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Abstract: Remotely sensed soil moisture products potentially provide a valuable resource for mon-

itoring agricultural drought and assessing food security. The agriculture dominated countries of

Eastern Africa experience high inter-annual variability of rainfall, but the monitoring and assess-

ment of the predominantly rainfed agriculture systems is hindered by an absence of ground-based

observations. This study evaluates the accuracy of three soil moisture products: ASCAT SWI 12.5 km,

SMAP soil moisture data 9 km (SPL3SMP_E), and enhanced surface soil moisture map derived

through integrating ASCAT SWI and Pedotransfer Functions (PTFs) (ASCAT_PTF_SM), in Ethiopia,

through comparison with in situ-observed soil moisture datasets. Additionally, a new water retention

PTF, developed for Ethiopian soils, is integrated with a high-resolution soil property dataset to

enhance the spatial resolution of the soil moisture product. The results show that the new integrated

dataset performs better in terms of unbiased root mean square error (ubRMSE = 0.0398 m3/m3)

and bias (0.0222 m3/m3) in comparison with ASCAT SWI 12.5 km (ubRMSE = 0.0.0771 m3/m3,

bias = 0.1065 m3/m3). SMAP is found to have limitations during the wet season, overestimating

soil moisture. The finer spatial resolution of the data allows for a better depiction of heterogeneity

of soil moisture across the landscape and can be used to identify water-related issues and improve

hydrological models for agricultural water management.

Keywords: soil moisture; pedotransfer functions; Ethiopia; satellite data; SMAP; ASCAT

1. Introduction

Soil moisture plays a crucial role in regulating plant transpiration and photosynthesis,
which in turn affect the water, energy, and biogeochemical cycles [1,2]. Soil moisture affects
how incoming solar radiation is partitioned into sensible heat flux and latent heat flux [3],
as well as the distribution of rainfall into surface runoff and sub-surface infiltration [4].
The Global Climate Observing System (GCOS) recognizes soil moisture, specifically up
to a depth of 5 cm, as an essential climate variable (ECV) [5]. Soil moisture availability
is an important control on the growth of crops and vegetation in general [6]. Therefore,
knowledge of the amount and distribution of soil moisture for plant growth is critical
to effective agricultural planning. This knowledge is vital for conducting hydrological
research and enabling applications like flood/drought prediction, climate forecasting, and
efficient agricultural management practices [7]. Unfortunately, a high degree of variability
cover time in soil moisture conditions makes planning difficult. With the exception of a
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handful of fragmented stations, land use planners in Ethiopia do not have access to high-
resolution soil moisture data. This lack of spatially explicit and enhanced soil moisture
data severely limits the ability of planners to create more effective land use plans.

The measurement of soil moisture can be performed in two ways. The first method
is by directly measuring it using in situ techniques such as gravimetric sampling or time
domain reflectometry (TDR). The second method involves estimating soil moisture indi-
rectly through remote sensing (RS) techniques. Currently, there are three main remote
sensing-based methods of soil moisture measurement: (1) optical/thermal methods, (2) mi-
crowave methods, and (3) the microwave-optical/IR synergistic approach. The microwave
remote sensing-based methods include active microwave (e.g., [8]), passive microwave
(e.g., [9]) and merged product (i.e., active and passive). Microwave remote sensing offers
several benefits, including the ability to observe under various weather conditions and
at any time of day. One of its advantages is the ability to penetrate the soil surface, en-
abling the estimation of surface soil moisture content. Advanced scatterometer (ASCAT)
microwave sensors include the Advanced Microwave Scanning Radiometer (AMSR-E), the
Soil Moisture and Ocean Salinity (SMOS), the Advanced Microwave Scanning Radiometer
2 (AMSR2), and the Soil Moisture Active Passive (SMAP). The different soil moisture prod-
ucts have different spatial resolutions and accuracy. Microwave remote sensing (MW RS)
of soil moisture relies on the contrast between the dimensionless dielectric constant of wet
soil (80) and dry soil (less than 4). However, the presence of vegetation and rough surface
conditions can decrease the sensitivity of MW observations to changes in soil moisture.
These effects become more pronounced as the frequency increases, and hence, low frequen-
cies such as L-band (1.4 GHz) are preferred as compared to C-band (6.9 GHz) and X-band
(10.7 GHz) [10]. The L-band frequency used by the SMAP satellite has been identified as
highly advantageous because it can penetrate through the Earth’s surface to measure soil
moisture up to a depth of 5 cm. Moreover, passive remote sensing at the L-band frequency
allows for more accurate soil moisture measurements and better detection of temporal soil
moisture changes, making it a valuable tool for various applications, including flood risk
assessment in poorly gauged basins [11], rainfall-runoff modelling, regional scale irrigation
studies [12] and the monitoring of ecosystems [13].

