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Abstract

Recent machine-type communications represent a significant paradigm shift that
will revolutionize the design of wireless communication systems. This shift is
driven by the promise of ultra-reliable low-latency communications (URLLC)
introduced by 5G and 6G technology. Unlike the primary focus of conventional
systems, which is on achieving high transmission rates, URLLC aims to support
extremely low latency and high reliability in data transmissions. Thus, Short
Packet Communication (SPC) is being introduced as a key enabler for URLLC.
This thesis aims to enhance the performance of SPC using machine learning (ML)
algorithms. Initially, we study the performance analysis of SPC and develop an
accurate evaluation of the packet error probability in the presence of interference.
Subsequently, we investigate the performance of sparse recovery algorithms within
the context of SPC. Specifically, we propose two algorithms, Compressive Sampling
Matching Pursuit (CoSaMP) and Stagewise Matching Pursuit (St-OMP), for sparse
recovery. Also, we present a general form of the Symbol Error Rate (SER) utilizing
pairwise error probability. Further, we investigate the potential application of
ML techniques in SPC. We apply supervised learning, namely Support Vector
Machine (SVM) and K-Nearest Neighbours (KNN), and compare them with the
application of unsupervised learning, Expectation Maximization (EM), to SPC.
To mitigate packet overhead, we employ the Label Assisted Transmission (LAT)
method. Additionally, we utilize Silhouette Analysis to determine the optimal
clustering number. Finally, we successfully use a supervised learning approach to
recover the spreading factor in the Long-Range (LoRa) system using SVM and
KNN. The applied algorithms showed significant improvements in the performance
of SPC compared to the baseline schemes. Specifically, SVM and KNN algorithms
show promising results in signal classification with different signal representations.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis and is structured as follows:
Section 1.1 presents the background of the research. Section 1.3 outlines the
motivation behind the work. In Section 1.4, the overall objectives of the thesis are
introduced, highlighting the intended outcomes and goals. The major contributions
of this thesis are summarized in Section 1.5. In Section 1.6, the author’s relevant
publications are presented. Finally, in Section 1.7, the thesis structure is outlined,
providing a roadmap of the subsequent chapters and their respective content.

1.1. Background

Recently, ultra-reliable low latency communication (URLLC) has been established
as a service category to support 5G and beyond. To achieve the requirement of this
service category, the International Telecommunication Union (ITU) and the 3rd
Generation Partnership Project (3GPP) sets strict requirements for ultra-reliability
of nearly 100% with very low latency [2], an essential requirement of sensitive
applications such as remote robot surgery and autonomous driving. An important
observation within these applications is that the transmitted data primarily consists
of control commands (such as move left/right, start/stop, .., etc.) [3]. Thus, the
volume of data to be transmitted is extremely small. Moreover, these applications
often demand a target decoding error probability of less than 10−7 while maintaining
a latency below 1 ms [4]. This stringent requirement for low latency imposes a new
limit on packet size. Consequently, short-packet communications (SPC) have been

18



CHAPTER 1. INTRODUCTION 19

proposed as the essential approach to minimize latency for URLLC.
The provision of services for URLLC applications faces a significant challenge when
it comes to SPCs. The upcoming systems are expected to differ from current ones
that depend on longer blocklengths to achieve higher bandwidth. In the case of
SPC, both the packet length and decoding errors need to be carefully considered.
Consequently, a novel design must be developed to meet the demands of this new
paradigm. Recently, machine learning has emerged as a highly promising means of
tackling various issues in wireless communication, offering significant potential in
addressing the challenges associated with SPCs.

1.2. Research Gap in Short Packet Communications

In recent years, SPC has emerged as a pivotal aspect of wireless communication,
primarily designed to cater to the needs of URLL. While the concept of SPC is
relatively recent, its potential for enabling massive machine-type communication
(mMTC) and IoT has garnered significant attention. Despite the growing
importance of SPC, there exists a noticeable research gap that needs to be
addressed. Another noteworthy development in the wireless communication
field is the emergence of ML techniques as powerful tools for enhancing system
performance. Machine learning has demonstrated promising results in various
wireless communication domains, including spectrum sensing, resource allocation,
and channel prediction [5]. Given the evolving landscape of wireless communication,
exploring the potential benefits of integrating machine learning into SPC is essential.
This section aims to elucidate the research gaps in SPC, specifically focusing on its
performance in interference environments and its integration with machine learning
techniques.

• In existing SPC literature, the main focus is on the performance of SPC
without considering its performance in an interference environment. A lack
of research considers the performance of SPC with two static interferences,
as mentioned in Section 3.2. To bridge this gap, this research provides a
realistic system model where random interference with different distributions
is considered.

• One of the recent solutions for SPC design is to adopt compressive sensing and
sparse coding to transmit short packets. This technique is sensitive to sparse
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recovery at the receiver side. This work applies two new sparse recovery
algorithms and investigates their performance to meet the requirements of
URLL.

• In digital communications, signals are received in groups by nature. One
suggested solution is using unsupervised machine learning, such as EM, to
cluster the received signals according to the used modulation type and then
find the maximum likelihood to recover the desired signal. To reduce the
complexity of this method, Silhouette Analysis has been applied to predict
the optimal clustering solution. Moreover, supervised machine learning
algorithms, namely SVM and KNN, have been developed to recover the
transmitted signal directly.

• In the LoRa system, interference is highly proportional to the spreading
factor. The exciting research focuses on assigning the spreading factor at the
transmitter side, as mentioned in Section 6.2. However, in practice, signals
are affected by various natural effects, such as fading. Thus, SVM and KNN
have been applied to recover the spreading factor at the receiver to mitigate
the interference effect.

1.3. Research Motivation

Machine learning (ML) algorithms have demonstrated encouraging results in
addressing various communication system challenges. Recently, SPC has emerged as
a new research area in wireless communication systems, driven by the ever-increasing
demand for URLLC in numerous applications. With the rapid advancements in
wireless technologies and the rapidly increasing number of devices communicating
with the Internet of Things (IoT), there is an essential need to develop efficient
and robust communication protocols capable of delivering short packets of critical
information with minimal latency. Current communication systems, designed
primarily for handling larger data packets, struggle to meet the stringent latency
requirements of URLLC applications. As a result, novel approaches and techniques
are required to address the unique challenges posed by SPCs. Although there have
been many efforts to investigate and improve the system performance of SPC, there
are still important areas that need attention due to significant deficiencies. The
motivation behind this PhD thesis is to address critical challenges associated
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with SPC performance. Also, the successful applications of ML in wireless
communication motivate us to explore its applications to SPC.
Interference poses a significant challenge in wireless communication, affecting the
reliability and latency of short-packet transmissions. However, in the literature,
there is a noticeable absence of studies that address the impact of interference on
SPC performance. To help bridge this gap, SPC performance in an interference
environment across different wireless scenarios is investigated. Interference poses a
significant challenge in wireless communication, affecting the reliability and latency
of short-packet transmissions. By analyzing the impact of interference on SPC
performance, this research aims to develop an accurate mathematical expression
for error probability that improves the system’s performance. The expression will
be applied to real wireless communication scenarios.
Recently, sparse vector coding (SVC) has played a pivotal role in SPC. This
algorithm enables efficient encoding and decoding of sparse data, which is a
characteristic feature of short-packet transmissions. This method converts the
transmitted signal to the sparse vector that transmits the non-zero position; as
a result, it reduces the packet length without optimizing the packet overhead.
However, it is crucial to recover the non-zero position at the receiver. Therefore,
the second part of this research comprehensively examined the sparse recovery
algorithms.
Furthermore, integrating ML techniques into SPC holds great promise for
optimizing system performance. The classification and clustering algorithms also
show promising results in wireless communication. When it comes to designing
communication systems, the conventional approach is to rely on the receiver having
known channel state information (CSI) and known bit-symbol mapping. To achieve
this, pilot symbols are transmitted to estimate the CSI. Once this is done, the
transmitted symbols can be recovered using maximum likelihood or other low
complexity detection schemes. In a simple wireless communication system, symbols
are modulated and selected from a pre-defined set of constellation points. This
means that the received signals naturally fall into clusters. To take advantage of this,
the received signal can be grouped into a cluster with correspondent constellation
points, and the bit recovery problem can be formed as a clustering/classification
problem.
Additionally, LoRa is implemented to transmit short packets over long-range with
low-power. LoRa adopts a unique modulation scheme called chirp spreading
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modulation. The transmitted LoRa signal has defined spreading factor values. The
spreading factor is highly correlated with the interference. For example, the signal
can interfere with another signal that has a different spreading value. Inspired
by the unique feature of LoRa and the spreading factor parameter, the spreading
factor recovery problem is considered a multiclass problem solved by supervised
learning. The system performance can be improved, and the recovery of the target
spreading factor can reduce the interference’s effect.
By addressing these research areas comprehensively, this PhD thesis aims to
contribute to the advancement of SPC performance.

1.4. Aims and Objectives

This research aims to enhance the performance of SPC using ML algorithms. The
central focus of this thesis is the application of ML in SPC, addressing a range
of complex challenges. This includes the performance of SPC in the presence of
random interference, minimizing SPC overheads, recovering non-zero elements
of (SVC), and precisely reconstructing spreading factors in LoRa communication
systems. The main objectives are summarized as follows:

• To provide an overview of SPC system design and its main challenges.

• To cover advanced applications of ML to SPC.

• To provide a performance analysis of SPC in the presence of interference.

• To investigate the performance analysis of SPC in different real scenarios:
binomial and Poisson distribution.

• To study and investigate the performance of different sparse recovery
algorithms and show their impacts on SPC.

• To develop supervised and unsupervised machine learning applications to
improve the performance of an SPC system.

• To develop a supervised machine learning scheme that aims to further reduce
the packet overhead.

• To propose supervised learning schemes to improve the performance of the
LoRa system and reduce interference.
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1.5. Contributions

• C1 (Chapter 3): A new mathematical expression of packet error probability
for SPC in the presence of random interference is proposed. Then this
expression is investigated using two real scenarios where the interference is
considered first as a binomial and then as a Poisson distribution.

• C2 (Chapter 4): Two new algorithms for sparse coding recovery are applied
and compared with existing algorithms. The performance of all algorithms
is comprehensively examined in various aspects, including recovery error
and recovery time. Subsequently, a general error probability expression is
introduced using pairwise error probability.

• C3 (Chapter 5): A supervised ML scheme for symbol detection is developed
and compared with unsupervised learning. Then, the Silhouette Analysis
method is proposed to determine the optimal number of clusters.

• C4 (Chapter 5): A new method for spreading factor recovery at the receiver is
proposed. This is accomplished by employing the supervised ML algorithms
SVM and KNN.

1.6. Author’s Publications

• P1. (Chapter 3): Ahlam Alshukaili, and Khairi A. Hamdi. "Accurate
Evaluation of Packet Error Probability for Short Packet Communications."
IEEE Communications Letters (submitted).

• P.2 (Chapter 4): Ahlam Alshukaili, and Khairi A. Hamdi. "Sparse Recovery
Algorithms Implementations for Short Packet Communications." 2022 IEEE
95th Vehicular Technology Conference:(VTC2022-Spring). IEEE, 2022,
Finland.

• P.3 (Chapter 6): Ahlam Alshukaili, and Khairi A. Hamdi. "Spreading Factor
Recovery in LoRa Using Machine Learning." 2023 International Conference
on Computer, Information and Telecommunication Systems (CITS). IEEE,
2023, Italy.
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1.7. Thesis Organization

The thesis is organized as follows:
Chapter 2 provides the fundamental details of SPCs, ML algorithms and the
LoRa system. The chapter begins by explaining the differences between finite and
infinite blocklengths, highlighting the unique features of SPCs. Subsequently, it
describes various types of ML algorithms, providing the fundamental principles
and concepts of the specific algorithms employed in this research: Support Vector
Machine (SVM), K-Nearest Neighbours (KNN), Sparse Coding and Expectation-
Maximization (EM) algorithms. Lastly, the chapter introduces LoRa modulation
and its relevant parameters while addressing the distinct types of interference
encountered with LoRa systems.
Chapter 3 introduces a new mathematical analysis of the performance of SPC
in the presence of interference. The system model is covered in detail, providing
a thorough description of the system’s condition and the assumptions made.
Subsequently, the distribution of Signal-to-Interference-plus-Noise Ratio (SINR)
is presented. Following that, the packet error probability is derived. Finally,
the analytical expression is examined under two distinct wireless communication
scenarios, namely the binomial and Poisson distributions.
Chapter 4 presents four recovery algorithms for SVC. First, an overview of
compressive sensing in SPC is provided. Then, the process of each algorithm
is explained. Finally, the performance of these algorithms is comprehensively
examined.
Chapter 5 presents a ML approach for symbol recovery in SPC. The method
for reducing the packet overhead is described. Then, the clustering framework is
provided for both supervised and unsupervised ML. Finally, the performance of
the algorithms is illustrated by the bit error rate (BER).
Chapter 6 presents a new ML framework aimed at recovering the spreading factor
in LoRa systems. The problem of spreading factor recovery is approached as a
classification problem, and the two supervised learning algorithms, SVM and KNN,
are employed to recover the desired spreading factor. The proposed framework
leverages the classification capabilities of SVM and KNN to predict and recover
the spreading factor in LoRa systems.
Chapter 7 concludes this thesis and suggests future research that can be carried
out based on the work presented in this thesis.



Chapter 2

Background Theory

This chapter covers the background of several of the key concepts presented in this
thesis. This includes an overview of short packet communication (SPC), machine
learning (ML), and long-range (LoRa).

2.1. Short Packet Communications

The upcoming 5G and future advances networks are designed to enable SPC
for critical applications such as industrial automation in which the information
commands are expected to be small [6, 7]. However, existing wireless frameworks
are unsuitable to be adopted directly for SPC. Current systems tend to support
long-packet transmission. However, it is worth mentioning that, in SPC, the control
information is not negligible as with the current system of long-packet transmission.

2.1.1. Infinite Blocklength

Before touching on the details of the finite blocklength scheme, we first start with
the infinite blocklength because wireless communication systems are normally
assumed to work with infinite blocklength scenarios. In this system, the two main
performance factors are the capacity [8, 9] and the outage capacity [9, 10]. The
channel capacity is defined as the maximal achievable rate at which the signal
can be transmitted reliably, and the outage capacity is the maximal achievable
rate of the transmitted signal with error probability less than ϵ (ϵ > 0). The two

25
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factors are not restricted by the blocklength, and the outage capacity can resolve
the capacity by letting ϵ tend to zero and the blocklength L to infinity as

C = lim
ϵ→0L→∞

Cϵ (2.1)

Furthermore, in an infinite blocklength system, the overhead (the additional
information for correction and estimation operation called the metadata) is
relatively negligible. Thus the overhead does not affect the system performance
efficiency, see Section (2.1.3).

