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A B S T R A C T   

The escalating environmental harm inflicted upon rivers is an unavoidable outcome resulting from climate 
fluctuations and anthropogenic activities, leading to a catastrophic impact on water quality and thousands of 
individuals succumb to waterborne diseases. Consequently, the water quality monitoring stations have been 
established worldwide. Regrettably, the real-time evaluation of Water Quality Index (WQI) is hindered by the 
intricate nature of off-site water quality parameters. Thus, there is a pressing need to create a precise and robust 
water quality prediction model. The dynamic and non-linear characteristics of water quality parameters pose 
significant challenges for conventional machine learning algorithms like multi-linear regression, as they struggle 
to capture these complexities. In this particular investigation, machine learning model called Feedforward 
Artificial Neural Networks (FANNs) was employed to develop WQI prediction model of Batu Pahat River, 
Malaysia exclusively utilizing on-site parameters. The proposed method involves a consideration of whether to 
include or exclude parameters such as BOD and COD, which are not measured in real time and can be costly to 
monitor as model inputs. Validation accuracy values of 99.53%, 97.99%, and 91.03% were achieved in three 
different scenarios: the first scenario utilized the full input, the second scenario excluded BOD, and the third 
scenario excluded both BOD and COD. It was suggested that the model has better predictive power between input 
variables and output variables. Factor contributed to river pollution has been identified and mitigation plan for 
Batu Pahat river pollution has been proposed. This could provide an effective alternative to compute the 
pollution, better manage water resources and mitigate negative impacts of climate change of river ecosystems.   

1. Introduction 

The mandate of the United Nations has specified the ambitious 17 
Sustainable Development Goals (SDGs) through the development 
pathway by balancing the economic growth with social inclusion and 
earth’s environmental sustainability, end poverty, ensure societies is in 
conditions of peaceful and prosperity, as well as to realize the human 
rights (DSDG, 2023). The goals set out to tackle worldwide issues such as 
poverty, climate change, inequality, education, energy, water, peace, 
and justice, with the aim of achieving them by 2030. The progress to-
wards these goals is measured using a comprehensive framework of 
indicators. The sixth Sustainable Development Goal (SDG) aims to 
achieve clean water and sanitation, with a particular focus on sub- 

section 6.3. This target aims to enhance water quality by reducing the 
amount of toxic waste, eliminating dumping and reducing the release of 
hazardous chemicals and materials. It also aims to reduce the amount of 
untreated wastewater and substantially increase recycling and the safe 
reuse of water. Further into sub-section 6.6, everybody has to take part 
in protecting and restoring water-related ecosystems, including moun-
tain, forest, wetlands, aquifers, lakes and river (DSDG, 2023). Therefore, 
this noble vision requires support from all human being for a better 
future and generation. 

Nonetheless, due to over-exploitation and deterioration of natural 
sources especially river water, the environmental degradation issue has 
become a major cause for concern, particularly due to the rising levels of 
pollutants which have put it in jeopardy. Human activities, forest 
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exploration and agriculture activities have causes and gives negative 
effect in water quality that can harm the health and public safety, which 
then damaging the ecosystem (Fitri et al., 2020; Hazritauding and 
Adnan, 2022; Moradi et al., 2022). River pollution can stem from both 
point sources, such as discharges from industrial and sewage treatment 
plants, as well as non-point sources, including surface water runoff from 
agricultural land use, housing areas, commercial developments, and 
industries (Khullar and Singh, 2021). Efficient management of water-
sheds is crucial to ensure effective control and management of rivers. 
Rivers play a crucial role in the ecosystem and provide numerous ben-
efits to both human and wildlife. The key importance of rivers includes 
as a primary source of fresh water (drinking, irrigation), biodiversity to 
support a diverse array of aquatic life, provide transportation of goods 
and people since thousands of years, opportunities for a range of rec-
reational activities (fishing, boating), helps in erosion and flood control 
by carrying sediment downstream and prevent flooding, respectively 
and last but not least for energy generation such as hydroelectric power 
as a renewable source of energy (Fitri et al., 2020; Ho et al., 2019; Sidek 
et al., 2022). Thus, due to these beneficial roles of river towards 
mankind and ecosystem, the river water quality has to be monitored 
accordingly and precisely. 

The Water Quality Index (WQI) is a numerical metric used to eval-
uate and describe the overall quality of water in a given water body such 
as river, lake, ocean, etc (Nasir et al., 2022; Venkata Vara Prasad et al., 
2020). The WQI is calculated by taking into account on several physical, 
chemical, and biological parameters/factors (turbidity, pH, total nitro-
gen, COD, BOD) that are known to impact the suitability of water for 
various uses, such as consumption/drinking, household chores, irriga-
tion, recreation, and aquatic life. It is typically calculated by assigning a 
weight or score to different water quality parameters and then 
combining these score into a single value. The WQI provides a 
comprehensive, easy-to-understand and practical assessment of water 
quality and can be used by water management agencies, public health 
organizations, and other stakeholders to track changes in water quality 
over time and to make informed decisions about water use and man-
agement (Khouri and Bashar Al-Moufti, 2022; Mohammed et al., 2022). 
In addition, by controlling and monitoring the quality of water, it could 
help in protecting human health, save the environment and close- 
control and micromanage the pollution. As a result, the general public 
will be able to take extra care and attention to the state of their local 
water bodies, and indirectly contribute to ensuring the local water 
bodies are maintained and protected (Marselina et al., 2022; Nong et al., 
2023). 

However, evaluating multiple water quality parameters can be time- 
consuming and costly, as it requires collecting water samples and con-
ducting laboratory analyses, and on the basis of large calculation vol-
ume, the process required lots of effort and time (Liu et al., 2019). 
Moreover, the accuracy and reliability of the results depend on the 
quality of the sampling and analytical methods used as well as the 
equipment and expertise of the personnel involved. In recent years, 
Artificial Intelligence (AI) provides promising prospects to enhance the 
identification and forecasting of environmental issues, including water 
quality management, through automation. Several AI algorithms have 
been evaluated to analyze water quality data obtained over a prolonged 
duration and develop a dependable method for predicting water quality 
as accurately and efficiently as possible. Machine Learning (ML) is a 
robust tool for assessing water quality, offering a more efficient and 
accurate alternative to traditional methods of calculating Water Quality 
Index (WQI) (Ahmed et al., 2019; Zaini et al., 2022). Recent advance-
ments in ML techniques have been utilized to tackle the aforementioned 
challenges in water quality prediction. These methods are capable of 
efficiently addressing highly nonlinear issues without requiring prior 
knowledge of the physical processes involved in the system being 
studied. One of the frequently employed ML models is the Artificial 
Neural Networks (ANNs) technique, which can precisely approximate 
the nonlinear relationship between inputs and outputs through a 

network architecture consisting of multiple layers of interconnected 
nodes, and trained on large amounts of historical data. Empirical studies 
have demonstrated the ANN method’s effective in enhancing water 
quality prediction accuracy, establishing it as a crucial alternative (Chen 
et al., 2020; Ezemagu et al., 2021; Khoi et al., 2022). 

Feedforward Artificial Neural Networks (FANNs) are a type of ma-
chine learning models inspired by the structure and function of the 
human nervous system and are intended to replicate its behavior (Chen 
et al., 2020). FANN is a specific type of ANN that uses a forward-only 
connection scheme, allowing for quick and accurate predictions, mak-
ing it suitable for water quality monitoring and air quality management, 
lake and reservoir modelling, and hydrologic forecasting, due to their 
ability to learn from historical data, flexibility, and adaptability. The 
FANN with a multi-input single-output (MISO) structure is a type of 
neural network that can take multiple inputs and produce a single 
output. In this architecture, the input layer receives data from multiple 
sources, and each input is processed independently through a set of 
hidden layers before producing a single output in the output layer 
(Djarum et al., 2022). The MISO structure is often used in applications 
where there are multiple input variables that affect a single output 
variable, such as in water quality monitoring, where various environ-
mental parameters influence the quality of water. This architecture can 
handle large amounts of data and identify complex patterns in input 
variables to produce accurate predictions, automating the prediction 
process and reducing the need for human intervention. Unlike other 
types of ANNs, FANN does not allow for feedback loops, which can cause 
instability and slow down the training process. While other types of 
ANNs may be better suited for other problems, FANNs are more 
computationally efficient for quick and accurate predictions. 

