
The University of Manchester Research

A Symbolic Framework for Systematic Evaluation of
Mathematical Reasoning with Transformers

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Meadows, J., Valentino, M., Teney, D., & Freitas, A. (2023). A Symbolic Framework for Systematic Evaluation of
Mathematical Reasoning with Transformers.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:05. Dec. 2023

https://research.manchester.ac.uk/en/publications/8d6602a5-6d37-42f7-8485-a156eeaaa524

A Symbolic Framework for Systematic Evaluation
of Mathematical Reasoning with Transformers

Jordan Meadows1, Marco Valentino2, Damien Teney2, André Freitas1,2
1University of Manchester, United Kingdom

2Idiap Research Institute, Switzerland
jordan.meadows@postgrad.manchester.ac.uk

{marco.valentino, damien.teney, andre.freitas}@idiap.ch

Abstract

Whether Transformers can learn to apply sym-
bolic rules out-of-distribution is an open re-
search question. In this paper, we devise a
data generation method for producing intricate
mathematical derivations, and systematically
perturb them with respect to syntax, struc-
ture, and semantics. Our task-agnostic ap-
proach generates equations, annotations, and
inter-equation dependencies, employing sym-
bolic algebra for scalable data production and
augmentation. We then instantiate a general
experimental framework on next-equation pre-
diction using 200K examples, and assess math-
ematical reasoning and generalisation capabili-
ties of Transformer encoders. The experiments
reveal that perturbations heavily affect perfor-
mance and can reduce F1 scores of 97% to be-
low 17%. This suggests that inference is dom-
inated by surface-level patterns unrelated to a
deeper understanding of mathematical opera-
tors, and underscores the importance of rig-
orous, large-scale evaluation frameworks for
revealing fundamental limitations of existing
models.

1 Introduction

Systematicity and out-of-distribution generalisa-
tion in deep neural models, such as Transform-
ers (Vaswani et al., 2017), are challenging yet
crucial areas of research (Schlegel et al., 2023;
Belinkov, 2022; Teney et al., 2020). Enhanc-
ing these capabilities could bolster model robust-
ness (Kumar et al., 2020), facilitate transparent
decision-making (Lee et al., 2022), and amplify
complex reasoning abilities in science and mathe-
matics (Frieder et al., 2023; Valentino et al., 2022b;
Lewkowycz et al., 2022; Drori et al., 2022; Welleck
et al., 2021). Various strategies have been proposed
to evaluate model robustness, including direct input
manipulation (Rozanova et al., 2023b; Stolfo et al.,
2022; Nie et al., 2020; Kaushik et al., 2019) and
probing on the internal representation (Rozanova

training set math reasoning task

𝒚 = 𝒙𝟐

times 𝑥
𝒚𝒙 = 𝒙𝟑

True?

Fine-tuned Model

Transformer-based
pretrained Model

Fine-tuned Model

static set

Fine-tuned Model

perturbed setperturbation

𝜸 𝜹,𝜷 = 𝜷 + 𝜹𝒛 𝒏, 𝒇 = 𝒇 + 𝒏

static score: perturbed score:
𝑺% 𝑷%

𝚫 = 𝑷− 𝑺

(a)

(b)

(c)

Figure 1: An overview of the proposed framework. We
leverage computer algebra to generate large-scale train-
ing data for mathematical reasoning tasks (a) and apply
systematic perturbations to examples from a static test
set to form a perturbed test set (b). The static evalua-
tion scores are compared with scores on the perturbed
set, given some metric, to determine model robustness
and generalisation (c).

et al., 2023a; Ravichander et al., 2021; Elazar et al.,
2021; Veitch et al., 2020).

This paper considers input interventions through
syntactic, structural and semantic perturbations
to mathematical text. Current interventional ap-
proaches are challenged by the difficulty of iso-
lating confounding factors, and formalising the
expected causal mechanisms that underpin mod-
els’ predictions (Rozanova et al., 2023b; Stolfo
et al., 2022; Ribeiro et al., 2020; Kaushik et al.,
2019). These hurdles impact the scope and reliabil-
ity of causality and robustness studies (Pearl, 2009;
Shreya et al., 2022).

To tackle existing limitations, we leverage the
rich environment of symbolic algebra to design a
task-agnostic and systematic evaluation framework.
Strict symbolic rules offer a systematic approach to
perturbing mathematical reasoning and evaluating

ar
X

iv
:2

30
5.

12
56

3v
1

 [
cs

.C
L

]
 2

1
M

ay
 2

02
3

out-of-distribution generalisation of neural mod-
els. This allows us to perturb multiple elements
of math reasoning, covering structural, semantic,
and syntactic aspects across diverse mathematical
subdomains, extending beyond the limited interven-
tional scope of previous works (Stolfo et al., 2022;
Patel et al., 2021; Ribeiro et al., 2020; Kaushik
et al., 2019; Yao et al., 2021).

Additionally, we address an impending data
scarcity problem, where high-quality data is fore-
cast to be outpaced by the training needs of models
within the decade (Villalobos et al., 2022). Sym-
bolic engines facilitate the generation of annotated
mathematical reasoning, which allows the construc-
tion of high-quality datasets for various tasks. We
combine (18) symbolic operators with simple rules
that guide exploration of equational state spaces
and generate derivations, then perturb and adapt
them for specific entailment tasks. These are se-
quence classification tasks involving next-equation
prediction that focus on operator usage in annotated
derivations, or the direct integration or differentia-
tion of expressions.

To validate our framework, we test a canon of
Transformer encoders used in mathematical lan-
guage processing (Li et al., 2023; McNichols et al.,
2023; Zhong et al., 2022; Meadows and Freitas,
2022) to determine their capacity for learning how
operators work out-of-distribution, and to abstract
fundamental properties impacting their ability to
generalise.

To summarise, the paper offers the following
contributions:

1. An approach to generating annotated equa-
tional derivations of controllable complexity
levels, involving premise equation generation
(Algorithm 1) and the sequential application
of operators to premises (Algorithm 2).

2. A systematic and scalable methodology to per-
turb various aspects of mathematical language
including structure, syntax, and semantics.

3. Example instantiations of the framework in-
volving sequence classification tasks based
on next-equation prediction. The generated
datasets include static and perturbed deriva-
tions totalling 200K task-specific examples.

4. An extensive experimental framework for
training models on mathematical reasoning

tasks and evaluating their robustness, includ-
ing dataset generation, systematic perturba-
tion, training, and evaluation (Fig. 1).

