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Abstract

This work extends analytical foundations for kernel methods beyond the usual Euclidean
manifold. Specifically, we characterise the smoothness of the native spaces (reproducing
kernel Hilbert spaces) that are reproduced by geodesically isotropic kernels in the hyper-
spherical context. Our results are relevant to several areas of machine learning; we focus
on their consequences for kernel cubature, determining the rate of convergence of the worst
case error, and expanding the applicability of cubature algorithms based on Stein’s method.
First, we introduce a characterisation of Sobolev spaces on the d-dimensional sphere based
on the Fourier–Schoenberg sequences associated with a given kernel. Such sequences are
hard (if not impossible) to compute analytically on d-dimensional spheres, but often feasi-
ble over Hilbert spheres, where d = ∞. Second, we circumvent this problem by finding a
projection operator that allows us to map from Hilbert spheres to finite-dimensional spheres.
Our findings are illustrated for selected parametric families of kernel.

1 Introduction

This paper precisely characterises the Hilbert spaces reproduced by certain kernels defined over the hyper-
sphere Sd, the d-dimensional sphere embedded in Rd+1. A kernel K : Sd × Sd → R is said to be geodesically
isotropic if it depends only on the geodesic distance (denoted θ throughout) between any pair of points
located over the spherical shell. Hence, under geodesic isotropy, there exists a mapping ψ : [0, π] → R such
that, for all ξ,η ∈ Sd, K(ξ,η) = ψ(θ(ξ,η)). Is there a suitable spectral characterisation of Sobolev-type
kernels, K, under the assumption of geodesic isotropy? The literature is elusive on this aspect.

Several existing contributions to the literature consider the restriction of isotropic kernels from Rd+1 to Sd,
arguing that under the restriction smoothness properties are retained. This logic is correct, albeit quite
unnatural; the restriction of an isotropic kernel in Rd+1 to the embedded sphere Sd has drawbacks that have
been emphasised by Gneiting (2013) and by Porcu et al. (2018). For instance, choosing a covariance model
which depends on the chordal distance to approximate a random field on the sphere will suffer from poor
accuracy at large distances (where the deviation between chordal and geodesic distances are significant).
The consequences of this are somewhat difficult to assess theoretically, but intuitively it is unnatural to work
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under metrics that are not compatible. To make progress, it becomes necessary to properly define Sobolev
spaces for geodesically isotropic kernels over hyperspheres; that is the contribution of this work.

1.1 Motivation: Kernels, Cubature, Discrepancies and Beyond

The applications of reproducing kernels are myriad, but the principal motivation for this work was to provide
theoretical foundations for the related computational tools of kernel cubature and kernel discrepancy beyond
the usual Euclidean manifold. The simplest and perhaps most useful important of a non-Euclidean manifold
is the hypersphere Sd, which is the focus of our discussion, but aspects of the methods developed in this
paper are more generally applicable - we return to this point in Section 6.

Let K : X × X → R be a reproducing kernel defined on a set X , and let NK denote the Hilbert space
that is (uniquely) reproduced by this kernel. Let δ(x) denote a unit mass at x ∈ X . Given a probability
distribution P on X and a set of locations {x1, . . . , xn} ⊂ X , kernel cubature associates to each location xi
a scalar weight wi, such that the kernel discrepancy

Dk

(
n∑
i=1

wiδ(xi), P
)

= sup
∥f∥NK ≤1

∣∣∣∣∣
n∑
i=1

wif(xi) −
∫
f dP

∣∣∣∣∣ (1)

is minimised. These topics have received considerable recent interest in statistics, machine learning, and
numerical analysis, where kernel cubature has been applied to such tasks as sampling (Teymur et al., 2021),
experimental design (Pronzato and Zhigljavsky, 2020), model selection (Briol et al., 2019), and numerical
integration (Jagadeeswaran and Hickernell, 2019). The increasing popularity of kernel cubature is due in part
to a closed-form expressions for the cubature weights wi and to the fact that their error decay is rate-optimal
among all cubature methods for NK , even when the locations xi are randomly sampled. Further, these tools
have received attention in connection with Stein’s method from applied probability (Stein, 1972; Gorham
and Mackey, 2015), where Chwialkowski et al. (2016); Liu et al. (2016) introduced a kernel discrepancy that
can be computed even when P is implicitly defined up to a normalisation constant, addressing a problem
that is routinely encountered in the Bayesian context.

Specialising the discussion to X = Sd, kernel cubature appears in rendering algorithms for glossy surfaces
(Marques et al., 2013; 2022) and as a criterion by which the performance of rendering algorithms is measured
(Marques et al., 2019), while kernel cubature has been used in combination with Stein’s method to numer-
ically approximate posterior expectations in directional statistics (Barp et al., 2022). The theory of kernel
cubature on Sd is well-developed (e.g. as a special case of the general theory of Novak and Woźniakowski,
2008), and optimality properties of kernel cubature have been established in the case where the Hilbert space
reproduced by the kernel is equivalent to a Sobolev space on Sd (Krieg and Sonnleitner, 2021). However,
applications of kernel cubature on Sd are limited by the availability of kernels that satisfy theoretical as-
sumptions and are computationally practical. For example, the methodology of Barp et al. (2022) requires
K to reproduce a Hilbert space equivalent to an order-β Sobolev space and to admit computable expressions
for its derivatives in order for Stein’s method to be applied. Further, it is desirable from the perspective
of empirical performance for the kernel to be intrinsically defined on Sd, to properly reflect the geometry
of Sd. If such kernels can be found, then the Riemann–Stein kernel method of Barp et al. (2022) facilitates
approximation of posterior expectations with error O(n−β/d), improving on the conventional O(n−1) error
of Markov chain Monte Carlo whenever β > d/2 (i.e. when the Sobolev–Hölder embedding is well-defined).
An improved understanding of Sobolev-type kernels therefore has the potential to eliminate the gap between
the theory and practice of kernel cubature and kernel discrepancy on Sd, and to drive the improvement of
methodologies in application areas such as graphics rendering and directional statistics where kernel cubature
and kernel discrepancies are used.

Beyond cubature and discrepancies, there is a need for Sobolev kernels within other areas of machine learning.
One such example is the use of kernels to approximate the solution of (partial) differential equations (PDEs),
where the solution space of the most commonly encountered elliptical PDEs are Sobolev spaces (see e.g.
Fasshauer, 2007). The use of a Sobolev kernel then ensures that the solution of the PDE belongs to the
RKHS and, through the use of an appropriate kernel method, can be consistently approximated (see Fuselier
and Wright, 2009; 2012; Hubbert et al., 2015). The recent interest within the machine learning community
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in probabilistic numerics (Hennig et al., 2022), in which kernel methods (Gaussian processes) are used to
infer the solution of PDEs, has created a renewed demand for theoretical analyses of the kind reported in
this work (e.g. Chen et al., 2021; Krämer et al., 2022; Pförtner et al., 2022). A second important application
is in learning with spatial data; kernel methods have been popular since Furrer and Nychka (2007) and are
becoming even more popular now, thanks to the fusion of classical spatial statistics with machine learning
(Cui et al., 2019; Nikparvar and Thill, 2021). Authors such as Stein (1999) explicitly advocate for the use
of Sobolev kernels in this context, as opposed to smoother kernels whose assumptions are unlikely to be
satisfied when analysing a real-world dataset.

