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Abstract
1. Bayesian approaches to the modelling of ecological systems are increasingly pop-

ular, but there are competing methods for formal model comparisons. Here, we 
focus on the task of performing multimodel inference through estimating poste-
rior model weights, which encompasses uncertainties in the choice of competing 
model structure into the inference outputs.

2. Model-based approaches such as reversible-jump Markov chain Monte Carlo 
(RJ-MCMC) are flexible and allow multimodel inference, but can be complex to 
implement and optimise, and so we translate a model-based approach for ecologi-
cal applications using Importance Sampling to estimate the marginal likelihood 
of the data given a particular model. This approach allows for model compari-
son through the estimation of Bayes' Factors or interpretable posterior model 
probabilities, yielding model weights that facilitate multimodel inference through 
Bayesian model averaging.

3. We demonstrate Importance Sampling with two case study investigations in 
animal demography: censused analysis of banded mongoose (Mungos mungo) sur-
vival where missing data are uncommon, and capture–mark–recapture analysis of 
European badger (Meles meles) survival where data are commonly missing.

4. We compare outcomes of the model comparison using the Importance Sampling 
approach to those obtained through single-model inference approaches using 
Deviance information criteria and the Watanabe–Akaike information criteria. The 
results of the Importance Sampling method aligns with RJ-MCMC model com-
parisons while often being more straightforward to fit and optimise, particularly 
if the competing models are non-nested.
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1  |  INTRODUC TION

Ecological research is often based on data from field observations, 
which can be plagued by varying degrees of unknown measure-
ment error and missing information (Cressie et al., 2009; Martin 
et al., 2005). If these imperfections are not accounted for correctly, 
this can result in biased estimates of ecological parameters and po-
tentially specious inference (Williams et al., 2002). Bayesian infer-
ence is regularly advocated as a powerful approach when dealing 
with missing data, since it provides a coherent framework to account 
for and characterise the uncertainties associated with the missing 
information (Daniels & Hogan, 2008). It has thus become the default 
for many applied problems (Fragoso et al., 2018), particularly in the 
analysis of ecological systems (Clark et al., 2005).

Statistical analysis in ecology now relies heavily on model com-
parison techniques (Johnson & Omland, 2004) and multimodel in-
ference (Burnham & Anderson, 2002; Harrison et al., 2018), which 
allow the researcher to formulate a set of competing statistical 
models and evaluate the relative strength of evidence in the data 
in support of alternative hypotheses (Plummer, 2008). As a result 
of the growth in popularity of Bayesian modelling for ecological re-
search various approaches to model choice and comparison have 
been proposed, each with advantages and disadvantages. Popular 
methods generally fall into two categories: (1) penalised-loss func-
tions such as the Deviance Information Criterion (DIC; Spiegelhalter 
et al., 2002) and the Watanabe–Akaike Information Criterion (WAIC; 
Watanabe, 2010), which produce a rank score for each competing 
model; and (2) model-based approaches (Hooten et al., 2015) that 
focus on estimating the marginal likelihood of the data for a given 
model—this referring to the expected value of the likelihood func-
tion with respect to the prior(s). In the latter case, model compari-
sons can then be conducted by calculating either Bayes' Factors or 
posterior model weights (Hoeting et al., 1999; Jeffreys, 1961; Kass 
& Raftery, 1995). These latter approaches offer robust multimodel 
inference yet are often overlooked due to complexities in calculating 
the marginal likelihood.

Here, we highlight an approach to model comparison that es-
timates the marginal likelihood through a combination of Markov 
chain Monte Carlo (MCMC) and Importance Sampling (IS). This 
combined approach has been shown to work well compared with 
competing methods, particularly when dealing with high prevalence 
of missing data (Mckinley et al., 2020; Touloupou et al., 2018; Tran 
et al., 2014), a situation which has drawn concern when using the 
more established model-comparison methods (Celeux et al., 2006; 
Daniels & Hogan, 2008). Importance Sampling is a statistical method 
used to estimate properties of a specific probability distribution (the 
target distribution) by drawing weighted samples from an approxi-
mating distribution (referred to as the proposal or importance dis-
tribution), which is chosen to be more straightforward to sample 
from. Samples drawn from the importance distribution allow for 
the approximation of integrals or expected values that may be chal-
lenging to evaluate otherwise. We follow the two-stage approach 
of Touloupou et al. (2018), in which a model is fitted to observed 

data via MCMC to collect posterior samples, which are then used 
to inform a tractable proposal distribution from which we can es-
timate the marginal likelihood. This allows for efficient estimation 
because samples are more likely to be drawn from regions of the 
parameter space with higher posterior density through the impor-
tance distribution (Tokdar & Kass, 2010). We can then perform a 
comprehensive analysis of the relative quality of competing models 
and perform multimodel inference of population parameters and 
their associations with predictor variables.