In recent studies, the ANN models have been developed to predict 
various water quality parameters, such as DO and BOD in order to 
emphasize and enhance the applicability and reliability of water quality 
prediction/modelling (Chen et al., 2020; Maier et al., 2010). Abba et al. 
utilized monthly data from 1999 to 2005 to forecast the dissolved oxy-
gen (DO) downstream of the Yamuna River in Agra city, India (Abba 
et al., 2018). In a study comparing multilinear regression (MLR), 
adaptive neuro fuzzy inference system (ANFIS), and artificial neural 
network (ANN) models in predicting dissolved oxygen (DO), the input 
variables used were DO, pH, BOD, and water temperature. Results 
showed that ANN was the most accurate predictor of DO, achieving up 
to 94% accuracy compared to ANFIS and MLR, which had an average 
accuracy of 81%. Another study by Kanda and Kosgei (2016) on the 
Nzoia River in the Lake Victoria basin in Kenya used multilayer 
perception (MLP), a type of feedforward backpropagation ANN, to 
predict DO using monthly data from 2003 to 2013 and input variables 
including pH, turbidity, temperature, and electrical conductivity(Kanda 
and Kosgei, 2016). The exclusion of pH resulted in acceptable DO pre-
diction, even though the number of input neurons ranged from 1 to 4 
and the number of neurons in the hidden layer varied from 22 to 28. 
Sarkar and Pandey predicted DO in the River Yamuna, India, using the 
feedforward backpropagation network architecture and discharge, 
temperature, pH, BOD, and COD as input variables. They concluded that 
the ANN model performed best with optimum input variables, and 
values above or below the optimum would lead to overfitting and 
inaccurate prediction (Sarkar and Pandey, 2015). In previous studies, 
various machine learning approaches have been utilized to predict water 
quality parameters. Khan and See (2016) developed an ANN-based WQ 
model that included dissolved oxygen, chlorophyll, conductivity, and 
turbidity (Khan and See, 2016). Abyaneh (2014) utilized both ANN and 
regression techniques to forecast COD (Abyaneh, 2014). Meanwhile 
Sakizadeh (2015) applied ANN in conjunction with Bayesian regulari-
zation (Sakizadeh, 2015), Mohammadpour et al. (2015) focusing on 
constructed wetlands (Mohammadpour et al., 2015), (Khoi et al., 2022) 
delved into surface water quality using four ANN-based algorithms 
(multilayer perceptron, radial basis function, deep feed-forward neural 
network, and convolutional neural network), and additionally (Kadam 

S.F. Azha et al.                                                                                                                                                                                                                                  



Ecological Indicators 156 (2023) 111190

3

et al., 2019; Singh et al., 2021) ventured into the prediction of 
groundwater quality for drinking to estimate the water quality index 
(WQI). These studies collectively contribute to our understanding of 
water quality assessment through diverse methodologies. Therefore, 
there are numerous other studies that employed different ANN archi-
tecture models and water quality parameters to simulate and predict 
WQI due to the scarcity of water quality monitoring data and the 
intricate and nonlinear nature of interactions between water quality 
parameters. 

Despite the fact that numerous studies have been conducted on the 
Batu Pahat River, encompassing various scopes of research, these re-
mains a dearth of investigations focusing on the prediction on WQI 
utilizing diverse artificial intelligence approaches. Previous assessment 
on Batu Pahat river studied on textural characteristics and sedimenta-
tion at eroded and deposited coastline (Wan Mohtar et al., 2017), 
sediment load and sediment properties (Mokhtar et al., 2022; Tjahjanto 
et al., 2008), Tidal effect on Suspended Sediment dispersion (Ismail, 
2007), a normal water quality assessment and water quality index 
(Salim and Kasmin, 2022; Sidek et al., 2022), flood water level model-
ling (Adnan et al., 2012), flood estimation studies (Mohammed et al., 
2021), flood prone area detection using GIS and water balance model 
(Rahman and Yusof, 2015), application of total maximum daily load 
(TMDL) (Adnan et al., 2022), assessment of water quality parameters 
due to high or low flow of river (Hazritauding and Adnan, 2022), pre-
diction of future temperature and rainfall characteristics (Latiff et al., 
2021), wave hindcasting (Bateni et al., 2009) and few more can be 
searched in literatures. Therefore, the research on the predicting WQI 
values using ML algorithm in which to improve the prediction accuracy 
is very relevant and novel topic specifically for the assessment of Batu 
Pahat river. 

The development of a predictive WQI model using a feedforward 
neural network marks a pivotal stride in fortifying the ability to address 
the challenges posed by deteriorating river water quality. The study’s 
primary goal was to precisely forecasting the WQI model to emerge as a 
potent tool for pinpointing areas that demand immediate pollution 
control interventions. These interventions are pivotal not only for 
safeguarding the environment but also for protecting human health and 
the economy. The mitigation plan for polluted rivers encompasses a 
comprehensive strategy that entails the identification of pollution 
sources, the establishment of reduction targets, and the implementation 
of targeted pollution control measures. Crucially, the effectiveness of 
such mitigation plan hinges on the accuracy of WQI predictions. Regular 
monitoring and ongoing assessment of progress in curtailing pollution 
levels, combined with heightened public awareness and collaborative 
efforts among stakeholders, amplify the chances of success in imple-
menting the mitigation plan. In sum, mitigating the repercussions of 
polluted river water necessitates a holistic approach. Accurate WQI 
prediction, as demonstrated in this study, stands as a linchpin in this 
holistic endeavor, enhancing capability to monitor, understand, and 
proactively address river health concerns. 

2. The study area and materials 

2.1. The Batu Pahat River Basin 

Located in the State of Johor, Batu Pahat serves as the administrative 
capital of the Batu Pahat District, situated southeast of Muar, southwest 
of Kluang, northwest of Pontian, and south of Segamat. The population 
of almost half of million people. Batu Pahat River basin is located within 
the longitudes 102◦ 47′E and 103◦ 16′E, and within the latitudes 1◦ 46′N 
and 2◦ 25′N. The basin area is 2,049 km2, and the length of the main river 
is 125.16 km. Batu Pahat River basin is composed of four (4) districts 
namely Batu Pahat District, Kluang District, Muar District & Segamat 
District. The basin also consists of twenty-three (23) sub-districts. The 
river basin in which Batu Pahat is the major town extends from the 
northern to the southern part of the district before finally discharging 

into the Straits of Malacca. Several other small towns, including Sri 
Medan, Yong Peng, Senggarang, Parit Raja, Air Hitam, Tongkang Pecah, 
Parit Yaani, and Chaah, are also situated within this river basin. The 
Simpang river system consists of two main tributaries, namely Simpang 
Kiri River and Simpang Kanan River. The Simpang Kiri River has an 
elongated basin with an area coverage of 815 km2, and its upper reaches 
are known as Lenik River. On the other hand, Simpang Kanan River has a 
sub-basin area of 645 km2 and is drained by two main tributaries, Bekok 
River and Sembrong River. 

The Batu Pahat River basin has been dealing with serious ecological 
degradation due to incessant development, industrialization, the pres-
ence of a tide and the encroachment of development into the floodplain. 
The catastrophic events of flooding in the Batu Pahat River basin were 
most severe in December 2006 and January 2007. During this period, 
Batu Pahat River and its related tributaries, such as Simpang Kanan 
River, Simpang Kiri River, Bekok and Sembrong River were the most 
affected. In total, 53,000 people were displaced and disrupted the 
transportation on major roads. 

The Batu Pahat River (marked in Fig. 1 as SBP) basin is divided into 
25 sub-basins, with their own distinct characteristics in terms of size, 
land use activities, topography, and main rivers and tributaries. SBP 01 
being the largest covering 841.486 ha (37.55% of the whole basin). SBP 
02 and SBP 03 are smaller, covering approximately 29.86% and 15.06% 
of the basin respectively, while SBP 04 to SBP 09 cover less than 10% of 
the basin each. Each sub-basin has a main river and several tributaries. 
SBP 02 and SBP 03 each have an existing dam, the Bekok Dam and the 
Sembrong Dam respectively. The sub-basins have varying land use ac-
tivities, with SBP 01 being mostly covered by forest and agricultural 
land use, while SBP 05, has a host of transportation land use activities 
while SBP 22 and SBP 25 still has a lot of vacant land. SBP 06 to SBP 12 
are relatively small sub-basins separated by main canals in Batu Pahat, 
with agricultural activities being the major land use activity in all sub- 
basins. The topography also varies, with SBP 01 being quite hilly due 
to its upstream location where the highest peak reaches almost 700 m, 
while the other sub-basins are relatively flat with the highest peaks 
ranging from 3.1 m to 410 m. Agricultural activities are also one of the 
major land use activities in all sub-basins especially at SBP 06 till SBP 21. 
At SBP 23, even agricultural activities are also one of the major land use 
activities (32.40%) there also mostly vacant land (43.87%) at this sub- 
basin. Fig. 1 presents the map of Batu Pahat river basin and the 
signage of sub-basins were marked as SBP 01 to SBP 25. 

Several site visits to the Batu Pahat river basin were conducted to 
gain a better understanding of the surrounding and did certain analyses 
in order to verify at the site especially in terms of location of sand 
mining, and flood mark. Pictures 1–11 depict various scenes from the 
Batu Pahat River basin, including the river mouth and sand mining ac-
tivities. As depicted by a Fig. 2, Picture No. 1 (small image in figure) 
shows the Batu Pahat River at Batu Pahat Town, while Picture No. 2 
captures the intersection of the Bekok and Sembrong Rivers, where two 
bay tidal control gates are located. Picture No. 4 and No. 5 are the lo-
cations of Pekan Ayer Hitam and Pekan Parit Raja, respectively. Picture 
No. 6 captures the Bekok River at Yong Peng Town. Picture No. 7 is the 
confluence point of the Simpang Kiri and Simpang Kanan Rivers, which 
is the start of the Batu Pahat River and where it begins its downstream 
flow. Picture No. 8 is the river mouth of the Batu Pahat River, while 
Picture No. 9 shows one of the sand mining activities near Ayer Hitam 
River. Picture No. 10 is the location of the Sembrong River and Picture 
No. 11 is the location of the Simpang Kanan River, near Jalan Tongkang 
Pecah. Fig. 2 shows the Batu Pahat River basin layout of the pertinent 
pictures taken during the site visit via drone/ground for clearer view of 
the site. 

