
Probabilistic Argumentation for
Patient Decision Making

Kawsar Noor

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

September 29, 2023

2

3

I, Kawsar Noor, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

Medical drug reviews are increasingly commonplace on the web and have become

an important source of information for patients undergoing medical treatment. Pa-

tients will look to these reviews in order to understand the impact the drugs have

had on others who have experienced them. In short these reviews can be interpreted

as a body of arguments and counterarguments for/against the drug being reviewed.

One of the challenges of reading these reviews is drawing out the arguments easily

and forming a final opinion; this is due to the number of reviews and the variety of

arguments presented.

This thesis explores the use of computational models of argumentation in order

to extract structured argumentation data from the reviews and present them to the

user. In particular I propose a pipeline that performs argument extraction, argument

graph extraction and visualisation.

Acknowledgements

I would like to express my deepest gratitude to my first supervisor, Anthony Hunter,

whose advise and guidance has been invaluable throughout my PhD. Admittedly

there have been a number of personal obstacles I have encountered during my pro-

gramme which he has looked upon with patience and understanding. Additionally

many of the ideas I had during my research would not have taken their full form

had it not been for the conversations and guidance from him. I would also like to

thank my second supervisor Astrid Mayer, whose clinical input shaped a lot of my

opinions throughout my research.

Next I would like to thanks my family who have been behind me throughout

my work. Their unconditional support and encouragement has been invaluable in

seeing me through to the end of my work.

Finally I would like to dedicate this thesis to my late sister, who passed away

during the earlier part of my PhD. My earliest memories of doing any form of study

involves her as she was my first teacher. In part I feel the privilege I have had in

doing the PhD has been due to her.

Impact Statement

User generated reviews and feedback for products are an important to prospective

users trying to understand the product they are about to buy into. It is not uncommon

to see most websites enabling users to provide feedback on their products. These

reviews provide readers with arguments for and against the product in question.

This feedback is useful to prospective users since a lot of this information may not

have been disclosed on even known to the product owner.

Formulating a final opinion on the product/item once having read all the

reviews can be challenging since the reader needs to consider all of the argu-

ments/counterarguments they have read before drawing a conclusion. To this end it

seems natural that computational models of arguments could be employed to help

draw out this structured information and present it to the user in order to better assist

them in coming to a conclusion on the product.

In this thesis I present a pipeline which extracts structured argument related

information from each review and presents it the the user. Whilst the data we have

worked with in this thesis has been exclusively in the medical domain we do not

believe that it is restricted only to this domain. The proposals can easily be extended

to any type of product review so long as there are ratings. In the case there are no

ratings we also explain that so long as one is able to predict the polarity of the

review the proposals can be adapted to account for this.

Our proposals in Chapter 5 and 6 also have application for general probabilistic

argumentation. There has been a number of works recently looking at learning al-

gorithms for probabilistic argumentation and we believe our approach differs from

these in that there is a unsupervised and supervised learning component that com-

10 Impact Statement

plement each other. We believe that what we have proposed can be extended to

settings where one wishes to learn a distribution over a set of argument graphs.

More generally we believe that the pipeline proposed here can be used to better

structure the contents of reviews and be used to create better interfaces for users to

interact with the contents of these reviews. This in turn can help users make better

decisions and conversely product creators can also benefit from knowing what users

are experiencing with their products.

Contents

1 Introduction 21

1.1 Problem Statement . 23

1.1.1 Research Question . 26

1.2 Argumentation Pipeline . 28

1.2.1 Extracting Arguments . 28

1.2.2 Reasoning with Arguments 28

1.2.3 Interacting with Arguments 29

1.2.4 Visualising Arguments . 29

1.3 Published Works . 30

2 Background 31

2.1 Abstract Argumentation . 31

2.1.1 Other Argumentation Frameworks 35

2.2 Probabilistic Argumentation . 36

2.3 Probabilistic Argumentation for Learning Abstract Argument

Graph Structures . 38

2.4 Other Machine Learning Approaches in Argumentation 40

3 Argument Extraction 43

3.1 Argument Extraction . 44

3.2 Evaluation of Extracted Arguments 52

3.3 Evaluation of Argument Graphs 54

3.4 Discussion and Literature Review 57

12 Contents

4 Argument Extraction with Machine Learning 59

4.1 Text Classification with Pretrained Models 61

4.2 Dataset . 62

4.3 Training . 67

4.3.1 Pretrained Text Classification Models 68

4.4 Results . 71

4.5 Relevant Literature . 72

4.6 Conclusion and Future Directions 74

5 Argument Reasoning using Unsupervised Learning 77

5.1 Introduction . 77

5.1.1 Reviews as Argument Graphs 78

5.2 Modelling a Review with Probabilistic Argumentation 80

5.2.1 Probabilistic Argumentation 80

5.2.2 Analysing the Polarity of an Argument Graph 83

5.2.3 Ranking Argument Graphs 87

5.3 Experiment . 100

5.3.1 Predicting Ratings for Reviews 100

5.3.2 Predicting Graphs for Reviews 101

5.4 Related Works . 104

6 Argument Reasoning using Supervised Learning 107

6.1 Bayesian Framework for Updating Probability Distribution 108

6.2 Likelihood Functions . 110

6.2.1 Updates with Matching Observations 114

6.2.2 Updates with Similar Observations 119

6.2.3 Synthetic Data . 125

6.2.4 Results . 125

6.2.5 Conclusion . 126

7 Argument Interface 129

7.1 Storing Probability Distributions from Unsupervised Learning . . . 131

Contents 13

7.2 Storing Probability Distributions from Supervised Learning 135

7.3 Data Model For arguments and Counter Arguments 135

7.4 Natural Language Queries . 139

7.5 Interface . 142

7.6 Conclusion . 145

8 Conclusions 147

8.1 Contributions . 149

8.2 Limitations . 150

8.3 Going Forward . 150

Bibliography 152

List of Figures

1.1 Pipeline of tasks . 29

2.1 . 32

2.2 Example of subgraphs given arguments {x,y,z} 37

2.3 A weighted argument graph . 39

2.4 Example of a . 41

3.1 Argument graph capturing attack relation between the various clas-

sification rules. 54

3.2 A review for the drug Tamoxifen. Three arguments were extracted.

The grounded extension contains only positive arguments and so

the argument-based rating is positive. 54

4.1 Diagram depicting steps to produce annotated dataset 64

4.2 Annotation tool used to collect argument types 65

4.3 distribution of annotations over argument types 67

4.4 frequency plot showing number of arguments in the review 68

4.5 SBERT architecture . 69

4.6 TSne plot showing average embeddings for each of the argument

labels . 73

5.1 Fitted ratingToAgg functions for two sets of arguments 96

5.2 Predicted vs. Actual Ratings for trained model on validation set . . 101

5.3 Results showing the probability distances and Agg distances be-

tween the predicted graphs and actual graphs 102

16 List of Figures

5.4 A shortened review for the acne drug Epiduo with arguments anno-

tated. Three arguments were identified. The graph sampled from

the corresponding graph space is depicted above with Arg3 attack-

ing Arg1 . 104

6.1 Bayesian framework for updating probability distribution when new

labelled data is collected. 108

6.2 An example of an argument graph containing two positive argu-

ments in favour of a product (a,c) and one negative argument against

it (b) . 112

6.3 Four consecutive updates to the prior distribution of a review

{(a,b),10} using matching observations. We update the distribu-

tion with four identical observations of value (a→ b,10) 118

6.4 Four consecutive updates to the prior distribution of a review

{(a,b),10} using a mixture of matching, similar and non-relevant

observations. In iterations 1 and 2 we see that We update the dis-

tribution with four identical observations which in this example we

assume have a value of (a→ b,10) 122

6.5 Plots showing P(G|T) against number of observations. The central

blue lines Figures (a), (b), (c) show the average posterior probabil-

ities for all G ∈ Space({a,b},{c}) and (d), (e), (f) show them for

all G ∈ Space({a,b,c},{d,e}). The blue bands represent the 95%

confidence intervals. 124

6.6 Simulations showing the effect of ratings on the posterior probabil-

ity . 126

7.1 The graph on the left is a template for a graph in the graph space for

reviews with 2 positive arguments and one negative arguments. The

graph on the right is a set of arguments using the template. Tem-

plates can be used to generate argument graphs and graph spaces on

the fly . 134

List of Figures 17

7.2 Sequence of operations for generating a probability distribution for

a review . 136

7.3 Data model for reviews, arguments and attacks 138

7.4 Argument Browser. Pro arguments highlighted in blue and counter

arguments in red . 143

7.5 Hovering over argument reveals information about the argument

and show statistics about counter arguments 144

7.6 Searching via text2Sql would allow users to retrieve other reviews

with similar arguments . 144

7.7 Searching via text2Sql would allow users to retrieve other reviews

with counter arguments . 145

List of Tables

1.1 Statistic of drug reviews taken from medical information and drug

review website Drugs.com for the top 10 most popular conditions . 25

2.1 Probability distribution over subgraphs 38

2.2 Three labellings of arguments a and b 40

3.1 Accuracy of all arguments pulled out per classification rule 52

3.2 Dung Assesment vs. User Rating using all posts 56

3.3 Dung Assessment vs. User Rating using only validated sentences . . 56

4.1 Annotation types and examples . 66

4.2 Results from SBert for argument extraction per argument type . . . 70

4.3 Examples of sentences from the annotated dataset. Sentences from

the cluster can in many cases have similar semantic meanings 74

5.1 A uniform full subgraph distribution for two conflicting arguments . 82

5.2 The probability distribution using the function Candidates on a

graph space S where A = {a,b} where a is a positive argument and

b a negative argument . 85

5.3 Graded scores for arguments a, b and aggregate scores for each graph 92

5.4 Breakdown of probability distribution and aggregate graded scores

for each graph in a graph with 2 positive arguments and one negative 95

6.1 Resulting likelihood distributions for three observations with iden-

tical graphs, (a→ b), but different ratings. 117

6.2 Table with attack distances between the different attack types 120

20 List of Tables

7.1 Example of probability bins . 137

7.2 Results from 5-fold validation on text2sql dataset 140

7.3 Examples of free text queries translated to SQL 142

Chapter 1

Introduction

For many years now there has been a general interest in increasing the patient’s

involvement in directing their treatment [1] [2]. The UK National Health Service

(NHS) has long been advocating the Shared Decision Making (SDM) approach to

clinical care in which patients and clinicians have a joint responsibility in directing

the patient’s treatment. This agenda was captured in the book ‘No Decision About

Me Without Me: Making Shared Decision a Reality’ [1] which lists numerous ben-

efits for both the patient and health care provider. Of these benefits are improved

patient participation which in itself aids care providers in appropriately directing the

treatments as per the patient’s needs as well as greater confidence from the patients

in decisions undertaken by the health care providers [3].

Progress on this front has lead to the development of decision aids [4] [5] [6]

and informational guides for various treatments. These resources are designed to

inform patients of the expected outcomes of a treatment, success rates and potential

side effects. Commonly such information is conveyed using medical statistics and

statistical visualizations. Whilst these resources have helped health care providers

step towards making SDM a reality, the challenge of navigating, understanding and

ultimately reasoning with the information remains for the patients. Patients come

from various educational backgrounds and have different levels of health literacy.

These factors negatively influence the patient’s ability to synthesize decision aids

employing medical statistics [7] [3]. This difficulty is often exacerbated by the fact

that the outcomes are uncertain and information incomplete.

22 Chapter 1. Introduction

Furthermore it is often the case that decision aids may not provide adequate

answers to all of a patient’s queries. As an example a professional athlete suffering

from bone cancer would likely be much more concerned about major surgery deci-

sions than an elderly retired patient and as such expect a detailed insight into those

aspects of the operation that will likely effect their profession. A challenge for such

patients is obtaining appropriate, varied and relatable information that informs them

of the consequences of a decision and the likely outcomes. In such cases the first

point of reference will likely be the health care providers with whom the patient

would meet with on a regular basis. The health care providers in some instances

will attempt to redirect the patient towards patient-friendly material or even other

medical specialists; all so as to allow the patient room synthesize the information at

their own pace.

Whilst this approach may suffice for some patients, undeniably many are in-

creasingly however turning to the internet for medical information [8] [9] [10]. A

survey in the US 1 found in 2012 59% of patients had used the internet to search

for medical information and furthermore 35% had gone online specifically to bet-

ter understand their personal condition. Understandably this trend has been viewed

cautiously by some medical professionals due to the unaudited nature of the con-

tent found on the internet. Indeed there is even evidence to suggest in certain cases

repeatedly searching for health related information can adversely effect the patient

and lead to anxiety [11]. There is also evidence to suggest that the patient’s expo-

sure to medical information online also influences their subsequent interactions with

their healthcare providers [12]. Patients are often not sufficiently qualified to inter-

pret and verify much of the advice and information they find on the internet [13]

and this in turn can lead to various adverse outcomes such as self-medicating [14],

conflict with their physician which may leave them dissatisfied and uncomfortable

with their treatment [13].

Whilst this concern is not unwarranted there is evidence to the contrary to sug-

gest that the quality of information is not always poor [15] and in fact can serve

1http://www.pewinternet.org/2013/02/12/the-internet-and-health/

1.1. Problem Statement 23

the purpose of alerting patients on specific side effects of a drug. Recognising this

much work has been done in developing tools to help patients access better quality

health related information on the web [16] [17] [18] [19] [20]. Whilst much of this

work has focused on guiding patients towards carefully curated and authored med-

ical information on the web there remains the issue of understanding and helping

patients process less regulated sources of information such as that found on social

media and drug review websites [21]. In these sites patients report symptoms and

medical experiences in ways that are different to how a physician would report.

These patient-provided reviews on the internet represent the ‘voice of the pa-

tient’ and capture up to date feedback and sentiment regarding medical drugs and

treatments. This data is thus highly valuable to patients interested in learning about

the consequences of a particular treatment as well as to healthcare providers and

pharmaceuticals interested in what patients are experiencing [22].

1.1 Problem Statement
Whilst there has been concerted effort to direct patients to curated resources such

medical decision making tools and guides these efforts have not addressed the of-

ten parallel phenomenon of patients interacting with and being influenced by non-

curated material. In particular much less attention has been given to helping patients

during their interaction with social media and patient provided feedback on the in-

ternet. Perhaps the best effort in recent times has been from an Israeli startup called

Treato.com that attempted to aggregate all patient-provided drug reviews on the

internet with the goal of extracting adverse side effects from the aggregated data.

Their goal was to help patients and pharmaceuticals have better visibility of what

patients have experienced and reported when taking medications.

Whilst simply knowing side effects of a drug may be an important concern for

patients, drug reviews also provide other interesting insights that may be of value to

the patient. Consider below a drug review for acne medication review which had a

rating of 3 out of 10:

“The physician assured me that it was an established medicine and that

24 Chapter 1. Introduction

it had been around for decades. After approximately two months on this

I was amazed at how clear my skin had become. However my teeth were

beginning to develop brown spots on them as if I had eaten chocolate.

I followed up with my physician who advised me stop continuing the

medication.”

In the above review we can see that the drug did its job well but unfortunately

the patient experienced an adverse side effect. From reading this we can conclude

that from the patient’s perspective the side effects outweighed the benefits here since

the rating is quite low (3/10). In addition we see fact that the medication was termi-

nated and assume this has also contributed to the low rating. In other words there

is an interaction between different parts of the review that inform the patient’s, and

more importantly potentially the reader’s, final assessment of the drug. This type of

insight cannot be captured by simply aggregating and reporting side effects. In fact

sometimes this relationship can be even more subtle. Consider the review below for

Acne medication that received a rating of 6 out of 10:

“Beyaz has helped with my sudden outbreak of adult acne just like my

previous birth control. I got off of over a year ago However my period

cramps are about the same as if I wasn t on birth control at all No

severe side effects but would like to see improvement in this area. Slight

nausea when first taking it at night but taking it in the morning with food

seemed to eliminate the nausea. Not bad but could be better”

In the above review we can see that the patient did experience nausea however

she did manage to remedy the symptom by adjusting when she takes the medication.

For a reader this might imply that it is a manageable side-effect and hence less of

a concern. In summary simply looking at what medical outcomes (side effects /

benefits) a review has reported will not capture the full richness that it has to offer

and that there is in fact an additional layer of ‘relations’ between statements made in

the review that may influence the reader’s/patient’s final opinion. There is therefore

a strong case to help patients reason with reviews and feedback generated by other

patients.

1.1. Problem Statement 25

Condition
No. of
Drugs

Reviews

Total Reviews
Avg No. of
Reviews per Drug

Birth Control 181 38436 212
Depression 115 12164 106
Pain 219 8245 38
Anxiety 81 7812 96
Acne 127 7435 58
Bipolar Disorder 82 5604 68
Insomnia 85 4904 57
Weight Loss 22 4857 220
Obesity 43 4757 110
ADHD 58 4509 77

Table 1.1: Statistic of drug reviews taken from medical information and drug review web-
site Drugs.com for the top 10 most popular conditions

My work focused on modelling drug reviews as a source of arguments and

counter arguments to the use/purchase of the drugs. Modelling as arguments en-

sures that we capture the sense of conflict that exists between statements whilst also

having the ability to model the relationships between the arguments.

A second issue is the influence of reading a number of reviews on the con-

clusion the reader draws on the medicine. Patients investigating a drug have the

challenge of parsing large volumes of reviews before they can draw a balanced con-

clusion. To illustrate this consider the data in Table 1.1 which summarises drug re-

views for a set of common conditions scraped from a popular medications/medical

information providing website called Drugs.com in [23]. We can see that not only

are there numerous drugs for a given condition but for each drug the patient is forced

to read and process large numbers of reviews. Whilst, to the best of my knowledge,

this problem has not been studied in the context of medical drug reviews we can

look to analogous evidence in studies done on consumer behaviour when reading

product reviews. The outcome(s) related of reading reviews (e.g. purchasing and

opinions) is found to be influenced by the volume of reviews read, the sequence

in which they are read, the proportion of number of negative and positive reviews

read and even how reviews are presented to the user (where on the internet website

etc.) [24]. Thus we can say that in order to draw a balanced conclusion from one’s

26 Chapter 1. Introduction

reading one must ensure that the breadth of arguments, for and against the prod-

uct, available across the entire set of available reviews need to be considered by the

reader.

In the case of consumer product reviews the opinion from their reading is un-

likely to influence the healthcare outcomes for the reader. In contrast one can imag-

ine that if the same phenomena were to occur when patients read medical drug

reviews it will influence patient health outcomes. For example a patient may forego

a particular medication or may self-prescribe medication thus affecting their health.

This is the second motivation behind this thesis which is to allow patients to navi-

gate the arguments/counterarguments in a set of reviews to ensure they are able to

form a balanced opinion from them.

Whilst there are numerous data sources from which patients may derive med-

ical information online drug reviews have not been investigated extensively within

the literature. Online reviews are increasingly commonplace with a growing num-

ber of websites now providing a platform to read and share reviews. Testament

to this is the the drug-review website Treato.com, which aggregates drug reviews

from all across the web, which found 319,612 results for the cancer drug Tamox-

ifen alone. Patient-provided drug reviews provide commentary and insight into the

patient’s experience with cancer drugs. These reviews provide an alternative per-

spective on the drugs in the sense that they are almost miniature case studies for the

drug; providing personal insight into the performance and outcomes of using the

drug [25] [26]. Another merit of these reviews is that they are relatable to patients.

Patients can empathise with and relate better to comments that come from individu-

als undergoing similar circumstances as themselves; this is in contrast to hard facts

expressed statistically in informational guides.

1.1.1 Research Question

The primary research question I am thus addressing in this thesis can thus be sum-

marised as follows:

Question: ‘Is it possible to assist patients in synthesising the infor-

mation presented in online medical drug reviews?’.

