Methods . 20

2.3.2 Filter Methods . 21

2.3.3 Embedded Methods . 21

2.4 Local Feature Selection Methods 23

3 Problem Statement 25

3.1 Defining Optimal Feature Subset Of Constant Size 25

3.2 Defining Optimal Feature Subset Of Variable Size 26

3.3 Defining Feature Importance . 26

3.4 Regularizing The Feature Subsets 28

3.5 Defining Performance Metric . 29

3.6 Other Problems . 30

3.7 Group Feature Selection . 31

3.8 Feature Subset Encodings . 31

2

4 Feature Importance Rankings With Constant Subset Size 33

4.1 Model Description . 33

4.2 Learning Algorithm . 34

4.3 Deployment . 38

4.4 Pseudo Code . 38

5 Experiments - Constant Subset Size 42

5.1 Results . 42

5.1.1 Synthetic Data . 42

5.1.2 Benchmark Data . 44

5.1.3 Visual Validation . 58

5.1.4 Experimental Setup . 60

5.1.5 Optimal Hyperparameters In Other Methods 63

5.2 Learning behaviour . 65

5.3 Discussion . 71

6 Feature Importance Estimates With Variable Subset Size 72

6.1 Model Description . 73

6.2 Learning Algorithm . 74

6.2.1 Operator Loss . 75

6.2.2 Choosing Feature Subsets To Train On 75

6.2.3 Operator Performance Evaluation 79

6.2.4 Selector Loss . 80

6.2.5 Extracting Feature Importance 83

6.2.6 Expected Optimal Feature Subset Size 83

6.3 Results . 86

6.3.1 Synthetic Datasets - Choosing Selector Loss 87

6.3.2 Feature Importance Visualization 93

6.3.3 Benchmark Datasets . 95

6.3.4 Experimental Details . 96

6.3.5 Training Behaviour . 98

6.3.6 Stability . 105

6.4 Extensions . 106

6.4.1 Group Feature Importance Rankings 106

3

6.4.2 Feature Subset Encodings for Feature Selection and Ex-

plainability . 109

6.4.3 Alternative Masking Function 110

6.5 Discussion . 111

7 Conclusions 114

7.1 Thesis Summary . 115

7.2 Future Work . 117

7.3 Limitations . 118

Word count: 30050

4

Abstract

Deep neural networks established themselves as a powerful tool used for multi-

ple real-world applications and research purposes. On the other hand, the exact

nature that gives them the power to discover high-level, non-linear dependencies

also comes with a major disadvantage: a lack of interpretability.

This drawback is eminent for many domains which require explanations of pre-

dictions made by a model. The domains this applies to include self-driving cars,

medicine, credit rating prediction or even the stock market. Additionally, an in-

terpretable model that provides explanations can help the user to discover new

rules governing the data by looking at how the model makes decisions.

In this thesis, we will study model explainability and interpretability through the

lens of feature selection via feature importances. First, we will try to understand

what explainable AI (XAI) is and then present a background of different methods

used for Feature Selection (FS) that can be applied to Machine Learning (ML) and

Deep Learning (DL) models. Then, we will formally state the feature importance

problem in a model-independent way. Furthermore, we will propose two dual-net

(each of them assembled from two neural networks) models that can be applied

for feature selection and feature importance estimation where one of the models

can only be applied for a given size of the optimal feature subset while the second

one is able to determine the global optimum during training. Also, we will present

a comparison of the task performance and feature selection results between these

two models and other commonly used methods in this field, which shows that

the novel models presented here are able to achieve supreme performance through

the process of online feature selection. Finally, we will show results for possible

extensions to these models, like group-based feature selection or feature subset

encodings.

5

Declaration

No portion of the work referred to in the thesis has been submitted in support of

an application for another degree or qualification of this or any other university

or other institute of learning.

Copyright

1. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and they have given the University of Manchester certain rights to use such

Copyright, including for administrative purposes.

2. Copies of this thesis, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University

has from time to time. This page must form part of any such copies made.

3. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

4. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in

any relevant Thesis restriction declarations deposited in the University Li-

brary, the University Library’s regulations (see

6

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420

http://www.library.manchester.ac.uk/about/regulations/) and in the

University’s policy on Presentation of Theses.

7

http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

I would like to begin by expressing my heartfelt appreciation to my supervisor, Ke

Chen, for his invaluable guidance, support, and mentorship throughout my PhD

program. His wisdom, expertise, and unwavering commitment to my success have

been instrumental in shaping my research work and professional development. I

am truly grateful for the opportunity to work with such a brilliant and inspiring

mentor.

I would also like to extend my deepest gratitude and thanks to my wife, Mar-

garet, for her unwavering support and encouragement throughout my PhD jour-

ney. She has been my rock, my sounding board, and my source of motivation

during both the good times and the tough times. Her love and belief in me have

been instrumental in getting me to where I am today.

Finally, I would like to thank my parents for their endless love, encouragement,

and support throughout my life and especially during my PhD program. Their

unwavering belief in me has been a constant source of inspiration and motivation.

I am forever grateful for their sacrifices and dedication to my education.

I am truly blessed to have such amazing individuals in my life.

Thank you all from the bottom of my heart.

8

Acronyms

CI Confidence Interval.

DL Deep Learning.

FIE Feature Importance Estimation.

FIR Feature Importance Rankings.

FS Feature Selection.

IFS Instance-wise (Local) Feature Selection.

MI Mutual Information.

ML Machine Learning.

MSE Mean Squared Error function.

NLP Natural Language Processing.

NN Neural Network.

PFS Population-wise (Global) Feature Selection.

ReLU Rectified Linear Unit activation function.

SGD Stochastic Gradient Descent.

SVM Support Vector Machine.

XAI Explainable Artificial Intelligence.

9

Chapter 1

Introduction

In machine learning, feature importance ranking (FIR) refers to a task that mea-

sures the contributions of individual input features (variables) to the performance

of a supervised learning model. FIR has become one of the powerful tools in

explainable/interpretable AI [1] to facilitate understanding of decision-making by

a learning system and discovery of critical factors in a specific domain, e.g., in

medicine, what genes are likely leading causes of cancer [2].

Feature selection (FS) is a similar concept that aims to find the best subset

of features for a particular task. Especially today, in the domain of big data with

thousands of high-dimensional samples, most of the ’old’ FS methods prove to be

unusable, mainly due to low performance, high computational burden or both [3].

Due to the existence of correlated/dependent and redundant features to targets

in high-dimensional real data, one goal of feature selection [4] is to address the

well-known curse of dimensionality challenge and to improve the generalization of

a learning system by maximizing the performance of the system. Feature selec-

tion may be conducted at either population (PFS, global FS, population-wise) or

instance level (IFS, local FS, instance-wise); the population-wise methods would

find out an optimal feature subset collectively for all the instances in a population,

while the instance-wise ones tend to uncover a subset of salient features specific to

a single sample. Both methods can show us which variables are deemed important

by the model in general and which ones were used by the model for the current

prediction, which is one of the goals of explainable AI [1].

Deep learning (DL) has become extremely powerful in intelligent system devel-

opment, allowing it to achieve the best results in many areas (time-series analysis,

video detection, and image classification). Due to its performance compared to

10

other, less accurate methods, one can conjecture that it can use the information

embedded in datasets to the fullest. On the other hand, its purported "black

box" nature makes it extremely difficult to apply to tasks demanding explainabil-

ity/interpretability, thus preventing extraction of the feature importance from DL

models. In this thesis, we plan to use the power of DL in order to maximize the

performance of other models through iterative feature selection, also increasing

the understanding of the underlying data.

1.1 Population-wise Feature Selection

The Population-wise Feature Selection (PFS), called global feature selection, may

be divided into three categories. Filter methods focus on selecting the fea-

tures before the model is trained (CCM [5], mRMR [6], RFE [2]). Embedded

methods are used to extract feature rankings from a trained model(LASSO [7],

Random Forests [8]). Wrapper methods focus on retraining a model with dif-

ferent feature subsets iteratively, which is why they are rarely used due to the

high computational burden [9].

In the context of DL, only several methods can be classified as PFS when

compared to the multitude of IFS methods. The scarcity of PFS DL-related

methods might be caused by the innate inexplicability of population-wise variable

importances for DL models and the computational burden needed to retrain them.

1.2 Instance-wise Feature Importance Ranking

In the context of one sample, it makes more sense to talk about instance-wise

feature importance ranking (IFIR) rather than feature selection, also called local

feature selection. The usefulness of IFIR focuses on the explainability of models,

which is especially important for the applicability of DL. The most known work

in the context of DL focuses on calculating input gradients of the trained model

with respect to the given output: SmoothGrad, Vargrad, Integrated Gradients,

"vanilla" gradient backprop [10, 11, 12, 13, 14, 15]. A lot of work also shows how

the methods mentioned above fail logical tests [16, 17, 18]. Especially one of them

[17] shows that the rankings developed from most of the above methods perform

worse than random rankings when the models are appropriately retrained using

11

new subsets of variables. It is worth noting that similar thinking can be applied

to PFS in order to validate the results. As most of these methods are tested on

pictorial datasets due to the easiness of visual examination, the datasets consist

of a significant degree of associated variables. The authors of [17] shows the

failure of the above methods but presents no explanations. I conjecture that

these redundancies are the underlying reason for the failure of these methods.

1.3 Group Population-wise Feature Selection

Group Population-wise Feature Selection (GPFS) can be used to take advantage

of prior knowledge about features when these features can be grouped. A good

example of a typical use case is a pictorial dataset, where one pixel corresponds

to three features (one per colour channel) or gene expression data where each

gene has to be explained by several features. It is obvious that removing only one

channel of a pixel makes no sense: the whole pixel would have to be removed.

Another example would be signal-processing data with different frequency bands.

One of the most common methods is Group Lasso [19] and its variations. Unfor-

tunately, most IFS and PFS methods don’t have a group extension, which limits

their performance in this domain. Using the prior grouping and structure should

increase the interpretability of the results and allow the method to be used in a

wider scope of applications.

1.4 Scope Of The Thesis

Deep learning is a field where most of the discoveries and developments were

made in the last decade, which resulted in a lot of practical applications but fewer

published theoretical approaches. The avenues of research in the DL field are

many, and each raises its own set of questions [20]. Below, we will summarise

some avenues of research that were researched for this thesis, as well as some that

are clearly out of the scope of this thesis.

1. Firstly, we want to find a way to evaluate feature subsets with an underly-

ing connection to interpretability through performance changes and feature

importance.

12

2. We want to find an optimal (according to the point above) feature subset,

thus maximising the performance of a model.

3. We want to work with feature subsets of variable size, enabling us to perform

a global search over the feature powerset. This also includes the ability to

perform GPFS.

4. Finally, we look for a method that enables us to visualize the feature subsets

and how they relate to one another.

Out of scope Starting with the adversarial domain, we have adversarial features

selection [21] or detection of adversarial inputs [22]. Another important field is

the stability of DL approaches, where small perturbations in the input data can

diametrically change the model predictions [23] or stability of general ML feature

selection algorithms [24]. Furthermore, different models can have different optimal

subsets of features due to the predictive capabilities of a model; as an extreme

example, one just has to compare linear models with NNs, where linear models will

rarely use non-linear dependencies to their fullest potential. Weight interpretation

is another approach where much of the research is done [25]. Furthermore, there

is much work being done in order to speed up NNs speed, both for training and

prediction purposes, which involves node pruning [26, 27] or knowledge distillation

[28]. Finally, instance-wise (local) feature selection is also out of the scope of this

work, but many insights developed for PFS also apply to IFS, which include

minimum requirements that any FS method should fulfil [17, 29].

1.5 Contributions Of The Thesis

The main contributions of this work are written down below and correspond to

the research questions raised in Section 1.4:

1. First, we propose a performance-driven feature importance metric, which

can be used for any model and is expressive enough to be easily understood

and give insight into the way a model makes predictions and the nature of

a dataset.

13

2. We develop a DL-based framework of two models that can accurately find an

optimal subset of a given size and produce feature rankings for any data. We

carry out a comprehensive comparison with other PFS methods, with both

performance and analysis of produced feature rankings. We also produce

results across different sizes of subsets to compare performances with other

methods in different environments. Finally, we produce visually compelling

results for FIR and FIE using pictorial datasets.

3. The third contribution is based on another DL framework that is a ma-

jor upgrade to the one described in the previous point. A major hurdle was

overcome by allowing the framework to look for optimal subsets for different

subset sizes while maintaining the performance-driven nature and broaden-

ing the expressive abilities of FIE. Again, we carry out a comprehensive

comparison with other PFS methods, including more methods than in the

previous analysis. The comparison is based mainly on the performance while

keeping in mind the correctness of FIE results. We show that it is possible

to extend this algorithm to GPFS and present results for such a setting.

4. We propose an initial analysis of a novel way of interacting with datasets

through feature subset encodings that help to visualize the complex inter-

actions inside the datasets that are detected by DL models. Due to the

innovative properties of this method, there is no real comparison possible,

so we are satisfied with presenting the results and proving the method’s

effectiveness for a synthetic dataset where the ground truth is known.

1.6 Publications Included In The Thesis

Published Papers

1. Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep

learning. In Advances in Neural Information Processing Systems, volume

33, pages 5105–5114. Curran Associates, Inc., 2020 [30] 1

The article published under "1." correlates with Section 4. While Maksymil-

ian Wojtas carried out the research, coding, literature review and writing, the
1As the paper was limited in size due to conference limitations, we have also created supple-

mentary material. The contents of this additional text are also included in this thesis.

14

supervisor, Ke Chen, helped with the writing and literature review.

15

Chapter 2

Background & Related Work

In this section, we will discuss the motivations for explainable AI (XAI) and

discuss different approaches that can be taken in order to explain AI models. Al-

though this is not the main contribution of the thesis, the underlying motivation

for FIE is gaining an understanding of the data/model, which is also connected to

interpretability. Then, we will dive deeper into the topic of explaining AI through

feature importance estimates (FIE), and feature importance rankings (FIR) and

finally discuss different feature selection methods, as well as their categorization.

However, let us start with a short clarification of the nomenclature below.

2.1 Motivation For Explainable AI

First, let us discuss the differences in nomenclature that are often confused by

many papers from the XAI field, that is the interchangeable usage of inter-

pretability and explainability. The former can be viewed as a passive function

of a model, where one can look at the inner workings of a model, such as archi-

tecture or parameters and discover why the model behaves in a particular way.

Another term commonly used in this context is transparency. On the other hand,

explainability is an active part of a model that is able to produce explanations

that are easily understandable by a human and provide useful information about

the behaviour of the model.

This thesis focuses on providing a model that passively shows which features

are being used, meaning that we focus on an interpretable approach. We carry

out performance-based research with additional visual validation for FIE while

16

keeping in mind that gaining an understanding of the broader context of feature

importance is important to fully understand the motivations behind our research.

Explainable AI is a relatively new topic where much of the work done was recent

[31]. The reason behind such an amount of work done is simple: due to recent

rises in computational power, the DL solutions have become more accessible to

the public [32]. Now, when decisions made by Deep Neural Networks start to

affect human lives, it is necessary to produce the reasoning behind the decisions

taken. Unfortunately, the number of parameters needed to train the deepest of

neural networks approaches hundreds of millions, and it is simply not feasible to

be able to process such a complex model and try to explain its predictions. That

is why, before we start to use DL models in areas such as medicine, self-driving

cars or law, we need first to handle the black-box nature of neural networks.

Moreover, humans stay clear of techniques they do not fully understand [33], or

in other words, techniques that are not interpretable or explainable.

On the contrary, black-box models’ supreme performance is partially due to their

complexity and ability to grasp highly nonlinear interactions, so making such a

model explainable, which can be seen as a criterion that a model must fulfil, will

make it deteriorate in performance [34].

Still, the criterion of explainability can bring other practical advantages, thus

increasing the training performance, as observed by [31]:

• Detection of bias in the training data, which can be followed by a correction

applied to counteract the bias.

• Identification of potential adversarial perturbations that affect the predic-

tions can be helpful in increasing the model performance on the testing

data.

• Confirmation of causality between the important input variables and the

prediction target.

This thesis will focus on the last mentioned point, which is a natural consequence

of feature importance analysis, which is often done as a part of a feature selection

process.

Finally, as we mentioned before, users also need explainable models for other, less

17

practical purposes. Below we have gathered several typical purposes for which

XAI can be used:

1. Causality, the main focus of this thesis, is often found to be the reason be-

hind creating an explainable model. It helps to grasp insights from available

data and allows to discover hidden variable dependencies [35].

2. Fairness, discovering the biases in the data as well as making sure that

the AI models’ behaviour is ethical (non-discriminating) is an important

aspect of XAI that was deemed as a requirement by the EU in their GDPR

regulation [36].

3. Confidence, sometimes called Trustworthiness, is a measure of the reli-

ability of a model for a given task. XAI should convince the user that the

model is performing as projected [37], as well as show the possible bounds

for the model’s correct operation. This is related to the model stability [38],

as unstable models rarely inspire confidence.

4. Informativeness is a major reason behind developing explainable models

[31]. It allows the user to discover the inner workings of a model and explain

why the model made a particular decision.

To facilitate XAI, different ways of showing explanations were investigated. These

include visual explanations, text explanations, rule-based explanations (or in other

words simplifications), explaining by example and finally, the main focus of this

thesis, feature importance, sometimes also called feature relevance.

2.2 XAI For DL Through Feature Importance

Feature importance or feature relevance is a metric that allows the user to find

out how the model responds to different features or discover the complex feature

dependencies that are already present in the data. Feature importance is often

considered an indirect way to achieve model explainability.

The categorization of the types of feature importance [39] can be understood by

providing four different examples, one per category:

18

1. Global (population-wise) model importance is a setting that is used

to determine, in general, which of the variables are used by a model to make

predictions and how much predictive power each of them has in relation

to others. This setting can be used to validate the framework created by

the model, increasing the trustworthiness as well as providing information

about different biases in the dataset when compared to subject knowledge

(fairness).

2. Global (population-wise) data importance allows us to find complex

feature dependencies that are understood by a model and gain new knowl-

edge about the phenomena that we are trying to predict (causality).

3. Local (instance-wise) model importance is another scenario that can

help with XAI, as it provides explanations for individual samples in the

context of a prediction made by a model. It is a major source of informa-

tiveness for the model.

4. Local (instance-wise) data importance is a rarely researched aspect of

feature importance [39] that tries to answer the question of why a particu-

lar result came into being. One possible reason for the complexity of this

approach is the differentiation between data and model explanations on the

basis of one data point.

Obviously, there is, and there should be, an intersection between the model and

data feature importances, as increasing the performance of a model can be under-

stood as it finding some new "knowledge", thus allowing us to assume that the dif-

ference between data and model feature importances would be zero for a task with

an ideal model. This is the main reason why we pursue the path of maximizing the

model performance while measuring FIE, as we understand that better-performing

models can achieve greater performance by using the same features in different

ways (compared to the lower-performing models), which leads to different feature

importance estimates. It is worth mentioning that this assumption does not hold

[39] when dealing with redundant variables, as the choice between which variables

are being used by the model might be initialization-dictated and random, even in

an ideal case. Nevertheless, the gap between model and data importance measures

19

diminishes when a model approaches ideal performance. That is why our work is

based on achieving Global (population-wise) data importance and Global

(population-wise) model importance through performance maximization.

It was also proven that using the expected value of instance-wise methods for

providing population-wise explanations should not be used [39]. That is why we

have not included methods that aggregate the values of local FIE to create global

FIE in the second half of our work.

2.3 Population Feature Selection Methods

In this subsection, we cover different methods of Feature Selection and Feature

Importance Estimation. It is worth pointing out that not all the methods that

enable FS provide FIE.

2.3.1 Wrapper Methods

Wrapper methods are iterative methods that use the feedback from the model to

evaluate different feature subsets and choose a new perspective optimal subset.

When a stopping criterion is reached, the framework returns a proposal for an

optimal subset. One of their disadvantages is the computational burden required

to evaluate different feature subsets, as most methods need to be retrained for

every subset. On the other hand, the produced results are tuned to a selected

predictive model.

RFE [2] , or Recursive Feature Elimination, is a wrapper method that can be

employed for different models that are able to produce feature rankings internally.

It is a popular choice of FS for biological data and is often used in tandem with

SVM. While allowing for many models to be used in tandem, the model’s repeated

retraining makes it computationally expensive.

Backward and Forward FS [40] are basic wrapper algorithms that compare

the performance of models when features are added/removed until a stopping

criterion is reached. They are powerful tools but suffer from extensive computation

20

burdens, even more than RFE. On the other hand, they are able to include the

associations between features due to their exhaustive search.

BAHSIC [41] is a method combining backward feature selection with Hilbert

Schmidt Independence Criterion (HSIC) that can be applied to regression, bi-

nary of multilabel analysis. It still suffers from the same problems as the vanilla

backwards feature selection.

2.3.2 Filter Methods

Filter methods are model-independent and are used before the main model is used

to create predictions as a part of a two-step pipeline (during the second step, the

features chosen in the first step are used by a model to generate predictions).

Their advantage is their relative speed compared to wrapper methods and model

independence which allows them to be flexible and easily applied to any analysis.

However, the same model independence prevents them from tuning the proposed

feature subset to the inductive model.

CCM [5] is a kernel method that is based on a trace of the conditional co-

variance operator that produces an optimal subset of a given size. It does not

produce FIE scores. While certainly fast, the memory requirements for several

bigger datasets made it impossible to run with normal equipment.

MRMR [6] is a widely popular FS method based on mutual information metric.

It uses an iterative process to determine a subset of variables that are minimally

correlated with each other and maximize the correlation with the target variable.

Its basis in information theory makes it an understandable and powerful method,

though the computational power requirements make it sometimes run longer than

a model run afterwards(which counters the advantage of the filter methods).

2.3.3 Embedded Methods

The embedded methods try to integrate the advantages of filter and wrapper

methods without increasing the computational burden. For this group of methods,

the model can "delete" features during training through regularization or pruning

21

so that in the end we are left with a model trained with an optimal subset of

features. Usually, the user is also left with FIE that are used to measure the

performances of different features. In this subsection, we will use www to mark the

vector of weights that is associated with variable importances that are held by

the model.

LASSO [42] is a widely popular method of regularized least squares minimiza-

tion that includes the penalty criterion, where λ is a hyperparameter guiding the

relative strength of the penalty compared to the actual loss of the model:

penalty = λ||www||. (2.1)

An obvious disadvantage is the fact that LASSO can only handle linear correla-

tions, but is a quick method to run.

ElasticNet [43] is an extension of LASSO that prevents the model from delet-

ing most of the features while providing relevant FIE by adding L2 penalty term:

penalty = λ1||www||+ λ2||www||2, (2.2)

where λ1, λ2 perform a similar role to λ for LASSO.