2.1.2. Finite Blocklength

On the other hand, transmitting small messages requires designing short packets
suitable for this type of information. Current performance parameters are
insufficient for short packets to achieve maximum rate. The reason is the overhead
must be taken into consideration as the payload data size may be comparable
to the metadata [7], as shown in Eq. (2.2). Thus, the overhead and blocklength
are important in SPC design. Polyanskiy et al. [11] provided a closed form and
theoretical principle of the maximum achievable rate for a finite blocklength system

R(L, ϵ, SNR) ≈ C(SNR)−
√
V (SNR)

L
Q−1(ϵ) +O( logL

L
) (2.2)

Where L is the blocklength, ϵ is the decoding error probability, SNR is the signal
to noise ratio, C(SNR) = log(1 + SNR) is the Shannon capacity, V (SNR) is the
channel dispersion defined as [11]

V (SNR) = (log e)2
(
1− 1

(1 + SNR)2

)
(2.3)

and Q−1(.) is the inverse Gaussian of the Q-function [12]

Q−1(x) =

∫ ∞

x

1

2π
e−t2/2dt. (2.4)
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Ignoring the term O( logL
L ) (which denotes the remainder terms of order logL

L ), the
maximum achievable rate for Eq. (2.2) can be approximated as

R(L, ϵ, SNR) ≈ C(SNR)−
√
V (SNR)

L
Q−1(ϵ). (2.5)

Eq. (2.5) is referred to as the normal approximation, based on a Gaussian (normal)
distribution. Although Eq. (2.5) has been demonstrated to be accurate for
different parameters, its accuracy may be reduced when dealing with extremely
short blocklengths (e.g., L < 50) or very small ϵ (e.g., ϵ < 10−5). Therefore, to
indicate the accuracy of normal approximation Fig. 2.1 illustrates the achievable
coding rate with blocklength for the normal approximation with the upper bound,
which represents the converse theorem, and the lower bound represent Shannon’s
achievability bound [11]. The normal approximation lies between the upper
and lower bound and tightens as the blocklength increases, proving the normal
approximation’s accuracy with the parameters in the derived Eq. (2.5). However,
its accuracy may not be valid for a very short blocklength.
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Figure 2.1: Comparison of normal approximation Eq. (2.5) of the achievable coding
rate for SNR= 6 dB, ϵ = 10−3 for AWGN channel with upper bound and lower
bound. The Figure was generated using the SPECTRE toolbox [1].
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2.1.3. Packet Overheads

Packet overhead refers to the additional information included in a transmitted
packet alongside the actual data payload. A typical physical (PHY) layer packet
structure consists of a header, overhead, payload, and sometimes a trailer. The
header contains essential information details such as source, destination addresses,
and protocol types. The payload contains the actual transmitted data. The purpose
of the packet overhead is to facilitate reliable and efficient data transmission over a
network by including necessary control information in the packets for error detection
and correction mechanisms, ensuring data integrity during transmission [13]. One
crucial component of the packet overhead is the pilot signal, a reference signal
embedded in the packet to aid in channel estimation and synchronization at the
receiver end. The pilot signal is of great importance as it helps counter the effects
of signal distortion and noise during transmission, enabling better decoding of the
data and improving overall communication reliability.
Transmitting information over infinite block lengths is demonstrated by the
information theory principle, which is considered the foundation of most efficient
wireless systems [14]. To ensure the system’s efficiency and reliability, a certain
number of pilot sequences which contain control information are added to the
metadata or overhead. However, in long packets, the size of the metadata is
relatively small and not a significant factor compared to the size of the transmitted
payload information, as illustrated in Fig. 2.2(a). Hence, the size of the metadata
has a negligible impact on the performance of the system.
However, the emerging requirement of using short packets necessitates new
considerations. In the case of short packets, the amount of transmitted data
is significantly smaller, which can be comparable to the size of the metadata, as
depicted in Fig. 2.2(b). Therefore, in the context of short packets, the metadata
plays a crucial role. Reducing metadata size may potentially impact the efficiency
and reliability of the system. Consequently, the design of short packets with
appropriate overhead becomes an open and challenging problem that requires
further exploration.
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Figure 2.2: Packet structure of long and short packet.

2.2. Machine Learning

Machine learning has emerged as a transformative field within the realm of artificial
intelligence, revolutionizing the way we extract knowledge, make predictions, and
automate decision-making processes. With its ability to learn from data without
explicit programming, ML has found applications in diverse domains, such as
computer vision, healthcare, auto-driving and wireless communication [15, 16].
This section serves as an introduction to some fundamental concepts, types, and
applications of ML in wireless communication. ML techniques can be broadly
classified into three main categories: supervised learning, unsupervised learning,
and reinforcement learning; see Fig. 2.3. This section focuses on supervised
and unsupervised learning, and we highlight the algorithms used in this thesis:
Expectation Maximization (EM), Sparse Coding, Support Vector Machines (SVMs),
and K-Nearest Neighbours (KNN).
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Figure 2.3: Types of machine learning

2.2.1. Supervised Machine Learning

Supervised ML is a fundamental category of ML techniques that plays a key role
in solving a wide range of predictive and classification problems [17]. In supervised
learning, a model is trained using a labelled dataset, where each label consists
of input features and the corresponding known output or target variable [18].
By leveraging this labelled data, supervised learning algorithms aim to learn
the underlying patterns and relationships between the input features and the
target variable. Examples of popular supervised learning algorithms include linear
regression, logistic regression, SVMs, decision trees, random forests, KNN and
neural networks. Each algorithm exhibits unique characteristics and is suitable for
different types of problems, ranging from simple linear relationships to complex
non-linear patterns.

2.2.1.1 Support Vector Machine

The SVM is a powerful learning algorithm widely used for both classification and
regression tasks. SVM belongs to the family of supervised learning algorithms and
is particularly suitable for tasks involving complex decision boundaries and high-
dimensional data. The fundamental concept of SVM is to find the optimal decision
boundary that maximally separates the data points to create an effective separation
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between different classes. The decision boundary is known as a hyperplane or a set
of hyperplanes for high-dimension feature space, and it is selected to maximize the
margin, which is defined as the distance between the hyperplane and the nearest
data points from different classes. By maximizing the margin, SVM aims to achieve
better separation between classes.
The basic formulation of SVM involves mapping the input data into a high
dimensional feature space using a kernel function. This transformation allows
the algorithm to linearly separate the data points that were inseparable in the
original input space. In SVM, the training process involves finding the optimal
hyperplane by solving a quadratic optimization problem. The aim is to minimize
the classification error while maximizing the margin; see Fig. 2.4. This optimization
problem can be formulated as follows [19–21]

min
1

2
∥v∥+R

I∑
i=1

ξi

s.t. yi (vxi + b) ≥ 1− ξi
ξi ≥ 0 (2.6)

where xi and yi are the training data, v is the weight vector, and b is the bias term.
ξi is the slack variable that allows the non-separable data to be misclassified or
lie within the margin. The parameter R is a regularization term that controls the
trade-off between achieving a large margin and minimizing the classification errors.

Figure 2.4: SVM algorithm.
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2.2.1.2 K-Nearest-Neighbour

The KNN algorithm is a non-parametric learning method used for classification,
regression and pattern recognition tasks [22, 23]. It belongs to a family of lazy
learning algorithms, as it doesn’t make any assumptions about the training data.
Instead, it relies on the new data point to predict and classify accordingly.
In the KNN, the ”Kn” represent the number of nearest neighbours considered for
classification and regression. At its core, the KNN algorithm works on the principle
of similarity, assuming that the data points with similar features tend to belong
to the same class or have similar output values. Given a new data point, KNN
searches the training dataset for the Kn nearest neighbours based on distance
metric, typically Euclidean, Manhattan or Minkowski distance [24].
Euclidean distance

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.7)

Manhattan distance

d(x, y) =

∣∣∣∣∣
n∑

i=1

(xi − yi)

∣∣∣∣∣ (2.8)

Minkowski distance

d(x, y) =

(∣∣∣∣∣
n∑

i=1

(xi − yi)

∣∣∣∣∣
p)1/p

(2.9)

where xi, yi are the training data and test data, n is the number of data points,
and p is the order parameter.
The class or value of the new data point is then determined by majority vote or
averaging of the labels or values of its Kn nearest neighbours.
The KNN algorithm is advantageous due to its simplicity and ease of implementation
[25]. As makes no assumptions about the underlying data distribution, as it is
considered a non-parametric method, and this property allows the algorithm to
handle complex and non-linear relationships between features and target variables.
Additionally, the KNN algorithm can cope with multi-class classification problems
and can accommodate mixed-type data. However, its computational complexity
increases rapidly with the size of the dataset, as it requires calculating distances
between the new data and all the training data [26]. This makes the process
computationally expensive for large datasets. Moreover, the algorithm can be
sensitive to the choice of the value of Kn and the distance metric, requiring careful
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selection of both to achieve optimal performance.

2.2.2. Unsupervised Machine Learning

Unsupervised ML is a powerful branch of ML that focuses on extracting meaningful
patterns, structures, and relationships from unlabelled data. Unlike supervised
learning, unsupervised learning does not require predefined labels or target variables.
Instead, it aims to discover hidden insights and structures within the data, enabling
valuable discoveries and uncovering previously unknown patterns.

2.2.2.1 Expectation Maximization

EM is a statistical, iterative learning algorithm. EM arose as a means of solving
incomplete or missing data problems, where the observed data is partially observed
or contains unobserved variables [27]. In such cases, direct estimation of the model
parameters becomes challenging or impossible. EM provides a principled approach
to estimating these parameters by incorporating the missing or unobserved data
through a latent variable framework.
At the core of the EM algorithm is the principle of maximum likelihood estimation
(MLE). The goal is to find the set of parameters that maximizes the likelihood
function, which measures the probability of observing the given data under the
assumed statistical model. However, in the presence of missing or noisy data, the
likelihood function cannot be directly solved. EM algorithms offer a systematic
way to handle this problem and iteratively estimate the parameter that optimizes
the likelihood. This can be achieved in two steps, the E-step and M-step, see Fig.
2.5.
E-step: this makes an initial estimation of the unknown parameters. It involves
computing the posterior distribution of the latent variables given the observed data
and the current parameter estimates. It describes the process of evaluating the
probabilities or as commonly termed in EM algorithm responsibilities of the latent
variables associated with each data point, conditioned on the current parameter
values.
M-step: in this step, the algorithm updates the model parameters by maximizing
the expected complete data log-likelihood obtained from the E-step. This step treats
the expected values of the latent variables as if they were observed values, thus
simplifying the estimation process. The M-step involves solving an optimization
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problem to obtain the parameter values that maximize the expected log-likelihood.
The mathematical description is provided in detail in Chapter 5.

Figure 2.5: EM algorithm process.

2.2.2.2 Sparse Coding

Sparse coding is an unsupervised learning algorithm that discovers an alternative
and efficient representation of input data, known as a sparse representation. The
fundamental idea behind sparse coding is to express the data using sparse vectors,
where most elements are set to zero [28]. By doing so, sparse coding seeks to
capture only the essential features and patterns inherent in the data, leading to a
more concise and meaningful representation. This approach not only reduces the
memory and computational requirements but also enhances the data transmission,
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allowing for a deeper understanding of its underlying structure. By finding the
sparse representation, sparse coding plays an important role in various fields like
signal processing, image recognition, and natural language processing, contributing
to the advancement of ML and pattern recognition applications [29].

2.2.2.3 Silhouette Analysis

Silhouette Analysis is a method used for unsupervised ML to indicate the best
number of clusters. This method does not require any initial representation, such
as the clusters’ centroids; instead, it depends on the pairwise distance between all
data [30]. The silhouette value is represented as [31]

s(n) =
b(n)− a(n)

max {a(n), b(n)}
(2.10)

where n is the number of data, a(n) is the distance between the data point and its
cluster and b(n) is the distance of the data point to the nearest cluster.
The value of silhouette ranged from 0-1. If the value of a(n) is significantly smaller
than b(n), it indicates that the data point is closer to its own cluster compared
to other clusters. Thus, if the silhouette value approaches 1, that means the data
point is well clustered. Conversely, when the Silhouette value is close to 0, it
indicates poor clustering.

2.2.2.4 Applications of Machine Learning in Wireless Communication

ML introduces a new paradigm for the solution of wireless communication problems.
For example, the auto-encoders developed to optimize the whole transmitter and
receiver system for data detection [32, 33]. Also, channel estimation [34] and
path loss [35] can be predicted by regression methods, while beam selection [36]
and signal detection [37] can be formulated as classification tasks. Additionally,
reinforcement learning can be applied to scenarios with user scheduling and resource
allocation [38,39].

2.3. Long Range LoRa

LoRa is a wireless communication technology that has gained significant attention
and been adopted due to its suitability for use with the Internet of Things (IoT)
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and low-power, wide-area network (WAN) applications [40]. Fig. 2.6 show
the low-power (WAN) compared to other methods of connectivity in wireless
communication local area networks (LANs) and cellular networks. Included are
the advantages and disadvantages of each method. LoRa is designed to provide
long-range communication capabilities with low energy consumption, making it
ideal for applications where extended coverage and efficient power management
are paramount.
The core of the LoRa technology lies in its unique modulation scheme called the
chirp spread spectrum (CSS). By spreading the transmitted signal across a wide
bandwidth through linear frequency modulation, LoRa achieves robustness against
multipath fading and narrowband interference, ensuring reliable communication
over extended distances [41].

Figure 2.6: Methods of wireless connectivity

2.3.1. Chirp Spreading Spectrum Based Modulation

Chirp spread spectrum (CSS) modulation is a distinct technique employed in
communication systems to achieve robust and reliable transmission over a wide
range of distances. It involves spreading the transmitted signal across a broad
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bandwidth by modulating the carrier frequency with a linearly increasing or
decreasing waveform known as a chirp [42]. This linear frequency modulation
allows for efficient use of the available frequency spectrum. CSS modulation offers
several advantages for communication systems. Firstly, it enhances resistance
against multipath fading and narrowband interference, as the spread signal exhibits
improved resilience to these impairments. Additionally, CSS modulation enables
long-range communication by leveraging the wide bandwidth, ensuring extended
coverage even in challenging propagation environments. The characteristics of CSS
modulation make it well-suited for applications requiring low-power, wide-area
connectivity, such as IoT networks. By utilizing the chirp spreading spectrum,
communication systems can achieve reliable and energy-efficient transmission,
making CSS modulation an attractive choice for various wireless communication
scenarios.

2.3.2. LoRa Parameters

LoRa adopted a CSS modulation scheme, details of which can be seen in the
datasheets for the Semtech SX1272 and SX1276 low power, long range transceivers
[43,44]. The choice of the LoRa parametric values, spreading factor, bandwidth,
code rate and frequency determines the transmission range, resilience to interference
and data rate. Following are brief description of the four LoRa parameters:

2.3.2.1 Spreading Factor

The spreading factor (SF) is a fundamental parameter in LoRa modulation which
play a significant role in the performance and efficiency of the data transmission.
The SF value is the duration of each symbol and directly affects the data rate
and receiver sensitivity [45]. A higher spreading factor results in a longer symbol
duration, thereby increasing the robustness against interference and enhancing
the receiver’s ability to capture and demodulate weak signals [46]. However, this
comes at the cost of a reduced data rate due to the increased symbol duration.
Conversely, a lower spreading factor provides a higher data rate but sacrifices
sensitivity to weak signals. Therefore, selecting an appropriate spreading factor is
critical in LoRa systems, as it involves a trade-off between data rate and range,
allowing system designers to optimize communication performance according to
specific application requirements.
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2.3.2.2 Bandwidth

The use of chirp spread spectrum modulation in LoRa spreads the transmitted signal
across a wide bandwidth, allowing for robust and reliable long-range communication.
The choice of bandwidth in LoRa determines the data rate and the number of
simultaneous transmissions that can coexist within a given frequency band. LoRa
offers different bandwidth options, such as 125 kHz, 250 kHz, 500 kHz, and
even wider variations, depending on regional regulations and specific application
requirements [47].