5. An empirical evaluation of Transformer en-
coders used in mathematical language pro-
cessing. Our results suggest that models are
not predominantly learning abstract rules in
this context, and inference heavily depends on
superficial textual patterns unrelated to deeper
mathematical understanding.

To the best of our knowledge, we are the first to pro-
pose a general algebraic solver-based framework
for producing large-scale and systematic evalua-
tion benchmarks for mathematical reasoning with
Transformers. We release the data generation algo-
rithms and the complete datasets adopted for the
experiments1.

2 Related Work

This work meets at the intersection of computer
algebra, mathematical reasoning with Transformer-
based models, and evaluation frameworks. We
briefly describe the landscape for each domain.

Computer algebra. SymPy (Meurer et al., 2017)
is a computer algebra system used in conjunction
with a number of language processing methods.
For example, Chen et al. (2022) solve numerical
reasoning tasks including simple math elements
such as numbers, by chain-of-thought prompting
language models to generate SymPy solvable code.
Mandlecha et al. (2022) use SymPy to generate data
for answering questions ranging from arithmetic to
calculus, tasks, without testing for generalisability.
Hu and Yu (2022) solve a similar array of problems
from a large-scale dataset (Saxton et al., 2019), and
test for generalisability to an extrapolation set of
problems. Drori et al. (2022) fine-tune the decoder
model, Codex (Chen et al., 2021), on a dataset
of questions from MIT’s university-level mathe-
matics courses, generating SymPy solution code.
Meadows and Freitas (2021) incorporate computer
algebra with a basic heuristic search to reconstruct
derivations from condensed matter research (Mann
et al., 2018).

Reasoning with mathematical language. Since
early reasoning work with Transformers (Saxton
et al., 2019; Clark et al., 2020; Rabe et al., 2020),
they have revolutionised multiple subdomains of

1https://github.com/anonymous/TBA

https://github.com/anonymous/TBA

Figure 2: Example perturbations applied to a derivation using computer algebra. Given the next-equation predic-
tion task chosen, annotation replacement (red) is semantics-altering, while the others are semantics-preserving.
Variable Renaming (VR) involves replacing symbols with out-of-distribution Greek letters. Expression Exchange
(EE) swaps expressions either side of an equality symbol. Annotation Replacement (AR) selects an alternative
final annotation that leads to an alternative final equation.

mathematical language processing (Meadows and
Freitas, 2022) and are responsible for headlining
results (Lewkowycz et al., 2022; Drori et al., 2022).
Transformer encoder models obtain state-of-the-art
performance in variable typing (Ferreira et al.,
2022; Lai et al., 2022), formula search (Zhong
et al., 2022; Peng et al., 2021), natural language
premise selection (Valentino et al., 2022a; Tran
et al., 2022), and retrieval-based math question
answering (Reusch et al., 2022; Novotnỳ and
Štefánik, 2022), among others.

Data-augmentation and evaluation frame-
works. In particular, Stolfo et al. (2022) perturb
elements of math word problems (Liang et al.,
2022) such as numerical operands of implicit
arithmetic operations, and natural language.
Inspired by related work (Patel et al., 2021;
Ribeiro et al., 2020), they apply a causal analy-
sis (Christiansen et al., 2021) to determine the
effect of do-interventions (Pearl, 2022). Their
data-augmentation approach is limited to one or
two task-dependent interventions. Our approach is
task-agnostic, systematic, and scalable, and allows
for complex changes to mathematical elements
such as operators, variables, expressions, and
equations.

3 Generating and Perturbing
Derivations with Computer Algebra

We describe the general framework for generating
derivations from a vocabulary of symbols and a set
of operators. The operators include addition, sub-
traction, multiplication, division, exponentiation,
cos, sin, log, exp, operations for setting up deriva-
tives and integrals and evaluating them, expression
substitutions, and operations for defining premises.
An example of a generated derivation is given in
Fig. 3.

3.1 Premise Generation

Derivations rely on premise equations. Operations
are applied to premises to generate new equations,
as shown in Fig. 3. The first step in Fig. 3 is the
premise equation (1). We outline our approach
to generating premises in this subsection, using a
vocabulary, and a set of operations defined within
a computer algebra system.
The vocabulary includes uppercase and lowercase
English characters, excluding {i, e, d, O}, due to
their connection with math concepts. Operators are
classified by their arity. For example, the symbols
Z and o are sampled from the vocabulary and used
as operands for the 2-arity operator “divide”. Then,
Z is sampled from the vocabulary as an operand for
the 1-arity operator “integrate”. This expression
becomes

∫
Z
o dZ, and consists of the free symbols

Z and o. This is the RHS of the premise equation.

Figure 3: A generated derivation using the proposed
computer algebra system. Colours highlight the depen-
dencies between different reasoning steps.

To form the LHS, a function symbol is sampled
from the vocabulary, in this case S, and the two free
symbols are assigned as variables. The LHS and
RHS are themselves inputted as arguments of an
equation operation, and the premise (1) is obtained.
A formal description is given by Algorithm 1 in
Appendix B.

3.2 Equational Reasoning

Operations accept premise equations and sampled
math elements, and generate new equations. All
generated equations in a derivation may be used to
derive the next equation. We describe this formally
in Algorithm 2, including a description of how
we sample from equation distributions to emulate
human-like derivations, in Appendix C. Operators
are classified by their arity ∈ [0, 2], and are natu-
rally applied to each side of an equation.
For example, starting from the premise in Fig. 3,
given by

S(Z, o) =

∫
Z

o
dZ, (1)

the 2-arity class is selected, and “differentiate” is
chosen from operators matching that arity. All valid
expressions and variables are sampled from, and
the algorithm selects Z. The annotation [‘differ-

entiate’, 1, Z], means the operator was applied to
operand equation (1), with the second operand Z,
and is applied to both LHS and RHS of (1) to give

∂

∂Z
S(Z, o) =

∂

∂Z

∫
Z

o
dZ. (2)

The notation [‘minus’, 1, Derivative(S(Z,o), Z)]
means that an 2-arity operation was selected, the
operator “minus” was chosen, and the LHS of (2)
was selected as the second operand. This operand is
subtracted from both sides of first operand equation
(1), to give

S(Z, o)− ∂

∂Z
S(Z, o) = − ∂

∂Z
S(Z, o)+

∫
Z

o
dZ.