2.2. The sampling point/data collection 

A sample of the water was taken and data was collected by the 
Department of Environment (DOE) of Malaysia in accordance with the 
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prescribed procedures. The collected data were from 25 sub-basin 
monitoring station for about 25 water quality variables encompassing 
dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical 
oxygen demand (COD), ammoniacal nitrogen (NH3-N), suspended solids 
(SS), dissolved solids (DS), pH, temperature, calcium (Ca), iron (Fe), 
chloride (Cl− ), phosphate (PO4

− ), potassium (K), conductivity, salinity, 
magnesium (Mg), sodium (Na), turbidity, total solids (TS), nitrate 
(NO3

− ), arsenic (As), chromium (Cr), zinc (Zn), Escherichia coli (E. coli) 
and coliform. DOE carries out in situ measurements of several water 
quality parameters such as DO (mg/l), turbidity (NTU), conductivity 
(uS/cm), salinity (ppt), pH, and temperature. However, laboratory 
analysis is required to determine the remaining chemical and biological 
parameters. Due to the lengthy analysis process, BOD and COD variables 
are not used in this study for real-time WQI prediction. BOD, which 
stands for BOD5 or BOD7, requires at least 5–7 days to obtain results, 
while COD analysis takes several hours to complete. Therefore, there 
have 6 out of 25 water quality parameters of Batu Pahat river were 
applied for WQI calculation (DO, BOD, COD, NH3-N, pH, and temper-
ature) which were taken since 2008 to 2018 (bimonthly from January 
2008 to July 2018) and consisted of 1181 water quality samples. The 
flow chart of overall research included WQI forecasting and river miti-
gation plan were finalized such in Fig. 3. 

2.3. WQI calculation 

In accordance with the National Water Quality Standards (NWQS), 
the Water Quality Index (WQI) measures water pollution and suitability. 
The DOE of Malaysia introduced the WQI monitoring approach since 
1978 (Ahmad et al., 2016). In this approach, six variables were taken 
into consideration, including biological oxygen demand (BOD), chemi-
cal oxygen demand (COD), dissolved oxygen (DO), ammoniacal nitro-
gen (NH3-N), suspended solid (SS), and pH value. The resulting WQI 

values provide a measure of water contamination that can be used by 
policymakers and environmentalists to evaluate water quality. After 
laboratory analysis results were recorded, the WQI equation presented 
in Equation 1 was used to calculate the water quality index for a given 
sample. There are six typical physicochemical water quality parameters 
used;  

WQI = (0.22*SlDO) + (0.19*SIBOD) + (0.16*SICOD) + (0.15*SIAN) +
(0.16*SISS) + (0.12*SIpH)                                                               (1) 

The equation in Table 1 are used to measure all the sub-indices 
specified in Equation 1. The sub-indices for different parameters have 
different ranges (Salim and Kasmin, 2022). An index value ranging from 
zero to one hundred is produced through the assessment and valuation 
of these parameters. The resulting WQI value allows for the categori-
zation of water quality into five classes: excellent (Class I), good (Class 
II), moderate (Class III), poor (Class IV), and very poor (Class V), which 
are presented in Table 2. Based on the index value, the river water 
quality is then classified into three main categories: clean, slightly 
polluted, and polluted, as outlined in Table 3. 

3. Feedforward artificial neural network (FANN) model 
development 

An iterative process is typically used to choose the appropriate model 
architecture or topology in order to achieve the best model structure. 
This process involves selecting a network with a specific structure, 
including the number of hidden nodes and transfer function, calibrating 
the chosen model, evaluating its performance, and then repeating the 
calibration and evaluation steps for different network configurations 
(López et al., 2022). The network configuration’s performance is 
considered optimal when the results indicate the lowest MSE and high 
regression values for both training and testing data. The model is then 

Fig. 1. Map of Batu Pahat River Basin from SBP 01 to SBP 25.  
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validated using an independent or unseen dataset to confirm the net-
work’s performance (Ahmed et al., 2019; Ghaedi and Vafaei, 2017). 

A feedforward artificial neural network with a multi-input single- 
output (MISO) structure was chosen for the prediction model. The 
network takes multiple input variables to predict a single output vari-
able, based on the results of the input feature selection (Bolboacă and 
Haller, 2023). The output of the FANN network is an estimation of WQI. 
The MISO structure was selected because it can significantly reduce the 
size and complexity of the neural network, thereby reducing the risk of 
overfitting. This structure also helps the model to identify the most 
important input variables, leading to a simpler and more interpretable 
model while maintaining high predictive accuracy. This approach is 
consistent with the current understanding of best practices in machine 
learning. 

3.1. Model configuration 

To achieve optimal performance of the feedforward artificial neural 
network (FANN), a number of factors were studied and divided into 
different elements. These elements included the determination of model 
architecture and other parameters such as the number of hidden nodes. 
The aim of the FANN-based model was to predict the water quality index 
(WQI) using input data that were grouped into three categories. One of 
the key features of the FANN architecture is the number of neurons in 
the hidden layer, which plays a critical role in modelling complex data. 
Determining the optimal number of neurons is important to prevent 
underfitting or overfitting of the data. In this study, the number of 
neurons in the hidden layers was determined through trial and error to 
meet the precision criteria (Juahir et al., 2004; López et al., 2022). Other 

important elements of the FANN model development included the se-
lection of transfer functions, training algorithms, network training and 
validation, and network performance evaluation. 

The input data was split into training, testing, and validation subsets 
to achieve optimal performance. The training subset was utilized to 
estimate the unknown connection weights while the testing subset was 
employed to identify the best network structure without overfitting the 
data. Meanwhile, the validation subset, or unseen data, was used to 
assess the model’s generalization ability which consisted of 1181 water 
quality samples collected from various sub-basin states in Malaysia be-
tween 2008 and 2018. The complete data set was partitioned into 
training, testing, and validation sets using the ’divideint’ function in 
Matlab, with a ratio of 70:15:15 (70 %: 827 samples for training, 15 % 
(177 samples) for testing and 15 % (177 samples), respectively. This 
allowed for repeated network training while maintaining the validation 
data as unseen data. 

A trial and error approach was adopted in this study to select the 
number of hidden nodes in the ANN by incrementally varying their 
number. According to Hecht-Nielsen (1987), the number of hidden 
nodes, M, should range between I and 2I + 1, where I represents the 
number of input nodes (Hecht-Nielsen, 1987). M should not be less than 
the maximum of I/3 and the number of output nodes (Kavzoglu and 
Mather, 2003). For this study, the number of neurons in the hidden layer 
was varied between 6 and 25, and 15 neurons were found to be the 
optimal number. The selection of the learning rate value does not follow 
a specific rule, but (Sahoo et al., 2005) showed that unstable learning 
occurs for rates greater than 0.035. Therefore, a learning rate of 0.05 
was chosen and kept constant during training. The training process stops 
when the iteration number reaches the maximum number of epochs, the 

Fig. 2. Batu Pahat River Basin Site Visit Layout Map (1. Batu Pahat River in Batu Pahat Town, 2. Intersection of Bekok River and Sembrong River, 3. Upstream Parit 
Karjo, 4. Pekan Ayer Hitam, 5. Pekan Parit Raja, 6. Bekok River at Yong Peng Town, 7. Confluence of Simpang Kiri River and Simpang Kanan River (Starting of Batu 
Pahat River), 8. River mouth of Batu Pahat River, 9. Sand Mining at Ayer Hitam River, 10. Sembrong River, 11. Simpang Kanan River at Tongkang Pecah Road). 
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target error goal MSE, or the minimum performance gradient of 10-5, 
which was set according to (Juahir et al., 2004). During training, the 
connection weights were continually updated until they reached the 
defined iteration number or acceptable error (Kavzoglu and Mather, 
2003). 

To determine the optimal neural network for each output, several 
other parameters were varied during FANN network development. 
These parameters were listed in Table 4, and the following steps were 
taken: 

The development of the FANN network involved varying some pa-
rameters to identify the optimal network for each output. The parame-
ters were listed in Table 4, and the following steps were taken:  

1. The fixed and varied FANN network parameters in Table 4, except for 
the training algorithm, were used. The Levenberg-Marquardt back-
propagation (trainlm) algorithm was used to determine the best 
number of hidden neurons with the best transfer function.  

2. The fixed FANN network parameters in Table 4 were used with the 
newly identified best transfer function for each output and case 
study. The training algorithm was varied as specified in Table 4, 
along with the number of hidden neurons, to discover the optimal 
network for each output.  

3. The best network, with the determined number of hidden neurons, 
training algorithm, and transfer function, was selected as the final 
network setting for MISO, with various potential inputs, as shown in 
the next section. 

The Levenberg-Marquardt algorithm is a highly regarded optimiza-
tion technique used for training artificial neural networks which marries 
the steepest descent and Gauss-Newton algorithms (Sapna et al., 2012). 
This confluence of methods results in faster convergence times 
compared to alternate algorithms such as gradient descent. The 
Levenberg-Marquardt algorithm is especially effective for nonlinear 
model optimization, as it can accommodate non-convex optimization 
problems and dynamically adjust the step size to prevent divergence and 
oscillations. Additionally, it boasts robustness when working with noisy 
data - a common occurrence in real-world applications. Utilizing this 
algorithm can enhance the ability of the proposed model to optimize the 
neural network’s weights and biases, ultimately reducing the difference 
between predicted and actual outputs. Overall, the Levenberg- 
Marquardt method is a suitable optimization algorithm for training 
models due to its ability to handle nonlinearities, adjust step size, and 
resistance to noisy data. 