There are many methods for estimating marginal likelihoods (e.g. 
Gelfand & Dey, 1994; Zhou et al., 2016) and for a comparison be-
tween approaches please see, for example Touloupou et al. (2018). 
We present IS here because it is relatively straightforward to im-
plement and has been shown to work well in situations with miss-
ing data (Touloupou et al., 2018). We also implement an alternative 
approach using reversible-jump MCMC (RJ-MCMC)—an extension 
to more conventional MCMC methods which allows a Markov chain 
to jump between different model configurations while simultane-
ously exploring parameter values within each model. RJ-MCMC is 
powerful, but can be difficult to code and optimise. It is best suited 
to situations where competing models are nested, such as for vari-
able selection scenarios. In this latter case, it can be implemented in 
some general-purpose Bayesian software packages such as NIMBLE 
(de Valpine et al., 2017). The two-stage IS approach that we explore 
here can work well with non-nested models but requires each model 
to be fitted separately, and so is less-suited to variable selection sce-
narios with large numbers of variables, where the number of com-
peting models can be very large. As statisticians/modellers we feel 
that it is useful to have a tool-box of techniques that can be useful in 
different contexts, and it is with that philosophy that we present the 
IS method as an alternative to RJ-MCMC, here. We also present DIC 
and WAIC scores which, although optimising different measures, 
serve to highlight that the choice of model comparison method is 
often context dependent and can favour different models.

We provide a straightforward linear regression example of the 
IS approach using simulated data in Supplementary Material that 
serves as a simple tutorial, but focus here on implementation of the 
approach to ecological data in the form of two case study investiga-
tions of survival in mammal populations.

The modelling and accurate estimation of survival is critical 
to many areas of wildlife research (e.g. evolutionary pressures in 
the wild—Roulin et al., 2010; conservation of populations—Morris 
& Doak, 2002; wildlife disease—Benton et al., 2018) but is reliant 
upon the analysis of repeated observations of individuals (Dey 
et al., 2019), which can be challenging in dynamic wild populations 
(Delahay et al., 2009). Generally, researchers gathering data at the 
individual level will strive for census information where missing 
data are rare; however, such situations are infrequent. A common 
approach is to use capture–mark–recapture (CMR), the repeated 
sampling of a population in which individuals are first marked and 
released, and, at each subsequent occasion they are either recap-
tured, not detected, or recovered dead (Catchpole et al., 1998). The 
resulting data are punctuated with missing information due to low 
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    |  3HUDSON et al.

detection/recapture probabilities and/or censoring—when mea-
surements or observations are only partially known. For example, 
if some deaths occur after the study period has ended, then those 
individuals provide only partial information about mortality by sur-
viving at least until the end of the study (so-called right-censoring).

In survival analysis, problems with missing data and censoring 
are generally overcome by fitting a parametric model that ade-
quately describes the data (Wilson, 1994), which can then be used to 
interpolate or extrapolate probabilities of events happening at some 
point during the censoring period. Many models have been devel-
oped for this purpose, including (Gompertz, 1825; Makeham, 1867; 
Siler, 1979). Historically, the Gompertz model was assumed to 
provide an adequate fit to data describing mortality for most 
mammalian species (Kirkwood, 2015), but there is now a growing 
understanding that mortality trajectories of wild animals can depart 
from this standard form (e.g. Colchero et al., 2019; Jones et al., 2014; 
Ronget et al., 2020). Best-fit parameter estimates for a single, pre-
ferred model will often be compared between populations to de-
termine mortality and survival differences associated with genetic 
or environmental variation but the data from these different groups 
may be more suited and better fit by altogether different underlying 
functions (Wilson, 1994). There is a growing need for efficient and 
reliable methods to compare the fit of competing survival models 
(e.g. Larson et al., 2016) or perform multimodel inference.

In this paper, we aim to: (1) evaluate the performance of Bayesian 
model comparison and multimodel inference via marginal likelihood 
estimation (specifically using a combination of MCMC and IS) using 
two common formats of ecological data (census and CMR); and (2) 
broaden the appeal of this approach to ecologists for whom imper-
fect detection and sampling methodologies often result in incom-
plete data.