1.2 Contribution

The present article contributes to mathematical understanding of Sobolev-type kernels on Sd, making in
particular the following relevant contributions:

Native and Sobolev Spaces. We start with the native spaces (reproducing kernel Hilbert spaces) associ-
ated with kernels that are geodesically isotropic over d-dimensional spheres. We then define suitable
Sobolev spaces with exponent β for the case of d-dimensional spheres. Using Fourier analysis over
spheres, we prove that a given kernel, K, belongs to a given Sobolev space with exponent β if and
only if the related Fourier–Schoenberg sequences (see subsequent sections) have a precise rate of
decay.

Hilbert Spheres and Projections. For d and K given, attaining the Fourier–Schoenberg sequence is
extremely difficult. After noting that such sequences are more easily attainable on the (infinite
dimensional) Hilbert sphere, we prove that there exists a projection operator that relates those
sequences on the Hilbert sphere with their analogue on finite dimensional sphere.

Euclidean Kernels and Their Restriction. One potential source of geodesically isotropic kernels, as
alluded to above, is to simply restrict a radially isotropic kernel in the ambient Euclidean space Rd+1

to the d−dimensional sphere. If one knows in advance the Fourier transform of the radial kernel
then one can employ a formula due to Narcowich and Ward (2002) to derive the corresponding
Fourier–Schoenberg sequence of its restriction to the sphere. We remark that we do not implement
the restriction directly (i.e., viewing the problem in Rd+1) but instead we take advantage of the fact
that the chordal distance can be written in terms of geodesic distance, so that the resulting kernel
is geodesically isotropic, thus allowing us to perform a more natural type of harmonic analysis on
the sphere.

Some Parametric Classes of Kernels. The above ingredients will allow us to prove that celebrated
classes of kernels for d-dimensional spheres are actually Sobolev kernels, and can be used within
the kernel cubature and kernel discrepancy machinery as previously described. A complete Sobolev
assessment (derivation of Fourier–Schoenberg sequences complete with precise asymptotic decay
rates) for the class of generalised Wendland functions was provided in Hubbert and Jäger (2021),
and the present paper adds to this existing knowledge by providing a complete Sobolev assessment
for two additional classes, not yet covered in the literature, namely the Matérn class (Stein, 1999)
and the F class Alegría et al. (2021).

The paper proceeds as follows: Section 2 provides a succinct mathematical background. Section 3 starts
with expository material on native spaces and then propose a definition of Sobolev space with given exponent.
We prove that the Fourier–Schoenberg sequences determine the Sobolev space where the kernel sits. Section
4 sets out a framework which delivers closed form expressions for Fourier–Schoenberg sequences derived via
the two routes described above, i.e., by projection from the Hilbert sphere and also by restricting a Euclidean
radial function to the sphere. We conclude in Section 5 by presenting three explicit parametric cases. Using
the tools developed in Section 4 we give closed form expressions for the Fourier–Schoenberg coefficients, we
also provide their asymptotic rates of decay and hence conclude by specifying their corresponding Sobolev
spaces. A short discussion in Section 6 closes the paper.
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2 Background

Let d be a positive integer. We consider the d-dimensional unit sphere Sd = {ξ ∈ Rd+1, ∥ξ∥ = 1}, embedded
in Rd+1, with ∥ · ∥ denoting Euclidean norm. We shall also refer to the Hilbert sphere S∞ = {ξ ∈ RN :
∥ξ∥ = 1}. We equip Sd with the great circle (geodesic) distance, defined as θ(ξ,η) = arccos(ξ⊤η) ∈ [0, π],
for ξ,η ∈ Sd, where ⊤ denotes transpose. A mapping K : Sd × Sd → R is called a kernel if it is positive
definite, that is

∑N
i,j=1 aiakK(ξi, ξj) ≥ 0, for all finite system {ξi}Ni=1 ⊂ Sd and constants a1, . . . aN ∈ R.

This paper works with geodesically isotropic kernels, so that K(ξ,η) = σ2ψ(θ(ξ,η)) for some continuous
function ψ : [0, π] → R with ψ(0) = 1, and for σ2 > 0. We define Ψd as the class of continuous functions ψ
being the isotropic part of a kernel K in Sd. We also define Ψ∞ =

⋂∞
d=1 Ψd, with the inclusion relation

Ψ1 ⊃ Ψ2 ⊃ · · · ⊃ Ψd ⊃ · · · ⊃ Ψ∞, (2)

being strict. Schoenberg (1942) showed that a continuous mapping ψ : [0, π] → R belongs to the class Ψd if
and only if it can be uniquely written as

ψ(θ) =
∞∑
m=0

bm,d
P

(d−1)/2
m (cos(θ))
P

(d−1)/2
m (1)

, θ ∈ [0, π], (3)

where Pλm denotes the λ-Gegenbauer polynomial of degree m (Abramowitz and Stegun, 1965, 22.2.3), and
{bm,d}∞

n=0 is a probability mass sequence. Schoenberg (1942) also showed that ψ belongs to the class Ψ∞ if
and only if

ψ(θ) =
∞∑
m=0

bm(cos(θ))m, θ ∈ [0, π], (4)

with {bm}∞
m=0 being again a probability mass sequence. We follow Daley and Porcu (2013) and call the

sequence {bm,d}∞
m=0 in (3) a d-Schoenberg sequence. Analogously, we call {bm}∞

m=0 a Schoenberg sequence.
Throughout, for a given d and a given element ψ ∈ Ψ∞ ⊂ Ψd, we call ({bm}∞

m=0, ψ) and ({bm,d}∞
m=0, ψ) a

Schoenberg and a d-Schoenberg pair, respectively. Section 4 proves that these pairs are related through an
operator defined therein.
For d = 1, it is true that (see Gneiting, 2013)

b0,1 =
∫ π

0
ψ(θ)dθ and bm,1 = 2

π

∫ π

0
cos(mθ)ψ(θ)dθ, for m ≥ 1, (5)

while for d ≥ 2 we have

bm,d = 2m+ d− 1
23−dπ

(
Γ
(
d−1

2
))2

Γ(d− 1)

∫ π

0
ψ(θ)P (d−1)/2

m (cos(θ)) (sin θ)d−1 dθ. (6)

where Γ(·) denotes the gamma function (Abramowitz and Stegun, 1965, 6.1.1).