The neural network’s hidden layer neurons utilize a logarithmic 
sigmoid activation function (Ranjan et al., 2023), whereas the output 
layer neurons utilize a linear activation function (Gao and Zhang, 2023). 
The number of hidden neurons is selected using cross-validation, 
whereby the number of hidden nodes is varied up to 15 to calculate 
corresponding mean squared errors (MSE) and R2 values for both 
training and testing data sets. These values are then plotted against the 
number of hidden nodes, and the network that yields the lowest MSE 
value on both training and testing data sets is identified as the optimal 
network topology. Furthermore, the performance of the developed 
models is evaluated using MSE on unseen validation data as the 
criterion. 

During the investigation of predictive modelling for estimating the 
WQI of Batu Pahat River, six variables (BOD, COD, DO, SS, pH, and NH3- 
N) were used as inputs. Before feeding the data into the model, the 
variables were normalized using the Z-transformation, which involves 
subtracting the mean from all values and dividing them by the standard 
deviation. This transformation ensures that the original data distribution 
is preserved and that the modeling is not affected by outliers, as 
explained in (Kotu and Deshpande, 2014). 

Fig. 3. Flow Chart of WQI forecasting and river mitigation plan methods.  

Table 1 
The equations for the estimation of various sub-index values (“DOE,” 2020).  

Parameter Value Sub-index equation 

DO (in % 
saturation) 

for x ≤ 8; 
for x ≥ 92 
for 8 < x < 92 

SIDO = 0, 
SIDO = 100, 
SIDO = − 0.395 + 0.030x2 −

0.00020x3,  

BOD for x ≤ 5 
for x > 5 

SIBOD = 100.4–4.23x, 
SIBOD = 108*e (− 0.055x) − 0.1x,  

COD for x ≤ 20 
for x > 20 

SICOD = − 1.33x + 99.1; 
SICOD = 103*e (− 0.0157x) − 0.04x,  

NH3-N for x ≤ 0.3 
for 0.3 < x < 4 
for x ≥ 4 

SIAN = 100.5 − 105x; 
SIAN = 94*e (− 0.573x) − 5|x − 2|, 
and 
SIAN = 0,  

SS for x ≤ 100; 
for 100 < x <
1000 
for x ≥ 1000 

SISS = 97.5*e (− 0.00676x) + 0.05x, 
SISS = 71*e (− 0.0061x) − 0.015x, 
SISS = 0  

pH for x < 5.5 
for 5.5 ≤ x < 7; 
for 7 ≤ x < 8.75 
for x ≥ 8.75 

SIpH = 17.2–17.2x + 5.02x2, 
SIpH = − 242 + 95.5x − 6.67x2, 
SIpH = − 181 + 82.4x − 6.05x2, 
SIpH = 536–77.0x + 2.76x2,  
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3.2. Output and error analysis 

To comprehensively assess and scrutinize the errors in the network’s 
output, this study employed two distinct statistical methods for analysis. 
These methods encompass the mean square error (MSE), and coefficient 
of determination (R2). These metrics were used to evaluate the disparity 
between the network’s output and the target output (Abba et al., 2020). 
Mean Square Error (MSE) is a widely used metric to measure the average 
squared difference between the values (or predictions) and the actual 
values in a dataset (Nong et al., 2023). It is a measure of the average 
squared deviation or error between the predicted or estimated values 
and the true values. MSE is particularly useful in regression problems, to 
estimate a continuous numerical value. The formula for calculating MSE 
is in the Eq. (2): 

MSE = (1/n)
∑

(yi − ŷi)2 (2)  

Where: n is the total number of data points. yi represents the actual or 
observed value for the i-th data point, ŷi represents the predicted or 
estimated value for the i-th data point and the Σ symbol denotes the sum 
over all data points. 

The MSE provides a measure of how well a predictive model is 
performing. Lower MSE values indicate that the predictions are closer to 
the actual values, implying better model accuracy. Conversely, higher 
MSE values suggest that the model’s predictions are farther away from 
the actual values, indicating poorer model performance (Nong et al., 

2023). 

3.3. Water Quality Index (WQI) prediction model 

For WQI prediction, there was one output variable involved in the 
modelling procedure and six input variables (Table 5). As for this study, 
FANN full is applied where BOD and COD are part of the input that has 
been excluded from the initial inputs. 

Initially, all six water quality parameters were used as input vari-
ables in the modelling to evaluate model performance. However, to 
achieve higher effectiveness and accuracy in predicting the WQI based 
on a smaller number of parameters, the focus was shifted to reducing the 
number of input parameters. This was done by developing scenarios 
with only five or four input parameters, instead of the original six 
stipulated in the Department of Irrigation and Drainage (DID) manual. 
By using less input variables in this feedforward neural network model, 
forecasting the river water quality’s water quality would be cheaper and 
less time consuming. It would also result in a smaller amount of time 
consuming laboratory testing. It is also anticipated that these scenario 
analysis analyses will help to identify the relationship between water 
quality parameters and WQI classes in the future (Ho et al., 2019). 

There have few series of steps taken to reduce the input variables in 
the calculation and prediction of WQI (Table 6). The data are firstly 
being analysed to get the correlation matrix to identify parameters with 
the highest and lowest correlation with WQI. As for the next step, based 
on the obtained result from correlation coefficient analysis, if their 
contribution to WQI is low, they can be removed from the calculation. 
The impact of removing selected parameters must be evaluated before 
deciding whether to exclude them. If their removal does not significantly 
impact the accuracy of WQI, they can be excluded. As for last step, the 
accuracy of the new WQI calculation have to be validated by comparing 
it to the original equation and assessing its accuracy in predicting water 
quality. 

3.4. First modelling scenario (all input included) 

The model is set up with all six parameters (BOD, COD, DO %, NH3- 
N, SS and pH) as input variables in order to determine the model per-
formance. In the first scenario, six parameters retained in the calculation 
and used as input (Table6A). The second scenario has 5 inputs by 
excluding the BOD (Table 6B), and in the third scenario, the number of 
neurons was decreased to four parameters by excluding both BOD and 
COD (Table 6C). 

Table 2 
DOE Water Quality Index Classification (“DOE,” 2020).  

Parameter Unit Class 

I II III IV V 

Ammoniacal Nitrogen Mg/L <0.1 0.1–0.3 0.3–0.9 0.9–2.7 >2.7 
Biological Oxygen Demand Mg/L <1 1–3 3–6 6–12 >12 
Chemical Oxygen Demand Mg/L <10 10–25 25–50 50–100 >100 
Dissolved Oxygen Mg/L >7 5–7 3–5 1–3 < 1 
pH – >7.0 6–7 5.0–6.0 < 5.0 >5.0 
Total Suspended Solid Mg/L <25 25–50 50–150 150–300 >300 
Water Quality Index (WQI)  >92.7 76.5–92.7 51.9–76.5 31.0–51.9 <31.0  

Table 3 
DOE Water Quality Classification based on Water Quality Index (“DOE,” 2020).  

Sub Index & Water Quality Index Index Range 

Clean Slightly Polluted Polluted 

Biological Oxygen Demand 91–100 80–90 0–79 
Ammoniacal Nitrogen 92–100 71–91 0–70 
Suspended Solid (SS) 76–100 70–75 0–69 
Water Quality Index (WQI) 81–100 60–80 0–59  

Table 4 
FANN network parameters.  

Fix parameters 

Learning rate 0.05 
Epochs 1000 
Target error goal 10− 5 

Minimum performance 
gradient 

10− 5  

Varied parameters 
Number of hidden neuron 6 to 25 (15) optimum based on training and 

validation data 
Transfer function (first 

layer) 
Log-sigmoid (logsig) 

Transfer function (second 
layer) 

Linear (purelin) 

Training algorithm Levenberg Marquardt backpropagation (trainlm)  

Table 5 
Input and output dataset for WQI Prediction.   

FANN_full 

Input Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), 
Dissolved Oxygen (DO), ammoniacal nitrogen (NH3-N), suspended solid 
(SS) and potential for Hydrogen (pH)  

Output WQI  
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Table 6 
FANN structure for (a) all inputs, (b) excluding BOD and (c) excluding BOD and COD and WQI as output.  

Modelling Scenario FANN Structure 

A 
1st Scenario (all inputs) 
FANN_full, [(WQI) ̂(t)] =
Fn [BOD(t), COD(t), DO % 
Sat(t), SS(t), pH(t), NH3-N(t)] 

B 
2nd scenario 
(excluding BOD as inputs) 
FANN_full, [(WQI) ̂(t)] =
Fn [COD(t), DO % Sat(t), SS(t), pH(t), NH3-N(t)] 

(continued on next page) 
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4. Result and discussion 

The Department of Environment (DOE) in Malaysia has established 
the Water Quality Index (WQI) Classification to assess the water quality 
of rivers, which is based on several parameters such as BOD, DO, pH, and 
TSS. In a 10-year study of Batu Pahat River, the WQI was found to vary 
significantly, with values ranging from Class I to Class V, depending on 
the sampling locations and time periods. This suggests that the river is 
facing various environmental pressures, including point and non-point 
source pollution from agricultural runoff, industrial discharges, and 
domestic sewage. The WQI classification could provide valuable insights 
into the water quality status and potential risks to human health and the 
environment. However, continuous monitoring and assessments are 
crucial to identifying emerging water quality issues and implementing 
effective management strategies to ensure the sustainable use of water 
resources. 