Soil moisture measurement over large areas through in situ soil moisture measure-
ments is impractical because this method is time-consuming, and hence, datasets are
typically spatially very sparse. Alternatively, satellite-based soil moisture measurements
using microwave methods are of coarse spatial resolution (>9 km), with shallow sensing
depth (~5 cm). However, obtaining relatively high spatial-resolution soil moisture data
with good temporal resolution is important for water resources management. There is a
mismatch between the coarse resolution of microwave remote sensed data and the spatial
resolution required for agricultural applications [14]. Various downscaling approaches have
been employed to enhance the coarse spatial resolution of satellite-derived soil moisture
products, including machine learning techniques, physics-based models, and hydrologi-
cal models (e.g., [15–17]). These methods aim to incorporate additional information from
higher-resolution ancillary data sources to effectively increase the spatial detail of the coarse
satellite soil moisture data. By integrating satellite data with these techniques, downscaled
high-resolution soil moisture estimates can be generated from the native low-resolution
observations. Apart from downscaling, it is necessary to integrate satellite observations
and PTFs to achieve a complementary advantage and improve the estimation of soil mois-
ture [18,19]. Pedotransfer functions (PTFs) predict soil water retention characteristics from
readily available soil data [20]. PTFs allow satellite soil moisture data to be connected to
soil properties, providing enhanced consideration for sub-grid variability in soil moisture.
Additionally, PTFs fill the gap between the available soil data and other difficult-to-measure
properties such as soil moisture values at field capacity and permanent wilting point [21].
There are relatively few studies in the area of soil moisture retrieval from the integration of
satellite observations and pedotransfer functions (e.g., [18,19,21]).
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The majority of published pedotransfer functions are derived from databases of tem-
perate soils [22,23]. However, PTFs developed elsewhere cannot be applied directly to soils
of Ethiopia due to distinctive pedological properties of high-altitude tropical soils. Tropical
and temperate clay soils exhibit different properties; the former have low bulk densities,
higher permeability, and lower available water capacity [24]. Additionally, PTFs developed
for tropical soils are often limited to predicting water content at a few water potentials [23].
Here, we apply a new PTF that predicts the soil water retention parameters of the van
Genuchten equation. The PTFs were developed using data on soil water retention collected
from 123 soil profiles across Ethiopia and have great potential for supporting agricultural
management in this data-scarce region [25].

The specific objectives of this study were to (1) evaluate ASCAT SWI 10-daily 12.5 km
and SPL3SMP_E 9 km soil moisture products, (2) generate new spatial layers of soil hy-
draulic attributes based on locally developed PTFs for Ethiopia, and (3) generate new
PTF-integrated high-resolution SM data (250 m) retrieved from the ASCAT SWI in com-
bination with locally developed PTFs for Ethiopia. The SMAP (SPL3SMP_E) and ASCAT
SWI soil moisture data and the integrated SM data were validated using ground observa-
tions. The effectiveness of these products in the rainfed agricultural landscape of Ethiopia
has not previously been fully studied. A national assessment of soil moisture products
in an agriculturally dominated country such as Ethiopia can assist watershed scientists
and agriculturalists in effectively monitoring hydrological processes and managing water
in agriculture. Evaluating the performance of satellite-based soil moisture retrievals is
crucial for enhancing their accuracy and exploring their potential applications in hydrology,
agriculture, climate studies, and mitigating natural disasters such as droughts and floods.

2. Materials and Methods

2.1. Study Area

Ethiopia is a landlocked country situated in the Horn of Africa, covering approximately
1,127,000 km2. Its landmass primarily consists of a vast elevated plateau that is separated by
the rift valley into the northwestern and southeastern highlands (Figure 1). These highland
areas are accompanied by corresponding lowlands, creating a noticeable difference in
topography. Near the Eritrean border, the elevation reaches its lowest point in Africa, the
Afar depression, at a depth of −188 m below sea level. On the other hand, the highest
peak is Mount Ras Dejen, located in the Simen Mountains in northern Ethiopia, reaching
an elevation of 4509 m above sea level (Figure 1). The most prominent river system in
Ethiopia is the Blue Nile, along with the Tekeze/Atbara River system, which is a tributary
to the Nile. According to a study by Berhanu et al. [26], Ethiopia has a diverse range of soil
types. The researchers classified the land area of Ethiopia into 60 different soil types, with
the major three types being lithic leptosols, humic nitisols, and eutric vertisols, covering
approximately 18.5%, 11.9%, and 10.2% of the total area, respectively.

The experimental sites for the soil moisture validation are situated in the Aba Gerima
watershed, which is located in the Amhara region within the West Gojam Zone of Bahir
Dar Zuria woreda. These sites are approximately 15 km northeast of Bahir Dar, the regional
capital. Geographically, the watershed is located between latitude 11◦8′ and 11◦41′ N, and
longitude 37◦28′ and 37◦31′ E.
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1

Figure 1. Location map of the study area with in situ observation sites. To determine the representa-

tive influence of each ground measurement site, Thiessen polygons were constructed around the soil

moisture stations. The area of each Thiessen polygon was used as a weight for the corresponding

station when aggregating the point-scale data to the satellite footprint scale. The Thiessen polygons

displayed on the map were created using ArcGIS. The numbers 1 to 8 in the Thiessen polygon indicate

observation sites (see also Table 1).

Table 1. Biophysical characteristics of in situ soil moisture observation sites.