The property of strict positive definiteness is described here through the members ψ of the classes Ψd. By
strict we mean that the inequality in the definition positive definiteness becomes strict provided the real
numbers c1, . . . , cn are not all zero; we let Ψ+

d ⊂ Ψd denote the class of continuous functions ψ associated
with a strictly positive definite kernel on Sd. Arguments in Schoenberg (1942) prove that if the elements of
the d-Schoenberg sequence {bm,d}∞

m=0 in (3) are positive for all m ≥ 0 then ψ ∈ Ψ+
d . This simple condition

is sufficient for our purposes but the reader may consult (D. Chen and Sun, 2003) for a careful investigation
of the necessary and sufficient conditions.

2.1 Harmonic Analysis on Spheres

We now consider members ψ from Ψ+
d and invoke arguments in Hubbert et al. (2015) to dig into an alternative

view of the expansion (3). Specifically, we resort to Fourier expansion through spherical harmonics, that is

ψ(ξTη) =
∞∑
m=0

Nm,d∑
n=1

ψ̂mYm,n(ξ)Ym,n(η), ξ,η ∈ Sd, (7)
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where {Ym,n : n = 1, . . . , Nm,d} is a real orthonormal basis for the space of spherical harmonics of degree m
and the collection {Ym,n : n = 1, . . . , Nm,d,m ≥ 0} forms a real orthonormal basis for L2(Sd). In addition,
{ψ̂m}∞

m=0 is referred to as the sequence of spherical Fourier coefficients for ψ ∈ Ψ+
d and these are related to

the aforementioned d-Schoenberg coefficients via the formula (cf Hubbert et al., 2015, Equation 1.33)

bm,d =
Γ
(
d+1

2
)
Nm,dψ̂m

2π d+1
2

, (8)

where Nm,d denotes the dimension of the space of spherical harmonics of degree m given by

N0,d = 1 and Nm,d = 2
(
m+ d− 1

2

)
(m+ d− 2)!
(d− 1)!m! . (9)

Remark 2.1. The identity (8) proves that the d-Schoenberg {bm,d}∞
m=0 and the Fourier {ψ̂m}∞

m=0 sequences
are linearly related. This justify the vague terminology Fourier–Schoenberg sequences used in the introduction
to this paper.

The positive spherical Fourier coefficients of ψ ∈ Ψ+
d decay at a polynomial rate if there exist positive

constants A1, A2 and γ such that
A1

(1 +m)d+γ ≤ ψ̂m ≤ A2

(1 +m)d+γ , m ≥ 0. (10)

Using Stirling’s formula (Abramowitz and Stegun, 1965, 6.1.39), that is

Γ(az + b) ∼
√

2πe−az(az)az+b− 1
2 , (11)

we deduce that Nm,d ∼ 2(m+1)d−1

(d−1)! , from which one can also show that there are positive constants C1, C2,

independent of m, such that C1(m+ 1)d−1 ≤ Nm,d ≤ C2(m+ 1)d−1, m ≥ 0. Thus, in view of (8), we note
that the decay condition (10) on the spherical Fourier coefficients can be recast in terms of the d−Schoenberg
sequence; specifically, there exist constants A1,A2 such that

A1

(1 +m)1+γ ≤ bm,d ≤ A2

(1 +m)1+γ , m ≥ 0. (12)

2.2 Special Functions

Hypergeometric functions will feature heavily in the course of this work and so we briefly remind the reader
that a general hypergeometric function is defined by

pFq

[
a1 · · · ap
b1 · · · bq

; z
]

=
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n! , (13)

where
(c)n := c(c+ 1) · · · (c+ n− 1) = Γ(c+ n)

Γ(c) , for n ≥ 1, (14)

denotes the Pochhammer symbol, with (c)0 := 1. Throughout, B denotes the Beta function, defined for
x > 0 and y > 0 by

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt = Γ(x)Γ(y)

Γ(x+ y) . (15)

3 Native Spaces on Spheres

For a given ψ ∈ Ψ+
d , whose spherical Fourier coefficients we assume to be positive, we define the following

subspace of L2(Sd) :

Nψ =
{
f ∈ L2(Sd−1) : ∥f∥2

ψ =
∞∑
m=0

Nn,d∑
n=1

|f̂m,n|2

ψ̂m
< ∞

}
, (16)
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where f̂m,n denote the expansion coefficients associated to the spherical Fourier series representation

f =
∞∑
m=0

Nn,d∑
n=1

f̂m,nYm,n, where f̂m,n =
∫
Sd

f(ξ)Ym,n(ξ)dωd(ξ).

We observe that ∥ · ∥ψ is a norm induced by the inner-product

(f, g)ψ :=
∞∑
m=0

Nn,d∑
n=1

f̂m,nĝm,n

ψ̂m
. (17)

We shall call Nψ the Native space induced by ψ. We observe that if we consider the function ψ whose
spherical Fourier coefficients are given by

ψ̂m := 1
(1 +m)2γ ,

then the corresponding Native space coincides with the Sobolev space of order γ, that is

W γ
2 (Sd) :=

{
f ∈ L2(Sd−1) : ∥f∥2

Wγ
2

=
∞∑
m=0

Nn,d∑
n=1

(1 +m)2γ |f̂m,n|2 < ∞
}
.

More generally, if the spherical Fourier coefficients of ψ ∈ Ψ+
d satisfy the decay condition (10), or equivalently,

if its d−Scohenberg sequence satisfies (12), then the induced Native space Nψ is norm equivalent to the
Sobolev space W β

2 (Sd) where β = (d+ γ)/2. That is the two spaces agree as sets and the norms are equivalent
since √

A1∥f∥ψ ≤ ∥f∥Wβ
2

≤
√
A2∥f∥ψ.

In particular, if Nψ and Nψ′ are norm-equivalent, then their kernel discrepancies equation 1 define the
same topology on the space of probability distributions on Sd. We observe that since β > d/2 then, as a
consequence of the Sobolev embedding theorem, the Native space of Nψ is continuously embedded in C(Sd),
the space of continuous functions on Sd, and this implies that Nψ is a reproducing kernel Hilbert space. The
following result concerning Native spaces is adapted from Levesley and Sun (2005) Proposition 3.1.
Lemma 3.1. Let Ψ(ξ,η) = ψ(ξ⊤η) denote a kernel induced by ψ ∈ Ψ+

d , having expansion (7) according to
a Fourier sequence {ψ̂m}∞

m=0 of strictly positive coefficients. The corresponding Native space Nψ (16) is a
reproducing kernel Hilbert space with reproducing kernel Ψ.
Remark 3.1. Let ψ ∈ Ψ+

d induce a kernel Ψ as in Lemma 3.1. If the spherical Fourier coefficients of Ψ
satisfy (10), then Ψ is a reproducing kernel for a space that is norm equivalent to the Sobolev space W β

2 (Sd)
where β = d+γ

2 .

