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Abstract

Cardiac pump function arises from a series of highly orchestrated events across multiple

scales. Computational electromechanics can encode these events in physics-constrained

models. However, the large number of parameters in these models has made the system-

atic study of the link between cellular, tissue, and organ scale parameters to whole heart

physiology challenging. A patient-specific anatomical heart model, or digital twin, was cre-

ated. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land

and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart

contraction was coupled with the circulatory system, simulated with CircAdapt, while

accounting for the effect of the pericardium on cardiac motion. The four-chamber electrome-

chanics framework resulted in 117 parameters of interest. The model was broken into five

hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-

Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian

processes emulators (GPEs) that were then used to perform a global sensitivity analysis

(GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis.

We identified 45 out of 117 parameters that were important for whole heart function. We per-

formed a GSA over these 45 parameters and identified the systemic and pulmonary periph-

eral resistance as being critical parameters for a wide range of volumetric and

hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide

a robust method for mapping between cellular properties and clinical measurements. This

could be applied to identify parameters that can be calibrated in patient-specific models or

digital twins, and to link cellular function to clinical indexes.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011257 June 26, 2023 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Strocchi M, Longobardi S, Augustin CM,

Gsell MAF, Petras A, Rinaldi CA, et al. (2023) Cell to

whole organ global sensitivity analysis on a four-

chamber heart electromechanics model using

Gaussian processes emulators. PLoS Comput Biol

19(6): e1011257. https://doi.org/10.1371/journal.

pcbi.1011257

Editor: Krasimira Tsaneva-Atanasova, University of

Exeter, UNITED KINGDOM

Received: December 7, 2022

Accepted: June 9, 2023

Published: June 26, 2023

Copyright: © 2023 Strocchi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code to train the

Gaussian processes emulators, perform the global

sensitivity analysis and history matching can be

found at this github link (https://github.com/

MarinaStrocchi/Strocchi_etal_2023_GSA). The

datasets used to train all GPEs for the global

sensitivity analysis on the four-chamber heart

model, the ToR-ORd and the ToR-ORd-Land

models, the Courtemanche and the Courtemanche-

Land models, the tissue electrophysiology, the

passive mechanics and the CircAdapt ODE model

https://orcid.org/0000-0003-1312-251X
https://orcid.org/0000-0002-0111-0047
https://orcid.org/0000-0001-6341-4014
https://doi.org/10.1371/journal.pcbi.1011257
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011257&domain=pdf&date_stamp=2023-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011257&domain=pdf&date_stamp=2023-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011257&domain=pdf&date_stamp=2023-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011257&domain=pdf&date_stamp=2023-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011257&domain=pdf&date_stamp=2023-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011257&domain=pdf&date_stamp=2023-07-07
https://doi.org/10.1371/journal.pcbi.1011257
https://doi.org/10.1371/journal.pcbi.1011257
http://creativecommons.org/licenses/by/4.0/
https://github.com/MarinaStrocchi/Strocchi_etal_2023_GSA
https://github.com/MarinaStrocchi/Strocchi_etal_2023_GSA


Author summary

Cardiac function relies on complex links between the single cell and the whole organ. Dig-

ital twins or patient-specific models, e.g. computer models that replicate a patient’s heart,

can help understanding these links in healthy or diseased states, and improving cardiac

patient care. To build a patient-specific model, first we need to quantify which model

parameters affect model outputs, to discard those that have little effect and to understand

input-output interactions. This normally requires a lot of expensive model evaluations,

making this type of analysis very challenging. We used Gaussian processes emulators

(GPEs) to reduce the computational costs of our model. The heart simulator we approxi-

mated had 117 initial parameters, and was able to simulate whole heart electrical excita-

tion and contraction, cellular dynamics, as well as the circulatory system and the

interaction of the heart with the pericardium. Thanks to the GPEs, we were able to iden-

tify the most important 45 parameters at a feasible cost, and to study their effect on a wide

range of clinically-measured biomarkers for cardiac function. Our analysis provides a

comprehensive assay of how cellular function can impact the whole heart, and can be

used to investigate a wide range of cardiac pathologies and treatment.

Introduction

Heart function is a multi-scale process, going from sub-cellular mechanisms initiating single

cell excitation and contraction, up to the whole organ and body. The heartbeat starts at the

right atrium (RA) at the sino-atrial node, where the cells are able to excite spontaneously. The

activation wave then travels to the left atrium (LA) and ventricles through the atrioventricular

pathways and the His–Purkinje system, causing every myocyte to undergo the action potential,

a rapid sequence of changes in the transmembrane potential. During the action potential, cal-

cium ions are released into the cytosol, where they bind to the Troponin C located on the thin

filament. This induces a conformational change in the thin filament which exposes the actin

binding sites to the myosyn heads on the thick filament. The myosin heads then bind to the

actin and pull the thin filament towards the centre of the sarcomere, leading to sarcomere

shortening and ultimately myocyte contraction. Thanks to the structured myocyte orientation

within the cardiac muscle, this results into a coordinated contraction of the whole heart, which

then pumps oxygenated blood across the aortic valve and into the whole circulation.

Cardiac electromechanics models are increasingly used to study heart function in healthy

and diseased states [1]. Initially, heart models focused on the left ventricle (LV) due to other-

wise prohibitive computational costs. Recent developments in code and high performance

computers have made it possible to simulate all four chambers, offering a more accurate repre-

sentation of the interaction between the atria and the ventricles and a more physiological sys-

tolic motion [2–9]. Nevertheless, running large numbers of simulations remains a challenge

due to numerical instabilities of highly non-linear mechanics, and due to high computational

costs. This, combined with the large numbers of parameters of the model, makes performing

global sensitivity analysis (GSA) and parameter inference very challenging. In this context,

tools from statistics and machine learning can be used to approximate complex and expensive

three-dimensional models [10, 11]. Fast model evaluations offered by these tools allow, firstly,

to run a GSA to increase model credibility [12] and to identify important model parameters

and, secondly, to infer the values of these parameters to fit clinical data at a fraction of the

computational cost. This can finally enable the construction of patient-specific four-chamber

models, or digital twins, that replicate how a specific subject progresses and responds to
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therapy. The ability of multi-scale simulations to link cellular processes to whole organ func-

tion has the potential to facilitate therapy decision-making, improve patient stratification, and

provide novel mechanistic insight into treatment of a wide range of cardiac pathologies.

In order to perform parameter inference and build a digital twin of a human heart, we need

to quantify the effect of the input parameters on the model outputs of interest. This not only

allows us to exclude the parameters that have little to no effect on model outputs and can there-

fore be excluded from the analysis, but it also provides information about the extent of the

model input-output interactions. In this paper, we used Gaussian processes emulators (GPE)

to perform a GSA on a four-chamber electromechanics model. Our simulator accounts for the

atrial and ventricular action potential, calcium transient, cross-bridge kinetics, whole heart

electrical excitation and contraction, the effect of the pericardium and the coupling with the

circulatory system. By applying GPEs and GSA on different components of the electromecha-

nics simulation framework, we were able to reduce the number of parameters from 117 to 45.

We used GPEs and history matching (HM) on the tissue electrophysiology and electromecha-

nics cell simulators to identify the areas of the parameter space where the total ventricular and

atrial activation times, and cellular calcium and active tension transients for atria and ventri-

cles were physiological. Finally, we performed a GSA on the fully coupled framework with the

remaining 45 parameters to quantify the effect of the model parameters on atrial and the ven-

tricular function.

Methods

Below, we summarize the clinical data and the four-chamber electromechanics framework

used in this study. Tables 1, 2 and 3 list all simulator parameters we initially considered. We

measured 17 of these parameters directly from clinical data (for example the heart rate and the

valve areas). We then performed a GSA on different simulator sub-components to identify

unimportant parameters and exclude these from further analysis.

Clinical data

The long-term goal of this work is to construct a digital twin of a specific subject. Therefore,

we focused this study on one patient. The clinical data were gathered from a 78 yo female heart

failure (HF) patient with atrial fibrillation (AF) selected for cardiac resynchronisation therapy

device upgrade from RV pacing to biventricular pacing. Right ventricular (RV) pacing was

therefore the baseline rhythm, with a QRS duration of 200 ms measured from a 12-lead elec-

trocardiogram (ECG). The patient underwent ECG-gated CT prior to the upgrade procedure,

providing ten CT frames over a cardiac cycle. During the upgrade procedure, the LV pressure

was invasively recorded through a pressure wire. After the ectopic baseline beats were

removed, 30 beats were left to characterise the patient’s LV haemodynamics. The LV end-dia-

stolic pressure (EDP) and peak in pressure were 2.8±3.2 mmHg and 124.2±7.4 mmHg, while

the basic cycle length and the LV pressure systolic duration were 854±9 ms and 467±15 ms,

respectively.