(3)
The final step, annotated by [‘substi-
tute_LHS_for_RHS’, 3, 2], means the substitution
function was chosen, and equations (3) and (2) are
the first and second operands. In this case, the LHS
of (2) was identified within (3), and substituted for
the RHS of (2), to give:

S(Z, o)− ∂

∂Z
S(Z, o) = − ∂

∂Z

∫
Z

o
dZ+

∫
Z

o
dZ.

(4)
This procedure, formalised in Algorithm 2, allows
for a systematic and scalable generation of equa-
tional derivations, with grounded symbolic proper-
ties.

3.3 Perturbations

A perturbation targets a single aspect of a derivation
(such as variable names), and either preserves the
semantics of the original derivation or alters it in a
specific and controllable way.

Semantics-preserving. An input derivation se-
quence, such as Fig. 4(a), is associated with a label
determining its truth value (in the current classi-
fication context). Semantics-preserving perturba-
tions generate examples that preserve the semantic
link between sequence and label, and the given
sequence is still True after the change. Fig. 2 de-
scribes variable renaming (VR) and expression
exchange (EE) perturbations of this type. Vari-
able renaming involves sampling variables from
a different vocabulary to that of the training data.
We sample from a set of ten Greek symbols and
replace English variables using SymPy substitu-
tion operations. The EE perturbation generates
reordered equations, where the only change is the

position of top-level expressions either side of the
equality operator. We also necessarily reverse any
asymmetric annotations with respect to LHS or
RHS of equations. For our set of operations, this
means replacing the substitution function, “sub-
stitute_LHS_for_RHS”, with its RHS equivalent,
and vice versa. Due to a premise always featur-
ing a function on the LHS, it never sees EE exam-
ples during training, and due to the Greek symbols,
VR examples are also out-of-distribution. We also
apply variable renaming and equality conversion
perturbations to examples from the direct calculus
task variation. As described in Fig. 4(b), a differ-
entiation example input may be x2 [SEP] x [SEP]
2x. Equality conversion (EC) involves converting
the valid expressions into equations, by sampling
the LHS symbol from unused symbols. The EC
perturbed example in this case may be y = x2

[SEP] x [SEP] d
dxy = 2x. For integration, the first

expression becomes the equation containing the dif-
ferential operator. This perturbation is the simplest
possible introduction of an equality operator while
maintaining mathematical correctness.

Semantics-altering. A perturbation of this type
alters the semantic link between the sequence and
label. A perturbed sequence is now False if it was
previously True. As in Fig 4(a), an input consists of
previous derivation steps, an annotation associated
with an operator used to generate the final equation,
and the candidate final equation. This equation
is either the ground truth or a negative example,
and the input is paired with a label that reflects the
overall sequence coherence. Both true and false
versions of a sequence are seen during training, that
differ only by the final equation. To alter the seman-
tic link between sequence and label meaningfully,
the annotation replacement (AR) perturbation re-
places a final annotation in a way that the negative
example corresponds to the positive label, and vice
versa. The classification labels are then swapped to
reflect the change. This perturbation is possible be-
cause we generate negative examples by applying
alternative final operations to equations using com-
puter algebra. We do not apply the AR perturbation
in direct calculus, because negatives are generated
differently for that task. As mentioned in Section 4,
negatives for direct calculus are selected by rank-
ing generated premise expression lists with a string
metric. Fig.2 and Fig. 1(b) display the effect of
perturbations.

[an 1, eq 1], [an 2, eq 2], … [SEP] an 𝒏 [SEP] eq

[operator , operand 1 , operand 2]

expr [SEP] var [SEP] expr

(a)

(b)

Figure 4: Two variations of encoder input for the next-
equation prediction task: (a) structured derivations, and
(b) direct calculus.

4 Framework Instantiation

4.1 Next-Equation Prediction
We instantiate the general framework described in
Section 3 for evaluation, formalising two sequence
classification tasks as a next-equation prediction.

Next-equation prediction is a binary sequence
classification task. Given all equations and annota-
tions in the derivation so far, including the final an-
notation that describes how to construct the ground
truth final equation, a candidate equation is paired
with the prior context, and the model learns whether
the reasoning entails this equation. We generate
two variations of the task: the above describes the
structured derivations variation that relies on Algo-
rithm 2, while direct calculus involves single-step
differentiation and integration of premise expres-
sions generated with Algorithm 1.

Structured derivations. Fig. 4(a) describes the
input format for generated derivations. A step con-
sists of an equation and an annotation, as described
in Fig. 3. An annotation is a list comprising an
operator name and its operands. Each step [an, eq]
is linearised and comma separated, up to the final
step. The final step annotation is separated from the
derivation, and the final equation is replaced with a
negative example equation, or left unchanged. All
three input components are [SEP] separated as in
Fig. 4(a). Negative examples are generated by ap-
plying a different operation to a previous equation.
Any previous equations may be used to generate
the final equation, meaning there are long-range
dependencies. Mathematically, the model should
learn the necessary equation dependencies required
to form the final equation, and how to apply the
correct operator (guided by the final annotation).

Direct calculus. In this task we emphasise a
single-step evaluation of derivatives and integrals.
Fig. 4(b) describes the input. A premise expres-
sion containing at least two variables is generated,
a variable is randomly selected from the premise,

Task Train Dev Test
Structured derivations

2-steps 20K 5K 4K
3-steps 20K 5K 4K
4-steps 20K 5K 4K

direct calculus
integration 32K 8K 4K

differentiation 32K 8K 4K

Table 1: The number of examples considered by mod-
els during training, development, and evaluation.

and the resulting expression after differentiating
or integrating with respect to that variable is the
ground truth. This positive example is either re-
placed with a negative example, or not. A classi-
fier infers if the reasoning context generated the
final expression. Negative examples are generated
by selecting from a list of alternative premise ex-
pressions. This list includes the result of differen-
tiating/integrating the expression with respect to
other variables in the expression, and differentiat-
ing/integrating other randomly generated expres-
sions comprised of the same symbols. The list
of expressions are then ranked in terms of their
Damerau-Levenshtein distance (Zhao and Sahni,
2019) from the ground truth (Meadows and Freitas,
2021). For example, the expression −T + sin(U)
is differentiated with respect to T to give −1. The
corresponding negative example is 1. The expres-
sion, variable, and candidate expression are [SEP]
separated upon input to the model, as shown in
Fig. 4(b).