2.3.2.3 Code Rate

LoRa utilizes forward error correction (FEC) techniques to enhance the reliability
of transmitted data. The code rate determines the amount of redundancy added
to the transmitted signal, impacting the error correction capability. A higher
code rate, such as 4/5 or 4/6, (e.g., where there four bits of useful information
are encoded in five or six transmission bits) provides stronger error correction
capabilities by adding more redundant bits. This improves the system’s ability to
recover from transmission errors, thereby increasing the reliability of data reception.
In LoRa, four coding rates are currently used 4/5, 4/6, 4/7, and 4/8 [48].

2.3.2.4 Frequency

LoRa operates within unlicensed frequency bands, which offer the advantage of
not requiring any license fees for utilization. These frequency bands are commonly
referred to as industrial, scientific, and medical (ISM) bands [49]. Specifically, LoRa
operates in the sub-GHz range, with frequencies around 433 MHz, 868 MHz, or 915
MHz, depending on the specific regulations applying in different regions. These
unlicensed frequency bands enable LoRa to achieve long-range communication
capabilities and are well-suited for a variety of applications. By operating within
unlicensed bands, LoRa allows for greater accessibility and flexibility in deploying
wireless communication systems without the need for costly licensing procedures.

2.3.3. LoRa Physical Layer

LoRa chirp modulation is patented with no theoretical description provided
[50]. Knowing the chirp modulation employ the frequency shift scheme, the
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best description of the LoRa modulation is Frequency Shift Chirp Modulation
(FSCM) [50]. Recently, the mathematical description of the LoRa physical (PHY)
layer has been extensively studied [51,52]. In LoRa, the symbols are transmitted as
frequency-shifted chirps with bandwidth B = 1

T , where T is the symbol transmission
duration. The basic chirp signal at time (nT) where the frequency increase linearly
with bandwidth is described as [52]

x0(nT) =

√
1

2SF exp
[
j2π(nB/2SF)nT

]
(2.11)

where n = 0, 1, . . . , 2SF − 1 denoted the the sample index at T, SF ∈ {7, 8, ..12}.
Once it reaches the maximum bandwidth, the chirp signal wraps around back to
zero frequency, creating a cyclic pattern as shown in Fig. 2.7. This wrapping
behaviour ensures that the chirp signal remains within the specified bandwidth
and does not exceed it, while utilizing the available frequency spectrum effectively.
The transmitted LoRa symbol is expressed as [52]

xi(nT) = exp
[
j2π(i+ n) mod 2SF n

2SF

]
(2.12)

where i ∈
{
0, 1, ..., 2SF − 1

}
and mod is the Modulo operation.

The demodulation in LoRa is determined by the orthogonality of basis LoRa signals,
where the cross-correlation is given as [50]

Cl,i =
2SF−1∑
n=0

xi(nT).x∗l (nT) =

{
1 l = i

0 l ̸= i
(2.13)

where Cl,i denotes the cross-correlation of LoRa basis signal xl(nT).xi(nT)∀l, and
x∗l (nT) is the complex conjugate of the basic chirp.
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Figure 2.7: Chirp signal

2.3.4. Interference Models for LoRa

This subsection provides an overview of the various interference models applicable
to LoRa technology. LoRa systems may encounter different types of interference,
which can significantly impact their performance. Two primary forms of interference
are discussed in this section: cross-technology interference and same-technology
interference. A graphical representation of the interference types in LoRa is shown
in Fig. 2.8.

2.3.4.1 Cross-Technology Interference

Cross-technology interference is observed when diverse technologies coexist within
the same Industrial, Scientific, and Medical band as, for instance, with SigFox. The
influence of other technologies on the performance of LoRa has been extensively
investigated and reported in the literature [53,54].

2.3.4.2 Same-Technology Interference

Same-technology interference in LoRa refers to instances where a LoRa signal
experiences interference from other LoRa signals. This type of interference can be
further divided into two categories based on the spreading factors employed by the
interfering signals.
The first category includes interference from other signals that employing the
same spreading factor as the affected LoRa signal. The second category involves
interference from signals that use different spreading factors. A study by Bor et



CHAPTER 2. BACKGROUND THEORY 41

al. [55], investigated the scalability of LoRa networks in the presence of same-
spreading-factor interference. The study utilizes a simplified interference model,
assuming that the transmitted packet is affected by interference packets with the
same SF, and relay on receive signal strength (RSS) method at the receiver.

Figure 2.8: Interference types in LoRa

2.4. Chapter Summary

In conclusion, this background theory chapter has provided an overview of the
fundamental concepts and principles related to SPC, in contrast to long packet
communication. The key differences between these two approaches are discussed,
highlighting the unique challenges and considerations associated with short packets,
such as the impact of metadata size and the need for efficient overhead design.
Furthermore, different types of ML algorithms are explored to provide a basic
understanding of the algorithms applied in this thesis. Finally, an overview of
the LoRa system is provided, covering the basics of LoRa modulation, the unique
parameters, and the different types of interference that occur in LoRa.



Chapter 3

Accurate Evaluation of Packet
Error Probability for Short Packet
Communications

This chapter presents a new mathematical analysis of the performance of short
packet communications in different wireless communication scenarios. This results
in new accurate expressions for the average packet error probability in a system with
K-interfering packets. The results are investigated by throughput performance.
The rest of this chapter is organized as follows: Section 3.1 introduces the chapter
and states the main contribution made by this research. Related work is presented
in Section 3.2. Section 3.3 describes the system model with interference expression
and the distribution of SINR is provided in Section 3.4. Section 3.5 introduces
the analysis of the packet error rate, and the throughput analysis is provided in
Section 3.6. The results are presented in Section 3.7. Finally, Section 3.8 concludes
the chapter.

3.1. Introduction

Information theory played a pivotal role in developing communication theory,
including various applications such as statistics and coding. However, its impact
on communication systems has been somewhat limited, as pointed out in [7].
This limitation is primarily due to the asymptotic nature of information theory.

42
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Shannon’s formulation of channel capacity necessitates infinitely large blocklength
to ensure very low error probabilities. Consequently, classical information measures
cannot effectively address scenarios where blocklengths are finite. The concept of
finite blocklength (in this chapter, finite blocklength and short packet are used as
synonyms) is linked with the emerging requirements of ultra-reliable low latency
(URLL) [56]. Thus, the finite blocklength challenge is a fundamental aspect that
must be tackled to fully understand its performance in practice.
The contributions of this chapter can be summarized as:

• A novel analysis is presented for evaluating average packet error probability
with a random number of interfering packets for short packet transmission.

• The performance of two real scenarios with different distributions is
introduced.

• The effect of the coding rate (r), packet length (L), and throughput with
different numbers of users (M) have been studied.

3.2. Related Work

Several studies have been conducted to characterize the performance of
communication systems with short packet transmission and provide designs that
suit the new requirements of SPC. In the pioneering work by Polyanskiy et al. [11],
information-theoretic limits on the achievable rate were introduced for a given block
length and error rate. Since then, this work has been extended to different scenarios
to further investigate the performance of SPC. The study in [57], investigated the
performance of SPC in a single-hop transmission system under the influence of
additive white Gaussian noise (AWGN). This research aimed to assess the efficiency
of SPC in the presence of AWGN and determine the achievable rate under such
conditions. Durisi et al. examined the maximum achievable rate in a multi-antenna
system in a Rayleigh fading environment [58]. This study aimed to evaluate the
trade-off between throughput, latency, and reliability using finite blocklength. By
considering the impact of fading and employing multiple antennas, the authors
aimed to improve the performance of SPC in realistic wireless communication
scenarios. The authors in [59] evaluated packet error rate performance for half
duplex and full duplex. This paper concluded that the full duplex performance is



CHAPTER 3. ACCURATE EVALUATION OF PACKET ERROR
PROBABILITY FOR SHORT PACKET COMMUNICATIONS 44

superior to the half duplex in the SPC environment.
Many studies have focused on the SPC performance within the context of non-
orthogonal multiple access (NOMA).Cooperative NOMA was investigated by Lai et
al. [60], while downlink transmission NOMA was examined by [61,62]. Additionally,
the performance of SPC has been extensively studied with an intelligent reflecting
surface (IRS) [63, 64]. Cognitive radio systems have also been a subject of
investigation for SPC performance, as explored in [65, 66]. Furthermore, the
reliability of SPC in Unmanned Aerial Vehicle (UAV) communication systems has
been addressed by [67].
However, despite the extensive research conducted on SPC, there is a notable lack
of studies focusing on the performance of such systems under interference scenarios.
Recent research efforts have aimed to address this gap. For instance, Kumar et
al. studied the performance in the presence of interference from two users [68].
Similarly, Vu et al., derived a closed-form expression for the block error rate and
throughput considering co-channel interference and imperfect successive interference
cancellation with two Non-Orthogonal Multiple Access (NOMA) users [69].
These studies highlight the importance of considering interference in short packet
transmission and provide valuable insights into the system’s performance under
realistic interference conditions. It is worth noting that many theoretical studies in
the past have made assumptions regarding a limited number of interferences and
the availability of data for transmission by the users. In contrast, our work aims
to provide a more accurate analysis that considers random interference scenarios,
which will further enhance the understanding of SPC system performance in
realistic settings.

3.3. System Model

Consider a short packet transmission system model in a slow Rayleigh fading
environment. The received signal is affected by K interfering packets. Let a
reference packet (packet 0) be subjected to other interference packets (K − 1) at
the receiver, as shown in Fig. 3.1. The signal at the front end of the receiver can
be written as

y0(t) =
√

2p0h0x0(t) +
√

2pk

K−1∑
k=1

hkxk(t− τk) + w(t) (3.1)
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where w (t) is white Gaussian noise with two-sided power density N0 and time
offset τk. xk (t) is the kth packet 1, 2, . . . , K − 1 represented as

xk(t) =
L−1∑
i=0

c
(k)
i ψ(t− iT ) (3.2)

pk is the average power of the received packet (which depends on the transmitted
power and path loss of the kth packet). hk is the Rayleigh fading complex gain
where the fading is assumed to be constant during the packet’s transmission time.
The channel gains are complex Gaussian with E [hi ∗ hj] = 1 when i = j and 0
otherwise. The c(k)i is the ith symbol in the packet. In the case of QPSK it equal to
c
(k)
i = a

(k)
i − jb

(k)
i where a(k)i and b(k)i are the binary inphase and quadrature-phase

symbols with values in {−1, 1}. ψ(t) is a time-limited waveform shape with interval
[0,T) and normalized to 1

T

∫ T

0
|ψ(t)|2 dt = 1, T represent a symbol duration, and L

is the packet length.

Figure 3.1: Example of interfering packets. In Packet 1, symbol 1 interferes with
symbols 1 and 2 of packet 0.

Accordingly, the decision variable of the inphase ith symbol of the reference
packet is

Si = Re

{
a
(0)
i

√
2p0|h0|+

K−1∑
k=1

hk
√

2pkIk,i + ηi

}
(3.3)

where the ηi is the complex Gaussian variable with variance N0

2T
and Ik,i =

1
T

∫ iT

(i−1)T
ψ∗(t)xk(t− τk)dt, represents the interference component resulting from
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the kth interference signal, given as

Ik,i =
[
a
(k)
i−1R(τk) + a

(k)
i R̂(τk)

]
− j

[
b
(k)
i−1R(τk) + b

(k)
i R̂(τk)

]
(3.4)

where R(τ) and R̂(τ) denote the continuous partial correlation functions of ψ (t)

shaping waveform expressed as

R(τ) =
1

T

∫ T

0

ψ (t+ T − τ)ψ∗ (t) dt

R̂(τ) =
1

T

∫ T

0

ψ (t− τ)ψ∗ (t) dt.

Consider the case of a rectangular pulse shape, R(τ) = τ and R̂(τ) = 1 − τ .
Therefore, Eq. (3.4) reduces to

Ik,i =
[
a
(k)
i−1τk + a

(k)
i (1− τk)

]
− j

[
b
(k)
i−1τk + b

(k)
i (1− τk)

]
. (3.5)

It is important to note that when we fix the random variables
p0, h0,

{
a
(k)
i , a

(k)
i−1, b

(k)
i , b

(k)
i−1, τk, pk

}
, the decision variable in Eq. (3.3) becomes

Gaussian with a conditional mean

E [Si | p0, h0] = ±
√
2p0 |h0| (3.6)

and conditional variance

Var
(
Si|a(k)i , a

(k)
i−1, b

(k)
i , b

(k)
i−1, τk, pk

)
=

K−1∑
k=1

pkvk,i +
N0

T
(3.7)

where vk,i is obtained from Eq. (3.4)

vk,i = Var
(
Ik,i|a(k)i , a

(k)
i−1, b

(k)
i , b

(k)
i−1, τk

)
=
[
a
(k)
i−1R(τk) + a

(k)
i R̂(τk)

]2
+
[
b
(k)
i−1R(τk) + b

(k)
i R̂(τk)

]2
. (3.8)

Consequently, the average bit error probability can be derived exactly by
computing the means of the Gaussian error function

pb =
1

2
E

[
erfc

√
p0|h0|2∑K−1

k=1 pkvk,i +
N0

T

]
. (3.9)
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Observe that the expectation is to be computed with respect to the three random
variables: τ , the channel gains h0, h1, . . . , hK−1 and powers of the received packets
p0, p1, . . . , pK−1 in addition to the variances vk,i,. Earlier studies focused on
obtaining the distribution of Var(S) to solve for the average of Eq. (3.9) with infinite
block length [70]. In this chapter, we compute the statics of the instantaneous
signal-to-interference plus noise ratio (γ) instead of using Var(S) for finite block
length.

γ =
1

2

E2[Si]

Var(Si)
=

p0|h0|2∑K−1
k=1 pkvk,i +

N0

T

.

Accordingly, to find a closed-form expression, the problem of computing the average
bit error rate is changed to evaluating the average of (erfc

√
(γ)) with respect to

the random variable γ. This method was introduced in [71] to find the accurate
bit error probability in an infinite blocklength system.

3.4. The Distribution of the SINR

Condition on the random variables {ṽk, pk}K−1
k=1 , K. Recall that |h0| is a complex

Gaussian, thus in Rayleigh fading, |h0|2 becomes an exponentially distributed
random variable. Therefore, we obtain the conditional distribution function of the
equivalent SINR (γ) at the ith symbol

Pr(γ > z | {ṽk, pk}K−1
k=1 , K) = e

−z
N0
Tp0 e

−z
pk
p0

∑K−1
k=1 ṽk (3.10)

Condition on K and p0, and assume the K packets are independent

Pr (γ > z|K, p0) = e−
z

SNRV K−1 (z) (3.11)

where

V (z) = E[e−zpkvk,i ] (3.12)

Note that vk,i depends on independent random variables a(k)i , a
(k)
i−1, b

(k)
i , b

(k)
i−1 that

take values of {1,−1}, and τk which is uniform in (0,T). To find V (z) we condition
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on τk and pK . Using in case of rectangular pulse shapes (3.8) we obtain

V (z|τk, pk) = E[e−zpkvk |τk, pk]

=

[
1

2
e−zpk +

1

2
e−zpk(1−2τk)

2

]2
.

(3.13)

When we average out τk which is uniform (0,T], we obtain

V (z|pk) =
1

4
e−2zpk +

1

4

√
π

zpk
e−zpkerfc (

√
zpk) +

1

16

√
2π

zpk
erfc

(√
2zpk

)
. (3.14)

Finally, we have the complementary cumulative distribution function (CCDF) for
the SINR. In the next section, we will find the average packet error probability.