Four-chamber electromechanics framework

Four-chamber heart geometry. The four-chamber heart geometry was generated from

the end-diastolic computed tomography (CT). The pipeline to segment and generate 1mm lin-

ear tetrahedral four-chamber meshes was described previously [2, 3]. The atria were refined

with the resample algorithm from meshtool [13] to have at least 3 elements across the wall

thickness to reduce locking effects. The ventricles were assigned with a myofibre orientation

using Bayer’s rule-base method [14] (Fig 1, bottom right), with the fibre and sheet angles at the
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Table 1. Simulator parameters. The first, second and third columns show the parameter name, range or value, and its meaning. The last column provides the original

paper the symbol refers to. The blue rows indicate parameters that were estimated from clinical data, while the gray rows represent parameters the model outputs were

insensitive to. HM in the second column indicates the parameters that were constrained by a history matching procedure on a sub-model (see S2, S3 and S4 Files). Abbrevi-

ations/symbols: CV = conduction velocity, FEC = fast endocardial conduction, Na+ = sodium, K+ = potassium, Ca2+ = calcium, Cl- = chloride, SR = sarcoplasmic reticu-

lum, DS = diadic space, HM = history matching.

Electrophysiology—Tissue excitation simulator

CVf,v HM CV in the fibre direction of the ventricles -

kft,v 0.4 Anisotropy ratio of the ventricles [18]

kFEC HM Scaling factor for the CV of the FEC layer -

CVf,a HM CV in the fibre direction of the atria -

kft,a 0.4 Anisotropy ratio of the atria [18]

kBB HM Scaling factor for the CV of the Bachmann bundle -

AVdelay [100.0,200.0] ms Atrioventricular delay [37]

BCL 854 ms Heartbeat duration -

ToR-ORd Model—Ventricular action potential simulator

Ionic Conductances

GNa 11.7802 Conductance of the fast Na+ current [20]

GNaL 0.0279 Conductance of the slow Na+ current [20]

Gto 0.16 Conductance of the transient outward K+ current [20]

PCa HM Conductance of the L-type Ca2+ current [20]

GKr 0.0321 Conductance of the rapid delayed K+ rectifier current [20]

GKs 0.0011 Conductance of the slow delayed K+ rectifier current [20]

GK1 0.6992 Conductance of the inward K+ rectifier current [20]

GNCX HM Conductance of the Na+-Ca2+ exchanger [20]

GNaK 15.4509 Conductance of the Na+-K+ pump [20]

GCa 5e-04 Conductance of the sarcolemmal Ca2+ pump [20]

GKb 0.0189 Conductance of the background K+ current [20]

PNab 1.9239e-09 Conductance of the background Na+ current [20]

PCab 5.9194e-08 Conductance of the background Ca2+ current [21]

GClCa 0.2843 Conductance of the Ca2+-sensitive Cl− current [20]

GClb 1.98e-03 Conductance of the background Cl− current [21]

Calcium Handling

J rel 1.5378 Multiplier of the release Ca2+ current from the SR [20]

J up 1.0 Multiplier of the uptake of Ca2+ into the SR [20]

INaCa;SS 0.35 Fraction of the Na+-Ca2+ exchangers located in the subspace [20]

ICaL;SS 0.8 Fraction of the L-type channels located in the subspace [20]

αCaMK 0.05 Phoshorilation rate of Ca2+/CaMK [39]

βCaMK 0.00068 Dephoshorilation rate of Ca2+/CaMK [39]

CaMKo 0.05 Fraction of active Ca2+/CaMK binding sites at equilibrium [39]

½CMDN� 0.05 Max calmodulin concentration [39]

½TRPN� HM Max troponin C concentration [39]

½BSR� 0.047 Max concentration of the SR binding sites in the DS [39]

½BSL� 1.124 Max concentration of the sarcolemmal binding sites in the DS [39]

½CSQN� 10.0 Max concentration of calsequestrin [39]

τdiff,Ca 0.2 Diffusion rate of Ca2+ from the cytoplasm to the DS [39]

τtr 60.0 Diffusion rate of Ca2+ from the junctional to the network SR [39]

Courtemanche Model—Atrial action potential simulator

Ionic Conductances

gNa 7.8 Conductance of the fast Na+ current [22]

(Continued)
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endocardium and epicardium set to be +60˚ and -60˚ [4], and -65˚ and +25˚ [14], respectively.

Atrial myofibre orientation was assigned by computing universal atrial coordinates on the

atria and mapping an ex-vivo diffusion tensor MRI dataset onto the endocardial and the

epicardial surfaces (Fig 1, top right) [15, 16]. The transmural fibre orientation was then set to

be the endocardial and the epicardial orientation for elements below and above 50% of the

wall thickness, respectively.

Electromechanics simulation framework. The electrical activation of the heart was simu-

lated with a reaction-Eikonal model without diffusion [17]. The Eikonal model in Eq (1) solves

for local activation times ta(x) at node location x given V(x) containing the squared local con-

duction velocities (CV) in the fibres, sheet and normal to sheet directions, and sites of initial

activation Γ, which activate at a prescribed time t0:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rtaðxÞ
T
VðxÞrtaðxÞ

q

¼ 1 x 2 O

taðxÞ ¼ t0 x 2 G :

ð1Þ

Atrial and ventricular myocardium were represented as transversely isotropic conductive

regions and were assigned CV in the fibre direction (CVf,V and CVf,A) and an anisotropy ratio

(kft,V and kft,A), respectively. The remaining regions were passive. To represent fast endocar-

dial activation due to the His–Purkinje system, we defined a one-element thick endocardial

layer extending up to 70% in the apico-basal direction in the ventricles [18, 19] with faster con-

duction velocity (CV) compared to the rest of ventricular myocardium of a factor kFEC (Fig 2,

right). Equivalently, to account for the Bachmann bundle, we defined a region between the LA

and the RA with fast CV compared to the rest of the atrial myocardium of a factor kBB (Fig 2,

left) [16]. To fully control the atrioventricular (AV) delay, we defined a passive region along

the AV plane to insulate the atria from the ventricles. Atrial activation was then initiated at the

location of the RA lead, while ventricular activation was initiated at the RV lead location with a

delay defined by the AV delay, included as a free parameter in the simulator (AVdelay). The RA

Table 1. (Continued)

gto 0.1652 Conductance of the transient outward K+ current [22]

gCa,L HM Conductance of the L-type Ca2+ current [22]

gKr 0.0294 Conductance of the rapid delayed K+ rectifier current [22]

gKs 0.129 Conductance of the slow delayed K+ rectifier current [22]

gK1 0.09 Conductance of the inward K+ rectifier current [22]

gb,Na 0.000674 Conductance of the background Na+ current [22]

gb,Ca 0.00113 Conductance of the background Ca2+ current [22]

gKur HM Ultra-rapid rectifier K+ current scaling factor [22]

INaCa(max) 16 Na+-Ca2+ exchanger scaling factor [22]

INaK(max) 0.60 Max Na+-K+ pump current [22]

Ip,Ca(max) 0.275 Max sarcoplasmic Ca2+ pump current [22]

Calcium Handling

Iup(max) HM Max Ca2+ uptake rate into the network SR [22]

krel 30.0 Max Ca2+ release rate from junctional SR [22]

[Cmdn]max 0.05 Total calmodulin concentration in cytoplasm [22]

[Trpn]max HM Total troponin C concentration in cytoplasm [22]

[Csqn]max 10.0 Total calsequestrin concentration in junctional SR [22]

τtr 180.0 Ca2+ transfer time constant [22]

https://doi.org/10.1371/journal.pcbi.1011257.t001
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Table 2. Simulator parameters (continued). Abbreviations/symbols: Ca2+ = calcium, CaTRPN = calcium/troponin

complex, LV = left ventricle, RV = right ventricle, fraction of unbound (U), and weakly (W) or strongly (S) bound

binding sites.

Land Model—Ventricular active tension simulator

Tref HM Reference isometric tension [23]

nTm HM Hill coefficient for Ca2+-troponin and U [23]

nTRPN HM Ca2+-troponin cooperativity [23]

kTRPN 0.1 Unbinding rate of Ca2+ from troponin [23]

Aeff HM Scale for distortion due to velocity of contraction [23]

ku HM Transition rate from blocked to unblocked binding site [23]

β0 2.3 Length-dependence parameter for tension development [23]

β1 -2.4 Length-dependence parameter for Ca2+ sensitivity [23]

γs 0.0085 Distortion rate of strongly bound cross-bridges [23]

γw 0.615 Distortion rate of weakly bound cross-bridges [23]

ϕ 2.23 Distortion decay [23]

ca50 HM Reference Ca2+ sensitivity [23]

ν 7.0 Scaling factor for U to W cross-bridges transition rate [23]

μ HM Scaling factor for W to S transition rate [23]

TRPN50 HM CaTRPN when 50% of cross-bridges are blocked [23]

rs HM Steady-state duty ratio [23]

rw HM Steady-state ratio between W and S [23]

Land Model—Atrial active tension simulator

Tref HM Reference isometric tension [23]

nTm HM Hill coefficient for Ca2+-troponin and U [23]

nTRPN HM Ca2+-troponin cooperativity [23]

kTRPN 0.1 Unbinding rate of Ca2+ from troponin [23]

Aeff HM Scale for distortion due to velocity of contraction [23]

ku 1.0 Transition rate from blocked to unblocked binding site [23]

β0 2.3 Length-dependence parameter for tension development [23]

β1 -2.4 Length-dependence parameter for Ca2+ sensitivity [23]

γs 0.0085 Distortion rate of strongly bound cross-bridges [23]

γw 0.615 Distortion rate of weakly bound cross-bridges [23]

ϕ HM Distortion decay [23]

ca50 HM Reference Ca2+ sensitivity [23]

ν 7.0 Scaling factor for U to W transition rate [23]

μ HM Scaling factor for W to S transition rate [23]

TRPN50 HM CaTRPN when 50% of cross-bridges are blocked [23]

rs HM Steady-state duty ratio [23]

rw HM Steady-state ratio between W and S [23]

Guccione model—Ventricular passive mechanics

a [0.5,1.5] kPa Bulk myocardium stiffness Eq (2), [9]

bf 8.0 Stiffness in the fibre direction Eq (2)

bft 4.0 Stiffness in the fibre-transverse shear planes Eq (2)

bt [1.5,4.5] Stiffness in the transverse plane Eq (2), [9, 40]

Passive Mechanics—Atrial passive mechanics

a [1.5,2.5] kPa Bulk myocardium stiffness Eq (2), [9, 41]

bf [4.0,12.0] Stiffness in the fibre direction Eq (2), [9, 40]

bft 4.0 Stiffness in the fibre-transverse shear planes Eq (2)

bt [1.5,4.5] Stiffness in the transverse plane Eq (2), [9, 40]

(Continued)
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and RV lead locations were selected by segmenting the pacemaker leads from the CT image by

thresholding the image intensity.