For two mappings f, g : N0 → R, we say that f(n) ∼ g(n) if and only if

lim
n→∞

f(n)
g(n) = 1. (18)

A direct implication of (18) is that there exists positive constants A1 and A2 such that

A1g(n) ≤ f(n) ≤ A2g(n), n ≥ 0.

In view of Remark 3.1 we observe that by establishing asymptotic decay rates for various classes of covariance
function we will be able to establish which order Sobolev space the covariance kernels are reproducing for.
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4 Quantifying Smoothness on d-dimensional Spheres

In this paper we consider parametric classes of members ψ of the class Ψ+
∞. We access these via the two

approaches described in Section 1. Specifically we will either take ψ ∈ Ψ+
∞ as a starting point and consider

its projection to Sd, or we will take a positive definite radial kernel in Rd+1 as a starting point, and consider
its restriction to Sd. In both cases we will derive closed form expressions for the associated d−Schoenberg
sequences and by examining their asymptotic decay we can quantify the smoothness properties which, in
turn, determines whether the induced Native space is norm equivalent to a Sobolev space of a certain order.

4.1 Projecting Ψ+
∞ to Ψ+

d .

Many of the well known parametric classes in numerical analysis and statistics are defined through members
of the class Ψ+

∞, i.e., the Schoenberg sequence (bm)∞
m=0 is known for the representation (4). This is an obstacle

in the case where one wants employ such functions on a finite dimensional sphere, where one requires the
d−Schoenberg sequence in order to quantify the smoothness of the kernel and consequently to state whether
the induced Native space is norm equivalent to a Sobolev space of a certain order. In order to circumvent this
we consider the following projection operator which we will show maps the Schoenberg sequence of ψ ∈ Ψ∞
to its unique d−Schoenberg sequence when viewed as a member of Ψd. To the best of our knowledge, this
contribution is novel.

Remark 4.1 (The Projection Operator). We define the operator Υd that acts pointwise on the coefficients
bm from a Schoenberg sequence {bm}∞

n=0 through the identity

∀m ∈ N0, Υd (bm) =
√
π

2m+d−2Γ
(
d
2
) Γ (m+ d− 1)
m!Γ

(
m+ d−1

2
) ∞∑
j=0

bm+2j
(m+ 2j)!

j!22j
(
m+ d+1

2
)
j

(19)

where (x)j = Γ(x+ j)/Γ(x) denotes the Pochhammer symbol (Abramowitz and Stegun, 1965, 6.1.22).

Proposition 4.1 (Projection Operator). Let Υd be as defined through (19). Then, Υd maps Ψ∞ (Ψ+
∞) into

Ψd (Ψ+
d ). That is, let bm,d be defined as bm,d = Υd(bm), for m ∈ N and for {bm}∞

m=0 a Schoenberg sequence.
Then, the sequence {bm,d}∞

m=0 is a d-Schoenberg sequence.

Proof. According to Bingham (1973) Lemma 1, the following identity holds

(cos θ)m =
m!Γ

(
d−1

2
)

2m(d− 2)!
∑

0≤2k≤m

(m− 2k + d−1
2 )(m− 2k + d− 2)!

k!(m− 2k)!Γ
(
m− k + d+1

2
) P

(d−1)/2
m−2k (cos(θ))
P

(d−1)/2
m−2k (1)

. (20)

This allows us to deduce that

ψ(θ) =
∞∑
m=0

bm(cos(θ))m

=
Γ
(
d−1

2
)

(d− 2)!

∞∑
m=0

bmm!
2m

∑
0≤2k≤m

(m− 2k + d−1
2 )(m− 2k + d− 2)!

k!(m− 2k)!Γ
(
m− k + d+1

2
) P

(d−1)/2
m−2k (cos(θ))
P

(d−1)/2
m−2k (1)

.

(21)

By inspection, the coefficient of P (d−1)/2
m (cos(θ))
P

(d−1)/2
m (1)

is given by
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bm,d =
Γ
(
d−1

2
) (
m+ d−1

2
)

2m
(m+ d− 2)!
m!(d− 2)!

∞∑
j=0

bm+2j
(m+ 2j)!

j!22jΓ
(
m+ j + d+1

2
)

=
Γ
(
d−1

2
)

Γ(d− 1)

(
m+ d−1

2
)

Γ
(
m+ d+1

2
) 1

2m
(m+ d− 2)!

m!

∞∑
j=0

bm+2j
(m+ 2j)!

j!22j
(
m+ d+1

2
)
j

=
√
π

2m+d−2Γ
(
d
2
) Γ (m+ d− 1)
m!Γ

(
m+ d−1

2
) ∞∑
j=0

bm+2j
(m+ 2j)!

j!22j
(
m+ d+1

2
)
j

,

(22)

where the final line follows from Γ(x + 1) = xΓ(x) and an application the Gamma function identity
(Abramowitz and Stegun, 1965, 6.1.18),

Γ(2z)
Γ(z) = 22z−1

√
π

Γ
(
z + 1

2

)
. (23)

4.2 Restricting Radial Kernels to the Sphere

An alternative source of members of Ψ+
d can be accessed by choosing a radial kernel ϕ that is known to be

positive definite on Rd+1 and then defining its restriction to the sphere. Specifically, we suppose that d is a
fixed space dimension and we take a parametric family {ϕ(·,λ), λ ∈ Θ ⊂ Rp} of radial functions that are
positive definite on Rd+1. The chordal distance on Sd is connected to the geodesic distance via

dCH(ξ,η) = ∥ξ − η∥ =
√

2 − 2 cos (θ(ξ,η)) ξ,η ∈ Sd. (24)

Using this we define
ψ(θ,λ) := ϕ

(√
2 − 2 cos (θ),λ

)
, (25)

and, by construction, this restricted family belongs to Ψ+
d . A crucial ingredient for computing the

d−Schoenberg coefficients of the restricted family is prior knowledge of the d−dimensional radial Fourier
transform of ϕ.
Definition 4.1. Let ϕ(·) denote a continuous real valued function on [0,∞). The d−dimensional radial
Fourier transform of ϕ is defined by Stein (1999)

ϕ̂(r) = Fdϕ(r) = r− d−2
2

∫ ∞

0
ϕ(t)t d

2 J d−2
2

(rt)dt, r ≥ 0, (26)

where Jν(·) denotes the Bessel function of the first kind with order ν. We note that a sufficient condition for
ϕ̂(r) to be well-defined is that ϕ(t)td−1 is absolutely integrable.