3.5. Packet Error Rate Analysis

This section presents an exact analysis of the packet error probability in the context
of short-packet transmission. The Shannon theorem was basically established for
infinite packets, which is not valid with the assumption of short packets. Polyanskiy
et al., in [11] introduced a unified approach to obtain tight bounds on the maximal
coding rate for SPC

r∗(L, ε, γ) = C(γ)−
√
Vd(γ)

L
Q−1(pe) +O(

logL
L

) (3.15)

where L is packet length, C(γ) is the capacity and Vd(γ) is the channel dispersion [11]

C(γ) = log2(1 + γ)

Vd(γ) =
γ(γ + 2)

2(γ + 1)2
log22 e.

From Eq. (3.15), the conditional packet error probability can be expressed as

pe(γ) = Q

L log2 (1 + γ) + 1
2
log2 L− rL

√
L log2 e

√
1− 1

(1+γ)2

 (3.16)
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which can be simplified to

pe(γ) = Q

(1 + γ)
L log2 (1 + γ) + 1

2
log2 L− rL

(log2 e)
√

L
√

(1 + γ)2 − 1


= Q

(
√

L
(1 + γ)√
γ2 + 2γ

(
log2 (1 + γ)

log2 e
+

1

2

log2 L
L log2 e

− r
log2 e

)) (3.17)

where log2(1+γ)
log2 e

= ln (1 + γ). By adding the term lnL
L , the packet error probability

is formulated as

pe(γ) = Q

(
√

L
(1 + γ)√
γ2 + 2γ

(
ln (1 + γ) +

lnL
2L
− r ln 2

))
. (3.18)

Using the relation of Q (z) = 1
2
erfc

(
z√
2

)
we obtain

pe(γ) =
1

2
erfc

(√
L
2

(1 + γ)√
γ2 + 2γ

(
ln (1 + γ) +

1

2

lnL
L
− r ln 2

))
. (3.19)

Therefore, the packet success probability can be obtained from

Ps (γ) = 1− 1

2
erfc

(√
L
2

(1 + γ)√
γ2 + 2γ

(
ln (1 + γ) +

1

2

lnL
L
− r ln 2

))
. (3.20)

Taking the average of Eq. (3.20) to find the average packet success probability
with respect to the coding rate and the interfering packets

Ps = 1− 1

2
E

[
erfc

(√
L
2

γ + 1√
γ2 + 2γ

(
ln(γ + 1) +

1

2

lnL
L
− r ln 2

))]

= 1− 1

2

∫ ∞

0

erfc

(√
L
2

z + 1√
z2 + 2z

(
ln(z + 1) +

1

2

lnL
L

r ln 2
))

fγ (z) dz.

(3.21)

The expectation in Eq. (3.21) is taken with respect to the SINR, fγ(z). The pdf
of f(γ) is unknown and cannot be found in closed form. However, in the special
case of Rayleigh fading, the expression for the CCDF Pr(γ > z) has already been
derived in Section 3.14. Using integration by parts, the expression can be rewritten
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as

Ps = 1− 1

2

(
2 +

∫ ∞

0

∂

∂z
erfc

(√
L
2

z + 1√
z2 + 2z

(
ln(z + 1) +

1

2

lnL
L
− r ln 2

)))
Pr (γ > z) dz (3.22)

where Pr(γ > z) is given in Eq. (3.11), and we use the fact that

lim
z→0

erfc

(√
L

z + 1√
z2 + 2z

(ln(z + 1)− r ln 2)
)

= lim
x→−∞

erfc (x) = 2. (3.23)

The derivative of the erfc function results in the following

∂

∂z
erfc

( √
L(z + 1)√

z2 + 2z log2 e
(log2(z + 1)− r)

)
= −2

√
L√
2π
A (z, r) exp (−LD (z, r)) .

(3.24)
The notation D (z, r) and A (z, r) is used for the simplicity of the expression, with

D (z, r) =
(z + 1)2

2(z2 + 2z)
(ln(z + 1) +

lnL
2L
− r ln 2)2

and

A (z, r) =
1√

z2 + 2z

(
1−

ln (z + 1) + lnL
2L − r ln 2

z2 + 2z

)
.

Thus Eq. (3.22) reduces to

Ps =

√
L
2π

∫ ∞

0

A (z, r) e−LD(z,r) Pr (γ > z) dz

=

√
L
2π

∫ ∞

0

A (z, r) e−LD(z,r)− z
SNRV K−1 (z) dz.

(3.25)

Eq. (3.25) is a new expression for the average error probability in SPC. It is used
in the next section for the system throughput.

3.6. Throughput

This section will analyze the throughput of two real wireless communication
scenarios considering binomial and Poisson distributions.
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3.6.1. Binomial Distribution

In practice, users are not transmitting all the time. Thus the transmission occurs
only for the active user. Let’s consider a random number of active users K
distributed uniformly, where K is represented as a binomial random variable with
probability [72]

Pr(K = i) =

(
M

i

)
ρi(1− ρ)M−i (3.26)

where M is the total number of users, and ρ is the probability that an arbitrary user
is active. The three parameters r,M,K can be tuned to analyze the performance.
The throughput

S (r, ρ,M) = rE [KPs (r|K)] . (3.27)

It is known that E [K] = ρM , and the probability generating function (PGF) of
the binomial random variable is given as [73]

E
[
V K
]
= (1− ρ+ ρV )M . (3.28)

Then,

E
[
KV K−1

]
=

∂

∂x
E
[
V K
]

(3.29)

= ρ [1− ρ+ ρV ]M−1 .

Accordingly,
E
[
KV K−1 (z)

]
= ρ [1− ρ+ ρV (z)]M−1 . (3.30)

Substituting Eq. (3.30) into Eq. (3.27) gives the throughput as

S (r, ρ,M) = rρM

√
L
2π

∫ ∞

0

A (z, r) e−LD(z,r)− z
SNR [1− ρ+ ρV (z)]M−1 dz. (3.31)

Eq. (3.31) is the throughput expression when K is binomial.

3.6.2. Poisson Distribution

In a realistic wireless communication system, specifically in massive machine type
communication (mMTC) scenario, it is reasonable to consider a large number of
users with random interference. Assuming a Poisson distribution where the number
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of users tends to infinite with K considered as a Poisson random variable. In the
limit with an infinite number of users M →∞ and ρ→ 0, then in the limit the
success rate would be Mρ→ λ, which is a parameter of Poisson distribution. The
PGF of the Poisson random variable is defined as [73]

E
[
V K
]
=

∞∑
K=0

V K λ
K

K!
e−λ = e−λ(1−V ). (3.32)

Accordingly, Eq. (3.11) can be written as

Pr(γ > z) = e−
z

SNR e−λ(1−V (z)). (3.33)

The packet success probability, as in Eq. (3.25), when expressed as Poisson
distribution, is

Ps =

√
L
2π

∫ ∞

0

A (z, r) e−LD(z,r) Pr (γ > z) dz

=

√
L
2π

∫ ∞

0

A (z, r) e−LD(z,r)− z
SNR e−λ(1−V (z)) (z) dz.

(3.34)

Then, the throughput is given as

S = rλPs. (3.35)

Eq. (3.35) is the throughput expression when K is Poisson.

3.7. Results and Discussion

In this section, analytical results of packet success probability Eq. (3.25), binomial
throughput Eq. (3.31) and Poisson throughput Eq. (3.35) are presented. Let’s
consider an equal power level where p0 = p1 = . . . = pK−1 = p. First, we validate
the packet success probability by comparing the analytical with a Monte-Carlo
simulation. As shown in table 3.7, the analytical results closely match the simulation
results.
Figure 3.2 illustrates the relationship between the packet success probability
and different coding rate values (r = 0.2, 0.5, 0.8); note r ranges from 0 to 1.
The graph indicates that a lower coding rate leads to a higher packet success
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probability, confirming our results as expressed in Eq. (3.25). This finding suggests
that reducing the transmission rate improves the likelihood of successful packet
transmission in an interference environment. Additionally, the results demonstrate
the negative impact of an increasing number of interferers on the probability packet
success.
In our analysis of the performance of short packets, examining the influence of
packet length on packet delivery in the presence of interference is crucial. Fig.
3.3 and Fig. 3.4 provide insights into this effect, focusing on the relationship
between packet length and packet success probability. Remarkably, both figures
reveal consistent findings, wherein the packet success probability is better when the
packet length is small L=50 and when L increases, the packet success probability
remains unchanged.
For binomial distribution we first examine the performance of the throughput as a
function of M and ρ. In Fig. 3.5, the throughput is plotted against the number of
users for different coding rate values. The results demonstrate a distinct pattern
with a high coding rate, such as 0.8; the throughput experiences a sharp increase
initially with a low number of users. However, as the number of users grows, the
throughput declines significantly. Conversely, a low coding rate of 0.2 yields a lower
initial throughput, but it gradually improves as the number of users increases,
peaking between 15 to 20 users. Fig. 3.6, presents the impact of the packet
length on the system throughput. Notably, the results indicate that a lower packet
length yields better throughput performance, thereby validating the effectiveness
of our mathematical analysis in the context of SPC. Additionally, Fig 3.7 show
the relationship between the throughput and the probability of active users for
r = 0.2, 0.3, 0.5. The plots all starts with a high value, rise to a maximum and
decrease dramatically. This indicates that when ρ = 1, the number of interference is
high, so the throughput is decreased. Similarly, Fig. 3.8 illustrates the performance
of the throughput with three values of L, 50, 100, 150. This exhibits a similar
pattern with different packet lengths. However, the performance of the smallest
length L=50 is superior to the larger length L=100 and L=150.
Next, we investigate the performance of the throughput against the active users
λ in the case of Poisson distribution. Fig. 3.9, depict the performance of the
throughput with different r. The results illustrate a similar pattern where the
throughput initially shows a steep increase until it reaches a peak at λ = 3, λ = 5,
and λ = 9, for corresponding values of r = 0.5, r = 0.3, and r = 0.2 respectively.
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Subsequently, the throughput experiences a dramatic decline. This behaviour is
attributed to the relationship between the parameter λ and the interference. As λ
increases, which indicates that the number of active users increases, the number of
interference increases, adversely impacting the throughput. When the value of λ
is small, indicating a low number of active users, means there is low interference,
with no significant need for extensive coding. However, higher coding rate is
needed as the number of active users increases. Similarly, Fig. 3.10 illustrates
the performance of the throughput for three values of L. The plot shows a similar
pattern to that in Fig. 3.9, with different packet lengths. It is seen that the
performance of the smallest length L=50 outperforms the larger lengths.

Table 3.1: Packet success probability comparison with different K values between
analytical and simulation with L=50, SNR=50 dB and r=0.3.

K Analytical Simulation
1 0.97 0.98
2 0.76 0.74
3 0.59 0.52
4 0.47 0.46
5 0.38 0.42
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Figure 3.2: Packet success probability versus the number of interfering packets
with different coding rates r, L=50, and SNR=100 dB
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Figure 3.3: Packet success probability versus the number of interfering packets for
three values of L, with r=0.5 and SNR=100 dB.
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Figure 3.4: Packet success probability versus the packet length with different
interfering packet values, r=0.5 and SNR=100 dB.
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Figure 3.5: Throughput versus the number of users with different r values, L=50,
ρ = 0.5, and SNR=100 dB in the case of the binomial distribution.
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Figure 3.6: Throughput versus the number of users with different L values, r=0.2,
ρ = 0.5 and SNR=100 dB in the case of the binomial distribution.
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Figure 3.7: Throughput versus ρ with different r values, L=50, M=20 and SNR=100
dB in the case of the binomial distribution.
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Figure 3.8: Throughput versus ρ with different L values, r=0.2, M = 20 and
SNR=100 dB in the case of the binomial distribution.
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Figure 3.9: Throughput versus λ with different r values, L=50 and SNR=100 dB
in the case of the Poisson distribution.
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Figure 3.10: Throughput versus λ with different L values, r=0.2 and SNR=100 dB
in the case of the Poisson distribution.

3.8. Chapter Summary

This chapter introduces a new analysis technique to accurately evaluate packet
error probability in interference environments within SPC systems. By considering
finite blocklength assumptions and utilizing an equivalent signal-to-interference
plus noise ratio, we derive an exact expression for packet error probability. This
approach considers the specific characteristics of SPC systems, such as packet
length. It offers a more precise understanding of their performance in the presence of
interference. The accuracy of the expression is validated by Monte Carlo simulation.
Our results show the impact of different short packet parameters, such as packet
length and coding rate, on the packet success probability and system throughput.
In the subsequent chapter, the performance of SPC with various sparse recovery
algorithms will be investigated.



Chapter 4

Sparse Recovery Algorithms for Short
Packet Communications

In this chapter, four recovery algorithms are introduced for sparse vector coding.
The aim is to apply different sparse recovery algorithms and study the relative
performances of algorithms comprehensively.
The chapter is organized as follows. Section 4.1 describes how the chapter
contributes to the present work. Section 4.2 provides the literature review. Section
4.3 introduces compressive sensing in SPCs. Section 4.4 presents the system model.
Section 4.5 describes the sparse recovery algorithms. The performance analysis is
introduced in Section 4.6. The results are presented in Section 4.7. Finally, Section
4.8 summarizes the chapter.

4.1. Introduction

The fifth and subsequent generations of mobile technology will support a massive
number, in the many billions, of connected devices and will play an important
role in many key applications of the Internet of Things (IoT) such as the Internet
of Health (IoH) and Internet of Vehicles (IoV) [74]. In such applications, the
transmitted information will mainly be control instructions and sensor information
and be small in size; thus, effective and efficient short packet communication is
considered a key requirement. Recently, a new scheme that successfully supports
SPC, namely sparse vector coding (SVC) has been developed [75]. The principle
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of SVC is to transmit the information in sparse vector form. This step is achieved
by converting the information to a sparse vector and sending the sparse vector by
random spreading. Then, the SVC formulates the decoding process for the sparse
recovery problem using position indices [76]. In the context of SPC, the existing
work concentrates on developing sparse coding techniques with different system
models but not on the performance of the recovery algorithms. The decoding for
SVC schemes is a process of finding the positions of the non-zeros in the transmitted
sparse vector by compressed sensing. One potential problem is that the incorrect
selection of the non-zero index leads to the failure of packet decoding. Also, in
SPC, the packet delivery time is important according to URLL standards [77]. This
chapter introduces four different compression-sensing algorithms, also known as
sparse recovery algorithms. The four algorithms are comprehensively investigated
using different parameters.
The contributions of this chapter are:

1. It introduces two new compressed sensing algorithms: Compressive Sampling
Matching Pursuit (CoSaMP) and Stagewise Matching Pursuit algorithms
(St-OMP) to SVC for use with SPC. Then, we compare their performances
with simplified Multiple Matching Pursuit (MMP) and Orthogonal Matching
Pursuit (OMP) algorithms and present a summary of the results (Table 4.1).

2. It shows the simulated recovery time, covariance, block error rate, and
recovery error for MMP, OMP, St-MP, and CoSaMP.