1.1. Problem Statement 27

To recap the motivation behind this question let us recall what patients need

to do in order to develop/form an opinion on a drug. Patient’s need to read over

numerous reviews in order to draw an informed conclusion on the treatment they

are investigating. Patient’s, like other review readers, will be presented with the

challenge of navigating the volume of reviews. In addition their conclusion will be

biased based on how many reviews they get round to reading, what mixture of pos-

itive/negative reviews they read and in what sequence they read the reviews. What

is therefore required is some method for aggregating and presenting the reviews in

such a way that patients can better synthesise the contents of the reviews. This top-

level problem can further be broken down into the following constituent problems:

Constituent Question 1: ‘How can we extract information from the

reviews to present to the reader?

Whilst algorithms/techniques exist to extract symptoms from patient reviews

they do not address the extraction of other relevant statements/arguments from the

reviews that also concern the patient, e.g. medical benefits, advice on how to man-

age medication etc.

Constituent Question 2: ‘How can we structure this information to

allow the information to be easily synthesised by the reader.?

Reviews are dialectic in nature and consequently, as discussed, there are often

further relationships between statements in the single review that also need to be

extracted. This additional ‘structured’ data needs thus to be extracted and identified

for the user to interact with and sythnesise.

Lastly there is also the concern of how the extracted structured information is

rendered to the patient.

In addressing the aforementioned problems I propose a pipeline of tasks as de-

picted in Figure 1.1. The pipeline breaks the task of helping patients retrieve and

reason with drug reviews into four smaller tasks. The first is argument extraction

which I define as the process of retrieving reviews and finding arguments within

them. This is processing stage is necessary to identify arguments and counterar-

guments. The next stage of the pipeline is argument reasoning which allows us to

28 Chapter 1. Introduction

reason with the collected arguments. Various problems exist in reasoning with mul-

tiple arguments such as weighing the value of arguments if they are mentioned by

multiple reviewers, or how arguments form coalitions etc. The third stage of the

pipeline is to navigate the set of reviews according to the preferences of the user.

This is important as it allows the user to filter his/her search and focus on relevant

arguments. The last stage of the pipeline is visualising the the arguments. In the

following I elaborate on each stage.

1.2 Argumentation Pipeline

1.2.1 Extracting Arguments

I start with extracting arguments from reviews so that they can be processed and

evaluated by patients. This involves a degree of argument mining and information

extraction. This is done first in Chapter 3 where I introduce a set of simple classifi-

cation rules which facilitate the extraction of arguments from a number of medical

drug review websites. I demonstrate that through the application of these rules I are

able to represent reviews as a bag-of-arguments. Furthermore I propose using the

numerical rating, which is often a feature of these websites, as an indicator of how

the arguments in review can be topologically arranged within an abstract argument

graph. I extend this work in chapter 4 by leveraging machine learning to produce a

more scale-able method for argument extraction.

1.2.2 Reasoning with Arguments

In Chapter 5 I explore the notion of representing reviews as a bag of arguments.

However the topology of the argument graphs in each case is still unknown. The

current literature offers probabilistic argumentation as way to handle uncertainty

over arguments and in our case, uncertainty over the topology of an argument graph.

Many of drug reviews websites allow reviewers to provide a numeric rating.

This rating, I believe can serve as an indication as to which of the arguments pre-

sented in the review are the ‘winning’/‘losing’ arguments. On this basis I propose

a sequence of tasks which allow us to convert each review into a probability dis-

tribution over a set of possible graph topologies (subgraphs). The motivation for

1.2. Argumentation Pipeline 29

Argument
Extraction

Argument
Reasoning

Argument
Query
Filtering

Visualization

Figure 1.1: Pipeline of tasks

this is to merge the distributions of multiple reviews into an aggregate distribution

which can then be used to measure dissimilarity between reviews. I go further by

also proposing methods by which reviews which do not have accompanying ratings

can use the aggregate distribution in order to identify the most probable topologies

given their mixture of arguments. I provide some experimental results and compare

my approach to other common machine learning approaches.

1.2.3 Interacting with Arguments

Once the previous steps of the pipeline have been executed the review the system

would have extracted arguments and argument relations for that review. This struc-

tured data needs then to be stored and retrieved by the user (patient). To this end in

Chapter 5 I propose an algorithm for retrieving arguments and relations for a review

(based on the previous two steps in the pipeline) as well as a data model for storing

the mined data in a structured database. I also note that since most users are not

capable of constructing a query in a structured query language (SQL) I explore the

use of text2SQL models to help patients convert free text queries such as ’what are

the arguments for drug xyz?’ into corresponding SQL.

1.2.4 Visualising Arguments

Whilst a large portion of mywork focuses on identification of and reasoning with

arguments I dedicate Chapter 6 to helping patients visualize the argumentation pro-

cess. I do this via a Python implemented visualization tool. The prototype is a tool

which allows patients to browse through patient reviews on specific drugs. Whilst

browsing the reviews sentences are highlighted as being of a specific argument type

and furthermore the sentences are highlighted as attacking each other.

30 Chapter 1. Introduction

1.3 Published Works
Chapters 3,5,6 contain published works at [27], [28] and [29] respectively.

Chapter 2

Background

In this chapter I review background literature that is relevant to our pipeline. This

chapter is intended to cover the topics at a high level and I leave other relevant

literature to the individual chapters where the work is specific enough.

2.1 Abstract Argumentation
Abstract argumentation is reviewed as it provides us with an intuitive framework

for modelling reviews as argument frameworks/graphs. Whilst alternatives, such

as structured argumentation exist, our justification for using abstract argumentation

is that drug reviews do not typically present arguments arranged in a premise and

claim format, rather the reviews are more akin to a collection of complaints and/or

praises regarding the drug. Abstract argumentation models arguments as atomic

entities and in our case affords us the ability to abstract away from the details of

each complaint/praise whilst providing us with an argument framework and all of

the associated extensions.

In the following I present an overview of abstract argumentation. Abstract

argumentation is founded on argumentation theory which is the interdisciplinary

study of how conclusions can be drawn by using logical reasoning to evaluate claims

and their associated premises. Argumentation has been widely studied for its use

in knowledge representation and reasoning from contradictory information [30].

Within computational argumentation two broad classes of approaches have been

proposed; structured and abstract argumentation. Structured argumentation is con-

32 Chapter 2. Background

x y z

Figure 2.1

cerned with the construction of individual arguments and defining and determining

the various relationships between them. Abstract argumentation on the other hand

‘abstracts’ away from the contents of the individual arguments and models argu-

ments and their attacks as atomic entities. It enables one to abstract away from the

details of the arguments, i.e. premises and warrants, and focus on individual argu-

ments and their relationships with other arguments, known as attacks. Whilst many

frameworks for abstract argumentation have been proposed one of the earliest, and

arguably most popular, is the one proposed by Dung [31]. In it Dung proposes an

argument framework as a set of arguments A and the attacks between then R.

Definition 1. An abstract argument graph is a pair (A,R) of arguments A and attack

relations R⊆ A×A.

Example 1. Consider two individuals deciding on whether to eat out or not. Person

1 offers Argument x: ‘We should eat at the Italian restaurant tonight’. Person 2

counters with Argument y: ‘We should eat at the Spanish restaurant’. Lastly person

1 offers a rebuttal z: ‘The Italian restaurant is closed for refurbishment’. Figure 2.1

depicts the arguments in a directed graph ({x,y,z},{(x,y),(y,z),(z,y)}). It illus-

trates argument x attacking y, y attacking z and z attacking y.

By analysing the attacks between arguments one can begin to determine coali-

tions of arguments that withstand conflict together, referred to as extensions. In

order to analyse such extensions I start by defining a conflict-free set of arguments

as those where there exists no attack between any two members of the set.

Definition 2. Given an argument framework (A,R) a set S⊆ A is conflict-free if for

each a,b ∈ S,(a,b) 6∈ R.

Example 2. Take Figure 2.1. The conflict free sets that exist include {x,z} and {y}.

In order for a coalition of arguments to survive conflict together they are re-

quired to defend their members

2.1. Abstract Argumentation 33

Definition 3. Given an argument framework (A,R) an argument S ∈ A is defended

w.r.t S ⊆ A if for each b ∈ A with (b,a) ∈ R there exists an argument c ∈ S s.t.

(c,b) ∈ R.

This leads to the definition of an admissible set which is a conflict free set

where each member of the set is defended by the set.

Definition 4. Given an argument framework (A,R) and a set S⊆ A, S is admissible

if:

• S is conflict free

• Each a ∈ S is defended by S

Example 3. Going back to Example 2.1, we see that set {x,z} is an admissible set.

We see an attack (y,z) which is defended countered by the attack (x,y).

An admissible set then is one which has the ability to defend itself. The in-

tuition is that it is a collection of arguments that if attacked always offer a counter

argument. Using this definition Dung provides the following extensions (classes of

admissible sets):

Definition 5. Given an argument framework (A,R) a set S⊆ A is a:

• Complete Extension- if it is an admissible set and every acceptable argument

w.r.t S belongs to S.

• Stable Extension - If it is a conflict free set that attacks all arguments A\S

• Preferred Extension - If it is a maximal (w.r.t set inclusion) admissible set

• Grounded Extension - If it is a minimal (w.r.t set inclusion) admissible set

Example 4. If we look at Figure 2.1 the conflict free sets are {},{x},{y},{z},{x,z}.

The admissible sets are {},{x},{z},{x,z}. The set {x,z} is a complete, stable,

preferred and grounded extension.

34 Chapter 2. Background

It is worth mentioning that analysis of argument graphs in terms of extensions

is one method for determining acceptable arguments or sets of arguments. Another

popular alternative is via the ‘labelling’ approach. In the labelling approach one

assigns ‘labels’ to arguments denoting the acceptability status of the argument. In

[32] for example in,out,un are some labels that can be assigned to an argument.

An in label for example indicates that the argument is accepted, out indicates it is

rejected and un indicates an undecided status.

Definition 6. Given an argument graph G = (A,R) a {in,out,un} labelling is a total

function L : A→{in,out,un}.

Example 5. If we consider Figure 2.1 we might assign the label in to argument x

since no other argument is attacking it. This would imply y is out since it is attacked

and z is in since its only attacker is labelled out.

Dung’s initial proposal however may not be suitable for all contexts and in cer-

tain cases the framework will be insufficient in modelling more complex relations

between arguments [33]. For example the proposal does not allow for the modelling

of argument strength nor attack strength etc. Furthermore treating the acceptability

of an argument as a binary ‘accepted/rejected’ status may be too strong in some

cases. To address these shortcomings various extensions to Dung’s original pro-

posal have thus been made.

Preference-base argumentation [34] [35] [36] for example allows the inclusion

of preferences on the order of arguments. This makes it possible to utilise these pref-

erences when selecting winning arguments such that more preferable arguments can

defeat less preferable ones. Value-based argumentation on the other hand considers

arguments as promoting certain values; the preferences subsequently exists between

these values.

In certain cases however it may be desirable to represent argument preference

numerically enabling one to quantify argument strength and describe relations in

terms of degrees as oppose to fixed categories. To handle this, a separate family of

semantics, called ranking-based semantics, have been studied [37] [38] [39] [40].

2.1. Abstract Argumentation 35

Ranking semantics generally allow the assignment of numbers to attack relations

and arguments. These numbers quantify the degree of strength of argument/attack

relative to other arguments in the framework. This notion gives rise to a separate

class of acceptability criteria that is centred on analysis of these ranks.

2.1.1 Other Argumentation Frameworks

Besides abstract argumentation there are other argumentation frameworks available.

Many of these are structured argumentation frameworks that are frameworks that

focus on the construction of the individual arguments as oppose to abstracting the

detail to an atomic level. In structured argumentation an argument can be decom-

posed into a tuple consisting of the argument’s claims and premises; other informa-

tion may also be recorded such as the warrant connecting the claim to the premise.

Attacks are binary relations over the arguments denoting an attack between two ar-

guments. In structured argumentation there is often a formal definition to determine

whether an attack holds or not.

Notable frameworks for structured argumentation include ABA, ASPIC and

DeLP. ABA [41] models each argument as a collection of claims and associated

assumptions and inference rules to prove that the assumptions warrant the claim.

Attacks in ABA are defined using the notion of ‘contrary of assumption’ and so if a

claim contradicts the assumption of another argument this is considered an attack.

ASPIC+ [42] acknowledges that inference rules are not always strict and facilitates

weak forms of inference. This further facilitates three types of attacks in ASPIC+;

namely an attack based on the uncertainty of an argument’s premises, its defeasible

inferences and lastly by either attacking the conclusion or the inference. DeLP

(defeasible logic programming) [43] is an approach based on logic programming. In

DeLP a premise supporting a claim is denoted as a literal. This premise is warranted

if all arguments against it are defeated. Attacks can be directed at claims, premises

and internal points of a claim. Such analysis leads to a dialectical tree whose root

nodes are original argument and whose connected nodes are marked defeated and

undefeated.

Whilst structured argumentation enables one to undertake a finer grained anal-

36 Chapter 2. Background

ysis of arguments by breaking them into constituent premise/claim structures this

is not wholly needed for this use case where most arguments can not be decom-

posed into such components. In the case of drug reviews, comments are often for

or against the drug and hence more akin to enthymemes; in this case abstract argu-

mentation offers a sufficient framework to accommodate this information.

2.2 Probabilistic Argumentation

Probabilistic argumentation combines argumentation theory with probability the-

ory. It enables a quantification of the various types of uncertainty that exist in

argumentation using probabilities. It is well suited for modelling real world sce-

narios where uncertainty regarding the acceptability of arguments and/or attacks

occurs in degrees and is best expressed numerically. Probabilistic argumentation

provides methods for handling and reasoning with such uncertainty by allowing for

this uncertainty to be expressed in terms of probabilities.

Broadly speaking proposals for probabilistic argumentation can be thought of

in terms of two major categories of approaches; these are the constellations ap-

proach and the epistemic approach. In the constellations approach there is uncer-

tainty in the topology of the graph (i.e whether a particular attack or argument exists

in a graph). The constellations approach therefore will typically be useful when we

wish to identify a probability distribution over the set of various possible topologies

for the argument graph. The epistemic approach on the other hand assumes that the

topology of the graph is known but the belief in an argument or attack is uncertain

and better expressed in probabilities.

The constellation approach was first proposed in [44] where the authors in-

troduce the notion of probability that an argument or attack appears in an argument

graph. Through these probabilities it is possible to identify a probability distribution

over the subgraphs of an argument graph. The approach enables one to determine

the probability that a set of arguments exists within an extension but uses the as-

sumption that the likelihood of arguments appearing is independent of the presence

of other arguments. This assumption was later relaxed in [45] since there certain sit-

2.2. Probabilistic Argumentation 37

x y z

(a) A full subgraph

x y

(b) A spanning subgraph

Figure 2.2: Example of subgraphs given arguments {x,y,z}

uations in which one cannot assume independence between arguments. In [45] the

proposal was to have the probability distribution only across to only the spanning

subgraphs of the argument graph.

Definition 7. Let G = (A,R) be an argument graph. A subgraph is a graph G′ =

(A′,R′) where A′ ⊆ A and R′ ⊆ R. The subgraph G′ is called full if A′ ⊆ A and

R′ = (A′×A′)∩R. The subgraph G′ = (A′,R′) is called spanning if A′ = A and

R′ ⊆ R.

Example 6. Given an argument graph G = (A,R) where A = {x,y,z} and R = (A×

A) Figure 2.2 depicts an example of a spanning subgraph and a full subgraph. The

spanning subgraph must contain all of nodes of the original graph in contrast to a

full subgraph which can contain fewer.

Definition 8. Given a argument graph G = (A,R) a subgraph distribution is a func-

tion Pc : Sub(F)→ [0,1] where ∑F ′∈Sub(F)Pc(F ′) = 1.

Example 7. To illustrate the approach Table 2.1 which shows the a probability

distribution the subgraphs of the argument graph ({x,y},{(x,y)}).

The constellations approach is useful for understanding probabilities associ-

ated with different coalitions of arguments. If we look at Table 2.1 we can see

that the combined probability from all graphs, G1, ..,G5, for arguments {x,y} being

in the grounded extension, which I denote as PGr({x,y}), is equal to 0.45; given by

graph G2. Other coalitions are PGr({x})= 0.97, PGr({y})= 0.49 and PGr(/0)= 0.01.

Probabilistic argumentation embeds the notion of probability with arguments

graphs. In so doing it affords us the ability to explore specific learning problems

within argumentation. In my case I am interested in learning argument graph rep-

resentations based on the arguments presented by reviews on the internet. This

learning problem is discussed the next section.

38 Chapter 2. Background

No Graph Probability
G1 x→ y 0.5
G2 x y 0.45
G3 x 0.02
G4 y 0.04
G5 /0 0.01

Table 2.1: Probability distribution over subgraphs

2.3 Probabilistic Argumentation for Learning Ab-

stract Argument Graph Structures
Probabilistic argumentation as a means for learning abstract argument graph struc-

tures has previously been proposed. In the following I consider some notable ex-

amples and assess their suitability for our problem.

[46] proposes an on-the-fly algorithm which uses an input feed of labellings

of arguments, where each argument is labeled using {in,out,un,o f f} acceptability

semantics, in order to output a weighted argument graph.The resulting weighted

graph is meant as a meaningful representation of the input labellings. During run-

time weights are assigned to the attacks between the arguments in accordance to a

set of rules, referred to as credit rules, which use input labellings to credit specific

attacks once the criteria of the rule has been met. The rules work by considering the

labellings of two arguments at a given time.

• Rule 1: If L(a) = in and L(b) = in then:

(b,a)← (b,a)−1

• Rule 2: If L(a) = in and L(b) = un then:

(b,a)← (b,a)−1; (a,b)← (a,b)−1

• Rule 3: If L(a) = un and L(b) = un and for any possible attacker c of a where

L(c) 6= in:

(a,b)← (a,b)+1; (b,a)← (b,a)+1

2.3. Probabilistic Argumentation for Learning Abstract Argument Graph Structures39

x y z10
3

-1
10

Figure 2.3: A weighted argument graph

• Rule 4: If L(a) = out and L(b) = in and for any possible attacker c of a where

L(c) 6= in:

(a,b)← (a,b)−1; (b,a)← (b,a)+1

A merit of the algorithm’s design is that it can be interrupted at any time and

will return a weighted graph. A further merit comes in the use of the off label,

which allows arguments to be marked as unknown or not recognized. This is trans-

lates well into the real world where many agents putting forward their labels for

arguments will not be aware of all available arguments and yet still be able to com-

bine their labellings with other agents into a single graph representation.

Example 8. Consider an argument graph with two arguments a and b and the la-

bellings shown in Table 2.2. A labelling is a tuple (Ain,Aout ,Aun,Ao f f) where Ain

corresponds to the set of arguments labeled in, Aout to those labeled as out and so on.

The first labelling ({a,b}, /0, /0, /0) would yield a weighted graph a→ b with credit 0

and a← b with credit 0. The second labelling ({a},{b}, /0, /0) would use Rule 4 and

update the graph attacks a→ b to weight 1 and a← b to weight -1. Finally the last

labelling ({b},{a}, /0, /0) would update a→ b to 0 and a← b to 0.

The algorithm is however not suited to our problem on account of the follow-

ing. A weighted graph does not present itself as readily usable to an agent an agent

who proposes arguments and would like to use the weighted graph to determine

what the attacks would be (query agent). For example take the weighted graph in

Figure 2.3. If we now assume that an agent who is aware of arguments x, y wanted to

use this graph to understand what the most likely graph structure relevant to his/her

case was, then a starting point would be to look at the subgraph containing argu-

ments x, y in isolation from the rest of the graph. However the problem still remains

in finding an extension of this graph with the associated weights. In this case do we

consider the imbalance in weights as an indication of argument y’s superiority over

40 Chapter 2. Background

a out in out
b out out in

Table 2.2: Three labellings of arguments a and b

x? If the weights were not so imbalanced does this indicate that there is a mutual

attack? These current issues make approach the unusable as a classifier of query

agents. The paper does offer the idea of a threshold value for the weights to be

considered acceptable, yet the problem remains as this does not consider the notion

of degrees of inclusion and exclusion of attacks.