In this framework the d−Schoenberg coefficients associated to members of Ψ+
d that are defined via (25) is

given by the following formula (cf. Narcowich and Ward (2002) Theorem 4.1)

bm,d = (2π)
d+1

2 κm,d

∫ ∞

0
tJ2
m+ d−1

2
(t)ϕ̂(t)dt,

where κm,d =
Γ
(
d+1

2
)

2π d+1
2 Γ(d)

(2m+ d− 1)(m+ d− 2)!
m! .

(27)

In the next section we use the results presented here on Hilbert space projections and on spherical restrictions
to derive closed form expressions for the d−Schoenberg coefficients for different classes of parameterised
families belonging to Ψ+

d .
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5 Parameterised Families and Native Sobolev Spaces

The parameterised families under consideration in this paper have been chosen for their flexibility. In each
case, one parameter of the family dictates the order of the Sobolev space reproduced by the kernel. There
are other examples of kernels in the literature which are known to reproduce Sobolev spaces, although these
tend to be less flexibly parametrised. For instance, in the case of S2, it is shown in Brauchart et al. (2014),
that the Cui and Freeden kernel defined by

KCF(θ) = 1 +
∞∑
m=1

1
m(m+ 1)

P
( 1

2 )
m (cos(θ))

P
( 1

2 )
m (1)

= 2 − 2 log
(

1 +
√

1 − cos(θ)
2

)
,

is a reproducing kernel for a space that is norm equivalent to W
3
2

2 (S2). This is easily verified here using the
decay rate of the expansion coefficients and Remark 3.1. Further, in the same paper it is also shown that
the adjusted distance kernel, defined by

Kdist(θ) = 2
√
π −

√
2 − 2 cos(θ),

is another reproducing kernel for W
3
2

2 (S2). This provides an example of ‘equivalent’ kernels whose cubature
rules achieve the same order of convergence. Further examples of kernels on hyperspheres are provided in
Minh et al. (2006), including the infinitely smooth spherical Gaussian

KGauss(θ) = exp
(

−2 − 2 cos(θ)
σ2

)
, σ > 0.

It is shown that the corresponding d−Schoenberg sequence of this kernel exhibits exponentially fast decay
and, consequently, its reproducing kernel Hilbert space is a rather small space of infinitely differentiable
functions; we do not consider such cases in this paper, since infinite smoothness is rarely a suitable assumption
for the cubature applications that motivated this work. However, the analytical techniques in this paper
could also be applied to analyse smooth kernels of this kind.

For each of the families of geodesically isotropic kernels presented in this section we will provide:

1. A closed form expression of their d−Schoenberg sequence.

2. The asymptotic rate of decay of their d−Schoenberg sequence.

3. The Native Sobolev space for which the kernels are reproducing for.

5.1 The Matérn Class of Functions

For ν, α > 0, the Matérn class of functions are well-known positive definite radial kernels defined as (Stein,
1999)

Mν,α(r) = 21−ν

Γ(ν)

( r
α

)ν
Kν

( r
α

)
, r ≥ 0,

with Kν a modified Bessel function of the second kind of order ν (Abramowitz and Stegun, 1965)[9.6.22]. The
Matérn class has been especially popular in spatial statistics after Stein (1999). We consider the restriction
of this family to the sphere which we define as

ψM(θ,λ) := Mν,α(
√

2 − 2 cos(θ)), for λ = (ν, α)⊤ ∈ [0,∞)2. (28)

In order to apply (27) and derive the d−Schoenberg coefficients associated to the family ψM(θ,λ) we require
prior knowledge of the radial Fourier transform of Mν,α(r). This is given in the following result.
Lemma 5.1. Let α and ν be positive real numbers. The d−dimensional radial Fourier transform of the
Matérn kernel Mν,α(r) is given by

M̂ν,α(r) = FdMν,α(r) =
2 d

2 Γ
(
ν + d

2
)

α2νΓ (ν)
1( 1

α2 + r2
)ν+ d

2
. (29)

9
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A proof of this result can be found in Stein (1999).

Equipped with the expression for M̂ν,α(r) we can now employ (27) to derive the d−Schoenberg coefficients
and investigate their asymptotic decay rate. This leads us to the following result.
Proposition 5.2. Let λ = (ν, α)⊤ ∈ [0,∞)2 and consider the spherical Matérn family ψM(θ,λ) given by
(28). Then we have that

1. The d−Schoenberg coefficients are given by

bm,d,M(λ) = (2π) d
2

2 d
2 Γ
(
ν + d

2
)

Γ(ν)α2ν
Γ(m− ν)κm,d
Γ(m+ ν + d) 1F2

[
ν + d

2
ν + 1 −m m+ ν + d

; 1
α2

]
+ 2π d+3

2

Γ(ν)
(−1)mκm,d

Γ(m+ 1 − ν)Γ
(
m+ d+1

2
)

(2α)m 1F2

[
m+ d

2
m− ν + 1 2m+ d

; 1
α2

]
.

(30)

2. Further,

bm,d,M(λ) ∼ 2
α2ν

Γ
(
ν + d

2
)

Γ (ν) Γ
(
d
2
) 1
m1+2ν .

3. The native space NψM associated with the Matérn kernel is a reproducing kernel Hilbert space with
reproducing kernel ΨM(x,y) = ψM(xTy; λ). Furthermore, NψM is norm equivalent to the Sobolev
space W β

2 (Sd) where β = ν + d
2 .

Proof. See Appendix A.

5.2 The F-Class of Functions

Recently, Alegría et al. (2021) have proposed the F family by

ψF (θ,λ) = B(α, ν + τ)
B(α, ν) 2F1(τ, α, α+ ν + τ ; cos(θ)), λ = (τ, α, ν)⊤ ∈ (0,∞)3, (31)

where θ ∈ [0, π], B is the Beta function defined by (15) and 2F1 is defined through (13).
Proposition 5.3. Let λ =∈ (τ, α, ν)⊤ ∈ R3

+ denote the parameter vector associated with (31). The corre-
sponding Schoenberg sequence is given by

bm,F (λ) = B(α, ν + τ)
B(α, ν)

(τ)m(α)m
(α+ ν + τ)mm! > 0 m ≥ 0, (32)

and consequently ψF (θ,λ) belongs to the class Ψ+
∞.

Proof. This follows from the definition of the hypergeometric 2F1 (13). The coefficients are positive since
the parameters of λ are positive.