3. It presents an analysis of the Symbol Error Rate (SER) by pairwise error
probability.

4.2. Related Work

Compressive sensing (CS) has received significant attention over the past few years
in many fields, such as radar imaging [78], image processing [79], electromagnetics
[80] and, wireless communication [81]. Compressed sensing provides a new paradigm
for sparse signals. Sparsity is a low-dimension framework of the signal that contains
only a few elements of a coefficient vector [82]. SVC arose from compressed sensing
and has been studied in different system scenarios, where it has shown a lower
block error rate than conventional channel coding [75,76,83].
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In [76], the authors showed the SVC framework to be suitable for wireless
communications. In this paper, the main guidelines and some tips are provided
for applying compressed sensing to wireless communications and the possible
methods of its application. Ji et al. [75] proposed applying SVC to short packet
transmission for ultra-reliable and low latency communication (URLLC) systems.
This work was extended to enhance the performance of SVC by applying M-ary
Quadrature Amplitude Modulation (M-QAM, such as 16-QAM), which introduced
a higher degree of freedom [84], where the non-zero elements are produced from the
same constellation alphabets. Later, Zhang et al., [83] provided a superimposed
transmission scheme to further improve the transmission of SVC. The challenge of
the pilot overhead with short packets in SVC systems has been widely recognized,
and in [85], the possibility of a pilot-less SVC was suggested for short packet
transmission.
On the other hand, the decoding of SVC is done by finding the position of non-zero
elements using sparse recovery algorithms. However, most of the studies related to
SVC in SPC use MMP greedy algorithm support vector recovery (the non-zero
elements). The MMP selects multiple indices in a tree search for the best indices
which form the support vector [86].

4.3. Compressive Sensing in SPC

The basic concept of compressed sensing is to restore the original signal using a
small number of measurements after having converted the signal to a sparse
signal. Compressed sensing theory requires fewer measurements than the
Nyquist/Shannon sampling theorem and involves three main steps: sparse
representation, measurement matrix (encoding), and sparse recovery (decoding)
[75]. The driving force behind sparse vector coding was to enable short packet
transmission SVC. The authors introduced a new scheme suitable for SPC, which
was relayed on a sparse vector. The first step was to map the information into
a sparse vector. The second step was to take a small number of measurements
from the sparse vector. The third and final step was to recover a sparse vector via
the small number of measurements and a randomly generated matrix (the sensing
matrix) as discussed in [83].
The sparsity of the signal is described by the number of non-zero elements (Z). For
example, the sparsity of matrix s, where s =

[
0200400

]
is Z=2 and the position of
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the non-zero elements, called support elements Ω = {s2, s5} = {2, 5}. Then, the
sparse signal can be expressed as

y = s2a2 + s5a5 (4.1)

where a is a column in the sensing matrix A = HC, where C is a randomly
generated matrix.
Generally, the received signal is given by [76]

y = HCs+w. (4.2)

Thus, if sparsity, Z, is two, and the length of the sparse vector is N , then
(
N
Z

)
columns should be checked by the sparse recovery algorithm to determine the
correct sparse signal. The greedy algorithm is one form of a sparse recovery
algorithm. It is an iterative algorithm that seeks a local optimum in each iteration
to obtain the global optimal selection on completion of the algorithmic process.

4.4. Sparse Vector Coding System Model

We consider the sparse vector coding system model as a modulated transmitted
vector, s ∈ CN×1, with added white Gaussian noise (AWGN) and a received signal

y = HFs+w, (4.3)

where y ∈ Cm×1 and H ∈ Cm×m is the diagonal matrix with the elements
representing each resource hii, F ∈ Cm×N is the symbol and resource mapping
matrix and w ∼ (0, σ2

nI) is additive white Gaussian noise.
In the SVC system, after mapping the information to a sparse vector, we transmit
a short packet as shown in Fig. 4.1. The encoded information bits depend on
choosing the positions of the Z sparse and N symbols, so the number of encoded
bits is equal to

⌊
log2

(
N
Z

)⌋
. Then, using a codeword contained in the spreading

codebook the non-zero elements are spread into m resources. Thus, the matrix F

is replaced by the codebook matrix C as in Eq. (4.2). The received signal is given
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as [75]

y = Hx+w

= [Hc2 Hc5]

[
s2

s5

]
+w

(4.4)

where x = Cs.

Figure 4.1: SVC system block diagram.

4.5. Sparse Recovery Algorithms

In this work, we focus on the performance of the recovery algorithms. The first
basic algorithm is OMP, which uses only one path to find the recovered signal.
Thus, if an incorrect index is chosen at the start of the iteration, this mistake will
continue until the end, and the algorithm’s output will be incorrect. To overcome
this drawback, the CoSaMP algorithm selects more than one index in each iteration,
and the MMP algorithm uses different paths in a tree-based strategy to find the
optimum solution.

4.5.1. Orthogonal Matching Pursuit (OMP)

The main concept of the OMP is to find one support in each iteration. The process
starts by checking the correlation between the residual (r = y−As) and the matrix
A to find the largest correlation. Specifically, the first step in OMP is solving the
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optimization problem by finding the index I t = argmax |⟨rt−1, ai⟩|. Then, merge
the selected column with the index matrix. After that, the new signal is estimated
by solving the least squares problem, as shown in Algorithm 1. Let us define A to
be the sensing matrix, y as the observed measurement, St is the support set at
t-th iteration and Z be the sparsity of the vector.

Algorithm 1 Orthogonal Matching Pursuit
1: Input:A,y,Z
2: Initialize:
3: S0 ← ϕ
4: t← 0
5: r0 ← y
6: while t < Z do
7: t = t+ 1
8: I t = argmax |⟨rt−1, ai⟩| ▷ Identify
9: St = St−1

⋃
{I t} ▷ Merge

10: ŝt = argmin ∥y −As̃∥2
s̃:supp(s̃)⊆St

▷ Estimate: least square

11: rt = y −Aŝt ▷ Update
12: end

4.5.2. Compressive Sampling Matching Pursuit (CoSaMP)

Compressive Sampling Matching Pursuit is an improvement of the OMP algorithm
while using a similar overall strategy. CoSaMP works by determining the
correlations of the residual vector with the columns of the measurement matrix and
solving the least squares problem for the selected columns. Algorithm 2 introduces
the general definition of the CoSaMP algorithm [87]. The first step of the algorithm
is to correlate the residual r with the columns of the matrix A. Then it selects
the best 2Z columns (where Z denotes the vector’s sparsity) from the measured
matrix A, which is considered the highest correlated value Ar, where lZ is the hard
threshold. The selected columns are expressed as Ar in the algorithm. All elements
are set to zero except the largest 2Z elements, which are added to the support
of the estimation of the unknown vector. The most crucial step in CoSaMP is
solving the least squares problem to obtain the 3Z sparse estimate, when all other
elements are set to zero. This step ensures that the estimated vector is Z-sparse
and deletes all the columns that do not correspond to the true signal. The OMP
algorithm, on the other hand, takes the wrongly selected column to the end and it
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cannot be removed.

Algorithm 2 Compressive Sampling Matching Pursuit
1: Input:A,y,Z
2: Initialize:
3: S0 ← ϕ
4: ŝ0 ← 0
5: t← 1
6: while stopping criterion do
7: r ← y −As ▷ Residual error vector
8: S̃t ← S(t−1)

⋃
supp(l2Z(A

T r))

9: s̃t ← argmin
∥∥y −A(AT r)

∥∥2
2

▷ Least square error
10: ŝt ← lZ(s̃

t)
11: St ← supp(ŝt)
12: t← t+ 1

13: end

4.5.3. Multiple Matching Pursuit (MMP)

MMP is referred to as the Tree-based Orthogonal Matching Pursuit algorithm
because it executes a tree search with the help of a greedy strategy [88]. The
main task of the MMP is to find the maximum likelihood that best matches
the original sparse vector. Previously, maximum likelihood searches required
enumerating all possible points with Z, which consumed substantial time. However,
the MMP algorithm carries out an efficient tree search to locate the near-maximum
likelihood [89]. In each iteration, MMP identifies multiple indices, and after some
iterations, the smallest cost function is chosen as provided in [75].

4.5.4. Stagewise Orthogonal Matching Pursuit (St-OMP)

St-OMP is an extended version of the OMP algorithm. St-OMP operates for a
specific number of iterations, and the threshold value should be determined. This
algorithm is sensitive to the threshold value because different threshold values may
result in different outputs [90]. The St-OMP is summarized in the Algorithm 3,
where e is the threshold value, e ∈ (0, 1] [91].
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Algorithm 3 Stagewise Orthogonal Matching Pursuit
1: Input:A,y, e
2: Initialize:
3: S0 ← ϕ

4: t← 0

5: r0 ← y

6: while t = t+ 1 do
7: ct = AT rt−1

8: I t = {I : |ct (I)| > e}
9: St = St−1

⋃
{I t}

10: st = (AT
StASt)−1AT

Sty

11: rt = y −Ast

12: end

4.6. Performance Analysis

In this section, we present a general error probability expression for the proposed
sparse recovery algorithms. The two most common errors in the sparse recovery
algorithm are:

• The recovery algorithm wrongly detects support elements (non-zero index).

• The maximum likelihood finds incorrect symbols after correctly finding non-
zero identification.

Let sΩp be the transmitted symbol and sΩ̃p be the incorrectly detected symbol
(assume p and q are non-zero elements). The incorrect detector decision can be
expressed as

Pr(sΩp → sΩ̃p) = Pr
(∣∣ϕΩ, r

0
∣∣ ≤ max

∣∣ϕi, r
0
∣∣) . (4.5)

Thus, the error probability of identifying the wrong support for a giving channel h
is

Pr(Ω | h) = Pr
(∣∣〈ϕΩ, r

t
〉∣∣ ≤ max

i

∣∣〈ϕi, r
t
〉∣∣) (4.6)

where ⟨, ⟩ is the inner product between two vectors and t is the iteration. For
Z=2, assume the first support is sΩp = ℜΩp + jℑΩp and the second support
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sΩq = ℜΩq + jℑΩq. Thus, for the first iteration, we have

ℜ
〈

ϕΩp

∥ϕΩp∥2
, r0
〉

= ℜ
〈

ϕΩp

∥ϕΩp∥2
, ϕΩp + ϕΩq + w

〉
. (4.7)

When µij = 1,

ℜ
〈

ϕΩp

∥ϕΩp∥2
, r0
〉

= ℜΩp ∥h∥2 + ℜΩq ∥h∥2 µiΩq + ℜ

(
ϕT
Ωp

∥ϕΩp∥2

)
w. (4.8)

where µij denoted the correlation between two column. The pairwise error
probability (PEP) is given by

p(sΩp → sΩ̃p | h) = Q


∥∥∥h(sΩp − sΩ̃p)

∥∥∥2 µ∗

√
2σ2

 (4.9)

where µ∗ = max
i ̸=j
|µij| = max |⟨ϕi, ϕj⟩| is the maximum correlation between two

columns of A and Q(.) is the Q function.
Using the approximation

Q(x) =
1√
2π

∫ ∞

x

exp
(
−x

2

2

)
du. (4.10)

The PEP is

p(sΩp → sΩ̃p | h) = exp


∥∥∥h(sΩp − sΩ̃p)

∥∥∥2 µ∗

2σ2

 . (4.11)

p(sΩ → sΩ̃ | h) =
N∏

i ̸=Ω

Eh

exp


∥∥∥h(sΩp − sΩ̃p)

∥∥∥2 µ∗

2σ2

 | h
 . (4.12)

Since ∥h∥22 follows the Chi-Square distribution with 2m degree of freedom [Lemma
2, [75]] we have

Eh

[
exp

(
∥h∥22
2σ2

)
| h

]
=

∫ ∞

0

exp
(
−xµ
σ2

) xm−1exp(-x)µ
(m− 1)!

dx

=
1

( 1
σ2 − 1)m

.

(4.13)
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Similarly, the SER is

Eh

exp


∥∥∥h(sΩp − sΩ̃p)

∥∥∥2
2
µ∗

2σ2

 | h
 =

(
1 +

(sΩp − sΩ̃p)µ
2

σ2

)−m

. (4.14)

Thus,

N∏
i ̸=Ω

Eh

exp


∥∥∥h(sΩp − sΩ̃p)

∥∥∥2
2
µ∗

2σ2

 | h
 =

((
1 +

(sΩp − sΩ̃p)µ
2

σ2

)−m)N

(4.15)

where µ is the maximum correlation to find the largest magnitude between the
columns. It should be noted that the process of finding the largest magnitude is
different in each algorithm, as shown in Section 4.5.

4.7. Results and Discussion

In this section, we analyse and compare the performance of the four sparse recovery
algorithms. For a fair comparison, we used the same simulation arrangement for
all the algorithms using the random binary spreading codebook with Z=2, m = 42,
and N = 96. We compare the performance of the four algorithms, focusing on
recovery error, covariance, recovery time and Block Error Rate (BLER).

• The recovery error [92] is defined as the error between the original sparse
vector s0 and the recovered sparse signal sr

Error =
∥s0 − sr∥1
∥s0∥

(4.16)

• The covariance is defined as the correlation between the sparse signal and
the sensing matrix. Thus, the covariance of original sparse signal so, and
recovered sparse signal sr is

Cov (s0, sr) = E([so − E(s0)] [sr − E(sr)]) (4.17)

where E is the expectation.

• Recovery time is the time needed to recover the sparse vector.
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Table 4.1: Summary of the performance of four sparse recovery algorithms

Sparse
recovery
algorithms

Column selection Recovery
time

Recovery
error

Covariance

OMP maxj
{
AT rj

}
Fast High Low

CoSaMP 2Zmax
{
AT rj

}
Fast High High

MMP maxj
{
AT rj

}
Slow Low High

StOMP {j : |ct (j)| > e} Fast High Low

• BLER is the ratio of incorrect blocks to total transmitted blocks.

Fig. 4.2 compares the recovery error of all four algorithms with respect to the
number of measurements. Overall, the recovery error gradually decreases with
increasing number of measurements. Interestingly, the MMP algorithm reached
almost zero error in only 17 measurements. Fig. 4.3 shows the covariance of
all four algorithms for different numbers of measurements. It is noticeable that
the MMP algorithm has the highest covariance of all the algorithms up to about
20 measurements, above which all four algorithms asymptotically approach a
covariance value of almost 2. Fig. 4.4 indicates that the MMP algorithm consumes
significantly more time than the other algorithms, with the OMP algorithm being
the fastest. Fig. 4.5 presents the BLER performance of the four algorithms as a
function of SNR. Again, we observe the MMP algorithm outperforms the other
three algorithms by a large margin.
Table 4.1 summarizes the performance of the four sparse recovery algorithms. From
the table, it can be seen that the performance of MMP is better than that of the
other three algorithms with minor recovery errors but suffers from a prolonged
recovery time. The other three algorithms, OMP, CoSaMP, and St-OMP have
shorter recovery times, but at the expense of a high recovery error. To summarize,
the MMP algorithm performs well with sparse recovery with less error; however, it
consumes more time, which does not meet the URLL requirements.
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Figure 4.2: Recovery error with respect to the number of measurements.
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Figure 4.3: Covariance with respect to the number of measurements.
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Figure 4.4: Recovery time with respect to the number of measurements.
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4.8. Chapter Summary

In this chapter, Compressive Sampling Matching Pursuit (CoSaMP) and Stagewise
Orthogonal Matching Pursuit (St-OPM) algorithms have been applied to SVC and
compared their performances with two other sparse recovery algorithms, Multipath
Matching Pursuit (MMP) and Orthogonal Matching Pursuit (OMP) using recovery
error, recovery time, covariance, and block error rate. Additionally, we provide a
performance analysis of SER. The MMP algorithm showed minimum errors when
recovering sparse elements, while OMP was the fastest. The MMP algorithm offers
better performance than the other three algorithms, but time is a strict requirement
with massive machine-to-machine communication and URLL. In the next chapter,
supervised and unsupervised ML algorithms will be applied to reduce the packet
overhead for SPC.