The action potential of ventricular and atrial myocytes was simulated with the ToR-ORd

model with dynamic intracellular cloride [20, 21] and the Courtemanche model [22], respec-

tively. At each point in the domain x, a foot current inducing the initial increase in the trans-

membrane potential Vm is imposed as stimulus to locally activate the cell membrane, at a local

activation time ta(x) computed with the Eikonal model [17]. The intracellular calcium tran-

sient computed by the ionic model was then provided as input to the Land contraction model

[23] to compute the active tension transient in the atria and ventricles. For simplicity, we

assumed that active contraction occurred only in the fibre direction.

In the cell electrophysiology models, we selected model parameters that have a biophysical

interpretation but can be, at the same time, considered uncertain [24]. Ion channel conduc-

tances, pumps and exchangers leading to transmembrane currents depend on protein expres-

sion. Therefore, these can be assumed to be different between individual cells and, since they

relate to channel biophysics, they can be considered to be epistemic uncertainty. On the other

hand, the natural variability in other parameters such as gating kinetics of ion channels, which

we did not consider, can be attributed to aleatoric uncertainty, which is irreducible [25]. Based

on this, we initially included all ion channel conductances and all calcium kinetics parameters

(Table 1). All 17 parameters for the Land model were included in the initial analysis for both

atria and ventricles. Tables 1 and 2 summarise the parameters we considered and their

meaning.

Prior to the whole organ simulations, the ToR-ORd-Land and the Courtemanche-Land cell

models were ran for 500 beats at a basic cycle length of 854.0 ms, consistent with the patient’s

heart rate, to bring the models to a steady state. The cell models were then initialised at a steady

state in the whole heart simulations.

Passive material properties of atria and ventricular myocardium were represented with a

transversely isotropic Guccione model [26]:

CðEÞ ¼
a
2

eQ � 1½ � þ
k

2
ðlog JÞ2

Q ¼ bfE2
ff þ 2bftðE2

fs þ E2
fnÞ þ btðE2

ss þ E2
nn þ 2E2

snÞ ;

ð2Þ

where J is the determinant of the deformation gradient, E represents the Cauchy-Green strain

tensor and f, s and n are the fibre, sheet and normal to sheet directions. Parameters a, bf, bft

and bt are the stiffness parameters, and κ = 1000 kPa is the bulk modulus, penalising volume

change and therefore enforcing near incompressibility [27, 28]. All material stiffness parame-

ters for the atria and the ventricles were initially included as free simulator parameters. Passive

material properties of all other tissues were represented with a Neo-Hookean model, with the

parameter stiffness set according to previous studies [2, 3].

Mechanics boundary conditions. We represented the effect of the pericardium on the

heart with normal springs, as described in [2, 29]. The spring stiffness kperi was included as a

free simulator parameter. This value was scaled on the ventricles according to a map derived

from motion data [3], to constrain the motion of the apex but not the base, allowing for

Table 2. (Continued)

LV-RV scaling factors

Tref,LvRv [0.5,1.0] Scaling factor for Tref in the RV vs the LV [41]

aLvRv [1.0,2.0] Scaling factor for a in the RV vs LV [41]

https://doi.org/10.1371/journal.pcbi.1011257.t002
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physiological AV plane downward displacement during ventricular systole. A similar analysis

on the atria, described in [30], showed that the roof of the atria moved the least, while the

regions around the AV plane moved the most as they were stretched down by the contracting

ventricles. We therefore defined a scaling map on the atria to include this constraint in the

model, by assigning maximum penalty to the roof of the atria and zero penalty towards the AV

Table 3. Simulator parameters (continued).

CircAdapt—Circulatory system simulator

Cavities

VLV,wall 93.6 mL Wall volume of the left ventricle [29, 32]

VRV,wall 37.6 mL Wall volume of the right ventricle [29, 32]

VSV,wall 32.4 mL Wall volume of the septum [29, 32]

VLA,wall 25.7 mL Wall volume of the left atrium [29, 32]

VRA,wall 22.2 mL Wall volume of the right atrium [29, 32]

Valves

AopenMV 508.3 mm2 Mitral valve open orifice area [29, 32]

AopenTV 508.3 mm2 Tricuspid valve open orifice area [29, 32]

AopenAV 336.7 mm2 Aortic valve open orifice area [29, 32]

AopenPV 336.7 mm2 Pulmonary valve open orifice area [29, 32]

AopenSO 518.7 mm2 Systemic outlet open orifice area [29, 32]

AopenPO 296.1 mm2 Pulmonary outlet open orifice area [29, 32]

Tubes

p0
Ao 1.0 Scaling factor for reference aortic pressure [29, 32]

p0
Pa 1.0 Scaling factor for reference pulmonary arterial pressure [29, 32]

p0
Ve 1.0 Scaling factor for reference systemic veins pressure [29, 32]

p0
Pve 1.0 Scaling factor for reference pulmonary veins pressure [29, 32]

lAo [300.0,500.0] mm Length of the aorta [29, 32]

lPa 200.06 mm Length of the pulmonary artery [29, 32]

lVe 400.11 mm Length of the systemic veins [29, 32]

lPve 200.06 mm Length of the pulmonary veins [29, 32]

kAo [6.0,10.0] Stiffness of the aorta [29, 32]

kPa 8.0 Stiffness of the pulmonary artery [29, 32]

kVe 10.0 Stiffness of the veins [29, 32]

kPve 10.0 Stiffness of the pulmonary veins [29, 32]

AwallAo 142.7 mm2 Wall area of the aorta [29, 32]

AwallPa 142.7 mm2 Wall area of the pulmonary artery [29, 32]

AwallVe 83.7 mm2 Wall area of the veins [29, 32]

AwallPve 64.7 mm2 Wall area of the pulmonary veins [29, 32]

Systemic Circulation

qref 82 mL/s Reference systemic flow [29, 32]

Dprefsys 90.01 mmHg Reference pressure drop across the systemic circulation [29, 32]

Dprefpulm 11.25 mmHg Reference pressure drop across the pulmonary circulation [29, 32]

Rsys [1.0,4.0] Systemic resistance scaling factor [29, 32]

Rpulm [1.0,4.0] Pulmonary resistance scaling factor [29, 32]

Boundary Conditions

kperi [0.5,2.0] kPa/mm Pericardium spring stiffness [4]

EDPshift,LV [3.0,9.0] mmHg Shift applied to the left ventricular end-diastolic pressure [42]

EDPunload,RV [3.0,8.0] mmHg Right ventricular end-diastolic pressure [42]

https://doi.org/10.1371/journal.pcbi.1011257.t003
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plane (Fig 3A). In addition, we applied omni-directional springs to the right inferior and supe-

rior pulmonary veins and at the superior vena cava rings. The stiffness of these springs was

fixed to 1.0 kPa/μm and was not considered as a free parameter as this was only imposed to

constrain the motion during the unloading of the mesh, performed in the absence of the

pericardium.

Fig 1. Four-chamber heart geometry. Left: patient-specific four-chamber heart mesh. Right: refines atria, atrial and ventricular transmural myofiber

orientation from endocardium (red) to epicardium (blue).

https://doi.org/10.1371/journal.pcbi.1011257.g001

Fig 2. Electrophysiology simulations. Left: atria with the region representing the Bachman bundle (red) and the atrial activation site (light-blue circle).