4.2 Data Generation

We construct datasets that allow for derivation
reconstruction within the computer algebra
system, such that they may be further perturbed
or extended. The derivations themselves are
task-agnostic, but we include negative equations
from the current task for reproducibility. A single
entry consists of the reasoning sequence up to
the final expression or equation (see Fig. 4). This
sequence is grouped with both the correct final
equation and negatives, and is stored in both
LaTeX and SymPy-interpretable language (Meurer
et al., 2017). Before a model encounters an
example, it is processed into two sequences: one
including the positive equation, one including the
negative, along with their classification labels. The
number of examples seen by models is displayed
in Table 1. Perturbations are applied to the test
set and generate an equal number of perturbed

examples. The structured derivation datasets
include 20k training, 5k development, and 4k
evaluation examples. Direct calculus includes
32k training, 5k development, and 4k evaluation
examples.

Generalisation to extrapolation examples.
A model that can sufficiently generalise should
be able to solve mathematically less complex
versions of problems encountered during training.
The structured derivations task is split into a
further three variants: those considering 2, 3,
and 4 step derivations. 4-step derivations are
intuitively the hardest, as the static evaluation
supports, and 2-step derivations are the easiest.
To test for generalisability to an extrapolation
set. We evaluate models trained on derivations
with higher step counts, on derivations with lower
step counts. This is represented in the s - 1 and
s - 2 columns in Table 2, where s is the number of
steps the model was trained on. Models solving
the direct calculus task are trained/evaluated on
examples comprising at least two variables, e.g.,
cos(ax)− z. We generate a set of easier calculus
problems with 1.5k examples that consist of only
one variable, e.g., cos(x).

5 Evaluation

As described in Fig. 1, we first evaluate models
on a static set, apply perturbations to the static
set examples, evaluate models on the perturbed
sets, and compare the difference between scores
(accuracy and F1). In addition, we evaluate on
extrapolation examples described in the previous
section, including derivations consisting of less
steps, and direct calculus examples consisting of
functions of single variables. Table 2 (structured
derivations) and Table 3 (direct calculus) display
results from next-equation prediction experiments.

5.1 Results

Models fail to generalise. For structured
derivations, models average 80% F1 over all
static derivation lengths, and decreases due to
perturbations average 10% (VR), 11% (EE), and
16% (AR). This is at most 4% above F1 majority
baseline. BERT-uncased and SciBERT-cased
fine-tuned on 2-step derivations are exceptions, but
the 13 other models are sensitive to at least one
perturbation. All models tested do not generalise
to less derivation steps, reaching as low as 11% F1.

Static VR EE AR s - 1 s - 2

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT-base-uncased (s=2) 0.877 0.889 0.870 0.881 0.870 0.880 0.875 0.887 - - - -
BERT-base-uncased (s=3) 0.789 0.787 0.719 0.710 0.691 0.660 0.537 0.506 0.684 0.690 - -
BERT-base-uncased (s=4) 0.588 0.636 0.550 0.603 0.564 0.603 0.424 0.481 0.657 0.622 0.528 0.298

BERT-base-cased (s=2) 0.872 0.885 0.819 0.832 0.853 0.861 0.855 0.872 - - - -
BERT-base-cased (s=3) 0.782 0.773 0.688 0.645 0.650 0.589 0.545 0.496 0.546 0.305 - -
BERT-base-cased (s=4) 0.668 0.717 0.585 0.615 0.626 0.672 0.433 0.531 0.719 0.739 0.543 0.218

MathBERT (s=2) 0.832 0.820 0.762 0.706 0.790 0.757 0.785 0.760 - - - -
MathBERT (s=3) 0.842 0.839 0.691 0.645 0.633 0.522 0.663 0.640 0.674 0.587 - -
MathBERT (s=4) 0.671 0.684 0.595 0.526 0.623 0.621 0.485 0.479 0.686 0.680 0.518 0.290

SciBERT-uncased (s=2) 0.925 0.926 0.729 0.704 0.868 0.861 0.900 0.902 - - - -
SciBERT-uncased (s=3) 0.889 0.894 0.821 0.819 0.703 0.664 0.709 0.722 0.806 0.818 - -
SciBERT-uncased (s=4) 0.763 0.765 0.695 0.668 0.686 0.659 0.607 0.596 0.769 0.779 0.593 0.574

SciBERT-cased (s=2) 0.926 0.931 0.853 0.871 0.898 0.902 0.910 0.917 - - - -
SciBERT-cased (s=3) 0.772 0.724 0.727 0.672 0.610 0.441 0.508 0.295 0.529 0.128 - -
SciBERT-cased (s=4) 0.710 0.709 0.651 0.646 0.666 0.654 0.470 0.429 0.779 0.749 0.527 0.110

Average (s=2) 0.886 0.890 0.807 0.799 0.856 0.853 0.865 0.868 - - - -
Average (s=3) 0.815 0.803 0.729 0.698 0.657 0.575 0.592 0.532 - - - -
Average (s=4) 0.680 0.702 0.615 0.612 0.633 0.642 0.484 0.503 - - - -

Average over all steps 0.794 0.798 0.717 0.703 0.715 0.690 0.647 0.634 - - - -

Table 2: Model performance on the structured derivations variation of the next-equation prediction task. The
Static column shows scores on data that is unperturbed with respect to the training data. VR (variable renaming)
shows scores after renaming variables as Greek letters. EE (expression exchange) shows scores after swapping
expressions either side of equality symbols in equations. AR (annotation replacement) shows scores after deriving
an alternative final equation. s - n shows scores after evaluating on derivations with n less steps than training
derivations (for n ∈ {1, 2}). Bold numbers denote highest F1 scores for 2-step derivations. Bold italic numbers
denote highest 3-step scores. Bold, italic, and underlined numbers denote highest 4-step scores.

In direct calculus static scores average 90%
and perturbations decrease this by 17% (VR)
and 33% for Equation Conversion (EC). All 10
fine-tuned models completely fail to generalise to
perturbations and easier examples, with 97% F1
scores repeatedly dropping below 17%.