Chapter 5

Short Packet Communications: A
Machine Learning Approach

This chapter introduces a ML approach for signal classification and estimation,
which aims to recover the transmitted information using both supervised and
unsupervised ML algorithms. Two methods are applied to support and improve
this approach, Label Assisted Transmission (LAT) and Silhouette Analysis. These
methods are explained in this chapter, providing insights into how they can be
utilized to enhance the performance of SPC.
The rest of this chapter is organized as follows: Section 5.1 introduces the chapter
and states its main contribution to SPC. A literature review of the application of
ML in SPC is presented in Section 5.2. Section 5.3 describes the system model and
the LAT method. Section 5.4 introduces the clustering framework with applied
algorithms. Section 5.5 presents the simulation results showing the performance of
the Gaussian Mixture Model with Expectation Maximization, Silhouette Analysis
SVM, and KNN. Finally, the chapter summary is presented in Section 5.6.

5.1. Introduction

Massive machine-type communication (mMTC) devices, like temperature sensors,
robots, and drones, possess a unique capability to transmit only a limited amount
of command information. This information usually consists of instructions for
movement, like right and/or left, or basic control commands, such as start and/or

75
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stop [93]. Unlike conditional systems that rely on infinite packet transmission,
mMTC requires the use of short packets to convey this type of information effectively
and efficiently. A notable distinction of finite block length packets is the non-
negligible pilot overhead length. Therefore, it is crucial to explore suitable solutions
tailored to the unique requirements of SPC systems. In this context, pilots, labels,
and training symbols are synonyms that refer to the transmission of known symbols
used for channel estimation.
In signal transmission, transmitted symbols are selected from predetermined
constellation points based on the type of modulation employed. Due to the
relationship between the transmitted symbols and the defined constellation points,
the received signal naturally forms clusters. Utilizing this phenomenon, we propose
a ML framework for signal detection. This framework aims to classify the received
signal according to its corresponding cluster, which is represented according to
the modulation type; however, there is no mapping to the transmitted symbol.
Thus, we use LAT method to provide the correspondence between the transmitted
symbol and clusters [94,95]. Moreover, only one pilot, which corresponds to one
constellation point, is transmitted to overcome the overhead problem in SPC.
The contributions of this chapter are summarized as follows:

• A bit recovery problem is formulated as a clustering and classification problem
using the LAT framework to reduce the packet overhead.

• Two different supervised learning algorithms, namely SVM and KNN, are
applied, and a comparison is made with the unsupervised learning algorithm
referred to as modulation constraints- Gaussian mixture model (MC-GMM).

• Silhouette Analysis is proposed for determining the optimal clustering
solution.

• The performance is evaluated in terms of Bit Error Rate (BER).

5.2. Related Work

The recent academic interest in applying ML to wireless communication has
led to its successful application in tackling various challenges, such as channel
estimation [96–98], and detection [99].
In the context of SPC, Leblanc et al. proposed a deep learning-based channel
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estimator [100], which outperforms traditional methods in terms of both
computational complexity and estimation accuracy. Hoang et al. [101] designed a
deep multiple-output neural network (DMNN) framework to predict the matrices’
reliability and energy efficiency performance in a multi-hop MIMO full-duplex
system under different diversity schemes. Similarly, the authors in [66], introduced
a deep neural network (DNN) algorithm in wireless-powered cognitive Internet-of-
Things (IoT) networks for SPC, considering multiple primary receivers, where the
relay selection is converted to a regression problem.
Several studies have been conducted to reduce the pilot overhead in SPC [102–104].
In [102], the authors proposed a receiver design that uses a virtual pilot by exploiting
the reliable data symbol for channel estimation. While in [103], an optimization
algorithm is introduced to reduce the packet overhead under the constraints of
block error probability and block length. In [104], the authors obtained an upper
bound on packet error rate and optimized the pilot symbols at a given block
length and fixed rate over the MIMO system. In addition, [94] and [95] used
an Expectation Maximization clustering algorithm for signal detection, and pilot
assisted transmission to minimize the packet overhead.
However, some researchers have adopted alternative techniques to minimize the
overhead in SPC. For instance, Ji et al. [86] used sparse vectors to transmit short
packets, while Wu et al. [105] proposed a new transmission method without pilot
signals using sparse vectors. The proposed schemes used a non-zero position of
the sparse vector for data encoding, and employed a DNN to retrieve the non-zero
sparse vector.

5.3. System Model

This section presents a system model for SPC over frequency-flat channels. We
consider a connected transmitter and receiver pair with one antenna each. The
channel response h is assumed to be constant over a packet of N symbols and may
vary from packet to packet. Denoting the Q-ary symbol set as {S = S0, . . . , SQ−1},
and xn, as the transmitted symbol, where xn ∈ S. The received signal,yn, at time
n is given as

yn =
√
Phxn + wn (5.1)
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where n = 0, 1, . . . , N − 1, and P is the transmitted power. Without loss of
generality, let P = 1 and assume wn is complex Gaussian noise with zero mean
and variance σ2. Also, in this work, the noise variance is assumed to be the same
for all clusters.

5.3.1. Label Assisted Transmission

Channel estimation can be accomplished by transmitting known training symbols,
utilizing semi-blind methods, or applying blind techniques. Throughout this thesis,
we employ two distinct methods for transmitting a known label: separate pilot
transmission and superimposed pilot transmission. The idea behind superimposed
labels is that we can transmit training symbols in the same time duration as the
data symbols. However, the separate pilot transmission method utilizes a part of
the overhead separate from the data.
The clustering algorithms classify the received signals, and then the transmitted
label symbols are used to indicate the mapping between each cluster and the
corresponding transmitted data. The transmitted labels are superimposed with
the data using the EM algorithm but are transmitted separately in the training
phase of the SVM and KNN algorithms. To reduce the packet overhead that may
be caused by sending labels both ways, we apply the label-assisted transmitting
method provided by [95]. The idea behind this technique is to transmit one label
that forms one of the constellation points. In this work, we consider Quadrature
Phase Shift Keying (QPSK), with S =

[
1+j1√

2
, 1−j1√

2
, −1+j1√

2
, −1−j1√

2

]
and use complex

multiplication to reconstruct others by predefined complex values α = [1, j,−1,−j].
The received label is expressed as

y̆ = x̆h̆+ w̆ (5.2)

where x̆ = 1+j1√
2

and w̆ is the noise. The other labels are reconstructed using the
following

y̆c = y̆αc (5.3)

where c indicates the c-th cluster, and C = 4 is the number of groups used in
QPSK.
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5.4. Clustering Framework

In a wireless communication system, the received signals are divided into C groups
at the receiver, depending on the modulation type. Therefore, if the mapping
between the transmitted bit tuples and the received groups is known, the detection
problem can be considered a form of clustering problem.
Thus, in this work, clustering algorithms are employed, supported by the LAT
method, to group the received signals into four clusters based on QPSK modulation.
It is worth emphasising that each algorithm follows a different working process.
For instance, supervised learning algorithms require training data prior to the
clustering process, whereas unsupervised machine learning utilizes labels during
the clustering process.

5.4.1. MC-GMM

The Gaussian mixture model (GMM) is an unsupervised clustering method for
clustering analysis. In the context of this work, GMM is used to cluster the received
signals, and the LAT method is used to recover the transmitted bit. Since the
noise is considered to be Gaussian, the received signals can be expressed in the
form of the GMM [106]

p(yn;Φ) =
C−1∑
c=0

πcCN (yn;µc, σ
2
c ) (5.4)

where Φ = {πc, µc, σ
2
c}

C−1
c=0 is a set of the unknown parameters; πc the prior

probability of a transmitted symbol, µc and σ2
c are the mean and the variance

respectively. CN (yn;µc, σ
2
c ) is the probability density function (PDF) of the

complex Gaussian

CN (yn;µc, σ
2
c ) =

1

πσ2
c

exp
(
−∥yn − µc∥

σ2
c

)
(5.5)

In GMM clustering, we need to find the three unknown parameters {πc, µc, σ
2
c}

for each cluster [95]. However, some digital communication characteristics can be
used as constraints to reduce the number of parameters. This is called modulation
constraint (MC) [95], and can be summarized as following

• The variance is considered to be equal for all clusters. Thus, instead of
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finding σ2
c for each cluster, we need to find only σ2.

• The symbol is transmitted from the defined constellations. Thus, the
transmitted symbol can be assumed to have equal probability πc = 1/C. For
example, in QPSK, πc = 1/4.

• From the LAT method, all symbols in S can be denoted as x̆, such that
Sc = x̆αc. Let us define µ̆ = hx̆ as the mean of x̆ and the mean of c-th cluster
is µc = hSc. Thus, the mean of each cluster can be also defined in term of µ̆
as µc = µ̆αc.

Accordingly, the parameters in Φ are reduced to Φ = {µ̆, σ2}. The Log-likelihood
is given by [95] as

max
Φ

LL(Φ;y) = max
Φ

N−1∑
n=0

ln

(
C−1∑
c=0

1

C
CN

(
yn; µ̆ac, σ

2
))

. (5.6)

To solve Eq. (5.6), the EM algorithm is used with a defined latent variable. A
latent variable used for each received signal is defined as ln =

[
ln,0, · · · , ln,(C−1)

]T ,
where

ln,c =

{
1 ifxn = Sc

0 otherwise
(5.7)

For n = 0, . . . , N − 1 and c = 0, . . . , C − 1. Thus, the log-likelihood of Φ given y

and L = [l0, · · · , lN−1]
T becomes

LL(Φ;y,L) =
∑
n,c

ln,c

(
ln

1

C
+ ln CN

(
yn; µ̆ac, σ

2
))

. (5.8)

Then, EM is executed in two steps interactively to obtain a solution for Φ [106],
see Fig. 5.1. Here Φ̂ =

{
ˆ̆µold, σ̂

2
old

}
and Φ̂ =

{
ˆ̆µnew, σ̂

2
new

}
, denoted the value of

Φ in the E-step and M-step, respectively. The E-step determines the initial values
of Φ before the iteration (denoted as old). The expectation of ln,c giving y and Φ

can be expressed as [95]

γ̃n,c ≜ E
[
ln,c|y; Φ̂old

]
=

CN
(
yn; ˆ̆µoldαc, (σ̂

2)old

)
∑C−1

ℓ=0 CN
(
yn; ˆ̆µoldαℓ, (σ̂2)old

) . (5.9)
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The M-step: setting the log-likelihood derivatives of Eq. (5.8) with respect to Φ

to zero, we get the following expression for the estimated mean and variance [95]

ˆ̆µnew =

∑N−1
n=0

∑C−1
c=0 γ̃n,cynα

H
c∑N−1

n=0

∑C−1
c=0 γ̃n,c|αc|2

(5.10)

(σ̂2)new =

∑N−1
n=0

∑C−1
c=0 γ̃n,c|yn − ˆ̆µnewαc|2∑N−1
n=0

∑C−1
c=0 γ̃n,c

(5.11)

The output of the clustering algorithm classifies the received signal according to the
labels. Thus, symbol-cluster mapping is used to recover the transmitted information
using the relations of the reconstructed labels. Therefore, yn is assigned to cluster
c∗n = argmaxc γ̃n,c, and the estimated symbol x̂n = Sc∗n , where Sc∗n = αc∗nx̆.

Figure 5.1: EM algorithm for MC-GMM.
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5.4.1.1 Optimal Number of Clusters Using Silhouette Analysis Method

In unsupervised ML algorithms, the number of clusters must be predefined.
However, due to the presence of noise, the number of received clusters detected
may be affected. Thus, Silhouette Analysis is introduced is applied at the receiver
to find the actual number of received clusters.
Silhouette Analysis is used to find the optimal number of clusters. The Silhouette
value ranges between 0 and 1, with 1 being the ideal number of clusters. For
QPSK, the expected number of clusters is four according to the constellation points.
Therefore, if the received clusters are less or more than four, this indicates that
the whole transmitted packet has been affected by noise, in which case it is hard
or even impossible to recover the information.
Fig. 5.2 shows the performance of Silhouette Analysis for QPSK modulation
clusters with two different noise levels. Fig. 5.2(a) with SNR=4 dB, it is seen that
the highest Silhouette value is when the number of clusters is four, which is the
expected cluster number with low noise. Fig. 5.2(b) shows the optimal number of
received clusters is three due to the high level of noise. In future, Silhouette Analysis
can be added at the receiver to improve the system performance by assessing the
correct number of clusters according to the modulation type. Precisely, erase the
packet with the wrong number of received clusters before decoding it because it
has been corrupted by noise.

(a) Silhouette with SNR=4 dB (b) Silhouette with SNR=-100 dB

Figure 5.2: Silhouette Analysis
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5.4.2. SVM

The SVM algorithm was primarily developed as a two-class classifier to separate
data into two distinct classes. However, in order to tackle the challenge of multiple-
class problems, SVM has been extended to solve multi-class scenarios by utilizing
multi-class classifiers. This extension enables SVM to effectively handle situations
involving multiple classes. Additionally, SVM has demonstrated its capability in
channel estimation and data detection [107].
In a QPSK model, four constellation points are employed, with each point
corresponding to a unique class. Therefore, we utilized a multi-class SVM classifier
to satisfy the earlier mentioned condition of equal probability for QPSK, where
π = 1/4, see Fig. 5.3. The overall process is carried out in two stages: the first
stage involves channel estimation, while the second stage focuses on data symbol
detection. During the training process, labelled symbols are initially indicated based
on the LAT method mentioned in Section 5.3.1. Subsequently, the remaining labels
are reconstructed using Eq. (5.3). The SVM training data are then represented as

yp = sign (hpxp + wp) (5.12)

where wp can acts as the bias and sign is the sign function. The received signal
can be expressed as

y = sign (hx + w) . (5.13)

In SVM multi-class problems, we apply the rule of one versus all [108], in which
the received label (indicating the constellation point) belongs to a cluster if the
other clusters reject it. Specifically, each point is tested for all clusters but only
assigned to the correct cluster. So, to find the best classification, SVM solves the
optimization problem

min
hp

1

2
∥hp∥2 +R

P∑
p=1

ξp

s.t. yp (hp)
T xp ≥ 1− ξp,

ξp ≥ 0, p = 1, . . . , P (5.14)

where the factor 1/2 is added for the convenience of the derivative [106], R is the
regularization parameter which controls the error between the margin and the slack
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variable ξi. Let’s define ĥp as a solution of Eq. (5.14).
We assume the labels and the data are experiencing the same fading channel.
Then, the channel in Eq. (5.12) and the data channel are the same, where ĥp = h.
As discussed in Section 5.4.1, the transmitted symbol can be expressed from the
defined constellation set, and h is defined by Eq. (5.14). Then, the second stage
provides a solution for x by solving the optimization problem

min
x

1

2
∥x∥2 +R

N∑
n=1

ξn

s.t. y (x)T h ≥ 1− ξn
ξn ≥ 0 (5.15)

where x̂ is denoted a solution of Eq. (5.15).

Figure 5.3: Example of four classes SVM algorithm to model QPSK.