Sites Land Use Slope (%) Elevation (m) Soil Texture

Site # 1 Degraded hillslope 17% 2032 Sandy loam
Site # 2 Degraded hillslope 17% 2025 Loam
Site # 3 Cultivated land 5 2002 Clay loam
Site # 4 Cultivated land 10 2013 Clay loam
Site # 5 Cultivated land 15 2001 Loam
Site # 6 Cultivated land 5 1978 Clay
Site # 7 Cultivated land 10 2013 Clay
Site # 8 Cultivated land 15 1965 Sandy clay loam

2.2. Data Sources

2.2.1. In Situ Soil Moisture Data Collection

Between 2017 and 2018, extensive soil moisture and weather data were collected in
the Aba Gerima watershed. Eight stations were designated for the in situ measurements
(Figure 1). These observation sites were geographically distributed within the SMAP grid
of 3 km to account for the spatial soil moisture variability. Since soil moisture heterogeneity
is driven by precipitation distribution, topography, soil texture and land cover, the sites are
believed to represent these drivers. The basic biophysical characteristics of these sites are
described in Table 1.

Access tubes were installed to monitor the volumetric soil water content, specifically
in the top layer of the soil (0–5 cm), using the PR2/4 profile probe manufactured by Delta-T
Devices Ltd. A hand-held HH2 display device was used to obtain readings of soil moisture
with measurements taken daily during the early morning hours (6:00–8:00 a.m.) at regular
intervals. The PR2/4 probe was specifically designed for mineral soils and has a high level
of measurement accuracy (±6%) based on factory calibration. A weather station located
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near the soil moisture monitoring sites measured weather data, including rainfall (p), air
temperature (t), and relative humidity (rh), at 5-min intervals.

With respect to spatial up-scaling, using the arithmetic mean of the in situ measure-
ments of soil moisture does not give us an accurate estimate of the grid average soil
moisture. Therefore, Thiessen polygons were constructed to find the weighting of the
stations and to obtain an accurate estimate of the average soil moisture. The Thiessen
polygon method was chosen as the standard approach by the SMAP science team [27,28].
The method uses a Voronoi diagram to determine the weighting of the stations. A Voronoi
diagram divides a plane into regions that partition the area covered by the input point fea-
tures into polygons. These polygons are called Thiessen polygons. Each Thiessen polygon
contains just one of the point input features, which is a soil moisture station, as illustrated
in Figure 1.

2.2.2. Remote Sensing Data for Soil Moisture

ASCAT SWI 12.5 km: Soil moisture is a secondary product that is derived using the
Soil Water Index (SWI) data product (10-daily SWI 12.5 km Global V3, SWI10) from Metop
ASCAT sensors. The SWI10 product was obtained from the Copernicus Global Land Service
website (https://land.copernicus.eu/global/products/swi (accessed on 15 January 2023)).
The SWI processing algorithm utilizes near-real-time ASCAT-25 km surface soil moisture
(SSM) data to create daily global SWI images. The algorithm is based on the two-layer
water balance model suggested by Wagner et al. [29]. It estimates an average profile soil
moisture, using SSM obtained from scatterometer data, as an indicator that ranges from
0 to 1. However, as the ASCAT SWI data do not directly represent the actual soil moisture
content, they need to be converted into soil moisture units for accurate representation.

SMAP soil moisture data 9 km (SPL3SMP_E): The Soil Moisture Active Passive (SMAP)
satellite carried an L-band radar and an L-band radiometer to monitor the Earth’s surface
during descending (AM) and ascending (PM) overpasses [12]. This combined approach
utilized both active (radar) and passive (radiometer) microwave remote sensing for soil
moisture mapping. However, due to mechanical failure, the radar stopped providing active
microwave products on 7 July 2015, and since then, only the radiometer has been used
for measurements. The SMAP products can be freely downloaded from the website of
NSIDC (https://nsidc.org/data/smap/smap-data.html (accessed on 15 January 2023)).
SPL3SMP_E is a daily composite of SMAP Level-2 (L2) soil moisture, which is derived from
SMAP Level-1C (L1C) interpolated brightness temperatures [30]. The NASA SMAP mission
provides various grid sizes of soil moisture data, including 36 km, 9 km, 3 km, and 1 km.
The 9 km grid size data, known as SPL3SMP_E, is widely used and has been evaluated in
this study. It should be noted that the higher-resolution retrievals from SPL2SMAP_S have
not shown significant improvement over the 9 km SPL3SMP_E data [31] and, hence, the
latter were chosen for evaluation herein.

2.2.3. Spatial Soil Property Data

Soil properties including percent sand/clay/silt, percent organic carbon, cation ex-
change capacity (CEC, cmol/kg), pH, and bulk density (BD, g/cm3) were obtained from
AfSoilGrids250 m [32] and used as input to the PTF to compute water retention maps
for the top layer of the soil (0–5 cm), including maps of the volumetric moisture content
(VMC) at permanent wilting point (PWP; pF 4.2) and at field capacity (FC; pF 2.3) and the
corresponding maps of the available water content.