Entailment pre-training improves general-
isability. BERT (Devlin et al., 2018) was
trained on masked language modelling (MLM)
and next sentence prediction (NSP) objectives.
SciBERT (Beltagy et al., 2019) was fine-tuned
with scientific papers on MLM and NSP. Math-
BERT (Peng et al., 2021) was fine-tuned with
scientific papers on standard and structural MLM,
and a context correspondence objective (related
to NSP). Fine-tuning generally overwrites repre-
sentations learned from previous tasks (Mosbach
et al., 2020), so it is likely that MathBERT as
forgotten those associated with NSP (compared to
BERT or SciBERT). The context correspondence
objective used to train MathBERT learns to pair
the description of an equation with the equation
itself. In contrast, NSP involves recognising
consecutive sentences which – particularly in

scientific text – better teaches logical entailment.
Next-equation prediction considers if context
entails the equation in an argumentative sense,
rather than a descriptive sense. We therefore
attribute generalisability failures of MathBERT to
insufficient entailment pre-training. It has strug-
gled with entailment before (Meadows et al., 2022).

Learning formula structure instead of en-
tailment does not necessitate structural
perturbation invariance. Expression Exchange
(EE) and Equation Conversion (EC) involve
perturbing implicit tree-structures of equations,
such as operator trees (Mansouri et al., 2019).
Despite MathBERT using a dedicated pre-training
objective for learning equation tree structure, it is
not more robust to structural perturbations than
other models.

5.2 Qualitative Analysis
We consider (uncased) models trained on 3-step
derivations. This number of steps closely reflects
the average results over all step counts in Table 2.
The All (perfect generalisation) and Not P
(complete generalisation failure) columns of
Table 4 reinforce the relative generalisability gap

Static VR EC Easy

Acc F1 Acc F1 Acc F1 Acc F1

BERT-base-uncased (int) 0.900 0.907 0.688 0.704 0.751 0.780 0.627 0.729
BERT-base-uncased (diff) 0.759 0.803 0.649 0.733 0.622 0.698 0.551 0.691

BERT-base-cased (int) 0.930 0.934 0.716 0.777 0.852 0.867 0.638 0.718
BERT-base-cased (diff) 0.742 0.779 0.642 0.724 0.603 0.649 0.567 0.696

MathBERT (int) 0.922 0.923 0.744 0.758 0.744 0.718 0.586 0.686
MathBERT (diff) 0.847 0.859 0.597 0.481 0.584 0.473 0.561 0.500

SciBERT-uncased (int) 0.968 0.968 0.656 0.744 0.541 0.158 0.626 0.711
SciBERT-uncased (diff) 0.918 0.923 0.726 0.765 0.668 0.581 0.552 0.678

SciBERT-cased (int) 0.971 0.972 0.681 0.758 0.542 0.170 0.580 0.671
SciBERT-cased (diff) 0.923 0.927 0.709 0.765 0.654 0.546 0.615 0.723

Average (int) 0.938 0.932 0.697 0.748 0.686 0.537 0.611 0.703
Average (diff) 0.838 0.858 0.665 0.694 0.626 0.589 0.569 0.658

Average over both tasks 0.888 0.895 0.681 0.721 0.656 0.563 0.590 0.681

Table 3: Model performance on the direct calculus variation of next-equation prediction. The Static column shows
scores on unperturbed data. VR (variable renaming) shows scores after renaming variables as Greek letters. EC
(equation conversion) shows scores after rewriting expressions as equivalent equations that preserve the semantics
of the reasoning. Easy shows scores on simpler examples that consist of only one variable (in comparison to at
least two variables in the static set). Bold numbers denote highest F1 scores for integration derivations. Bold italic
denotes highest differentiation scores.

Static ± All Not P

BERT
62.3 7.4 5.3

R
∫
E

∂E ∂E

∫
− SL

∫
E

R

SciBERT
79.6 21.3 1.6

R
∫
E

∂E

∫
∂E cos R XO ×

MathBERT
70.3 7.8 9.3

R
∫
E

∫ ∫
cos sin R ∂E

∫
E

Table 4: Static ± is the rate at which positive and as-
sociated negative unperturbed sequences are both cor-
rectly classified. All (perfect generalisation) is the per-
centage of examples where the static and perturbed
(positive and negative) sequences are correctly classi-
fied. Not P (complete failure to generalise) is per-
centage of examples where only the static positive se-
quences are classified correctly, while all perturbed pos-
itive sequences are incorrect. Symbols correspond to
the top three most frequent (final) operators in each
unperturbed sequence, where frequency is normalized
with respect to operator frequency in the static set. R
is a premise renaming operator.

∫
and ∂ are integration

and differentation operators.
∫
E

and ∂E are respective
evaluation operators. XO is exponentiation,× is multi-
plication, − is subtraction, and SL is LHS substitution.

between SciBERT and MathBERT, despite both
being trained on scientific corpora, and display the
top three operators by normalised frequency per
generalisation category.

Generalisation failure depends on the un-
predictability of an operator. For examples
where models perfectly generalise, the operator

Figure 5: Three examples of the total 15, where
both SciBERT and MathBERT correctly classify unper-
turbed examples (as shown), but incorrectly classify all
perturbed examples.

responsible for setting up an integral (without
evaluating it) is most common. This is likely
because it involves prepending a unique text span
"\int" to expressions either side of equations, which
is easy to identify. Models generalise well to cos,
sin, exp, and log operators, likely due to their
similarly predictable effect on equations associated
with regular text spans.

To highlight that it is likely the relative unpre-
dictability of an operator’s effect on text that leads
to generalisation failure, we analyse the set of ex-
amples where both SciBERT and MathBERT cor-
rectly classify unperturbed sequences, but misclas-
sify all perturbed sequences. Three examples are
displayed in Fig. 5. The renaming premise opera-

tion is overwhelmingly frequent. It takes a random
previously defined expression as the RHS, and de-
fines a new function as the LHS. It does not nec-
essarily depend on a single previous step and is
non-deterministic due to random sampling of the
RHS, yet it can never generate more complex equa-
tions than those previously derived (unlike all other
operators).

6 Conclusion

We propose the use of mathematical reasoning gen-
eration algorithms to generate synthetic data for
training language models to derive equations. In
this case, we fine-tune Transformer encoder models
to classify correct use of operators when deriving
equations, through next-equation prediction tasks.
Models obtain high scores on unperturbed test sets,
but largely fail to generalise to perturbed test sets
systematically generated with computer algebra.
This instantiation of the framework suggests mod-
els are relying on textual patterns mostly unrelated
to any deeper mathematical understanding of the
operators. We explore the relationship between
generalisation failure and operator usage, and de-
termine that operators with a less predictable (and
identifiable) effect on the surface form of equa-
tions reliably leads to generalisation failure, even
if the mathematics is not necessarily more difficult.
Although models that incorporate formula struc-
ture are strong in many tasks (Zhong et al., 2022;
Meadows and Freitas, 2022; Peng et al., 2021), we
suggest this should not overwrite knowledge that
is crucial to the application at hand, such as textual
entailment in next-equation prediction. Future re-
search may explore the flexibility of the proposed
symbolic framework to instantiate novel math rea-
soning tasks, investigate the systematic behaviour
of larger language models (Chung et al., 2022;
Brown et al., 2020), and incorporate causal analy-
sis (Stolfo et al., 2022).