DeepPINK [44] is a DL-focused method that uses Deep Knockoffs [45] to

measure the model’s response to original features and knock-off features. The

responses are then compared in order to provide FIE finally. The NN uses L1 reg-

ularization and provides an estimate of the false discovery rate (FDR). The feature

weight estimation also involves reading the network weights which is a process of-

ten found when other DL-focused methods try to extract FIE. Unfortunately, it

often fails for really deep networks with nonlinear activation functions.

DFS [46] or Deep Feature Selection is another DL-based method that uses L1

regularization in its first layer (which is set to use one-to-one connections) to find

FIE. While certainly easy in implementation and readability of results, we found

that it rarely gave the best results.

22

AvGrad [47] is a method that aggregates input gradients (which are usually

connected to local FIE) of a NN in order to create a global FIE. We included this

method only for completeness as it was already proven that methods that take

the expected value of local FIE cannot create correct global FIE [39].

2.4 Local Feature Selection Methods

In this section, we will provide only a brief description of IFS with a focus on DL,

as the main focus of our work is PFS. It is however worth noting the approaches

used by different researchers that allowed them to discover the inner nature of

NNs because the ideas behind them can also be used to build PFS methods.

LIME [48] is a technique that probes the local neighbourhood of a prediction

that was created by a trained model and trains another interpretable ML model

on the created data. The interpretable nature of the second model allows the user

to extract information about the way in which features are being used to produce

original predictions. It is a widely used, model-independent method that leans on

its linear nature to provide explanations.

SmoothGrad [10] is a more advanced method of getting FIE that perturbs the

input sample several times before measuring the input gradients of a NN. Then,

the results are aggregated across perturbations in order to create the final result.

We included this method, as well as the other gradient-based methods from below

as they are one of the most widely used for deep learning. On the other hand, the

validity of input gradients as a method to measure feature importance is heavily

disputed.

PatternNet, LRP [29, 49] investigate methods that use signals and attri-

bution instead of salience maps (input gradients) to determine local FIE. They

also distractors to obfuscate the input data through which the feature importance

estimates are derived.

Integrated Gradients [14] is a method that aggregates the measured input

gradients between the given sample and so-called baseline input, which can be

23

understood as a null input, like a black image or text vector with no words en-

coded. This requirement is usually tailored towards the visual domain, as rarely

the baseline-input is hard to decide on.

ChatGPT explanations [50] , a very recent method developed only for lan-

guage synthesis models. It uses the advanced ChatGPT-4 model to explain other

language models in three simple steps. This is a method tailored specifically to

these NLP models and included here mainly due to their recent success.

24

Chapter 3

Problem Statement

Ideally, a FIR approach should be able to:

1. Detect any functional dependence between input features and targets;

2. Rank the importance of all the selected features to reflect their contributions

to the learning performance;

3. Preserve the detected functional dependence and the feature importance

ranking in test/validation data.

From a more practical standpoint, it would be ideal if such a measure would return

positive values for actual predictors and negative values for null (noisy) features.

In this section, we will discuss many problems that arise when one tries to measure

feature importance. We will start with conceptual obstacles and move towards

more practical problems.

3.1 Defining Optimal Feature Subset Of Constant
Size

Suppose D = {X ,Y} is a dataset used for supervised learning. In this data set,

(xxx,yyy) is a training example, where xxx ∈ X is a vector of d features and yyy ∈ Y is

its corresponding target. Let mmm ∈M denote a d-dimensional binary mask vector

of 0/1 elements, where ||mmm||0 = s, s < d and |M| =
(
d
s

)
. Thus, we can use

such a mask vector to indicate a feature subset: {xxx ⊗mmm}xxx∈X , where ⊗ denotes

Hadamard product that yield a subset of s features for any instance xxx ∈ X . As-

sume that Q(xxx,mmm) quantifies the instance-level performance of an ideal learning

system trained on D via a feature subset, {xxx⊗mmm}xxx∈X .

25

Let us define a value function v : 2d → R that assigns each of the masks mmm a

scalar indicating the population-wise performance of a subset of features.

v(mmm) =
∑
xxx∈X

Q(xxx,mmm). (3.1)

The optimal subset mmm∗ can be then formulated as follows:

mmm∗ = argmax
mmm∈M

v(mmm). (3.2)

3.2 Defining Optimal Feature Subset Of Variable
Size

For an optimal feature subset of any size, we can relax the condition ||mmm||0 = s

to 0 ≥ ||mmm||0 ≥ d which changes the number of possible feature subsets from

|M| =
(
d
s

)
to power set of all the features |M| = 2d =

∑d
i=0

(
d
i

)
.

In that case, it is worth noticing that Equation 3.2 is poorly formed as an ideal

model should be able to handle any number of noisy features. That is why we

added a regularization term to the value function v to make the optimal subset

unique:

vλ(mmm,λ) =
∑
xxx∈X

Q(xxx,mmm)− λ ∗ ||mmm||0 = v(mmm)− λ ∗ ||mmm||0, (3.3)

where λ > 0 is a regularization factor. The uniqueness arises from the penalization

of subsets with null features, efficiently reducing the optimal solution to the one

without any null features.

Notice that for real-world scenarios we do not have access to infinite data, which

adds additional meaning to λ and is further discussed in Section 3.4.

3.3 Defining Feature Importance

Most of today’s methods overlook the associations between the features when

discussing the feature selection / feature importances, as [9] says: "Most existing

algorithms of feature selection (...) assume that data is independent". In our

opinion, this is a mistake which allowed our models to attain better results than

other methods.

If one wants to include feature associations in their work, it forces measuring the

feature importance of a given feature f ∈ F , where F is the full set of features,

26

only when considering it as a part of a subset S ⊂ F (for now, let us not make

an assumption that f ∈ S).

The motivation behind that reasoning is the fact that the other features from S

might have redundant or synergistic information when compared with f . That

makes it clear that our definition of feature importance will also depend on the

subset of features S (or for our models mask mmm) in order to correctly incorporate

the interactions between the feature f and features from subset S.

Notice that the subset S can also be defined by a mask mmm and in this work

we will often use these two symbols alternatively (in order to facilitate a more

understandable notation of adding/removing a feature from a feature subset).

The main motivation behind choosing the following feature importance metric is

the fact that feature selection is a performance-driven process: in the end, the user

wants to achieve the best possible performance by not using the noisy features and

finding out which of the used features are the ones bringing the most value to the

model. In other words, the optimal subset should achieve the best performance

and feature importance should vary according to the performance of a subset with

and without the feature.

That is why we define the feature importance as follows:

ϕ(S, f) =

v(S ∪ {f})− v(S) if f /∈ S,

v(S)− v(S \ {f}) otherwise.
(3.4)

Let ϕ(S, f) return the importance of feature f when measured in tandem with

the feature subset S. For consistency, let Φ(S,F) quantify the importance vector

of all the features in F . When analysing the formula we can notice that, for ideal

models, ϕ(S, f) > 0 for a feature f that brings predictive power to the model

when considered with the features already present in S.

Let us check what that would be the value of feature importance for a noisy fea-

ture fnoise when using an ideal model. In that case, they would have a feature

importance score ϕ(S, fnoise) = 0, no matter the S, as an ideal model would not

be affected by additional, noisy features. As it stands, we rarely have access to

ideal models and we must do with models whose validation/test performance

deteriorates when they are given noisy features (the opposite effect happens for

the training data). If that assumption holds, then ϕ(S, fnoise) < 0, again no

27

matter the S, if we adjust correctly the v function (Eq. 3.1) to use validation

data subset for measuring subset performance (while the model weights are being

tuned on training data).

To sum up, if measured correctly, the feature importance measure ϕ(S, f) should

be positive for features which hold predictive power towards the target and nega-

tive for null (noise) features. That also means that for an optimal subset mmm∗ (and

corresponding S∗) the following condition must hold:

ϕ(S∗, f)

≤ 0 if f /∈ S∗,

> 0 otherwise.
(3.5)

Unfortunately, in the real world, even noisy features can sometimes have a nominal

positive influence on the test performance which is due to finite test data. A way

to counteract this effect is discussed in the next section.

3.4 Regularizing The Feature Subsets

Most scientific research often uses CI to produce the probability of a true value

of an estimate lying between the given interval. The width of such an interval is

inversely proportional to the number of samples used for a given estimate. For ex-

ample, for linear scenarios, correlation is a perfect measure of variable dependence.

Even if the true value of correlation between two independent variables is 0, the

estimate of correlation will vary for a finite sample size. Then, a trained linear

model like OLS can use the perceived correlation to make predictions about one

variable using the values of another. Moreover, if the direction of the estimated

correlation is the same for validation data, removing the first variable from the

feature set will actually result in a drop in validation performance. This would

result in positive feature importance for a variable that is independent of the tar-

get according to our definition of feature importance (Eq. 3.4). To sum up, even

for an ideal model for a given scenario, it is possible to measure positive feature

importance for a null feature due to a finite sample size of a dataset.

To counteract this effect, we can use the λ parameter in Equation 3.3 to set the

minimum level of contribution level per feature towards the value of its importance

28

for it to be qualified as a not-null feature. If we use vλ instead of v in Equation

3.4:

ϕλ(S, f, λ) =

vλ(S ∪ {f}, λ)− vλ(S, λ) if f /∈ S,

vλ(S, λ)− vλ(S \ {f}, λ) otherwise.
(3.6)

and after using Eq. 3.3 to expand vλ we are left with:

ϕλ(S, f, λ) =

v(S ∪ {f})− v(S)− λ if f /∈ S,

v(S)− v(S \ {f})− λ otherwise.
(3.7)

which we can shorten to:

ϕλ(S, f, λ) = ϕ(S, f)− λ. (3.8)

Keep in mind our earlier motivations: we want the feature importance score to

be positive when the feature brings predictive power and negative, or equal to

zero, otherwise. If we wish for a feature to be counted as a useful predictor using

our adjusted feature importance measure then ϕλ(S, f, λ) > 0 and according to

equation 3.8 that means ϕ(S, f) > λ. In other words, the regularization parameter

λ corresponds to a minimum vanilla feature importance a feature must have to

be counted as a useful predictor according to the new, adjusted measure. That

gives us some flexibility when it comes to issues discussed at the beginning of this

section, as we can adjust λ to make sure that accidental predictive power (which

is measured according to Q) has to be bigger than λ for a feature to be counted

as ’useful’.

3.5 Defining Performance Metric

Continuing with our trend of moving to more and more real-world problems,

another topic we have ignored for now is the exact process of calculating v(mmm) and

what is Q from Equation 3.1. The only thing previously mentioned regarding this

issue was in Section 3.3, where we discussed using validation data to circumvent

the fact that noisy features improve training performance of a model.

A good candidate for Q can be a function returning values inversely-proportional

to the loss of a model. This measure seems viable as:

1. Loss is the definition of performance, and we want our feature importance

measurements to be performance-driven,

29

2. Loss function is always chosen with respect to the data and the type of

analysis: it changes whether we want to use regression, binary classification,

multi-label classification,

3. It is already calculated by DL models for training purposes, so reusing it for

feature importance scores will save time and reduce model complexity.

To make the chosen Q inversely proportional to the loss function, we decided to

define Q as the opposite of the loss (other possibilities include reciprocals or more

exotic functions, which usually must be tuned for a given loss due to the spread

of possible loss values across different problems).

3.6 Other Problems

It is worth noting that finding an optimal subset is NP-hard, mainly due to the

fact that each subset needs to be investigated on its own in order to take into

account all possible feature associations. This is especially prevalent for deep

learning models. To accurately measure the performance of a subset of features,

one needs to retrain models [17] instead of just setting them to some constant

value in order to accommodate for changing the distributions of input data. Even

by today’s standards, retraining neural networks 2d times for each possible feature

subset for a dataset with tens of features would take a prohibitively long time.

Additionally, even though the feature selection measure that we proposed in Equa-

tion 3.8 seems like a comprehensive take on feature importance, it still lacks the

ability to explain some of the more complex feature associations (with more than

2 variables).

The final problem has to do with real-world data: for most of the datasets, we do

not know the ground truth, as we simply do not always know which features are

important. One can use their knowledge in a given field to validate the results

produced by feature importance rankings or create an artificial dataset for which

the ground truth is known. A common attempt in the former case is using pic-

torial data (like face classification) to inspect if the algorithm creates a visually

compelling feature importance map, which is what we did for our work.

30

3.7 Group Feature Selection

Group feature selection was developed for problems when we can use our prior

knowledge to group variables in sets that have to be taken as a whole for the final

result. A good example of such a setting would be pixels in colourful images,

where the RGB channels for each can be grouped. Another example would be

grouping the momentum XYZ components together for analysis of physical phe-

nomena.

In more formal language, instead of using F = {f0, f1, f2, ..., fd−1} for a dataset

with d features, we have to assume that we have d groups G = {G0, G1, G2, ..., Gd−1}

where each group Gj is composed of dj features: Gj = {fj,0, fj,1, fj,2, ..., fj,dj−1
}

and the total number of features in the dataset is dtotal =
∑d−1

j=0 dj.

Our task here is selecting an optimal subset of groups symbolized by mmm∗ that is

a d-dimensional vector of 0/1.

3.8 Feature Subset Encodings

The goal of producing feature subset encodings is to provide the user insights

into the structure of variables in the dataset. Formally, let us define a similarity

distance function dS : 2d × 2d → R that produces a distance for a given pair of

feature subsets:

dS(mmm1,mmm2) = fS({Q(xxx,mmm1)}xxx∈X , {Q(xxx,mmm2)}xxx∈X) (3.9)

where fS : Rn × Rn → R is a function measuring the statistical distance between

two distributions, like Jensen-Shannon distance (square root of Jensen-Shannon

divergence [51]).

The encodings would be k-dimensional vectors zzz produced for l sets of feature

subsets M = {mmm0,mmm1,mmm2, ...,mmml−1} by a model fz with weights φ:

zzz = fz(φ,mmm), (3.10)

so that the Euclidean distances between them would try to conserve the similarity

distance measured using function fS between the vector of predictions. We can

set l to be 2d or corresponding to the feature powerset or any other set of subsets.

As a reminder, the formula for Euclidean distance between two vectors aaa and bbb is

31

defined as:

dEU(aaa, bbb) = ||aaa− bbb||2. (3.11)

Now, we can formulate the problem as an optimization problem where we are

trying to minimize the following:

min
φ

l∑
j=0

l∑
i=0

(
dEU(fz(φ,mmmi), fz(φ,mmmj))− dS(mmmi,mmmj)

)2
. (3.12)

32

Chapter 4

Feature Importance Rankings With
Constant Subset Size

This section includes the work done in the first half of the course and focuses

on overcoming the problem stated in Section 3.1 as well as trying to find feature

rankings; as they can be loosely understood as a type of feature importance that

is defined in Section 3.3. The chapter describes the method used in our previ-

ous work [30] with minimal formatting alternations that the PhD thesis format

necessitates. This approach does not solve all the problems stated in Chapter 3.

4.1 Model Description

To tackle the FIR problem stated in Eq.(3.2) effectively with three criteria de-

scribed in Section 3.1, we propose a deep learning model of dual nets, operator

and selector, as shown in Fig. 4.1.

Selector
Net

Operator
Net

(a)

Optimized Feature Subsets

Learning Performance

Figure 4.1: Dual-net architecture: workflow of the model.

33

The operator net is employed to accomplish a supervised learning task, e.g., clas-

sification or regression, on a given feature subset provided by the selector net,

while the selector net is designated to learn finding out an optimal feature subset

based on the performance feedback of the operator net working on optimal feature

subset candidates during learning. Both the operator and the selector nets are

trained jointly in an alternate manner (c.f. Section 4.2) to reach a synergy for the

FIR.

Technically, the operator is carried out with a deep neural network parame-

terized with θ, fO(θ;xxx,mmm), for a given task, e.g., multi-layer perceptron (MLP) or

convolution neural network (CNN). This net is trained on D based on different

feature subsets to learn fO : X ×M → Y . After learning (c.f. Section 4.2), the

trained operator net, fO(θ∗;xxx,mmm∗), is applied to the test data for prediction, where

θ∗ is the optimal parameters of the operator net and mmm∗ is generated. During the

training process, the selector net helps to iteratively provide candidate feature

subsets.

In our method, the selector is implemented with an MLP parameterized with

φ, fS(φ;mmm). As defined in Eq.(3.2), a selected optimal feature subset should

maximize the averaging performance of the operator quantified by Q(xxx,mmm) for

all xxx ∈ X . Thus, we want the selector net to learn to predict the averaging

performance of the operator net on different feature subsets; i.e., fS : M → R.

After being trained properly (c.f. Section 4.2), we can use an algorithm working

on the trained selector net of the optimal parameters φ∗, fS(φ∗;mmm), to generate

an optimal feature subset indicated by mmm∗ and rank feature importance to achieve

Φ(mmm∗) (c.f. Section 4.3).

4.2 Learning Algorithm

In essence, the FIR defined in Eq.(3.2) is a combinatorial optimization problem.

According to the no free lunch theory for optimization [52], no algorithm can per-

form better than a random strategy in expectation in the setting of combinatorial

optimization. Therefore, our learning algorithm is developed by leveraging learn-

ing with a stochastic local search procedure enhanced by injecting noise [53] on

a small number of candidate feature subsets, M′ ⊂ M, to avoid the exhaustive

34

Operator
θ

Selector
φ

θ
t

φ
t φ

t+1

UPDATE

×

θ
t+1

UPDATE
GEN
MASK

φ
t+1

φ
t+2

UPDATE

×

θ
t+2

UPDATE
GEN
MASK

PERTURB

GEN
MASK

φ
t

PERTURB

φ
t+2

(b)

Figure 4.2: Dual-net architecture: diagram showing parameter updates for each
of the models.

search.

For a training data set, D = {X ,Y} =
{
(xxx,yyy)

}
xxx∈X ,yyy∈Y , a mask subset, M′,

converts each training example (xxx,yyy) ∈ D into |M′| examples:
{
(xxx⊗mmm,yyy)

}
mmm∈M′ .

Thus, the loss functions on M′ (changing during learning) for the operator and

the selector nets are defined respectively as follows:

LO(D,M′; θ) =
1

|M′||D|
∑

mmm∈M′

∑
(xxx,yyy)∈D

l(xxx⊗mmm,yyy; θ), (4.1a)

LS(M′;φ) =
1

2|M′|
∑

mmm∈M′

(
fS(φ;mmm)− 1

|D|
∑

(xxx,yyy)∈D

l(xxx⊗mmm,yyy; θ)
)2

. (4.1b)

Here, l(xxx ⊗ mmm,yyy; θ) is an instance-level cross-entropy/categorical cross-entropy

loss for binary/multi-class classification or the mean square error (MSE) loss for

regression. In Eq.(4.1b), we utilize the loss of the operator net, l(xxx ⊗mmm,yyy; θ),

to characterize its learning performance, Q(xxx,mmm), since maximizing Q(xxx,mmm) is

equivalent to minimizing l(xxx⊗mmm,yyy; θ).

As described in Section 4.1, during learning, the operator net relies on the mask

generator to provide an optimal subset of masks (through guidance of the selector

net),M′, indicating different optimal feature subset candidates, while the selector

net requires the performance feedback from the operator net, l(xxx⊗mmm,yyy; θ) for all

mmm ∈ M′. Two nets in our learning model hence have to be trained alternately.

Below, we present the main learning steps in our learning algorithm of two phases,

while the pseudo-code can be found in Section 4.4.

35

Phase I: Initial Operator Learning via Exploration. At first, we start

training the operator net by using a small number of random feature subsets for

several epochs until it can yield different performances on different feature subsets

stably. Technically, in each epoch, we randomly draw a subset of different masks,

M′
1, fromM; i.e.,M′

1 =
{
mmmi|mmmi = Random(M, s)

}|M′|
i=1

, where Random(M, s) is

a function that randomly draws a d-dimensional mask of s one-elements and d−s

zero-elements fromM. If θ is trained by stochastic gradient decent (SGD), then

it is updated by θ′′ ≜ θ′−η∇θLO(D,M′
1; θ)|θ=θ′

1 where η is a learning rate. After

E1 epochs, we set θ1 = θ′′(E1) and mmm′
1,opt = argminmmm∈M′

1

∑
(xxx,yyy)∈D l(xxx ⊗mmm,yyy; θ1)

to be used at the beginning of Phase II-A; i.e., t = 1 as shown in Fig. 4.2.

Phase II-A: Selector Learning via Operator’s Feedback. As illustrated

in Fig. 4.2, the operator provides training examples for the selector at step

t:
{(
mmm, 1

|D|
∑

(xxx,yyy)∈D l(xxx ⊗mmm,yyy; θt)
)}

mmm∈M′
t
. By using the SGD with initializing

φ1 randomly, the parameters in the selector net, φ, are updated by φt+1 ≜

φt− η∇φLS(M′
t;φ)|φ=φt . Then, we adopt an exploration-exploitation strategy to

generate a new mask subset,M′
t+1, for the operator learning at step t+1. Thus,

M′
t+1 is divided into two mutually exclusive subsets: M′

t+1 =M′
t+1,1 ∪M′

t+1,2.

Motivated by the role of noise in stochastic local search [53],M′
t+1,1 is generated

via exploration to avoid overfitting: M′
t+1,1 =

{
mmmi|mmmi = Random(M, s)

}|M′
t+1,1|

i=1
.

Motivated by the input gradient idea [47],M′
t+1,2 is generated by exploitation of

the selector net, fS(φt+1;mmm), as follows:

a) Generation of an optimal subset. Starting with d-dimensional mmm0 =(
1
2
, · · · , 1

2

)
, meaning that every feature has an equal chance to be selected,

we have δδδmmm0 = ∂fS(φt+1;mmm)
∂mmm

|mmm=mmm0 . As input features of the larger gradients

contribute more to the learning performance of the operator, we can find top

s features based on their gradients by (mmmopt, m̄mmopt) = argsort(δδδmmm0 , s) where

mmmopt is the mask to indicate top s features and m̄mmopt is the mask for the

remaining d−s features. To ensure the optimality of mmmopt, we come up with

a three-step validation procedure:

1Parameters are actually updated on a batch B randomly drawn from D, hence |D|
|B| times in

an epoch.

36

i) Re-evaluate the contributions of top s features by

(mmmopt, m̄mmopt) = argsort(δδδmmmopt , s) where δδδmmmopt =
∂fS(φt+1;mmm)

∂mmm
|mmm=mmmopt ;

ii) Replace a feature of negative gradient inmmmopt with the one of the largest

gradient in m̄mmopt if there exists;

iii) Further, check the optimality via a function

(mmm′
opt, m̄mm

′
opt) = swap(mmmopt, m̄mmopt) that yields mmm′

opt by swapping between

the feature of least gradient in mmmopt and the one of the largest gradient

in m̄mmopt. Repeat (i)-(iii) until fS(φt+1;mmmopt) ≤ fS(φt+1;mmm
′
opt). After

going through the validation procedure, mmmt+1,opt is obtained for step

t+1.

b) Generation of optimal subset candidates via perturbation. As the

optimal subset mmmt+1,opt might be a local optimum, we would further inject

noise to generate more optimal subset candidates by a perturbation function

Perturb(mmmopt, sp). For sp < s, Perturb(mmmopt, sp) randomly flips sp different

elements in mmmopt/m̄mmopt from 1/0 to 0/1 and swaps between changed elements

in mmmopt and m̄mmopt. Applying Perturb(mmmopt, sp) repeatedly leads to multiple

optimal subset candidates;

c) Formation of optimal subset candidates. Assembling a) and b) leads

toM′
t+1,2 = {mmmt,best}∪{mmmt+1,opt}∪

{
mmmi|mmmi = Perturb(mmmt+1,opt, sp)

}|M′
t+1,2|−2

i=1
.