2.3. Methods

2.3.1. Computing the Pedotransfer Functions

Measuring a soil water retention curve (θ(h)) is laborious, expensive and time-consuming,
with curves often fragmentary, with relatively few θ-h pairs. For modeling, characterization
and comparison purposes, it is important to describe the whole of the soil water retention

https://land.copernicus.eu/global/products/swi
https://nsidc.org/data/smap/smap-data.html
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curve in a parametric form. In this study, the unsaturated soil hydraulic functions were
described using the widely used van Genuchten (VG) parametric model [33]:

θ(h) =

{

θr +
θs−θr

(1+|αh|n)
m , h < 0

θs h ≥ 0
, (1)

where θ(h) is the volumetric water content at potential h (cm); θr is the residual water
content (cm3 cm−3), i.e., the water content at which the gradient dθ/dh tends to zero as h
becomes increasingly negative; θs is the saturated water content (cm3 cm−3); α (cm−1), n,
and m are the shape parameters.

Based on the measured and available data, the following water potentials were used
to optimize the VG model parameters: pF 0, 2.3, 2.5, 3.0, 3.5, 3.7 and 4.2. In the optimization
process, θs was fixed to the measured saturated water content, and Mualem’s restriction
of m =1 − (1/n), with n > 0, was implemented in order to reduce the number of model
parameters to be optimized. The remaining parameters (θr, α, and n) were optimized by
fitting Equation (1) to the measured θ-h data by means of a weighted non-linear least square
approach based on Marquardt’s method, as provided by the (RETention Curve (RETC)
program [34]. However, during the fitting process, most of the measured water retention
data resulted in fitted values for θr equal to zero. Therefore, θr was fixed at the value of
zero throughout.

2.3.2. Mapping FC, PWP and Available Water Content

PTFs have been developed for tropical soils in general [22,23], but we used the PTFs
indicated in Table 2 that were specifically developed and validated for Ethiopia [25] to
parameterize the van Genuchten [33] equation. Pedotransfer functions require specific
data to make accurate predictions. Here, these include information on the sand, silt, and
clay composition of the soil, as well as the organic carbon content, bulk density, cation
exchange capacity, and pH in water. The last two factors act as surrogates for mineralogy,
specifically the presence of kaolinite, in heavily washed-out tropical soils. In this study,
data on soil water retention were collected from 123 soil profiles. Measurements were
taken at different water potentials, including field capacity (FC), permanent wilting point
(PWP), and saturation levels. These data were obtained from a previous study conducted
by Teferi [25]. The model for predicting θs explained 93% of the variability using predictors
such as clay content, bulk density and CEC. However, substantial unexplained variability
was observed in ln(α) (51% explained variability) and ln(n − 1) (57% explained variability)
PTFs [25].

Table 2. Parameters used in the PTFs of Teferi [25] and selected optimal regression models.

Parameters PTFs

θs (cm3 cm−3) 0.976 − 0.497 × BD − 0.0043 × OC−1 + 3.04 × Cl−1 + 0.00059 × CEC × BD + 0.001 × Cl × BD − 0.135 × CEC−1

α* (cm−1) −3.29 − 0.727 × Ln (Sa) − 0.227 × pH × BD – 0.0153 × CEC × BD + 0.003 × Sa × Cl + 0.0008 × Si × Cl

n* −1.46 + 0.011 × CEC – 0.019 × Sa × BD + 5.56 × 10−4 Sa × Si – 3.02 × 10−4 × Si × Cl

α*= ln(α), n* = ln(n − 1).

2.3.3. Merging Satellite Data with PTF

Converting SWI into a quantitative estimate of soil moisture at time t (SM (t)) requires
solving the following equation [29,35]:

SM(t) = Wmin + SWI(t)(Wmax − Wmin), (2)

which requires auxiliary information about soil properties. The minimum and maximum
soil wetness limits are represented by Wmin and Wmax, respectively. In this context, critical
soil moisture values are commonly defined using the permanent wilting point (θPWP), field
capacity (θFC), and total water capacity (TWC) (Figure 2). Wmin is closely related to the
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moisture content at PWP (θPWP), and Wmax can be set equal to the soil moisture content
at FC (θFC), except immediately after a heavy rainfall event or irrigation when it can be
expected to be between FC and TWC. For practical purposes, Wmax can be taken as the
arithmetic mean of FC and TWC [36,37].

θ
θ

θ

 

ffi 𝑅𝑀𝑆𝐸 = 𝐸 (𝜃 − 𝜃 )𝐵𝑖𝑎𝑠 = 𝐸 𝜃 − 𝐸 𝜃𝑢𝑏𝑅𝑀𝑆𝐸 = (𝑅𝑀𝑆𝐸 − 𝐵𝑖𝑎𝑠 )
𝑟 = ∑(𝜃 − 𝜃 )(𝜃 − 𝜃 )∑(𝜃 − 𝜃 ) ∑(𝜃 − 𝜃 ) ,

θ θ

Figure 2. Flow chart for deriving Soil moisture map (dekadal) derived by integrating ASCAT SWI

and PTF (ASCAT_PTF_SM).

2.3.4. Performance Evaluation

Calibration and validation of soil moisture products require knowledge of the “true”
value. However, in situ soil moisture measurements often include their own measurement
errors. Triple collocation (TC) can be used to characterize errors, using observations
from three mutually independent, error-prone measurement sources without requiring
a reference dataset or truth [38]. TC-based evaluation [39–41] and the extended TC [42]
have been used widely in hydrology to estimate errors in soil moisture products. TC-
based methods are only reliable if the number of samples is large enough [43,44]. There
is a tension between the number of sites that can be practically measured using TC and
obtaining a good characterization of the spatial variation over a large area. Thus, this study
is based on direct comparison between two datasets (i.e., relative metrics).