4.1. The WQI classification and environmental analysis 

4.1.1. Dissolved oxygen (DO) 
The collected data for DO parameter throughout 10 years of study at 

Batu Pahat River at all sub-basin was tabulated in Fig. 4. The DOE Water 
Quality Index Classification categorizes the quality of water based on the 
amount of DO present in it, with Class I being the highest quality and 
Class V being the lowest quality, based on a range of DO levels in mil-
ligrams per liter (mg/L). Class I has DO levels greater than 7 mg/L, Class 
II has levels between 5 and 7 mg/L, Class III range around 3 and 5 mg/L, 
Class IV has levels between 1 and 3 mg/L, and Class V has levels below 1 
mg/L (Table 2). Referring to the graph, the DO values were scattered at 
all level of water Quality Index Classification ranging from Class 1 to 
Class V, where the most were tabulated under Class I, II and III and the 
least at Class V. This can be concluded that the Batu Pahat river had 
undergo various condition which depend on several factors that can 
affect the level of dissolved oxygen in a river. One of the major factor is 
due to the pollution. Pollutants like sewage, agricultural runoff, and 
industrial discharge can introduce organic matter into the water, leading 

Table 6 (continued ) 

Modelling Scenario FANN Structure 

C 
3rd Scenario 
(excluding BOD and COD as inputs) 
FANN_full, [(WQI) ̂(t)] =
Fn [DO % Sat(t), SS(t), pH(t), NH3-N(t)] 

Fig 4. The DOE WQI classification for DO concentration in 10 years study of Batu Pahat river.  
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to increased bacterial activity and subsequent oxygen depletion (Juahir 
et al., 2011). Scientifically, aquatic plants and algae produce oxygen 
during photosynthesis, while bacteria and other organisms consume 
oxygen during respiration. If there is excessive plant or algae growth, or 
if there is a large population of oxygen-consuming organisms, or if there 
is excessive nutrient such as nitrogen and phosphorus, it ultimately 
depleted the dissolved oxygen levels as these organisms die and 
decompose (Nong et al., 2023). Furthermore, rainfall also could be one 
of the major reason that effect the concentration and distribution of 
dissolved oxygen in river water, where indirectly turn impact a water 
quality (Jia et al., 2021). When there is heavy rainfall, this has led to the 
higher velocity and turbulence by altering the flow rate and volume of 
water in the river (Li et al., 2015). Therefore, water movement and 
turbulence increases the amount of oxygen that can dissolve in water, so 
areas with greater water movement typically have higher DO levels. The 
changes in water temperature due to rainfall might also contribute to the 
fluctuation of dissolve oxygen values where colder water holds more 
oxygen, resulting in decreasing of water temperature (Jia et al., 2021; 
Verma and Singh, 2013). Based on the historical data, there have the 
catastrophic events of flooding in the Batu Pahat River basin, where the 
most severe in December 2006 and January 2007. Therefore, the un-
remitting development, industrialization and climate change alongside 
the sub-basin of Batu Pahat river may contributed to the uncertainty of 
DO concentration towards various classification. 

4.1.2. Biological Oxygen Demand (BOD) 
The Water Quality Index Classification categorizes the quality of 

water based on one of the parameter which is BOD that indicate the 
amount of organic matter present in milligrams per liter of water (mg/ 
L). Referring to Table 2, Class I being the highest quality and Class V 
being the lowest quality. Class I has BOD levels less than 1 mg/L, Class II 
has levels between 1 and 3 mg/L, Class III ranges from 3 and 6 mg/L, 
Class IV has levels between 6 and 12 mg/L, and Class V has levels greater 
than 12 mg/L. According to the Fig. 5, the Batu Pahat river can be 
categorized under Class IV since the highest value scattered at around 6 
to 12 mg/L. Higher BOD levels indicate greater levels of organic matter 
present in the water, which can lead to lower dissolved oxygen levels 
and potentially harm aquatic life. In contrast, higher level of DO can 
help to promote the breakdown of organic matter by aerobic bacteria, 
which lead to the higher BOD levels. Organic matter can originate from 
different sources, including sewage (failing septic systems), agricultural 
runoff that may included dead plants and animals, and industrial 
discharge. Agricultural activities, which are the major land use activity 
in all sub-basins of Batu Pahat river, contribute to an increase in nutrient 

levels, sediment runoff, water use, pesticide, and fertilizer use, all of 
which can impact the BOD level of nearby water bodies (Bhateria and 
Jain, 2016; Juahir et al., 2011). 

4.1.3. Chemical Oxygen Demand (COD) 
Over the course of 10 years, the water quality index for Batu Pahat 

River in Malaysia consistently falls under Class II in the COD Water 
Quality Index Classification, with COD levels ranging between 10 and 
25 mg/L. This indicates that the water quality is fair, with a moderate 
level of organic matter present. However, even though the COD levels 
are within an acceptable range, it is important to note that any increase 
in organic matter can lead to a decrease in dissolved oxygen levels and 
create conditions that are harmful to aquatic life. Referring to the graph 
in Fig. 6, there have been at certain condition that the COD reading at 
Batu Pahat river experiencing Class V during year 2021 and few recor-
ded data were classified under Class IV. The high levels of organic matter 
can contribute to algae growth, unpleasant odors and tastes, and the 
buildup of toxic substances in the water. Therefore, it is important to 
continue monitoring COD levels in Batu Pahat River to ensure that the 
organic matter levels remain within a safe range and to identify any 
potential sources of pollution that may lead to an increase in COD levels. 
This can help to maintain the health of the river ecosystem and ensure 
that it remains a valuable resource for both humans and aquatic or-
ganisms, kill the flora and fauna and collapse the ecosystem. 

4.1.4. Total suspended solid (TSS) 
Total suspended solid is one of a water quality index that measures 

the amount of solid particles, such as silt and organic matter, that are 
suspended in water column. The TSS level is measured in miligrams per 
liter (mg/L) and it can provide an indication of the water quality and the 
level of contamination in a river. The Water Quality Index Classification 
for TSS is divided into five classes, with Class I being the highest quality 
and Class V being the lowest quality. Class I has TSS levels less than 25 
mg/L, Class II has levels between 25 and 50 mg/L, Class III has levels 
between 50 and 150 mg/L, Class IV has levels between 150 and 300 mg/ 
L, and Class V has levels greater than 300 mg/L (Table 2). Over a period 
of 10 years from DOE data collection at Batu Pahat river, the classifi-
cation index consistently falls between Class I and Class II, with TSS 
levels ranging below 50 mg/L, which indicates the river water quality is 
in a fair to good with moderate level of suspended solid (Fig. 7). The 
level of TSS in a river can be influenced by various factors, such as 
natural erosion, urban and agricultural runoff, and industrial discharges. 
As in Batu Pahat river, agricultural activities are also one of the major 
land use activities in all sub-basins. Scientifically, higher TSS levels 
indicate a higher level of pollution and directly contribute to the nega-
tive impacts on aquatic life and river ecosystems. The TSS particles able 
to block sunlight, reducing the amount of light available for photosyn-
thesis and leading to a decline in the growth of aquatic plants. Addi-
tionally, TSS can cause sedimentation, smothering the benthic 
organisms and habitats, and reducing biodiversity. Besides, TSS can also 
transport pollutants and nutrients such as heavy metals and phosphorus, 
which can accumulate in the sediment and affect aquatic organisms and 
public health. Excessive nutrients from TSS can lead to eutrophication, 
promoting the growth of algae and other aquatic plants, which can cause 
algal blooms and reduce oxygen levels in the water, leading to the death 
of aquatic organisms. Therefore, it is essential to monitor TSS levels in 
rivers and implement measures to reduce the sources of TSS pollution to 
maintain healthy river ecosystems and protect public health. 