Here, we always include mmmt,best, the subset that leads to the best learning

performance of the operator net in the last step (step t), as the most impor-

tant subset candidate in the current step (step t+1) in order to make the

operator learning progress steadily. Note that mmmt,best may not be mmmt,opt.

Phase II-B: Operator Learning via Optimal Subset Candidates from

Selector. After completing the training of Phase II-A at step t , the selector

net provides the optimal subset candidates, M′
t+1 = M′

t+1,1 ∪ M′
t+1,2, for the

operator net, as illustrated in Fig. 4.2. At step t+1, the operator net is thus

trained based onM′
t+1 with SGD: θt+1 ≜ θt − η∇θLO(D,M′

t+1; θ)|θ=θt .

37

As shown in Fig. 4.1, our alternate algorithm enables the operator and the se-

lector nets to be trained jointly in Phase II until a pre-specified stopping condition

is satisfied.

4.3 Deployment

After the learning described in Section 4.2 is accomplished, we obtain the optimal

parameters of the operator and the selector nets, θ∗ and φ∗.

By using the trained selector net, fS(φ∗;mmm), we find out an optimal feature

subset with the same procedure used in Phase II-A as follows:

1. starting with mmm0 =
(
1
2
, · · · , 1

2

)
, calculate the gradient δδδmmm0 = ∂fS(φ

∗;mmm)
∂mmm

|mmm=mmm0

(we chose 1
2

as starting value as it is in the middle between two possible

values of 0 and 1);

2. finding top s features by (mmm∗, m̄mm∗) = argsort(δδδmmm0 , s), where mmm∗ indicates the

optimal subset of top s features;

3. going through the validation procedure described in Phase II.A to ensure

the optimality of mmm∗. Thus, feature importance ranking on the final mmm∗ is

done by setting Φ(mmm∗) = ∂fS(φ
∗;mmm)

∂mmm
|mmm=mmm∗ and sorting the input gradients of

selected features.

During testing, for a test instance, x̂xx, the trained operator net, fO(θ∗;xxx,mmm), can

be used to make a prediction, fO(θ∗; x̂xx,mmm∗), via x̂xx⊗mmm∗, which allows a supervised

learning task to be done based on only the optimal feature subset, mmm∗, found out

with our proposed approach.

4.4 Pseudo Code

In this section, we describe the implementation of our alternate learning algorithm

used to train our proposed dual-net neural architecture for feature importance

ranking underlying feature selection. The pseudo code2 in Algorithm 1 carries

out the alternate learning algorithm as described in Section 4.2 . The pseudo

code in Algorithm 2 implements a subroutine used in line 10 of Algorithm 1 to
2Our source code and all the related information regarding the experimental settings are

available online: https://github.com/maksym33/FeatureImportanceDL.

38

https://github.com/maksym33/FeatureImportanceDL

generate an optimal feature subset in the current step as described in Phase II.A

(c.f. Section 4.2). In Algorithm 1, lines 1-7 corresponds to Phase I, lines 9-12

carry out Phase II.A and lines 13-18 implement Phase II.B. Phase II.A and II.B

alternate until the early stopping condition is satisfied as implemented by the loop

from line 8 to line 23.

39

Algorithm 1 Alternate Learning Algorithm
Require: loss function of operator net, l(xxx⊗mmm,yyy; θ), selector net, fS(φ,mmm)
Require: feature set/subset size d and s, fraction of random masks f , perturba-

tion factor sp
Require: number of optimal subset candidates |M′|, number of batches E1 in

Phase I.
Require: mask weight vector used in the weighted selector loss wwwS of |M′| ele-

ments.
1: for e← 0 to E1 do
2: M′

1 =
{
mmmi|mmmi = Random(M, s)

}|M′|
i=1

▷ create a random batch of masks
3: LO(D,M′

1; θ) =
1

|M′||D|
∑

mmm∈M′
∑

(xxx,yyy)∈D l(xxx⊗mmm,yyy; θ) ▷ calculate operator
loss

4: θ′′ ≜ θ′ − η∇θLO(D,M′
1; θ)|θ=θ′ ▷ update the parameters in operator

5: LS(M′;φ) = 1
2|M′|

∑
mmm∈M′

(
fS(φ;mmm)− 1

|D|
∑

(xxx,yyy)∈D l(xxx⊗mmm,yyy; θ)
)2

▷ cal-
culate MSE loss of selector net

6: φ′′ ≜ φ′ − η∇φLS(M′
1;φ)|φ=φ′ ▷ update the weights in selector

7: end for
8: for t← 0 to inf do
9: M′

t+1,1 =
{
mmmi|mmmi = Random(M, s)

}(1−f)|M′|
i=1

▷ create a random batch of
masks

10: mt+1,opt ⇐ generateOptimalMask(fSN(φt)) ▷ implemented in Algorithm 2
11: M′

t+1,2 = {mmmt,best} ∪ {mmmt+1,opt} ∪
{
mmmi|mmmi = Perturb(mmmt+1,opt, sp)

}f |M′|−2

i=1
▷ collect the best mask from last step, the current optimal mask and those
perturbed optimal masks

12: M′
t+1 =M′

t+1,1 ∪M′
t+1,2 ▷ form new subset candidates for operator

13: LO(D,M′
1; θ) =

1
|M′||D|

∑
mmm∈M′

∑
(xxx,yyy)∈D l(xxx⊗mmm,yyy; θt) ▷ calculate operator

loss
14: θt+1 ≜ θt − η∇θLO(D,M′

1; θ)|θ=θ ▷ update parameters in operator

15: LS(M′;φ) = 1
2|M′|

∑|M′|
i=0 wS,i

(
fS(φ;mmm)− 1

|D|
∑

(xxx,yyy)∈D l(xxx⊗mmm,yyy; θ)
)2

▷ cal-
culate the weighted MSE loss of selector

16: φt+1 ≜ φt − η∇φLS(M′
1;φ)|φ=φt ▷ update the parameters in selector

17: mmmt+1,best = argminmmm∈M′
t+1

(∑
(xxx,yyy)∈D l(xxx⊗mmm,yyy; θ)

)
▷ record the best

performed mask
18: Lt,mopt ←

(∑
(xxx,yyy)∈D l(xxx⊗mmm,yyy; θ)

)
[(1− f) + 1] ▷ record loss of the mmmopt,

(1− f) + 1 should be its index
19: if checkEarlyStopping(Lt,mopt) then
20: θt = restoreBestWeights() ▷ stopping condition is met
21: break
22: end if
23: end for

40

Algorithm 2 Generation of Optimal Feature Subset
Require: selector net fS(φ,mmm)
Require: input feature set size d, selected subset size s
1: mmm0 ← (1

2
, 1
2
, ..., 1

2
)

2: δδδm0 =
∂fS(φ,mmm)

∂mmm
|mmm=mmm0 ▷ calculate input gradient

3: mmmopt ← (0, 0, ..., 0)
4: (iiiunmasked, iiimasked)← argsort(δδδm0)) ▷ determine indexes with 1s (unmasked,

top s biggest gradients) and 0s (masked, the smallest gradients)
5: mmmopt[iiiunmasked]← (1, 1, ..., 1) ▷ complete creating mmmopt

6: δδδmopt =
∂fSN (φ,mmm)

∂mmm
|mmm=mmmopt ▷ reclalculate the gradient at mmm =mmmopt

7: imin ← argmin(δδδmopt [iunmasked]) ▷ index of minimum unmasked gradient
8: imax ← argmax(δδδmopt [imasked]) ▷ index of maximum masked gradient
9: iiineg ← argwhere(δδδmopt [iunmasked] < 0) ▷ create a set of unmasked indices that

have negative gradients
10: for i in iiineg do
11: mmm′

opt ←mmmopt ▷ Validation step 1
12: mmm′

opt[i]← 0 ▷ mask the negative, previously unmasked, input
13: mmm′

opt[imax]← 1 ▷ unmask the biggest (gradient-wise), previously masked
input

14: if fS(φ,mmm
′′
opt) < fS(φ,mmmopt) then

15: mmmopt ←mmm′
opt ▷ replace mmmopt and restart the validation

16: recalcualte iiiunmasked and iiimasked

17: goto step 6
18: end if
19: end for
20: mmm′′

opt ←mmmopt ▷ Validation step 2
21: mmm′′

opt[imin]← 0 ▷ mask the smallest (gradient-wise), previously unmasked,
input

22: mmm′′
opt[imax]← 1 ▷ unmask the biggest (gradient-wise), previously masked

input
23: if fS(φ,mmm

′′
opt) < fSN(φ,mmmopt) then

24: mmmopt ←mmm′′
opt ▷ replace mmmopt and restart the validation

25: recalculate iiimasked and iiimasked

26: goto step 6
27: end if

41

Chapter 5

Experiments - Constant Subset Size

5.1 Results

In this section, we focus on presenting the results of our experiments. We divided

the results/datasets into several major categories: synthetic, visual and bench-

mark. We decided to use synthetic data as this is the only type of dataset when

the ground truth is known. We use visual datasets to present visually convincing

results, that can be validated by any human. We chose to use some benchmark

datasets to compare the performance of our trained Operator to the ones provided

by other methods.

In this section, we will visit each of these data categories, where we will give a

brief summary of the datasets in the category. Then, we will present our results

and compare them to other methods if possible.

Finally, we summarize the experimental setup for our framework as well as the

other methods.

5.1.1 Synthetic Data

Our first evaluation employs 3 synthetic datasets in literature [5, 54] for feature

selection regarding regression and binary/multiclass classification as follows:

XOR as 4-way classification [5]. Group 8 corners of the cube, (v0, v1, v2) ∈

{−1,+1}3, by the tuples (v0v2, v1v2), leading to 4 sets of vectors paired with

their negations {v(c),−v(c)}. For a class c, a point is generated from the mixture

distribution: 1
2
[N(v(c), 0.5I3)+N(−v(c), 0.5I3)]. Then, form a 10-D feature vector

for each example by adding 7 standard noise features, (X3, · · · , X9) ∼ N(0, I7).

Nonlinear regression [5]. Y = −2 sin(2X0) +max(X1, 0)+X2 +exp(−X3) + ϵ,

42

where (X0, · · · , X9) ∼ N(0, I10) and ϵ ∼ N(0, 1), leading to a 10-D feature vector

for each example.

Binary classification [54]. To generate examples, set Y = −1 when (X0, · · · , X9) ∼

N(0, I10) and Y = +1 when X0 through X3 are standard normal conditioned on

9 ≤
∑3

i=0 X
2
i ≤ 16 and (X4, · · · , X9) ∼ N(0, I6), resulting in a 10-D feature vector

for each example.

For each dataset, we randomly generate 512 and 1024 examples, respectively,

for training and testing. With our problem formulation described in Section 3.1,

our experiment on synthetic data simulates an application scenario that selects

s out of d features where s is larger than the number of features relevant to the

target in a dataset. As there are up to 4 relevant features in the above 3 datasets,

we choose s = 5 in our experiment and compare with the following methods DFS

[55], AvGrad [47], FS [54] based on MLP, LASSO [42], RF [8], RFE [2], BAHSIC

[56, 41], mRMR [6] and CCM [5]. According to a taxonomy [4], DFS, AvGrad,

RF and ours are embedding methods, FS is a wrapper method and all the others

are filtering methods. For those filtering methods, we use the exact same kernel

SVM/SVR described in those papers [2, 5, 6, 41, 56] and an MLP on LASSO for

classification/regression. While DFS, AvGrad, LASSO and RF work on FIR for

all 10 features, all other methods work with the same setting as ours by finding

out the top 5 features and FIR.

Fig. 5.1 shows the feature selection and FIR results yielded by different meth-

ods regarding the top 5 features on 3 synthetic datasets where the FIE are nor-

malized for each method (shown on the y-axis). In the case of filter methods, an

equal FIE is set to all the features selected by those methods. Additionally, a grey

rectangle is overlaid on each graph to mark the truly important features. We use

blue bars to mark if the feature was selected in every CV fold of the analysis and

red if it was not (stability analysis).

It is observed from Fig. 5.1 that our approach always finds out those relevant

features in all 5 folds and does FIR properly by assigning negative scores (gradi-

ents), meaning unimportant, to irrelevant features. For the 4-way classification,

DFS, RF, RFE, BAHSIC and CCM also find 3 relevant features in all 5 folds but

others fail as shown in Fig. 5.1(a) although mRMR and CCM cannot yield FIR

scores. In terms of accuracy, ours outperforms all other 9 methods despite the fact

43

that DFS, AvGrad and RF work directly on the full feature set. For the nonlinear

regression, FS, RF, RFE and CCM also select 4 relevant features in all 5 folds but

ours yields the least MSE as shown in Fig. 5.1(b). For the binary classification, all

the methods apart from LASSO find 4 relevant features in all 5 folds, as shown in

Fig. 5.1(c). For this dataset, those state-of-the-art filtering methods yield better

accuracy than others and the accuracy resulting from ours is slightly worse but

comparable to those. In terms of FIR on all relevant features, ours is entirely

consistent with those yielded by RF but performs significantly better than RF on

3 datasets. In comparison to the existing FIR methods for deep learning, ours

always outperforms DFS, AvGrad and FS on 3 datasets in terms of both FIR and

learning performance.

On the other hand, our method outputs negative importance for the regression

task for the 2nd feature. This feature is useful only half of the time (corresponds

to the term maxX1, 0) and it was perceived as deeply negative on one of the folds,

resulting in an overall slightly negative score. It is worth pointing out that some

of the other methods (RF, BAHSIC, AvGrad) also have trouble with correctly

including this feature.

5.1.2 Benchmark Data

We further evaluate our approach on several well-known benchmark datasets from

two different perspectives; i.e., explainability of FIR (MNIST) and learning per-

formance on supervised feature selection (all).

MNIST Dataset

To demonstrate the explainability of FIR via visual inspection, we employ an

MNIST[57] subset of hard-to-distinguish digits “3” and “8” for binary classification.

The information on this subset is summarized in Table I. For comparison, we also

apply 3 embedding methods, DFS, AvGrad and RF to this subset. To see the

explainability of FIR, we adopt the same fully-connected MLP instead of CNN

in DFS, AvGrad and the operator net in ours (s = 85, d = 784). The setting

ensures that no other mechanisms like convolution/pooling layers can help a model

automatically extract salient features for FIR. As a result, the accuracies yielded

by DFS, AvGrad, RF and ours on the test data are 97.42±0.30%, 99.27±0.04%,

44

(a)

(b)

(c)

Figure 5.1: 5-fold cross-validation results (mean±std) on synthetic datasets (s =
5, d = 10). (a) XOR 4-way classification. (b) Nonlinear regression. (c) Binary
classification. * refers to a filtering method, and blue/red colours indicate a feature
selected in all 5 folds/fewer folds, respectively. Grey rectangles were overlaid on
the important features.

98.84± 0.03% and 99.31± 0.08%, respectively, where ours and DFS use 85 and

212 features, respectively, but AvGrad and RF need all 784 features. For visual

inspection, which is described in more detail in Section 5.1.3 we normalize the

FIR scores achieved by different methods to the same range and illustrate typical

feature importance maps produced by 4 methods in a fold in Fig. 5.2. It is

observed from Fig. 5.2(a),(b) that DFS and AvGrad, two FIR methods for deep

learning, do not produce explainable maps. In contrast, it is evident from Fig.

5.2(d-f) that ours yields a meaningful map where those features (pixels) that

distinguish between “3” and “8” images are vividly highlighted in terms of their

importance. Again, ours yields a map similar to that of RF (c.f. Fig. 5.2(c)) but

outperforms this off-the-shelf FIR method.

45

Table I: Information on benchmark and real-world datasets used in our experi-
ments.

Data Set MNIST glass vowel TOX-171 yale Enhancer–Promoter
#Features 784 10 10 5784 1024 102
#Classes 2 6 11 4 15 3
#Training 11,982 150 742 137 132 5,756
#Testing 1,984 64 248 34 33 2,878

Main Benchmark Data

In our comparative study, we choose four challenging benchmark datasets for fea-

ture selection evaluation. As reported in [5], the state-of-the-art feature selection

methods, including the latest strong ones, do not perform well on the following

datasets.

Glass dataset1 The Glass is a famous UCI benchmark dataset for the task of

predicting a type of glass based on its chemical composition. Glass dataset usually

contains nine chemical features and the ID for each instance that is generally not

treated as a feature. In the experimental setting of CCM [5], they treated the

ID as a new feature, so ten features were used in their experiments. Due to the

fact that the instances in the data file are arranged in a non-shuffled manner

according to their class labels, the ID feature turns up to be one of the most

important features so that CCM and other robust feature selection methods yield

very high accuracy, e.g., CCM achieves 86% on average [5]. In our experiment,

we follow this setting so that our approach yields 90%+ accuracy (c.f. Figure 4 in

the main text). Without the ID feature, however, all the methods, including ours,

yield considerably lower accuracies, although ours still outperforms those methods

used in our comparative study. In the 5-fold cross-validation, the accuracy of our

approach drops to the levels of 75%-80%, quite close to the known top accuracy

of 80% on the OpenML platform2.

Vowel Dataset3 The Vowel is yet another famous UCI benchmark dataset for

predicting English vowels from acoustic features. Following the same setting used

in CCM [5], we use a newer version of this dataset so that we can make a fair
1[online]: https://archive.ics.uci.edu/ml/machine-learning-databases/glass/
2[online]: https://www.openml.org/t/3815
3[online]: https://www.openml.org/d/307

46

https://archive.ics.uci.edu/ml/machine-learning-databases/glass/
https://www.openml.org/t/3815
https://www.openml.org/d/307

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Feature importance maps yielded by different FIR methods. (a) DFS.
(b) AvGrad. (c) RF. (d-f) Ours and our map superimposed on the mean images
of “3” and “8”, respectively, for clarity.

comparison to those feature selection methods used in our comparative study.

TOX-171 dataset4 The TOX-171 is a biological microarray dataset with only

43 instances/class but 5,784 features. The nature of this dataset makes a deep-

learning model very prone to overfitting.

Yale Dataset5 The YALE faces is a well-known facial image benchmark dataset.

There are 15 individual subjects, and 11 images of different facial expressions, e.g.,

wink, happy and sad, were collected from each individual. When this dataset is

used for face recognition, a random split of this dataset could lead to a certain

degree of covariant shift; the instances in training and validation/test sets may be

subject to different distributions, but their distributions conditional on the label

are the same. This causes difficulty for all learning models without covariant shift

adaptation.

Feature Selection Benchmark. We further conduct the evaluation in feature

selection. As our approach has the same setting as used in the supervised feature
4[online]: http://featureselection.asu.edu/old/datasets.php
5[online]: http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

47

http://featureselection.asu.edu/old/datasets.php
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

Figure 5.3: Classification accuracies (vertical axis) yielded by the supervised fea-
ture selection methods and ours for different numbers of selected features (hori-
zontal axis) on 4 benchmark datasets.

selection methods, we compare ours to those strong supervised feature selection

methods, RFE, BAHSIC, mRMR and CCM, on four benchmark datasets: glass

[58], vowel [58], TOX-171 [9] and yale [59], as summarized in Table I. For our

model, we employ MLPs to implement the operator for glass, vowel and TOX-171

but a CNN to carry out the operator for yale to demonstrate the flexibility of

our dual-net architecture. By following the setting used in [5], we employ kernel

SVMs for the classification on features selected by 4 filtering methods. It is

evident from Fig. 5.3 that ours substantially outperforms all others on glass,

vowel and yale with a large margin. Overall, ours yields results comparable to

the strongest performer, CCM, on TOX-171 where there are 5,700+ features but

only 109 training examples for parameter estimate in each of 5 folds, which is very

challenging for deep learning.

Enhancer–Promoter data

To evaluate our approach on real-world data, we adopt the GM12878 cell line

(a lymphoblastoid cell line) dataset [55]. This is the dataset for which the deep

48

feature selection (DFS) method [55] is especially proposed. Therefore, we follow

their setting by using only annotated DNA regions of the GM12878 cell line (200

bp).

In the original dataset, there are 7 classes and 102 features, each class has 3,000

instances apart from one that has only 2878 instances. The 7 classes are active

promoter, active enhancer, active exon, inactive promoter, inactive enhancer,

inactive exon and unknown regions. The main interest in medicine is classifying

the function of DNA sequences into enhancer, promoter and background since

non-coding gene regulatory enhancers are essential to transcription in mammalian

cells [60].

Following the suggestion in [60, 55], we merge inactive enhancers, inactive

promoters, active exons, and unknown regions into a background class. Thus, we

have a 3-class imbalanced dataset as the background class has roughly 5 times

more instances than the other two classes: active promoter and active enhancer.

We follow a preprocessing method consisting of two steps: 1) making the dataset

balanced by down-sampling so that each of 3 classes has 2878 samples; 2) over-

coming the natural skewness of biological outcome by taking the logarithm on the

input. To avoid the zero-value issue in the logarithm, we append a small positive

number to each feature, x ← x + 0.01, in our experiments. Note that step 2) is

not described in the DFS paper but we believe that this is important for such a

data distribution.

It is also worth clarifying that we see some discrepancies between the data

presented in the authors’ repository6 and their article [55]. Two main differences

include 1) 102 features in the repository but 92 features stated in the article; 2) at

least 2,878 instances per class in the repository but only 2,156 features mentioned

in the article. While we use the dataset in their repository, we have done our best

by keeping all the settings suggested in their article for a fair comparison in our

experiments.

Due to the limited space in the main text, we only report the result of our

approach for a subset mask size, s = 35. Here, we report more results of our

approach and other methods used in a comparative study on this dataset.