A second notable paper is [47]. The paper offers a novel Bayesian network

model which can estimate probability of attacks for a given set of input arguments

labellings. The approach works by producing a series of posterior probability dis-

tributions and then connecting the corresponding variables associated with each

distribution using a Bayesian network model.

The paper, as stated by the author, is designed for applications where the la-

bellings are an {in,out,un} of arguments. Much like the previous paper reviews,

this causes incompatibility issues with my dataset in that there is not a single input

sequence of labellings.

It is also worth mentioning [48] which proposes the use of Beta distributions

to quantify the level of uncertainty of an argument. This assumes the epistemic

approach to argumentation where one is attempting to model belief in an argument.

By using Beta distributions one is able to determine beliefs of sub populations of

agents. It is also possible to understand what influence there is in beliefs in one

arguments if another argument is retracted or posited. For this thesis however since

I have opted for the constellations approach the proposal is not compatible.

2.4 Other Machine Learning Approaches in Argu-

mentation
There has been recent interest in understanding the use of machine learning ap-

proaches to help with learning problems in argumentation. An example is neuro-

argumentative systems which is an emerging field of argumentation that seeks to

2.4. Other Machine Learning Approaches in Argumentation 41

Figure 2.4: Example of a

integrate abstract argument frameworks with neural network architectures [49] [50].

Garcia was the first proponent of the idea of neuro-argumentative systems [50].

He proposed a simple two layer neural network architecture which was able to cap-

ture attacks between arguments in an abstract argument framework. He proposed

the number of nodes in the input layer should correspond to the number of argu-

ments present in the framework. The same number of nodes should also exist at

both the hidden and output layers. The attacks between arguments are to be cap-

tured between the hidden layer and the output layer where negative weights indicate

an attack and positive weights a support. As an example consider the example in

Figure 2.4. The attacks between A→ B and B→ C are denoted as dashed lines.

The forward pass of the algorithm works by taking input values at time t0 where

input is fed forward through the network to the output layer. Activation at node

occurs when the input exceeds a threshold value. Garcia’s work proposes an ex-

citing bridge between the rapidly changing landscape of connections models and

argumentation.

More recently there was also an investigation into using Boltzmann machines

[51], which are often referred to as shallow neural networks, to capture probabilities

of attacks given an input sequence of labellings. The approach allows one to relax

the assumption of independence between arguments mutually attacking the same

argument on account of the hidden nodes.

Whilst the existing literature proposes interesting insight into the potential of

this upcoming field I find my use case is not explicitly compatible with these ap-

proaches yet. A problem we will see in Chapter 4 is that some reviews produce more

42 Chapter 2. Background

labels and potentially more training data than other reviews and could therefore bias

the training data if presented to a neuro-argumentative system.

In summary there are a number of novel approaches seeking extend/incorporate

abstract argumentation, e.g. [52], to fit within modern machine learning models of

learning.

In this section I have introduced the relevant background literature that is com-

mon to most chapters and works presented in this thesis. I chose to review the

remaining literature on a chapter by chapter basis.

Chapter 3

Argument Extraction

Evidence-based medicine stipulates that patients are offered medication and treat-

ment based on scientific evidence published in the medical literature. Whilst pa-

tients may find it difficult to relate to medical statistics they are keen to understand

benefits, potential side effects and implications on their life and life style. Drug re-

views, much like other product reviews on the internet, provide useful insights into

the performance and acceptance of the drug amongst patients who have experience

of it [15]. Drug review websites contrast with traditional medical resources by pro-

viding access to an interesting set of arguments based on personal experiences of the

patients. Whilst this reflects the subjective experience of individuals we propose to

view the review process as users providing arguments and counter arguments about

the drug in question.

If such arguments can be retrieved from drug review websites, it is possible to

arrange them using existing argument-theoretic frameworks such as Dung’s argu-

ment graph [31]. The generation of a Dung graph to represent the arguments in a

single drug review, enables one to elicit the overall assessment of the drug based

on the evaluation of the argument graph; such evaluations can be achieved using

Dung’s extensions. In order to validate this assessment it is possible to exploit the

rating function provided by drug review websites, which enables users to numer-

ically score the drug. I propose that by correlating the rating, produced by the

argument extraction and analysis system, against the numerical rating data given

by the drug review author I can ascertain a general measure as to how accurate the

44 Chapter 3. Argument Extraction

analysis was.

The purpose of this chapter is to demonstrate that it is possible to extract ar-

guments from drug reviews and arrange them into argument graphs. It is a proof-

of-concept approach to tackling the argument mining and argument reasoning pipe

in the pipeline. This experiment was useful in understanding how arguments and

argument graphs can be represented in reviews; the lessons from this chapter go on

to inform the more substantial work done in the subsequent chapters on argument

extraction and reasoning.

I believe this work is a novel contribution because it shows how Dung’s ap-

proach to analysing arguments is reflected in the way drug review authors evaluate

conflicting arguments within a single drug review. This suggests that one could ex-

tend the application of this method to those drug review sites that do not have user

provided ratings in order to generate analogous ratings. Furthermore the argument-

based analysis could provide structured information to patients who are trying to

garner an understanding of how the drug was received by previous users. I expect

that this tool will provide patients with supplementary reasons for and against the

treatment.

Note my method of extracting arguments is not meant as a contribution to ar-

gument mining, rather it is a simple method to automate the process of instantiating

argument graphs and could potentially be improved by harnessing more advanced

argument mining techniques such as those reviewed in [53].

3.1 Argument Extraction

Argument extraction is the process of extracting argument components, primarily

premises and conclusions, from text. A motivation for extracting arguments is to

provide structured data for use within computational models of arguments or rea-

soning engines [10]. Applications have been developed for various corpora includ-

ing legal texts [12], medical articles [8] and user generated content [1]. The most

prevalent technique for extracting arguments, first introduced by Teufel [54], is to

identify argumentative components within a body of text before establishing rela-

3.1. Argument Extraction 45

tions between those components; a process named argument zoning. These steps

have more recently been recognized as the key steps to building argument mining

systems [53]. This approach is useful for a fine grain extraction of all argumentative

components within a text but does not provide a context for the arguments within

the text. Furthermore often arguments proposed in a corpus will be arguments for

or against a common topic. The current argument mining pipeline is not intended to

isolate argument types which could be found by a wide study of the corpus whilst

our work requires us to aggregate common argument types.

Textual corpora of a specific domain will often present recurrent themes which

manifest themselves through the use of phrases and words specific to that domain.

Take the example of second-hand car reviews on the internet in which the majority

of comments will contain vocabulary pertaining to themes of discussion such as

mileage, price and brand. The frequency with which these phrases and words appear

give an indication as to the dominant themes within the text. With knowledge of

this vocabulary it is therefore possible to mine information for each of the dominant

themes. Furthermore, for each unit of information retrieved, its polarity can be

assessed, i.e. whether the information was of a negative or positive sentiment. The

association of this polarized information with its theme can be seen to exhibit the

qualities of a classic argument pair in a (premise, claim) structure. Extending our

example of the second-hand car, if we find a sentence speaking positively about the

brand, this can be taken as an argument in favour of the car; the premise being the

sentence and the claim being the car is a good car. The polarity of the information

thus determines whether the pair is to be an argument for or against that theme.

If this process is applied to a group of texts sharing the same domain it is

possible to obtain arguments for and against each theme, which in turn enables

one to build up an argumentative representation of the texts. This process allows

one to glean the overall sentiment of the corpus by substantiating the assessment

through the collection and evaluation of arguments. This paper exploits this process

by applying it to patient experiences with medical treatments as expressed on the

social web.

46 Chapter 3. Argument Extraction

In the following, I show how simple rule-based information extraction tech-

niques can be harnessed to extract arguments. The implemented system has been

written in Python, and makes use of the natural language processing toolkit NLTK.
1. The code and datasets are available on Github. 2.

I take reviews from two medical websites (Drugs.com and Webmd.com). Drug

reviews on these websites, much like other products tend to focus on a core set

of features of the product. I identify a set of common features found across the

various reviews. The recurrent themes tend to be centred around the side effects

experienced, the overall success of the drug and the general experience with the

drug. Take for example the following review:

“I get achyside effect in the hands and feet, have gained weightside effect

(20)lbs. and hatenegative experience the hunger it seems to give me cravings

for calorie laden foods.”

As can be seen in review above the user’s focus is on the side effects of the

drug, whilst some words such as ‘hate’ would indicate that the user had a negative

experience with the drug. Similar observations were made when reading a range of

different drug reviews. With these observations in mind we identified the following

core themes which we use to extract arguments for/against a number of drugs:

• Presence of side effects;

• Severity of the side effects;

• Polarity of experience with the drug;

• Whether or not supplementary drugs can be taken for side effects from the

primary drug.

Each theme is identified through the appearance of keywords. Using the ex-

ample of the theme presence of side effects, statements pertaining to this theme are

identifiable when a side effect is mentioned; vocabulary for which can be sourced

1http://www.nltk.org/
2https://github.com/robienoor/NLTKForumScraper

3.1. Argument Extraction 47

from medical literature. Furthermore each theme can be assessed for polarity, so

continuing the example of the presence of side effects theme we say that the re-

sulting argument types are the absence of a side effect and the presence of a side

effect. These argument types thus either favour or oppose the use of that particular

drug. Using this approach I formalised 10 classification rules based on the themes

mentioned above.

I make the assumption that each argument is presented in a single sentence.

A sentence may convey multiple arguments but no argument requires multiple sen-

tences to convey it. This is a simplifying assumption that we do not further inves-

tigate in this paper. The role of the classification rules is to identify the types of

argument present in each sentence.

In order to determine the sentences in a drug review I use the NLTK library

which provides a standard sentence tokenisation function that splits text into sen-

tences based on the presence of common delimiters such as full-stops, large line

breaks etc. The sentence tokenisation function takes as input a full text (string) and

returns a list of strings; hence each sentence is treated as a string. Further to this the

sentence is subsequently tokenised into words using the standard work tokenisation

function available in NLTK. A sentence is therefore represented as a list of words.

In order to define the classification rules we compiled a number of key-

word lists namely Symptoms, Drugs, Diseases, PosWords, NegWords,

Inverters and SideEffects. The list SideEffects contains the term side

effect in various forms eg: symptoms, side-effects etc. The list Inverters con-

tains a list of negating words eg: no, not, none etc. These lists serve the purpose of

providing quick access to medical and sentiment terminology.

The classification rules below are formalised using first-order logic. Below is

a list of predicates that are common across the classification rules.

• Occur(sentence,wordlist,position) which holds when there is a word

in wordlist that occurs at the point position in sentence

• ImmediatelyBefore(string1,string2) which holds when string1 is the

sentence immediately before string2.

48 Chapter 3. Argument Extraction

• Contains(sentence,wordlist) which holds when at least one of the words

in wordlist is in sentence.

• ArgumentType(sentence,type) which holds when the sentence is of type

type.

I also introduce an auxiliary function that is shared between a number of the

classification rules. The function Score checks to see the number of times a partic-

ular set of keywords appears in a sentence.

• Score(sentence,wordlist) is a function that returns the number of words

in wordlist that occur in sentence

With the common predicates/function defined above I proceed to define all of

the individual classification rules. Essentially each rule classifies a sentence to be

of a particular type if the conditions of the rule are met for the sentence. A sentence

may be classified to be of more than one type (though in practice this is infrequent).

1. NoSideEffectsI: This rule looks for an inverter word immediately followed

by a side effect string.

eg: I have noinverter side effectssideEffect

∀sentence, string1, string2

Contains(string1,Inverters)∧ Contains(string2,SideEffects)

∧ ImmediatelyBefore(string1,string2)

→ ArgumentType(sentence,noSideEffectsType1)

2. NoSideEffectsII: This looks for an inverter word before a side effect string

irrespective of its position in the sentence.

eg: During the time I took the medication I did not inverter expe-

rience any side effectssideEffect at all

3.1. Argument Extraction 49

∀sentence, position1, position2

Occur(sentence,Inverters,position1)

∧ Occur(sentence,SideEffects,position2)

∧ position1< position2

→ ArgumentType(sentence,noSideEffectsType2)

3. SideEffectsI. This looks for a side effect string with no inverter words in the

preceding words.

eg: The side effectssideEffect outweighed the good

∀sentence, position1

Occur(sentence,SideEffects,position1)

∧ ¬∃position2(

Occur(sentence,Inverters,position2)

∧ position1> position2)

→ ArgumentType(sentence,sideEffectsPresentType1)

4. SideEffectsII. This searches for a symptom within a sentence.

eg: The side effects were gradual at first but now they are full

blown...fatiguesymptom and joint painsymptom

∀sentence

Contains(sentence,Symptoms)

∧ ¬Contains(sentence,PosWords)∧ ¬Contains(sentence,NegWords)

→ ArgumentType(sentence,sideEffectsPresentType2)

5. BearableSideEffects. If a side effect and positive word are mentioned we

interpret this as meaning that the side effect is present but bearable.

eg: So far my joint pain symptom is betterpositiveWord and my energy

and motivation had noticeably improvedpositiveWord

50 Chapter 3. Argument Extraction

∀sentence

Contains(sentence,Symptoms)

∧ Score(sentence,Poswords) > Score(sentence,Negwords)

→ ArgumentType(sentence,bearableSideEffects)

6. UnbearableSideEffects. If a side effect and a negative word are mentioned

we interpret this as meaning that the side effect is present and unbearable.

eg: I had several feverssymptom and bone painsymptom making it

very difficultnegativeWord to get up

∀sentence

Contains(sentence,Symptoms)

∧ Score(sentence,Negwords) > Score(sentence,Poswords)

→ ArgumentType(sentence,unbearableSideEffectsType1)

7. UnbearableSideEffectsII. If a side effect is mentioned in a sentence whose

sentiment score is neutral we interpret this as meaning that the side effect is

present and unbearable.

eg: The constant nightly hot flashessymptomWord and joint painsymptom

are irritatingnegativeWord but yet I’m still hopefulpositiveWord

∀sentence

Contains(sentence,Symptoms)

∧ Score(sentence,Negwords) = Score(sentence,Poswords)

→ ArgumentType(sentence,unbearableSideEffectsType2)

8. PositiveExperience. The presence of only positive words is interpreted as

meaning a positive experience.

eg: I felt much betterpositiveWord on it

3.1. Argument Extraction 51

∀sentence

¬Contains(sentence,Symptoms)

∧ Score(sentence,Poswords) > Score(sentence,Negwords)

→ ArgumentType(sentence,positiveExperience)

9. NegativeExperience. The presence of only negative words is interpreted as

meaning a negative experience.

eg: TerriblenegativeWord terriblenegativeWord drug

∀sentence

¬Contains(sentence,Symptoms)

∧ Score(sentence,Negwords) > Score(sentence,Poswords)

→ ArgumentType(sentence,negativeExperience)

10. SuppDrugAvailable. A sentence containing a symptom and another drug,

which is not the drug being reviewed, is taken to mean that the patient is

taking a supplementary drug. The predicate mainDrug(drug) holds when

drug, which the drug being reviewed, is not mentioned in the sentence.

eg: I have anxietysymptom added AtivansuppplementaryDrug to my

drugs...

∀sentence,drug

¬Contains(sentence,Symptoms)∧ Contains(sentence, Drugs)

∧ ¬mainDrug(drug)

→ ArgumentType(sentence,supplementaryDrugs)

In this section I have formalised 10 classification rules that are used to extract

arguments from medical drug reviews. I show in the next section that the classifi-

cation rules, albeit simple, yield a reasonable performance. The rules could further

52 Chapter 3. Argument Extraction

Rule No. Arguments No. T % T %F %NA
Extracted

PositiveExperience 368 182 49.46 17.12 33.42
NegativeExperience 446 294 65.92 3.81 30.27

NoSideEffectsI 18 18 100 0 0
NoSideEffectsII 31 17 54.84 22.58 22.58

SideEffectsI 142 114 80.28 7.74 11.97
SideEffectsII 61 52 85.25 4.92 9.84

BearableSideEffects 22 11 50 31.82 18.18
UnbearableSideEffectsI 93 81 87.10 4.30 8.60
UnbearableSideEffectsII 320 261 81.56 7.50 10.94

SuppDrugAvailable 180 21 11.67 2.7 85.56

Table 3.1: Accuracy of all arguments pulled out per classification rule

be improved by harnessing argument mining techniques and natural language pro-

cessing.

3.2 Evaluation of Extracted Arguments
The rules mentioned in the previous section were tested against a set of 570 reviews

concerning 4 drugs. The drugs tested include two cancer drugs, an anti-depressant

and an over-the-counter painkiller. This variation of drug types is useful since it

allows us to measure how well argument types hold across the various drugs. I

acknowledge that the quality of arguments from two drug types may be vary. As an

example a cancer patient may rate a drug highly on the basis they are alive although

the reason for it could be surgery or other treatments. This is a line of enquiry that

I intend to explore in future works.

In order to validate the performance of each of these rules, the extracted argu-

ments were manually checked by a single human annotator (myself) to see if they

had been classed correctly. Each extracted argument was marked as being either T

(true - the argument was classified correctly), F (false - the argument was classi-

fied in the opposite class and could in fact be used as a counter argument) and NA

(irrelevant - argument extracted has no relation with its intended class).

The results in Table 3.1 demonstrate that using my classification rules, it is

possible to extract relevant arguments regarding treatments. The rules exhibited

3.2. Evaluation of Extracted Arguments 53

different precisions (where precision = No. T/No. of Arguments Extracted). For ex-

ample the rules NoSideEffectsI and PositiveExperience achieved precisions of 100%

and 49.46% respectively. This variability is expected as some of the rules, such as

the PositiveExperience rule, search for context independent words whereas others

search for the occurrence of medical terminology. I also recorded lower precisions

when comparing positive sentiment rules to negative ones, eg: BearableSideEffects

vs. UnbearableSideEffectsI. I attributed this to my observation that patients rarely

mention a side effect without the intent of complaint.

Alongside these difficulties, I encountered a number of natural language chal-

lenges, the majority of which were attributed to the casual nature with which au-

thors wrote their reviews. The difficulties encompassed spelling mistakes, adoption

of new terms, abbreviations and general violations of English grammar. Another

challenge was the use of non-standard terminology to describe side effects. The

quote below highlights this kind of issue.

“...my vision seems to be getting weak.”

Discerning a loss of vision from the use of the word weak is non-trivial, and is

not easily captured using lookup data. Going forward I would seek to improve the

classification rules by adopting better natural language processing techniques such

as custom named entity recognition for medical records [55] for extracting standard

medical terminology.

Lastly another common phenomena was that the when the patient wanted to

express a negative sentiment many times they would employ sarcasm to do so. Take

the example below:

“This drug has done me wonders given that since starting it I have

developed acne and redness. I am amazed that this is legal to pre-

scribe...“

In the example above it is clear that the medication has not worked as expected

and the use of the positive language is to express sarcasm. This level of detail is

difficult to distinguish using a keyword based approach. Sarcasm thus influences

54 Chapter 3. Argument Extraction

PositiveExperience NegativeExperience

NoSideEffectsI/II SideEffectsI/II

BearableSideEffects UnbearableSideEffectsI/II

SuppDrugsAvailable

Figure 3.1: Argument graph capturing attack relation between the various classification
rules.