Right: ventricles with the fast endocardial conduction layer (blue) and the ventricular activation site (orange circle).

https://doi.org/10.1371/journal.pcbi.1011257.g002
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The three-dimensional (3D) four-chamber electromechanics model was coupled with Cir-

cAdapt [31, 32] (Fig 3B), a closed-loop zero-dimensional (0D) model representing the follow-

ing components of the circulatory system: aorta, pulmonary artery, veins, systemic and

pulmonary peripheral resistances, the four cardiac valves (aortic, pulmonary, mitral and tricus-

pid) and flows across the pulmonary veins into the LA and across the systemic veins into the

RA. The monolithic 3D solid–0D fluid coupling method is described in detail by Augustin

et al. [29]. Briefly, the pressures of the LA, LV, RA and RV were included as additional

unknowns to the monolithic scheme, and the following equations are added to the mechanics

equilibrium equations:

V3D
LVðu; tÞ � V0DðpLV; tÞ ¼ 0

V3D
RVðu; tÞ � V0DðpRV; tÞ ¼ 0

V3D
LAðu; tÞ � V0DðpLA; tÞ ¼ 0

V3D
RAðu; tÞ � V0DðpRA; tÞ ¼ 0 ;

where V3D and V0D are the volumes of the cavity computed from the deforming 3D mesh and

predicted by the 0D model, respectively, t is the time and u is the displacement field. Table 3

lists all CircAdapt parameters that were included in the initial analysis. In this study, CircA-

dapt adaptation rules were not applied.

The ventricles of the end-diastolic mesh were unloaded from an end-diastolic LV and RV

pressure, while the atria were not unloaded, under the assumption that the active tension in

the atrial myocardium balances the pressure [23]. The measured mean LV end-diastolic pres-

sure was only 2.8 mmHg, which was not enough to achieve physiological end-diastolic strains.

This may reflect an offset error or drift of the pressure catheter measurements. To account for

this potential artifact, we introduced an additional free offset parameter called EDPshift,LV to

Fig 3. Mechanics boundary conditions. A Penalty map scaling the normal spring stiffness for the effect of the pericardium. B Afterload and preload

boundary conditions represented with CircAdapt. Symbols and abbreviations: p = pressure, R = resistance, q = flow across a valve, LV = left ventricle,

RV = right ventricle =, LA = left atrium, RA = right atrium, Ao = aorta, Pa = pulmonary artery, Ve = veins, PVe = pulmonary veins, sys = systemic,

pulm = pulmonary, MV = mitral valve, TV = tricuspid valve, AV = aortic valve, PV = pulmonary valve.

https://doi.org/10.1371/journal.pcbi.1011257.g003
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shift the LV EDP during unloading. This not only allowed the simulations to achieve higher

end-diastolic strains, but it also accounted for uncertainty on the available clinical measure-

ments. The RV end-diastolic pressure was not available, so we added it as a free simulator

parameter (EDPunload,RV). The unloading was performed with a backward displacement

method [33]. During the unloading, we did not apply boundary conditions for the effect of the

pericardium. Then, prior to the start of the 3D-0D coupled simulation, we reloaded the ventri-

cles to retrieve the end-diastolic mesh while the atrial pressure was initialised at 0 mmHg. The

simulation was then started at end-diastole and the pericardium boundary conditions were

turned on. To minimise the effect of these initial conditions, we ran all simulations for 5 beats,

to reach a near-to-steady-state behaviour.

Patient-specific parameters. We used the available clinical data to estimate 17 simulator

parameters, therefore reducing the computational cost of the final GSA (light-blue rows,

Tables 1 and 3). First, a CT motion tracking algorithm [34] was applied to track the motion of

the patient’s heart, and the displacement field was used to deform the patient-specific end-dia-

stolic mesh and derive an LV volume transient. This provided the patient’s LV end-diastolic

and end-systolic volumes, and therefore an LV stroke volume of 70 mL.

The 30 baseline LV pressure beats were used to compute an average basic cycle length

(BCL) of 854 ms, corresponding to a heart rate (HR) of 70 bpm. The ratio between the SV and

the BCL provided the systemic flow qref = 82 mL/s in the CircAdapt model. The wall volumes

of the LV and RV free walls, septum, LA and RA were computed from the tetrahedral mesh.

The mitral valve open orifice area was computed by selecting points along the mitral valve leaf-

lets from the end-diastolic CT, a sphere was fitted to the selected points and the radius was

measured assuming a circular orifice shape (consistently with CircAdapt). The aortic valve

open orifice area was measured with the same approach, by selecting points on the aortic valve

leaflets on the end-systolic CT frame. The leaflets of the tricuspid and pulmonary valves were

not visible on the CT, so their open orifice area was assumed to be the same as the mitral and

the aortic valve, respectively, again consistent with the CircAdapt model. The systemic and

pulmonary orifices areas were computed as the average of the cross-sectional area of the supe-

rior and inferior vena cava, and of all pulmonary veins, respectively, all computed from the

end-diastolic CT. The reference area for the aorta, the pulmonary artery, the systemic veins

and the pulmonary veins tubes were set to be the same as the corresponding adjacent valve.

The aortic and the pulmonary artery wall area were then computed assuming a circular cross-

section (consistent with CircAdapt) and a wall thickness of 2 mm [35]. The systemic and the

pulmonary veins were assigned a wall thickness of 1 mm, because the veins are thinner due to

the presence of less smooth muscles compared to arteries [36] as they operate at lower pres-

sures. The blue rows in Table 3 show the values of the parameters that were computed from

the patient-specific data and mesh.

Numerical methods. As shown in Tables 1–3, the final analysis included 45 parameters.

In order to achieve accurate GPE accuracy, we selected N = 500 samples for GPE training. Due

to simulator complexity, this requires a lot of computational resources. We therefore selected

the numerical tolerances in the mechanics simulations to reduce as much as possible the

computational cost of the electromechanical simulations.

We assumed that 5 beats were enough to achieve a near steady state solution. The first three

beats were ran by setting the number of Newton iterations to 1. As shown by Augustin et al.

[29], this approach brings the simulation closer to a steady state before solving non-linear

mechanics more accurately with more Newton iterations. The last two beats were ran by set-

ting the number of Newton iterations to 2 to have a better approximation of the stretch rate

for the cell model. We also increased the tolerance for the solution of the linearised system to

10-4 for all beats. In S1 File, we show that these settings have a limited effect on the pressure-
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volume dynamics simulated by the model, with differences in the pressure and volume features

always below 3%, while allowing up to 3 times speedup in the simulation time. Finally, the

time step for the ionic models and the mechanics were set to 0.02 ms and 1.0 ms, respectively.

All simulations were run with the cardiac arrhythmia research package (CARP) [37] on a

supercomputer on 512 cores. Details about the software implementation is provided in [17,

29].

Emulators, global sensitivity analysis and history matching

GPEs, GSA and HM methods used in this study were based on Longobardi et al. [11], using

code available on GitHub (https://github.com/stelong/Historia.git). Briefly, a GPE provides a

statistical model for how a scalar simulator output f(x) varies as a function of D input parame-

ters x = (x1, . . ., xD). Under our GPE, the simulator outputs are modelled as being jointly

Gaussian with prior mean and covariance

E½f ðxÞ� ¼ b0 þ
XD

i¼1

bixi ð3Þ

C½f ðxÞ; f ðx0Þ� ¼ kðx;x0Þ ; ð4Þ

where k(x, x0) is a positive-definite kernel, and β0, . . ., βD are the degrees of freedom of the

GPE, which need to be estimated. In this case, we chose the exponentiated quadratic kernel,

also known as squared exponential or the Gaussian kernel, because it offers a parsimonious

model even in situations where the data is limited and noisy [43]. In S8 File, we show that GPE

accuracy was not affected when using Matérn rather than an exponentiated quadratic kernel.

We trained one GPE for each scalar simulator output, using a training set D consisting of sim-

ulator outputs computed for a variety of different input parameter configurations as described

in [11].

GPE accuracy was evaluated by performing a 5-fold cross-validation. For each split, we

computed the coefficient of determination R2 and the independent standard error (ISE)

between a vector of outputs Y and the posterior predictions of the GPE with expected value

and standard deviation E½f ðxÞjD� and s½f ðxÞjD� as:

R2 ¼ 1 �
RSS
TSS

ð5Þ

ISE ¼ #fjE½f ðxÞjD� � Yj < 2s½f ðxÞjD�g ; ð6Þ

where RSS and TSS are the sum of squared residuals and the total sum of squares, respectively.

R2 provides an error on the point-wise estimate of the GPE, with values close to 1 indicating a

low error between predictions and observations. The ISE evaluates the uncertainty quantifica-

tion of the GPEs, and represents the number of data points that fall within two standard devia-

tions away from the average prediction. As it is presented as a percentage over all evaluated

points, an ISE close to 100% indicates that, for most points, the distance between the GPE pre-

diction and the corresponding observation is within the GPE uncertainty. Once the GPEs

were validated, we trained an additional GPE for each output using all available simulations

that was then used for GSA and HM.

Using the GPEs to predict the simulator outputs, we performed a Sobol variance based

GSA to quantify the importance of each parameter [44]. We computed the total effects ST

using the Saltelli method with the SALib Python library. A Saltelli sampling [44, 45] was used

to generate a convenient structure of the samples to efficiently approximate the sensitivity
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indices as described in S7 File. When computing the sensitivity indices of each output, we sam-

pled the posterior distribution of each GPE with N = 1000 samples, computed the total effect

for each sample and taken the mean of the total effects. To an extent, this allowed us to account

for GPE uncertainty in the GSA.

We used the total effects to rank the parameters from most to least important by computing

the maximum total effect across all outputs. The maximum total effects for each parameter

were normalised to that they would sum up to 1 (representing 100% of output variance), and

the parameters that collectively explained 90% of variation in simulator output were included

in the analysis, while the others were fixed to values provided in Tables 1–3, since the simulator

outputs were not sensitive to how these parameters are specified.