7 Limitations

Overall ethical impact. This work explores a
systematic way to elicit the mathematical/symbolic
inference properties of Transformer-based models
in mathematical language processing tasks. As
such, it contributes in the direction of a critique of
the true reasoning capabilities and biases of these
models.

Derivation generation. There are irrelevant
steps in some longer derivations, such as apply-

ing an operation to an equation, but not using the
result. This should not affect results as the final
equation always depends on a previous equation,
except when it is a renaming premise. This error
is likely due to incorrect subderivation extraction,
and will be improved.

Perturbations. Perturbations should only
change a single aspect of the input, controlling
for all other casual aspects. The variable renam-
ing perturbation should only replace variables.
However, the difference between the use of Greek
and English alphabet, is the wordpiece tokenizer
splits e.g.,β into two tokens, meaning attention
scores are calculated between them. This does
not occur for English characters. Also, due to
SymPy ordering limitations, a change in notation
may change the ordering of commutative variables
within expressions. Therefore, this implementation
does not lead to an pure perturbation that only
changes a single mathematical property, and
further artefacts are present within the evaluation.

Integration. SymPy does not generate integra-
tion constants. Although we account for this within
derivation generation, we choose not to for direct
calculus of integrals. Also, many integrals are eval-
uated to be case-based expressions, including value
inequalities. We omit these examples for a closer
comparison with differentiation, and for better com-
patibility with the perturbations.

Acknowledgements

This work was partially funded by the Swiss Na-
tional Science Foundation (SNSF) project Neu-
Math (200021_204617).

References
Yonatan Belinkov. 2022. Probing classifiers: Promises,

shortcomings, and advances. Computational Lin-
guistics, 48(1):207–219.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,

Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Rune Christiansen, Niklas Pfister, Martin Emil Jakob-
sen, Nicola Gnecco, and Jonas Peters. 2021. A
causal framework for distribution generalization.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):6614–6630.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
arXiv preprint arXiv:2002.05867.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard
Tang, Albert Lu, Elizabeth Ke, Kevin Liu, Linda
Chen, Sunny Tran, Newman Cheng, Roman Wang,
Nikhil Singh, Taylor L. Patti, Jayson Lynch, Avi Sh-
porer, Nakul Verma, Eugene Wu, and Gilbert Strang.
2022. A neural network solves, explains, and gener-
ates university math problems by program synthesis
and few-shot learning at human level. Proceedings
of the National Academy of Sciences, 119(32).

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral ex-
planation with amnesic counterfactuals. Transac-
tions of the Association for Computational Linguis-
tics, 9:160–175.

Deborah Ferreira, Mokanarangan Thayaparan, Marco
Valentino, Julia Rozanova, and Andre Freitas. 2022.
To be or not to be an integer? encoding variables for
mathematical text. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 938–
948, Dublin, Ireland. Association for Computational
Linguistics.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Grif-
fiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Christian Petersen, Alexis Chevalier, and
Julius Berner. 2023. Mathematical capabilities of
chatgpt. arXiv preprint arXiv:2301.13867.

Yangyang Hu and Yang Yu. 2022. Enhancing neu-
ral mathematical reasoning by abductive combi-
nation with symbolic library. arXiv preprint
arXiv:2203.14487.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lip-
ton. 2019. Learning the difference that makes
a difference with counterfactually-augmented data.
arXiv preprint arXiv:1909.12434.

Ram Shankar Siva Kumar, Magnus Nyström, John
Lambert, Andrew Marshall, Mario Goertzel, Andi
Comissoneru, Matt Swann, and Sharon Xia. 2020.
Adversarial machine learning-industry perspectives.
In 2020 IEEE security and privacy workshops
(SPW), pages 69–75. IEEE.

Viet Lai, Amir Pouran Ben Veyseh, Franck Dernon-
court, and Thien Nguyen. 2022. Semeval 2022 task
12: Symlink-linking mathematical symbols to their
descriptions. In Proceedings of the 16th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2022), pages 1671–1678.

Rebecca J Lee, Oskar Wysocki, Cong Zhou, Rohan
Shotton, Ann Tivey, Louise Lever, Joshua Wood-
cock, Laurence Albiges, Angelos Angelakas, Dirk
Arnold, et al. 2022. Establishment of coronet, covid-
19 risk in oncology evaluation tool, to identify pa-
tients with cancer at low versus high risk of se-
vere complications of covid-19 disease on presenta-
tion to hospital. JCO clinical cancer informatics,
6:e2100177.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative
reasoning problems with language models. arXiv
preprint arXiv:2206.14858.

Weixian Waylon Li, Yftah Ziser, Maximin Coavoux,
and Shay B Cohen. 2023. Bert is not the count:
Learning to match mathematical statements with
proofs. arXiv preprint arXiv:2302.09350.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022.
Mwp-bert: Numeracy-augmented pre-training for
math word problem solving. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 997–1009.

Pratik Mandlecha, Snehith Kumar Chatakonda, Neeraj
Kollepara, and Pawan Kumar. 2022. Hybrid tok-
enization and datasets for solving mathematics and
science problems using transformers. In Proceed-
ings of the 2022 SIAM International Conference on
Data Mining (SDM), pages 289–297. SIAM.

Charlie-Ray Mann, Thomas J Sturges, Guillaume We-
ick, William L Barnes, and Eros Mariani. 2018.
Manipulating type-i and type-ii dirac polaritons in
cavity-embedded honeycomb metasurfaces. Nature
communications, 9(1):1–11.

Behrooz Mansouri, Shaurya Rohatgi, Douglas W Oard,
Jian Wu, C Lee Giles, and Richard Zanibbi. 2019.
Tangent-cft: An embedding model for mathematical
formulas. In Proceedings of the 2019 ACM SIGIR

https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.1073/pnas.2123433119
https://doi.org/10.18653/v1/2022.findings-acl.76
https://doi.org/10.18653/v1/2022.findings-acl.76

International Conference on Theory of Information
Retrieval, pages 11–18.