2  |  MATERIAL S AND METHODS

Mortality trajectories describe the pattern of mortality through an 
organism's lifespan. We demonstrate the IS method by comparing 
the results with the well-established model comparison metrics 
DIC and WAIC, as well as RJ-MCMC. DIC is defined as the differ-
ence between the expected deviance of the model and the effective 
number of parameters (Spiegelhalter et al., 2002). Watanabe–Akaike 
Information Criterion is an estimate of the expected log pointwise 
predictive density, corrected for overfitting (Watanabe, 2010). RJ-
MCMC is an extension of standard MCMC methods, which oper-
ates by proposing simultaneous changes to the parameters and the 
model structure, yielding posterior inclusion probabilities for nested 
variants of the model itself (Green, 1995). RJ-MCMC can be used for 
non-nested models but often suffers with poor mixing, particularly 
as the models differ in terms of complexity and parameter defini-
tions. For further details, see the Supplementary Materials.

Prior to any model comparisons an important step is to ensure all 
candidate models are capable of giving rise to the data. Various ap-
proaches to model-checking are available (Conn et al., 2018; Morey 

et al., 2013), but we note that validating models can be difficult when 
inferring the parameters of latent or partially observed processes 
like survival. With census data (where censoring is rare we are able 
to compare predictive survival curves with Kaplan-Maier plots of ac-
tual survival (see Figure 4a) but this is not possible with CMR data. 
We checked the validity of our models by simulating lifespans and 
capture histories using the inferred posterior distributions of param-
eters from our models, then comparing these posterior distributions 
to our observed data. We also check the mixing and convergence of 
the MCMC chains (see Supplementary Material).

Both case studies involve two implementations of our approach 
to model comparison: (1) compare the fits of four different mortality 
models to establish an underlying mortality pattern within each data 
set (Table 1); and (2), using the model(s) established in (1) to then inves-
tigate sex-specific variation. We note that these investigations could 
be combined (i.e. compare sex-specific variations of all models) but to 
facilitate the implementation of the RJ-MCMC in NIMBLE without the 
use of customised samplers, we chose to separate the steps here.

The exponential model assumes constant mortality throughout 
life independent of age; the Gompertz model (Gompertz, 1825) 
describes mortality as exponentially increasing with age; the 
Gompertz–Makeham (Makeham, 1867) is an extension of the 
Gompertz model with an additional age-independent mortality haz-
ard parameter; and the Siler model (Siler, 1979) describes a ‘bathtub’ 
shaped mortality curve with an initial decline in mortality from a high 
intercept, then near-constant early- to mid-life mortality, followed 
by exponentially increasing mortality due to actuarial senescence. 
We structure competing models such that time of death is distrib-
uted according to the given mortality model(s) with each parameter 
then allowing (or not allowing) sex-specific variations. For example, 
when fitting the Siler model to census data:

where tD
j
 is time of death for individual j and each parameter is then 

model as:

(1)tD
j
∼ Siler

(
aM
1j
, aM

2j
, bM

1j
, bM

2j
, cM

j

)

(2)

log
(
aM
1j

)
= log

(
a1
)
+�1×sexj

log
(
aM
2j

)
= log

(
a2
)
+�2×sexj

log
(
bM
1j

)
= log

(
b1
)
+�3×sexj

log
(
bM
2j

)
= log

(
b2
)
+�4×sexj

log
(
cj
)
= log(c)+�5×sexj

TA B L E  1  Mortality functions used as proposal models to fit to 
the data.

Model
Mortality rate 
�(x| 𝛉) Parameters

Exponential r r > 0

Gompertz aebx a, b > 0

Gompertz–Makeham aebx + c a, b, c > 0

Siler a1e
−b1x + c + a2e

b2x a1, a2, b1, b2, c > 0
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4  |    HUDSON et al.

We code sex as a binary variable, taking the value 0 if an individual is 
female, and 1 if they are male; and �1:5 represent the coefficients for 
the effect of being male on each of the Siler parameters. In the above 
example (Equation 1 and Equation 2), the model would allow sex-spe-
cific variation on all parameters of the Siler model. For complete model 
definitions, see Supplementary Material.

2.1  |  Estimating the marginal likelihood

For a given model, Bayesian statistical inference estimates a pos-
terior probability distribution, f(�| y), for parameters � given data y. 
The posterior distribution satisfies

where f(y|�) is the likelihood function (the distribution of the data 
given the parameters) and f(�) is the prior distribution (representing 
our belief in the values of the parameters in the absence of data). The 
denominator, f(y), is the marginal likelihood, and is defined as the (mul-
tidimensional) integral of the numerator of Equation (3) with respect to 
all parameters (or equivalently, it can be interpreted as the expected 
value of the likelihood function with respect to the prior distribution):

For clarity, we can make explicit that all inferences from Equation (3) 
are in fact dependent on some model M i.e.