5.4.3. KNN

The process begins by sending a single label and subsequently reconstructing the
remaining labels using Eq. (5.3). Once all four labels have been reconstructed, the
Euclidean distance is computed between each received symbol and the labelled data
points. In the KNN algorithm, it is essential to specify the number of neighbours,
Kn, initially. These neighbours are then used as votes, and the symbol is assigned
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to the cluster from which it receives the highest number of votes from its nearest
neighbours. Determining an optimal value for the number of neighbours (Kn) is
crucial for the performance of the KNN algorithm. This can be achieved through
techniques such as cross-validation or grid search, which evaluate the algorithm’s
accuracy for different values of Kn, and select the value that yields the best results.
However, it can also be determined according to the system model. For instance,
since we have four labels in this scenario, we can select Kn to be equal to four.
The Euclidean distance is given as

d(x̆, yn) =

√√√√ N∑
n=1

(x̆c − yn)2. (5.16)

After assigning the received signal to its corresponding cluster, we can utilize the
information provided by Eq. (5.3), indicating that the clusters’ order corresponds
to the reconstructed labels. By considering this, we can obtain the estimated
symbol from

x̂ = x̆αc (5.17)

5.5. Results and Discussion

This section presents the bit error rate (BER) with signal-to-noise ratio (SNR)
results to show the effectiveness of the applied ML to SPC using Monte Carlo
simulations. Each Monte Carlo simulation indicates one packet transmission. The
transmission symbols employ the QPSK modulation scheme. We consider a flat
fading channel with AWGN and packet length: N = 50 and C=4.
Fig. 5.4 illustrates the BER performance of the MC-GMM in comparison to
two alternative detection schemes: the maximum likelihood detector (MLD) with
perfect channel state information (CSI), as discussed in Sklar’s work [109], and
MLD with estimated CSI as detailed in Zhang’s investigation [95]. The results
for MC-GMM demonstrate superior performance compared to the estimated CSI
approach. In alignment with these results, Fig. 5.5 shows the iterative steps
employed to achieve optimal clustering output for EM algorithm.
Fig. 5.6 presents the BER versus SNR performance of KNN and SVM compared
with MC-GMM algorithm. It is shown that supervised learning (KNN and SVM)
outperforms unsupervised learning (MC-GMM). It is observed that the KNN
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exhibited marginally superior performance compared to the MC-GMM algorithm.
The outcome obtained using KNN is for a supervised learning algorithm where the
receiver is trained by predefined labels prior to receiving the data.
However, it is important to mention that KNN is a soft classification method,
which implies that some data points of a certain cluster may overlap with other
clusters, as shown in Fig. 5.7(a). Similar to the observation made for KNN, it is
noted that the SVM demonstrates a slightly superior performance compared to the
MC-GMM algorithm. This advantage is again attributed to the supervised nature
of SVM. However, we also note it has a slightly better performance than KNN. It
is necessary to note that SVM is a hard classification method, which entails that
some data points situated at the boundaries of clusters may be erroneously assigned
to the incorrect cluster due to strict classification boundaries, as illustrated in Fig.
5.7(b).
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Figure 5.4: BER performance of MC-GMM, MLD-estimated CSI, and MLD-perfect
CSI.
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Figure 5.5: EM clustering process until convergence.
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Figure 5.6: BER performance of KNN, MC-GMM and SVM.
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(a) KNN classification output for QPSK

(b) SVM classification output for QPSK

Figure 5.7: Supervised Learning Classification output
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5.6. Chapter Summary

This chapter has presented various machine-learning approaches for symbol
detection in SPC systems, namely the MC-GMM, KNN, and SVM. The ML
algorithm demonstrates better performance compared to the conventional system.
KNN and SVM perform slightly better than the MC-GMM algorithm, mainly
due to their supervised nature. The LAT method has been applied to address
the overhead in short packets, which helps to reduce the number of transmitted
labels utilizing signal properties such as equal probability among received clusters.
Moreover, the introduction of Silhouette Analysis offers insights into optimizing
the clustering performance under various noise conditions.



Chapter 6

Application of Machine Learning in
LoRa

In the LoRa system, interference is highly correlated with the spreading factor
(SF) values of the end users. In this chapter, we propose applying a new machine
learning framework to the LoRa communications system to recover the SF. This
framework converts the SF recovery in the LoRa network to a multiclass problem
using ML algorithms. We first propose and then evaluate the performance of
two classification algorithms: a support vector machine (SVM) and k- nearest
neighbours (KNN). The performance of the proposed algorithms is investigated by
Monte Carlo simulation, which shows promising results with both SVM and KNN.

The rest of this chapter is organized as follows: Section 6.1 introduces the
chapter and states the main contribution made by this research for signal detection.
A literature review of the application of ML and SF assignment in LoRa is presented
in section 6.2. Section 6.3 describes the problem and formulates the system model.
Section 6.4 describes the classification framework, and Section 6.5 presents the
simulation results showing the performance of SVM and KNN. Finally, a summary
of this chapter is presented in Section 6.6.

91
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6.1. Introduction

Low-Power Wide-Area Networks (LPWANs) are one component of technologies
concerned with transmitting and receiving small amounts of data, requiring the use
of short packets to maximize bandwidth efficiency [110]. LPWANs have emerged
as a promising solution for low-power, long-range communication with LoRa being
one of the most widely used LPWAN technologies [111]. The success of LoRa
transmissions depends on three main parameters, bandwidth (BW), transmission
power (TP), and spreading factor (SF). The SF parameter plays an important
role in the LoRa transmission performance. Increasing the SF value yields a lower
data rate but enhances signal resilience to noise, which improves the transmission
range. However, it also increases transmission duration and so increases power
consumption. Considering the significant impact of SF on the success of the
transmission and interference resistance, it is considered one of LoRa’s most critical
parameters.
The majority of reported studies have been concerned with SF assignments at
the transmitter; however, in practice, the transmitted signal is affected by many
natural factors, such as fading, which may lead to misdetection of a signal due to
a large number of nodes transmitting with different SFs. Hence, SF recovery at
the receiver helps improve the system’s performance, overcoming the interference
due to other networks.
The motivation behind this work is to enhance the performance of LoRa by applying
a new supervised ML-based SF classification assignment scheme using KNN and
SVM algorithms to find the optimal SF, i.e., we introduce a new supervised ML
method to solve the SF recovery problem. Utilizing the power of classification
algorithms, we formulate the SF recovery as a multiclass classification problem,
with each value of SF assumed to be a different class. Thus, in the LoRa system,
we have six classes with label values in the range of [7,.., 12]. The motivation
behind this work is to enhance the performance of LoRa by applying a supervised
ML-based SF classification assignment scheme using KNN and SVM algorithms to
find the optimal SF. Our main contributions can be summarized as follows:

• A new supervised machine learning algorithm is developed to recover a target
Spreading Factor (SF) in the LoRa system, with SF recovery considered a
multiclass problem using the SVM and KNN algorithms.
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• A confusion matrix is presented to display the prediction accuracy of the
proposed algorithms.

6.2. Related Work

In LoRa, there are two main research directions concerned with SF: SF allocation
assignment and SF recovery or identification. Assigning the appropriate SF is
crucial for good long-distance performance, with many possible approaches for
SF allocation. In [112], the authors introduce two SF allocation techniques. The
first technique considers the sensitivity and the signal strength of the end devices
at the initial deployment stage. The second technique is that the SF recovery
algorithm depends on the status of the channel, with the authors claiming the
technique achieved a higher packet transmission compared to other SF assignment
techniques. In [46], the authors propose a new scheme whereby the SF is determined
by considerations of transmission distance and power. The smallest value of SF
is assigned to the nearest signal, e.g., SF=7 and a higher SF value is assigned to
the weaker signal. In [113], the authors considered compressive sensing to detect
the bandwidth and the SF. This work used embedded preambles in the packets to
obtain the bandwidth and the duration of the symbol for the signal and then the
SF.
Due to the success of ML algorithms in wireless communications [114], some
researchers have attempted to apply ML techniques to LoRa SF assignments. The
authors in [46] apply the decision tree (DT) technique for allocating SF. In [115],
the authors provided a comparison of supervised classification algorithms, Naive
Bayes and KNN for SF allocation in LoRa, assuming that the area classified to
circles around the receiver, e.g., the closest circle is for SF=7. The authors in [116]
exploited a new architecture for selecting the optimal SF using deep learning (DL)
with both a convolutional neural network (CNN) and a fully connected neural
network (FCNN) to find the optimal SF. In [117], the authors proposed a deep
learning method, specifically a CNN, to detect the LoRa signal and the interference
from other LLPWAN techniques such as IEEE 802.15.4g and SigFox.
On the other hand, few researchers have studied SF recovery. Recently, the authors
in [118] considered the classical SF detection methods that mainly depend on
optimizing the packet overhead. In contrast, the authors in [119] use a phase-locked
loop (PLL) method to detect the SF at the receiver.
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6.3. System Model

We consider typical LoRa wireless networks [50], where chirp spreading modulation
(CSM) is adopted as a modulation technique. In this system, a CSM device
transmits a symbol, denoted as s, with a duration of Ts = 2α.T , where α is the
SF value and T is the duration of bits transmission. The symbol corresponds to
2α bits transmitted per frame and can take values from the set {0, 1, 2, ..., 2α−1}.
The channel h represents a quasi-static Gaussian independent and identically
distributed (i.i.d.) slow fading channel. The transmitted vector is represented
as [120]

x =

[
1√
2α

exp

(
j2π [(s+ i)mod2α ]

i

2α

)]T
(6.1)

where i = 0, · · · , 2α−1. The received signal is

y = xh+w (6.2)

where [.]T represent vector transpose, w is assumed to AWGN noise with zero mean
and variance σ2, i.e., w ∼ CN(0, σ2). Assume |h| = 1 without loss of generality,
and the SNR = 1/σ2.

6.3.1. SF Labels Method

In CSM systems, the possible waveforms are orthogonal, so the CSM devices
adopt appropriate SFs for transmission to ensure orthogonality. Each transmitted
signal in LoRa has a specific value of SF, indicating a symbol of 2α chips in each
chirp. Thus, each transmitted signal has a different pattern depending on the
SF value, e.g., 27 = 128 chips/ symbol, while 212 = 4096 chips/symbol, see Fig.
6.1. SF identification can be considered as a classification problem since SFs can
have specific values in the range [7,..,12]. Because the transmitted blocks in the
CSS system are modulated, i.e., chosen from the predefined SFs available, though
possibly unknown, the received signals can be classified according to the SF value.
The majority of studies are concerned with SF assignments at the transmitter [115];
however, in practice, the signal is affected by many natural factors, such as
fading, which may lead to miss-signal detection due to the large number of nodes
transmitting with different SFs. Hence, SF recovery at the receiver helps improve
the system’s performance despite the presence of interference from other networks.
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The unique feature of the LoRa system motivates us to design a new receiver using
classification ML algorithms. It consists of sending six labels as a training phase
for the applied supervised algorithms and then using the test phase to predict the
transmitted SF. The classification algorithms only classify the received signals into
a number of classes.

Figure 6.1: LoRa chirps with SF ∈ [7, . . . , 12]

6.4. Classification Framework

The capability of the ML clustering algorithms has been demonstrated to be
suitable for demodulation and detection of signals [120]. KNN and SVM are
sub-fields of supervised ML which process the data for classification or regression.
In typical clustering algorithms, the number of clusters and the centroid of the
clusters that may be considered as a label are crucial and must be defined in the
initial stages. In the context of this work, we define each cluster as a class that
indicates a specific SF value. KNN and SVM are split into the training phase and
the test phase; see Fig. 6.2.

6.4.1. SVM

In this work, the SVM algorithm is used in two stages. The training phase is
the learning stage that is performed only once with labelled data, and the test
stage contains the received signals. In the learning stage, the algorithm trains the
machine to create a specific decision function to enable it to differentiate between
the different types of transmitted SFs. In the testing stage, any newly received
data is then classified according to the decision rules set in the training phase. In
the training stage, the transmitter sends a sequence of labelled symbols, including
a specific SF (e.g., 7) to the receiver. This enables the SVM algorithm at the
receiver to determine those input features contained in the received signal that



CHAPTER 6. APPLICATION OF MACHINE LEARNING IN LORA 96

Figure 6.2: Classification framework

determines the specific SF. This process is carried out for each SF. The criterion
or criteria obtained from the training data can then, subsequently, be applied to
the test signals so that in the testing stage, any newly received data is classified
according to the decision rules set in the training phase.
Using SVM, the receiver is trained to generate a hyperplane from the training data.
According to the hyperplane, any subsequent received signal can be categorized
into one of two groups, e.g., 7 or not 7; see Fig. 6.3. After completing the training
phase, the corresponding transmitted symbol with a specific SF can be identified
by making a hard decision based on the training undertaken; Algorithm 4 shows a
summary of the SVM process.

6.4.1.1 Feature extraction

The training phase is the input of the SVM receiver. Consider the received
training data with n number chirp symbols labelled with different SF. The ith
training data is represented as xi = 2SF samples/chips, which is modulated
with defined SF in the range SF ∈ [7, . . . , 12]. Each data stream is labelled
with a binary message li = {−1,+1}, and the training data set represented as:
S = {(xi,1, li,1), . . . , (xi,n, li,n)}.
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Figure 6.3: An example of a classification using SVM

6.4.1.2 The Training Phase

SVM was originally a two-class classifier that uses the hyperplanes with maximum
margin to separate the input features into two classes. The largest margin passes
between the two hyperplanes, which are used to separate the classes of the training
data, see Fig. 6.3. SVM maximises the width of the margin which is determined
by the nearest data points, known as support vectors. In LoRa, we consider the
positive class as a true class with the transmitted SF and the negative class as a
false class with any other SF. The two hyperplanes are expressed asv⊤xi + ϱ ≥ +1, li = +1

v⊤xi + ϱ ≤ −1, li = −1
(6.3)

where xi is the input, v⊤ is a normal non-zero vector that indicates the direction of
the hyperplane, and ϱ is a scalar that indicates the distance between the hyperplane
and the original point.
The optimal plane passes along the middle between the two hyperplanes and can
be expressed as {

xi ∈ S : v⊤xi + ϱ = 0
}

(6.4)
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where S is the training set. The distance between the hyperplane and the point in
the training set xi is given by

di =

∣∣v⊤xi + ϱ
∣∣

∥v∥
(6.5)

Thus, the maximum margin is defined as the closest distance of the point in the
training set to the largest hyperplane

ρ = min
(xi,li)∈S

∣∣v⊤xi + ϱ
∣∣

∥v∥
(6.6)

In the training phase, the decision function for the SVM that classifies the SF
classes is constructed via

f(x) =
n∑

n=1

liαiK(x′,xi) + ϱ (6.7)

where αi(αi ≥ 0) is a Lagrangian constant, K(x′,xi) = ϕT (xi).ϕ(x) is defined as a
kernel function, where ϕ(x) maps the input training data into the higher dimensional
feature space. The training stage is completed by solving the optimization problem
for the penalty constant R which determines the trade-off between the training
error and the largest possible margin of the decision function [121]

min
1

2
vTv +R

n∑
n=1

ξi

s.t. li
(
v⊤ϕ(xi) + ϱ

)
≥ 1− ξi

ξi ≥ 0 (6.8)

where ξi is a slack variable applied for any non-linearly separable training data.
At the end of the training phase, the training data is classified into two classes:
αi = 0 and αi ̸= 0. The training data with non-zero αi are the support vectors
that are used as a final decision variable indicating the exact SF class.