4.1.5. pH 
The pH level of a river indicates the acidity or basicity of the water, 

which can have a significant impact on aquatic life and the ecosystem. In 
Batu Pahat river, the WQI for pH has consistently remained under Class 
II for the past ten years (based on majority recorded collected data), 
indicating a slightly acidic to neutral water condition (Fig. 8). However, 
the fluctuation in pH reading seldomly occurred since the recorded data 

Fig. 5. The DOE WQI classification for BOD concentration in 10 years study of 
Batu Pahat river. 
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also varies at pH below 5 and lies under Class V (Fig. 12). Changes in pH 
can have various effects on river water quality. Biomicrobial produc-
tivity is optimal between pH 7 and 8.5, while pH 4 is detrimental to 
aquatic life (Yona et al., 2023). As pH changes with temperature, dis-
solved oxygen levels in water are affected, which can lead to biochem-
ical reactions such as photosynthesis being impaired or killed (Yona 
et al., 2023). Some fish species are sensitive to even minor pH changes, 
so acidic water can damage their gills and scales, causing them to perish. 
Changes in pH can also affect the solubility and toxicity of certain 
chemicals in the water, making them more or less harmful to aquatic 
organisms (Verma and Singh, 2013). Additionally, pH can affect the 

biological processes that occur in rivers, such as photosynthesis, respi-
ration, and nutrient uptake. Certain microorganisms that play an 
essential role in these processes are also sensitive to changes in pH 
levels, which can lead to imbalances in the ecosystem. Therefore, 
maintaining a balanced pH level is crucial for protecting the health of 
river ecosystems and ensuring the sustainability of aquatic life and 
protect public health. pH is a crucial water quality parameter that is 
strictly monitored in Malaysia. It is the most accessible parameter to 
measure as it can be obtained on-site without requiring extensive lab-
oratory analysis (Ho et al., 2019). Additionally, Malaysia’s tropical 
climate with high levels of rainfall throughout the year contributes to 

Fig. 6. The DOE WQI classification for COD concentration in 10 years study of Batu Pahat river.  

Fig. 7. The DOE WQI classification for TSS concentration in 10 years study of Batu Pahat river.  
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the rapid dilution and neutralization of pH values in rivers. There have 
been studies demonstrating some degree of deterioration of water 
quality in some natural rural lakes due to rainfall (Brias et al., 2018). 
According to Ahmed et al. (2018), the pH usually drops by 5 % after 
heavy rains of over 25 mm in one day (Ahmed et al., 2018). 

4.1.6. Ammoniacal nitrogen 
The WQI for ammoniacal nitrogen in Batu Pahat river has been 

classified as Class V for over a period of 10-years from the DOE recorded 
data, with levels exceeding 2.7 mg/L (Fig. 9). It is not a good sign where 
it can cause severe damage to aquatic life and river ecosystem. However, 
there still have numbers of recorded data that scattered around Class I, II 
and III which indicate the fluctuation of river condition, due to weather, 

urbanization, and surrounding activities. High levels of ammoniacal 
nitrogen can lead to eutrophication, which promotes the growth of algae 
and other aquatic plants, reducing oxygen levels in the water and 
leading to the death of aquatic organisms (Back et al., 2023). It has been 
reported that agricultural and livestock wastewater, landfill leachate, 
and municipal and industrial wastewater contain high levels of ammo-
niacal nitrogen (Tonetti et al., 2016). Moreover, ammoniacal nitrogen 
can cause toxic effects on aquatic life, affecting their growth, develop-
ment, and reproduction. In human and animal waste, ammoniacal ni-
trogen is formed from the breakdown of urea and other nitrogen- 
containing compounds in urine and feces. In agriculture, ammoniacal 
nitrogen can come from the application of nitrogen-rich fertilizers and 
manure to fields, which can leach into nearby waterways. In industries 

Fig. 8. The DOE WQI classification for pH concentration in 10 years’ study of Batu Pahat river.  

Fig. 9. 10 years’ distribution of Ammoniacal Nitrogen Batu Pahat River Basin.  

S.F. Azha et al.                                                                                                                                                                                                                                  



Ecological Indicators 156 (2023) 111190

13

such as food processing and chemical manufacturing, ammoniacal ni-
trogen can be a byproduct of production processes and wastewater 
discharges (Adam et al., 2019). Irrespective of where it dwells in a water 
stream, ammoniacal nitrogen must be removed from it before it can be 
discharged to the environment. 

4.1.7. Water Quality Index (WQI) 
Fig. 10 presents the WQI of Batu Pahat River during period of 2008 

and 2018. The index was separated based on individual sub-basin in 
order to identify in details the WQI value at each of the studied location. 
Referring to the graph, throughout the years, the trend of WQI were 
scattered at almost similar values of WQI. For example, at SBP01 station, 
the WQI value were tabulated at approximately 55 to 70 and categorized 
under Class III. Similar observation can be seen at almost all stations 
especially at SBP 10, SBP 17, SBP 23, SBP 25, and SBP 26, where it 
tabulated at almost similar number. As overall, all sub-basins were 
categorized at Class II and Class III, which indicated that Batu Pahat 
river was slightly clean and slightly polluted. And most importantly that 
the river is excluded from Class V throughout the 10 years of sampling. It 
was a good sign for the whole ecosystem that the river can be managed 
and been take care of for at least to improve the WQI classification to be 
maintained at Class II or Class I in the near future. 

The WQI is an important tool for assessing water quality and is often 
used to classify water bodies into different categories based on their 
suitability for different uses. In this study, the WQI values of Batu Pahat 
river suggest that the river is currently suitable for recreational activ-
ities, such as fishing and swimming, but may require management in-
terventions to improve its water quality for other uses, such as drinking 
water or irrigation. Furthermore, there parameters are important in-
dicators of water quality and can help identify potential sources of 
pollution. The slightly polluted classification observed in this study may 
be attributed to human activities such as agriculture, industrial activities 
and urbanization, which can be contribute to the degradation of water 
quality. 

4.2. Model correlation and calibration 

An output WQI is calculated using the correlation coefficients of the 
input parameters as shown in Fig. 11 and Table 7, which indicates the 
degree of linear relationships between two variables. This analysis 
provides crucial insights into the strength and direction of the rela-
tionship between each input parameter and the WQI. The presentation is 

clear and concise, with each input parameter, including DO (mg/L), 
BOD (mg/L), COD (mg/L), SS (mg/L), pH, NH3-N, and their corre-
sponding correlation coefficient values, listed in Table 3. The precision 
of the correlation coefficient values to two decimal places makes it easy 
to compare the strength of the relationships between different input 
parameters and the WQI. The results indicate that some input parame-
ters exhibit a stronger correlation with the WQI than others, with DO (% 
sat) demonstrating a strong positive correlation with a correlation co-
efficient of 0.85, while pH exhibits the second-highest correlation with a 
value of 0.69. Conversely, the negative correlation coefficients for BOD 
(-0.4), COD (-0.34), TSS (-0.05) suggested that these parameters have a 
negative impact on the WQI, with NH3-N showing a moderate negative 
correlation of − 0.59. The remaining input parameters exhibit correla-
tion coefficients ranging from − 0.05 to − 0.4. Overall, this analysis 
provides valuable information on the relationship between the input 
parameters and the WQI, highlighting the significance of considering 
multiple input parameters to assess water quality and to develop stra-
tegies to improve it based on these findings. 

4.3. First modelling scenario (all input included) 

Fig. 12 depicts the actual (solid line) and predicted (dashed line) 
water quality index (WQI) values on the training and testing datasets, 
while Fig. 13 shows the actual and predicted WQI values, as well as the 
model residuals, on the unseen validation dataset. The figures illustrate 
the strong predictive performance of the feedforward artificial neural 
network (FANN) model, as the predicted values closely match the actual 
values of WQI. Table 8 summarizes the performance of the model across 
all stages (training, validation, and testing), revealing excellent predic-
tive accuracy when all input variables are included. The mean square 
error (MSE) values obtained during the training, testing, and validation 
stages were 0.0009, 0.0024, and 0.0045, respectively, indicating that 
the model has effectively learned to predict the WQI. Furthermore, the 
coefficient of determination (R2) achieved during all stages (0.9991, 
0.9976, and 0.9953 for training, testing, and validation, respectively) 
support the model’s ability to capture the complex relationships be-
tween input variables and WQI. By including all input variables, the 
FANN model identifies the most significant predictors of water quality, 
providing valuable insight for water resource management and policy 
making. The low MSE values obtained during the training and testing 
stages demonstrate that the model generalizes well to new, unseen data. 
However, a higher MSE value during the validation stage would indicate 

Fig. 10. Water Quality Index for Batu Pahat River since years 2008 and 2018. Frequency of class classification for Class I, II, III, IV and V.  
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overfitting to the training data and suggest a need for further model 
refinement, such as incorporating additional data or tuning model 
parameters. 

4.4. Second modelling scenario (Excluding BOD) 

The primary objective of conducting scenario II was to enhance the 
model performance by minimizing the number of input variables. This 
was accomplished by excluding the BOD parameter and testing different 
input combinations using only five water quality parameters. Fig. 14 
displays the actual and predicted values for water quality prediction 

based on the training and testing data for all inputs. The X-axis repre-
sents the input data, while the Y-axis represents the actual and predicted 
values. The graph illustrates that the predicted values for the water 
quality are relatively close to the actual values for both the training and 
testing data, which suggests that the model used for water quality pre-
diction is effective in accurately predicting the water quality based on 
the input data. 

In the training data, the predicted values conform to the trend of the 
actual values, with some variations in between. In the testing data, there 
is little to no deviation between the actual and predicted values, indi-
cating the model’s effectiveness. It is important to note that the accuracy 

Fig. 11. Correlation coefficient matrix for the inputs and output.  

Fig. 12. Actual and predicted values for training and testing data for all inputs.  
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of the model may depend on the quality and quantity of the input data. 
Overall, the graph provides valuable insights into the accuracy of the 
water quality prediction model, indicating that it can effectively predict 
water quality based on the input data (Fig. 15). The results of the 
analysis in the second scenario further confirmed that BOD is the least 
effective parameter in predicting WQI. Furthermore, BOD has been 
shown to have low correlation to WQI prediction. Moreover, BOD is a 
challenging parameter to monitor, as its measurement can be obtained 
through tedious laboratory analysis, which may take up to 6–7 days. 
Hence, the exclusion of BOD as input data for predictive modelling has 
little to no effect on the prediction of WQI class. 