In order to make sure that the ToR-ORd-Land, Courtemanche-Land and the Eikonal mod-

els operated within physiological ranges, and to avoid wasting computational effort in the elec-

tromechanics simulator, we used HM. HM with GPEs is thoroughly explained in Longobardi

et al. [11], and Fig 4 shows a schematic of our approach. First, the parameter space is explored

with a Latin hypercube design. This provides a set of samples in the parameter space where the

simulations are performed. These samples and outputs are then used to train a GPE. A test

Fig 4. History matching. Orange, blue and purple boxes indicate Latin hypercube sampling, simulator evaluation and GPE training, respectively. Blue

and purple X indicate points where the simulator or the GPEs are evaluated.

https://doi.org/10.1371/journal.pcbi.1011257.g004
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parameter set of 100,000 samples is then constructed with Latin hypercube sampling, and the

GPE is evaluated at each sample. For each test sample, we evaluate the implausibility measure

I(x) as:

IðxÞ ¼ max
i¼1;...;Noutput

IiðxÞ ð7Þ

I2

i ðxÞ ¼
ðE½fiðxÞjD� � miÞ

2

s2½f ðxÞjD� þ s2
i

; ð8Þ

where fi is the GPE trained for the ith output. Scalars μi and σi are the measured target value

and standard deviation for the ith output, available from the literature or the clinical data. By

defining a threshold Ith on the implausibility measure I(x), the test samples are split in plausible

(I(x) below the threshold) and implausible (I(x) above the threshold). From the implausible

region, we then select a number Nsimul samples where the simulator is evaluated, and we con-

struct a new test parameter set Ntest = 100000 for the next HM iteration (or wave). The GPEs

are re-trained by adding the new simulated samples to the training set, and evaluated on the

test set constructed at the previous wave. For each wave, we report the percentage of non-

implausible points, the mean and maximum I and the mean and maximum ratio of GPE vari-

ance prediction over the measured variance σ2 (Vratio). The latter quantity gives a measure of

how uncertain the GPEs are, relative to the uncertainty on the data we are trying to match. We

set the final implausibility threshold to 3, based on Pukelsheim’s 3-sigma rule [46].

Sensitivity analysis and history matching on simulator components

Tables 1–3 list all parameters we initially considered. Excluding the values we could derive

from the available clinical data, the total number of parameters was 117. This means that we

would need to run over 1000 simulations for GPE training, which constitutes a considerable

computational cost. To overcome this issue, we used GPEs, GSA and HM methods described

above on the different simulator components to exclude unimportant parameters prior to per-

forming the fully coupled simulator runs. Fig 5 summarises the analysis performed on the dif-

ferent sub-models, and below we describe it in detail.

In S2 File, we used GSA and parameter ranking to investigate which parameters affected

the calcium transient as, in our simulator, the intracellular calcium is the only coupling vari-

able between the ionic model and the Land model at the cellular level. This process reduced

the number of parameters of the ToR-ORd model from 29 to 10. These 10 parameters were

then combined with the 17 Land model parameters to identify which ionic and cellular

mechanics parameters affected the active tension transient the most, as the cellular active ten-

sion drives contraction at the whole organ scale. The GSA on the coupled ToR-ORd-Land

model led to a final set of 13 parameters to be considered in the fully coupled simulator. We

applied a similar approach to the Courtemanche-Land model (S3 File) to identify 3 out of the

18 Courtemanche parameters and 10 out of the 17 Land model parameters as those affecting

cellular atrial active tension the most. For the electrophysiology model at the tissue level, we

performed a GSA on activation times only to exclude tissue parameters that did not affect the

total atrial and ventricular activation time (S4 File). Due to the potential role fibres play in car-

diac activation, we repeated the analysis presented in S4 File with ventricular transmural fibre

orientation set to 50˚/ − 50˚ and 70˚/ − 70˚ ventricular fibre direction. There is high uncer-

tainty on the size of the fast conducting regions in the atria and the ventricles (Fig 2). To show

that our analysis on the electrophysiology model was independent of this modelling choice, we

repeated the analysis with different sizes of the Bachmann bundle area in the atria and of the
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fast endocardial conduction layer in the ventricles (S10 File). Both analysis showed that the

parameters we excluded following the GSA on the tissue electrophysiology model were inde-

pendent of ventricular fibre direction (S9 File) and the size of the fast conducting regions (S10

File).

We performed a GSA on the passive mechanics model during inflation alone to exclude

unimportant stiffness parameters (S5 File). We finally used the CircAdapt ODE model to

study the effect of the circulatory system parameters on pressure-volume relationships of all

four-chambers (S6 File), and to discard the ones that affected the simulated dynamics the least.

The GSA on different simulator components allowed us to systematically reduce the number

of free parameters from 117 to 45 prior to running the fully coupled simulator, and to reduce

the number of simulations required for GPE training to a more feasible number. The final

parameters are represented by the white rows in Table (Tables 1–3).

In addition to running a GSA on each simulator component, we used HM to restrict the

important parameters to areas in the parameter space where either the outputs were physiolog-

ical, or where the mechanics simulations were unlikely to be unstable and diverge, therefore

leading to significant waste of computational resources. We constrained the ToR-ORd-Land

model so that it provided physiological calcium transients based on the literature [47, 48] (S2

File), and where peak, rest and duration of the isometric tension transient were within ranges

of measured values in mammals [49, 50] and allowed the simulations to achieve LV pressure

peak and duration that were consistent with clinical data. Similarly, the calcium transient

Fig 5. Summary of sub-models analysis. The diagram shows a summary of the analysis performed on the sub-models before performing the GSA on

the four-chamber electromechanics model.

https://doi.org/10.1371/journal.pcbi.1011257.g005
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simulated with the Courtemanche model was constrained to be consistent with the literature

[47, 48, 51] (S3 File), while the isometric active tension was bound to be physiological [9, 50,

52–59]. We finally applied HM on the electrophysiology Eikonal model alone to achieve physi-

ological total activation times of the atria and the ventricles, as the simulated activation times

are independent of the mechanics simulation (S4 File).

In S11 File, we provide a detailed explanation of how we constructed the training samples

for the GPEs Briefly, the last HM wave on the ToR-ORd-Land model, the Courtemanche-

Land model and the electrophysiology tissue model provided N = 90906, N = 148527 and

N = 99723 physiological samples, respectively. The bound for the parameters included in the

HM was therefore implicitly defined by the plausible regions of the last HM wave (Tables 1

and 2, second column marked as HM). The bound for all the other parameters is provided in

the second column of Tables 1–3. The AVdelay was set between 100 and 200 ms, consistently

with ranges reported for CRT patients [38]. The range for ventricular stiffness parameters was

set to ±50% from values reported in [9], to account for high variability in myocardium stiffness

reported in the literature. The bounds for the bulk atrial stiffness a were increased based on

higher collagen density in the atria compared to the ventricles [41]. Similarly, the range for the

scaling parameters for the RV bulk stiffness and the reference tension was chosen to account

for higher RV collagen content and lower myocyte density compared to the LV [41]. The

length and the stiffness of the aorta were set to ±25% from their default value in CircAdapt

[32], while the pulmonary and the systemic resistance factors were set to be between 1.0 and

4.0 to allow for physiological peak in pressure for the ventricles. The pericardium stiffness was

bound between 0.5 and 2.0 kPa/mm, consistent with previous studies [4]. The shift on the LV

end-diastolic pressure and the RV end-diastolic pressure were set according to measurements

in AF patients in sinus rhythm [42]. For these parameters, we performed a Latin hypercube

sampling with N = 90906 samples. These were then combined with the plausible regions from

the HM on the ToR-ORd-Land model, the Courtemanche-Land model and the electrophysiol-

ogy tissue model. Having identified the plausible region, we constructed a space filling design

in this area on which to run the fully coupled electromechanics simulator and then to train the

final GPEs. Because the plausible region had a complicated geometry, we used the function

psa_select from the python library diversipy to extract N = 500 uniformly distributed

samples.

We trained GPEs to predict the following outputs:

1. LV/RV end-diastolic volume (EDV)

2. LV/RV end-diastolic pressure (EDP)

3. LV/RV end-systolic volume (ESV)

4. LV/RV peak in pressure (pmax)

5. LV/RV maximum pressure derivative (dp/dtmax)

6. LV/RV minimum pressure derivative (dp/dtmin)

7. LA/RA end-diastolic volume prior to atrial contraction (EDV)

8. LA/RA end-systolic volume at the end of atrial contraction (ESV)

9. LA/RA maximum volume during the v-wave (EDVvwave)

10. LA/RA peak in pressure during atrial contraction (pmax).
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The trained GPEs were then used to predict the model outputs and to run a GSA on the

fully-coupled electromechanics framework, to investigate how the 45 parameters we consid-

ered affected whole heart function. During the GSA, we ensured that the GPEs were not evalu-

ated outside their training space by generating a base sequence with Nbase = 2000 for each

simulator sub-component. The GPEs trained to predict total ventricular and atrial activation

times (S4 File), atrial and ventricular calcium and active tension transient features (S2 and S3

Files) were evaluated to exclude samples that provided unphysiological activation times, cal-

cium and active tension. The base sequence was resampled for each simulator sub-component

with an increasing initial number of samples until>2000 plausible samples were found. A Salt-

elli sampling was then generated, the samples were screened again with the GPEs for each sim-

ulator sub-component to ensure all samples provided physiological outputs. We finally

quantified the total effects by using only the samples that were not excluded during the screen-

ing process. This allowed us to quantify the effect of simulator parameters on whole heart func-

tion while remaining within the GPE emulator training space.