6.4.1.3 The Testing Phase

After the training phase, the task of the SVM receiver becomes a pattern
classification problem. The receiver is ready to classify and estimate any newly
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received data by applying a hard decision based on Eq. (6.7). The newly received
data are classified to determine the SF, and the decision is expressed as

α̂ = sign(f(x)) = sign

(
l∑

n=1

lnαiK(y,xi) + ϱ

)
. (6.9)

The target class using the voting strategy of (SVM) is determined by selecting the
class with the highest classification function. To illustrate, if the class corresponding
to SF=7 receives the most votes among all classes, it is identified as the target
class.

Algorithm 4 SVM LoRa algorithm
1: Input: the training set defined SF (xi, li)

n.
2: Apply linear kernel function to obtain initial classification K(x′,xi) =
ϕT (xi).ϕ(x

′).
3: Assign the decision function using Eq. (6.7)
4: Complete the training phase by solving the optimization problem Eq. (6.8).
5: Obtain new kernel for testing data.
6: Output: classifier as Eq. (6.7) decision function for the target SF class.

6.4.2. KNN

The KNN algorithm framework is used to identify, classify, and predict patterns
for any type of data. In this work, the main goal of using KNN is to assign the
right class of a given SF to the target point by identifying the nearest neighbours
of the input data. The KNN predicts the correct class for the received data by
finding the distance between each newly received data point and the training data.
The process of the KNN algorithm starts by defining the number of nearest
neighbours Kn. It then computes the Euclidean distance between the received
data points in the test phase and the data points from the training phase. After
that, the class labels of the maximum number of Kn entries are assigned as the
prediction result of the testing phase, see Algorithm 5. Fig. 6.4 shows an example
of a classification problem with three classes. Each class indicates a defined SF
[7, 8, and 9] labelled as (C1, C2, C3), and Kn = 3. To make the correct decision
regarding the class of the received data, KNN uses a voting method. Specifically,
the received data will be assigned to the class with the maximum votes, which
means the cluster with the most neighbours. In this example, x is assigned to
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cluster C1 because it has two neighbours there, but only one in cluster C2.

Figure 6.4: An example of KNN classification of 3 classes

Algorithm 5 KNN LoRa algorithm
1: Initialize training data (symbols with defined labels), Kn=4.
2: Input: Symbols.
3: for each input symbol do
4: Find the Euclidean distance between each of the received symbols and the

labelled class from each training point.

D(xi,y) =

√√√√ n∑
n=1

(xi − y)2.

5: Assign the training data to the nearest class.
6: The most voted class is the target class

(α̂,xi) = argminD(xi,y).

7: end
8: Output: Target label.

6.4.3. Classification Output

In this section, we demonstrate the ability of clustering algorithms to classify the
received data. As explained above, the classification algorithm divides the received
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data into groups with similar features. Fig. 6.5 illustrates the output clusters
received at the receiver when two signals are transmitted, one with SF=7 and
the other with SF=9. We see the receiver classifies the data into two clusters of
different sizes. The smaller cluster refers to the transmitted data with SF=7, and
the larger cluster is related to the transmitted data with SF=9.
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Figure 6.5: Clustering outputs

6.5. Simulation Results

This section presents the relative performance results of KNN and SVM in a LoRa
network. A Monte Carlo simulation is used to generate random data for both
algorithms’ training and test phases. The data was generated under different values
of spreading factors [7, 8, 9 and 10]. In the SVM algorithm, there are three types
of kernel functions [122]:

• Linear kernels K(x,x′) = (x)T .(x′).

• Polynomial kernels K(x,x′) = (1 + xT .x′).

• Gaussian kernels K(x,x′) = exp(−∥x′ − x∥)2/2σ2

For simplicity, the SVM kernel function is chosen to be linear [122].
Fig. 6.6 shows the classification error rate performance of a KNN and a SVM
receiver using SF=7. Evidently, the SVM algorithm performs significantly better
than KNN, making it the preferred choice for LoRa SF classification. When
classifying, the SVM algorithm maximises the margin with the optimal plane, and
this helps to alleviate the effects of noise and overfitting. In contrast, KNN assigns
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labels and classifies the data based on the most voted Kn neighbours, making it
sensitive to noisy data.
The KNN algorithm is highly dependent on the number of Kn neighbours. Choosing
a large value of Kn will necessitate significant computing power, while a small
Kn will affect the outliers of the clusters and may cause misclassification. In this
work, based on the number of classes, we use the value Kn=4. Fig. 6.7 presents
the result for the classification error rate for the KNN algorithm with different
values of SF. The figure indicates better performance with a lower value of the
SF. When we increase the SF, the performance of the classification is reduced due
to the increasing amount of data transmitted per symbol with an increase in the
value of SF.
Fig. 6.8 presents the confusion matrices showing SVM and KNN performance
accuracy for SF values 7, 8, and 9. It demonstrates the classification accuracy
between the predicted and the actual classes, whether the transmitted SF matched
the received SF. The figure indicates the achieved accuracy is 83.87 % with SVM,
while KNN achieved 80.77 %. In both algorithms, the best classification was
achieved when the SF value was lowest at SF=7, and it was worse when the SF
increased to SF=9. An SVM receiver can correctly predict 90% of the class with
SF=7 but with SF=9, 20% of the data are misclassified. The corresponding figures
for the KNN receiver are 85.7% and 77.8%.
SVM and KNN classification algorithms exhibit contrasting behaviour to the
classical error rate, which aligns with the expectation. These classification
algorithms work well with small data despite the presence of noise. However,
as the data set expands with an increasing SF value and the complexity of the
classification process grows, errors increase sharply with increase in SNR.
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Figure 6.6: Classification error vs SNR for SVM and KNN (SF=7).
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Figure 6.7: Classification error vs SNR for KNN with values different SF.

Accuracy: 83.87%

90.0% (9)

10.0% (1)

0.0% (0)

0.0% (0)

81.8% (9)

18.2% (2)

20.0% (2)

0.0% (0)

80.0% (8)

7 8 9

Actual Class

7

8

9

P
r
e
d
ic

te
d
 C

la
s
s

0

20

40

60

80

(a) SVM

Accuracy: 80.77%

85.7% (6)

14.3% (1)

0.0% (0)

0.0% (0)

80.0% (8)

20.0% (2)

22.2% (2)

0.0% (0)

77.8% (7)

7 8 9

Actual Class

7

8

9

P
r
e
d
ic

te
d
 C

la
s
s

0

20

40

60

80

(b) KNN

Figure 6.8: Confusion matrix performance accuracy of SVM and KNN.
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6.6. Chapter Summary

In LoRa, each transmitted signal must have a defined SF value within the range
[7, ..., 12], with the spreading factor playing a significant role in determining, e.g.,
the interference. This chapter introduced KNN and SVM supervised learning
algorithms for SF classification and SF recovery. Each value of SF is considered as
a class known to the receiver; thus, the transmitted signal can be directly assigned
to the proper class. Both algorithms show good performance for the classification
error rate. However, the performance of SVM was found to be better than KNN
for all values of SF. Confusion matrices showed the relative effectiveness of KNN
and SVM, indicating the relative accuracy of the algorithms at the receiver. It
is again pointed out that SVM has an overall accuracy of 83.87 %, while KNN
has an overall accuracy of 80.77 %. Both KNN and SVM showed their greatest
accuracy for the lowest value of SF, 90.0%, and 85.7%, respectively.



Chapter 7

Conclusions and Future Work

This chapter presents the conclusions and the main results of this research.
Following that are some suggestions for future research work.

7.1. Conclusions

The work in this thesis focused on improving the performance of the short packet
communication system using machine learning techniques. This required a through
investigation to provide an accurate evaluation error probability of SPC in the
presence of interference, the application of different sparse recovery algorithms and
ML applications to SPC and LoRa.
Chapter 2 comprehensively outlines the fundamental concepts and principles
of SPC, clearly differentiating it from long-packet communication. The unique
challenges and factors specific to short packets, including the influence of metadata
size and the importance of optimizing overhead design, were emphasized. In
addition, a foundational understanding of the Support Vector Machines (SVC),
K-nearest Neighbour (KNN) and Expectation Maximization (EM) algorithms
employed in this thesis was provided through a discussion of various ML algorithms.
The LoRa system was also presented, including the basics of LoRa modulation, the
distinctive parameters involved, and a discussion of different types of interference
encountered in LoRa.
In Chapter 3, a new closed form to accurately evaluate packet error probability
within SPC systems in an interference environment was derived. This evaluation

106
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took into account the unique characteristics of SPC systems, such as packet length,
and employed an equivalent signal-to-interference plus noise ratio to derive an
exact expression for the packet error probability. Firstly, the accuracy of the
expression was validated by Monte Carlo simulation. Then, the results illustrated
to show the impact of blocklength, coding rate and the number of interference.
Finally, the system throughput was investigated under two different scenarios: the
binomial and Poisson distribution.

In Chapter 4, the performance of different sparse recovery algorithms was
explored. We introduced two new algorithms, Compressive Sampling Matching
Pursuit (CoSaMP) and Stagewise Orthogonal Matching Pursuit (St-OMP), to
recover the non-zero elements in a sparse vector coding scheme. The performance
of these algorithms was compared with Multipath Matching Pursuit (MMP) and
Orthogonal Matching Pursuit (OMP). To assess their effectiveness, we evaluated
recovery error, recovery time, covariance, and block error rate. Furthermore, we
introduced a performance analysis of Symbol Error Rate (SER) using pairwise
error probability. Of the four algorithms, MMP algorithm demonstrated the
lowest errors in recovering sparse elements among the four algorithms. On the
other hand, OMP proved to be the fastest algorithm in terms of recovery time.
While the MMP algorithm exhibited superior performance compared to the other
three algorithms, it is crucial to consider time constraints, especially in scenarios
involving extensive machine-to-machine communication and the standards for
Ultra-reliable and Low Latency Communication systems.

In Chapter 5, several ML approaches were introduced for symbol classification
and detection in SPC systems. These approaches included MC-GMM, KNN,
and SVM. Compared to the conventional system, implementing ML algorithms
exhibited superior performance. Among the three approaches, KNN and SVM
showed slightly better performance than the MC-GMM algorithm, primarily
because they are supervised learning methods. The Label Assisted Transmission
method was employed to address the overhead associated with short packets. This
method leverages signal properties, such as equal probability among received
clusters, to reduce the number of transmitted labels. Additionally, the introduction
of Silhouette Analysis provided valuable insights into optimizing the optimal
number of clusters in different noise conditions. This analysis aided in improving
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the accuracy and effectiveness of the clustering process.

Chapter 6 of this thesis highlights the important role of the spreading factor
(SF) in the LoRa system. In LoRa, each transmitted signal requires a defined SF
value within the range of 7 to 12. This chapter introduced supervised clustering
algorithms, namely KNN and SVM, for SF classification and SF recovery. In this
approach, each SF value is treated as a distinct class known to the receiver. Based
on the results, both KNN and SVM demonstrate favourable performance in terms
of classification error rate. However, it is worth noting that SVM outperforms KNN
in this regard, as evidenced by the comparative confusion matrices. These matrices
depict the relative effectiveness of these algorithms at the receiver. Specifically,
SVM achieved an overall accuracy of 83.87%, while KNN attained an overall
accuracy of 80.77%. Notably, both algorithms exhibited their highest accuracy for
the lowest SF value.

7.2. Future Work

This thesis has extensively investigated applications that could significantly enhance
the overall performance of SPC. Among these, the most promising approach was
the implementation of ML algorithms, specifically in the context of SPC. However,
there are many potential areas for future research on this topic, such as those
presented below.

7.2.1. Interference Cancellation using Clustering Algorithm

Non-orthogonal Multiple Access (NOMA) allows multiple users to share the same
frequency bands for improved spectral efficiency, but it leads to the problem of multi-
interference issues [123]. We focused on the challenge of cancelling interference from
multiple sources at the receiver of a secondary user in a NOMA system. In [124],
the authors adopted an iterative receiver approach to cancel the interference from
primary user transmitters and recover the secondary user signal using the K-
means algorithm considering infinite blocklength. However, this algorithm cannot
accurately estimate the superposition of interference signals from different primary
user transmitters. Thus, for unknown channel state information (CSI) between
the primary user transmitters and the secondary user receiver link, the provision
of proper initializations for any clustering module based on K-means or Gaussian
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Mixture Model-Expectation Maximization (GMM-EM) is difficult.
To overcome this issue, we recommend investigating the replacement of the
Kmeans/GMM-EM algorithms with the Affinity Propagation (AP) algorithm,
which offers a notable advantage over K-means and GMM-EM algorithms by
not relying so heavily on the initialization of cluster centroids [125]. Instead, it
assigns data points as exemplars, which serve as representatives of clusters. The
algorithm calculates similarities between data points and updates the availability
and responsibility matrices of the AP algorithm iteratively. As a result, the AP
algorithm can accurately divide the interference signals into clusters, enhancing
the overall performance of interference cancellation. Fig. 7.1, illustrate an example
of the use of the AP algorithm.
Additionally, this method could be extended to cancel different types of interference
in the LoRa system.
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Figure 7.1: Example of Affinity Propagation algorithm output.

7.2.2. Sparse Recovery Using Machine Learning

The algorithms outlined in Chapter 4 are iterative in nature, which takes more
computing time and can be computationally expensive. To address this, a machine
learning-based approach such as a classification and deep learning algorithms could
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help enhance sparse signal recovery performance while reducing computational
complexity. This solution is particularly beneficial for meeting the demanding
requirements of URLLC. The decoding process (SVC) could be redefined as a
multi-label classification task, where the non-zero positions of the sparse vector
represent the labels from the SVC encoded vector to be classified. Also, the work
can be extended to further examine the performance of SVC when the non-zero
elements are more than two.

7.2.3. Short Packet Communication with UAV

Recently, Unmanned Aerial Vehicle (UAV or drone) based communication systems
have attracted substantial attention due to their wide-ranging applications such
as URLLC and IoT applications [126–129]. In the context of SPCs with
UAVs, there are several promising avenues for future research and development.
Firstly, exploring advanced coding schemes specifically tailored for short packet
transmissions in UAV networks would be valuable. This could involve investigating
innovative techniques for error correction and reducing overheads techniques,
efficient channel coding schemes, and adaptive modulation and coding strategies
to enhance the reliability and throughput of data transmission.
In addition, optimizing resource allocation algorithms to maximize the utilization of
limited UAV resources, such as bandwidth and energy, while ensuring low-latency
and reliable communication, could be a focus. Moreover, employing machine
learning techniques to enable intelligent decision-making in UAV networks, such
as dynamic packet routing, interference management, and adaptive transmission
schemes, hold great potential for improving overall system performance. Finally,
investigating the impact of various environmental factors, such as fading and
interference, on short packet communication in UAV networks and developing
robust techniques to mitigate their effects would be an important area of future
research.

7.2.4. Short Packet Communication with IRS

Recently, there has been increasing interest and attention on studying the intelligent
reflecting surface (IRS) [130–132]. Exploring the potential of using SPC with the
IRS to achieve URLLC needs further investigation.
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7.2.5. Other Extensions

Some further recommended extensions based directly on this thesis could be:

• The work in Chapter 3 assumed equal power and QPSK modulation. This
work could be extended to unequal power and other types of modulation.

• The analysis provided in Chapter 3 could be applied to the LoRa system to
improve system performance in an interference environment.

• In Chapter 5, the LAT method works for QPSK. It would be interesting
if higher modulation was investigated regarding how to send one label and
reconstruct the other labels without increasing the packet overhead.

• The work in Chapter 6 could be extended to examine the interference of
LoRa signals due to signal types, such as Sigfox.
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