Table 9 provides an account of the outcomes from training, testing 
and validation of the WQI using FANN methodology, with the elimi-
nation of BOD data as an input. The training, testing and validation 
mean squared error (MSE) values, being 0.0170, 0.0141, and 0.0193, 
respectively, are relatively low, demonstrating that the model’s pre-
dictions are reasonably precise. The R2, 0.9832, 0.9853, and 0.9799, 
respectively, indicate that the model’s predictions are strongly linked 
with the actual WQI values. Notably, the exclusion of BOD data as an 
input factor may suggest that other input parameters used in the model 
could be adequately predictive of WQI independently. This implication 
may be valuable in water quality management as it offers an opportunity 
to develop more cost-effective monitoring programs focusing on a subset 
of input parameters instead of measuring all parameters. Collectively, 
the findings signify that the FANN approach is useful in predicting WQI 
values utilizing a subset of input parameters, and that the omission of 
BOD data does not appear to significantly impact the model’s accuracy. 

4.5. Third modelling scenario (Excluding BOD and COD as inputs) 

In scenario III, the input parameter was further reduced to four pa-
rameters. The performance of FANN with 15 hidden neurons is pre-
sented in Figs. 16 and 17. According to Fig. 16 across the training and 
testing data, the actual values are displayed as solid lines while the 
predictions are shown as dashed lines, whereas Fig. 17 displays the 
actual values, as well as model residues, on the unseen validation data as 
solid lines and dashed lines respectively. The analysis of the data reveals 
that the performance of the FANN model is excellent as the model pre-
dictions are closely aligned with the actual values of QWI. The network 
exhibits the ability to generalize and adapt to new input data, as 
depicted in the figures. Also, the results of the statistical analysis pre-
sented in Table 10 demonstrate the relative effectiveness of the FANN 
model in predicting WQI based on the unseen validation data. The re-
sults illustrate how well the models perform at each stage of the analysis 
(training, testing, and validation), as indicated by the statistical analysis 
results. As illustrated by the provided data, the FANN model performed 
well in predicting the WQI values, with the testing phase having the 
lowest MSE (0.0663) and the R2 (0.9311) when compared to the training 
phase. This finding indicates that the FANN model has effectively 
learned the relationship between the input parameters and the WQI 
values, allowing it to make accurate predictions. 

The results obtained in scenario III provide insights into the effec-
tiveness of the FANN model in predicting WQI values using a reduced 
number of input parameters. This finding could have important impli-
cations for water quality management, as it suggests that a more cost- 
effective monitoring program could be developed that focuses on a 
subset of input parameters rather than measuring all parameters. It is 
important to note that the accuracy of the model is dependent on the 
quality and quantity of the input data. Thus, further research is needed 
to validate the effectiveness of the FANN model in predicting WQI values 
under different scenarios. 

Table 7 
Correlation coefficient for each input to output WQI.  

Variables Attributes  Correlation toward WQI 

1 DO (% Sat) Input 0.85 
2 BOD (mg/l) − 0.4 
3 COD (mg/l) − 0.34 
4 TSS (mg/l) − 0.05 
5 pH 0.69 
6 NH3-N (mg/l) − 0.56  

7 WQI Output 1  

Fig. 13. Actual and predicted values and residues for validation data for all inputs.  

Table 8 
Training, testing performance of WQI prediction.  

Performance FANN-all 

MSE R2 

Training  0.0009  0.9991 
Testing  0.0024  0.9976 
Validation  0.0045  0.9953  
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As a conclusion, the result given has appeared that removing one 
parameter from the input variables for WQI calculation only results in a 
small decrease in accuracy, with a reduction of R2 from 0.9953 to 0.9799 

which is reciprocate to 1.55 % (Table 11). On the other hand, removing 
two parameters resulted in a more significant decrease in accuracy, with 
a R2 of 0.9103 (8.4 %). Removing one parameter has only a small impact 
on the accuracy of WQI calculation, removing 2 parameters slightly 
reduce the accuracy. And it is therefore important to carefully evaluate 
the contributions of each parameter to the overall calculation and to 
only remove parameters that have a low impact on the accuracy. 

Besides, based on the findings of this study, in order to accurately 
represent the water quality index of a river, which serves as a crucial 
metric for assessing the river’s environmental health, it is recommended 
to utilize all six parameters as input variables. Nevertheless, the pro-
posed model can still be deemed reliable even in situations where one or 

Fig. 14. Scaled actual and predicted values for training and testing data without BOD in the inputs.  

Fig. 15. Actual and predicted values and residues for validation data without BOD in the inputs.  

Table 9 
Training, testing and validation performance of WQI prediction.  

Performance FANN- exclude BOD 

MSE R2 

Training  0.0170  0.9832 
Testing  0.0141  0.9853 
Validation  0.0193  0.9799  
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two parameters are unavailable. As part of this investigation to ascertain 
the robustness of the proposed model, two of the most significant pa-
rameters, namely COD and BOD, were deliberately omitted from the 
model development. It is noteworthy that even with the exclusion of 
these parameters, the developed model consistently exhibited an 
acceptable level of accuracy, with performance ranging between 91% 
and 98%. This suggests that the model retains its predictive capabilities 
and can be considered reliable when dealing with incomplete input data. 

Fig. 16. Actual and predicted values for training and testing data without BOD and COD in the inputs.  

Fig. 17. Actual and predicted values and residues for validation data without BOD and COD in the inputs.  

Table 10 
Training, testing and validation performance of WQI prediction.   

FANN-(exclude BOD and COD) 

MSE R2 

Training  0.0744  0.9266 
Testing  0.0633  0.9311 
Validation  0.0860  0.9103  
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5. Batu pahat river basin mitigation plan 

Rivers play a vital role in the water cycle by collecting precipitation 
runoff from surrounding areas and moving it towards the oceans. When 
it rains, the water is absorbed by the soil, and some of it flows over the 
surface into streams and rivers, which eventually lead to the ocean. In 
certain cases, once the water reaches a river, it begins to flow down-
stream, and reaching a dam. In this area of studies, there have Bekok 
Dam and Sembrong Dam that located at SPB 02 and SBP 03, respec-
tively. The main river for SBP 02 covers Bekok River and consists of 
several tributaries, e.g. Terusan River, Sedi River, Temehel River, Puroh 
River, Berlian River, etc. While at SBP 03, sub-basin covers Sembrong 
River and consists of several tributaries, e.g. Biuh River, Geriba River 
and Merpo River. Dams are built to control the flow of water and create a 
reservoir of water behind them. Water is stored in the reservoir until it is 
needed for human use. The water can be released from the reservoir 
through the dam and into a water treatment plant, where it is cleaned 
and treated to remove any contaminants. After treatment, the water is 
distributed through a network of pipes and pumps to homes and busi-
nesses for human use. Once the water has been used, it is returned to the 
environment through the sewer system, where it is eventually treated 
again before being released back into rivers or the ocean. 

The amount and intensity of rainfall are critical factors in soil 
erosion, especially in areas with steep slopes or sparse vegetation. As 
they determine the amount of water and energy available to erode the 

soil, by also carrying pollutants such as pesticides, fertilizers, and sedi-
ment into water streams. As for Batu Pahat River Basin the activities that 
majorly impact the quality of the river are from oil palm plantations, 
sewage treatment plant (STP) effluents, commercial dischargers, in-
dustrial effluents and also from greywater usage in the basin. Oil palm 
plantations often rely on the use of chemical fertilizers and pesticides to 
maximize the crop yield. These chemical can leach into the soil and 
eventually into nearby rivers and waterways through surface runoff or 
groundwater. Besides, palm oil processing mills generate amounts of 
waste which contain high level of organic matters and nutrients. The 
effluent from STP, commercial and industrial discharges also contrib-
uted to river pollution in several ways since it contains high level of 
nutrients (nitrogen and phosphorus), pathogen (bacteria, viruses) as 
well as pharmaceuticals, personal care products and industrial chem-
icals. Fig. 18 describe the condition of water cycle in Batu Pahat River 
Basin. 

A combination of strategies that focus on reducing pollution at the 
source, controlling runoff, intercepting and treating pollutants, pre-
venting future pollution, and preventing erosion and sediment issues can 
help mitigate river pollution and protect water quality. These strategies 
can be tailored to specific river systems and local conditions to achieve 
the most effective results. Therefore, all activities that occurred in the 
basin will greatly impacts the water quality of river. 

Table 11 
Accuracy improvement of WQI prediction in removing water quality parameters.  

Validation 
performance 

R2 (scenario 
3) 

R2 (scenario 
2) 

R2 (scenario 
1) 

Accuracy improvement by removing 1 
parameter (%) 

Accuracy improvement by removing 2 
parameters (%) 

0.9103 0.9799 0.9953 1.55 8.46  

Fig. 18. Current Water Cycle in Batu Pahat River Basin.  
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5.1. Batu Pahat river basin mitigation plan for oil palm plantation area 
through good agricultural practices (GAPs) 

Good Agricultural Practices (GAPs) are a set of guidelines and 
practices that aim to promote the sustainable and safe production of 
crops and livestock. The goal of GAPs is to reduce the risk of contami-
nation and improve the overall quality of agricultural products while 
minimizing the impact on the environment and human health. The 
mitigation plan that focusing oil palm plantation area for Batu Pahat 
river may include the implementation of GAP during planning, devel-
opment and planting of palm oil plantation as well as for biodiversity 
conservation, water and waste management around the plantation. 