I am thankful and consider myself lucky to now be a survivor.PositiveExperience

No other side effects at this time.NoSideEffectsII

I have experienced major hot flashes day and night.SideEffectII

Original Post: “I have experienced major hot flashes day and night..No other
side effects at this time..I am thankful and consider myself lucky to now be a
survivor”
Drug: Tamoxifen
User Rating: 8
Grounded Extension: {PositiveExperience, NoSideEffectsII}
Argument Evaluation: Positive

Figure 3.2: A review for the drug Tamoxifen. Three arguments were extracted. The
grounded extension contains only positive arguments and so the argument-
based rating is positive.

the performance for any rule which uses a combination of positive words and/or a

symptom, e.g PostiveExperience, UnbearableSideEffects as reflected in Table 3.1.

3.3 Evaluation of Argument Graphs

In this section I investigate instantiating an argument graph for each drug review

with the arguments extracted from it, I then use Dung’s grounded semantics to de-

rive a rating for the drug. I validate these argument-based ratings by correlating

them with the numerical ratings given by the reviewers at the end of their drug

reviews.

In order to instantiate the argument graph for a drug review we require a de-

3.3. Evaluation of Argument Graphs 55

fined set of attack relations for all argument types. To simplify the graph I have

chosen to group together arguments that have the same semantic meaning, i.e. Neg-

ativeExperienceI, NegativeExperienceII since the underlying rules used are de-

signed to retrieve an argument with the same underlying semantic theme. I refer to

this ‘final grouping’ as argument types throughout the rest of this thesis. In Figure

3.1 I specify these attack relations based on the analysis of a large number of reviews

focused on understanding how each argument type influences the numerical ratings

provided by the user; more specifically I model the competing levels of influence

that the argument types have over the rating with respect to one another. I note that

the arguments on the left of the graph are positive (i.e. contributing positively in

some way to the rating) and those on the right are negative.

The analysis focused on observing, in the context of a full review, which argu-

ments typically appeared to contribute to the final rating. It was found that in general

if a review contained a statement that was highly positive/negative (i.e. those cap-

tured by the rules Positive/Negative Experiences always had a corresponding rating

with a similar polarity. However if a positive argument was mentioned alongside a

negative argument then in general positive arguments seemed to win; this was be-

cause the positive statement was typically the concluding remark (e.g. ‘overall very

pleased with drug‘ etc).

For other relationships it was observed that if a side effect was mentioned and

there was mention of it being bearable, it was phrased such that the severity of the

side effects were tolerable and hence not contributing negatively to the rating. For

this reason I placed an attack between the BearableSideEffect and the SideEffects

arguments. For every other argument in the framework I chose to have them as

bidirectionally attacking each other since no other patterns emerged between the

respective arguments in the analysis.

A consequence of this choice of attack relation is that the grounded extensions

of Figure 3.1 and any of its subgraphs constitute either entirely positive arguments,

negative arguments or an empty set. These three possible sets correspond to three

polarities (positive, negative and neutral) and serve as our argument-based ratings.

56 Chapter 3. Argument Extraction

Rating Negative Neutral Positive
1-4 0.531 0.443 0.262
5-7 0.198 0.216 0.172
8-10 0.270 0.340 0.566

Table 3.2: Dung Assesment vs. User Rating using all posts

Rating Negative Neutral Positive
1-4 0.624 0.417 0.129
5-7 0.206 0.202 0.178
8-10 0.170 0.380 0.693

Table 3.3: Dung Assessment vs. User Rating using only validated sentences

In order to validate these ratings I correlate the polarity of a drug review to the

numerical value provided by the user. In facilitating this correlation the numerical

scale was split into three ranges based on analysis of the reviews which focused

on seeing how the overall sentiment of the text corresponded to the rating scale. I

assume that a drug review with a rating less than 4 to be a negative rating, a drug

review with a rating between 5 and 7 to be neutral and any drug review with a rating

greater than 7 to be positive. An example of the system in practice, from argument

extraction through to analysis, can be seen in Figure 3.2.

I ran the experiment using two sets of arguments. In the first set, I used all

of the arguments extracted using the classification rules. This was to evaluate the

performance of the entire automated process, from argument extraction through

to analysis of arguments. In the second set of arguments, we utilised only those

extracted arguments which have been annotated as being of type ‘T’. By comparing

the correlation matrices for both argument sets we are able to measure the effect of

inaccuracies in my classification rules on the argument-based ratings.

The results of the experiment in Tables 3.2 and 3.3 indicate a positive corre-

lation in the positive and negative classes. It can be seen that there is a notable

improvement in correlation in Table 3.3, given that here we use only validated argu-

ments. The neutral class appears comparatively less correlated with classifications

distributed across the ratings scale. What can be seen is that reviews whose con-

3.4. Discussion and Literature Review 57

stituent arguments predominantly shared the same polarity tended to have a numer-

ical score consistent with this polarity. Drug reviews that have neutral numerical

ratings often contained predominantly negative or positive arguments causing us

to derive a non-neutral argument-based rating. In other cases it was seen that the

author would provide positive and negative statements within a single drug review,

and whilst the majority of content was homogeneous in its polarity, one statement

may have caused the user to rate otherwise.

3.4 Discussion and Literature Review

In this chapter I have presented an argument-based framework for analysing medical

drug reviews to be used by patients who are choosing between multiple treatment

options. I have shown how simple domain-specific techniques can be used to extract

arguments, but this is only so that we have the necessary input for argument-based

analysis. Whilst this work is not intended to be a contribution to argument mining,

whose motivation is the automated the extraction of argument components, primar-

ily premises and conclusions, from text [56][54][57], I acknowledge that techniques

from argument mining could be employed to improve the system.

This work resembles[58] which proposes the use of lookup data in conjunc-

tion with argument schemes to mine user generated arguments from online camera

reviews. Whilst that paper successfully mines arguments for a specific product,

it does not provide an evaluation of arguments mined using any argument solver,

whereas evaluating arguments is the primary aim of my experiment.

My approach was to identify a small set of argument types common across all

drug reviews and then construct classification rules to extract those argument types.

This is in contrast to a manual annotation approach as in [59] which extracted argu-

ments from a set of reviews and put them together in a single argument graph. My

approach enabled us to fully automate the entire system, from extraction through to

analysis. It also ensured I had to only construct a single set of attack relations which

I imposed on all of the drug reviews.

Going forward I will seek to extend the evaluation of the arguments by mak-

58 Chapter 3. Argument Extraction

ing use of the quantity of arguments populated for a given argument class. I will

also consider using preference-based frameworks [60], probabilistic frameworks

[44][45] and social abstract argumentation [61] to allow us to model argument types

that are more frequent and yield greater influence over the overall patient ratings. I

will also investigate the possibility of learning the attack relations by analysing the

numerical rating of a drug review and attempting to construct an argument graph

such that it is possible to maximise the correlation between the argument-analysis

rating and the numerical rating.

Chapter 4

Argument Extraction with Machine

Learning

In the previous chapter I demonstrated that a simple rule based approach can be

used, with moderate success, to extract arguments from drug reviews. I also in-

troduced the concept of modelling reviews as abstract argument graphs. I demon-

strated that through manual analysis of the reviews, it is possible to identify patterns

of how the different argument types (theme of the argument, e.g. is it a negative ar-

gument, was drug bearable etc) interact with one another and that this knowledge

can be harnessed in order to model each review as an abstract argument graph.

There are however certain issues with such a rule based approach for argument

extraction. Firstly the approach inevitably suffers from scalability issues when faced

with large numbers of reviews which cover a variety of topics and arguments. This

is because as the size of the dataset grows it is difficult to construct and maintain a

set of rules that can comprehensively capture all of the various argument types and

all of the ways in which these argument types are expressed by the reviewers. A

much more suitable mechanism in such cases would be to have an mechanism that

is capable of learning how such arguments are expressed in the text.

A second issue is related to the method used to produce the abstract argument

graphs for each review. In the chapter I presupposed, as a simplification assumption,

the attack relations between the argument types was determined based on manual

analysis of the reviews (see Figure 3.1). Whilst this approach may work for small

60 Chapter 4. Argument Extraction with Machine Learning

datasets, where it is possible for a human to read through the reviews and identify

such patterns of attack between the various argument types, this does not scale as

the number of reviews and argument types may increase. This is expected since

once we begin to read through reviews of new drugs for diseases that we had not

previously read new themes may emerge. For example for we may encounter re-

views complaining that drugs are too expensive or hard to find which is something

we had not previously encountered. Additionally the previous approach will not

reflect the reality in which arguments will exist in various configurations of attack.

In other words a static argument framework may not hold true all the time. I address

this problem in the next chapter using probabilistic argumentation. In the remain-

der of this chapter the focus will be on a proposal for a better argument extraction

system.

In order to address these issues I decided to use an approach that uses ma-

chine learning. Machine learning (ML) approaches are attractive because they can,

through sufficient exposure to data, identify latent features in the data that one could

not otherwise see nor be able to represent trivially using a rule based approach. The

primary constraint with ML approaches however is that they do require significant

amounts of labelled training data (when using a supervised learning approach) and

this can in general be quite expensive to acquire in that it requires human input and

validation.

In the previous chapter I predefined the list of argument types that I was in-

terested in analysing. This list was compiled by manually analysing a number of

reviews and observing topics and themes of discussion that were common amongst

the reviews. This analysis then enabled me to narrow down a list of topics for which

I then wrote a number of rules to identify arguments related to that topic. In order

to conduct a larger scale experiment in this chapter however I required a dataset that

had more reviews and I did not want to limit the types of arguments I was searching

for. Hence I started afresh with a new set of drug reviews.

4.1. Text Classification with Pretrained Models 61

4.1 Text Classification with Pretrained Models

I frame the machine learning problem as a text classification task. More precisely I

would like the model to take as input a review and provide as output the argument

types that exist in that review. In this case, since I am starting with an unannotated

dataset, for which I do not know what the document classes (argument types) are in

advance nor in fact how many document classes there are in total. For a standard text

classification task, one knows in advance in classes that can be assigned to the task.

The annotators are thus assigning labels to the documents based on this predefined

set of classes. In this case however, since the argument types and not known in

advance, I expect to discover the argument types as the annotation exercise unfolds.

Hence in order to produce labelled data for supervised training the annotation task

here is thus to firstly identify all arguments in the training dataset and label them

with appropriate labels.

A major bottleneck with text classification problems that has been known for

some time is the the annotation process which is the process of acquiring labelled

training data. The annotation process almost always requires extensive human vali-

dation and is as a result costly. This cost scales with the complexity of the classifi-

cation task and dataset. Moreover in cases dealing with multiple document classes

it can become prohibitively expensive to acquire sufficient labelled data for each

class to train a reasonable performing ML model.

To address this there has been significant work done in the literature to reduce

the burden of annotation. Recently we have seen the emergence of few-shot learn-

ing algorithms which are algorithms that make use of ML models that rely upon

transfer learning to reduce the need for labelled data. Few-shot learning approaches

typically rely upon large pretrained language models that can then be fine tuned

with little supervised data on the document classification task at hand. Whilst these

models appear promising the number of labelled data required is still significant

enough to be costly.

In order to achieve this I arranged for an annotator to go through 520 drug

reviews and highlight parts of the review which they felt constituted an argument in

62 Chapter 4. Argument Extraction with Machine Learning

favour of or against the underlying drug. In addition to this they would also have to

assign some sort of label to the highlighted text that indicated the type of argument

being captured. The motivation for labelling parts of the text is to build up a lexicon

of keywords/phrases for each argument type and subsequently use these in order to

faster identify arguments in other reviews containing similar phrases.

An alternative approach that has been around for some time is to provide or

collect keywords and phrases for each document class in advance of beginning the

annotation process. This list of phrases is then used to pre-emptively label doc-

uments with the corresponding class if it contains the same phrase. The list of

phrases can be generated in a number of ways. In the first approach during anno-

tation process in which the annotator labels a document with a document class and

also records the phrase/keyword within the document related to the class. Another

way relies upon having an annotator who is a domain expert in the classification

problem. If this is the case the annotator can provide a list of keyword/phrases for

each document class before the annotation process begins.

In this case we begin with the assumption that we do not know the document

classes for the dataset. It follows then that, of the aforementioned solutions to reduc-

ing the annotation burden, the only viable option is to iteratively ask the annotator

to jointly provide the argument type label as well as providing the keyword/phrase

in the document related to the argument label.

4.2 Dataset

The dataset I chose to use for this chapter is much larger than the one used in the

previous chapter. I chose to use an open source drug review dataset [23] compiled

from reviews taken from two popular patient based drug review websites called

Drugs.com and Drugslib.com which covers over 6886 medications. By reading

through a number of reviews it was apparent that the arguments within the reviews

typically dealt with issues that were particular to the condition that the medication

was treating. Hence reviews for over-the-counter drugs for treating cold and flu

were similar in nature and likewise drugs treating acne were similar in content.

4.2. Dataset 63

This is depicted in the two reviews below. Consider the first review which is for a

chemotherapy drug for breast cancer.

“I’ve been on this drug for nine miserable months now. I had said I

would try it for one year and I’m not sure I can make that. It appears

that quality of life is not something my doctor cares about. It’s almost as

if he’s being paid by the tamoxifen people because he won’t even listen

to anything negative about the drug. My hot flashes are unbelievable.

My joint pain makes it difficult to walk. I haven’t slept in nearly a year.

This drug makes life not worth living” - drug review for breast cancer

chemotherapy drugs

Medications for serious illnesses and/or terminal illnesses tend to contain sig-

nificant information of the patient’s personal journey and history with the condition.

In contrast less serious conditions tend to focus on the absence/presence of a few

symptoms and success of the drug.

“I took doxycycline with food and a large glass of water both morn-

ing and night. I had no side effects whatsoever- no nausea, vomiting,

headache, etc. I felt symptom relief after just 1 day. While I’m sure oth-

ers may have had different experiences- don’t let that deter you from

trying!” - drug review for urinary tract infection medication

In order to ensure that these reviews could be successfully annotated I chose

to limit the drugs to those relating to a single condition. This meant that I could be

confident that I would not be dealing with an intractably large number of argument

types and could have a reasonable number of labelled data points for each argument

type.

In my case I chose to focus on drugs related to the condition Acne. I chose

Acne as the number of available reviews for it was substantially larger than other

conditions and furthermore there was a considerable number of drugs that had been

reviewed for this condition. In addition to this it was important that I chose a drug

whose reviews provided a good balance of positive arguments and negative argu-

ments. I found that the there was a good distribution of numerical ratings for the

64 Chapter 4. Argument Extraction with Machine Learning

Figure 4.1: Diagram depicting steps to produce annotated dataset

Acne related drug reviews; this is in contrast to some other medications such as

those used in chemotherapy to treat cancer.

I sampled a total of 620 reviews pertaining to drugs relate to Acne. Each of the

reviews had a numerical rating between 1-10. In order to facilitate the annotation

process I developed an annotation interface through which the annotator could input

an argument type (document class) as well as highlight the portion of text within

the review corresponding to the argument type. The interface, which can be seen

in Figure 4.2 is a full stack web application implemented in Python 1. I chose to

develop a custom interface for this as none of the existing open source annotation

tools 2 provide the user with the ability to create document class labels on the fly

and moreover none of them provide the option of highlighting and associating part

of the document to the document class.

The annotation task was to read through the review and highlight portions of

the review that the annotator constituted an argument in favour of or against the

drug. Once highlighted the annotator was asked to provide a textual description

1https://github.com/kawsarnoor/documentannotationtool
2BRat, Doccano

4.2. Dataset 65

Figure 4.2: Annotation tool used to collect argument types

for the highlighted text; this will become the argument type for that highlighted

argument. For example if the annotator highlighted the phrase ’too costly’ then the

corresponding argument type they assign might be ’drug expensive’.

Once both annotators had finished annotating the dataset they had generated

41 unique argument labels between themselves; this was through annotating a total

of 2028 spans of text. In total the annotators identified 41 unique argument types. I

found there to be a imbalance in distributions of argument labels within the reviews.

In order to reduce the imbalance I chose to group together some of the argument

labels such that they could be used to describe a single argument type. Examples of

this included the labels ’drug worked eventually’ and ’drug worked’. In total of 33

argument types were produced.

Once these labels were determined there was a final round of annotation in

which both annotators sat down and reconciled their differences. A difference was

considered to have occurred if (1) Both annotators highlighted text in the same sen-

tence in the same review but assigned different labels (2) One annotator highlighted

text that the other did not. I reported an inter-annotator agreement using the kappa

score [62] score measure:

k =
Pobserved−Pchance

1−Pchance
(4.1)

I reported of a k = 0.49. An interpretation of kappa score has been provided

66 Chapter 4. Argument Extraction with Machine Learning

LabelNo Types Examples

1
No side effects,
minimal side effects ‘Never any noticeable side affects’

2
drug not doing job,
no change ‘It didn t do anything for me’

3
drug worked,
drug worked eventually ‘Started working after 1week’

4
benefit,
some benefit
long term benefit

‘skin completely cleared’

5
unbearable effect,
unexpected side effect gained 25pounds

6
positive experience
good experience ‘I m so happy with the results’

7 negative experience
‘I would not recommend
this pill to anyone’

8 cheap ‘Not expensive’

9 side effects go away
‘Luckily after a few days
the swelling and redness disappeared,

10 side effects ‘swollen lymphnodes’

11
bad effect initially,
initially bad effects

‘I noticed my breakouts
have been slightly worse’

12 no change ‘have seen no change in my skin’
13 made illness worse ‘My acne has become worse’
14 hope effects get better ‘hang in there friends’
15 worse when off the drug ‘when I stopped my acne issue came back’

16 managing medication
‘taking it in the morning with food
seemed to eliminate the nausea’

17 some improvement ‘I m starting to see improvements’
18 unsure ‘Dont know’
19 stopped using ‘had to stop using the medications’
20 dangerous side effect ‘fainted multiple times’
21 having to remedy side effects ‘Moisturiser is a must with this gel’
22 worked very well ‘My acne was virtually gone after 2 weeks’
23 unhappy with results ‘I wasn t satisfied with the results’
24 not full treatment ‘however I still break out quite frequently’

25 bearable side effect
‘only minor side effects I noticed
were increased thirst and slight dryness’

26 benefit does not last ‘I saw no lasting effects’
27 expected more benefit ‘not 100 gone’
28 drug worked ‘Started working after 1week’

29 scared to stop drug
‘I m worried about going off it
now what it ll do to my skin’

30 drug not doing job ‘On my 3rd month of this medicine and nothing’
31 expensive ‘it s not cheap’
32 bad knock on effect ‘dried my skin out so badly’
33 short term relief ‘some initial improvement in skin’

Table 4.1: Annotation types and examples

4.3. Training 67

Figure 4.3: distribution of annotations over argument types

in [62]. They suggest that 0.01–0.20 as none to slight agreement, 0.21–0.40 as fair,

0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect

agreement. In this case there is moderate agreement on annotations. The final

dataset is available online 3.

4.3 Training
Following the annotation process I noted that in all the cases where an argument

type was identified in a review the corresponding highlighted text was contained

within a single sentence. More precisely I found that the arguments did not straddle

multiple sentences. This being the case I felt it was more appropriate to treat this as

a sentence classification problem. A sentence classification problem is a text clas-

sification problem where the unit of text being classified is an individual sentence

as oppose to the entire document. I accordingly tokenised each review into its sen-

tences. I followed standard NLP procedures and cleaned common spelling mistakes

and replaced punctuation mistakes using an open source NLP toolkit called spaCy
4.

Whilst there are many ways to approach this text classification problem I recog-

3https://github.com/robienoor/mlargminingreviews
4https://spacy.io/

68 Chapter 4. Argument Extraction with Machine Learning

Figure 4.4: frequency plot showing number of arguments in the review

nised that the size of the training dataset was not amenable to simpler supervised

machine learning approaches such as Naive Bayes or support vector machines. This

is because I did not produce a significant amount of training data through the an-

notation process. In light of this I focused my attention on recent developments in

transfer learning approaches within natural language processing.