To quantitatively evaluate ASCAT SWI, SMAP soil moisture data 9 km (SPL3SMP_E)
and the merged SM products (ASCAT_PTF_SM), four performance evaluation indices,
including RMSE, the mean bias, the unbiased RMSE (ubRMSE) and Pearson correlation
coefficient (r) were computed. The metrics are defined as follows:

RMSE =

√

E

[

(

θest − θre f

)2
]

, (3)

Bias = E[θest]− E
[

θre f

]

, (4)

ubRMSE =

√

(

RMSE2 − Bias2
)

, (5)

r =
∑

(

θre f − θre f

)

(

θest − θest

)

√

∑

(

θre f − θre f

)2
∑
(

θest − θest

)2
, (6)
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θest and θref represent the ASCAT_PTF_SM or SMAP or ASCAT SWI and in situ
observed soil moisture values, respectively.

3. Results

3.1. Performance Evaluation Results

3.1.1. SMAP Soil Moisture Data 9 km (SPL3SMP_E)

The performance evaluation results for the comparison between SPL3SMP_E AM,
SPL3SMP_E PM, ASCAT SWI 12.5 km, and ASCAT_PTF_SM and in situ surface soil
moisture are presented in Table 3. When all months (dry season and wet season) are consid-
ered, the RMSEs were 0.2348 and 0.2005 m3/m3 for AM and PM overpasses, respectively
(Figure 3a,b). The SPL3SMP_E products from both the AM and PM satellite overpass times
show a strong positive correlation (r > 0.9) with ground-measured soil moisture data. The
ubRMSE calculated between the SPL3SMP_E products and in situ data is 0.1064 m3/m3

for both morning (AM) and evening (PM) satellite overpasses. However, the correlation
is somewhat higher for AM than for PM, but otherwise, the differences between AM and
PM metrics are small, as they both have a similar ubRMSE value of 0.1064 m3/m3. This
ubRMSE value exceeds the targeted accuracy requirement of 0.04 m3/m3 specified for the
Soil Moisture Active Passive (SMAP) mission, indicating that further improvements are
needed to meet the desired performance goals.

ff

Insitu SM (m3/m3) Insitu SM (m3/m3) 

Insitu SM (m3/m3) Insitu SM (m3/m3) 

Figure 3. Performance evaluation results: (a) comparison between in situ observed soil moisture

and SPL3SMP_E AM for all 12 months, (b) in situ observed soil moisture and SPL3SMP_E PM for

all 12 months, (c) comparison between in situ observed soil moisture and SPL3SMP_E AM during

October–May (dry season), (d) comparison between in situ observed soil moisture and SPL3SMP_E

PM during October–May (dry season).
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Table 3. Performance evaluation results.

Soil Moisture Retrievals
ubRMSE

(m3/m3)
RMSE

(m3/m3)
Bias

(m3/m3)
r n

SPL3SMP_E AM (12 months) 0.1064 0.2348 0.2094 0.91 193

SPL3SMP_E PM (12 months) 0.1064 0.2005 0.1700 0.90 156

SPL3SMP_E AM (Oct–May) 0.0626 0.1508 0.137 0.82 116

SPL3SMP_E PM (Oct–May) 0.0519 0.1101 0.0971 0.88 90

ASCAT SWI 12.5 km (12 months) 0.0771 0.1315 0.1065 0.87 40

ASCAT_PTF_SM (12 months) 0.0398 0.0455 0.0222 0.75 40

3.1.2. ASCAT SWI 12.5 km and ASCAT_PTF_SM

Soil moisture maps (decadal) derived by integrating ASCAT SWI and PTF (AS-
CAT_PTF_SM) were compared and validated with the in situ-observed soil moisture
measured between 22 August 2017 and 22 September 2018 at Aba Gerima watershed. The
RMSE, ubRMSE, Bias, and correlation coefficient between the in situ measurements and
ASCAT SWI 12.5 km and ASCAT_PTF_SM are presented in Table 3 and Figure 4. The soil
moisture product derived from this study (i.e., ASCAT_PTF_SM) has smaller ubRMSE
(0.0398 m3/m3) than the original ASCAT SWI (0.0771 m3/m3) product. The bias for the AS-
CAT_PTF_SM product (0.0222 m3/m3) is smaller than that of ASCAT SWI (0.1065 m3/m3).
The low RMSE and ubRMSE indicate the predictions performed by the ASCAT_PTF_SM
product are quite close to the true values, on average. Therefore, by combining the ASCAT
SWI with local PTFs, improved overall accuracy of the SM data was obtained. We assumed
that the combination of satellite data and PTFs developed based on local data would pro-
vide complementary abilities that could lower the ubRMSE and bias values. However, the
ASCAT_PTF_SM product showed a lower value for the correlation coefficient as compared
to that of ASCAT SWI, suggesting that although the predictions are fairly accurate overall,
the model has some limitations in capturing the complete patterns in the data.

ffi

ffi

tt  

 

Insitu SM (m3/m3) Insitu SM (m3/m3) 

Figure 4. Performance evaluation statistics for the comparison of the in-situ measurements and

ASCAT SWI 12.5 km (left), ASCAT_PTF_SM 250 m (right).