Hunter McNichols, Mengxue Zhang, and Andrew Lan.
2023. Algebra error classification with large lan-
guage models. arXiv preprint arXiv:2305.06163.

Jordan Meadows and André Freitas. 2021. Similarity-
based equational inference in physics. Physical Re-
view Research, 3(4):L042010.

Jordan Meadows and Andre Freitas. 2022. A survey in
mathematical language processing. arXiv preprint
arXiv:2205.15231.

Jordan Meadows, Zili Zhou, and Andre Freitas. 2022.
Physnlu: A language resource for evaluating natural
language understanding and explanation coherence
in physics. arXiv preprint arXiv:2201.04275.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki,
Ondřej Čertík, Sergey B Kirpichev, Matthew Rock-
lin, AMiT Kumar, Sergiu Ivanov, Jason K Moore,
Sartaj Singh, et al. 2017. Sympy: symbolic comput-
ing in python. PeerJ Computer Science, 3:e103.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. arXiv preprint arXiv:2006.04884.

Yixin Nie, Adina Williams, Emily Dinan, Mohit
Bansal, Jason Weston, and Douwe Kiela. 2020. Ad-
versarial nli: A new benchmark for natural language
understanding. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4885–4901.

Vít Novotnỳ and Michal Štefánik. 2022. Combining
sparse and dense information retrieval. Proceedings
of the Working Notes of CLEF.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Judea Pearl. 2009. Causal inference in statistics: An
overview. Statistics surveys, 3:96–146.

Judea Pearl. 2022. Direct and indirect effects. In Prob-
abilistic and causal inference: The works of Judea
Pearl, pages 373–392.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.
2021. Mathbert: A pre-trained model for math-
ematical formula understanding. arXiv preprint
arXiv:2105.00377.

Markus N Rabe, Dennis Lee, Kshitij Bansal, and Chris-
tian Szegedy. 2020. Mathematical reasoning via
self-supervised skip-tree training. arXiv preprint
arXiv:2006.04757.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3363–3377.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. 2022.
Transformer-encoder and decoder models for ques-
tions on math. Proceedings of the Working Notes of
CLEF 2022, pages 5–8.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902–
4912, Online. Association for Computational Lin-
guistics.

Julia Rozanova, Marco Valentino, Lucas Cordeiro, and
André Freitas. 2023a. Interventional probing in high
dimensions: An nli case study. In Findings of the
Association for Computational Linguistics: EACL
2023, pages 2444–2455.

Julia Rozanova, Marco Valentino, and Andre Freitas.
2023b. Estimating the causal effects of natural logic
features in neural nli models.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint
arXiv:1904.01557.

Viktor Schlegel, Goran Nenadic, and Riza Batista-
Navarro. 2023. A survey of methods for revealing
and overcoming weaknesses of data-driven natural
language understanding. Natural Language Engi-
neering, 29(1):1–31.

Goyal Shreya, Sumanth Doddapaneni, Mitesh M
Khapra, and Balaraman Ravindran. 2022. A survey
of adversarial defences and robustness in nlp. ACM
Computing Surveys.

Alessandro Stolfo, Zhijing Jin, Kumar Shridhar, Bern-
hard Schölkopf, and Mrinmaya Sachan. 2022. A
causal framework to quantify the robustness of math-
ematical reasoning with language models. arXiv
preprint arXiv:2210.12023.

Damien Teney, Ehsan Abbasnejad, Kushal Kafle, Ro-
bik Shrestha, Christopher Kanan, and Anton Van
Den Hengel. 2020. On the value of out-of-
distribution testing: An example of goodhart’s law.
Advances in Neural Information Processing Systems,
33:407–417.

Thi Hong Hanh Tran, Matej Martinc, Antoine Doucet,
and Senja Pollak. 2022. Ijs at textgraphs-16 natural
language premise selection task: Will contextual in-
formation improve natural language premise selec-
tion? In Proceedings of TextGraphs-16: Graph-
based Methods for Natural Language Processing,
pages 114–118.

https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
http://arxiv.org/abs/2305.08572
http://arxiv.org/abs/2305.08572

Marco Valentino, Deborah Ferreira, Mokanarangan
Thayaparan, André Freitas, and Dmitry Ustalov.
2022a. TextGraphs 2022 shared task on natural
language premise selection. In Proceedings of
TextGraphs-16: Graph-based Methods for Natural
Language Processing, pages 105–113, Gyeongju,
Republic of Korea. Association for Computational
Linguistics.

Marco Valentino, Mokanarangan Thayaparan, Deborah
Ferreira, and André Freitas. 2022b. Hybrid autore-
gressive inference for scalable multi-hop explana-
tion regeneration. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
11403–11411.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Victor Veitch, Dhanya Sridhar, and David Blei. 2020.
Adapting text embeddings for causal inference. In
Conference on Uncertainty in Artificial Intelligence,
pages 919–928. PMLR.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay
Besiroglu, Marius Hobbhahn, and Anson Ho. 2022.
Will we run out of data? an analysis of the limits of
scaling datasets in machine learning. arXiv preprint
arXiv:2211.04325.

Sean Welleck, Jiacheng Liu, Jesse Michael Han, and
Yejin Choi. 2021. Towards grounded natural lan-
guage proof generation. In MathAI4Ed Workshop
at NeurIPS.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Liuyi Yao, Zhixuan Chu, Sheng Li, Yaliang Li, Jing
Gao, and Aidong Zhang. 2021. A survey on causal
inference. ACM Transactions on Knowledge Discov-
ery from Data (TKDD), 15(5):1–46.

Chunchun Zhao and Sartaj Sahni. 2019. String correc-
tion using the damerau-levenshtein distance. BMC
bioinformatics, 20(11):1–28.

Wei Zhong, Jheng-Hong Yang, and Jimmy Lin. 2022.
Evaluating token-level and passage-level dense re-
trieval models for math information retrieval. arXiv
preprint arXiv:2203.11163.

A Training

Transformer encoders with a binary sequence clas-
sification layer are fine-tuned for 12 epochs on
a 16GB Tesla V100, with a batch size of 8, and

a learning rate of 5e-7, via the Transformers li-
brary (Wolf et al., 2019). We use adapted ver-
sions of the public2 training scripts. Tokeniz-
ers pad up to a max length of 256, and the best
model by F1 is selected after training. We train
25 models stemming from 5 encoders: BERT-base-
uncased (Devlin et al., 2018), BERT-base-cased,
SciBERT cased and uncased (Beltagy et al., 2019),
and MathBERT (Peng et al., 2021). SciBERT is
a version of BERT pretrained on scientific text.
MathBERT is initialised on BERT-base-uncased,
and pretrained on three masked language modelling
tasks related to the structure of equation operator
trees (Mansouri et al., 2019), and the relationship
between equations and their natural language con-
text. It delivers state-of-the-art results in formula
search (Zhong et al., 2022).