In the context of model comparisons, we now consider a set of com-
peting proposal models M1, … ,MK.

Step 1: Fit the proposal model M1 to the data y, estimating the 
posterior distribution f

(
�| y,M1

)
 using MCMC.

Step 2: Find a suitable importance distribution for f
(
�| y,M1

)
. 

We do this by fitting a series of multivariate finite Gaussian mixture 
models of increasing complexity to the posterior samples from Step 1, 
select the best-fitting mixture model using, for example the Bayesian 
information criterion (BIC), and check that this gives a good approx-
imation of the posterior density (Figure 1). To do this step, we used 
the R package ‘mclust’ (Scrucca et al., 2016). We use BIC because we 
only need to find a suitable, but tractable, approximation to the poste-
rior, and BIC is easy to compute and favours simpler models than the 
more common Akaike's Information Criterion for this purpose. Letting 
qFMM

(
�|M1

)
 be the probability density function of the finite Gaussian 

mixture model described above, we then define a ‘defence mixture’ 
(Hesterberg, 1995) importance distribution of the form:

where f
(
�|M1

)
 is the prior distribution. We set the mixing propor-

tion, p = 0.95 which is at the conservative end of the recommended 
range (Hesterberg, 1995). With a slight abuse of notation, we then 

draw n random samples from the importance distribution q
(
�|M1

)
, for 

i = 1, … , n. The defence mixture is used to ensure that the importance 
distribution is overdispersed with respect to the target distribution, 
and thus ensuring that the variance of the importance sample estima-
tor is finite.

Step 3: We then estimate the marginal likelihood of the model as 
the mean, over sampled posterior values, of:

Step 4: We then repeat Steps 1–3 for any number of alternate pro-
posal models M2, … ,MK. We select the ‘best’ fitting model (i.e. the one 
with the highest log-marginal likelihood) and apply Occam's Window—a 
model selection approach which takes full account of the true model 
uncertainty by selecting a subset of models within a specific threshold 
of the ‘best’ model to then be used in subsequent Bayesian model av-
eraging (Madigan & Raftery, 1994). In our analyses we select any model 
with a log-marginal likelihood value within log(20) of the ‘best’ model 
(Kass & Raftery, 1995). We then calculate the posterior model proba-
bilities of all models within the threshold as:

where P
(
Mk

)
 is the prior probability weight for model Mk such that 

∑K

k=1
P
�
Mk

�
= 1. It is common to set P

(
Mk

)
=

1

K
, thus assuming that 

there is no a priori reason to prefer one model over another (although 
this can be changed according to prior knowledge). Hence, posterior 
model weights are normalised to sum to one over the set of selected 
models, see Kass and Raftery (1995) and Madigan and Raftery (1994).

2.2  |  Case study 1: Census data (banded mongoose 
survival)

The data collection is licensed by the Uganda National Council for 
Science and Technology and approved by both the Uganda Wildlife 
Authority and the University of Exeter's Ethical Review Committee. 
We analysed life history data from a habituated population of wild 
banded mongooses (Mungos mungo) living on and around the Mweya 
Peninsula in Queen Elizabeth National Park, western Uganda (for 
further details see the Supplementary Materials). We only included 
individuals with a known birth date (removing 140 individuals from 
a total of 3380), and all death dates were modelled as right- or inter-
val-censored. Mongoose pups that died prior to being sexed were 
included in the model, with the unknown sex becoming an additional 
latent variable inferred by the model. In this instance, it is reasonable 
to assume that the probability of a pup not being sexed was inde-
pendent of its sex, and as such we used a Bernoulli distribution to 
capture whether individuals were male or female, and used a Uniform 
prior distribution, bounded by zero and one, on the probability of 
being male. The ability to include missing covariate information and 

(3)f(�| y) = f(y|�)f(�)
f(y)

,

(4)f(y) = ∫� f(y|�)f(�)d�.

(5)f(� |y,M) =
f(y|�,M)f(�|M)

f(y|M)
.

(6)q
(
�|M1

)
= pqFMM

(
�|M1

)
+ (1 − p)f

(
�|M1

)

(7)f̂
(
y|Mk

)
=

1

n

∑n

i=1

f
(
y|�i ,Mk

)
f
(
�i|Mk

)

q
(
�i|Mk

)

(8)P
�
Mk� y

�
=

̂f
�
y�Mk

�
P
�
Mk

�

∑K

i=1
̂f
�
y�Mi

�
P
�
Mi

�
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    |  5HUDSON et al.

robustly characterise the uncertainty associated with the missing in-
formation emphasises the flexibility of the Bayesian approach and 
avoids data being discarded unnecessarily.