We first illustrate the learning behaviour of our dual-net model on this real-
6[online]: https://github.com/yifeng-li/DECRES/tree/master/data

49

https://github.com/yifeng-li/DECRES/tree/master/data

(a) selector-loss (b) operator-loss-train
(c) operator-loss-
train(mmmopt)

(d) operator-ACC-train
(e) operator-loss-val (f) operator-loss-val(mmmopt)

(g) operator-ACC-val

Figure 5.4: Enhancer-Promoter Dataset. Evolution of the operator and the
selector losses in Phase II (d = 102, s = 35). The x-axis corresponds to the
number of batches and y-axis refers to the loss statistics of 5 folds. (a) The
selector loss. (b) The operator loss on the training set. (c) The operator loss on
the training set with mmmopt only. (d) The classification accuracy evaluated on the
training set. (e) The operator loss on the validation set. (f) The operator loss
on the validation set with mmmopt only. (g) The classification accuracy evaluated
on the validation set. Note that Phase II starts when the operator net has been
trained for 10,000 batches in Phase I. The final datapoint at x ≈ 18000 in (e)-(g)
corresponds to performance being evaluated on the test set with a ’virtual’ batch
number around 18k.

world dataset in Figure 5.4. As shown in Figure 5.4(a), the averaged selector loss

has the typical behaviour as described in Section 5.2. The loss fluctuation and

the loss reduction trend in the loss evolution vividly exhibit how the stochastic

local search strategy works in finding out optimal subset masks. As shown in

Figures 5.4(b)-5.4(g), the learning progresses steadily as evident in the evolution

of the averaged operator losses and the averaged classification accuracies on the

training and the validation sets. Also, it is clearly seen in Figures 5.4(b)-5.4(g),

that overfitting occurs once the optimal subset mask is identified at around 10.5k

batches. Once again, this observation provides solid evidence to support early

50

stopping with the operator training/validation losses measured on the optimal

subset masks (mmmopt). Furthermore, it is also seen in Figures 5.4(e)-5.4(g) (at the

maximum batches) that the averaged test losses and the averaged classification

accuracy yielded by the trained operator net on 5 folds are superior to their coun-

terparts on the validation set. Once again, this suggests that our alternate learning

leads to favourable generalization performance although an earlier stopping may

yield better accuracy.

Apart from the comparative study specified in the main text, we have con-

ducted further experiments on this dataset for comparison to two recent state-

of-the-art methods [61, 62] that obtain the population-wise FIR by aggregating

the instance-wise FIR. In [61], the global aggregation method workable on this

dataset is the homogeneity-weighted importance, which is the same as the global

LIME importance proposed in [48]. In our experiment, we use an MLP of the

architecture: 102-300-200-50-3 and n_samples=500 to achieve the LIME impor-

tance on the validation set [48]. In the SAN [62], the population-wise FIR is

obtained via either instance-level aggregation (SAN_AGGR) or global attention

layer (SAN_GLOBAL). In our experiments, we use the same settings suggested

by the authors [62]7 with the following hyperparameters: k = 1, p_dropout=20%,

epochs=32, batch_size=32, n_1_1=128 (number of hidden neurons in SAN). In

terms of feature selection, both methods fall into the filtering category. Therefore,

we employ an MLP of the architecture: s-300-200-50-3 to be a classifier trained on

those selected feature subsets of s = 5, 25, 35, 45, 55, respectively, for this 3-class

classification task.

We report the accuracies yielded by 6 different methods for different subset

sizes. As shown in Figure 5.6, it is evident that our approach yields slightly bet-

ter accuracies than the DFS [55], a method especially proposed for this biological

dataset, when the subset size of selected features is larger than 15. Also, our

approach outperforms RFE [2], a state-of-the-art feature selection method espe-

cially effective in gene selection for cancer classification, and RF [8], a famous

off-the-shelf ensemble learning model. In contrast, it is evident from Figure 5.6

that ours along with DFS also outperforms those methods of using the aggre-
7We do this experiment with the authors’ code: https://gitlab.com/skblaz/

attentionrank.

51

https://gitlab.com/skblaz/attentionrank
https://gitlab.com/skblaz/attentionrank

Figure 5.5: Feature importance ranking (FIR) scores yielded by LIME, SAN and
ours for top 55 features (s = 55) on the Enhancer-Promoter dataset: GM12878
Cell line (200 bp).

gation of instance-wise FIR to obtain population-wise one at all different subset

sizes ranging from 15 to 55.

For feature importance ranking (FIR), we show the FIR scores yielded by two

instance-wise aggregation-based methods and ours for s = 55 in Figure 5.5. It is

observed that the two methods and ours yield different FIR results and different

settings in the SAN also result in different FIR for the top 55 features. Due

to a lack of ground truth, it is difficult to draw an affirmative conclusion but

the experimental results suggest that the population-wise FIE is an extremely

challenging problem for real-world data. Nevertheless, we have highlighted the

variables suspected to be important [55] in red.

We further show the FIR scores for the top 40 features produced by DFS, RF,

RFE and ours in Figure 5.7. The FIR scores of the RFE and the RF are generated

based on the RFE feature importance estimator [2] and the out-of-bag errors [8].

The FIR score of the DFS is achieved based on the magnitude of shrunk weights

between input and the first hidden layer introduced in the DFS method [55]. From

Figure 5.7, it is observed that our approach yields relatively consistent FIR results

when different subset sizes are used given the fact that the importance ranking

order of top features only varies for one or two. Also, our approach is the only one

to rank “RNA” and two important genes “ATF2"” and “ATF3” consistently among

the most important features regardless of feature subset sizes. In comparison, the

DFS also selects those two genes but does not rank them at the top. On the other

52

Figure 5.6: Classification accuracies yielded by different methods on the Enhancer-
Promoter dataset: cell line GM12878 (200dp). The shadowed regions refer to the
performance range between the minimum and the maximum accuracies on 5 folds.
While DFS and RF yield only one result with all the 102 features, other methods
produce the results at different subset sizes for s = 15, 25, 35, 45, 55.

hand, the RFE chooses other genes, “RAD21”, "“PGISLANDS” and “H3K4ME3”,

as the most important features irrespective of feature subset sizes. It is also be

seen in Figure 5.7 that the DFS and ours, two deep learning models rank the

importance of features similarly but differently from the RFE and the RF that

yield similar FIR scores. Our experimental results on this real-world dataset

suggest that deep learning models may lead to different results from the existing

state-of-the-art and off-the-shelf machine learning models for FIR. Thus, learning

models of different types should be considered simultaneously and their results

can be fused at the discretion of domain experts in such real-world applications.

To evaluate the efficiency, we record the averaging training time on this dataset

in terms of 5-fold cross-validation. our experiments are conducted on a server

of the specification and the environment: Intel Core i7-5930K CPU (3.50GHz),

NVIDIA GeForce GTX TITAN X GPU, 64 GB RAM and CentOS 7. In summary,

53

our algorithm takes around 1,100 sec while RF, SAN, DFS, LIME and RFE take

around 2.5, 35, 90, 540 and 1,700 sec, respectively. The dual-net architecture

along with the alternate learning is responsible for a high computational load in

our approach.

54

Figure 5.7: Accuracy and feature importance ranking (FIR) scores yielded by
different methods on the Enhancer-Promoter dataset: GM12878 Cell line (200
bp). While DFS and RF yield only one result with all the 102 features, RFE
and ours produce the results at different subset sizes for s = 15, 25, 35, 45, 55.
Note that the results yielded RFE and ours for s = 35 above are not specified
deliberately with the subset size to indicate that those have been reported in the
main text.

55

RNA-seq Data

Apart from the comparative study on the Enhancer-Promoter dataset, we have

further applied our approach to the UCI gene expression cancer RNA-Seq data

set8, to evaluate our approach on a dataset of many features.

The gene expression cancer RNA-Seq dataset is part of The Cancer Genome

Atlas Pan-cancer Analysis Project. The original data set is maintained by the

cancer genome atlas pan-cancer analysis project. Gene expression data are com-

posed of DNA microarray and RNA-seq data. Therefore, microarray data analysis

facilitates the clarification of biological mechanisms and the development of drugs

toward a more predictable future. In comparison to hybridization-based microar-

ray technology, RNA-seq has a larger range of expression levels and contains more

information. RNA-Seq is a random extraction of gene expression of patients with

five different types of tumours including BRCA (breast), KIRC (kidney), COAD

(colon), LUAD (lung) and PRAD (prostate). The dataset contains 801 samples,

each of which has 20,531 biological features or genes. The data set is imbalanced

and there are 300, 146, 78, 141 and 136 samples for BRCA, KIRC, COAD, LUAD

and PRAD, respectively.

Unlike other methods, e.g., [63], we do not pre-process the imbalanced data in

our experiment apart from the removal of 267 constant features. In other words,

we use only 20,264 features in each sample to train our dual-net model. All the

data are standardised with zero mean and unit standard deviation. The dataset

is randomly split into two subsets, training and test, where there are 600 and 201

samples in the training and the test subset. The four-fold cross-validation (for

fair comparison) working on the training subset is used for parameter estimate

and hyperparameter tuning for our dual-net model. To make a fair comparison to

the best performer on this dataset as reported in [63], we use the identical setting

by using s = 49 in our experiment. The information on the dual-net architecture

and optimal hyperparameter values used in this experiment is provided in Tables

III and IV, respectively.

Table II shows the existing results of several feature selection methods [63,

64, 65, 66, 67, 68, 69] on this dataset with various settings although most of the
8[online]: https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+

RNA-Seq

56

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq

Table II: Accuracy yielded by different methods on RNA-seq dataset (adapted
from Table 7 in [63]).

Method Samples Features Classes Selected Features Classifiers Accuracy
[64] 96 4026 9 <60 1 0.9730
[65] 62 6000 2 15 1 0.9677
[66] 97 24481 2 7 7 0.9381
[66] 102 12600 2 4 7 0.9706
[67] 175 1072 2 - 110 0.9500
[68] 215 1047 4 - 20 0.9860
[69] 569 32 2 24 1 0.9877
[63] 801 20531 5 49 5 0.9881

Ours 801 20531 5 49 1 0.9938

Figure 5.8: Feature importances for the RNA-seq dataset. Red lines indicate truly
important features while blue lines correspond to negative impotance.

existing methods do not work on the entire dataset. From Table II, it is clearly

seen that, under the same settings, our approach outperforms the best performer

on this dataset in literature. Additionally, in Figure 5.8 we provide the feature

importance estimates, where the red/blue corresponds to important/noisy features

(positive/negative importance). The experimental result on this nontrivial real-

world dataset demonstrates that our approach works well for a data set of many

features as long as there are enough training examples required by deep learning.

Thus, we firmly believe that our approach will be applicable to a large data set of

many features, e.g., images where there are millions of pixels. We shall look into

the scalability of our approach in our ongoing work.

In summary, our experimental results manifest that leveraged with deep learn-

ing, our approach outperforms a number of state-the-art FIR and feature selection

57

methods on two biological datasets. This suggests that our approach would be a

strong candidate for feature selection and feature importance ranking in real-world

biological applications.

5.1.3 Visual Validation

Figure 5.9: MNIST Subset. Feature importance maps (d = 784, s = 85) gener-
ated with the method described in Section 5.1.3. From top to bottom, the first
4 rows correspond to feature importance maps achieved from different folds. The
bottom row is the full feature importance map corresponding to the feature im-
portance map shown in Figure 4 of the main text.

Below, we show feature importance maps achieved from other folds on the MNIST

subset to prove the stability of the algorithm and those yielded by our approach

on the Yale dataset.

To obtain the superimposed feature importance maps on the background image

(the mean of raw images), we apply a method as follows. A blank image is first

created in the HSV (hue-saturation-value) colour format. The hue used in the

[0, 270] range corresponds to the importance, and the saturation is set to 1.0

58

to encode the mean background image from the dataset. Due to the feature

importance ranking (FIR) scores being normalised, no negative FIR scores are

shown to ensure unselected features have the background colour.

Figure 5.9 shows different feature importance maps achieved from the other 4

folds. As our FIR approach described in Section 4.3 of the main text measures

the FIR scores based on the input gradient, it can achieve the input gradient for

all the features regardless of whether a feature is selected or not. To this end,

we can generate a full feature importance map as well. It is observed from 5.9

that the feature importance maps achieved from different folds are very much

consistent and the full feature importance map provides a clearer picture in terms

of explainability/interpretability.

Figure 5.10: Yale Dataset. Feature importance maps achieved with different
subset mask sizes: s = 10, 30, 50, 70, 90 (from left to right) out of d = 32 × 32.
The second row corresponds to the images generated by superimposing the feature
importance maps to the background image, i.e., the mean face image averaged on
11 images collected from an individual.

As Yale is a facial image dataset, we can also illustrate the feature importance

maps in Figure 5.10 for visual inspection. The visual inspection reveals that

increasing the mask size s results in a less clear visual representation of feature

importance. In comparison, the best-performing mask size of 30 clearly selects

several meaningful yet discriminative features, e.g., pixels near the lip, nose and

eyes, and ranks their importance properly, as shown in the 2nd column in Figure

5.10. As this dataset has limited instances (7 training examples/class on average),

we reckon that the use of a large subset mask size is likely to cause overfitting, as

revealed by their feature importance maps shown in Figure 5.10.

59

5.1.4 Experimental Setup

In this section, we describe the details of the experimental settings used in our

experiments. In our experiments, we always use the grid search along with 5-fold

cross-validation on a training set to find out optimal hyperparameters involved

in different learning methods. Below, we first present the detailed setup in our

approach, then describe all the technical details of other learning methods used

in our comparative studies on different datasets.

In our implementation of the operator net, we have to consider an issue con-

cerning the differentiation between a selected feature of which value is zero and

any removed features masked with zero due to the use of the binary masks in our

work. Thus, we design an operator net architecture shown in Figure 5.11. Instead

of feeding only the selected features, xxx⊗mmm, to the first hidden layer, we concate-

nate the mask, mmm, used to indicate the selected features, and the selected features

themselves, xxx ⊗mmm, to form the input fed to the first hidden layer as illustrated

in Figure 5.11. Thus, the dimension of the input to the first hidden layer is 2d

rather than the d features previously described. It is worth mentioning that we

had investigated other manners to tackle the aforementioned “zero-value" issue,

e.g., stipulating a value beyond the range of any features for a removed feature in

xxx⊗mmm. However, neither of those yields a better performance than the architecture

presented above.

Moreover, there are specific settings in our approach due to technical reasons;

e.g., the loss function used to train the selector net and the subtle technical details

related to Phase II in our alternate learning algorithm, as described in Section

4.2.

In our experiments, the loss function used to train the selector net presented

in Eq.4.1b is actually replaced by a weighted loss as follows:

LS(M′;φ) =
1

2|M′|
∑

mmm∈M′

wmmm

(
fS(φ;mmm)− 1

|D|
∑

(xxx,yyy)∈D

l(xxx⊗mmm,yyy; θ)
)2

, (5.1)

where wmmm = 10, 5, 1 is set to:

• high value when mmm =mmmt,best (the best=performing subset found in the last

step),

60

m

x

m

x⊗
m

Figure 5.11: The actual implementation of the operator net in our experiments
to overcome the “zero-value” representation issue. As a result, both the selected
features, xxx ⊗mmm, and the mask, mmm, used to indicate those selected features are
concatenated as the input to the first hidden layer.

Table III: The optimal architectural hyperparameters of our dual-net learning
model in our experiments. Yale∗: uses convolutional layers.

Data Set Operator Net Selector Net
4-way Classification 20→ 60→ 30→ 20→ 4 10→ 100→ 50→ 10→ 1
Nonlinear Regression 20→ 100→ 50→ 25→ 1 10→ 100→ 50→ 10→ 1
Binary Classification 20→ 60→ 30→ 20→ 1 10→ 100→ 50→ 10→ 1

MNIST Subset 1568→ 500→ 250→ 100→ 1 784→ 300→ 200→ 100→ 1
Glass 20→ 50→ 25→ 10→ 6 10→ 500→ 250→ 100→ 1
Vowel 20→ 50→ 25→ 10→ 11 10→ 500→ 250→ 100→ 1

TOX-171 11568→ 100→ 50→ 20→ 4 5784→ 500→ 250→ 100→ 1

Yale∗ 32×32→ 16×16×32→ 8×8
×64→ 4×4×128→ 30→ 30→ 15

1024→ 500→ 250→ 100→ 1

Enhancer–Promoter 204→ 300→ 200→ 50→ 3 102→ 500→ 250→ 100→ 1
RNA-seq 40528→ 1000→ 500→ 200→ 5 20264→ 500→ 250→ 100→ 1

• middle value when mmm = mmmt+1,opt (the optimal subset generated in the

current step),

• low value for any other subsets in M′
t+1, respectively (c.f. Phase II-A in

Section 4.2).

In our experiments, we set these high/middle/low values to 10/5/1 respectively.

The weighted selector loss exploits what has been learned so far in order to facili-

tate the stochastic local search in tackling the combinatorial optimization problem

more effectively.

In our experiments, the 3-step validation procedure used for the generation

of the optimal subset would ensure its optimality within those feature subset

61

Table IV: Other optimal hyperparameters of our dual-net learning model in our
experiments. E1 is the number of SGD training batches (instead of epoches) in
Phase I of the alternative learning. In Phase II.A, |M′

t| refers to the number of
different optimal subset candidates used in a single batch during the SGD learning.
f =

|M′
t,1|

|M′
t,2|

is the fraction that governs the exploitation-exploration trade-off in the
selector learning, and sp indicates the number of elements perturbed. For details
of the alternative learning algorithm, see Section 4.2.

Data Set E1 |M′
t| f sp

4-way Classification 6, 000 32 0.5 2
Nonlinear Regression 6, 000 32 0.5 2
Binary Classification 6, 000 32 0.5 2

MNIST Subset 10, 000 32 0.5 5
Glass 10, 000 128 0.5 2
Vowel 6, 000 128 0.5 2

TOX-171 1, 500 128 0.5 5
Yale 4, 500 128 0.5 5

Enhancer–Promoter 10, 000 64 0.5 5
RNA-seq 8000 32 0.5 5

candidates (c.f. Phrase II.A in Section 4.2). However, the condition to exit from

the loop of repeating steps i)-iii) may not always be satisfied. In our experiments,

we hence set the maximum number of repetitions in this test to 5 iterations so that

the subset optimality validation procedure always ends up with five iterations. In

addition, the parameter update of the operator and the selector nets in Phase II is

done in different frequencies in the alternate learning; i.e., the parameters in the

operator net are updated once on each batch in Phase II.B, while the parameters

in the selector net are updated once on every 8 batches in Phase II.A.

We employ MLPs (CNNs) of the sigmoid (ReLu) neurons to carry out the op-

erator net and MLPs with the sigmoid neurons for the selector net in our dual-net

architecture. For training MLPs (CNNs), we adopt the Adam optimizer (Adam

with Nestrov momentum for the operator net) [70] via the stochastic gradient

descent (SGD) procedure. Early stopping is used based on the losses evaluated

on the validation data9. All the optimal hyperparameters used in our experi-

ments are summarized in Table IV. The used architectures are shown in Table

III, where we display the numbers of neurons used in each dense layer. A special
9In our alternate learning procedure, we use the operator loss incurred by the optimal subset,

mmmt,opt, on the validation set for early stopping. For clarity and details, see Section 4.6.

62

Table V: Optimal regularization hyperparameters, λ, used in LASSO on different
datasets in our experiments.

Data Set Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
4-way classification 0.055 0.056 0.046 0.008 0.042

Nonlinear Regression 0.001 0.0 0.053 0.001 0.0
Binary Classification 0.025 0.07 0.081 0.02 0.039

case is the Yale dataset, where we used convolutional layers for the Operator so

that the displayed architecture corresponds to the shapes of internal layers. Each

convolutional layer has zero padding, max pooling and kernels of sides 5, 3, and

3 respectively. Two dense layers follow the convolutional layers.

5.1.5 Optimal Hyperparameters In Other Methods

Table VI: Optimal hyperparameters (#tree, depth) for RF on different datasets
in our experiments.

Data Set Fold-1 Fold-2 Fold-3 Fold-4 Fold-5
4-way classification (80, 14) (70, 11) (90, 15) (150, 14) (150, 12)

Nonlinear Regression (50, 15) (60, 15) (50, 14) (60, 10) (50, 8)
Binary Classification (60, 14) (50, 10) (90, 8) (90, 15) (160, 13)

MNIST (200, 21) (200, 20) (210, 21) (200, 21) (200, 20)
Enhancer-Promoter (120, 11) (120, 12) (100, 15) (150, 13) (60, 14)

Other 9 methods have also been employed for a comparative study on differ-

ent datasets. We strictly follow the original settings described in those papers.

We implement deep learning algorithms by ourselves with Tensorflow 2 [71] and

Keras [72]. For other methods, we use the existing code in the Python scikit-

Learn library [73] for FS, LASSO, RF, RFE or the authors’ project website for

BAHSIC10, mRMR11 and CCM 12. Below, we summarize the actual optimal hy-

perparameters pertaining to those methods used in our comparative study as well

as brief descriptions of each used method.
10BAHSIC webpage: https://www.cc.gatech.edu/~lsong/code.html
11PyMRMR library: https://pypi.org/project/pymrmr/
12CCM repository: https://github.com/Jianbo-Lab/CCM

63

https://www.cc.gatech.edu/~lsong/code.html
https://pypi.org/project/pymrmr/
https://github.com/Jianbo-Lab/CCM

Deep Feature Selection (DFS) [55]. For DFS, we use the MLPs of the

architectures as same as that of the operator net in our dual-net architecture

apart from the input layers for a given task, as shown in Table III. Instead of

having the concatenation of the selected features and the mask indicating the

selected features in our operator net, the DFS appends an additional one-to-

one layer between the input and the first hidden layer. Similarly, the sigmoid

neurons are used in their modified MLPs and the Adam optimizer [70] is adopted

for training MLPs via the SGD. The optimal regularization hyperparameter is

λ = 0.01 for 3 synthetic datasets and the MNIST subset after a grid search from a

large range of λ. For the Enhance-Promoter dataset, the optimal hyperparameter

is λ = 0.008. The rest of the parameters are kept the same as suggested in [55],

which is λ2 = 1, α1 = 0.0001, α2 = 0. Note that we implement the DFS code

by ourselves with Tensorflow 2.0 and Keras since the authors’ code is merely

applicable to a specific dataset.

Average Input Gradient (AvGrad) [47]. It is simply a post-processing

method for feature importance ranking (FIR) based on a trained MLP, we employ

the same MLP architecture as that of our operator net apart from the input and

the Adam optimizer [70] via the SGD on 3 synthetic datasets and the MNIST

subset, Table III.

Forward Selection (FS) [4]. For FS, we employ the MLPs as the base learner

in this wrapper method and the training procedure is identical to those used in

the AvGrad on 3 synthetic datasets. For FIR, FS always ranks the importance of

an early-selected feature higher than that of others selected later in the forward

subset selection procedure.

LASSO [42]. We use the grid search to find out the optimal regularization

hyperparameter, λ, in LASSO. The optimal hyperparameters found in 5 folds are

listed in Table V.

Random Forest (RF) [8]. We use the grid search to find out the optimal

hyperparameters: number of decision trees and depth of the trees. We search

64

from a range from 50 to 220 trees and between 7 and 24 in depth. The optimal

hyperparameters found in 5 folds are listed in Table VI.