4.3.1 Pretrained Text Classification Models

In a traditional supervised learning setting it is assumed that there is some labelled

data to do some particular classification or prediction task. The normal procedure

is then to partition the labelled data into a training set and testing set. The model

is trained to perform well on the training set and the expectation is the the model

will have a similar performance on the test set as well. It is however common in

the real world, as it is in my case, to be constrained by the amount of labelled data

available. To tackle this problem there has been much interest recently in using

transfer learning to minimise the labelled data requirement.

Transfer learning is a deep learning technique where a deep learning model is

trained on a large dataset (base model) and is then fine-tuned to perform a similar

task on a different dataset to produce the final model (fine-tuned model). In NLP

a common approach is to use a language model as the base model. A language

model is a ’token prediction’ model which is trained to predict missing tokens/words

in a document. For example given a training sentence ’the cat sat on the mat’

the model would receive as input the string ’the cat sat on the [MASK]’ and be

4.3. Training 69

Figure 4.5: SBERT architecture

expected to predict the masked words and hence reproduce the original sentence.

The intuition is that if the model can perform this task reasonably well for a wide

range of sequences the model parameters have captured certain latent features of

the language. his model can then be used in turn to build task specific models

that can do things like document classification, sentiment analysis etc. One obvious

advantage to using language models as base models for training task specific models

is that it does not require any human annotated data; it is an unsupervised learning

task.

For sentence-classification I use a SBert model 5. Whilst more recently the

performance of BERT has been surpassed by much larger models (e.g. GPT-3

[63]) they are trainable on consumer harder with a CPU easily hence I opted for

BERT. The model architecture, depicted in Figure 4.5 is essentially comprised of

two seperate BERT models that take as input a sentence (as a string) and produce

an embedding (300 dimensional vector) for each sentence in the pair of sentences

being compared. The outputs of both of these two BERT models are then passed

through a cosine similarity measure in order to predict the correct similarity score.

In the pretrained model I are using the underlying BERT model used in the embed-

ding layer is based on the language model 6 whilst the full SBert model is trained on

a combination of a number of larg sentence similarity datasets [64] [65]. In order to

fine tune the model for this dataset I needed to produce my own sentence similarity

5https://huggingface.co/sentence-transformers/distilbert-base-nli-stsb-quora-ranking
6https://huggingface.co/microsoft/mpnet-base

70 Chapter 4. Argument Extraction with Machine Learning

argument label prec rec f1
bad effect 0.72 0.69 0.70
drug worked 0.80 0.71 0.74
benefit 0.75 0.76 0.76
stopped using 0.75 0.76 0.75
positive experience 0.75 0.83 0.78
negative experience 0.73 0.85 0.78
made illness worse 0.7 0.88 0.78
unexpected side effect 0.67 0.9 0.76
bearable side effect 0.66 0.91 0.76
worked originally 0.66 0.91 0.76
unbearable effect 0.66 0.91 0.76
hope effects gets better 0.66 0.92 0.76
drug not doing job 0.65 0.9 0.74
bad effects initially 0.64 0.92 0.74
no change 0.63 0.93 0.74
having to remedy side effects 0.64 0.94 0.75
minimal side effects 0.63 0.93 0.74
worse when off the drug 0.63 0.93 0.74
expected more benefit 0.62 0.93 0.74
some benefit 0.63 0.93 0.74
no side effects 0.63 0.94 0.74
benefit does not last 0.63 0.94 0.75
expensive 0.65 0.94 0.76

Table 4.2: Results from SBert for argument extraction per argument type

dataset where each datapoint in this dataset is comprised of two sentences and a

score representing the semantic similarity between the two sentences; in this case a

cosine similarity score.

Definition 9. Given some annotated sentences S = ((s1, l1), ..,(sn, ln)) we compute

the sentence similarity cosine score using the following calculation

sentencesimilarity(sa,sb) =

1 if la = lb

−1 otherwise

Example 9. Given the following three labelled sentence s0= ((’I did not ex-

perience any side effects’, no side effects), s1= ((’it made my acne worse’,

made illness worse) and s2= ((’no side effects to report’, no side effects) we

4.4. Results 71

have the following sentence similarity scores sentencesimilarity(s0,s1) = −1,

sentencesimilarity(s0,s2) = 1 and sentencesimilarity(s1,s2) =−1

In my case since I had an imbalance in the distribution of labels per argument

type I chose to restrict myself to sample a maximum of 37 sentences per class which

I computed based on the median number of labels per argument types. I chose

this over the mean as, is visible in Fig 4.4 there is a significant amount of standard

deviation. To produce the dataset I then produced all pairs possible from this sample

and removed and pair which contained the same original sentence. This resulted in

a total of 1,489,620 sentence pairs to train from with an average of 45,140 pairs of

sentence pairs for each label.

In order to train the model I split the dataset off into 80:20 training:testing

split and conducted 3-fold validation experiment. The model was trained using

the sentence pairs that could be constructed using the training dataset. Once the

model was trained I computed the labels for the test dataset by computing the cosine

similarity between the sentence and each of the sentences in the training dataset.

Definition 10. Given a sentence t, a set of training sentences S and a trained SBert

Model M the label of t is given by argmax(s,l)∈S M(t,s).

Example 10. Given a trained model M, a test sentence t and two labelled training

sentences (s1, l1),(s2, l2) say the model computes the following cosine similarities,

M(t,s1) = 0.78 and M(t,s2) = 0.89. The label assigned to t will therefore be l2.

4.4 Results
Table 4.2 summarises the findings of the experiment. I recorded a macro-recall of

0.87 and a macro-precision of 0.66. Although it is challenging to compare this to

existing works, we can look to analogous experiments that achieve macro-F1 scores

in the area of 0.85 [66], [67] but had larger annotated datasets (3k-10k). With this in

mind and recalling the distribution of annotations per argument type in Figure 5.2

it appears that the performance is inline with the aforementioned works.

Peering into the examples we find that for certain classes such as ’no side

effects’ the labels were very similar if not exactly the same in many cases hence

72 Chapter 4. Argument Extraction with Machine Learning

being easy for the model to identify. In contrast many of the argument types scored

much lower precisions and hence F1 scores. In some cases this was due to the size

of the training dataset but moreover some of the argument types were not different

enough in order to warrant having a full -1 cosine difference. In future work I intend

to investigate how Ican either group together similar argument labels together, e.g.

unbearable effect and unexpected side effect.

Figure 4.6 shows a TSne plot produced using the computed embeddings for the

annotated sentences. The underlying BERT model encodes using 768 dimensional

vector. The TSNe plot is a feature reduction algorithm which allows us to visualise

the embeddings to 2 dimensions. TSne plots are used to provide a general sense of

similarity between the plotted entities. It may be the case that a lot of information is

lost during the feature reduction process but none the less the plot gives us a general

sense of similarity between the argument labels.

For each of the argument labels I computed the average embeddings using all

sentences in the annotated dataset that have that label. I then plotted these embed-

dings in the two dimensional plot. Considering that the underlying BERT model did

not have any exposure to the actual dataset I still see that it is performs a reasonable

job of computing sentence embeddings for sentences that are of a similar nature.

I have circled some of the noticeable clusters that form in the plot. It shows that

arguments that are similar in nature have some tendency to be closer together in the

feature space.

To dig a bit deeper consider Table 4.3. It shows, for each cluster, some exam-

ples of the annotated sentences for those labels. I can see that there is some semantic

similarity between these sentences and this explains the proximity between them in

the TSne plot.

4.5 Relevant Literature

As mentioned at the start of this chapter, I have framed this pipe of the full pipeline

as an argument extraction process. In particular I am not extracting argument com-

ponents in a conventional argument mining sense, where arguments and relations

4.5. Relevant Literature 73

Figure 4.6: TSne plot showing average embeddings for each of the argument labels

are being extracted [68]. Instead I have chosen to frame this as a sentence classifi-

cation task.

The work presented in this Chapter is thus better described as apsect-based

sentiment analysis (ABSA) [69] which is an NLP task concerned with the extrac-

tion of ‘themes’/‘aspects’ in text (in particular reviews) and assessing how these

‘aspects’ contribute to the sentiment of the text. Much work has been done in this

and notably deep learning approaches have been a popular direction [70].

ABSA can be broken down into two sub classification tasks. The first is iden-

tifying the aspects which in [71] defined as being of two types; explicit in which the

74 Chapter 4. Argument Extraction with Machine Learning

cluster concept example

1
no side effects

’no side effects’,
’Never any noticeable side affects’

minimal side effects
’i have not had many problems’,
’my side effects were low’

2 negative experience
’Absolutely terrible this pill’,
’never take this pill’

unbearable effect
’my anxiety is unbearable’,
’my face got progressively worse’

3 benefit
’my skin started to clear’,
’skin completely cleared’

positive experience
’My skin really cleared up tremendously’,
’So happy I took this along’

4
expected more benefit

’I expected to see better results’,
’I still have acne scars left’

benefit does not last
’acne began to come back’,
’my skin is not smooth’

Table 4.3: Examples of sentences from the annotated dataset. Sentences from the cluster
can in many cases have similar semantic meanings

aspect is explicitly mentioned and implicit in which it is implied. In my use case

I was dealing with a combination of both. The second step is classifying how the

classification task influences the sentiment of the reviewer.

In short ABSA can be viewed as a sentence classification task and hence I

make use of the latest models for document/sentence classification [72].

4.6 Conclusion and Future Directions
In this chapter I trained a sentence level argument classification model. I started by

using a much larger annotated dataset than in the previous chapter and this time I

did not predetermine the argument types and instead allowed the annotator to freely

label the arguments during the annotation process. The annotation task involved

highlighting the identified argument in review and then assigning the highlighted

text with an argument label.

Ifound that most arguments were contained within a small phrase or even just

a sentence. This enabled us to phrase this a sentence classification problem. As

the dataset I had collected was not very large I wanted to make use of advances in

4.6. Conclusion and Future Directions 75

transfer learning to be able to train a reasonably performing model albeit the data

constraints. I chose to use a pretrained SBErt model which is a model that computes

sentence similarity based on an underyling BERT model.

I produced a sentence similarity dataset by taking pairs of sentences from the

annotated dataset and assigning a similarity score based on the labels assigned. I

recorded a macro-F1 of 0.74.

In future I believe that the sentence similarity measure I produced is very sim-

ple and can be improved upon. For example in some of the labels, e.g. no side effect

and minimal side effect, are quite similar and so the similarity score I assign to these

labels should reflect that. On the contrary other labels, e.g. positive experience and

unbearable effect, should be maximally different.

It would also be desirable to be able to train my own base BERT model. The

underlying a large dataset scraped from the internet. Medical drug reviews present

unique semantic features that make it different to other domains. For example side

effects are a big factor here and large BERT models may not be able to capture these

concepts appropriately. For example ’acne has decreased’ is a benefit and is a good

thing in the case of reviews in contrast to ’libido has gone down’. Training a BERT

model from scratch would allow us to ensure the model is able to better capture this

level of detail.

Chapter 5

Argument Reasoning using

Unsupervised Learning

5.1 Introduction

In this chapter I look closer at the drug reviews and in particular I investigate ways in

which I can exploit the relationship between the rating of a review and its constituent

arguments. We hypothesise that the rating provided in a review is indicative of the

winning set of arguments in a review and propose a method for harnessing this

relationship in order to predict the argument graph for that review.

Product reviews are user provided feedback usually presented in the form of

a textual review and a numerical rating. They are useful to prospective users of

the product seeking information to supplement their decision making process. Take

for example a person looking to purchase a specific mobile device. This person will

formulate an opinion on the mobile by reading technical articles, marketing material

and product reviews. Product reviews differ however from other sources in that they

provide first hand accounts of experiences with the product, each effectively serving

as a case study into the product’s performance with the added advantage of often

providing insight into lesser known features experienced only through repetitive

use. Furthermore by reading many reviews the user is able to identify popular merits

and demerits of the product. We can see that through this process the reader is

aggregating arguments and counterarguments for the product.

78 Chapter 5. Argument Reasoning using Unsupervised Learning

5.1.1 Reviews as Argument Graphs

A textual review can be seen as a set of arguments, each of which is either for or

against the product in question. We call this textual review a collection of polarized

arguments. Furthermore whether or not a reviewer is overall in favor of, neutral or

against the product can be inferred by the numerical rating. Viewed this way the

rating can be seen as a sort of conclusion inferred from the arguments in the textual

component of the review.

With an understanding of the arguments that can occur in a review and polarity

of the review I have proposed in [27] that reviews can be instantiated into argument

graphs. In this chapter I continue this investigation in which I work within the

context of medical drug reviews. I propose using medical drug reviews to generate a

classifier that can be used to classify reviews/comments that do not come with rating

as being either positive, negative or neutral (i.e. extract polarity from reviews).

If we consider each drug review to be a collection of arguments instantiated

into an argument graph, we can assume then that the arguments that ‘win’ in the

graph are those that contribute most to the rating. If we think in terms of extensions

we might say that, for example the grounded extension of this graph should correlate

to the review’s numerical rating since this extension captures the conclusion/final

sentiment of the review.

Put in other words, the arguments in the textual review whose polarity corre-

lates to the review’s numerical rating are those arguments that win and are hence

members of the grounded extension. With this in mind I propose that it is possible,

given a review whose arguments have been extracted and assessed for polarity, to

instantiate all the argument graphs whose grounded extension matches the polarity

of the review’s rating. By using these argument graphs we are able to generate a

probability distribution across them for each review. This idea is formalized later in

this paper.

Drug review websites such as Drugs.com, Mayoclinic provide a platform in

which medical patients can express their experiences with different medications and

treatments. These websites behave much like consumer websites, such as Amazon

5.1. Introduction 79

and Airbnb, in that they request reviewers to provide a textual review and a nu-

merical rating. Patients who are seeking to use a specific drug may reading these

reviews and based on their investigation may chose to act on their findings, or if the

medication they are taking is part of a serious treatment, i.e. in the case of cancer,

the patient is at least more aware of the benefits and potential harms other users

have experienced. I believe such reading also benefits doctors and drug compa-

nies who may be seeking for data outside of clinical trials to better understand the

performance of a drug. For example drug reviews may help capture sensitivity to

side effects or may enlighten certain benefits of the drug that may not have been as

visible in controlled trials of the drug.

Upon analysis, it can be seen that the textual reviews of a given drug tend

to comment on a specific number of topics. Take for example the reviews of a

number of different painkillers. In this case the reviews may discuss topics, such as

reason for taking the painkiller, its effectiveness and its side effects. We can think

of this as users providing arguments related to a limited set of argument topics.

More generally we say an argument topic is as a theme/topic of discussion. For

each argument topic arguments can be made to support the topic and by extension

support/oppose the drug depending on the topic. As an example if we take the

example of side effects from the painkiller, we can imagine arguments around this

topic being that there were no side effects, there were many side effects or even there

were side effect but they were bearable. Each of these arguments have a polarity in

that they either support the drug or oppose it to some degree. I refer to these polar

arguments as ‘types of arguments’. The complete collection of these argument types

for all argument topics I define as the set of argument types (AT s).

Each review can hence be seen as a collection of different argument types. A

user may provide conflicting argument types in a single review. The user may then

go on to rate the product positively with a high numerical score. What we would

intuit in this case is that, overall the positive arguments were of higher importance

to the user than the negative arguments thus explaining the high numerical rating.

By analyzing many reviews of the same product/ type of product, we begin

80 Chapter 5. Argument Reasoning using Unsupervised Learning

to develop an understanding as to how the argument types interact, based on an

aggregation of their interactions as observed within individual reviews. I begin by

introducing background definitions and then move onto formalising our approach

in Section 5.3. Following this I undertake an experiment using a set of annotated

reviews.

5.2 Modelling a Review with Probabilistic Argumen-

tation

5.2.1 Probabilistic Argumentation

I introduced the definitions for probabilistic argumentation in Section 2.2. Let us

recall some of the extensions that can be ascertained once we have identified an

acceptable set of arguments in an argument graph. Given an acceptable set there are

the following extensions that can be attained are:

1. Complete extension (co) - A set Γ is a complete extension iff Γ is defended

2. Grounded extension (gr) - A set Γ is a grounded extension iff it is the mini-

mal (w.r.t set inclusion) complete extension

3. Preferred extension (pr)- A set Γ is a grounded extension iff it is the maximal

(w.r.t set inclusion) complete extension

4. Stable extension (st)- A set Γ is a stable extension iff it attacks every argu-

ment not in its set

I use the notation Extσ where σ ∈ {co,gr,pr,st} to denote the arguments in

extension σ .

Let us recall that the constellations approach to probabilsitic argumentation

introduced in [45] which builds upon foundations laid out in [44] [73]. The constel-

lations approach considers a probability distribution over a set of subgraphs com-

prising of arguments A. I recall Definition 7 for distinguishing between the two

types of subgraphs that can occur.

5.2. Modelling a Review with Probabilistic Argumentation 81

Definition 11. An argument framework G = (A,R) can be decomposed into a sub-

graph G′ = (A′,R′) where G′ v G iff A′ ⊆ A and R′ ⊆ (A′×A′)∩R. A set of sub-

graphs of G can be denoted Sub(G) = {G′|G′ v G}. The subset G′ is considered

full iff A′ ⊆ A and R′ = (A′×A′)∩R. A subgraph G′ is considered spanning iff

A′ = A and R′ v A.

Using Definition 11 we provide some auxiliary definitions to help define the set

of all spanning subgraphs for a graph G and similarly the set of all full subgraphs.

Definition 12. Given a graph G=(A,R) we denote the set of all spanning subgraphs

for G as Spanning(G) and the set of all full graphs for G as Full(G).

Definition 13. A subgraph distribution is a function PC : Sub(G)→ [0,1] where the

sum of all probabilities for each graph in G′ ∈ Sub(G) = 1, i.e. ∑G′vSub(G)PC(G′) =

1. Using Definition 11 we attain a full subgraph distribution when PC is applied

the set of full subgraphs of G. Likewise a spanning subgraph distribution when

PC is applied to the set of spanning subgraphs of G.

Given a subgraph distribution it is possible to determine the probability with

which a a set of arguments is in an extension σ ∈ {pr,co,st,gr}.

Definition 14. For E ⊆ A the probability that L : E→{in,out,un} is a σ set is given

by the equation:

Pσ (L) = ∑
G′∈Sub(G)s.t.L∈σ(G′)

PC(G′) (5.1)

Example 11. Table 5.1 shows the full subgraph for argument graphs containing

two arguments (graphs G1,G2,G3,G4,G5,G6,G7). The spanning subgraphs are

G1,G2,G3.

The constellations approach is relevant to our task as we have a collection of

reviews where the arguments are known and whereas the attacks between arguments

are not. In the following section I outline my approach to dealing with this problem.

In what follows I propose a method for generating a probability distribution

over the space of possible arguments graphs assignable to a review; I refer to this

82 Chapter 5. Argument Reasoning using Unsupervised Learning

Graph Structure Probability
G1 x← y 1/6
G2 x→ y 1/6
G3 x↔ y 1/6
G4 x y 1/6
G5 x 1/6
G6 y 1/6
G7 /0 1/6

Table 5.1: A uniform full subgraph distribution for two conflicting arguments

space of possible graphs as the graph space. More specifically I assume a rela-

tionship between the rating provided and the arguments that exist in the grounded

extension of the review. Using this relationship we construct a (prior) distribution

over the graph space from which we can then sample a graph and assign it to the

review. These probability distributions provide us an aggregated representation of

the set of reviews we are looking at, and can be used in other downstream reasoning

tasks, as well as be used to assign graphs to reviews.

Further to this I investigate extracting additional information about arguments

in a set of reviews. In particular I evaluate the overall impact of an argument by

considering the effect it has had on the reviews in which it has appeared. This

additional information can then be used to update the probability distribution over

the space of graphs.