2.3  |  Case study 2: Capture–mark–recapture data 
(European badger survival)

The capture, examination and sampling of live badgers was carried 
out under Home Office Project Licence PP3493437 and preceding 
versions of this licence. We made use of CMR data from a long-
term monitoring project of a population of wild European badgers 
(Meles meles) in Woodchester Park, Gloucestershire (for further 
details see McDonald et al., 2018).The badger population is sam-
pled using live traps on (usually) four occasions per year with all 
trapped badgers anaesthetized and samples taken for several di-
agnostic tests for infection with Mycobacterium bovis before being 
released. On first capture, each badger is given a unique tattoo 
so it can be identified without error when subsequently captured. 
We used badgers of known age (i.e. badgers caught and identified 
as cubs or yearlings, thus removing 45 individuals captured at age 
>1 year from a total of 2786). The difference in handling CMR data 
as opposed to the mongoose census data lies in the definition of 

the likelihood function—as a result of the sampling process, each 
individual will contribute different information to the survival esti-
mation. Figure 2 represents the different individual scenarios that 
appear in our analysed dataset: individuals 1, 3 and 4 are captured 
and identified as cub; individual 2 dies prior to being captured and 
so contributes nothing to survival estimation; individuals 1 and 4 
are both considered right censored as we only have information 
about survival up to a certain point (last captured alive); individual 
3 contributes the most information and is considered interval cen-
sored (died between interval 6 and 7).

2.4  |  Priors

We specified weakly informative exponential distributions (rate = 1) 
for the priors of the model parameters. Bayes' Factors are sometimes 
criticised for their sensitivity to the priors used so we repeated the 
analyses using more diffuse exponential distributions (rate = 0.1); this 
had negligible effect on any outcomes of the model comparisons, so 
we present the Exp(1) results here. For the RJ-MCMC analysis (see 
Supplementary Material), we set weakly informative exponential 
(rate = 1) priors on the model parameters; the recapture rate had a 
uniform (0, 1) prior; the inclusion indicators for each parameter were 

F I G U R E  1  Example pairs plot of the posterior samples from MCMC (blue) showing sample values and distribution density from the 
importance distribution qFMM

(
�|M1

)
 (red) generated from the selected mixture model overlayed. This example is for the Gompertz model 

fitted to the banded mongoose case study data.
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6  |    HUDSON et al.

set with a Bernoulli (p = 0.5) distribution; and all beta coefficients 
were set with a weakly informative Normal (mean = 0, SD = 1) priors.

3  |  RESULTS

3.1  |  Case study 1: Banded mongoose

The IS approach selected the Siler model as the ‘best’ fitting un-
derlying mortality model (Figure S1), which we carried forward; no 
other model was within the Occam's Window threshold (Kass & 
Raftery, 1995) to be included. DIC and WAIC scores were consist-
ent with the IS approach (Table S1). We were unable to achieve 
satisfactory mixing in an RJ-MCMC analysis for the initial model 
comparisons: We believe this could be achieved by writing custom 
sampling algorithms but such methods fall beyond the scope of 
this paper.

We compared the 32 possible variants of the Siler model allow-
ing (and not allowing) sex-specific variation on every combination 
of parameters. The IS approach selected a model with sex-specific 
variation on parameters b1 and b2 as the ‘best’ model but with nearly 
all other variants within the threshold to be considered (Figure 3a). 
We calculated posterior model probabilities for the competing mod-
els, which we compared to the results of the RJ-MCMC analysis and 
found almost identical agreement between the methods (Figure 3b; 
Table 2). Finally, we calculated DIC and WAIC (Table S2) and found 
mixed levels of agreement (Table 2). The WAIC scores selected the 
same model as the IS approach as the most supported (sex varia-
tion on b1, b2), with four additional models within 2 units (Gelman 
et al., 2014) although only one of these featured in the top five mod-
els according to the IS approach and the RJ-MCMC. DIC scores were 
a lot less consistent: the model allowing sex-specific variation on pa-
rameters a2 and b1 was the most supported with the next best model 
(sex variation on a2, b2) 2.06 units away. The ‘best’ model identified 
by all the other approaches (sex variation on b1, b2) ranked third. The 
individual differences in the majority of DIC and WAIC scores be-
tween competing models are consistently low suggesting there is 
little to choose between the models in terms of these measures. To 
represent the final stage of such an analysis, we removed the models 
that fell outside the log(20) threshold and recalibrated the posterior 

model probabilities to then produce model-averaged, posterior-pre-
dictive survival and mortality trajectories, which can be compared 
with Kaplan–Maier survival plots of the data (Figure 4).