Recursive Feature Estimation (RFE) [2]. We use 1 step for all the datasets

apart from TOX-171 and Yale datasets where 5 steps are used. In our experiments,

we adopt the default values for underlying estimators (linear SVM) with C = 1

and γ = 1
nfeatures∗var(X)

.

Backward Elimination using HSIC (BAHSIC) [56, 41]. A default hyper-

parameter regarding the fraction of removed features in each iteration is set to

0.1 as suggested in their papers. In our experiments, we adopt the inverse kernels

suggested in their papers and the BAHSIC webpage.

Minimal Redundancy Maximal Relevance Criterion (mRMR) [6]. No

hyperparameter needs to be tuned in this method. In our experiments, we adopt

the "MIQ" option suggested in the PyMRMR library.

Conditional Covariance Minimization (CCM) [5]. We use ϵ = 0.001 for

two synthetic classification datasets, 4-way and binary classification, and 4 bench-

mark datasets, Glass, Vowel, TOX-171 and Yale. For the nonlinear regression

dataset, we use ϵ = 0.1. As all 7 datasets were used in the paper, we adopt

the optimal hyperparameters reported in the paper and suggested in the CCM

repository.

As CCM, RFE, BAHSIC, mRMR and LASSO are filtering methods for feature

selection, we need to measure their performance based on another learning model.

For CCM, RFE, BAHSIC and mRMR, we adopt the same setting used in [5],

i.e., SVM/SVR with a Gaussian kernel of optimal hyperparameters: C = 1 and

γ = 1
nfeatures∗var(X)

. For LASSO, we use the same MLPs used in deep learning

models, i.e., DFS, AvGrad and ours (operator net).

5.2 Learning behaviour

As described in Section 4.2, our alternate learning algorithm trains two learn-

ing models, operator and selector, simultaneously in an alternate manner; i.e.,

65

(a) selector-loss (b) oper.-loss-train (c) oper.-loss-train(mmmopt)

(d) oper.-loss-val (e) oper.-loss-val(mmmopt)

Figure 5.12: Synthetic nonlinear regression dataset. Evolution of the oper-
ator and the selector losses in Phase II (d = 10, s = 5). The x-axis corresponds
to the number of batches, and y-axis refers to the loss statistics of 5 folds. (a)
The selector loss. (b) The operator loss on the training set. (c) The operator loss
on the training set with mmmopt only. (d) The operator loss on the validation set. (e)
The operator loss on the validation set with mmmopt only. Note that Phase II starts
when the operator net has been trained for 6,000 batches in Phase I.

in Phase II, the learning behaviours of the operator and the selector nets are

mutually affected by each other in each batch during the SGD learning. This is

different from most of the existing deep learning algorithm that involves only a

deep neural network to be trained. Therefore, we need to investigate how our pro-

posed learning model behaves. Below, we exhibit the typical learning behaviour

in our alternative learning on 3 datasets, synthetic nonlinear regression, MNIST

subset and Yale.

Figure 5.12 illustrates the learning behaviour of the operator and the selector

in terms of losses in Phase II on the synthetic nonlinear regression dataset. It

is observed from Figure 5.12(a) that the trained operator in Phase I provides

informative training examples so that the averaged selector loss of 5 folds decreases

monotonically as required. As evident in Figures 5.12(b) and 5.12(d), the averaged

operator loss on training and validation sets further decreases steadily as the

selector keeps offering more “promising” optimal mask candidates achieved by the

stochastic local search for combinatorial optimization. It is clearly seen in Figures

5.12(b) and 5.12(d) that at the beginning of Phase II (up to 1k batches), operator

loss on both training and validation sets sharply decreases once the selector has

66

been involved. Also, the loss may be reduced substantially when an optimal mask

is identified, as shown in Figure 5.12(d) (between 6k and 7k batches). Given

the fact that at the end of Phase II. For each iteration, we always achieve an

optimal mask, mmmt,opt. Thus, we can apply such optimal masks only to measure the

operator loss. As a result, Figures 5.12(c) and 5.12(e) illustrate the evolution of the

operator loss evaluated withmmmt,opt only on training and validation sets. In contrast

to the operator loss with all optimal mask (subset) candidates shown in Figure

5.12(d), the abrupt loss drop resulting from the identified optimal mask is much

more visible in Figure 5.12(e). Therefore, early stopping in our alternate learning

algorithm is based on the operator loss evaluated with mmmt,opt only. Overall, Figure

5.12 demonstrates that our alternate learning algorithm works well and eventually

converges for this regression task.

Next, Figure 5.13 illustrates the learning behaviour of the operator and the

selector in terms of losses in Phase II on the MNIST benchmark subset, a binary

classification task. It is seen from Figure 5.13(a) that the evaluation of the av-

eraged selector loss of 5 folds has a reduction trend as the number of batches is

increased although the averaged loss no longer drops monotonically. The sharp

selector loss increase at around 10k batches is typical and reflects the nature of

our stochastic local search procedure in tackling the combinatorial optimization

issue. The sharp increase is likely caused by the fact that the optimal mask iden-

tified leads to the sharp operator loss reduction and the selector net did not have

such training examples before this moment. This analysis is manifested by all

the results at round 10k batches shown in other plots in Figure 5.13. As evi-

dent in Figures 5.13(b) and 5.13(c), the averaged operator loss on training further

decreases in general. Using an alternative performance index, we also show the

averaged classification accuracy measured on the training set in Figure 5.13(d),

allowing one to see the learning performance vividly. Likewise, we illustrate the

averaged operator loss and accuracy on the validation set in Figures 5.13(e)-(g).

Once again, we can see our alternate learning algorithm works very well. Once

again, the operator validation loss evaluated withmmmopt only provides solid evidence

for early stopping. In general, the learning behaviour on this binary classification

dataset very much resembles that of the nonlinear regression dataset (c.f. Figure

5.12). After the alternate learning is completed, we can evaluate the performance

67

(a) selector-loss

(b) oper.-loss-train (c) oper.-loss-train(mmmopt) (d) oper.-ACC-train

(e) oper.-loss-val (f) oper.-loss-val(mmmopt) (g) oper.-ACC-val

Figure 5.13: MNIST Benchmark Subset. Evolution of the operator and the
selector losses in Phase II (d = 784, s = 85). The x-axis corresponds to the
number of batches and y-axis refers to the loss statistics of 5 folds. (a) The
selector loss. (b) The operator loss on the training set. (c) The operator loss on
the training set with mmmopt only. (d) The classification accuracy evaluated on the
training set. (e) The operator loss on the validation set. (f) The operator loss
on the validation set with mmmopt only. (g) The classification accuracy evaluated
on the validation set. Note that Phase II starts when the operator net has been
trained for 10,000 batches in Phase I. The final datapoint at x ≈ 32000 in (e)-(g)
corresponds to performance being evaluated on the test set with a ’virtual’ batch
number around 32k.

of the trained operator net on the test set in the same manner. To show the test

performance, we depict the averaged loss evaluated on the test set with all the

optimal mask candidates and the optimal mask as well as the accuracy based on

the optimal mask at the maximum batch in Figures 5.13(e)-(g). Interestingly, it

is seen in Figures 5.13(e)-(g) that the test performance is significantly better than

the validation performance in terms of both the losses and the accuracy. This

suggests that our alternate learning algorithm yields a favourable generalization

performance on this benchmark dataset.

Finally, Figure 5.14 shows the learning behaviour of the operator and the

68

(a) selector-loss

(b) oper.-loss-train (c) oper.-loss-train(mmmopt) (d) oper.-ACC-train

(e) oper.-loss-val (f) oper.-loss-val(mmmopt) (g) oper.-ACC-val

Figure 5.14: Yale Benchmark Dataset. Evolution of the operator and the
selector losses in Phase II (d = 784, s = 10, 30). The x-axis corresponds to the
number of batches and y-axis refers to the loss statistics of 5 folds. The light/dark
colours correspond to s = 10/s = 30, respectively. (a) The selector loss. (b) The
operator loss on the training set. (c) The operator loss on the training set with
mmmopt only. (d) The classification accuracy evaluated on the training set. (e) The
operator loss on the validation set. (f) The operator loss on the validation set with
mmmopt only. (g) The classification accuracy evaluated on the validation set. Note
that Phase II starts when the operator net has been trained for 4,500 batches in
Phase I. The final datapoint at x = 6000 in (e)-(g) corresponds to performance
being evaluated on the test set with a ’virtual’ batch number 6k.

selector in terms of losses in Phase II on the Yale benchmark dataset, a multiclass

classification task. For this facial image dataset, we employ a convolutional neural

network described in Table III to carry out the operator net. To understand the

learning behaviour better, we compare the situations of the alternate learning for

different subset sizes, s = 10 and s = 30. It is observed from Figure 5.14(a) that

the averaged selector loss for different subset sizes behaves quite differently. For

s = 10, the selector loss sharply decreases at the first few hundred batches and

then sharply increases. The limited amount of information carried in 10 out of

1024 features may be accountable for this phenomenon. In contrast, the evolution

of selector loss for s = 30 is similar to that shown in Figures 5.12(a) and 5.13(a).

69

Figures 5.14(b)-(d) suggest that the averaged operator loss for different subset

sizes keeps decreasing and the accuracy remains increasing on the training set. In

contrast, the trend of the averaged operator loss for different subset sizes increases

on the validation set after 1.5k batches as shown in Figures 5.14(e) and (f). This

looks like a typical overfitting scenario. As seen in Figure 5.14(g), however, the

averaged classification accuracy on the validation set generally keeps increasing

regardless of different subset sizes. Furthermore, for s = 30, the averaged operator

test losses and the test accuracy shown in Figures 5.14(e)-(g) (at 6k batches) also

provide evidence for good generalization performance. Surprisingly, the alternate

learning behaviour on this benchmark dataset contradicts or is inconsistent with

the normal behaviour of a learning system. While we do not fully understand such

learning behaviour, our preliminary analysis implies that this phenomenon could

be caused by the covariant shift nature of this facial image dataset and limited

training data. In the Yale dataset, the images of an individual subject correspond

to different facial expressions. Since there are only limited training examples

and the selector learning is constrained by the operator training performance, the

stochastic local search from Phase II.A may have to do a lot of exploration in

order to find out the “genuine” optimal subset (mask). This can be observed by

the fluctuated operator validation loss as shown in Figures 5.14(e) and (f). Thanks

to our stochastic exploration-exploitation strategy, some sub-optimal subsets may

still direct the learning towards the learning performance at an acceptable level.

In summary, we exhibit typical yet different learning behaviour of our dual-net

architecture trained by the alternate learning algorithm in Figures 5.12-5.14. In

most of the situations including the one reported in Section 5.1.2 and others not

reported here, we can use the operator validation loss evaluated with the optimal

mask only for early stopping. On some occasions, however, we encounter some

“strange” learning behaviour, as exemplified in Figure 5.14. In such occasions,

we might have to use the validation classification accuracy (or validation MSE in

regression) for early stopping. Thus, we are going to investigate such “strange"

learning behaviour in our ongoing work.

70

5.3 Discussion

In general, our idea is motivated by RF [8] and the dropout regularization [74]; our

exploration-exploitation strategy (c.f. Sect. 4.2) allows for the simultaneous use of

different feature subsets and dropout of input “nodes” randomly during learning.

Also, we want to make a connection to evolutionary computation (EC) regarding

feature selection [75]. In our approach, a single learning model, the operator,

works on different feature masks simultaneously during learning to carry out the

functionality of a population of learning models in EC. Instead of purely stochastic

operations on population in EC, our selector uses a more efficient gradient-guided

local stochastic search strategy.

Our approach can be applied to the generic population-wise feature selection

problem that needs to find out an optimal feature subset from
∑d−1

s=1

(
d
s

)
subsets

for a feature set of d features. Instead of a direct search of the entire subset

space, we adopt a strategy that makes our model work in parallel on different

subset sizes, the same as used in the state-of-the-art supervised feature selection

methods, e.g., CCM [5]. To this end, however, our approach might have a higher

computational burden than those kernel-based methods in learning. Also, our

approach is extensible to group-based FIR and feature selection by introducing

the group feature constraints to our stochastic local search procedure (c.f. Sect.

4.2), which would overcome the limitation of linear models, e.g., group LASSO

[19].

In conclusion, we propose a dual-net neural architecture along with an alter-

nate learning algorithm to enable deep learning to work effectively for FIR and

feature selection. A thorough evaluation manifests that our approach outper-

forms several state-of-the-art FIR and supervised feature selection methods. In

our ongoing work, we would extend our approach to instance-wise FIR, group and

unsupervised feature selection scenarios and explore its potential in challenging

real applications.

71

Chapter 6

Feature Importance Estimates With
Variable Subset Size

When we realized we needed a new, better model to use for the process of FS,

there were several requirements that we wanted to satisfy in comparison to the

model described in the previous section. We managed to satisfy all of them.

1. Make the framework work on finding the global optimal subset size so it

does not require a chosen subset size as a hyperparameter.

2. Scale down the number of arbitrary solutions in the training/deployment

process, which includes things like weighting the training samples or creating

more approachable code.

3. Switch from using the input gradients as a measure of importance as it was

repeatedly proven (Section 2.3.3) that they are not an ideal tool for that

purpose and are costly to compute.

4. Keep the performance-driven FS and FIE nature of the model.

5. Adjust the FIE measurements so that they are more in line with the previ-

ously mentioned definition from Section 3.3.

Since this framework and the framework mentioned in Section 4 have similar high-

level features, we will continue to call both of the networks Operator and Selector

for consistency.

72

6.1 Model Description

The general framework is identical to the one mentioned in Section 4:

• The framework consists of two NNs working in tandem and trained alterna-

tively.

• One of the networks, called Operator, is used for the supervised, base task

for which a given dataset was prepared, while the second one, called Selector,

is used to measure FIE and provide the current optimal mask.

• The optimal mask is iteratively enhanced using the knowledge extracted

from the Selector.

Obviously, even though the general outlook remains similar to the one from Sec-

tion 4, the behaviour, training and extraction of FIE are completely different.

Below we summarise the main differences in behaviour and provide the particular

motivation and consequences of the used solutions:

Variable subset size. The Selector is granted the ability to change the size

of the optimal subset. If nothing else were to be changed, the Selector would

constantly add features to the optimal subsets. The underlying reason for that

behaviour is the fact that increasing the number of features for the training set

leads to increased training performance with a corresponding decrease in test

performance. To counteract this process, we use the validation performance of the

Operator to guide and train the Selector (instead of the training performance).

Decreasing complexity. In order to decrease complexity, we managed to trim

the general learning behaviour while keeping the performance. Firstly, we cut

the process of weighting the samples going into the Selector. The FIE extraction

process was also greatly streamlined (see paragraph below). Finally, we cut back

on the validation process of the optimal subset that was previously mentioned in

Phase II-A. This resulted in faster and more comprehensible training procedure.

Extraction of FIE. To facilitate the discovery of FIE, we had to change the

nature of the Selector’s output. Previously, the singular output was based on

73

approximating the function v from Section 3.1. Now, we decided to use the

Selector to approximate directly ϕ from Section 3.3, which resulted in the Selector

having d outputs, one per feature, which translates to fS : M → Rd instead of

the previous fS : M → R. To smooth the Selector’s behaviour (counteract the

addition of null features that are accidentally associated with the target) we used

the FIE measure of ϕλ, as discussed in Section 3.4. The process described in

this paragraph also helps with keeping the model performance-driven while

maintaining a close connection with the definition of FIE.

6.2 Learning Algorithm

In this part of the text, we will analyse the new training pipeline. A general

overview of the process is displayed in Figure 6.1. Compared to the similar dia-

gram from Chapter 4, we decided to add an additional element, marked in yellow

(topmost), that symbolizes the object that generates new mask batches and holds

the current optimal mask. To address the changes made in Section 6.1, one can

Operator
θ

Selector
φ

θ
t

φ
t

φ
t+1

UPDATE

x
t
tr⊗m

t
tr

m
t

x
t
tr

×

y
t
tr

m
t

UPDATE

GEN
MASK

Mask Gen
m*

 m
t
* m

t
*

m
t

x
t
val

×

y
t
val

GEN
MASK

m
t
*

m
t
*

EVALUATE

UPDATE
m*

GET FIE
FOR m

t
*

m
t+1
*

m
t+1

*

θ
t+1

φ
t+1

Train Data Validation Data

x
t
val⊗m

t
val

θ
t+1

Figure 6.1: Dual-net architecture: diagram showing parameter updates for each
of the models. We included an object symbolizing a mask generator which holds
the current optimal mask in order to increase clarity.

see on the diagram that the Selector uses validation data during its weight up-

dates to help with the variable subset size. Previously, the sensitivity of the

Selector’s output had to be measured to find the exact feature importance, while

74

now, the Selector outputs the feature importances directly - all done in order

to decrease complexity and extract FIE easier. Finally, we streamlined the

mask generation algorithm (the yellow Mask Gen object on the Figure 6.1) to,

again, decrease complexity.

Below, we summarize the new algorithm in more detail, briefly going through the

unchanged Operator, streamlined mask generation, different choices for selector

loss and easy feature importance extraction. This is the order of operations when

looking from the left to the right of Figure 6.1. Finally, we perform a theorethical

analysis of the expected optimal feature subset size to understand the meaning

behind the λ hyperparameter.

6.2.1 Operator Loss

The description below summarizes the working of the Operator, which did not

change from the description provided in 4, apart from minute changes in notation.

As a reminder, we have a dataset D = {X ,Y} = {(xxx,yyy)} that can be split

into disjointed sets of training data Dtr = {Xtr,Ytr} and validation data Dval =

{Xval,Yval}. We also use a number of feature subsetsM′ which are then used to

create |M′| samples for each xxx ∈ X by applying each mask to every datapoint:

{(xxx⊗mmm,yyy)}mmm∈M′ . The loss function of the operator stays the same and is defined

as:

LO(D,M′; θ) =
1

|M′||D|
∑

mmm∈M′

∑
(xxx,yyy)∈D

l(xxx⊗mmm,yyy; θ). (6.1)

where l corresponds to task-specific (dictated by the dataset) loss function. We

decided on using commonly accepted losses like MSE for the regression tasks and

cross-entropy for binary and categorical classification tasks.

6.2.2 Choosing Feature Subsets To Train On

Summary: To briefly summarize the section below: the first phase is a pretrain-

ing phase so that the Operator outputs can stabilize to not affect the Selector so

much. Then, during the main phase, the selector provides new mask batches from

three sources:

1. best from the last batch,

2. randomly explore the neighbourhood of the mask space,

75

3. exploit the selector to predict the prospective changes to available masks.

We also provide a mechanism that regulates the temperature of the exploration-

exploitation algorithm.

Pretraining: During the main training loop, the Selector uses its predictions

to discern which features should be added/removed. At the very beginning of

the training process, both the Operator and the Selector have little knowledge

about the nature of data which might result in removing useful features at the

beginning of the training. Obviously, the removed features might be added later

on, but in order to increase the stability of training and streamline the process

we have chosen to include a pretraining phase for the Operator, which usually

takes around a few hundred training steps. During this phase, the feature subsets

through which the inputs of the Operator are masked are chosen randomly using

a binomial distribution B(n = 1, p = 0.7), and not decided by the selector. The

p was chosen arbitrarily as choosing too small p would result in the Operator not

finding any useful predictors for hard datasets (especially for datasets like XOR

where the synergy between the features is the only useful predictor) while choos-

ing p too large would result in little variation between the masks. We found that

the pretraining process is important in jump-starting the Selector’s training, but

its length is not something that requires any tuning and is usually kept at around

100 training steps.

Notation: The mask batch M′
t at time t is made out of M = |M′

t| masks,

where:

M ∈ {a|(∃b ∈ N)[a = 4b]} (6.2)

and is set as M = 64 for most experiments (unless stated otherwise). As a

reminder: M′ = {mmmi ∈ {0, 1}d | 0 ≤ i < M}. For the clarity of explanations we

76

divideM′ into three sets:

Q1 = {mmmi ∈M′ | i ∈ {0, 1, ..., M
4
− 1}}

Q2 = {mmmi ∈M′ | i ∈ {M
4
,
M

4
+ 1, ...

M

2
− 1}}

H2 = {mmmi ∈M′ | i ∈ {M
2
,
M

2
+ 1, ...,M − 1}}

where Qt
1, Q

t
2, H

t
2 correspond to the first quarter, second quarter and the second

half ofM′
t at step t.

Mask Batch Generation: We find Qt
1, Q

t
2, H

t
2 at step t from:

Qt
1 = {fcomp(mmmi,mmmi+M

4
,LO(D,mmmi, θt),LO(D,mmmi+M

4
, θt)) | mmm ∈M′

t−1 ∧ 0 ≤ i <
M

4
}

Qt
2 = {fexploit(mmm, fS(mmm,ϕt)− λmmm,nλ) | mmm ∈ Qt

1}

H t
2 = {fexplore(mmm, pexplore) | mmm ∈ Qt

1 ∪Qt
2}

where λ, nλ and pexplore are scalar hyperparameters, θt, ϕt are weights of the Op-

erator and Selector respectively and

fcomp : {0, 1}d × {0, 1}d × R× R→ {0, 1}d,

fexploit : {0, 1}d × {0, 1}d × N→ {0, 1}d,

fexplore : {0, 1}d × R→ {0, 1}d

are functions used to construct (fexploit, fexplore) new feature subsets. They alter

the mask fed as input or choose (fcomp) one of the two masks based on the Oper-

ator’s performance.

In the case of t = 0; whenM′
t−1 is not accessible for generating Qt

1 we start with

masks generated during pretraining phase:

Qt
1 = {mmmi ∈ {0, 1}d | i ∈ {0, 1, ...

M

4
− 1} ∧mi,j ∼ B(1, 0.7)}. (6.3)

The functions fcomp, fexplore are defined as:

fcomp(mmmA,mmmB, lA, lB) =

mmmA, if lA < lB

mmmB, otherwise.
(6.4)

fexplore(mmm, pexplore) = (ci : ci = mi ∗ (1− ai) + (1−mi) ∗ ai) (6.5)

77

where ai are realizations of p.d.f. A ∼ B(1, pexplore) and mi corresponds to i-th

component of mmm.

To define fexploit(mmm,yyy, nλ) (where we used yyy = fS(mmm,ϕt) − λmmm as a vector of

outputs from the Selector diminished by λ for the components where the feature

is present in mmm) we first need to define Y sorted as a reindexed sequence of yyy with

monotonically increasing values. Then we define the set of nλ smallest values

Ysmall = {Y sorted
i | 0 ≤ i < nλ}. Next, we construct a binary vector bbb of length d

that shows whether the corresponding component of yyy is in Ysmall:

bi =

1, if yi ∈ Ysmall

0, otherwise.

Finally we can define the output mask of fexploit as a vector ddd = (di : di =

mi ∗ (1− bi) + (1−mi) ∗ bi). In other words, we add/remove nλ features that are

perceived by the Selector’s output (regularized with λ) to be the most/least useful.