I conclude by demonstrating that my setup is flexible and can be used in con-

junction with off the shelf machine learning algorithms to build predictive models

for assigning argument graphs to reviews that do not have ratings.

My proposal is not limited to product reviews and can indeed be used in any

situation in which I have the potential to model statements as a set of arguments

where each statement is accompanied by a proxy measure indicating which argu-

ments win in the tuple. For example consider a television debate being watched by

a number of viewers. Each viewer, over the course of the debate, accumulates a

number of arguments from both parties, and makes an overall assessment indicat-

ing which party they felt won the debate. My approach could thus be used to build

probability distributions over the set of arguments and can thus be used to assign

5.2. Modelling a Review with Probabilistic Argumentation 83

graphs to each viewer.

To summarise I make primarily two contributions with this chapter. The first

contribution is providing a methodology for identifying probability distributions

over constellations of argument graphs based on a set of arguments and a proxy

measure which I use to infer which arguments are mostly likely to be acceptable.

The second contribution is refining this distribution using real data. More

specifically I provide a method for incorporating statistical data about the argu-

ments in a set of reviews in order to modify the probability distribution such that is

better reflects the reviews that exist in the dataset.

5.2.2 Analysing the Polarity of an Argument Graph

I start by defining the set of all possible argument graphs that can be constructed

given a set of positive and negative arguments; i.e the graph space. I make the

assumption that a review will only be able to have graphs assigned to it that contain

all of the arguments in the review; in other words only spanning subgraphs that can

be constructed using the arguments in the review. What this entails is choosing only

the set of bipartite spanning subgraphs that can be produced using the arguments

found in the review. This is important to note because when constructing the graph

space we can reduce our computational cost by only considering the graphs needed

in order to analyse a review.

Definition 15. Let A + be the set of all positive arguments and A − the set of all

negative arguments. Given a subset of positive arguments A+ ⊆ A + and negative

arguments A− ⊆A − an argument graph space S is the set of all bipartite spanning

subgraphs, i.e: S = {(A+∪A−,R)|R ∈P(A+×A−∪A−×A+)}.

Proposition 1. Given a set of positive and negative arguments A+ and A− let m =

|A+| and n = |A−|. The size of the space of graphs is then 22mn.

Proof. This number of graphs in the graph space is given by the number of unique

combinations of attacks we can between positive arguments (m = A+) and negative

arguments (n = A−) excluding self attacks. This is given by the power set 22mn.

84 Chapter 5. Argument Reasoning using Unsupervised Learning

Once we have the space of argument graphs we can then begin to analyse

each graph in the graph space in terms of its grounded extension. Although other

semantics can be considered I have chosen to focus on the grounded extension as

a simplfication assumption and intend to revisit other extensions in future works.

Below I define a number of auxiliary functions needed to conduct analysis on this.

Definition 16. Let A+ be a set of positive arguments and A− a set of negative argu-

ments and S be the corresponding graph space. For each graph G ∈ S we define the

following sets groundArgs+(g) = {a ∈ gr(G)|a ∈ A+} and groundArgs−(g) = {a ∈

gr(G)|a ∈ A−}. Using these sets we can then define the overall polarity of a graphs

that have the grounded extension g using the function below.

Pol(G) = |groundArgs+(G)|− |groundArgs−(G)|

The function Pol provides a simple mechanism for ordering the graph space by

considering the overall polarity of the grounded extension of a graph. It allows is to

represent the graph space as a sequence containing all graphs in S s.t. for any two

graphs Gi,G j ∈ S it holds that Pol(Gi)≥ Pol(G j).

Example 12. Consider a situation where we have a positive argument a and a neg-

ative argument b. The number of graphs in graph space S is 22 according to Propo-

sition 1. The value assigned to each graph in S by Pol is depicted in Table 5.2. We

can see that the graphs are sorted their Pol score s.t Pol(G1)≥ Pol(G2) etc.

Proposition 2. Pol(G) ∈ Z and |A−| ≤ Pol(G)≤ |A+|

Proof. The value for Pol(G) is dependent on the two terms |groundArgs+(G)| and

|groundArgs−(G)|. The largest value each term can take is |A+| and |A−| respec-

tively given that those are the maximum number of arguments that can end up in the

grounded extension for each respective polarity. It therefore follows that Pol(G)∈Z

and |A−| ≤ Pol(G)≤ |A+|.

I stipulate that the rating scale for the reviews are to be partitioned into three

categories; namely positive, neutral and negative. In my case I consider a rating

5.2. Modelling a Review with Probabilistic Argumentation 85

No G Pol(G)
P(G)

Pos(s) Ntl(S) Neg(S)
G1 a→ b 1 1 0 0
G2 a b 0 0 0.5 0
G3 a↔ b 0 0 0.5 0
G4 a← b -1 0 0 1

Table 5.2: The probability distribution using the function Candidates on a graph space S
where A = {a,b} where a is a positive argument and b a negative argument

scale between 1 and 10. In the case that the ratings do not follow a 10-point scale,

normalisation can be used to bring the values within the 1-10 scale.

With these partitions in mind we partition the graph space based on the overall

polarity of the grounded extensions. In other words we say that graphs that have

more positive arguments in its grounded extension than negative are considered

positive and so on.

Definition 17. Given a graph space S with grounded extension Gr(S) the sets of

positive Pos(S), neutral Ntl(S) and negative Neg(S) grounded extensions are:

Pos(S) = {G ∈ S|Pol(gr(G))> 0}

Ntl(S) = {G ∈ S|Pol(gr(G)) = 0}

Neg(S) = {G ∈ S|Pol(gr(G))< 0}

In order to relate the polarity of the grounded extension of the graph to the

numerical rating I propose a simple function that assigns a review a set of graphs

based on the polarity of its rating. We say the polarity of a rating r is negative if

r≤ 4, neutral if 5≤ r≤ 7 and positive if r≥ 8. These boundaries are a continuation

of those seen in Chapter 3.

Definition 18. Let A+ be a set of positive arguments, A− a set of negative arguments

and S the corresponding graph space. Given a review (A,r) where A = A+∪A− and

r is a rating s.t 1≤ r ≤ 10 the set of candidate graphs for the review is given by the

function:

86 Chapter 5. Argument Reasoning using Unsupervised Learning

Candidates(S,r) =

Pos(S) if r ≥ 8,

Ntl(S) if 5≤ r ≤ 7,

Neg(S) if r ≤ 4,

With the rating scale partitioned into the three polarities we can then begin to

assign probabilities to each graph.

Definition 19. Given a review (A,r) and a set of candidate graphs Candidates(S,r)

a probability distribution over Candidates(S,r) is a function P : Candidates(S,r)→

[0,1]

At this point we have no reason to believe one candidate graph is more prob-

able than another and hence we can distribute probability mass over each graph

uniformly.

Definition 20. Given a review (A,r) and a set of candidate graphs Candidates(S,r)

a uniform probability for a graphs G ∈ Candidates(S,r) is given by the function:

P(S,G,r) =

1

|Candidates(S,r)|
if G ∈ Candidates(S,r)

0 otherwise

Example 13. Continuing with the example from Table 5.2, we can see the three

possible probability distributions corresponding to the three possible polarities.

Proposition 3. Given a graph space S and a rating r, it holds that ∑G∈S P(S,G,r) =

1.

Proof. The three possible resulting sets (Pos(S),Neg(S),Ntl(S)) from

Candidates(S,r) are disjoint sets. It follows then that P(S,G,r) places non-negative

mass only on the set Candidates(S,r) with mass uniformly distributed across each

graph in that set. Uniform distributions are valid probability distributions.

If we now wish to assign a graph to a review based on its rating r we can

retrieve the set of candidate graphs using Candidates and use the probability mass

5.2. Modelling a Review with Probabilistic Argumentation 87

function P in order to identify a probability distribution; the graph can then be

assigned by sampling from this (multinomial) distribution.

Proposition 4. Any graph space in which there are m positive arguments and n

negative arguments there exists an asymmetry in the size of the sets Pos(S) and

Neg(S) s.t |Pos(S)|> |Neg(S)| when m > n and |Neg(S)|> |Pos(S)| when n > m.

Proof. The size of |Pos(S)|, |Neg(S)| vary in accordance to how many graphs in

the graph space have grounded extension with a corresponding polarity. When the

number of positive graphs, m, is greater than the number of negative graphs, n,

there are more ways that a positive argument can end up in the grounded extension

therefore a larger proportion of the graphs in the graph space S have a positive

arguments in their grounded extension. This is where the asymmetry occurs.

The consequence of this proposition is that when such an asymmetry exists

I distribute the probability mass thinly over the larger polarity set in contrast to

the smaller polarity set. In this case if we compare the larger set to the smaller

set, because both are uniform distributions, we are more likely to make the correct

graph assignment when the probability mass is spread over then smaller set as there

are fewer graphs to sample from.

Up until this stage we have relied upon the simple intuition that the grounded

extension of a graph in a graph space has an inherent polarity and that this polarity

can be aligned with the polarity of the rating provided in a review. We are yet

to discriminate between argument graphs in a set of polarity argument graphs, e.g

the set Pos(S). Although the polarity of the grounded extension is a good starting

point for determining the overall polarity of a graph, we can go further and analyse

the graph structure to make more granular distinctions in the degrees of polarity

between the different graphs.

5.2.3 Ranking Argument Graphs

Classical semantics, such as the grounded extension, provide acceptability statuses

of arguments by analysing the acceptability of the arguments in subsets of all argu-

ments in a graph. These classical semantics provide an assessment of the accept-

88 Chapter 5. Argument Reasoning using Unsupervised Learning

ability of arguments in absolute terms and whilst this may be sufficient for some

applications, in many cases we require a finer grained interpretation of an argu-

ment’s acceptability. To illustrate in some applications when an argument attacks

another we may wish to model the attacked argument as being weakened as op-

posed to being completely defeated, in other words we wish to quantify the degree

of acceptability of arguments.

Graded semantics were introduced to bridge this gap [40]. A graded semantics

is a function that assigns arguments in an argument framework a numerical value

indicating the degree of its acceptability.

For our purposes we are only interested in making distinctions between argu-

ments in a set of candidate graphs; the starting point for this is to understand the

acceptability of an argument in an argument graph. In principle any graded seman-

tics could be used; for simplicity I assumed a very simple function based on the

number of attacks an argument receives and inflicts.

Definition 21. Given an argument graph G = (A,R) and an argument a ∈ A, the

number of attacks a inflicts is attG(a)= |(x,y)∈R|x= a}| and the number of attacks

it receives is defG(a) = |(x,y) ∈ R|y = a}|. Using this I define a combined score

Grade below:

Grade(G,a) = attG(a)−defG(a)

Example 14. Consider an argument graph {{a,b},{(a,b)}}. In this case

Grade(G,a) = 1 and Grade(G,b) =−1.

Proposition 5. Let Space(A+,A−) be a graph space. Given B ∈ {A+,A−} and

a ∈ B then the maximum value for a can be assigned for Grade w.r.t the graph

space is given by maxG∈Space(A+,A−)Grade(G,a) = |A+∪A− \B| and the minimum

by minG∈Space(A+,A−)Grade(G,a) =−|A+∪A− \B|.

Proof. The value for Grade(G,a) is maximal if a attacks all its opponents and is

not attacked in return. If considered in the context of a graph space it means a is

attacking all the opponents in the set of arguments with the opposite polarity. The

opposite is true for minimum value for Grade.

5.2. Modelling a Review with Probabilistic Argumentation 89

Proposition 6. Given an argument graph G it holds that ∑a∈A+ Grade(a,G) +

∑b∈A−Grade(b,G) = 0.

Proof. For ease of notation I specify that for a set of arguments B ∈ {A+,A−}

the following sets exists: Batt = {attG(a)|a ∈ B} and Bdef = {defG(a)|a ∈ B}.

I then make the following observations ∑a∈A+ Grade(G,a) = |A+
att| − |A+

def | and

∑a∈A−Grade(G,a) = |A−att| − |A−def |. Given that G is a bipartite graphs it fol-

lows, given that G = (A,R) then ∀(a,b) ∈ R if a ∈ A+ → b ∈ A− and likewise if

a ∈ A−→ b ∈ A+. From this we see that the following is true |A+
att| = |A−def | and

|A−att| = |A+
def |. If we make the substitutions it follows that ∑a∈A+ Grade(G,a) +

∑b∈A−Grade(G,b) = |A+
att|+ |A+

def |− |A
−
att|− |A−def |= 0

Whilst graded semantics assigns numerical values to arguments in the context

of single argument graph we are interested in something different; namely scoring

an argument in an argument graph relative to all the scores it has been assigned

in the rest of the graph space. My aim is to create a function that allows us to

ultimately compare graphs against each other.

Consider graphs G1 and G2 in Table 5.4. We can see that in G1 both of the

positive arguments are maximally attacking their opponent b and are not facing any

retaliation; this can be interpreted as meaning that G1 is most positive graph in

the graph space. In contrast argument a in G2 is not engaging in any conflict and

therefore, although it is equally as acceptable under a grounded semantics, we wish

to make the draw out that relative to its performance in G1 it is under performing.

In the following I formalise this concept.

Definition 22. Given a set of arguments A and a graph space S the smallest and

largest value that can be assigned to an argument a ∈ A is given by the functions:

min(a,S) = min
G∈S

Grade(G,a) max(a,S) = max
G∈S

Grade(G,a)

The min-max normalised graded function is then a function NormGrade : a→

[0,1] which we define as follows:

90 Chapter 5. Argument Reasoning using Unsupervised Learning

NormGrade(G,S,a) =
Grade(G,a)−min(a,S)
max(a,S)−min(a,S)

Proposition 7. 0≤ NormGrade(G,S,a)≤ 1

Proof. When Grade(G,a) = min(a,S) the function NormGrade(G,S,a) = 0 and

likewise when Grade(G,a) = max(a,S) the function NormGrade(G,S,a) = 1 re-

turns 0

Example 15. Table 5.3 depicts the graph space of two arguments a and b. The

maximum value achievable by either argument is in attacking the other whilst not

being attacked. Hence we see that min(a,S) = min(b,S). The opposite is true for

the minimum score assignable in which case min(a,S) =min(b,S) =−1. The Table

then depicts the normalisation of each argument based on the Grad score assigned

to it in a graph w.r.t to the aforementioned minimum and maximum values.

Given this we can now define a function which assigns the entire graph a score

based on the graded semantics of its constituent arguments

Definition 23. Given a set of arguments A = A+ ∪A−, where A+ ∩A− = /0, and

a corresponding graph space S the aggregate graded score for a graph G ∈ S we

say that the aggregate score for positive arguments in graph G is AttackScore+ =

∑a∈A+ NormGrade(G,S,a) and the aggregate score for negative arguments in graph

G is AttackScore− = ∑a∈A−NormGrade(G,S,a). The aggregate polarity score for

the graph is then given by:

AttackScore(S,G) = AttackScore+−AttackScore−

Example 16. Table 5.3 depicts the aggregate score of each graph assigned using

AttackScore. In this case the outcomes are aligned with the polarity of the grounded

extensions and we see that the aggregate scores differ change with the polarity of

the grounded extension of the graphs.

A nice consequence of the function AttackScore is that if we consider the or-

dered set of attack scores assigned to graphs in a graph space we find that the dif-

ference between them is a constant which I refer to as ∆Att.

5.2. Modelling a Review with Probabilistic Argumentation 91

Proposition 8. Let AttackScores = (AttackScore0, ..,AttackScorem−1) be a se-

quence of all the attack scores in the set {AttackScore(G)|G ∈ S} s.t for any two

values in the set AttackScorei > AttackScorei+1. It then holds that the pairwise dif-

ference between any two consecutive values in the sequence is a constant ∆Att i.e.

∆Att = AttackScorei−AttackScorei+1 = AttackScorei+1−AttackScorei+2.

Proof. Let g = ∑a∈A+ Grade(a,G). Using this in conjunction with the equation in

Proposition 6 we find that ∑a∈A−Grade(a,G) = −g. We then make the following

substitution using the definition for NormGrad and AttackScore.

AttackScorei =
g− i− p(min+)
max+−min+

+
g− i+n(min−)
max−−min−

If we then take the difference between two consecutive attack scores we

find that ∆Att = AttackScorei− AttackScorei−1 and we substitute the values for

max+,min+,max−,min− from Proposition 6, we find the equation reduces to the

constant:

∆Att =
1
2n

+
1

2p

Example 17. To illustrate the result in Proposition 8 consider the situation depicted

in Table 5.3 where n= p= 1. We find that AttackScores= (1,0,0,−1). The ∆Att =

1 in this case. If we consider the setting in Table 5.4 where n = 1, p = 2 we see that

AttackScores = (2,1.25,0.5,−0.25,−1) an accordingly the ∆Att = 0.75.

The score assigned to each graph by AttackScore is sufficient to give a basic

ordering over the graphs in a graph space. However in certain cases, such as if

the graph space contains many arguments or there are more positive than negative

arguments, we see that it assigns the same score to some graphs even if they have

different polarities. Take for example Table 5.4 in which graphs AttackScore(G7) =

AttackScore(G11) = 0.5 yet if we look at the grounded extension we see that Gr(G7)

is positive as can be whilst Gr(G10) is neutral.

92 Chapter 5. Argument Reasoning using Unsupervised Learning

No Graph Grade
AttackScorea b

G1 a→ b 1 0 1
G2 a b 0.5 0.5 0
G3 a↔ b 0.5 0.5 0
G4 a← b 0 1 -1

Table 5.3: Graded scores for arguments a, b and aggregate scores for each graph

In order to make this distinction I incorporate the Pol function to give us a final

aggregate score for each argument graphs as follow. I start by sorting the graph

space by AttackScore and then Pol.

I then consider each subset of graphs in the set {Pos(S),Ntl(S),Neg(S)}. I

order the graphs in a polarity set assessing the score obtained using the pol function.

Definition 24. Given arguments A = A+ ∪ A− where A+ ∩ A− = /0, a cor-

responding graph space S, and set of polarity argument sets Polarity =

{Pos(S),Ntl(S),Neg(S)}. For each polarity set polarity ∈ Polarity we define a

sequence (Gr1...GrN) of all grounded extensions in {gr(G)|G ∈ polarity} where

N = |{gr(G)|G ∈ polarity}| s.t for any two grounded extensions Gri,Gri+1 it holds

that Pol(Gri)≥ Pol(Gri+1).

This first stage of sorting ensures that graphs in a polarity set are arranged

according to the polarity of the grounded extension. I choose to sort first by pol

rather than AttackScore as the AttackScore values are non-unique and do not alone

differentiate between graphs which have a high pol score.

Example 18. Consider the set of positive graphs in Table 5.4. I see that graphs

G6 - G10 all share the same Agg values although the polarity of the graphs dif-

fer. A polarity based ordering ensures that graphs {G6,G7} are ranked higher than

{G8,G9,G10}.

I then sort the resulting sequence w.r.t to grounded extension using the

AttackScore score.

Definition 25. Given arguments A = A+∪A− where A+∩A− = /0, a corresponding

graph space S and the set of possible grounded extensions Gr(S) let grGr(S) = {G ∈

5.2. Modelling a Review with Probabilistic Argumentation 93

S|gr(G) = Gr} be the set of graphs for a grounded extension Gr ∈ Gr(S). We then

say that (G1...GM) is a sequence of all graphs in grGr(S) where M = |grGr(S)| s.t for

any two graphs Gi,Gi+1 it holds that AttackScore(S,Gi)≥ AttackScore(S,Gi+1).

Example 19. Continuing on from Example 18 we see that there are two sets of Pol

scores: graphs with pol score of 2 are {G1..G5} and the graphs with score of 1 are

{G8,G9,G10}. For graphs with score of 1 we see that G1 is ranked highest with

Agg score of 1 and the rest are equally ranked.