The census style data of the banded mongooses analysed here 
contains minimal missing information and the IS approach, RJ-
MCMC and WAIC all chose the same model as the ‘best’ performing. 
The results of these three techniques also agreed there was little to 
choose between the majority of the other proposal models which 
strengthens the argument for a multimodel inference approach to 
predictions. DIC selected a different ‘best’ model outright, if using 
established convention, but the differences between scores for the 
remaining models were small.

3.2  |  Case study 2: European badger

In the initial comparison of the four potential baseline mortality 
models the IS approach selected the Gompertz–Makeham model as 
the most suitable, with the Siler model lying just outside the log(20) 
threshold (Figure S2). WAIC agreed with the IS approach but DIC 
preferred the Siler model (Table S3). As with the first case study, we 
were unable to achieve satisfactory mixing in an RJ-MCMC analysis 
for the initial model comparisons. We note that early-life mortality is 
unobserved if pups die underground, and so it could be that the pref-
erence for the GM over the Siler may be due to identifiability issues 
with the latter, caused by missing early-life mortality data (Hudson 
et al., 2023).

We constructed the eight variants of the Gompertz–Makeham 
model allowing (and not allowing) sex-specific variation on every 
combination of the model parameters. The IS approach chose the 
model allowing sex-specific variation on c as the best model with 
three of the other proposal models within the log(20) threshold to 
be included (Figure 5a).

We calculated posterior model probabilities for the compet-
ing models, which we compared with the results of the RJ-MCMC 
analysis and found almost identical agreement between the 
methods (Figure 5b, Table 3), the four models that returned log 
marginal likelihood values outside the log(20) threshold were not 
successfully visited by the RJ-MCMC analysis (the chains do visit 
these models but negligible probabilities means the jumps are not 

F I G U R E  2  Representation of the 
types of censorship evident in the badger 
dataset.
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retained) corresponding to an estimated posterior model proba-
bility of zero. We found identical results with the IS approach for 
WAIC (Table 3) but again DIC scores were less consistent—DIC 
suggesting the most supported model allowed sex-specific vari-
ation on a and b, a model completely dismissed by all other ap-
proaches (Table 3; Table S4).

We follow the Occam's window approach (Kass & Raftery, 1995) 
to construct posterior-predictive model-averaged survival and mor-
tality trajectories using all of the proposal models within the log(20) 
threshold of the best fitting model (Figure 6). The posterior model 
probabilities are recalibrated with only the four selected models 
included.

4  |  DISCUSSION

We have translated an accurate and accessible method to carry 
out Bayesian model comparisons for ecological analyses using an 
efficient two-stage approach to the estimation of the marginal 
likelihood based on Importance Sampling. This approach can be 
used to generate posterior model probabilities thus making multi-
model inference more accessible for Bayesian models. Our analy-
ses have focussed on survival trajectory analysis where data sets 
will often include missing or incomplete data but the method is 
equally applicable in any Bayesian investigation requiring model 
comparison.

F I G U R E  3  (a) Log-marginal likelihood values generated by a method utilising Importance Sampling; (b) Comparison of posterior model 
probabilities generated by a method utilising IS (red) and RJ-MCMC (blue) of 32 competing Siler mortality models allowing sex-specific 
variation on different combinations of parameters fitted to survival data. Dashed line in a. represents a value log(20) less than the most 
supported model (Kass & Raftery, 1995). Samples were bootstrapped 1000 times to provide 95% confidence intervals.
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8  |    HUDSON et al.

The mongoose data are derived from census and hence do not 
suffer a great deal of missingness. We found support for multiple 
models that allow sex-specific variation in survival but the model 
that did not allow any sex-specific variation was also within the 
threshold for inclusion and therefore cannot be dismissed. Having 
produced model-averaged, posterior predictive survival curves, our 
analysis suggests that males live slightly longer than females on av-
erage, which supports preliminary analyses from Cant et al. (2016). 
In the analysis of the CMR badger data, the best fitting model chosen 

by IS was one allowing sex-specific variation on the age-independent 
parameter c which serves to raise or lower the overall trajectory. 
We found considerable evidence for sex-specific variation in mor-
tality with all of the models within the threshold of the best fitting 
model allowing sex-specific variation on at least one parameter and 
the Gompertz–Makeham model with no sex variation dismissed with 
a posterior model probability less than one—matching previous anal-
yses of the population (e.g. Hudson et al., 2019).

We compared results of the IS approach from both case-studies 
to DIC and WAIC scores and where possible RJ-MCMC. Although 
results were broadly the same as that achieved with RJ-MCMC, 
WAIC and in particular DIC were less consistent.