Summary so far: The motivation and meaning behind the process described

above can be summarized in 4 steps for at time t:

1. First, we pick a quarter of masks, Qt
1, from the output of step 4. from step

t − 1. If t = 0, then we sample the masks from a binomial distribution

similar to the pretraining phase.

2. Secondly, we exploit what the Selector learned to try and find the best

prospective masks laying nλ l1-distance away from Qt
1 to construct Qt

2.

3. Next, we explore the neighbourhood of Qt
1 and Qt

2 using the probability

pexplore to remove/add every feature.

4. Finally, we compare the validation results obtained from the Operator for

Qt
1 and Qt

2 to construct the Qt+1
1 for the next iteration.

As described above, our strategy includes the exploration-exploitation dilemma

that is widely known to the reinforcement learning community [76]. It is common

to use different approaches to this problem, like ϵ-greedy strategy, to establish a

necessary balance between exploration and exploitation and even change it during

78

execution. The pretraining phase described at the very beginning of this section

can be thought of as a phase that is fully dedicated towards the exploration of all

possible masks, with no exploitation of the Selector’s knowledge.

The whole process is written down in a pseudo-code format in Algorithm 3, where

the comments mark the parts corresponding to fcompare, fexploit, fexplore.

Adaptive Exploration The algorithm described above has proven to bring re-

sults that are good enough, but we noticed that the Qt
1 quickly converges to a set

of identical masks. That also resulted in feature subsets in Qt
2 being identical, as

fexploit that is used for its creation is fully deterministic. We found that decreas-

ing the exploitation by introducing some randomness into the fexploit increased the

quality of results - this can be thought of as probing the local neighbourhood of Qt
1

in the direction that is not fully random but mainly conditioned by the Selector

(in comparison, fexplore used to create H t
2 is probing in completely random direc-

tions). While the results for these approaches are identical when the fraction of

useful features in the dataset is relatively big (around 5%), the probability-based

approach shows its strength when dealing with a much smaller signal-to-noise ra-

tio (around 1% of useful features). In the actual implementation of the process

described above, instead of sorting the indices of yyy = fs(mmm,ϕt)− λmmm, we use yyy to

randomly chose indices according to the probability of Softmax(−yyy).

This algorithm can only be applied in a safe manner when the fs outputs are scaled

to a valid range. As we will find out later, that is only possible for classification-

based loss that is described in Section 5.2.4.

6.2.3 Operator Performance Evaluation

Due to the batch creation process described above, at the end of the training,

we end up with several optimal subsets in Q1
t which sometimes differ amongst

themselves by one or two features. At first glance, it might seem prudent to

choose the one with the best validation performance as the optimal one, but we

found out that using all of them as an ensemble through the aggregation of logit

values (or just the linear activations for regression) gives slightly better results in

79

Algorithm 3 Generation of Optimal Feature Subset for t > 0

Require: selector net fS(φ,mmm),
Require: operator net’s loss LO(D,mmm, θt)
Require: number of exploitation changes nλ,
Require: feature subset size regularization parameter λ,
Require: probability of exploration changes pexploration,
Require: first half of the mask batch from step t− 1: Qt−1

1 and Qt−1
2 ,

Require: number of masks in the batch M ,
▷ fcompare

1: for i in range(M
4

) do
2: if LO(D, Qt−1

1,i , θt) > LO(D, Qt−1
2,i , θt) then

3: Qt
1,i ← Qt−1

2,i

4: else
5: Qt

1,i ← Qt−1
1,i

6: end if
7: end for
8: Qt

2 ← Qt
1 ▷ fexploit

9: for i in range(M
4

) do
10: if random_exploitation then
11: yyysoftmax ← Softmax(fS(φ,Qt

1,i)− λQt
1,i)

12: idcs← random_choice(range(d), nchoices = nλ, p = yyysoftmax)
13: else
14: idcs← argsort(fS(φ,Qt

1,i)− λQt
1,i)[: nλ]

15: end if
16: Qt

2,i[idcs]← logical_not(Qt
2,i[idcs])

17: end for
18: mmmpert ← Binomial(1, pexplore) ▷ fexplore
19: H t

2 ← Concatenate([Qt
1, Q

t
2], axis = 0)

20: H t
2 ← H t

2 ∗ (1−mmmpert) + (1−H t
2) ∗mmmpert

21: M′
t ← Concatenate([Qt

1, Q
t
2, , H

t
2], axis = 0) ▷ Build final mask batch

general.

6.2.4 Selector Loss

For the selector, we tested four different losses. To be able to understand the

differences between them, below we describe different approaches to the task of

FIE for the Selector.

Classification vs Regression Firstly, the task of the Selector can be achieved

by both Regression or Classification. The regression approach focuses on trying to

predict the loss difference if a given feature was added to/removed from the input

feature subset. On the other hand, the classification approach tries to predict

whether adding/removing the feature would result in an increase of Operator’s

80

performance. Both of these methods are closely tied to the definition of FIE

from Section 3.3, but while the regression is trying to predict ϕ directly, the

classification tries to predict its sign. We use MSE for regression and Binary

Cross-Entropy (Equation 6.6) for classification to measure the appropriate errors.

The Binary Cross-Entropy is defined as:

LH(yyy
true, yyypred) =

1

|N |

|N |∑
i=0

ytruei log ypredi + (1− ytruei) log (1− ypredi), (6.6)

where yyytrue, yyypred are vectors of labels and predictions correspondingly, both of

length N , such that yyytrue ∈ {0, 1}N and yyypred ∈ [0, 1]N . For comparison, the MSE

loss is defined as

LMSE(yyy
true, yyypred) =

1

2|N |

|N |∑
i=0

(ytruei − ypredi), (6.7)

where yyytrue ∈ RN and yyypred ∈ RN .

One-to-one vs Many-to-many Additionally, the feature subsets (masks), and

the corresponding Operator’s performances, can be presented in two different ways

to the Selector. The masks can be fed to the Selector without any modifications

so that the second half of the batch is composed of the first half with added

binomial noise (more on that in Section 6.2.2) so that there is a clear one-to-

one correspondence between each mask and its noisy version. However, assuming

that there are N masks in a batch, we would only get N different relative loss

measurements for the Selector to learn from. We will refer to this approach as

one-to-one. Now, if instead we measure the relative difference between every

mask in a batch we will end up with N2−N relative loss measurements, which is

N−1 times more than in the case of the one-to-one approach. We will call this new

approach many-to-many. To fully understand why the many-to-many approach

might suffer in comparison to one-to-one, we will first need to understand one of

the other techniques we used to be able to train the Selector on datasets with

hundreds of features, which is outlined below.

Aggregation of FIE For now, we only discussed subsets which differ by one

feature. While it is possible to feed the Selector masks that differ by only one

feature in a one-to-one scenario, the number of Selector’s outputs that are affected

81

(through which we backpropagate the gradients) stays at one per sample. This

approach is sufficient for tasks with tens of features but starts to suffer when we

reach hundreds of features and fails when the number of features goes into thou-

sands, as we need to remember that number of output neurons for the selector is

d, and the more frequently we update their weights the better Selector’s perfor-

mance will be. To counteract these sparse weight updates, we decided to make

it possible for the mask pairs to differ by more than one feature, even though it

allows the model to ’overlook’ some feature associations. This allows us to arrive

at the final formula for the Selector’s losses. For regression-based loss, we have:

Lreg
S (M′;φ) =

1

|M∗|
∑

(mmmj ,mmmk)∈M∗

LMSE

(
LO(D′; {mmmk}; θ)− LO(D′; {mmmj}; θ);

d∑
i=0

fS(φ;mmm
j)i ∗ (mk

i −mj
i)
)
, (6.8)

whereM∗ is the set of pairs of masks (mmmj,mmmk) fed into the Selector and dependent

on the one-to-one or many-to-many approach, D′ is a batch of pairs (xxx,yyy)

extracted from the actual dataset and index i corresponds to different elements

of mmm.

For the classification approach, we have the following:

Lclf
S (M′;φ) =

1

|M∗|
∑

(mmmj ,mmmk)∈M∗

LH

(
sgn

(
LO(D′; {mmmk}; θ)− LO(D′; {mmmj}; θ)

)
;

d∑
i=0

fS(φ;mmm
j)i ∗ (mk

i −mj
i)
)
, (6.9)

where sgn(x) is the signum function.

For the one-to-one approach, we define the set of pairs:

M∗ = {(M′
j,M′

k) | j ∈ {0, 1, 2, ...,M − 1}; k = j +
M

2
mod M} (6.10)

given mask batchM′ being treated as a vector of length M , so that each mask is

paired with another msk whose index is M
2

greater/lesser.

For the many-to-many approach, we have:

M∗ = {(mmmj,mmmk) | mmmj ∈M′;mmmk ∈M′; j ̸= k}. (6.11)

In this case, every mask is paired with every other mask in a batch.

Now, when comparing these approaches, the masks for the one-to-one approach

82

differs, by average, by pexplore ∗n. That is not the case for many-to-many, where

there is no such rule.

6.2.5 Extracting Feature Importance

FIE extraction is a straightforward process and is given by the Selector outputs.

The input of the selector is the batch of masks from Q1
t . The feature importance

may differ slightly if the masks in Q1
t are different so to obtain the final result we

average over Q1
t .

6.2.6 Expected Optimal Feature Subset Size

The purpose of this section is an estimation of the number of null features that

are included in the optimal mask, be it due to accidental association or Adaptive

Exploration, where the optimal mask extraction is probability-based.

The mechanism that outputs the optimal subset (detailed in the sections above)

also usually makes the optimal mask contain null features. They are easy to

identify because their importance might be slightly above 0 - as mentioned be-

fore, some features are accidentally associated with the target variable (for both

training and validation data). We regulate the number of null features present

by changing the λ parameter. As a reminder, this parameter regularizes the op-

timal mask. The probability vector of removing/adding each feature for Adap-

tive Exploration is given by Softmax(−fS(mmm,ϕt) + λmmm). The probability p of

adding/removing feature j at time t is equal to:

p(j, t,mmm) =
e−fS(mmm,ϕt)j+λmj∑d
i=0 e

−fS(mmm,ϕt)i+λmi

, (6.12)

where the subscripts i, j mark the i-th and j-th elements of a vector.

Now, let us calculate the expected size of the optimal subset when the system

reaches equilibrium, the Selector stops learning, and the size of the optimal mask

stops changing: ∑
mmmt = E(

∑
mmmt+1|d, ϕt, λ), (6.13)

where d corresponds to the number of features in the dataset. Using linearity of

expectation: ∑
mmmt =

d∑
i=0

E(mi,t+1|d, ϕt, λ). (6.14)

83

Before we continue, let us assume that we are using the predictions of an ideal

Selector. In that case, the output of the Selector for the essential features would be

−∞, knowing that the feature is present in the optimal mask (−∞ corresponds to

a probability of 0% of removing that feature from the optimal mask). We do not

make any assumptions regarding the presence of the null features, as depending

on the sampled batch, they can be considered helpful, as outlined below.

It can be useful to calculate the lower bound of the association of the sampled null

features, which can be understood as the standard error of Pearson’s correlation:

σr =

√
1− r2

n− 2
, (6.15)

where r is the correlation (assume r ≈ 0), and n is the number of samples on which

the correlation was measured. In our case, the true correlation coefficient ρ = 0

for the null features. We can then approximate the correlation error, knowing

that the typical batch size in our analysis is 32 and get σr ≈ 0.1826.

Getting back to our main analysis, let us assume without a loss of generality

that the features present in mmmt are sorted according to their perceived importance

calculated by the ideal Selector: starting from ntrue useful features that have to

be present in mmmt (ideal Selector), n1
null = |mmmt| − ntrue null features present in mmmt

and finally n0
null = d − |mmmt| features that are not present in the optimal mask.

Now, expanding on Equation 6.14:

|mmmt| =
d∑

i=0

E(mi,t+1|d, ϕt, λ)

=
ntrue∑
i=0

E(mi,t+1|d, ϕt, λ) +

|mmmt|∑
i=ntrue

E(mi,t+1|d, ϕt, λ) +
d∑

i=|mmmt|

E(mi,t+1|d, ϕt, λ)

= ntrue(1− ptrue(d, ϕt, λ)) + n1
null(1− p1null(d, ϕt, λ) + n0

null ∗ p0null(d, ϕt, λ)

= ntrue + n1
null − n1

null ∗ p1null(d, ϕt, λ) + n0
null ∗ p0null(d, ϕt, λ)

= |mmmt| − n1
null ∗ p1null(d, ϕt, λ) + n0

null ∗ p0null(d, ϕt, λ)

(6.16)

where the ptrue, p1null, p0null are the probabilities of removing/adding the correspond-

ing feature during the next iteration. Additionally, if we use the ideal Selector,

then ptrue(d, ϕt, λ) = 0 to ensure that the useful features are included in the next

iteration. Finally, we can cancel the |mmmt| terms from both sides to obtain the

84

equilibrium condition:

n1
null ∗ p1null(d, ϕt, λ) = n0

null ∗ p0null(d, ϕt, λ)

|mmmt| − ntrue

d− |mmmt|
=

p0null(d, ϕt, λ)

p1null(d, ϕt, λ)
(6.17)

The next step is an approximation of p1null, p0null, which are given by the following

expression in the Softmax case:

p0null(d, ϕt, λ,mmmt)

p1null(d, ϕt, λ,mmmt)
=

E(e−fS(mmmt,ϕt)j |mj,t=0)

E(
∑d

i=0 e
−fS(mmmt,ϕt)i+λmi,t

)

E(e−fS(mmmt,ϕt)j+λ|mj,t=1)

E(
∑d

i=0 e
−fS(mmmt,ϕt)i+λmi,t

)

=
E(e−fS(mmmt,ϕt)j |mj,t = 0)

E(e−fS(mmmt,ϕt)j+λ|mj,t = 1)

=
E(e−fS(mmmt,ϕt)j |mj,t = 0)

E(e−fS(mmmt,ϕt)j |mj,t = 1)
∗ e−λ

(6.18)

For the null feature to be useful, it has to randomly display the same dependence

on the target variable in the training and validation sets. Additionally, the model

has to be sensitive enough to use the provided information. It is out of the scope

of this work to calculate the probabilities through the above analysis, even in the

linear case. To approximate the probabilities, we notice that for a big enough

number of training and validation examples and for the ideal Selector:

E(fS(mmmt, ϕt)j|mj,t = 0) ≈ E(fS(mmmt, ϕt)j|mj,t = 1) (6.19)

so that we have:

p0null(d, ϕt, λ,mmmt)

p1null(d, ϕt, λ,mmmt)
=

E(e−fS(mmmt,ϕt)j |mj,t = 0)

E(e−fS(mmmt,ϕt)j |mj,t = 1)
∗ e−λ ≈ e−λ (6.20)

Using Equation 6.20 we can solve Equation 6.17 for |mmmt|:

|mmmt| − ntrue

d− |mmmt|
= e−λ

|mmmt| − ntrue = (d− |mmmt|) ∗ e−λ

|mmmt|+ |mmmt| ∗ e−λ = d ∗ e−λ + ntrue

|mmmt| =
d ∗ e−λ + ntrue

1 + e−λ
(6.21)

or in terms of the fraction of the total mask size:

|mmmt|
d

=
e−λ + ntrue

d

1 + e−λ
(6.22)

85

where ntrue

d
is the fraction of the useful features. Figure 6.2 illustrates the derived

dependency as a function of λ. We can see that the optimal mask size converges

to ntrue as λ increases since:

lim
λ→inf

|mmmt|
d

=
ntrue

d
(6.23)

This analysis summarizes why we use λ = 3, which is a value for which around

Figure 6.2: The fractional size of the optimal mask as a function of λ for different
fractions of useful features.

90% of the null features should be removed. In other words, this hyperparameter

allows us to control the FDR (false discovery rate).

6.3 Results

In this section, similarly to the previous method, we evaluate our approach on

synthetic, benchmark and real-world datasets.

Firstly, we will focus on results from three types of datasets: synthetic, visual

and benchmark. We used the same datasets as described in Section 5.1 - be it

synthetic, visual or benchmark data. One of the differences in our analysis is the

86

change of the focus of synthetic data, where we extend the datasets to thousands

of null features to examine which of the Selector loss functions from the ones men-

tioned in Section 6.2.4. We use visual data to validate the FIE results produced

by the Selector and finally measure the framework’s performance on banchmark

data against other methods.

Then, we will give a summary of the experimental details that are used across all

experiments. That includes the value of the λ parameter, used architectures, and

hyperparameter choices.

Ultimately, we will analyse the learning behaviour of the system for any irregu-

larities, as well as perform a stability study between different folds of the dataset.

6.3.1 Synthetic Datasets - Choosing Selector Loss

Loss Function Performance Comparison

To showcase model capabilities as well as to compare different Selector’s loss

function approaches (many-to-many vs one-to-one and classification vs re-

gression), we decided to design an experiment with synthetic data where the

number of null features is geometrically increased, which decreases the signal-

to-noise ratio. We used the same three synthetic datasets (XOR, OrangeSkin,

SynthRegression) as in Chapter 4, but we were able to generate more null fea-

tures than 7. We tested four different loss function configurations:

1. One-to-one classification,

2. Many-to-many classification,

3. One-to-one regression,

4. Many-to-many regression.

We varied the total number of features for each dataset by doubling it at

every step: 10,20,...,320. We found that Nexplore = 100 is enough for the Operator

and the Selector to achieve satisfying results and tuning it does not affect the

performance. During the cross-validation procedure, we test several Operator and

Selector architectures with no more than three hidden layers and different values of

λ ∈ {0.03, 0.1, 0.03, 0.1, 0.3, 1.0, 3.0}. We set the early stopping to Nexplore epochs.

87

We used a grid-search strategy to obtain the optimal hyperparameters based on

the validation performance.

The figures 6.3, 6.4, 6.5 show the results of the experiment by comparing the

test accuracy/MSE for each dataset and loss function for a different number of

input features.

Figure 6.3: XOR dataset results. Y-axis corresponds to test accuracy, while the
X-axis displays the number of features used for each analysis.

88

Figure 6.4: Orange Skin dataset results. Y-axis corresponds to test accuracy,
while the X-axis displays the number of features used for each analysis.

Figure 6.5: Synthetic Regression dataset results. Y-axis corresponds to test R2,
while the X-axis displays the number of features used for each analysis.

89

It is clear that the classification-based loss function produces better results,

with a slight advantage towards the one-to-one option, which is why we will use

this setting in future analyses.

Additionally, we found that the classification-based loss provides a clear

interpretation of the λ value so that it does not have to be tuned as a hyper-

parameter for a given dataset, as seen in Section 6.2.6. On the contrary, the

regression-based loss cannot use Adaptive Exploration without careful loss

scaling and fine-tuning of λ to produce reasonable results.

Loss Function Feature Ranking Comparison

The next test designed to compare different loss functions included comparing the

average rank of the important features for each dataset. The rank is averaged over

the 5-fold cross-validation process and recorded for different numbers of features,

similar to the previous subsection. We decided against displaying the feature im-

portances directly for all the features due to the exponentially scaling number of

features used in our experiments.

The figures 6.6, 6.7, 6.8 show the measurements of the average rank of the im-

portant features for each dataset. Additionally, a theoretical minimum rank that

depends solely on the number of important features for each dataset was added.

The first observation based on the presented results is the fact that every

dataset favours a different type of loss. Firstly, the XOR dataset shows a big gap

in average rank between the regression-based (red and green) and classification-

based (orange and blue) losses. Additionally, it is clear that the one-to-one clas-

sification loss manages to minimize the average rank of the important features

the most. Secondly, the Orange Skin dataset shows the advantage of the one-to-

one losses compared to many-to-many losses. We also find it impressive that

both one-to-one losses achieved nearly minimal average rank for essential fea-

tures when the number of features is 80. Finally, the Synthetic Regression dataset

from Figure 6.8 shows no significant difference between the choice of a loss func-

tion. This dataset was, surprisingly, the hardest for the algorithm to succeed. We

found that the algorithm relatively often overlooked one of the features, X1, which

90

contributes to the loss with the term max(X1, 0). To summarize, the average rank

metric shows the discrepancies between one-to-one and many-to-many losses,

favouring the former setting. Additionally, we found that the regression-based

losses perform worse for some datasets than the classification-based losses. These

observations confirmed our decision to use one-to-one classification loss in the

future.

Figure 6.6: XOR dataset results. Y-axis corresponds to the average rank of
important features, while the X-axis displays the number of features used for each
analysis.

91

Figure 6.7: Orange Skin dataset results. Y-axis corresponds to the average rank
of important features, while the X-axis displays the number of features used for
each analysis.

Figure 6.8: Synthetic Regression dataset results. Y-axis corresponds to the aver-
age rank of important features, while the X-axis displays the number of features
used for each analysis.

92

6.3.2 Feature Importance Visualization

MNIST

We decided to visually inspect the MNIST datasets, similar to the one from Sec-

tion 5.1.2. As a reminder, we use digits "3" and "8" from the MNIST dataset to

create a supervised task of binary classification. We presented the results of the

analysis, for one of the cross-validation folds, in Figure 6.9. The average size of

the optimal mask was approximately two times bigger (179.2± 5.5) than the one

set in Section 5.1.2 (85). The performance of the classifier was kept at the same

level of 99.25%± 0.19. The results are visually consistent with the ones obtained

in Section 5.1.2, even though they were created without setting up the optimal

subset size.

All the images in Figure 6.9 show averaged feature importances with different

information overlaid on top. While Figure 6.9.a shows raw importance, Figure

6.9.b displays only the importance of the features that were accepted into the

optimal mask. Next, Figures 6.9.c and 6.9.d use the alpha channel to present the

average digit "3" and "8" correspondingly. The final row again uses the alpha

channel to present the difference in average digits: "8"-"3" (Figure 6.9.e) and

"3"-"8" (Figure 6.9.f). We presented the results in this way to bring to attention

that the optimal subset consists mainly of two groups of features: the ones that

are usually present in "8" and NOT in "3" (Figure 6.9.e) and the ones that are

usually present in "3" and NOT in "8" (Figure 6.9.f). The other features that are

not in both of these groups have low importance scores on average.

YALE

The inherent difficulty of the YALE faces dataset lies in the scarcity of the num-

ber of training samples as well as the number of classes. The dataset (see more

detail in Section 5.1.2) in a 5-fold validation setting has 98 training samples, 25

validation samples and 42 testing samples. The 15 subjects that are photographed

correspond to different classes, which means that the validation set does not even

have 2 images of each subject.

Even then, we were able to obtain satisfactory results through careful hyperpa-

rameter tuning, which resulted in 81.0±4.7% accuracy. Finally, it is worth noting

93

(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Feature importance map yielded by the Selector. (a) Raw feature
importance. (b) Masked feature importance. (c) Masked feature importance
superimposed on mean digit "3". (d) Masked feature importance superimposed
on mean digit "8". (e) Masked feature importance superimposed on the difference
between mean digits "8" and "3". (f) Same as (e) but with an inverted difference.

that the usual dense Operator architecture will fail to obtain good performance

on this dataset, which pushed us to use the convolutional layers for this dataset,

just like we did for the YALE dataset from Section 4.