With this ordering over the graph space we then proceed to compute an aggre-

gate score for each argument graphs which combines both the Pol and AttackScore.

Definition 26. Let S be a graph space and (G1, ..,Gm) be a sequence of all the

graphs in sorted by AttackScore and then Pol. We define that for any two graphs

Gi,Gi+1 that similar(Gi,Gi+1) holds iff (AttackScore(S,Gi)=AttackScore(S,Gi))∧

(Pol(Gi) = Pol(Gi)) otherwise ¬similar(Gi,Gi+1). We then define the aggregate

score of a graph below where we assume Agg(G0) = AttackScore(S,G1):

Agg(Gi) =

Agg(Gi−1) if similar(Gi,Gi+1)

Agg(Gi−1)+∆Att if ¬similar(Gi,Gi+1)

Example 20. Consider graphs G6,G8 from the example in Table 5.4. The attack

scores are all the same i.e AttackScore(S,G6) = AttackScore(S,G8) = 0.5. If we

look carefully at the grounded extension of each we see that Pol(G6) > Pol(G8).

The Agg function picks up on this and lowers the score it assigns to G8.

The next step is to align the ordered graph space to the numerical rating; so far

we have assumed a 1-10 rating scale. We do this by assigning each of the polar sets

Pos(S),Ntl(S),Neg(S) upper and lower bounds within the rating scale, i.e: positive

graphs are those which have ratings from 8-10. We can then analyse the graph space

to see what are the corresponding values assigned by the function Agg for these

bounds. With the rating value and the corresponding aggregate score we identify a

second order polynomial function enabling us to smoothly map between any value

in the range [0,10] and an Agg value.

94 Chapter 5. Argument Reasoning using Unsupervised Learning

Definition 27. We define a six member tuple of coordinates called AggCoordinates=

((10,maxG∈Pos(S)(G)),(8,maxG∈Pos(S)(G)),(7,maxG∈Ntl(S)(G))

,(5,maxG∈Ntl(S)(G)),(4,maxG∈Neg(S)(G)),(1,minG∈Neg(S)(G))). Furthermore we

stipulate that iff Pos(S) is a singleton set then the first member of the tuple is

((10,maxG∈Pos(S)(G)+∆Agg). Likewise iff Neg(S) is a singleton set then the last

member of the tuple is ((1,minG∈Pos(S)(G)−∆Agg).

Example 21. If we consider the set of arguments proposed in Table 5.2 we see that

we attain the coordinates AggCoordinates = ((10,1.5),(8,1),(7,0.5),(5,0.5),

(4,−1),(1,−1.5)). Note that given that in this case |Pos(S)| = |Neg(S)| =

1 we adjusted the first and last members of the tuple. Now consider the

larger example in Table 5.4. Here we attain the coordinates AggCoordinates =

((10,2),(8,−0.25),(7,−1),(5,−1.75),(4,−2.5),

(1,−3.25)).

With the coordinates AggCoordinates we can then fit our polynomial function

which will enable us to go from a rating to a corresponding Agg value. This is

a useful feature for models that do not predict integer values and instead predict

continuous values.

Definition 28. Given the coordinates AggCoordinates and a rating r ∈ [0,10] I de-

fine function ratingToAgg : r → R which is a second-order polynomial function

fitted to the coordinates AggCoordinates using the least-squares method:

ratingToAgg(r) = c0r2 + c1r+ c2

Where c0,c1,c2 ∈ R are the coefficients of the polynomial.

Example 22. Continuing on from the previous example, if we consider the setting

in which we have 1 positive arguments and 1 negative arguments we see that the

polynomial almost reduces to a linear function (c0 = 0.003,c1 = 0.28,c2 = −1.5).

Figure 5.1 shows the function. In contrast the setting in which we have 2 positive ar-

guments and 1 negative argument produces a more curved function (c0 = 0.05,c1 =

−0.04,c2 =−3.2) and is visible in Figure 5.1.

5.2. Modelling a Review with Probabilistic Argumentation 95

N
o

G
ra

ph
G

r(
G

)
G

ra
d

A
tt

ac
k

Sc
or

e
A

gg
P

a
b

c
10

9
8

7
6

5
4,

3,
2,

1
G

1
a
→

b
←

c
a,

c
1

0
1

2
2

0.
16

0.
06

0.
01

0
0

0
0

G
2

a
b
←

c
a,

c
0.

5
0.

25
1

1.
25

1.
25

0.
13

0.
11

0.
04

0.
01

0.
01

0.
01

0.
01

G
3

a
→

b
c

a,
c

1
0.

25
0.

5
1.

25
1.

25
0.

13
0.

11
0.

04
0.

01
0.

01
0.

01
0.

01
G

4
a
→

b
↔

c
a,

c
1

0.
25

0.
5

1.
25

1.
25

0.
13

0.
11

0.
04

0.
01

0.
01

0.
01

0.
01

G
5

a
↔

b
←

c
a,

c
0.

5
0.

25
1

1.
25

1.
25

0.
13

0.
11

0.
04

0.
01

0.
01

0.
01

0.
01

G
6

a
→

b
→

c
a,

c
1

0.
5

0
0.

5
0.

5
0.

08
0.

12
0.

11
0.

05
0.

03
0.

02
0.

02
G

7
a
←

b
←

c
a,

c
0

0.
5

1
0.

5
0.

5
0.

08
0.

12
0.

11
0.

05
0.

03
0.

02
0.

02
G

8
a

b
↔

c
a

0.
5

0.
5

0.
5

0.
5

-0
.2

5
0.

05
0.

07
0.

15
0.

11
0.

06
0.

05
0.

05
G

9
a
↔

b
c

c
0.

5
0.

5
0.

5
0.

5
-0

.2
5

0.
05

0.
07

0.
15

0.
11

0.
06

0.
05

0.
05

G
10

a
b

c
a,

b,
c

0.
5

0.
5

0.
5

0.
5

-0
.2

5
0.

05
0.

07
0.

15
0.

11
0.

06
0.

05
0.

05
G

11
a
↔

b
↔

c
0.

5
0.

5
0.

5
0.

5
-1

0.
02

0.
03

0.
07

0.
15

0.
11

0.
09

0.
08

G
12

a
b
→

c
a,

b
0.

5
0.

75
0

-0
.2

5
-1

.7
5

0.
01

0.
01

0.
02

0.
08

0.
13

0.
14

0.
13

G
13

a
←

b
c

b,
c

0
0.

75
0.

5
-0

.2
5

-1
.7

5
0.

01
0.

01
0.

02
0.

08
0.

13
0.

14
0.

13
G

14
a
↔

b
→

c
0.

5
0.

75
0

-0
.2

5
-1

.7
5

0.
01

0.
01

0.
02

0.
08

0.
13

0.
14

0.
13

G
15

a
←

b
↔

c
0

0.
75

0.
5

-0
.2

5
-1

.7
5

0.
01

0.
01

0.
02

0.
08

0.
13

0.
14

0.
13

G
16

a
←

b
→

c
b

0
1

0
-1

-2
.5

0
0

0
0.

03
0.

01
0.

13
0.

19

Ta
bl

e
5.

4:
B

re
ak

do
w

n
of

pr
ob

ab
ili

ty
di

st
ri

bu
tio

n
an

d
ag

gr
eg

at
e

gr
ad

ed
sc

or
es

fo
re

ac
h

gr
ap

h
in

a
gr

ap
h

w
ith

2
po

si
tiv

e
ar

gu
m

en
ts

an
d

on
e

ne
ga

tiv
e

96 Chapter 5. Argument Reasoning using Unsupervised Learning

Figure 5.1: Fitted ratingToAgg functions for two sets of arguments

In order to assign a probability distribution we simply say that the mass as-

signed to a graph for a given rating is inversely proportional to its distance to

ratingToAgg(r). Furthermore we take the squared distance to emphasise that graphs

far away from the rating’s aggregate value are least likely.

Definition 29. Given a function ratingToAgg and a rating r ∈ {1, ..,10} we define

a distance function AggDist(G, r) = 1
1+|Agg(G)−ratingToAgg(r)|2 . I then define a prob-

ability mass function:

P∗(G,r) =
AggDist(G,r)

∑G∈S AggDist(G,r)

Example 23. The right-hand side of Table 5.4 depicts the probability distribution

of the ratings over the graphs. We see that given the graph space is asymmetric

the highers ratings are more spread out across the positive graphs in comparison to

the lower ratings which distribute almost exclusively to the lower end of the graph

space.

Using Argument Impacts

In the previous section we have only looked at generating probability distributions

over the constellations of argument graphs based on the rating alone. We have

not considered using additional information that can be extracted from real data for

which our distribution is to be used. In this section I propose a method for extracting

5.2. Modelling a Review with Probabilistic Argumentation 97

information about individual arguments and how they impact the overall rating from

the reviews before using this information to update our probability distribution.

A set of reviews contains some information which allows us to ascertain an

approximate understanding of the influence an argument has in a review when it

appears. By influence I mean that across the set of reviews, if an argument appears

in a review the rating of the review moves with its polarity as well.

In order to make this assessment I look at the reviews in which the argument

appears in and measure how much the ratings where in line with its polarity. I define

this as being the degree of impact the argument has within the set of reviews.

Definition 30. Given a set of reviews Rev and an argument a, the set of reviews the

argument appears in is given by App(a,Rev) = {rev ∈ Rev|rev = (A,r)& a ∈ A}. I

denote the number of reviews it appears in as N = |App(a,Rev)|. The sum of the

ratings is then sum(a,Rev) = ∑(a,r)∈App(a,Rev) r. The impact of the argument is then

given by:

Impact(a,Rev) =

sum(a,Rev)

10N
if a ∈ A+

1− sum(a,Rev)
10N

if a ∈ A−

Where the coefficient 10N is used as I have assumed a 0-10 scale for review

ratings.

Proposition 9. Assuming a rating scale of 0-10 an argument a, and a set of reviews

Rev, then 0≤ Impact(a,Rev)≤ 1.

Proof. If we assume that a ∈ A+ then the smallest value for sum(a,Rev) occurs

if all the reviews have a rating of 1. In this case the Impact(a,Rev) = 0. If we

assume a ∈ A− then the best value it can be assigned in all reviews is 0 in which

case Impact(a,Rev) = 0. If we consider the contrary then we see that a ∈ A+ and

all reviews have rating of 10 then Impact(a,Rev) = 1 and vice versa when a ∈ A−.

Example 24. Take a case in which we have four reviews Rev = {({a,b,c},9),

({a,b,c},8),({a,d},7),({b,c},2)}. where A+ = {a,c} and A− = {b,d}. The im-

98 Chapter 5. Argument Reasoning using Unsupervised Learning

pacts are then Impact(a,Rev) = 0.8, Impact(b,Rev) = 0.63, Impact(c,Rev) = 0.36

and Impact(d,Rev) = 0.3

Given an impact we can then modify our probability distribution

Definition 31. Given a set of reviews Rev, a review (A,r) ∈ Rev, the corresponding

graph space S for the review and a graph G ∈ S the distance between the impacts of

the arguments A and their grades in graph G is given by:

dist(A,Rev,G) =
√

∑
a∈A

(Impact(a,Rev)−NormGrade(G,a))2

Proposition 10. The maximum value dist can have is
√
|A| and the minimum value

is 0.

Proof. The lower bound for dist is given when for each argument a ∈ A the

Impact(a,Rev)−NormGrade(G,a) = 0, i.e. Impact(a,Rev) = NormGrade(G,a).

In this case the value for dist = 0. The upper bound is given when for each a ∈ A

the following true: Impact(a,Rev)−NormGrade(G,a) = 1. In this case we see the

term
√

∑a∈A (Impact(a,Rev)−NormGrade(G,a))2 reduces to |A|.

What is meant by Proposition 10 is that when an argument appears alone or in

a group of arguments of similar polarity it is then the case that it will be assigned

an artificially large impact score. Whilst it may be a good sign that the argument,

even in a standalone context, still causes the rating to be inline with its polarity it

does not necessarily mean that we can learn any argumentative information, i.e. in

the case when it appears along side counter arguments.

The distance measure can then be used to skew the distribution across the

graph space towards one which incorporates information of each argument’s im-

pact. There is a natural correspondence between impact and graded score as they

both are indicators to the degree of importance an argument plays in a graph/review.

Definition 32. Let (A,r) Revs be a review, and S a graph space. Given a graph G∈ S

we say that dG = 1
dist(A,Rev,G)) . The update weight associated with graph G is then.

5.2. Modelling a Review with Probabilistic Argumentation 99

Weight(G,r) =
dGP(G,r)

∑F∈S dFP(F,r)

The weight assigned to each graph is thus the product of the probability of the

graph and the inverse distance of the graph’s grades to the argument’s impacts. The

normalising constant at the bottom ensures that the distribution of weights across

the graph space is a probability distribution.

The weight update is akin to Bayesian inference where we wish to incorporate

some additional beliefs we have about the graphs (in this case the impacts) into our

probability distribution.

Example 25. Continuing from Example 24 if we now consider a review (a,b,c,9)

we find that the largest weights are Weight(G6,9) = 0.3; this makes sense in

this graph a has the highest grade followed by b and then c. We also see that

Weight(G6,3) = Weight(G6,3) = 0.10 and that Weight(G2,3) = Weight(G5,3) =

0.05.

In some applications it may however be the case that we do not wish to com-

pletely switch our probability distribution across the candidate graphs to the dis-

tribution given by the weights; and instead we wish to cautiously incorporate the

weights. In this case I propose a parameterised update as follows.

Whilst the impact values of each argument may be useful, there may be cases

in which the dataset is non-ideal and has a degree of noise in it. In this cause we may

wish to exercise caution when incorporating impact into our probability distribution;

to this end I propose a parameterised update to the probability distribution which

enables us to set the degree to which the weights will change the distribution.

Definition 33. Let (A,r) be a review, S a graph space, G ∈ S a graph, P(G,r) a

probability mass assigned to G, Weight(G,r) an update for G and γ ∈ [0,1] be an

update parameter. The update to P(G,r) is then given by:

P∗(G,r) = P(G,r)+ γ(Weight(G,r)−P(G,r))

100 Chapter 5. Argument Reasoning using Unsupervised Learning

We can see that when γ = 0 no contribution is made by the update weight and

the probability remains the same. When γ = 1 we see that P(G) = Weightr(G,r).

The γ value thus allows us to control the contribution of the update weights to the

probability distribution.

Example 26. Continuing on from Example 25 we see that the probabilities are set

to their weights values, e.g: γ = 1 are P(G6) = Weight(G6,9) = 0.3. When however

we set γ = 0.5 we see that P(G9) = Weight(G6,9) = 0.2 so we have updated the

distribution more cautiously.

5.3 Experiment
In this section I demonstrate my argument graph learning model using a dataset of

reviews taken form the Drug.com corpus. I illustrate the pipeline of steps needed to

be able to integrate a standard machine learning classifier that enables one to assign

graphs to reviews without ratings.

More specifically this is a two part process. In the first part I train a stan-

dard machine learning classifier to predict the rating of a review given a tuple of

arguments. I demonstrate, using an annotated dataset that this is possible. The

second step is then to take the predicted ratings and use this to build a probability

distribution across the constellation of possible graphs and then sample from this

distribution in order to assign a graph to the review. I test each section in isolation

to illustrate how the pipeline can be adapted to sets of reviews with ratings.

The dataset used in this experiment is the same dataset used in the previous

chapter, Chapter 5.

5.3.1 Predicting Ratings for Reviews

In the following I discuss the details of my model as well as its performance on the

dataset

Model Architecture I trained a 2-layer feed-forward multi-layer neural network to

predict ratings given a binary vector of arguments. My architecture consisted of 250

neurons in the hidden layers and a single neuron in the output layer. For the hidden

5.3. Experiment 101

Figure 5.2: Predicted vs. Actual Ratings for trained model on validation set

layers I chose a softmax activation function whilst for the output layer I chose a

linear activation function. The model was training using standard backpropogation

with a mean-square-error (MSE) loss function. I used the off-the-shelf Python deep-

learning library Keras.

I split my data set into training:validation split of 80:20.

Performance After 150 iterations of training the neural network I achieved a mean

absolute percentage error (MAPE) of 30.86 %. MAPE is a standard loss measure-

ment when training regression models; it is defined as:

MAPE =
100%

n

n

∑
t−1

∣∣∣∣At−Ft

At

∣∣∣∣
where At is the ground truth, Ft the predicted value and n the number of data-

points.

The results demonstrated that using a simple neural network the reviews tended

to obey the three polarity categories. The hardest ratings to predict were the ratings

between 4 and 6. This I believe is partly due to the quality of the original reviews; a

number of times the annotators noted that there was no understandable correlation

between the arguments proposed in a review and the rating provided.

5.3.2 Predicting Graphs for Reviews

In this section I discuss the process of assigning graphs to reviews. In order to eval-

uate my model I gave two annotators (neither were authors) 29 reviews, in which

102 Chapter 5. Argument Reasoning using Unsupervised Learning

Figure 5.3: Results showing the probability distances and Agg distances between the pre-
dicted graphs and actual graphs

the arguments where identified, and asked them to assign each review an argument

graph. Each annotator was given a set of guidelines in which he/she was instructed

to assign attacks between the identified arguments if they felt there was a legitimate

attack between them. Attacks were interpreted to mean that the attacking argument

was stronger than the attacked one. If this was not immediately obvious based on the

content of the arguments then they were instructed to see if the polarity of the rating

coincided with the arguments they felt were more acceptable. In order to compare

my predicted graphs to the ground truths provided by the annotators I constructed

two measurements.

The first is grounded distance which measures the degree of overlap between

my predicted graph’s grounded extension and the grounded extension of the ground

truth graph. Formally I define the grounded similarity as follows:

Definition 34. Given a sequence of ground truth graphs (G1, ..,Gm) and corre-

sponding predicted graphs (Ĝ1, .., Ĝm) the extension performance is given by the

function:

GroundedDist =
|gr(G)\gr(Ĝ)|+ |gr(Ĝ)\gr(G)|

|gr(G)|+ |gr(Ĝ)|

The function GroundedDist is 0 when the both graphs have exactly the same

extension and 1 when they share no arguments in common.

The Agg distance measures the amount of error between the ground truth

graph’s Agg score and the predicted graph’s Agg score. For a given graph space

S the maximum that any two graphs G1,G2 ∈ S can differ by is ∆Agg. I use this

understanding to define the distance measure below.

5.3. Experiment 103

Definition 35. Given a graph space S and set Aggs = {Agg(G)|G∈ S} and a ground

truth graph G and predicted graph Ĝ s.t G, Ĝ ∈ S I define an aggregate distance

function:

AggDist(G, Ĝ) =
|Agg(G)−Agg(Ĝ)|

max(Aggs)−min(Aggs)

Example 27. Consider the example in Table 5.4. Assume we have a

ground truth graph G1 and a predicted graph G10. The denominator of

AggDist(G1,G10) is max(Aggs)−min(Aggs) = 2−−2.5 = 4.5. The final value

is then AggDist(G1,G10) = (2−−0.25)/4.5 = 0.5

I note if we divide the numerator of the function AggDist by ∆Agg we can treat

this quantity as an equivalence class to tell us, in terms of ∆Agg how many classes

separate the predicted graph from the actual graph.

In selecting a graph from the graph space I select the graph with the highest

probability. In the case the have multiple graphs with the same probability I ran-

domly sample from this set.

In terms of results Figure 5.3 shows the error in terms of aggregate scores and

the probability scores. The upper graph shows how many equivalence classes in the

predicted graph was away from the actual graph. What can be seen is that in most

cases the predicted graphs were only 1 equivalence class.