3.2. Derived Maps of Water Content at PWP, FC, and AWC

Table 4 lists the soil hydraulic attributes calculated for Ethiopia for the top surface
layer (0–5 cm) based on the SoilGrids datasets. Figure 5 shows a map of the PWP, FC, and
TWC. This map would support hydrological, ecological, agricultural or other environmental
modeling at the national or watershed scale. Many hydrological, agricultural and ecological
models have AWC, θFC, or θPWP as input variables, such as Soil and Water Assessment Tool
(SWAT) [45]. Thus, spatially explicit predictions of the AWC at high resolution are relevant
for upscaling simulation models at the national scale. A spatially explicit map of plant
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available water content has the potential to assist researchers and policymakers in working
toward various United Nations Sustainable Development Goals. These goals include
ensuring food security, promoting sustainable agriculture, mitigating climate change, and
managing water resources in a sustainable manner. By providing detailed information on
water availability for plants, such maps can aid in developing strategies and policies to
address these global challenges.

Table 4. Derived soil hydraulic attributes based on local PTFs of Teferi [23].

No Soil Hydraulic Attribute Symbol Unit File Name

1 Saturated water content of MvG θs cm3 cm−3 WC_SAT

2 Water content at −20 kPa θ20 cm3 cm−3 WC_FC1

3 Water content at −33 kPa θ33 cm3 cm−3 WC_FC2

4 Water content at −1500 kPa θ1500 cm3 cm−3 WC_PWP

5 The inverse of the air-entry value of MvG α cm−1 ALPHA

6 The shape parameter of MvG n - N

7 Available Water Content 1 AWC1 cm3 cm−3 AWC1

8 Available Water Content 2 AWC2 cm3 cm−3 AWC1

tt

θ θ
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Figure 5. Map of available water capacity for the top 100 cm depth by taking into account water

content at −33 kPa and water content at −1500 kPa.

3.3. Time Series Soil Moisture Data

The comparison between SMAP soil moisture estimates and ground measurements
shows seasonal differences (Figure 6). Figure 6 shows that there is a wet bias in the
SMAP product, particularly in the wet season when soil moisture values are at their
highest. Soil moisture maps from the SPL3SMP_E products, derived from AM and PM
satellite overpasses during the dry season months of October–May, have been validated by
comparing them with ground-based soil moisture measurements. During the dry season
from October to May, the SPL3SMP_E morning (AM) overpass data agree better with the in
situ observations, as indicated by lower ubRMSE (0.0626 m3/m3), RMSE (0.1508 m3/m3),
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and bias (0.1370 m3/m3) values compared to the full 12-month SPL3SMP_E morning (AM)
overpass data (Figure 3c,d). This suggests the SPL3SMP_E soil moisture estimates perform
better in the dry season (Table 3). The ubRMSE of 0.0519 m3/m3 for the SPL3SMP_E evening
(PM) overpass data during October–May is lower than the ubRMSE of the SPL3SMP_E
morning (AM) overpass data for the same period. This indicates that the soil moisture
variability is better represented in the nighttime (PM overpass) retrievals compared to the
daytime (AM overpass) retrievals over the dry season (Figure 3c,d). When comparing in situ
measurements with the ASCAT-derived soil moisture product (ASCAT SWI 12.5 km), the
agreement is better in the dry season versus the wet season, as illustrated in Figure (xy). The
validation results indicate that ASCAT-derived soil moisture products have higher accuracy
compared to ground measurements during dry seasons than in wet seasons. ASCAT
shows better agreement with in situ data under dry conditions. This finding is consistent
with the results reported by Rötzer et al. (2014), who also found that ASCAT had better
performance in dry periods relative to wet periods. However, the new ASCAT_PTF_SM
product, generated by combining ASCAT data with local pedotransfer functions (PTFs),
demonstrated consistently good performance in both dry and wet seasons (Figure 6). The
low RMSE (0.0455 m3/m3) and ubRMSE (0.0398 m3/m3) indicate the ASCAT_PTF_SM
predictions are quite close to true values, on average. Local PTFs connect satellite soil
moisture to soil properties, enhancing applications in agriculture, hydrology, etc. ASCAT
provides actual soil moisture status, while PTFs relate it to soil characteristics. We assumed
combining ASCAT data with locally derived PTFs would provide complementary abilities
with lower errors. Overall, the ASCAT_PTF_SM product showed robust accuracy across
seasons, unlike unadjusted ASCAT data.

 

tt

ff

Figure 6. Temporal pattern of the in situ-observed soil moisture (m3/m3) data in comparison with

SPL3SMP_E AM and PM estimates (top) and ASCAT SWI 12.5 km and ASCAT_PTF_SM 250 m (bottom).
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4. Discussion