Equipped with the expression for bm,F (λ) we can now employ the projection operator (19) to derive the
d−Schoenberg coefficients and investigate their asymptotic decay rate. This leads us to the following result.
Proposition 5.4. Let {(

{bm,F (λ)}∞
m=0, ψF (θ,λ)

)
; λ =∈ (τ, α, ν)⊤ ∈ R3

+

}
be the Schoenberg pair for the F−family as given in Proposition 5.3. Then,

1. The d-Schoenberg sequence {bm,d,F (λ)}∞
m=0 is uniquely determined through

bm,d,F (λ) = Cm,d(τ, α, ν)4F3

[
α+m

2
α+m+1

2
τ+m

2
τ+m+1

2
α+ν+τ+m

2
α+ν+τ+m+1

2 m+ d+1
2

; 1
]
, (33)
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where
Cm,d(τ, α, ν) = bm(τ, α, ν)

2m+d−2
Γ(m+ d− 1)
Γ
(
m+ d−1

2
) √

π

Γ
(
d
2
) . (34)

2. It is true that
bm,d,F (λ) ∼ Γ(ν + α)Γ(ν + τ)

Γ(α)Γ(ν)Γ(τ)
2ν+1Γ

(
d
2 + ν

)
Γ
(
d
2
) 1

m1+2ν . (35)

3. The native space NψF (λ) associated with Fτ,α,ν ∈ Ψ+
d is a reproducing kernel Hilbert space with re-

producing kernel Fτ,α,ν(xTy). Furthermore, NψF (λ) is norm equivalent to the Sobolev space W β
2 (Sd)

where β = ν + d
2 .

Proof. See Appendix B.

5.3 The Generalised Wendland Family

The Generalised Wendland family of radial functions are defined as

Wν,α,ϵ(r) = 1
B(2α, ν + 1)

∫ 1

ϵr

Wν,0,1(t) t
(
t2 − (ϵr)2)α−1 dt

= B(α, ν + 1)
2ν+1B(2α, ν + 1)

(
1 − (ϵr)2)ν+α

2F1

[ ν
2

ν+1
2

ν + α+ 1; 1 − (ϵr)2
]

r ∈
[
0, 1
ϵ

]
,

(36)

where ν > 0, α > 0 and the constant multiplier is chosen to ensure ϕν,α,ϵ(0) = 1. Here, Wν,0,ϵ(r) := (1−ϵr)ν+,
with (a)+ denoting the positive part of the real number a. We note that the functions in this family are
compactly supported, where the parameter ϵ controls the size of the supporting interval.

Arguments in Chernih and Hubbert (2014) show that Wν,α,ϵ(r) is positive definite on Rd+1 provided that
ν ≥ d+2

2 + α and so, under these conditions, we can define their restriction to the sphere Sd via

ψW(θ,λ) = Wν,α,ϵ(
√

2 − 2 cos(θ)), λ = (ν, α, ϵ)⊤ ∈ R3
+, (37)

where θ ∈ [0, π]. By construction ψW(θ,λ) belong to Ψ+
d provided ν ≥ d+2

2 + α. The properties of these
restricted functions have been investigated in detail in Hubbert and Jäger (2021) and these findings are
summarised in the following result.
Theorem 5.5. Let {(

{bm,d,W(λ)}∞
m=0, ψW(θ,λ)

)
; λ = (α, ν, ϵ)⊤ ∈ R3

+

}
be the d−Schoenberg pair for the generalised Wendland family (37). Then,

1. It is true that

bm,d,W(λ) = 2Γ(2α+ ν + 1)
Γ(2α+ ν + 1 + d)B

(
α+ 1

2 ,
d
2
) 1
ϵd

×
(
m+ d−1

2
)

(m+ d− 2)!
m! 3F2

[
−
(
m+ d−2

2
)
m+ d

2
d+1

2 + α
d+1

2 + α+ ν
2

d+1
2 + α+ ν+1

2
; 1

4ϵ2

]
.

(38)

2. There exist two positive constants A1 < A2 such that

A1ϵ
2α+1

(1 +m)2+2α ≤ bm,d,W(λ) ≤ A2ϵ
2α+1

(1 +m)2+2α . (39)

3. The native space NψW associated to ψW is a reproducing kernel Hilbert space with reproducing kernel
ψW(xTy,λ). Furthermore, NψW is norm equivalent to the Sobolev space W β

2 (Sd) where β = α+ 1
2 + d

2 .
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Proof. The expression for the d−Schoenberg coefficients of the generalised Wendland functions can be derived
from the closed form expression of their spherical Fourier coefficients as computed in Hubbert and Jäger
(2021) (Theorem 4.7), together with (8). The tight asymptotic bounds follow from Hubbert and Jäger
(2021) (Theorem 5.8). Lemma 3.1 shows that the native space NψW possesses the stated reproducing kernel
properties. The norm equivalence of NψW to the Sobolev space of order α+ 1

2 + d
2 follows from Remark 3.1

and the decay condition (39) on bm,d,W(λ).

6 Discussion

This paper provides new tools that allow for a precise identification of the Sobolev space associated with
a given kernel defined over a d-dimensional hypersphere. An immediate consequence of our results is an
improved understanding of kernel cubature, since once a Sobolev space associated to a kernel has been
identified one can determine the rate of convergence of the associated discrepancy (i.e. the worst-case
cubature error), using for example the techniques described in Krieg and Sonnleitner (2021) and the references
therein. Our results also extend the applicability of the Riemann–Stein cubature method of Barp et al. (2022),
used to accelerate posterior computation in the Bayesian context, since this method requires the Sobolev
space associated with a kernel to be precisely identified.

Some further extensions of our results might be possible at the expense of additional effort. For instance, we
are confident that the extension of the present work to the case of compact two-point homogeneous spaces
would apply mutatis mutandis by replacing the Gegenbauer polynomials in the Schoenberg expansion with
Jacobi polynomials. Some other extensions might be more challenging. For instance, we are unaware at
the moment of how to characterise Sobolev cases on hyperspheres when the kernels is not isotropic, but
axially symmetric only (Jones, 1963). Another interesting case would be that of product spaces involing the
hypersphere with any locally compact group. Finally, we would like to mention that the recent tour de force
by Wynne et al. (2022) opens for considering the present work in the direction of operator valued kernels.
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A Results Associated to the Matérn Kernel

Here we present the proof of the 3 statements of Proposition 5.2 associated to the Matérn kernel.

Proposition 5.2 Statement 1.

Proof. Using (27) and (29) we can write

bm,d,M(λ) = (2π)
d+1

2 κm,d

∫ ∞

0
tJ2
m+ d−1

2
(t)Fd+1Mν,α(t)dt

= (2π)
d+1

2 κm,d
2 d+1

2 αd+1Γ
(
ν + d+1

2
)

Γ (ν)

∫ ∞

0

tJ2
m+ d−1

2
(t)

(1 + α2t2)ν+ d+1
2
dt

= π
d+1

2 κm,d
2d+1Γ

(
ν + d+1

2
)

Γ (ν)α2ν

∫ ∞

0

tJ2
m+ d−1

2
(t)( 1

α2 + t2
)ν+ d+1

2
dt.