DIC has faced some criticism in the literature and can perform 
poorly for some types of model—for example mixture models (Celeux 
et al., 2006) or latent state models (Pooley & Marion, 2018) such 
as those analysed here (summarised in Spiegelhalter et al., 2014). 
This may be due to its reliance on point estimates of the parameters 
(Celeux et al., 2006), we investigated the posterior parameter distri-
butions of the competing models and found some evidence of mul-
timodality suggesting that a single point estimate (i.e. the posterior 
mean) is unlikely to be a robust choice in this case.

WAIC is regarded as a fully Bayesian approach because it em-
ploys measures that average across the posterior distribution and 
is often considered the preferred information criterion in Bayesian 
analyses (Gelman et al., 2013). However, it can still encounter dif-
ficulties in specific scenarios as it depends on a data partition that 
may pose challenges for structured models, such as those involv-
ing spatial or network data (Gelman et al., 2013). The estimates also 
contain a random error term which can have a large variance if the 
dataset is small which could lead to overfitting in the selection pro-
cess (Cawley & Talbot, 2010). This becoming particularly problem-
atic when comparing large numbers of proposal models such as in 
a variable selection scenario as we have presented here (Piironen & 
Vehtari, 2017).

Our analyses, and all of the model comparison approaches, have 
shown that often there are multiple models that can adequately de-
scribe the data-generating processes. To select one model outright 
would ignore this model uncertainty and potentially lead to specious 
inference which is why multimodel inference is becoming more com-
monly used (Piironen & Vehtari, 2017; Raftery et al., 2011).

RJ-MCMC offers an alternative approach to IS for calculating 
posterior model weights (Green, 1995) but can be challenging to im-
plement (see Brooks et al., 2003; Han & Carlin, 2001 for a review) 
particularly when competing models are very distinct in terms of the 
number and interpretation of parameters: in such cases, the MCMC 
can be difficult to tune and can suffer poor mixing, resulting in the 
need for very long runs—particularly for complex mixtures of models. 
This was problematic in our initial model comparisons even though 
in this instance the four models we compared can be considered 
nested—we failed to achieve satisfactory mixing and so were not 
able to use the RJ-MCMC approach for this set of comparisons. We 
could have spent time developing customised samplers to solve this 
problem, but we intended this manuscript to focus on the IS method 

TA B L E  2  Rank order of models analysing sex-specific mortality 
variation in banded mongoose using census data and four different 
model comparison approaches: marginal likelihood estimation via 
IS, RJ-MCMC (variable selection), Watanabe-Akaike Information 
Criterion (WAIC) and Deviance Information Criterion (DIC).

Model
Importance 
sampling RJ-MCMC WAIC DIC

Sex diff on b1 b2
1 1 1 3

Sex diff on a2
2 2 19 19

Sex diff on c1
3 3 23 24

Sex diff on a2 b1
4 4 4 1

Sex diff on b1
5 5 13 15

Sex diff on b2
6 6 26 12

Sex diff on b1 c1
7 7 8 13

Sex diff on b1 b2 c1
8 8 2 4

Sex diff on a1 b2
9 9 7 7

Sex diff on a1 a2
10 11 5 9

Sex diff on b2 c1
11 10 25 25

Sex diff on a2 c1
12 12 21 21

Sex diff on a2 b1 b2
13 13 3 8

Sex diff on a2 b1 c1
14 14 9 5

No sex diff 15 15 28 28

Sex diff on a1 c1
16 16 18 22

Sex diff on a2 b2
17 17 24 2

Sex diff on a1
18 18 22 6

Sex diff on a1 b2 c1
19 19 20 26

Sex diff on a2 b1 b2 c1
20 20 10 14

Sex diff on a2 b2 c1
21 22 27 27

Sex diff on a1 a2 c1
22 21 17 20

Sex diff on a1 a2 b2
23 23 11 18

Sex diff on a1 b1 b2
24 24 6 10

Sex diff on a1 a2 b1
25 25 12 16

Sex diff on a1 a2 b2 c1
26 26 14 17

Sex diff on a1 b1
27 27 16 11

Sex diff on a1 a2 b1 c1
28 31 15 23

Sex diff on a1 a2 b1 b2
29 30 31 32

Sex diff on a1 b1 c1
30 28 29 29

Sex diff on all 
parameters

31 32 30 31

Sex diff on a1 b1 b2 c1
32 29 32 30
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    |  9HUDSON et al.