The code to perform the GSA and the HM is provided at https://github.com/

MarinaStrocchi/Strocchi_etal_2023_GSA. At this link, we also provide an example on how to

train the GPEs, perform a GSA and rank the parameters for the ToRORd ionic model (S2

File).

Results

Fig 6 shows the pressure-volume loops for the LV (top), RV, LA and RA (bottom) that were

simulated with the four-chamber electromechanics framework. The orange and the blue dots

represent the simulated LV peak in pressure and LV pressure transient duration for each sam-

ple, respectively. The horizontal and the vertical lines indicate the average measured peak in

pressure and pressure transient duration available from clinical data. The simulations achieve

the patient’s peak in pressure and result in physiological pressure transient duration, thanks to

the HM run on the ToR-ORd-Land model (S2 File). Although some simulations predict a low

and unphysiological LV peak in pressure, we included these samples in the GPE training set

because these simulations still provided information about the effect of the simulator input

parameters and output, while parameter inference was outside the scope of this study. Out of

500 samples, 42 and 51 simulations failed during the unloading and the coupled simulation,

respectively. This provided 407 simulations we extracted the pressure and volume features

from to train the GPEs. Table 4 shows the mean R2 and the ISE scores for the GPEs traines for

each output. The last column reports the mean scores across all five splits. For all outputs, the

mean R2 and ISE were above 0.76 and 82.0, respectively, indicating that the GPEs provide an

accurate estimate for all outputs.

The 407 model evaluations used for GPE training took an average of 6 h and 20 minutes

per job on 512 cores, corresponding to a mean of 3247 core-hours per evaluation and 1321420

core-hours in total for all simulations. For the GSA, we performed 94000 GPE evaluations.

Given the computational cost of the whole-heart simulations, it would not be feasible to per-

form these many model evaluations. Once trained, the GPEs require only *1s to estimate the

outputs, allowing us to perform the GSA at a treatable computational cost, reduced from an

estimate of>305 million core-hours to *1.3 million core-hours, due to running the simula-

tions for GPE training. Therefore, thanks to the GPEs, we were able to achieve more than a

300 fold decrease in computational cost.

Fig 7 shows the heatmap for the total effect of all input parameters (y-axis) over all outputs

(x-axis), with dark colors showing high interaction between inputs and outputs. Below, we

provide a detailed analysis of the sensitivity analysis on the ventricular and atrial diastolic and
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systolic properties. We also show barplots of the total effects of important parameters for each

output, multiplied by the sign of the linear regression coefficients βi from Eq (4) to give infor-

mation about positive and negative interactions. In S12 File, we show that the standard devia-

tion of the total effects computed from 1000 different samples of the posterior distribution of

the GPEs is small, indicating that GPE uncertainty has negligible effects on the sensitivity indi-

ces we reported.

Fig 6. Simulated pressure-volume transients. Top: LV pressure-volume transients and pressure traces simulated with the fully-coupled simulator

(black), with the orange and the blue circles representing the resulting LV peak pressure and transient duration. The horizontal and the vertical lines

show the clinically measured average LV peak pressure and transient duration, respectively, to show that the simulator achieves physiological values.

Bottom: RV, LA and RA simulated pressure-volume transients.

https://doi.org/10.1371/journal.pcbi.1011257.g006
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Ventricular diastolic and atrial systolic properties

Fig 8 shows the total order effects on the simulated end-diastolic volume and pressure of the

ventricles (first two columns). Blue and red bars represent simulator parameters that are

needed to explain 90% of output variation, with positive and negative effects on the output,

respectively. Gray bars show parameters needed to explain up to 95% of output variation,

while all other parameters are not displayed. The EDV of the ventricles was negatively affected

by the unloading pressure of the LV (EDPLV,shift) and the RV (EDPunload,RV), and by the sys-

temic (Rsys) and the pulmonary (Rpulm) resistances. A higher unloading pressure for the ventri-

cles caused higher strains and therefore higher rest tension, that in turn reduced the EDV

simulated at the limit cycle. The systemic resistance increased the LV EDV and the LV EDP.

This was caused by increased LA ESV (and therefore decreased LA ejection) in response to

increased systemic resistance. Similarly, the RV EDV was positively affected by the pulmonary

resistance. The parameters that had a negative effect on the LV EDV had a positive effect on

the RV EDV and vice-versa. This was caused by the interaction between the ventricles, modu-

lated by the presence of the pericardium and by the intra-ventricular septum. When the LV

EDV is bigger, the septum bulges towards the RV, leading to smaller RV EDV and therefore

opposite effects of simulator parameters on the LV EDV and the RV EDV. Finally, passive

material properties of the ventricles (aV and bt,V) positively affected the EDV of the LV.

Although this might be counter-intuitive, decreased stiffness causes smaller unloaded volumes

and higher initial strains at the beginning of the simulations, leading to higher ventricular rest

tension and therefore decreased LV EDV.

The systemic and pulmonary peripheral resistances also affected atrial systolic peak in pres-

sure (Fig 8, third and fourth columns). The LA peak in pressure was decreased by higher pul-

monary resistance, caused by smaller LA preload (negative interaction between LA EDV in Fig

9). Similarly, increased systemic resistance led to smaller RA peak in pressure. The systemic

resistance had also a significant positive impact on the LA peak in pressure. The RA pressure

was also driven up by the pulmonary resistance, but with smaller interaction compared to the

LA pressure and the systemic resistance. The unloading pressure (EDPunload,RV) and the refer-

ence tension scaling factor (Tref,LvRv) of the RV had minor positive effects on the LA peak in

pressure. In addition to the systemic resistance, the RA peak in pressure was affected by cellu-

lar ionic and active tension parameters for velocity dependence (ϕA, Aeff,A), cross-bridge kinet-

ics (rs,A, rw,A) and calcium handling (ca50,A, TRPN50,A and gCaL). Atrial stiffness (aA and bf,A)

Table 4. GPEs performance. Average R2 score and ISE over the five cross-validation splits, reported for each output.

Left heart Right heart

Meaning Output R2 ISE Output R2 ISE

Ventricular end-diastolic volume EDVLV 0.9547 88.93 EDVRV 0.9755 91.39

Ventricular end-diastolic pressure EDPLV 0.8982 87.95 EDPRV 0.8815 85.73

Ventricular end-systolic volume ESVLV 0.9755 87.95 ESVRV 0.9852 88.46

Ventricular peak pressure pmaxLV 0.9648 85.50 pmaxRV 0.9671 88.70

Ventricular max pressure derivative dp=dtmaxLV 0.9460 90.42 dp=dtmaxRV 0.8250 88.94

Ventricular min pressure derivative dp=dtminLV 0.8901 91.40 dp=dtminRV 0.8250 87.71

Atrial end-diastolic volume EDVLA 0.8766 89.42 EDVRA 0.8138 83.06

Atrial end-systolic volume ESVLA 0.8938 85.96 ESVRA 0.7627 83.52

Atrial peak pressure pmaxLA 0.9258 90.16 pmaxRA 0.8558 84.53

Atrial max volume during v-wave EDVvwaveLA 0.9717 89.67 EDVvwaveRA 0.9772 89.43

https://doi.org/10.1371/journal.pcbi.1011257.t004
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Fig 7. Global sensitivity analysis. Total effects of input simulator parameters (y-axis) on model outputs (x-axis)

normalised between 0 and 1 for each output.

https://doi.org/10.1371/journal.pcbi.1011257.g007
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Fig 8. The effect of simulator parameters on ventricular diastole and atrial systole. Barplots of the total order effects of the

input parameters, ranked from most to least important, for ventricular EDV, EDP and atrial ESV and peak pressure. The red

and blue bars indicate parameters that explain>90% of the output variance, the gray bars indicate parameters that explain up

to 95% of variance, while the rest of parameters are not displayed. Red and blue indicate positive and negative interactions,

respectively. When this resulted in more than 10 parameters, the number of parameters was limited to 10 or to the number of

parameters explaining 90% of output variance.

https://doi.org/10.1371/journal.pcbi.1011257.g008
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Fig 9. The effect of simulator parameters on ventricular systole and atrial diastole. Barplots of the total order effects of the

input parameters, ranked from most to least important, for ventricular peak pressure, ESV and atrial maximum volume

during the v-wave. The red and blue bars indicate parameters that explain>90% of the output variance, the gray bars indicate

parameters that explain up to 95% of variance, while the rest of parameters are not displayed. Red and blue indicate positive

and negative interactions, respectively. When this resulted in more than 10 parameters, the number of parameters was limited

to 10 or to the number of parameters explaining 90% of output variance.

https://doi.org/10.1371/journal.pcbi.1011257.g009
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and atrial conduction velocities (CVf,A and kBB) also played a minor but significant role in RA

peak pressure, with stiffer and slower myocardium causing lower RA pressure values.