Figure 6.10 shows the obtained feature importances calculated by the Selector. It

is easy to notice from Figure 6.10.c that the majority of important features are

located in the area around the nose of the subjects, while the detrimental features

are centred around the neck of the subjects.

94

(a) (b)

(c) (d)

Figure 6.10: Feature importances for the YALE faces dataset. Subfigure (a) shows
raw feature importances, (b) displays the optimal mask obtained during training,
(c) uses the average face of one of the subjects (one class, chosen randomly) to
better visualize the meaning behind the feature importances and (d) shows the
feature importances only for the optimal subset.

6.3.3 Benchmark Datasets

Finally, we compare our method to other feature selection pipelines across 4 dif-

ferent datasets. It is important to stress that two of the datasets, YALE and

TOX-171, are datasets where d >> n with a relatively low number of training

samples.

From Table VII we can see that the approach discussed in this section provides

the best results across most of the datasets. While our approach from Section 4

shows a minor improvement on the Glass dataset, the result of 81% accuracy on

YALE datasets shows a major advantage of the newest Selector/Operator dual

architecture. The missing mRMR result for the TOX-171 dataset points to one

of the advantages of this method: low scalability in high-dimensional datasets. In

other words, the algorithm struggles to provide results for datasets with thousands

95

Table VII: Performance of different Feature Selection approaches measured on
benchmark datasets. The displayed performance metric is Accuracy, measured in
%.

Data Set Glass Vowel TOX-171 YALE
Ours, Section 4 92.0± 1.192.0± 1.192.0± 1.1 98.9± 0.1 90.2± 5.6 66.9± 5.3
Ours, Section 6 91.5± 1.5 99.0± 0.299.0± 0.299.0± 0.2 90.6± 2.790.6± 2.790.6± 2.7 81.0± 4.781.0± 4.781.0± 4.7

CCM 84.4± 1.0 82.5± 0.5 90.1± 3.2 65.4± 4.8
RFE 86.6± 0.8 81.8± 0.4 84.1± 2.7 54.9± 5.9

mRMR 82.8± 2.3 79.8± 0.3 - 52.5± 2.8
DeepPink 91.9± 0.8 98.5± 0.1 90.9± 2.5 77.0± 3.2

Table VIII: Number of features selected by different Feature Selection approaches
measured on benchmark datasets.

Data Set Glass Vowel TOX-171 YALE
Ours, Section 4 333 8 83 30
Ours, Section 6 8 222 909090 383838

CCM 4 9 90 70
RFE 3 9 90 90

mRMR 2 9 - 50
DeepPink 3 8 88 34

of features.

For completeness, we provide a table summarizing the number of features chosen

by each algorithm on Table VIII. The bolded values correspond to the best result

from Table VII.

6.3.4 Experimental Details

Alternate Learning

To reach the best possible results, the Operator and the Selector must be trained

alternately. As a reminder, the Selector is trained using the validation data results

of the Operator. To maintain a balance between the networks while keeping the

targets of the Selector relatively stable, we decided to divide the training data

for each epoch into four chunks. After the Operator is trained on a chunk, the

Selector is trained on the validation data. Although the number of chunks might

seem arbitrary, it is connected to the 5-fold CV procedure. This approach means

that training data is four times larger than validation, so throughout the whole

training process, the number of training steps is the same for the Selector and the

96

Operator. From now on, we use the term "epoch" to mark the Operator training

on one chunk of data and the Selector being trained on the validation data. Do

note that this means that the data used during one "epoch" corresponds to 1
4

of

the whole training dataset or 1
5

of the deployment data.

Hyperparameters

We have chosen the Adam optimizer for both the Selector and the Operator, with

a lower Operator’s learning rate of lrO = 1e − 4 and the Selector’s learning rate

of lrS = 1e− 3. We set the probability of perturbation pexploration = 0.1, and the

number of exploitation changes nλ = 2.

Changing λ during training

We also decided to increase slowly λ throughout the training from 0 to λfinal = 3

over the period of 2Nexplore epochs. This can be understood as steadily decreasing

the temperature of an exploration-exploitation framework. In our case, low λ

allows for more stable training that does not converge to a possible optimal mask

too fast, thus not getting stuck in a local optimum.

The number of pretraining epochs is also set to Nexplore, as both values need to

be tuned to the number of samples of a particular dataset. The exact tuning of

Nexplore is not necessary, as its only purpose is to ensure several hundred training

steps for both the Operator (pretraining phase) and the Selector (increasing λ) for

exploration purposes. We use the terms data batch size |D′| and mask batch size

|M′| to mark the number of data points sampled from training/validation data

and the number of unique masks used for the training step. For the Operator,

that means that the number of actual samples it sees during one training step is

given by |D′| ∗ |M′| as the Operator’s batch is given by {(xxx⊗mmm,yyy)}mmm∈M′,(xxx,yyy)∈D′ .

The Selector’s actual batch size is given by |M′| or |M′| ∗ (|M′| − 1), depending

on the many-to-many or one-to-one approach.

Architectures

We used ReLU activations in the hidden layers of both the Selector and the Oper-

ator with Softmax/Sigmoid/Linear activations for binary classification/multilabel

and multiclass classification/regression tasks. We decided against using Dropout

97

in the input layer as the masks already create sparse inputs, although it is pos-

sible to use it for hidden layers. For most of the tasks, we decided against using

more complicated layers in order to limit the complexity of the solutions while

showcasing that even vanilla architectures are able to outperform other, simi-

lar methods. For the output layer for the Selector, we use linear activation for

regression-based loss and sigmoid for classification-based loss.

Early stoppping

We use the early stopping procedure to maximize the Operator’s performance.

The monitored metric is the Operator’s validation loss with a patience period of

Nexplore. After the stopping condition is reached, both the Operator and Selector

weights are regressed to the time when they achieved the best performance. The

optimal mask is also extracted from that time.

6.3.5 Training Behaviour

Selector’s Training State

In this section, we will display the learned feature importances and optimal feature

subsets for the Selector from Section 6 for datasets which allow visual examination.

The state of the Selector (one of the optimal masks and the corresponding feature

importances) was saved every N -th epoch, where N differs between datasets,

due to their variable size. Finally, the epoch count does NOT correspond to the

widely used epoch meaning: a period of time during which the model sees the

whole dataset once. Instead, due to the particularities of our implementation, the

epoch counter used by us corresponds to 1
4

of the original epoch.

MNIST Figure 6.11 shows the evolution of feature importances during MNIST

digit recognition training (for digits "3" and "8") throughout the whole training

process which lasted around 230 epochs. We can see that the Selector updates

its optimal mask and the FIE continuously during the whole training period. We

also notice that the FIE map becomes more and more homogenous,

98

99

Figure 6.11: Evolution of feature importances for the MNIST digit dataset with
digits "3" and "8". Each row corresponds to a different epoch. The left column
shows the raw feature importances, the middle column displays the optimal mask
(black for accepted features), and the right column presents only the feature
importances for the optimal subset.

100

YALE Figure 6.12 shows the progress of the Selector for the YALE dataset.

We show only the first 500 epochs as further progress shows only the reduction

of the size of the optimal mask, where the final size is 412. We can see that

after the first 150 epochs, the Selector converges to a rough estimate of future

feature importances, and the rest of the epochs mainly reduce the size of the

optimal mask and fine-tune the feature importances. Contrary to MNIST data,

the additional epochs do not lead to more homogeneous results, even though the

Operator continues to train and converges towards its final weights as well. The

actual training took 1550 epochs, with the best Operator’s validation performance

recorded around the 1350-th epoch.

101

102

Figure 6.12: Feature importances for the YALE faces dataset. Each row corre-
sponds to a different epoch. The left column shows the raw feature importances,
the middle column displays the optimal mask (black for accepted features), and
the right column presents only the feature importances for the optimal subset.
The figures are rotated 90◦ clockwise relative to the ones from Section 6.3.2 as
the original, raw dataset is presented in a rotated fashion as well.

103

MNIST Training Curves

To visualize the performance of the Selector and the Operator, we decided to

include the training curves for a randomly chosen fold of the MNIST digit recog-

nition task. Figure 6.13 displays five plots that illustrate the progress of the

Separator, Operator and the average optimal subset size.

The first noticeable thing is the periodic nature of the magenta curve in subfigure

(a). This corresponds to the Operator’s training accuracy. The period of this

trend is equal to four epochs, but we are not certain about the exact reason for

this oscillation. We made sure that changing the optimal mask is not the under-

lying cause, as this happens every epoch and the lack of any granular changes is

visible in subfigure (e). We hypothesise that this trend is caused by the division

of the whole training dataset into 4 distinct parts and calling training on each of

them an "epoch", as mentioned in 6.3.5.

Additionally, both figures (a), (b) and (d) display the normal supervised training

curve, where the training performance is higher than the validation performance

and the loss/accuracy is steadily decreasing/increasing. When comparing the val-

idation accuracies of subfigures (a) and (b), we can see that they are not identical.

That is because the accuracy visible in subfigure (b) is calculated only for the op-

timal subsets Q1, while the curve from (a) is calculated for the full mask batch,

which also includes random masks. The fact that the curve from (b) achieves

higher accuracy confirms that explanation.

Moving on to the Selector’s progress, in subfigures (c) and (e) we can see the

Selector’s loss and the average subset size of the Q1. The Selector’s loss, after

the initial drop, starts to increase with big variations. This upturn is caused by a

feedback loop that, even though it seems detrimental, helps the Selector by pro-

viding masks that differ mainly in the "interesting" regions. The loop is based on

the increasing performance of the Operator. It starts to "use" more and more of

the available features to produce its predictions, leading to an increase in the com-

plexity of the Selector’s task. This, in turn, leads to new optimal subsets being

proposed, which are usually smaller in size and contain more significant informa-

tion, which again improves the Operator’s performance. Subfigure (e) shows that

even though the other curves vary from epoch to epoch, the size of the optimal

104

subset is steadily decreasing and flattens out at the end of the training procedure.

0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

-20 0 20 40 60 80 100 120 140 16

(a) Operator’s accuracy (train+val)

0.7
0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

-20 0 20 40 60 80 100 120 140 160 18

(b) Operator’s accuracy for Q1 (val)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24
0.26

-20 0 20 40 60 80 100 120 140 160 180 20

(c) Selector’s loss

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

-20 0 20 40 60 80 100 120 140 160 18

(d) Operator’s loss for Q1 (val)

100
150
200
250
300
350
400
450
500
550

-20 0 20 40 60 80 100 120 140 160 180 20

(e) Average subset size of Q1

Figure 6.13: Training and validation curves for MNIST dataset. Magenta colour
corresponds to training data while green corresponds to validation data.

6.3.6 Stability

Figure 6.14 illustrates the stability of our approach. We decided to show the

differences in the Operator’s performance, the progression of the optimal feature

subsets and the differences in the optimal subsets obtained at the beginning of the

training. We performed this analysis across the five folds of the cross-validation

procedure.

From subfigures (a) and (b) we can see that there are no major differences in the

105

Operator’s loss across the runs and that the progression of the average subset size

is not dependent on starting conditions or lucky seed. Finally, we added all the

optimal masks calculated across the five runs and divided them by their amount,

creating an average optimal subset in subfigure (c). Thus, the features with the

corresponding value of 1.0 are present in every calculated optimal subset while

the ones with 0.0 are never present in any of the calculated subsets. We can see

that the optimal masks consist of two clusters of features that are always present

and can be deemed the most important (there is also a single pixel, located to the

right of the bottom cluster, that is always present in the optimal subsets). We

are convinced that the differences between the optimal subsets are caused by the

redundancy between the various pixel regions.

We also found that even though the importance scores were not directly calculated

for subfigure (c), it is similar to the feature importance estimates obtained in

Figure 6.11. We conjecture that the frequency with which each feature is present

in the optimal subset can be used as an impromptu feature importance score.

6.4 Extensions

6.4.1 Group Feature Importance Rankings

In this subsection, we will focus on a mechanism allowing our algorithm to per-

form group feature selection, as well as presenting results for one of the group

feature selection benchmark datasets [77].

Method

Adding group-based data comprehension to our method is a straightforward pro-

cess. The only thing that was changed was the masking process, which used to

be a simple multiplication (application of binary mask) fmask(xxx,mmm) = xxx ·mmm. The

dimensionality of both mmm and xxx was also equal to d. We did not use the masking

function notation (fm) not to introduce unnecessary complexity.

For group feature rankings, we can understand each group Gk as a subset of fea-

tures characterised by a mask gggk which is a binary vector of length d. Given a

set of dG groups G = {G1, G2, G3, ..., GdG} (see Section 3.7) for a dataset with d

106

100
150
200
250
300
350
400
450
500
550

-20 0 20 40 60 80 100 120 140 160 180 200 22

(a) Average subset size of Q1

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

-20 0 20 40 60 80 100 120 140 160 180 200 22

(b) Operator’s loss for Q1 (val)

(c) Average optimal subset

Figure 6.14: Stability comparison for MNIST 5-fold CV. For that purpose, differ-
ent curve colours in subfigures (a) and (b) correspond to different folds.

features we can define the group masking function:

fG
mask(xxx,mmm,G) = xxx · (̇m0ggg0 +m1ggg1 +m2ggg2 + ...+mdGgggdG) (6.24)

where the dimensionality of mmm is dG. This approach allows us to use the algorithm

without any other changes, as the Selector now works on groups rather than

singular features.

To clarify, one can think of gggk as pre-defined (appropriately for each task) binary

vectors that group features together. Added together (with the OR operator),

they should add up to the full vector of ones, so that each feature is accounted

for in one of the groups. Then, the mask mmm, instead of affecting each feature on

its own, affects groups of features all at once - so the features in one group are all

either masked or not.

107

Results

We decided to use the yeast cell cycle dataset1, for which the number of groups

dG = 20 consisting of d = 106 features and n = 542 samples. The groups were

decided following the procedure first used by [78] and then followed also by [77],

and is based on first clustering the features using K-means and optimizing the

Gap statistic [79].

The dataset [80] [81] is used to benchmark the identification of transcription fac-

tors (TFs) which control the rate of DNA to mRNA transcription. The target

variable is the mRNA level of the genes taken at 28 min during a cell cycle, and

the input variables are the measured binding information from the TFs. It has

been confirmed [82] that 21 of the TFs are what truly drives the target variable.

The other group feature selection methods we compare are:

• Deep-gKnock [77], is a method similar to deep knockoffs that integrate the

power of DL and knockoff technique in a group feature selection setting.

• DeepPink is another knockoff-based technique that uses DL to produce fea-

ture importances.

• group-SLOPE [83] is a method that allows for the adaptive selection of

variables in a high-dimensional setting through convex optimization.

Table IX: Performance of different Group Feature Selection approaches measured
on yeast cell cycle dataset.

Method # features chosen # important features chosen
Ours 28 14

DeepPink 5 3
group-SLOPE 40 13
Deep-gKnock 21 11

All the methods mentioned above focus on approximating the FDR (false discov-

ery rate), or more precisely, gFDR (group false discovery rate). We find that our

method manages to find most of the important features while keeping the number

of chosen features low.
1The dataset is available at SPLS library CRAN repository: https://search.r-project.

org/CRAN/refmans/spls/html/00Index.html and was extracted using pyreadr package from
raw .rda files.

108

https://search.r-project.org/CRAN/refmans/spls/html/00Index.html
https://search.r-project.org/CRAN/refmans/spls/html/00Index.html

6.4.2 Feature Subset Encodings for Feature Selection and
Explainability

Motivation

In the course of our work we grew curious about possible visualizations of the

feature space. The goal was to understand the interactions between different sub-

sets. Following that objective, we created a novel framework that allows the user

to gain insights into the dataset by approximating the similarity between different

feature subsets.

Method

The created space uses the similarity of results to determine the relative Euclidean

distances between embeddings of different feature subsets. We found the best

results with Jensen-Shannon divergence (JSD) as the similarity measure, which

started to become more popular in the ML community due to the well-known

Generative Adversarial Network architecture [84]. To be more precise, we used

the square root of the Jensen-Shannon divergence, called Jensen-Shannon distance

[85], which for distributions X, Y is given by:

DJSD(X, Y) =
√

JSD(X||Y) =

√
KL(X||Z) + KL(Y ||Z)

2
(6.25)

where Z is the mixture Z = X+Y
2

and KL is the Kullback-Leibler divergence.

One of the reasons behind using the aforementioned distance is the fact that it

is symmetric, strictly positive and zero for equal distributions. Contrary to JSD,

it also obeys triangle inequality. Additionally, it is bounded in the 0-1 range,

which allows easy comparison between different datasets with different numbers

of features.

To obtain the embedding predictions, we added an additional output head

f emb
S (mmm,ϕemb) to the Selector that outputs nemb-dimensional embeddings. The loss

associated with this output head is minimizing the differences in relative distances

between the feature subsets:

L(Xval;M′; θ;ϕemb) =
∑

mmmi∈M

∑
mmmj∈M

DEUC(f
emb
S (ϕemb,mmmi), f

emb
S (ϕemb,mmmj))−

DJSD(fO(θ,Xval,mmmi), fO(θ,Xval,mmmj)), (6.26)

109

where we used the simplified notation of fO(θ,Xval,mmmj) to mark the vector of

results from fO measured on the dataset Xval and DEUC marks the Euclidean

distance.

Another option was to use a dimensionality reduction algorithm like TSNE [86]

to analyze the distances between the final prediction results fO(θ,Xval,mmmj).

Results

We decided to visualize the results on the XOR dataset as it presents the biggest

problem for many feature selection algorithms due to its synergistic nature. As

a reminder, the XOR dataset consists of 10 features where the first four (with

indices 1, 2, 3, 4) are not null and decide the ground-truth class of each sample.

We set nemb = 3 in order to be able to visualize the feature subset embeddings.

After training the Selector using our pipeline from Section 6, we predicted all

embeddings for the feature powerset (1024 feature subsets). The results are shown

in Figure 6.15 as a scatter plot, where the marker colour corresponds to different

configurations of the not-null features.

At first glance, it is clear that the feature subsets are clustered in certain regions

of the embedding space, where each cluster can be characterized by one colour

(label). This points towards a high degree of similarity between the feature subsets

in each cluster, which is confirmed by the method with which the dataset was

synthesised. The only difference between the points with the same colour is a

different configuration of null features. The second observation can be made

that the cluster with no important features (label "None") is directly opposite

to the cluster with all the important features (label "1,2,3,4"). Between the two

extremes, all the other clusters are ordered so that the clusters with fewer useful

features are closer to the "None" cluster.

6.4.3 Alternative Masking Function

A final addition to our algorithm allows it to handle sparse data. Previously, that

was one of the weaknesses of both of the Operators: if trained on sparse data, like

bag-of-words encodings of NLP datasets, the masking process would result in even

higher sparsity and would prevent the Operator from finding usable gradients.

110

Figure 6.15: 3D visualization of the powerset of feature subset embeddings for the
XOR dataset.

To counteract this problem, we found another masking function f sparse
mask that does

not increase the data sparsity. Instead of simply multiplying xxx ·mmm, we shuffle the

unused features in random order.

We found that this approach hinders the Operator from performing well on non-

sparse datasets but allows the method to be run on sparse datasets with mixed

results.

6.5 Discussion

The first discovery made was regarding the optimal loss function. Before the ex-

periment, we hypothesised that the many-to-many classification would be the

best-performing option. We hypothesised that the classification-like structure

would allow for less extreme Selector’s targets. Additionally, the many-to-many

111

nature would result in a several-fold increase in training samples provided to the

Selector, leading to increased training performance. On the contrary, we dis-

covered that while our conjecture seemed true in the case of classification vs

regression comparison, the many-to-many approach proved to be worse than

the one-to-one.

We hypothesise that the reason behind this result is the prevalence of mask-to-

mask comparisons for the many-to-many method, where the masks differ by a

larger degree. As a reminder, the factor that decides how the first half of the mask

batch differs from the second half depends on pexplore. For the many-to-many

method, the difference between some of the mask comparisons can be greater. The

big differences between paired masks might result in the signal about precisely

which feature resulted in different performances between masks being lost. This

is counterintuitive to our expectations, but we still decided to use one-to-one

classification loss according to our motivation of using performance-driven fea-

ture importance estimation.

Secondly, during our visual examination experiments (MNIST and YALE datasets),

we found that our method produces meaningful feature importance estimates. We

verified that the MNIST "3" vs "8" classification task feature importance estima-

tions are consistent with the ones obtained in Section 5.1.2. We noticed that the

majority of the features present in the optimal subset (especially those with the

highest feature importance) clearly show up on the plots showing the difference

between the average digit "3" and "8" (and the opposite). Additionally, for the

YALE faces dataset, we noticed that the most important features are centred

around the nose area of the subjects, thus proving the consistency and real-world

applications of our approach. On the other hand, the noisy background of the

YALE results shows the difficulties in obtaining valid results for such an unbal-

anced dataset (1024 features and only 123 training samples spread over 15 classes).

Next, for benchmark datasets, we notice that our method consistently outperforms

other approaches when it comes to testing accuracy. We were also surprised with

the achieved performance on the YALE dataset, which is usually highly unstable

due to the small number of samples.

Then we analysed how the feature importance estimations, the corresponding

optimal subsets, and the models’ performances change across the training proce-

112

dure. We noticed that, depending on the size of the dataset, the optimal mask is

formed (similar to the final one) at different relative times. For larger datasets,

this process takes more relative time (the optimal mask is still changing for the

late epochs). We also checked and verified the performance curves’ validity and

showed the convergence of the optimal feature subset size to its final value.

We also analysed the stability of our framework. This translated into comparing

the differences in performance curves, the progression of the optimal subset and

the final optimal subset. We showed that our algorithm produces stable and re-

liable results across runs and that the chosen features for MNIST dataset consist

of two main clusters of the features that are present in each optimal subset. Ad-

ditionally, the frequency of the presence of each feature in the optimal mask can

be treated as an impromptu feature importance estimate.

On the other hand, we found some interesting artefacts in the training curves that

show up during training on all datasets, which are especially visible in Figure 6.13.

Finally, we wanted to also bring to light one other issue that is not clearly visible

from the results presented so far. That is the fact that the difference between

validation and test performances is much larger than usual (for vanilla networks).

That is caused by the fact that the validation data is used to fine-tune the opti-

mal subset, which results in overfitting the validation data. That is usually not

the case when tuning the hyperparameters as the number of choices is relatively

small, but for the case of optimal subset, the number of possible subsets scales

as 2d. This indicates one of the problems of our method is the validation data

overfitting.