F I G U R E  4  (a) Kaplan–Maier plots 
of recorded sex-specific survival (solid 
line) with model-averaged, posterior-
predictive survival trajectories overlaid 
(dashed lines), shaded areas indicating 
95% credible intervals and (b) Model-
averaged posterior-predictive mortality 
trajectories for a sex-specific analysis of 
census data from a wild population of 
banded mongooses fitted to sex-specific 
variations of the Siler mortality model. 
Shaded areas represent 95% credible 
intervals.

F I G U R E  5  (a) Log-marginal likelihood 
values generated by a method utilising 
Importance Sampling; (b) Comparison of 
posterior model probabilities generated 
by a method utilising Importance Sampling 
(red) and reversible-jump Markov chain 
Monte Carlo (blue) of eight competing 
Gompertz–Makeham mortality models 
allowing sex-specific variation on 
different combinations of parameters 
fitted to survival data. Dashed line in a. 
represents a value log(20) less than the 
most supported model. Samples were 
bootstrapped 1000 times to provide 95% 
confidence intervals. −26560
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10  |    HUDSON et al.

and so did not pursue this here. Model selection problems can often 
reduce to a simpler framework of variable selection such as in our 
sex-specific analyses, where the question becomes: which subset of 
variables should be included within a model? RJ-MCMC performs 

particularly well in these instances where models are nested and 
transition rules are simpler to define (O'Hara & Sillanpaa, 2009; 
Touloupou et al., 2018). But, IS does not require the competing 
models to be nested—had either of the initial model comparisons 
selected two models within threshold meaning they should both be 
considered in the sex-specific analyses then RJ-MCMC would have 
likely failed custom samplers. In contrast, the IS approach is applied 
post hoc to the separate analysis of each competing model meaning 
the situation could easily be considered as long as the number of 
competing models is not prohibitive to evaluate.

Criticisms of marginal likelihood estimation approaches to model 
comparison using Bayes' Factors often focus on their sensitivity to 
the choice of priors when analysing small data sets (Kass, 1993) and 
challenges in their calculation (Xie et al., 2011). We found negligible 
differences with alternative priors when investigating both datasets 
but would recommend this safety check. Efficient calculation of the 
marginal likelihood remains an ongoing area of research in statistics 
(Wang et al., 2018) but here we have demonstrated the application 
of a versatile two-stage approach, which allows for flexible and ro-
bust model comparisons. A recently proposed alternative approach 
is to employ posterior predictive stacking that uses out-of-sample 
predictive measures, most notably Leave-One-Out Cross Validation 
measures, as an alternative way to derive model weights, and this is 
an interesting avenue for future research (Yao et al., 2018).

TA B L E  3  Rank order of models analysing sex-specific mortality 
variation in a population of European badgers (Meles meles) using 
capture–mark–recapture data and four different model comparison 
approaches: Marginal likelihood estimation via Importance 
Sampling, reversible-jump Markov chain Monte Carlo, Widely 
Applicable Information Criterion (WAIC) and Deviance Information 
Criterion (DIC) (for WAIC and DIC scores see Supplementary 
Materials).

Model
Importance 
sampling RJ-MCMC WAIC DIC

Sex diff on c 1 1 1 2

Sex diff on a,c 2 2 2 4

Sex diff on b, c 3 3 3 3

Sex diff on a, b, c 4 4 4 5

Sex diff on a, b 5 Dismissed 5 1

Sex diff on a 6 Dismissed 6 6

No sex diff 7 Dismissed 7 7

Sex diff on b 8 Dismissed 8 8

F I G U R E  6  Model-averaged posterior-
predictive (a) survival and (b) mortality 
trajectories for a sex-specific analysis of 
capture–mark–recapture data from a wild 
population of European badgers (Meles 
meles) fitted to sex-specific variations of 
the Gompertz-Makeham mortality model. 
Shaded areas represent 95% credible 
intervals.

0.00

0.25

0.50

0.75

1.00

0 5 10
Age (years)

Su
rv

iva
l p

ro
ba

bi
lit

y

(a)

0.0

0.2

0.4

0.6

0 5 10
Age (years)

M
or

ta
lit

y

(b)

Sex Female Male

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14237 by T
est, W

iley O
nline L

ibrary on [24/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  11HUDSON et al.

5  |  CONCLUSIONS

Advancements in computing and software now enable Bayesian 
approaches to fit complex models routinely (Friel & Wyse, 2012). 
Neglecting model uncertainty can result in overconfident inferences 
(Parrish et al., 2012), strengthening the case for model averaging. 
We have described a clear and flexible method to estimate the mar-
ginal likelihood of any Bayesian model using Importance Sampling 
which facilitates straightforward model comparison through Bayes' 
Factors or posterior model probabilities. It proves especially valu-
able in ecological studies, notably in survival analysis, where missing 
data and censoring are common.
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