4.1. Analysis of Performance of SMAP Product

It was found that the performance of the SPL3SMP_E soil moisture products did
not achieve the standard SMAP accuracy of the ubRMSE value of 0.04 m3/m3 for areas
with sparse to moderate vegetation cover. This result correlated very well with the SMAP
validation result obtained elsewhere [46,47]. The accuracy of soil moisture measurements
from the SMAP instrument is affected by several factors. These include the presence of a
heterogeneous mix of land cover types and undulating mountain regions with high slope
gradients within a SMAP measurement footprint. For example, of the total area within a
SMAP measurement footprint (9 km2) of the study area, approximately 79% was cropland,
14% was grassland, 4% was woody vegetation, and 3% was bare land. The main crop
grown in the region is maize. The estimated SM error over farmland was mainly attributed
to spatial and temporal change in the surface roughness and vertical heterogeneity due
to height of corn. Farming activities and rainfall cause temporal change in the surface
roughness of farmland in smallholder agricultural areas within one growing season; for
example, surface roughness increases due to sowing and decreases due to rainfall. The
original SMAP soil moisture algorithms made the assumption that surface roughness
was constant, which introduced some uncertainty into the soil moisture estimates [48,49].
According to Nadeem et al. [46], the values of ubRMSE for SPL3SMP E AM and PM
overpasses on farmland were 0.052 m3/m3 and 0.057 m3/m3, respectively. Zheng et al. [48]
obtained the ubRMSE value of 0.06 cm3/cm3 for the ascending SMAP SM over corn field.

The presence of a heterogeneous mix of land cover types is another factor that affects
the accuracy of SM products. The SM retrievals contain more uncertainty in the woodland
area as compared to the farmland. According to Nadeem et al. [46] the values of ubRMSE
on woodland for SPL3SMP E AM and PM soil moisture estimates were 0.059 m3/m3 and
0.065 m3/m3, respectively. The vegetation canopies can interfere with the satellite’s ability
to accurately measure the soil surface temperature. Areas with a heterogeneous mix of
land cover types tend to have lower surface temperatures that are underestimated. The
landscape heterogeneity makes it hard to accurately estimate the emissivity of the ground
surface below. In effect, the algorithm thinks the surface is wetter than reality because the
lower emissivity makes it seem like more radiation is being emitted from the moist surface.
Therefore, low biased emissivity leads to overestimation of soil moisture content.

The deviation between the observed soil moisture and the SPL3SMP_E product is
very large, especially during wet season, June to September (Figure 6). The primary reason
for this behavior is the increased influence of vegetation and roughness on the brightness
temperature in wet soil conditions [9]. Vegetation and roughness can introduce noise when
extracting soil moisture data, which affects the accuracy of the algorithm, particularly in
wet soil conditions. Other, similar studies elsewhere have also shown that the error in soil
moisture estimates from microwave data increases under very wet soil conditions [50,51].
Overall, the results show the need for improvements in the algorithm for soil moisture
retrieval from SPL3SMP_E in this study area. Topography and complex terrain can affect
the estimation of surface temperature and soil moisture from satellite microwave sensors
in several ways [52,53]. Slope and aspect changes can modify the apparent emissivity that
the sensor sees due to changes in viewing angle relative to features on the ground. This
can lead to misestimation of emissivity. Approximately 21% of the footprint area in the soil
moisture measurement area (9 km2) had a slope of less than 5%, 64% had a slope between
5–15%, and 15% had a slope greater than 15%. This indicates that the dominant part of the
study area is not flat. Variations in slope and orientation relative to the sensor’s look angle
can impact the measured brightness temperature, with fore slopes appearing warmer and
backslopes cooler. This can skew the interpretation of surface temperature if terrain effects
are not corrected.

Errors in estimating surface temperature represent another critical source of uncer-
tainty in the SMAP soil moisture product. The surface temperature data used in SMAP
retrieval are obtained from the NASA Goddard Earth Observing System Version 5 (GEOS-5)
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model, and inaccuracies in these modeled surface temperatures can significantly degrade
the accuracy of SMAP soil moisture estimates, as highlighted in previous studies [54–56].

The SPL3SMP_E datasets have a positive bias that leads to a wet bias in all seasons.
This wet bias is especially noticeable during the rainy season, indicating substantial vari-
ability in soil moisture. The SPL3SMP_E soil moisture estimates were overestimated with a
bias of 0.1700 m3/m3 for PM orbits and bias of 0.2094 m3/m3 for the AM orbits relative to
the in situ SM over the period from 22 August 2017 to 22 September 2018. The SPL3SMP_E
product for PM orbit shows relatively good performance based on RMSE and bias. The
comparable metrics for AM and PM retrievals indicates that PM observations could be
more valuable for soil moisture retrieval. AM overpasses have traditionally been preferred
for soil moisture retrieval since the temperature contrast between vegetation and soil is
typically smaller than later in the day. However, the similarity in metrics suggests PM
observations may be just as useful [30]. Further refinement in future updates of the product
is expected to reduce the performance gap between AM and PM soil moisture estimates.

4.2. Analysis of Performance of ASCAT SWI 12.5 km and ASCAT_PTF SM

Validation studies evaluating the accuracy of ASCAT-derived soil moisture products
have yielded variable results [56–58]. In a study by Albergel et al. [57], ASCAT soil moisture
products were validated against in situ measurements from over 200 stations across Africa,
Australia, Europe and the United States. The results showed moderately good performance,
with a correlation coefficient of 0.55, a bias of 0.056 m3/m3, and RMSE of 0.247 m3/m3

between the ASCAT and ground-based soil moisture. In a study by Rötzer et al. [58] focused
on western Germany, it was found that the ASCAT-derived soil moisture exhibited higher
temporal variability compared to reference ground data. However, despite the greater
variability, the ASCAT soil moisture still demonstrated good correlation with the reference
measurements over this region.