The unloading pressures of the LV and RV affected the EDV of the ventricles the most, as

they determined the end-diastolic strains and therefore the ventricular rest active tension. The

systemic and pulmonary resistances had significant effects on the EDV as well, due to their

effect on atrial ejection, while the AV delay mostly affected the EDP. Parameters for atrial

active tension timing, CV in the ventricular endocardium and in the Bachmann bundle

showed minor effects on the EDP of the ventricles, due to their effect on timing of RV initial

contraction and atrial contraction rise and decay, respectively. Finally, the effect of parameters

on the LV EDV was opposite to the effect on the RV EDV due to ventricular interaction modu-

lated by the pericardium.

Ventricular systolic properties

The systemic and the pulmonary resistances affected the peak in pressure of the LV and the

RV the most (Fig 9, top). Increased systemic and pulmonary resistances increase the after-

load of the LV and the RV, therefore leading to higher LV and RV peak in pressure. The neg-

ative effect of the pulmonary resistance on the LV EDV caused smaller ventricular load,

leading to a negative effect on the LV peak in pressure. Similarly, the RV peak in pressure

was negatively affected by the systemic resistance. Higher bulk passive stiffness of the ventri-

cles (aV) decreased the peak in pressure and increased ventricular ESV of both ventricles due

to less significant deformation during active contraction. Parameters for ventricular cellular

active tension also had a significant effect on the peak in pressure of the ventricles. Degree of

velocity dependence (Aeff,V), cross-bridges kinetics parameter (rs,V, TRPN50 and μV) and the

reference active tension (Tref,V) had significant effects on the peak in pressure, as they

affected the timing and extent of cellular peak in cellular active tension, as shown in S2 File.

Furthermore, the RV peak in pressure was positively affected by the LV-RV scaling of the ref-

erence tension Tref,LvRv.

LV ESV was positively affected by the systemic resistance and the unloading pressure of the

RV. On the other hand, the unloading pressure of the LV negatively impacted LV ESV. The

RV ESV was similarly affected by the unloading pressure of the RV and the LV, and by the pul-

monary resistance. Increased peripheral resistance downstream to the LV and the RV led to

higher ventricular afteload, therefore causing higher ESV. The passive stiffness of the ventricles

aV and bt,V had minor positive effects on the ESV of both ventricles, therefore leading to

smaller LV and RV ejection.

Ventricular pressure rise and decay rate were strongly affected by the systemic and the

pulmonary resistances, but also by ventricular active tension parameters (Fig 10). Increased

systemic resistance led to higher LV peak in pressure and therefore faster rise and decay in

LV pressure. Similarly, RV rise and decay in pressure was strongly affected by the pulmo-

nary resistance due to its effect on the RV peak in pressure. Parameters for ventricular

cross-bridge kinetics (rs,V, rw,V, ku,V) affected both LV and RV maximum pressure derivative

due to their effect on cellular active tension rising time and maximum tension derivative, as

we showed in S2 File. Increased ventricular passive stiffness (aV) caused slower LV and RV

pressure rise in both ventricles. In addition, LV pressure rise was impacted by the unloading

pressures of the LV and the RV due to their effect on end-diastolic strains, by the rate of

transition from blocked to unblocked cross-bridge binding sites (ku,V) and by ventricular

velocity dependence (Aeff,V). The reference tension of the ventricles (Tref) and the scaling for

the RV reference tension (Tref,LvRv) had an effect on the maximum pressure derivative of the

LV and the RV, respectively, due to their effect on cellular active tension peak and timing.
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Apart from velocity dependence and ventricular stiffness, all important parameters for the

LV and RV rise in pressure also impacted the LV and RV minimum pressure derivative. In

addition, ventricular minimum pressure derivative was affected by the maximum troponin

concentration (½TRPN�) of the ToR-ORd model, due to its effect on calcium relaxation (S2

File), and by nTRPN,V and nTm,V, as they affected ventricular active tension decay at the cellu-

lar level.

The systolic dynamics of the ventricles are strictly related to atrial filling dynamics due to

venous return. RV output was decreased by high pulmonary resistance. This in turn caused

smaller LA maximum volume during the v-wave, e.g. smaller LA venous return. Similarly, due

to decreased LV output, systemic venous return to the RA got smaller when the systemic resis-

tance was high. Atrial stiffness parameters aA, bf,A and bt,A negatively affected venous return to

the atria due to decreased atrial compliance. Finally, the unloading pressure and the passive

stiffness of the ventricles aV had minor effects on venous return to the atria, due to their effect

on ventricular output.

Fig 10. The effect of simulator parameters on ventricular pressure rise and decay rate. Barplots of the total order effects of the input parameters,

ranked from most to least important, for ventricular maximum and minimum derivatives. The red and blue bars indicate parameters that explain

>90% of the output variance, the gray bars indicate parameters that explain up to 95% of variance, while the rest of parameters are not displayed. Red

and blue indicate positive and negative interactions, respectively. When this resulted in more than 10 parameters, the number of parameters was limited

to 10 or to the number of parameters explaining 90% of output variance.

https://doi.org/10.1371/journal.pcbi.1011257.g010
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The systemic and the pulmonary resistances had the highest impact on ventricular systolic

dynamics because they determine ventricular afterload. However, ventricular calcium and

active tension parameters had significant impact on systolic function, in particular on pressure

rise and decay. Atrial filling during the v-wave was affected by the peripheral resistances, but

also by atrial stiffness parameters.

Discussion

In this study, we presented the first GSA on a four-chamber electromechanics simulator cou-

pled with the circulatory system and accounting for atrial and ventricular contraction triggered

by the calcium transient, as well as the effect of the pericardium. GPEs and GSA were used to

identify important parameters for tissue electrophysiology, passive mechanics, the circulatory

system and cellular dynamics. This analysis allowed us to reduce the number of parameters

from 117 to 45. HM was then used to restrict the parameters for the cellular electromechanics

simulator and tissue electrophysiology to areas in the parameter space where calcium, tension

and total ventricular and atrial activation times were physiological. This provided 407 success-

ful four-chamber electromechanics simulations to train the GPEs to predict features for whole

organ function, and run a GSA on the fully coupled simulator. We showed that our analysis

allows us to link cellular dynamics for calcium and tension to whole organ function. This

framework can be used to improve our understanding of cardiac physiology and pathophysiol-

ogy, and ultimately to provide novel insights into patient-specific treatment planning.

The effect of increased vascular resistance on heart function

Our results show that systemic and pulmonary peripheral resistance have significant effects on

ventricular systolic function. In agreement with our analysis, Linde et al. [60] measured ele-

vated systemic vascular resistance in hypertensive patients, contributing to elevated systolic

pressure. Furthermore, drug studies reported on the efficacy of beta-blockers with vasodilatory

activity for hypertension treatment, because the drug-induced decrease in the systemic resis-

tance drives the LV systolic pressure down [61]. Increased systemic resistance was not only

related to increased LV pressures, but also to decreased LV ejection in patients without known

history of cardiovascular diseases [62], consistent with our analysis. Similarly, pulmonary

hypertension patients have been reported to have increased pulmonary vascular resistance

[63], therefore leading to increased RV pressure and reduced RV SV compared to normal

subjects.

Not only systolic but also diastolic ventricular properties are affected by peripheral resis-

tances. Harshaw et al. [64] explored the effect of a drug-induced decrease in systemic resis-

tance in patients with mitral valve dysfunctions, showing a positive relationship between LV

EDP and peripheral resistance, similar to our analysis. Further, patients with cirrhosis were

reported to have increased left heart volumes and decreased right heart volumes due to

reduced systemic resistance compared to controls, in agreement with our study [65]. RV EDV

is elevated in pulmonary hypertensive patients [63] due to increased pulmonary vascular resis-

tance, and was shown to decrease as a consequence of lower-body suction, aimed at reducing

RV afterload through reduced peripheral resistance [66]. Several studies report on inverse

effects of left and right heart volumes in response to increased resistance, with LV EDV

decreasing with higher pulmonary resistance and RV EDV decreasing with higher systemic

resistance [65–67]. This has been attributed to diastolic ventricular interaction exerted by the

pericardium [66], which causes an inverse relation between the LV EDV and the RV EDV,

consistent with our results.
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The systemic and the pulmonary resistances connect the left and the right sides of the

hearts. Therefore, changes in the pulmonary and the systemic resistances induce alterations

in the atria as well as in the ventricles. We have found a positive and negative linear correla-

tion between the LA volumes and the systemic and the pulmonary resistances, respectively.

Consistently with these findings, Marston et al. [68] reported a negative relation between

pulmonary vascular resistance and LA volumes in patients with pulmonary hypertension.

Furthermore, changes in pulmonary resistance following blood clots removal led to

increased LA volumes and LV EDV. In addition, also consistent with our findings, in hyper-

tensive patients, where the systemic resistance is higher than in normal subjects, the LA was

dilated [69].

Increased or decreased systemic and pulmonary vascular resistances can occur in a

wide range of pathologies, such as hypertension or cirrhosis. Vascular resistance has

important effects on both the left and the right sides of the heart due to diastolic ventricu-

lar interaction mediated by the pericardium, and due to the interaction between atria and

ventricles, mediated by the circulatory system. By coupling the three-dimensional

mechanics framework with a closed-loop model for blood circulation and by including

the effect of the pericardium on the heart, our simulator is able to account for these com-

plex interactions and simulate how all four chambers respond to altered peripheral

resistances.