B Algorithm for Premise Generation

Algorithm 1 is implemented to generate premises
with computer algebra. Functions specific to the
computer algebra system such as e.g., Symbol and
Function, are used directly in the algorithm, and in-
directly to compose functions such as differentiate,
integrate, etc.

C Algorithm for Derivation Generation

Algorithm 2 relies on Algorithm 1, in order to de-
rive subsequent equations. It relies on two other
procedures other than Step. The EquationDistri-
bution function relies on the hyperparameter ph,
which controls the frequency that recent equations
are sampled as a cubic function of ph. The Extract-
Derivation function is responsible for collecting all
related steps from the initial longer derivation, such
that a final self-contained derivation is obtained.
This derivation must match the desired length, Lf .

Hyperparameters. We rely on other hyperpa-
rameters to control 1. the selection bias towards
operations being applied to more recent equations,
2. the bias towards operators of a particular arity,
and 3. bias towards other operator subcategories.
Considering 1., in the 2-arity two annotation format
[‘operator’, operand 1, operand 2], operand 1 is al-
ways an equation index. This is also true for 1-arity,
and 0-arity does not require an operand. An equa-
tion is randomly sampled from a non-repeating set
of derived equations. The history hyperparameter,

2https://huggingface.co/docs/
Transformers/tasks/sequence_
classification

https://aclanthology.org/2022.textgraphs-1.11
https://aclanthology.org/2022.textgraphs-1.11
https://huggingface.co/docs/Transformers/tasks/sequence_classification
https://huggingface.co/docs/Transformers/tasks/sequence_classification
https://huggingface.co/docs/Transformers/tasks/sequence_classification

Algorithm 1 Generate Premise Equation
Requires a global vocabulary of letters, V , and operations e.g., cos, sin, etc.

1: procedure PREMISE(Mc)
2: S ← [Symbol(v) for v in V]
3: R1 ← [Cos, Sin, Exp, Log]
4: R2 ← [Add, Minus, Times, Power, Divide, Differentiate, Integrate]
5: arity← random.choice([1,2])
6: if arity = 1 then
7: R← random.choice(R1)
8: S ← random.choice(S)
9: RHS← R(S)

10: LHS← random.choice([s for s in S if s 6= S])
11: else if arity = 2 then
12: R← random.choice([r for r inR2 if r not in [Differentiate, Integrate]])
13: S1 ← random.choice(S)
14: S2 ← random.choice([s for s in S if s 6= S1])
15: RHS← R(S1, S2)
16: LHS← random.choice([s for s in S if s not in [S1, S2]])
17: end if
18: complexity← random.choice(range(Mc))
19: for i ∈ range(complexity) do
20: arity← random.choice([1,2])
21: if arity = 1 then
22: R← random.choice(R1)
23: RHS← R(RHS)
24: else if arity = 2 then
25: R← random.choice(R2)
26: S ← random.choice(S)
27: RHS← R(RHS, S)
28: end if
29: end for
30: LHS← Function(LHS)(*tuple(RHS.free_symbols))
31: premise← Eq(LHS, RHS)
32: return premise
33: end procedure

ph, clones an equation in the list, through a cubic
function of its step-wise chronological position, as
described above. With our default settings, the
last equation in a list of three is twice as likely to
be selected as input than the first. This emulates
mathematicians working with recent equations, but
having to occasionally sample from distant results.
Other hyperparameters work similarly, by repeat-
ing elements of lists. Considering 2., we bias to-
wards 2-arity, as those contain calculus, and con-
sidering 3. we bias towards substitution operations,
differentiation, and integration.

Collecting scattered derivations. A sequence
of operations applied to premises can result in un-
linked derivations. These can merge to form larger
derivations by substituting expressions from one
into another. If a merging operation does not occur,
the derivations remain separated, and each may be
treated independently. Briefly, we traverse a sin-
gle generated chain reverse-chronologically, using
the equation numbers in annotations as guides for
determining dependency. This is handled by the
ExtractDerivation function.

Algorithm 2 Generate Equational Reasoning
1: procedure STEP(D, p0, p1, p2, ph, pr, pe, pc, ps)
2: D ← [i[0] for i in D]
3: A← [i[1] for i in D]
4: R0 ← [Premise] + [RenamingPremise]×pr
5: R1 ← [Cos, Sin, Exp, Log, Expand] + [EvaluateDerivatives, EvaluateIntegrals]×pe
6: R2 ← [Add, Minus, Times, Divide, Power] + [Differentiate, Integrate]×pc

+ [SubsLHSForRHS, SubsRHSForLHS]×ps
7: elements← numbers, variables, and subexpressions from D
8: arity← random.choice([0]×p0 + [1]×p1 + [2]×p2)
9: if arity = 0 then

10: R← random.choice(R0)
11: equation← R
12: annotation← R.__name__
13: else if arity = 1 then
14: R← random.choice(R1)
15: e1 ← random.choice(EquationDistribution(D, ph))
16: equation← R(e1)
17: n← D.index(e1)
18: annotation← [R.__name__, n+ 1]
19: else if arity = 2 then
20: R← random.choice(R2) . R depends on the length of D
21: e1 ← random.choice(EquationDistribution(D, ph))
22: e2 ← random.choice(elements) . e2 will vary depending on R
23: equation← R(e1, e2)
24: n← D.index(e1)
25: annotation← [R.__name__, n+ 1, e2]
26: end if
27: if equation is valid then . validity depends on various checks
28: return equation
29: else
30: return None
31: end if
32: end procedure
33: while True do
34: D ← [(Premise(Mc), "premise")] . generate first step using Algorithm 1
35: while len(D) < Li do . Li is an initial length of the derivation
36: step← Step(D, p0, p1, p2, ph, pr, pe, pc, ps)
37: if step is not None then
38: D.append(step)
39: end if
40: end while
41: derivation← ExtractDerivation(D)
42: if len(derivation) = Lf then . Lf ≤ Li is the desired length of the derivation
43: break
44: end if
45: end while
46: D = derivation