The authorities may consider implementing several mitigation plans, 
such as monitoring refueling and lubrication operations for pumping 
equipment to prevent watercourse pollution, and carefully monitoring 
the output from effluent ponds to prevent oxygen demand issues. It is 
also important to prevent run-off from entering watercourses when 
recycled, digested effluent is used. Furthermore, mulching application 
using empty fruit bunches is recommended as organic fertilizer to 
recycle organic matter, conserve moisture and prevent erosion. All 
organic materials such as empty fruit bunches (EFB), mill effluent and 
decanter solids as well as surplus shell and fibre is encouraged to be 
recycled to the field. Apart from that, the treated palm oil mill effluent 
(POME) and solid waste (biomass) can be apply for nutrient recycling 
and moisture conservation. Therefore, with these proposed mitigation 
plan, serious action has to be taken in order to minimize the risk and 
pollution towards river water. 

5.2. Batu pahat river basin mitigation plan to reduce pollution load from 
major wet market effluent 

The activities that take place at the market, such as cleaning, 
washing, and food preparation, generate a significant volume of 
wastewater on a daily basis. This wastewater is often disposed of 
improperly and can have detrimental effects on the environment. The 
pollution caused by this wastewater can take the form of unpleasant 
odours, contamination of water sources, and the spread of waterborne 
diseases. The main contributions of wastewater load from wet market 
are normally organic loads from food sources and slaughtering and 
minor detergent traces from washing. The absence of particular regu-
lations to regulate the release of certain substances can worsen the 
problems associated with their discharge. According to the water sam-
pling measurement, the wet market and food court in Pasar Besar Batu 
Pahat generate weighty impact to the environment especially through 
wastewater. There have previous studied from (Jais et al., 2020) for 
Public Market Parit Raja, Batu Pahat. The studied monitored the 
wastewater characteristics where BOD reading was measured at 89 ±
3.61 mg/L, COD has exceeding the DOE limit, and recorded at 456 ±
8.19 mg/L, TSS was 132.3 ± 1.7 mg/L, sulfate and total chlorine were 
32.3 ± 0.78 mg/L and 32 ± 0.69 mg/L, respectively, pH at 6.0 ± 0.1, 
turbidity verified at 66.0 ± 8.9 mg/L, and oil and grease was 5.22 ±
0.07 mg/L. This can be concluded that wastewater from the wet markets 
was classified as class V and obviously not suitable for any purposes. To 
reduce pollution loading from wet markets, wastewater treatment plant 
(WWTP) is proposed to be constructed at major wet market in Pekan 
Yong Peng sub-basin. The treatment plant will reduce pollutants in the 
wastewater which is currently not being treated. Harmful pollutants and 
bacteria, such as BOD, ammoniacal nitrogen, oil, grease, suspended 
solids and E. Coli bacteria are among the substances filtered before the 
water is released into the river. With the wastewater treatment plant, the 
treated water will be improved to class II, making it suitable for recre-
ational purposes to be compliance with the National Water Quality 
Standard. 

5.3. Reducing pollution load from rural sub-basin using constructed 
wetland 

Constructed wetlands are now recognized as a reliable and adaptable 
wastewater treatment technology and a suitable solution for the treat-
ment of many different types of wastewater (Vymazal, 2011). Con-
structed wetlands are effective at attenuating small storm flows, which 
refers to the gradual reduction in the rate and volume of runoff that 
occurs as it passes through the wetland. This process is achieved through 
a combination of physical, chemical and biological processes that 
remove pollutants from the runoff and slow down the flow rate 
(Vymazal, 2011). The constructed wetland area could also provide some 
volume of attenuation of small storm flows. However, the effectiveness 
of constructed wetlands in attenuating storm flows is limited, and it 
varies depending on factors such as the size of the wetland and the in-
tensity of the storm event. This is because the inundation of wetland 
plants with high volumes of water for extended periods can cause 
physical damage and loss of vegetation (Donchez et al., 2017). 

In Batu Pahat river basin, there are 61 numbers of villages and 
husbandries which are located outside of Indah Water Konsortium 
(Malaysian national wastewater and sanitation company) service area. 
The population density in rural areas is typically lower than in urban 
areas, which makes it less practical to have a large-scale centralized 
sewage treatment system. Instead, a decentralized sewage treatment 
system that can cover a relatively large area is needed. Decentralize 
systems typically consist of smaller treatment units, such as septic tanks, 
that are installed at individual homes or clusters of homes. Given the 
economic situation of rural areas, systems with low construction, 
maintenance, and operation costs are required. In order to reduce 
pollution loading from rural house and husbandry, a constructed 
wetland has to be constructed at final outlet of each village. 

A constructed wetland system can remove pollutants from storm 
water by using natural processes, like sedimentation, filtration, and 
biological uptake. These systems typically consist of shallow water 
bodies that are extensively vegetated with emergent plants (Vymazal, 
2010; Vymazal, 2011, 2007). The system is designed to slowly release 
water after rainfall events by slowly raising the water levels in the 
wetland. Furthermore, constructed wetlands can be used for the treat-
ment of storm water, for the preservation of wildlife habitat, for passive 
recreation, and for the improvement of landscape amenity (Vymazal, 
2011). 

5.4. Reducing sediment load by establishing river bank erosion hazard 
zone 

The effects of anthropogenic activities on sediment concentration of 
rivers including land use practices, dam construction, footpaths, water 
conservation practices, construction of roads and other infrastructures. 
It was revealed that anthropogenic activity is a cause for concern, 
especially in industrial countries, as it is responsible for considerable 
variation in sediment concentration trend along relatively small sub- 
catchments. The increase of sediment concentration due to the exces-
sive wash load entering the Sg Chaah and Sg Bekok river reaches are 
mainly caused by the palm oil replantation, vegetable cultivation and 
agriculture activities along Sg Chaah and Sg Bekok. The effects of 
anthropogenic activities on streamflow hydrology and morphology also 
revealed that sand mining for road and infrastructural construction as 
well as over withdrawal of particles may enhance sediment concentra-
tion in rivers. To reduce the impact of excessive wash load delivered to 
the river system, a series of actions must be taken, which include pre-
venting illegal cultivation along the river by enforcing guidelines and 
procedures, enforcing the Erosion and Sediment Control Plan (ESCP) on 
agricultural activities such as replantation of palm oil and others, pro-
hibiting livestock farming along river reserves, not allowing mining 
activities in the river, treating mining wastewater to comply with 
standards before discharging it into the watercourse, and enforcing the 
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Erosion and Sediment Control Plan (ESCP) on mining and quarry 
stakeholders to implement primary erosion and sediment control 
measures. 

6. Conclusion 

In conclusion, this study demonstrates the efficacy of a feedforward 
artificial neural network in predicting the water quality index of the 
Batu Pahat River in real-time, using a reduced number of water quality 
parameters as model inputs. The study conducted revealed that the 
prediction accuracy was found to be at its peak of 97.99% when BOD 
was excluded from the input variables. In addition, an exceptional 
prediction accuracy of 91.03% was achieved when both COD and BOD 
were not included as input variables. These outcomes were more 
favorable than the benchmark value of 90% prediction accuracy, 
thereby suggesting the feasibility of a reduction in the number of water 
quality parameters in a given monitoring process. The findings suggest 
that omitting parameters such as COD and BOD, which cannot be 
measured in real-time, does not significantly affect the accuracy of the 
model. The study’s results have important implications for improving 
water resources management by reducing the cost and time required for 
monitoring while maintaining high accuracy levels. It simplifies the data 
collection and analysis process, reducing the resource required to 
monitor and measure a large number of water quality parameters. This 
can make real-time WQI prediction more accessible and cost-effective 
for water management authorities and other stakeholders. Besides, the 
reduced number of parameters as inputs also could help to address the 
issue of missing or incomplete data, which is often a challenge in water 
quality monitoring. By relying on a smaller set of input parameters, the 
model still can provide reliable WQI predictions even when some data is 
missing or unavailable. Moreover, this can be particularly beneficial for 
areas with limited resources or where water quality monitoring is not a 
priority. Besides, emerging algorithms such as Random Tree (RT), 
Random Forest (RF), M5P, Reduced Error Pruning Tree (REPTree), 
Random Committee (RC), Bagging, and Instance-Based k-Nearest 
Neighbors (IBK) have found application in addressing challenges within 
the domains of hydrology, climatology, and hydraulics. 

Furthermore, this study provides valuable insights for the manage-
ment and enhancement of the water quality in Batu Pahat River. This 
research has recognized and identified specific sources of pollution and 
developing targeted mitigation plans to improve water quality. Thus, 
effective regulation and enforcement of environmental laws are needed 
to hold industries accountable for proper waste handling and disposal. 
Additionally, industries should adopt sustainable practices, such as 
implementing efficient wastewater treatment systems, reducing the use 
of harmful chemicals, and promoting responsible waste management, to 
prevent river pollution and ensure a healthy environment for imminent 
generations. 
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