Links between cell and whole organ function

Reduced contractility and consequent decreased atrial ejection during atrial contraction is

a well recognized consequence of AF, even after cardioversion [70]. However, over the

years, several studies have proposed different explanations for this mechanism. Active ten-

sion measurements in myocytes isolated from the right atrial appendage in AF patients

have shown reduction of cellular contractile force compared to control, mainly caused by

reduced the L-type calcium current [71, 72]. In agreement with these findings, our results

showed increased atrial systolic volumes in response to lower L-type calcium ion channel

conductance. Conduction slowing caused by loss of cell-to-cell coupling and/or by the pres-

ence of fibrosis might also contribute to depressed atrial contractility in AF patients [70,

73], consistent with the correlation between atrial conduction velocity and atrial end-sys-

tolic volume we found in our analysis. Finally, increased atrial stiffness, reported in AF

patients [70] but also in other cardiac diseases, including hypertrophic cardiomyopathy

[74], leads to impaired atrial compliance and smaller atrial end-diastolic volume, in agree-

ment with our findings.

Efficiency of contraction can be measured using pressure biomarkers, such as peak in pres-

sure or maximum pressure derivative, while pressure decay provides an indication of velocity

of relaxation. Pressure relaxation was reported to be slower in diastolic HF patients [75], while

systolic HF causes slower pressure rise due to sub-optimal contraction. Using our analysis, we

were able to link these whole organ biomarkers to cellular function. We have shown that ven-

tricular peak in pressure and pressure derivatives were significantly affected by tension velocity

dependence, reference tension and cross-bridge kinetics parameters. Cellular measurements

on isolated failing myocytes in animals and human tissue preparations showed that tension

velocity dependence [76], cross-bridge cycling rate [77] and force development [78] were

altered in failing subjects. Furthermore, diseased myocytes were reported to have slower cal-

cium transient relaxation [48, 78], which, according to our analysis, might lead to slower pres-

sure relaxation at the whole organ level.
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Cardiac pathophysiology is complex, and can span across different length scales, from sub-

cellular processes involving ionic channel remodelling and cross-bridge kinetics up to changes

at the whole organ level. Although the parameter ranges we chose do not necessarily capture

pathological variability caused by the cardiac diseases mentioned above, we have shown that

our analysis can be used to link cellular function to biomarkers measured at the whole organ

level. This demonstrates that multi-scale electromechanics models have the potential to

improve our understanding of the pathophysology of a wide range of atrial and/or ventricular

disorders.

Limitations

Although our study constitutes the first GSA on a four-chamber electromechanics model,

accounting for multi-scale processes spanning from the sub-cellular to the whole organ level, it

has some limitations.

Due to model complexity and to reduce computational costs, we did not run a fully con-

verged Newton solution by constraining the maximum number of Newton iterations to 2.

This introduced small errors in the simulated pressure and volume features below 3%, but it

also allowed to speed up the simulations by up to 3 times. This reduced the computational cost

of our GSA, making it possible to run more than 400 simulations and train GPEs that could

accurately provide output predictions as function of 45 model parameters.

Our four-chamber electromechanics framework does not account for mechano-electrical

feedback, assuming that mechanical deformation does not affect cellular and tissue electro-

physiology. However, there are known mechanisms in which stretch induces changes in the

electrical activity of the heart through, for instance, stretch-activated ion channels [79]. These

mechanisms might play a role in a some pathologies, such as arrhythmogenesis initiation [80].

Therefore, depending on the application, additional feedback mechanisms might need to be

included in the model, to provide a more accurate representation of the patient’s heart.

In our analysis, we only performed four-chamber simulations on one patient-specific anat-

omy due to their extensive computational cost. While the anatomy might impact the sensitivity

analysis at the whole organ level, the analysis ran on the circulatory model, and the ventricular

and atrial ionic and contraction models is independent of the geometry and therefore the con-

clusions for these models remain valid for other patients. In future, the anatomy could be

accounted for in the GSA by performing a principal component analysis on a cohort of geome-

tries and adding the principal vectors as additional parameters in the GSA, as in Rodero et al.

[81]. In our analysis, we also fixed the fibre direction of atrial and ventricular myocardium,

despite the high uncertainty in fibre direction reported in the literature. In S9 File, we showed

that ventricular myofibre orientation has limited effects on the tissue electrophysiology GSA,

passive mechanics and electromechanics model outputs, consistent with previous computa-

tional studies [82, 83]. However, we did not repeat the whole study with different fibre orienta-

tion, and we did not investigate the effect atrial myofibres as their arrangement is more

complex and less well-established than that of ventricular fibre orientation. When more mea-

surements of atrial myofibre orientation are available, it will be important to establish their

effect on cardiac function.

To retrieve the stress-free configuration of the heart, we unloaded the ventricles but not the

atria. This prevented excessive deformation in the atria during the unloading procedure,

which makes the mechanics simulations more likely to diverge. Furthermore, we discarded

diastolic residual active tension, even though this might play a role in relaxation dynamics. In

future, residual active tension and atrial pressures could be accounted for in the unloading

procedure [84], in order to have a more accurate estimation of the stress-free geometry.
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In S2 and S3 Files, we performed GSA and HM on the ToR-ORd and Courtemanche models

alone and coupled with the Land model to identify unimportant parameters for atrial and ven-

tricular calcium and the active tension transients. The cell simulations used to train the GPEs

in these instances were run with a basic cycle length of 1000 ms, corresponding to 1 Hz pacing,

as opposed to using the basic cycle length derived from the clinical data. This was done to

match the literature data we used as target values for the calcium transient features. Addition-

ally, this makes the findings at the cellular level more general and applicable to other patients.

The GSA results we presented remain true within the parameter bounds and model outputs

we included in the analysis. We only considered a subset of the 117 parameters that, within an

expected physiological variability, had the largest impact on specific model outputs. Extreme

changes in parameters, for example pathological or pharmacological inhibition of ion channels

outside our assumed physiological variability, may result in other parameters outside of the 45

identified as being important in our analysis. Nevertheless, additional parameters could be re-

introduced after the fitting process to investigate a particular cardiac pathology/treatment of

interest.

In this study, we performed a GSA on five sub-models (S1–S5 Files) to exclude parameters

that did not affect sub-model outputs, under the assumption that these parameters would

also be unimportant for whole-organ biomarkers. This could be done thanks to our knowl-

edge of how the different sub-models are coupled within the four-chamber electromechanics

framework. While this approach might fail to capture interactions between the parameters

we excluded from the sub-models, this also allowed us to reduce the computational cost

required to generate the simulations for emulators training and therefore the GSA. Neverthe-

less, since the parameters we excluded had small, if any, effects on sub-model outputs, we

expect the combined effects between unimportant parameters of different sub-models to be

small as well. Furthermore, in our GSA and HM, we did not consider any potential correla-

tion between different outputs. Training a GPE for each output separately provided us the

flexibility to fit the hyperparameters for each GPE independently. This could have been

accounted for by training a multi-output GPE instead [85], where the GPE degrees of free-

dom are estimated for all outputs at the same time rather than independently. Furthermore,

HM with a multi-variate GPE would have potentially helped in ruling out more implausible

areas of the parameter space.

The GSA we presented does not account for the uncertainty of the multi-scale model, since

quantifying model error is a more challenging task than learning the parameters of the model

itself. In [86], Kennedy and O’Hagan showed how to account for model discrepancy, also

referred to as model inadequacy, by adding it as an additional source of uncertainty. While the

Kennedy and O’Hagan approach is simple and easy to apply, challenges arise during model

parameter inference, since the observed data may be attributed either to the model itself or the

model error, or both, meaning that the model parameters can no longer be consistently identi-

fied [87]. An elegant resolution involving orthogonal Gaussian processes was proposed in [88].

This approach is applicable on a linear model but, for non-linear models like the multi-scale

four-chamber model presented in this study, retaining consistency of parameter estimates

while accounting for model error remains an open research problem. Furthermore, although

we sampled the GPEs posterior distribution and computed the average total effects from these

samples, the sensitivity indices in our GSA were computed without directly accounting for

GPE uncertainty. In future studies, the uncertainty of the GPE prediction could be accounted

for by using alternative approximations of the sensitivity indices that directly include GPE

standard deviation as well as the expected value.
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Despite its limitation, our GSA allows us to link cellular processes with whole organ func-

tion, and has the potential to provide novel insights into patient pathophysiology and response

to treatment that could never be tested in-vivo.

Conclusion

Our four-chamber electromechanics simulator is able to account for LV-RV and AV mechani-

cal interaction, modulated by the presence of the pericardium and the coupling with a closed-

loop model for the circulatory system. The GSA we presented allowed us to make consider-

ations about how cellular dynamics translate into altered whole organ function. Thanks to the

wide range of dynamics we can simulate, this analysis could potentially be applied to investi-

gate a wide range of pathologies affecting the atria and the ventricles, and the consequences

these have on all other chambers.
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ToR-ORd model (S2 File) were repeated with a Matérn rather than an exponentiated quadratic
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sive inflation and a four-chamber electromechanics simulation to quantify the effect of ventric-
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