Figure 6 shows that the 10-day soil moisture maps resulting from the integration
of satellite data with PTF work very well at predicting our observed soil moisture data,
and this demonstrates that these products can be used as input for site-specific water
management plans for residual soil moisture-based agriculture and irrigation management.
Finer spatial resolution data (250 m) better capture the heterogeneity of SM over the
landscape than coarser data (e.g., 9 and 12.5 km). Figure 6 shows that this discrepancy
was pronounced during the wet season. The accuracy of retrieving relative soil moisture
from ASCAT backscatter data using the change detection method developed by Wagner
et al. [29] can be impacted by several factors. Sensor calibration errors, vegetation dynamics,
assumptions of constant surface roughness, rainfall effects, model inaccuracies, and scale
mismatches between satellite and ground data can all influence the soil moisture estimates.
The change detection method assumes minimal variation in surface roughness over time,
rather than accounting for potential roughness changes. Additionally, rainfall events
create various effects like surface wetting, increased roughness, and puddling, which
alter backscatter but are unrelated to actual subsurface soil moisture changes. This can
lead to retrieval errors. For example, heavy rain just before satellite overpass can cause
misleadingly low backscatter initially, incorrectly indicating a soil moisture increase. Intense
rainfall can also saturate the top soil layer, reducing backscatter due to the wet surface rather
than true soil moisture change at depth. Complex or rugged topography can substantially
amplify the azimuthal noise in the backscattered radar energy measured by the sensor.
This increase in noisy signal returns arising from the terrain is associated with greater
uncertainty in soil moisture retrieval.

Improved ways for retrieving soil moisture data have been developed from merging
satellite observations with PTFs, which have greatly contributed to our understanding of
hydrological characteristics and agricultural water management. By utilizing the enhanced
soil moisture data, for example, water-related risk assessment in poorly gauged specific
areas can be performed more accurately [11]. Moreover, the availability of high-resolution
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soil moisture data can enhance the reliability of hydrological models, which are being
increasingly utilized for agricultural water management.

It is vital for future research to validate these findings by comparing them with the
observed soil moisture data obtained from well-distributed representative soil moisture
networks. It has been recognized that there is a lack of in situ stations for soil moisture in
Africa, which has implications for the validation of remote-sensed products [59]. Although
validation of satellite soil moisture product is difficult in a data-scarce environment such as
Ethiopia, this study used measured soil moisture data from eight stations. To address the
challenge of data scarcity for validation in the future, it is essential to establish a spatial
network of permanent soil moisture stations at various depths representing different land
cover conditions. Such a network would enable a more accurate validation and detailed
analysis of the satellite-derived soil moisture products. Ultimately, this information could
be utilized to optimize the application and effectiveness of soil moisture retrieval products
from satellite data in Ethiopia.

5. Summary and Conclusions

This study utilized available in situ time series of soil moisture data to perform an
extensive validation for three soil moisture retrieval products using microwave satellite
data for Ethiopia, a region that has not previously been analyzed in detail.

There is an urgent need to improve agricultural drought monitoring for food security
in sub-Sahara Africa, given the high inter-annual rainfall variability and dependence
on rain-fed agriculture. Remotely sensed soil moisture products have the potential to
contribute to this need. However, as a prerequisite, the quality of such datasets must firstly
be appraised. This study utilized two remotely sensed datasets, ASCAT SWI 10-daily
12.5 km and SMAP SPL3SMP_E 9 km. There are a limited number of stations for validating
remotely sensed soil moisture products in Africa. Here, we performed a comparison
against in situ data collected from a field campaign within northern Ethiopia. Based on
relative metrics, the ASCAT product performed best; the SMAP product had a large wet
bias. Several factors influence the accuracy of soil moisture retrievals from the SMAP and
ASCAT, including the presence of mixed land cover types and varied topography across
the study region.

Additionally, a new, integrated high-resolution SM dataset (ASCAT_PTF_SM) was
generated using the ASCAT SWI in combination with a PTF, developed using local soil
data, and a global soil property database. The combination of the ASCAT SWI and PTF
improved the accuracy of the SM data; for example, the ubRMSE was reduced from 0.0771
to 0.0398 m3/m3. Technological progress has enabled the production of gridded soil data
at increasingly higher spatial resolutions, from 1 km × 1 km down to 250 m × 250 m
grids. The availability of such fine-resolution soil data facilitates developing enhanced
pedotransfer functions (PTFs). With better PTFs, the integration of these functions to
improve hydrological estimates such as soil moisture can be strengthened. As spatially
explicit soil information becomes available at finer scales, this supports creating more
localized and accurate PTFs. Leveraging these high-resolution PTFs to merge with remote
sensing data can enhance soil moisture estimation and should be an area of focus moving
forward. The proliferation of higher-resolution soil data provides new opportunities to
refine PTFs and their integration, for strengthened estimation of key hydrological variables.

We conclude that the ASCAT dataset, combined with the PTF, demonstrates much
promise for the operational monitoring of soil moisture. However, there is a need for more
in situ field measurements to validate the ASCAT data over the full range of geophysical
settings within Ethiopia.
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