113

Chapter 7

Conclusions

While powerful, deep learning requires the users’ experience to employ its capa-

bilities fully. Especially in light of recent developments in the space of generative

networks (Stable Diffusion [87], Giga GAN [88] or ChatGPT-4.0 [89]), the interest

in neural networks is peaking. These two factors require providing the new user

base with a toolkit that can handle the increasing complexity of DL solutions

while remaining approachable and flexible towards different use cases. The ben-

efit of such a tool would be to provide much-needed clarity to neural networks,

increasing their interpretability and explainability. These two properties would

allow the users to gain confidence in the produced predictions and possibly extend

the applications towards areas where the explanations are legally required. Ad-

ditionally, it is possible to extract additional knowledge about the data by using

explanations and interpretable methods.

First, we introduced the topic in a comprehensive way and presented a review

of the most common methods used in the area. Then, we stated the problem

of defining what feature importance is and proposed a definition that was the

defining principle behind the proposed solutions. We discussed the methods that

were developed in the scope of this work, compared their performance to other

commonly used methods and discussed the results. Below, we will summarize the

contents of this work and our contributions, as well as discuss the possible future

avenues of research.

114

7.1 Thesis Summary

Recently, many approaches have been developed that try to provide explainable

or interpretable AI. The goal is to provide meaningful, precise and clear expla-

nations of networks’ predictions and gain a deeper understanding of DL’s inner

workings.

In Chapter 2, we briefly explained the differences between interpretability and ex-

plainability, categorized typical motivations for XAI and provided different types

of feature importances that can be extracted from a model. We presented the

most common and cutting-edge feature selection methods.

Chapter 3 starts with providing definitions of an optimal feature subset of con-

stant and variable sizes as well as our take on feature importance, which is a highly

debatable topic. By giving a new feature importance definition, we accomplish

one of the research questions specified in Section 1.4. While the provided defini-

tion is performance-based and provides a clear view of the performance of each

feature, its complexity in the sense of dependency on the current subset makes it

harder to use out-of-the-box and understand for first-time users.

Then, we provide a basis for why we chose to use validation data for our feature

importance measurements and how it allows us to counteract the impact of over-

fitting. We show the impact of regularizing feature subsets by explaining how it

affects the optimal subset and helps with issues of finite sample sizes. We pro-

vide a summary of other problems with feature importance measurements and

the validity of the provided information. Finally, we focus on possible extensions

of feature selection like group feature selection or feature subset encodings.

We present our first framework that provides feature importance estimates in

Chapter 4. It is a dual-net system of the Operator and Selector that are trained

jointly in an alternate manner. Their synergistic relationship is meant to not only

provide feature importance but also to improve the performance of the Operator.

In broad terms, the Operator is meant to accomplish the original, supervised task

dictated by the dataset and the user. At the same time, the Selector uses the

115

Operator’s response to different feature subsets to find the optimal subset. We

analyse its performance on synthetic datasets, perform a visual check of the pro-

duced feature importances on the pictorial datasets and compare the Operator’s

performance to other feature importance methods on benchmark datasets. The

main disadvantage of such an approach is the necessity of the hyperparameters

that dictate the required size of the optimal feature subset, as well as the relative

required power of such a framework. We found it a powerful tool, but the number

of tunable hyperparameters makes it much harder for wider use.

Next, in Chapter 6, we identify the disadvantages of our approach from the pre-

vious Chapter and provide clear goals that the next approach must have. The

crucial difference between the two approaches is the removal of the constant fea-

ture subset size constraint and a major simplification of the algorithm. We show

the motivation behind the algorithm and explain how the goals stated above were

obtained. During the research process, we found several prospective loss functions

that can be defined for the Selector Net. We test them on the same synthetic

datasets as in Chapter 4 but with a twist of geometric increase in the number of

null features. In the process, we compare both the Operator’s performance and

the validity of found feature subsets. We found that the best-performing loss func-

tion was a one-to-one classification loss function, and we chose this approach

for future experiments. Then, we produce visual representations of feature im-

portances on the MNIST and YALE faces datasets, both pictorial datasets. We

decide that the resulting feature importance maps provide a clear and concise

representation of the features used by the Operator. We also investigate how the

feature importances are produced throughout the training. Finally, we compare

the performances of this novel approach to our previous dual-net architecture and

other methods, which shows a distinct advantage of our framework.

We found that the developed method satisfies the two main points of interest

that we raised when starting our research: providing a meaningful, performance-

based feature selection method that allows for variable-size feature subsets that

also provides FIE. It is simple to launch and synergizes with the model deployed

for the original task, making it achieve greater performance. On the other hand,

it requires more computing power, as well as more GPU VRAM to run two DL

116

models in parallel.

During the research process, one often finds fascinating applications or exten-

sions of their work to neighbouring domains. After the work outlined above,

we suggest possible extensions of our framework: Feature Subset Encodings and

Group Feature Selection. We briefly discuss the motivation for both extensions

and present experiments we performed to test them. We plotted the resulting

feature subset encodings and explained the provided insights, which support the

underlying structure of the synthetic XOR dataset. Then, we use one of the Group

Feature Benchmarks from the literature to measure the relative performance of

our methods. The new method of feature subset visualization is certainly pow-

erful and provides a novel way to understand the data. On the other hand, the

possible number of data points that can be visible (powerset of all the features)

can be hard to plot and understand for datasets with a large number of features.

In general, we find that our work of pursuing XAI through feature importance

estimation was a good course to study. After all, it is a quantity that can be mea-

sured for every model. Certainly, many issues remain, like the exact definition of

feature importance, its dependence on synergistic/redundant variables or bridging

the gap between what is truly important to the data and the model. Some of these

issues can be addressed in future work, like getting help from domain experts for

more interpretability-focused research.

7.2 Future Work

While work provides possible solutions for both interpretable and explainable AI,

some research avenues remain open in the context of broader explainability.

1. Local Feature Importance (Explanations)

It is possible to use a similar framework for local feature importance mea-

surements. This technique would result in performance-driven explanations

of singular data points. We found initial success with preliminary experi-

ments, but this is out of the scope of this work.

2. Unsupervised and Reinforcement Learning

117

This thesis focused on the domain of supervised learning. The counterparts

to this approach are unsupervised and reinforcement learning. One of the

major hurdles would be modifying the underlying technology to work with

more exotic loss functions (unsupervised) or with sparse rewards (reinforce-

ment learning).

3. Visual Explanations

While our work with feature subset embeddings or producing feature im-

portance maps for pictorial datasets provides visual cues about the inner

workings of the Operator, a similar understanding would be harder to reach

for data with multiple not-null features or data without clear pictorial repre-

sentation. Creating a framework that would provide the user with a visual

representation of the inner working of a neural network would be a huge

step forward for XAI.

4. Datasets

We want to broaden the spectrum of the datasets that we test our method

on. That would correspond to other domains, like NLP or sensor data.

5. Domain Experts

We want to investigate the interpretability aspect of our work in more detail

by discussing the results of our method for different datasets with their

respective experts. That would usually correspond to gene expression or

physical sensor data.

7.3 Limitations

In this section, we want to briefly summarize the limitations that were already

mentioned in the previous sections. We will refer to the final version of our

algorithm from Section 6.

1. Processing Power - our method still requires more processing power than

other, less powerful solutions, like LASSO. On the other hand, this process-

ing power is used to understand the FIE in a more complex manner, which

results in different requirements and expectations for each method.

118

2. GPU Memory - due to using two models, the memory requirements are

doubled. Currently, in the DL field, memory is the resource to maximize,

allowing for faster training and better performance. That is counterpro-

ductive with the use of our method. Contrary to this, we think that the

increased performance and additional insights into the data at least partially

compensate for this downside.

3. Flexibility - while already investigated, our method is not ideal for sparse

datasets, where the masking mechanism makes the data even more sparse.

119

Bibliography

[1] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable

artificial intelligence: Understanding, visualizing and interpreting deep learn-

ing models. arXiv preprint arXiv:1708.08296, 2017.

[2] Isabelle Guyon, Jason Weston, and Stephen Barnhill. Gene selection for

cancer classification using support vector machines. Machine Learning,

46(2):389–422, 2002.

[3] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P.

Trevino, Jiliang Tang, and Huan Liu. Feature selection. ACM Computing

Surveys, 50(6):1–45, Jan 2018.

[4] Isabelle Guyon and Andre Elisseeff. An introduction to variable and feature

selection. Journal of Machine Learning Research, 3(3):1157–1182, 2003.

[5] Jianbo Chen, Mitchell Stern, Martin Wainwright, and Michael Jordan. Kernel

feature selection via conditional covariance minimization. In Advances in

neural information processing systems, 2017.

[6] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on

mutual information criteria of max-dependency, max-relevance, and min-

redundancy. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 27(8):1226–1238, 2005.

[7] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society: Series B (Methodological), 58(1):267–288,

1996.

[8] L Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

120

[9] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,

Jiliang Tang, and Huan Liu. Feature selection: A data perspective. ACM

Computing Surveys, 50(6):94, 2018.

[10] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin

Wattenberg. Smoothgrad: removing noise by adding noise. arXiv preprint

arXiv:1706.03825, 2017.

[11] Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kun-

daje. Not just a black box: Learning important features through propagating

activation differences. arXiv preprint arXiv:1605.01713, 2016.

[12] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe,

Katja Hansen, and Klaus-Robert MÃžller. How to explain individual classifi-

cation decisions. Journal of Machine Learning Research, 11(Jun):1803–1831,

2010.

[13] Julius Adebayo, Justin Gilmer, Ian Goodfellow, and Been Kim. Local expla-

nation methods for deep neural networks lack sensitivity to parameter values.

arXiv preprint arXiv:1810.03307, 2018.

[14] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution

for deep networks. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 3319–3328. JMLR. org, 2017.

[15] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin

Riedmiller. Striving for simplicity: The all convolutional net. arXiv preprint

arXiv:1412.6806, 2014.

[16] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber,

Kristof T Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un)

reliability of saliency methods. In Explainable AI: Interpreting, Explaining

and Visualizing Deep Learning, pages 267–280. Springer, 2019.

[17] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. Eval-

uating feature importance estimates. arXiv preprint arXiv:1806.10758, 2018.

121

[18] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz

Hardt, and Been Kim. Sanity checks for saliency maps. In Advances in

Neural Information Processing Systems, pages 9505–9515, 2018.

[19] Ming Yuan and Yi Lin. Model selection and estimation in regression with

grouped variables. J. R. Stat. Soc. Series B Stat. Methodol., 68(1):49–67,

2006.

[20] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. Mathematics of

deep learning, 2017.

[21] Fei Zhang, Patrick P. K. Chan, Battista Biggio, Daniel S. Yeung, and Fabio

Roli. Adversarial feature selection against evasion attacks. 2020.

[22] Zhihao Zheng and Pengyu Hong. Robust detection of adversarial attacks

by modeling the intrinsic properties of deep neural networks. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 31. Cur-

ran Associates, Inc., 2018.

[23] Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. Improving

the robustness of deep neural networks via stability training. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[24] Utkarsh Mahadeo Khaire and R. Dhanalakshmi. Stability of feature selec-

tion algorithm: A review. Journal of King Saud University - Computer and

Information Sciences, 34(4):1060–1073, 2022.

[25] Eoin M. Kenny and Mark T. Keane. Twin-systems to explain artificial neural

networks using case-based reasoning: Comparative tests of feature-weighting

methods in ann-cbr twins for xai. In Proceedings of the Twenty-Eighth Inter-

national Joint Conference on Artificial Intelligence, IJCAI-19, pages 2708–

2715. International Joint Conferences on Artificial Intelligence Organization,

7 2019.

[26] Jianchang Mao, K. Mohiuddin, and A.K. Jain. Parsimonious network de-

sign and feature selection through node pruning. In Proceedings of the 12th

122

IAPR International Conference on Pattern Recognition, Vol. 3 - Conference

C: Signal Processing (Cat. No.94CH3440-5), volume 2, pages 622–624 vol.2,

1994.

[27] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding,

2015.

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a

neural network, 2015.

[29] Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert

Müller, Dumitru Erhan, Been Kim, and Sven Dähne. Learning how to explain

neural networks: Patternnet and patternattribution, 2017.

[30] Maksymilian Wojtas and Ke Chen. Feature importance ranking for deep

learning. In Advances in Neural Information Processing Systems, volume 33,

pages 5105–5114. Curran Associates, Inc., 2020.

[31] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien

Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López,

Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera.

Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities

and challenges toward responsible ai, 2019.

[32] Peter Norvig Stuart J. Russell. Artificial intelligence : a modern approach.

2021.

[33] Jichen Zhu, Antonios Liapis, Sebastian Risi, Rafael Bidarra, and G. Michael

Youngblood. Explainable ai for designers: A human-centered perspective

on mixed-initiative co-creation. In 2018 IEEE Conference on Computational

Intelligence and Games (CIG), pages 1–8, 2018.

[34] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial

intelligence: A survey. In 2018 41st International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO),

pages 0210–0215, 2018.

123

[35] Pramila Rani, Changchun Liu, Nilanjan Sarkar, and Eric Vanman. An em-

pirical study of machine learning techniques for affect recognition in hu-

man–robot interaction. Pattern Analysis and Applications, 9, 05 2006.

[36] Bryce Goodman and Seth Flaxman. European union regulations on algorith-

mic decision-making and a "right to explanation". 2016.

[37] Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, and Anna

Rohrbach. Women also snowboard: Overcoming bias in captioning models,

2018.

[38] Bin Yu. Stability. Bernoulli, 19(4):1484 – 1500, 2013.

[39] Nimrod Harel, Ran Gilad-Bachrach, and Uri Obolski. Inherent inconsisten-

cies of feature importance, 2022.

[40] Isabelle Guyon and André Elisseeff. An introduction to variable and feature

selection. J. Mach. Learn. Res., 3(null):1157–1182, mar 2003.

[41] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt.

Feature selection via dependence maximization. Journal of Machine Learning

Research, 13(5):1393–1434, 2012.

[42] R. Tibshirani. Regression shrinkage and selection via the LASSO. J. R. Stat.

Soc. Series B Stat. Methodol., 58(2):267–288, 1996.

[43] Hui Zou and Trevor Hastie. Regularization and variable selection via the elas-

tic net. Journal of the royal statistical society: series B (statistical method-

ology), 67(2):301–320, 2005.

[44] Yang Young Lu, Yingying Fan, Jinchi Lv, and William Stafford Noble. Deep-

pink: reproducible feature selection in deep neural networks, 2018.

[45] Yaniv Romano, Matteo Sesia, and Emmanuel J. Candès. Deep knockoffs.

2018.

[46] Yifeng Li, Chih-Yu Chen, and Wyeth W Wasserman. Deep feature selection:

Theory and application to identify enhancers and promoters. In International

124

Conference on Research in Computational Molecular Biology, pages 205–217.

Springer, 2015.

[47] Yotam Hechtlinger. Interpretation of prediction models using the input gra-

dient. ArXiv: 1611.07634, 2016.

[48] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i

trust you?: Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD international conference on knowledge discovery and

data mining, pages 1135–1144. ACM, 2016.

[49] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one,

10(7):e0130140, 2015.

[50] OpenAI. Chatgpt. https://openai.com/research/

language-models-can-explain-neurons-in-language-models, 2023.

[51] D. M. Endres and J. E. Schindelin. A new metric for probability distributions.

IEEE Trans. Inf. Theory., 49(7):1858–1860, 2003.

[52] David H. Wolpert and William G. Macready. No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,

1997.

[53] O. J. Mengshoel. Understanding the role of noise in stochastic local search:

Analysis and experiments. Artificial Intelligence, 172(2):955–990, 2008.

[54] J. Friedman, T. Hastie, and R. Tibshirani. The Element of Statistical Learn-

ing. Springer, Berlin, 2001.

[55] Yifeng Li, Chih-Yu Chen, and Wyeth Wasserman. Deep feature selection:

Theory and application to identify enhancers and promoters. Journal of

Computational Biology, 23(5):322–326, 2016.

[56] Le Song, Alex Smola, Arthur Gretton, Karsten M. Borgwardt, and Justin

Bedo. Supervised feature selection via dependence estimation. In Interna-

tional conference on Machine learning, pages 823–830, 2007.

125

https://openai.com/research/language-models-can-explain-neurons-in-language-models
https://openai.com/research/language-models-can-explain-neurons-in-language-models

[57] Yann LeCun, C. Cortez, and C. Burges. The MNIST Handwritten Digit

Database. http://yann.lecun.com/exdb/mnist/.

[58] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml.

[59] Yale Face Database. http://vision.ucsd.edu/content/

yale-face-database.

[60] R. Anderson, C. Gebard, I. Miguel-Escalada, et al. An atlas of active en-

hancers across human cell types and tissues. Nature, 507:455–461, 2014.

[61] I. van der Linden, H. Haned, and E. Kanoulas. Global aggregations of local

explanations for black box models. In Proceedings of SIGIR Workshop on

Fairness, Accountability, Confidentiality, Transparency, and Safety, 2019.

[62] B. Skrlj, S. Dzeroski, N. Lavrac, and M. Petkovic. Feature importance estima-

tion with self-attention networks. In Proceedings of 24th European Conference

on Artificial Intelligence, 2020.

[63] Pilar García-Díaz, Isabel Sánchez-Berriel, Juan A. Martínez-Rojas, and

Ana M. Diez-Pascual. Unsupervised feature selection algorithm for multiclass

cancer classification of gene expression rna-seq data. Genomics, 112(2):1916

– 1925, 2020.

[64] H. Peng C. Ding. Minimum redundancy feature selection from microarray

gene expression data. Journal of bioinformatics and computational biology,

3(2):185 – 205, 2005.

[65] Pritha Mahata and Kaushik Mahata. Selecting differentially expressed genes

using minimum probability of classification error. Journal of Biomedical In-

formatics, 40(6):775 – 786, 2007. Intelligent Data Analysis in Biomedicine.

[66] Huawen Liu, Lei Liu, and Huijie Zhang. Ensemble gene selection for cancer

classification. Pattern Recognition, 43(8):2763 – 2772, 2010.

[67] Myron G. Best, Nik Sol, Irsan Kooi, Jihane Tannous, Bart A. Westerman,

François Rustenburg, Pepijn Schellen, Heleen Verschueren, Edward Post, Jan

126

http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/yale-face-database

Koster, Bauke Ylstra, Najim Ameziane, Josephine Dorsman, Egbert F. Smit,

Henk M. Verheul, David P. Noske, Jaap C. Reijneveld, R. Jonas A. Nilsson,

Bakhos A. Tannous, Pieter Wesseling, and Thomas Wurdinger. Rna-seq

of tumor-educated platelets enables blood-based pan-cancer, multiclass, and

molecular pathway cancer diagnostics. Cancer Cell, 28(5):666 – 676, 2015.

[68] Yongjun Piao, Minghao Piao, and Keun Ho Ryu. Multiclass cancer classifica-

tion using a feature subset-based ensemble from microrna expression profiles.

Computers in Biology and Medicine, 80:39 – 44, 2017.

[69] Ahmet Saygili. Classification and diagnostic prediction of breast cancers via

different classifiers. 2:48–56, 12 2018.

[70] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. In Proceedings of International Conference for Learning Represen-

tations, pages 585–592, 2015.

[71] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,

Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[72] François Chollet et al. Keras. https://keras.io, 2015.

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

127

https://keras.io

[74] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinv.

Dropout: A simple way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(8):1929–1958, 2014.

[75] B. Xue, M. Zhang, W. N. Browne, and X. Yao. Survey on evolutionary com-

putation approaches to feature selection. IEEE Transactions on Evolutionary

Computation, 20(4):606–626, 2016.

[76] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-

troduction. A Bradford Book, Cambridge, MA, USA, 2018.

[77] Guangyu Zhu and Tingting Zhao. Deep-gknock: Nonlinear group-feature

selection with deep neural networks. Neural Networks, 135:139–147, 2021.

[78] Shuangge Ma, Xiao Song, and Jian Huang. Supervised group lasso with

applications to microarray data analysis. BMC bioinformatics, 8:1–17, 2007.

[79] Robert Tibshirani, Trevor Hastie, Mike Eisen, Doug Ross, David Botstein,

Pat Brown, et al. Clustering methods for the analysis of dna microarray data.

Dept. Statist., Stanford Univ., Stanford, CA, Tech. Rep, 1999.

[80] Zhang MQ Spellman PT, Sherlock G. Comprehensive identification of cell

cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray

hybridization. Mol Biol Cell., pages 3273–3297, 1998.

[81] Robert F Lee TI, Rinaldi NJ. Transcriptional regulatory networks in saccha-

romyces cerevisiae. Science, pages 799–804, 2002.

[82] Chen G. Wang L. Group scad regression analysis for microarray time course

gene expression data. Bioinformatics, page 1486–1494, 2007.

[83] Brzyski D, Gossmann A, Su W, and Bogdan M. Group slope - adaptive

selection of groups of predictors. J Am Stat Assoc., pages 419–433, 2019.

[84] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-

ative adversarial networks, 2014.

[85] Endres and Schindelin. A new metric for probability distributions, 2003.

128

[86] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(86):2579–2605, 2008.

[87] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and

Björn Ommer. High-resolution image synthesis with latent diffusion models,

2021.

[88] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman,

Sylvain Paris, and Taesung Park. Scaling up gans for text-to-image synthesis,

2023.

[89] OpenAI. Gpt-4 technical report, 2023.

129

	Introduction
	Population-wise Feature Selection
	Instance-wise Feature Importance Ranking
	Group Population-wise Feature Selection
	Scope Of The Thesis
	Contributions Of The Thesis
	Publications Included In The Thesis

	Background & Related Work
	Motivation For Explainable AI
	XAI For DL Through Feature Importance
	Population Feature Selection Methods
	Wrapper Methods
	Filter Methods
	Embedded Methods

	Local Feature Selection Methods

	Problem Statement
	Defining Optimal Feature Subset Of Constant Size
	Defining Optimal Feature Subset Of Variable Size
	Defining Feature Importance
	Regularizing The Feature Subsets
	Defining Performance Metric
	Other Problems
	Group Feature Selection
	Feature Subset Encodings

	Feature Importance Rankings With Constant Subset Size
	Model Description
	Learning Algorithm
	Deployment
	Pseudo Code

	Experiments - Constant Subset Size
	Results
	Synthetic Data
	Benchmark Data
	Visual Validation
	Experimental Setup
	Optimal Hyperparameters In Other Methods

	Learning behaviour
	Discussion

	Feature Importance Estimates With Variable Subset Size
	Model Description
	Learning Algorithm
	Operator Loss
	Choosing Feature Subsets To Train On
	Operator Performance Evaluation
	Selector Loss
	Extracting Feature Importance
	Expected Optimal Feature Subset Size

	Results
	Synthetic Datasets - Choosing Selector Loss
	Feature Importance Visualization
	Benchmark Datasets
	Experimental Details
	Training Behaviour
	Stability

	Extensions
	Group Feature Importance Rankings
	Feature Subset Encodings for Feature Selection and Explainability
	Alternative Masking Function

	Discussion

	Conclusions
	Thesis Summary
	Future Work
	Limitations