(40)

The following formula is adapted from Prudnikov et al. (1981b) 2.12.32.10
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∫ ∞

0

tβ−1J2
µ(t)

(z2 + t2)ρ dt

= 1
22ρ+1−β

Γ
(
µ− ρ+ β

2

)
Γ(1 + 2ρ− β)

Γ
(
ρ+ 1 − β

2

)2
Γ
(
µ+ ρ+ 1 − β

2

) 2F3

[
ρ+ 1−β

2 ρ

ρ+ 1 − µ− β
2 ρ+ 1 + µ− β

2 1 + ρ− β
2

; z2

]

+ z2µ+β−2ρ

22µ+1

Γ
(
ρ− µ− β

2

)
Γ
(
µ+ β

2

)
Γ(ρ)Γ(µ+ 1)2 2F3

[
µ+ 1

2
β
2 + µ

1 − ρ+ β
2 + µ µ+ 1 2µ+ 1

; z2

]
,

and holds for β + 2µ > 0, and β − 2ρ < 1. Setting β = 2, z = 1
α , µ = m + d−1

2 and ρ = ν + d+1
2 (where

ν /∈ Z+) yields

∫ ∞

0

tJ2
m+ d−1

2
(t)( 1

α2 + t2
)ν+ d+1

2
dt

= 1
22ν+d

Γ(m− ν)Γ (2ν + d)
Γ
(
ν + d+1

2
)2 Γ(m+ ν + d)

1F2

[
ν + d

2
ν + 1 −m m+ ν + d

; 1
α2

]

+ 1
(2α)2m

α2ν

2d
Γ(ν −m)

Γ
(
ν + d+1

2
)

Γ
(
m+ d+1

2
) 1F2

[
m+ d

2
m− ν + 1 2m+ d

; 1
α2

]
.

We remark that the 2F3 hypergeometric functions from the formula collapse to 1F2 hypergeometric functions
in the application above, this is due to a repeated parameter appearing in both case; ν + d+1

2 in the first
instance and m+ d+1

2 in the second. With this integral computed we can conclude that

bm,d,M(λ) = 2π d+1
2

Γ(ν)(2α)2ν
Γ(2ν + d)

Γ
(
ν + d+1

2
) Γ(m− ν)κn,d

Γ(m+ ν + d) 1F2

[
ν + d

2
ν + 1 −m m+ ν + d

; 1
α2

]
+ 2π d+1

2

Γ(ν)
Γ(ν −m)

Γ
(
m+ d+1

2
) κm,d

(2α)m 1F2

[
m+ d

2
m− ν + 1 2m+ d

; 1
α2

]
.

Applying (23) we can write this as

bm,d,M(λ) = (2π) d
2

2 d
2 Γ
(
ν + d

2
)

Γ(ν)α2ν
Γ(m− ν)κm,d
Γ(m+ ν + d) 1F2

[
ν + d

2
ν + 1 −m m+ ν + d

; 1
α2

]
+ 2π d+3

2

Γ(ν)
(−1)mκm,d

Γ(m+ 1 − ν)Γ
(
m+ d+1

2
)

(2α)m 1F2

[
m+ d

2
m− ν + 1 2m+ d

; 1
α2

]
,

as required.

Proposition 5.2 Statements 2 and 3.

Proof. The following result provides the large parameter asymptotic behaviour of a 1F2 of the same style as
the first term in (30), it is adapted from Luke (1969) 7.3(11)

1F2

[
a

b−m c+m
; z
]

= 1 +
n∑
j=1

(a)jzj

(b−m)j(c+m)jj!
+O

(
1

m2n+2

)
, (41)

where m−b ̸= 0, 1, 2 . . . . The next result is adapted from Luke (1969) 7.3(8) and provides the large parameter
asymptotic behaviour of a 1F2 of the same style as the second term in (30)

13



Published in Transactions on Machine Learning Research (04/2023)

1F2

[
α+m

β +m 2m+ λ+ 1; z
]

= 1 +
n∑
j=1

(α+m)jzj

(β +m)j(2m+ λ+ 1)jj!
+O

(
1
mn

)
. (42)

Applying Stirling’s formula (11) we can deduce that the constant κm,d (27) grows asymptotically as

κm,d ∼ md−1

2d−1π
d
2 Γ
(
d
2
) . (43)

In addition, Stirling’s formula also gives the following asymptotics for the Gamma functions involving m
appearing in (30)

Γ(m− ν)
Γ(m+ ν + d

∼ 1
m2ν+d and 1

Γ(m+ 1 − ν)Γ
(
m+ d+1

2
) ∼ 1

2π
1

m
d+1

2 −ν

( e
m

)2m
. (44)

Using these asymptotic components in (30) we can deduce that, for large m, we have

bm,d,M(λ) ∼ 2
α2ν

Γ
(
ν + d

2
)

Γ (ν) Γ
(
d
2
) 1
m1+2ν

[
1 +O

(
1
m2

)]
+

√
π

2d−1
(−1)mmν− d

2

Γ
(
d
2
) (

e2

2αm2

)m [
1 +O

(
1
m

)]
.

Clearly the second component of the above asymptotic decays at an exponentially fast rate and so, to leading
order, we have

bm,d,M(λ) ∼ 2
α2ν

Γ
(
ν + d

2
)

Γ (ν) Γ
(
d
2
) 1
m1+2ν .

Lemma 3.1 shows that the native space NψM possesses the stated reproducing kernel properties. The norm
equivalence of NψM to the Sobolev space of order ν + d

2 follows from Remark 3.1 and the established
asymptotic decay rate of bm,d,M(λ).

B Results Associated to the F Family

Here we present the proof of the 3 statements of Proposition 5.4 associated to the F family.

Proof of Proposition 5.4 Statement 1

Proof. For brevity we shall write bm,d for bm,F (λ) in this proof. Applying (22) we have

bm,d = B(α, ν + τ)
B(α, ν)

√
π

2m+d−2Γ
(
d
2
) Γ (m+ d− 1)
m!Γ

(
m+ d−1

2
) ∞∑
j=0

(τ)m+2j(α)m+2j

(α+ ν + τ)m+2jj!22j
(
m+ d+1

2
)
j

.

The following identities are taken from Prudnikov et al. (1981a) Appendix 1.6

(x)2j = 22j
(x

2

)
j

(
x+ 1

2

)
j

and (x)m+2j = (x)m(x+m)2j . (45)

Applying these we can show that

B(α, ν + τ)
B(α, ν)

(τ)m+2j(α)m+2j

(α+ ν + τ)m+2jm! = bm(τ, α, ν)
22j (α+m

2
)
j

(
α+m+1

2
)
j

(
τ+m

2
)
j

(
τ+m+1

2
)
j(

α+ν+τ+m
2

)
j

(
α+ν+τ+m+1

2
)
j

and so

bm,d = bm(τ, α, ν)
2m+d−2

Γ(m+ d− 1)
Γ
(
m+ d−1

2
) √

π

Γ
(
d
2
) ∞∑
j=0

(
α+m

2
)
j

(
α+m+1

2
)
j

(
τ+m

2
)
j

(
τ+m+1

2
)
j(

α+ν+τ+m
2

)
j

(
α+ν+τ+m+1

2
)
j

(
m+ d+1

2
)
j
j!

= bm(τ, α, ν)
2m+d−2

Γ(m+ d− 1)
Γ
(
m+ d−1

2
) √

π

Γ
(
d
2
) 4F3

[
α+m

2
α+m+1

2
τ+m

2
τ+m+1

2
α+ν+τ+m

2
α+ν+τ+m+1

2 m+ d+1
2

; 1
]
,
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where, in the final line, we recognise the infinite series as the 4F3 hypergeometric function.

Proposition 5.4 Statements 2 and 3.

Proof. We begin by examining the asymptotic decay of the multiple of the 4F3 hypergeometric function from
(33), i.e., we consider

Cm,d(τ, α, ν) =
√
π

Γ
(
d
2
)

2m+d−2
Γ(m+ d− 1)
Γ
(
m+ d−1

2
) B(α, ν + τ)

B(α, ν)
(τ)m(α)m

(α+ ν + τ)mm!

= Γ(ν + α)Γ(ν + τ)
Γ(α)Γ(ν)Γ(τ)

√
π

Γ
(
d
2
)

2m+d−2
Γ(m+ d− 1)
Γ
(
m+ d−1

2
) Γ(m+ τ)Γ(m+ α)

Γ(m+ α+ ν + τ)Γ(m+ 1) .

In the case where m is large we can apply Stirling’s asymptotic formula (11) to deduce that

Cm,d(τ, α, ν) ∼ Γ(ν + α)Γ(ν + τ)
Γ(α)Γ(ν)Γ(τ)

√
π

Γ
(
d
2
)

2n+d−2
n

d−1
2

m1+ν . (46)

We now move on to the asymptotic decay of the 4F3 hypergeometric function from (33). The following
formula is taken from Prudnikov et al. (1983) 7.2.3(9)

p+1Fq+1

[
β αp

β + σ ρq
; z
]

= Γ (β + σ)
Γ (β) Γ (σ)

∫ 1

0
tβ−1(1 − t)σ−1

pFq

[
αp
ρq

; zt
]
dt.

Applying this to the 4F3 hypergeometric function from (33), with z = 1, β = α+m+1
2 and σ = m+d−α

2 , (such
that β + σ = m+ d+1

2 ) we have that

4F3

[
α+m+1

2
α+m

2
τ+m

2
τ+m+1

2
m+ d+1

2
α+ν+τ+m

2
α+ν+τ+m+1

2
; 1
]

=
Γ
(
m+ d+1

2
)

Γ
(
m+α+1

2
)

Γ
(
m+d−α

2
) ∫ 1

0
t

m+α−1
2 (1 − t)

m−α+d−2
2 3F2

[
α
2 + m

2
τ
2 + m

2
τ+1

2 + m
2

α+ν+τ
2 + m

2
α+ν+τ+1

2 + m
2

; t
]
dt

(47)

The following identity is taken from Luke (1969) 7.3(3)

p+1Fp

[
ap+1 + r

bp + r
; t
]

= (1 − t)ξ
[
1 + d1t

2r +
n∑
k=2

dk
rk

+O

(
1

rn+1

)]
,

where ξ =
p∑
j=1

bj −
p+1∑
j=1

aj − r, d1 = (ξ + r)2 +
p∑
j=1

b2
j −

p+1∑
j=1

a2
j ,

dk =
k∑
s=1

βk,st
s, (2 ≤ k ≤ m), and | arg(1 − t)| < π.

(48)

The quantities βk,s above depend only on the parameters of ap+1 and bp. For p = 2 we can use (48) to write
the 3F2 hypergeometric function appearing in the integral (47) as follows

3F2

[
α
2 + m

2
τ
2 + m

2
τ+1

2 + m
2

α+ν+τ
2 + m

2
α+ν+τ+1

2 + m
2

; t
]

= (1 − t)
α−m

2 +ν
[
1 + d1t

m
+ β2,1t+ β2,2t

2(
m
2
)2 +O

(
1
m3

)]
.

We can use the above to write

4F3

[
α+m+1

2
α+m

2
τ+m

2
τ+m+1

2
m+ d+1

2
α+ν+τ+m

2
α+ν+τ+m+1

2
; 1
]

=
Γ
(
m+ d+1

2
)

Γ
(
m+α+1

2
)

Γ
(
m+d−α

2
)[Im,d,ν,α(0) +

(
d1

m
+ 4β1,2

m2

)
Im,d,ν,α(1) + 4β2,2

m2 Im,d,ν,α(2) +O

(
1
m3

)]
,

(49)
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where
Im,d,ν,α(j) =

∫ 1

0
t

m+α−1
2 +j(1 − t)

d−2
2 +νdt

= B

(
m

2 + α+ 1
2 + j,

d

2 + ν

)
=

Γ
(
m
2 + α+1

2 + j
)

Γ
(
d
2 + ν

)
Γ
(
m
2 + α+1+d

2 + j + ν
) , j = 0, 1, 2.

In the case where m is large we can apply Stirling’s asymptotic formula (11) to deduce that

Im,d,ν,α(j) ∼
Γ
(
d
2 + ν

)
2 d

2 +ν

m
d
2 +ν

, j = 0, 1, 2, and
Γ
(
m+ d+1

2
)

Γ
(
m+α+1

2
)

Γ
(
m+d−α

2
) ∼ 2 d−1

2
√

2π
2m

√
m.

These two results allow us to deduce that, when n is large, we have the following asymptotic formula

4F3

[
α+m+1

2
α+m

2
τ+m

2
τ+m+1

2
m+ d+1

2
α+ν+τ+m

2
α+ν+τ+m+1

2
; 1
]

∼
Γ
(
d
2 + ν

)
2
√
π

2m+d+ν

m
d−1

2 +ν

(
1 + d1

m
+ (β2,1t+ β2,2t

2)
m2

)
. (50)

Bringing (50) and (46) together, we can conclude that

bm,d ∼ Γ(ν + α)Γ(ν + τ)
Γ(α)Γ(ν)Γ(τ)

2ν+1Γ
(
d
2 + ν

)
Γ
(
d
2
) 1

m1+2ν .

Lemma 3.1 shows that the native space NψF possesses the stated reproducing kernel properties. The norm
equivalence of NψF to the Sobolev space of order ν+ d

2 follows from Remark 3.1 and the established asymptotic
decay rate of bm,d,F (λ).
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