I found that the average GroundedDist to be 0.30. I found this to be the case

as most reviews were consistent in that if the rating was of a particular polarity

it generally meant that the grounded extension was also of the same polarity. In

the few cases where we produced the wrong extension we were either adding an

additional argument to the extension or removing it; in other words the extension

we provided was not far from the actual extension.

Figure 5.4 depicts a review, in which three argument types where identified,

and the attacks where assigned using my probabilistic model.

What I have demonstrated in this section is the ability to take tuples of argu-

ments with no argumentative relations annotated and use the proxy measure of the

rating to assign the closest matching graph. The model can also be easily adapted

104 Chapter 5. Argument Reasoning using Unsupervised Learning

Figure 5.4: A shortened review for the acne drug Epiduo with arguments annotated. Three
arguments were identified. The graph sampled from the corresponding graph
space is depicted above with Arg3 attacking Arg1

to reviews which provide no ratings simply by fitting a classifier that learns the re-

lation between tuples of arguments and ratings. The graphs assignment task is then

handled by the probabilistic argumentation pipeline put forward in this paper.

5.4 Related Works
Generating probability distributions over constellations of argument graphs was

proposed in [74] where it is assumed that an agent specifies a belief in the ac-

ceptability status of arguments. Using this data the paper proposed methods for

aggregating, combining and summarising these beliefs. Whilst related to this paper,

I have a different starting point which is that I do not have access to such beliefs di-

rectly rather I have access to ratings which I process to produce a distribution over

a set of argument graphs. There have been a few proposals for argument graphs

learning algorithms when in/out/un labellings are provided by agents. In [46] a

learning algorithm is proposed which takes as input a probability distribution over

a set of in/un/out labellings. The algorithm is an on-the-fly algorithm to aggregate

these labellings into a weighted argumentation graph. In my case I deal with a set-

ting in which I do not have access to such labellings and furthermore I produce a

distribution over a constellation of argument graphs. Likewise [47] makes a similar

starting assumption in that the algorithm begins which a set of labellings for each

argument. A Bayesian approach is proposed in order to learn from these labellings

a posterior distribution for a set of arguments being in an extension. Both of these

papers differ from my approach in that I do not assume I have such labelled data

5.4. Related Works 105

with regards to which arguments are in and out. Another proposal in [75] provides

a method for extracting bipolar argument frameworks from a set of movie reviews.

Each review contains a textual review and a binary rating indicating whether the

reviewer thought the movie was good or bad. The proposed algorithm produces a

quantitative bipolar argument per review which differs from my probabilistic out-

put. Various proposals for capturing and aggregating views taken from the social

web have also been made [61][27]. These proposals use judgement aggregation

and voting mechanisms to produce the aggregation which differs from my approach

which produces probabilistic interpretation of views.

In summary my proposal differs primarily from the existing literature in that

it is driven by my interpretation of ratings. The notion of rating is not dealt with

explicitly in the literature and certainly not in a probabilistic context.

Discussion

In this chapter I have proposed a methodology for creating a probability distribution

of arguments graphs in a space of arguments graphs. I consider a situation in which

I deal with bipartite argument graphs but do feel this can be generalised to handle

multipartite graphs.

I further provide a method for utilising information extracted from a corpus of

arguments which can be used to enrich the probability distribution. I demonstrate

through my experiment that by using off-the shelf machine learning models it is

possible to learn a mapping between from tuples of arguments to argument graphs.

In terms of computational costs involved in predicting the graphs I found in

my experiment that the largest graph space I had to compute was for a review that

contained 3 positive arguments and 3 negative arguments giving a total of 263,144

argument graphs. This is still manageable to compute. The total number of argu-

ment graphs in the graph space grows exponentially according to Proposition 1 and

when the number of arguments and counter arguments grows to 4 each the size of

the graph space grows to 43×109 which is not trivially computed. I do believe that

a better understanding of the combinatorics of the various grounded extension can

push my method to handle more arguments.

106 Chapter 5. Argument Reasoning using Unsupervised Learning

To conclude what I have proposed in this chapter is the use of the constella-

tions approach to probabilistic argumentation to models the uncertainty over the

set of possible graphs that can be assigned to an argument. As we will see in the

next chapter, modelling it as such assists in further developing the system into a su-

pervised learning process; a process that is much more amenable to a probabilistic

approach. Having said that the functions used to compute this probability distribu-

tion rely on methods more closely related to work done on graded semantics.

In future I wish to experiment with other graded semantics to see the influ-

ence on the resulting distribution. Likewise I wish to explore the use of additional

acceptability semantics in order in order to enrich the function for partitioning the

graph space based on polarity. I also acknowledge that what I have presented is

conceivable for smaller sets of arguments and in order to scale my techniques I will

require a better understanding of the combinatorics involved in generating graphs

for a particular grounded extension.

Chapter 6

Argument Reasoning using

Supervised Learning

In the previous chapter we proposed a method for identifying a probability distri-

bution over the set of possible graphs that the reviewer may have had in mind. The

method is built upon the assumption that if a review has a positive rating it implies

any positive argument(s) in the graph will likely be ‘winning’ arguments and vice

versa. The method takes as input a review, which is a set of arguments and a rating,

and outputs a probability distribution over a set of arguments graphs for that review.

Since no external human input is used to inform or verify the resulting probability

distribution, i.e. no annotator provided data was used in producing the distribution,

we can describe this method as a type of unsupervised learning process in that we

are able to arrive at a output without any labelled input. In Bayesian terms we can

also describe the method as providing us with a prior distribution as this distribu-

tion encapsulates our starting assumption about the probability distribution for that

review before having considered any real world evidence.

In this chapter we consider the question of how this ‘prior’ probability distri-

bution can be updated if we begin to consider human provided data. The human

provided data in this case would be a correct argument graph for a review. Our

proposal is the use of Baye’s rule to update the prior probability distribution for a

review using annotator provided data. In this chapter we describe this proposal and

conduct a number of simulations to verify the framework works.

108 Chapter 6. Argument Reasoning using Supervised Learning

Figure 6.1: Bayesian framework for updating probability distribution when new labelled
data is collected.

Whilst in the the previous chapter we described the learning process as an

unsupervised learning process we in this chapter we consider our proposal as a

supervised learning process since we are refining our ’model’ through real world

data.

6.1 Bayesian Framework for Updating Probability

Distribution
In this section we describe our supervised learning process at a high level. The data

used as part of this process is assumed to be provided by annotators and/or can even

be crowd-sourced. In particular what the annotator is to provide is an argument

graph for a review. The graph they provide captures the annotator’s interpretation

of the conflicts between the various arguments in the review. Using Bayesian ter-

minology we refer to this annotation as an observation. Formally we say that an

observation is the assignment of a graph to a review.

Definition 36. Let v = (A,b) be a view where A ⊆ A+∪A−. An observation is a

6.1. Bayesian Framework for Updating Probability Distribution 109

tuple t = (G,b) where G ∈ Space(A+,A−).

Example 28. Continuing on with the arguments in Figure 6.2 and rating . Consider

a view ({a,b,c},9). An example observation would then be (({a,b,c},{(a,b)}),9)

If multiple observations are submitted we then have a set of observations, T ,

for a set of reviews. We recall that in the previous chapter that we proposed an unsu-

pervised method for determining the prior distribution for a review, i.e. P(G). If we

consider this prior in conjunction with the set of observations we thus have all of the

necessary components to be able to update our prior using these observations and

thus produce a new (posterior) distribution that incorporates these new observations

using Baye’s rule.

Definition 37. Given a set of positive and negative arguments A+ and A−, a view

v = (A,b) s.t A⊆ A+∪A−, a graph space S = Space(A+,A−) and a set of of obser-

vations T we say that our updated belief is given by the function:

P(G|T) = P(T |G)P(G)

∑G∈S P(T |G)P(G)
(6.1)

In the formula above the variable P(G) is our prior distribution and represents

our initial belief that graph G ∈ S is the intended graph for view v before we have

considered the observations. We acquire our prior distribution using the methods

proposed in the previous chapter.

The term P(T |G) is referred to as the likelihood function and tells us, if we

assume the intended graph for v is G, what the probability (likelihood) of observing

the observations T is. The multiple of the prior and the likelihood, P(T |G)P(G), is

proportional to our new ’updated’ belief about what the correct graph should be for

a review, P(G|T), and is referred to as the posterior distribution.

The denominator is called the normalising constant and ensures the re-

sultant posterior distribution is a probability distribution; in other words that

∑G∈S P(G|T) = 1.

110 Chapter 6. Argument Reasoning using Supervised Learning

The process of using this formula is depicted in Figure 6.1. What can be seen

is that the process is run each time a new observation is made. In each ‘iteration’

of this process we incorporate the observation into our existing belief (prior) via

the likelihood function to produce our new (posterior) distribution. When a new

observation is made we then proceed to take the previously computed posterior as

our starting prior. This ‘loop’ allows us to continually incorporate new observations

when they are available.

The very first time the process is run we use the unsupervised method in the

previous section to produce our starting prior distribution. As more and more obser-

vations are added this distribution will change to reflect the new labelled data. The

key component that needs to be defined here is therefore the likelihood function

which we do in the next section.

6.2 Likelihood Functions

In this section we define the likelihood function that will allow us to update our

prior distribution using labelled data and allow us to obtain our updated posterior

distribution P(G|T).

The likelihood function enables us to rank/score argument graphs based on

their ability to explain the labelled data/observations provided. Intuitively the like-

lihood function should assign higher probabilities to graphs that are in some sense

‘similar’ to the graph provided in the observation and assign low probabilities to

graphs that are by the same standard ‘dissimilar’ to the graph provided. This en-

sures that, as per Equation 37, we will ultimately assign a higher posterior proba-

bility, P(G|T), when the likelihood is high for that graph and vice versa.

The key requirements here is to thus formalise the relationship between ob-

servation and likelihood distribution. This requires that we understand the types of

observations that we can expect an annotator to provide and use this understanding

in turn to define the likelihood function.

We recall that an observation is the assignment of a graph by an annotator to a

review. Let us take an example in which we have two reviews, v1 and v2 and that we

6.2. Likelihood Functions 111

are trying to identify a probability distribution, P(G), for v1. Assume an annotator

provides a observation for v2. A question arises then of whether it is possible to use

the provided observation for v2 to update our probability distribution of v1.

Example 29. Assume we have the argument graph shown in Example 6.2 for a

review about an electric bike; let us refer to this observation as v1. There is now a

separate review v2 which contain arguments a,b and a new negative argument, d,

labelled as ‘product requires costly on-going maintenance’. We want to identify a

probability distribution for the possible argument graphs for v2. Is it possible to use

the portion of the argument graph for v1 containing arguments a and b to help us

identify our distribution P(G) for review v2?

We propose that if there is some overlap between the arguments and attacks in

v1 and v2 then it follows that there might be some information that we can harness

to inform our probability distribution for v1. To determine how to harness this

information we first establish the various ways in which this overlap may occur.

In the first instance let us assume that there are no overlapping arguments be-

tween the two reviews; in other words the two reviews have completely different

sets of arguments. In this case there is no information to be learnt from the obser-

vation and hence we expect that our prior distribution to remain unchanged.

In the second instance let us consider that there is an overlap of exactly 1

argument. The presence of a standalone argument, without any attacks, does not

inform us of anything useful except that the argument occurred. No information

can thus be used to update the prior therefore, as in the first case, we expect our

prior to remain unchanged.

Similarly let us consider a third case where there is an overlap of more than

1 argument but that the overlap is such that the overlapping arguments are all of

the same polarity. For example consider Figure 6.2 and let us assume we have an

observation from another review which contains arguments a,c and a third negative

argument d. Since we are trying to model attacks between arguments using our

probability distribution and there are no attacks that can occur in this new observa-

tion that will help us how to model attacks in Figure 6.2 we can learn nothing from

112 Chapter 6. Argument Reasoning using Supervised Learning

(a) product functions well (c) product is cheap

(b) product feels poorly built

Figure 6.2: An example of an argument graph containing two positive arguments in favour
of a product (a,c) and one negative argument against it (b)

this observation. This means as in the first two cases we expect our prior to remain

unchanged.

What this leaves us with is the conclusion that the number of overlapping argu-

ments needs to be greater than or equal to 2 and needs to contain at least one positive

argument and one negative argument. If this is the case we can use the attacks (or

absence of attacks) between the positive and negative arguments in the observation

to be able to update and inform us which graphs are more likely in our likelihood

distribution. We refer to such observations as relevant. Formally an observation

t = ((A,R),b) is relevant to a view v = (Av,bv) iff |{A∩Av}| ≥ 2. In the rest of this

chapter we only consider relevant observations and so we use the terms observation

and relevant observation interchangeably.

If we now consider only relevant observations we find that relevant observa-

tions can be of two types:

• A = Av (Matching Observation)

• A 6= Av (Similar Observation)

A matching observation is a relevant observation that has the exact same set

of arguments as the review we are producing a probability distribution for. What

this implies is that the graph provided in the matching observation can be found

in the graph space for the graph we are trying to model. Since we have already

defined a similarity measure for graphs in the same graph space in the previous

chapter, AggDist, we can therefore use this similarity measure to help us define our

likelihood function for when we encounter a matching observation.

A similar observation on the other hand is a relevant observation that is not a

matching observation. In other words which there are some additional arguments

6.2. Likelihood Functions 113

in either the observation or the view. In this case the view and the observation

do not share the same graph space and a slightly modified approach is required to

determine the likelihood distribution for the view.

Example 30. Consider a view ({a,b,c},10) and two observations t1 =(({a,b,c},{}),

10) and t2 = (({a,b},{}),10). In this case t1 is a matching observation and t2 is a

similar observation.

In encountering both a matching and similar observation we would expect

the update to the probability distribution to adhere to certain rationality postulates

which we discuss below. We propose the following for a view v with likelihood

function P(T |G) and an observation (G,b). For ease of notation we use Args(G) to

denote the set of arguments in the graph G.

(RPR) Rating Proportionality: Given two observations t1 = (G,b1) and

t2 = (G,b2) and a view (Args(G),b) s.t |b− b1| > |b− b2| then it should follow

that ∑G∈S (P(G|t1)−P(G))2 > ∑G∈S (P(G|t2)−P(G))2. RPR states that for two

observations that have the same graph but different ratings, the one that has the

rating most similar to the rating of the view will impact the posterior most.

Example 31. Consider two observations o1 with argument graph a← b and rating

of o1 = 8 and o2 with argument graph a← b and rating of o2 = 5. Let us assume we

are trying to identify the probability distribution for a review with arguments a,b

and rating 8. In this case we make the assumption that the graph in o1 should be

inform our distribution more than the graph in o2 since its rating is more similar to

our review.

(APR) Argument proportionality: Given two observations t1 = (G1,b1) and

t2 = (G2,b2) s.t |Args(G1)∩Args(G)| ≥ |Args(G2)∩Args(G)| and b1 = b2 it should

follows that ∑G∈S (P(G|t1)−P(G))2 ≥ ∑G∈S (P(G|t2)−P(G))2. APR states that

given two relevant observations, the degree to which the observation alter the pos-

terior distribution is proportional to the degree of overlap in arguments with the

view.

114 Chapter 6. Argument Reasoning using Supervised Learning

Example 32. For example consider a view with arguments A+ = {a,b,c} and A−=

{d}. We would expect in this case to learn more from observation which have

arguments {a,b,d} than from observations which have arguments {a,d} only. This

is because there is a greater overlap in both arguments and attacks, and these can be

used to update the posterior.

In what follows we define our likelihood function for both a matching obser-

vation and a similar observation.

6.2.1 Updates with Matching Observations

Recall that the set of graphs that can be assigned to a view v=(Av,bv) is Space(A+∩

Av,A−∩Av). For a matching observation t = (G,b) we find that the graph G in the

observation is a member of this graph space, i.e. G∈ Space(A+∩Av,A−∩Av). What

this means is that we can make use of the aggregate score defined in the previous

section when determining the likelihood distribution.

In essence what we would like from this function is to assign nearly all of its

mass on graphs in which the observed graph and graph in the graph space are similar

and very little mass when the opposite is true.

Definition 38. Given a view v = (Av,bv) and a matching observation t = (Gt ,rt) we

define the relative attack distance between a graph G ∈ S and observed graph Gt

as distAtt(G,Gt) = 1 iff Gt = G and distAtt(G,Gt) =
1

2+|Agg(G)−Agg(Gt)| otherwise.

We then say that the normalised distance is normdistAtt(G,Gt) =
distAtt(G,Gt)

∑F∈S distAtt(F,Gt)
.

What can be seen is that when the graphs are the same, i.e. observed graph is

same as a graph in the graph space we are assigning the largest mass possible, 1. In

other cases I the mass drops off and this process is controlled by the denominator

in distAtt. The constant 2 allows us to minimise mass assigned when graphs are

dissimilar.

Example 33. Consider a matching observation with argument graph a→ b. If we

are trying to compute similarity of observation to a review with arguments a,b then

the similarity measures we get are seen below

6.2. Likelihood Functions 115

Gi G distAtt(G,a→ b) normdistAtt(G,a→ b)
G1 a→ b 1 0.52
G2 a↔ b 0.33 0.17
G3 a b 0.33 0.17
G4 a← b 0.25 0.13

What we can see in Example 33 that by using the distAtt to measure similarity

between the observation and the graphs in the graph space we are able to place

the majority of the mass of the distribution onto the graph in the graph space that

matches the observation. The normalisation step that is computed using normdist

ensures that the resulting distribution is a probability distribution.

We now consider how the rating of an observation influences the resulting

likelihood distribution. As described in the previous subsection the basic idea is

that observations that have ratings similar to the view should produce a likelihood

distribution that influences the posterior more than those that are less similar. To

illustrate consider a view (A,10) and two observations t1 = (G,9) and t2 = (G,1).

In this case we would give greater priority to t1 as the observation is very similar

to the view’s rating. What is thus required is a likelihood function which controls

how much an observation can contribute to a probability distribution. The function

should operate such that the contribution the observation makes to the resulting pos-

terior distribution should be proportional to how similar its rating is to the review.

Hence when the ratings are exactly the same the contribution is maximal and when

they are maximally different the contributions are minimal/negligible (e.g. using

a rating scale 0-10 if we have an observation with rating 1 and we are calculating

probability distribution for review with rating 10).

To start we need a parameter which allows us to measure similarity between

the observation’s rating and the rating of the the review we are modelling. For this

we propose the following:

∆b =
b+max−b−min−|b−bt |

b+max−b−min
(6.2)

Where bmax, bmin are the highest and lowest possible rating a review can receive

116 Chapter 6. Argument Reasoning using Supervised Learning

respectively, b is the rating of the review we are modelling and bt is the rating of the

observation.

Example 34. Consider bmax = 10,bmin = 0 and a review with a rating b = 8 for

which we are trying to identify a probability distribution for. Some examples of

∆b are when bt = 1 we find ∆b = 0.22, bt = 8 we find ∆b = 1, bt = 10 we find

∆b = 0.77 and bt = 6 we find ∆b = 0.77. We see that that the closer bt is to b the

more it tends towards 1 and the further it is the more it tends to 0.

Next what we need is a distribution that we can use in conjunction with Deltab

to control how much the posterior distribution is influenced/changed by the obser-

vation. We know that the uniform distribution is effectively a non-informative prior.

This is to say that when a uniform distribution is multiplied with a distribution and

then normalised the resulting distribution is exactly the same as the starting distri-

bution; in other words P(G|T) = P(G). This uninformative distribution we know

be the uniform distribution which we define as having values equal to 1
|S| where |S|

is the number of graphs in the graph space.

We propose using the uniform distribution alongside normdistAtt to control

how much an observation can influence the posterior distribution based on its rating.

What we desire is a resulting likelihood distribution that behaves proportionally to

∆b. Consequently we expect that when ratings are maximally different, i.e. ∆b =

0, the likelihood distribution reduces to a uniform distribution and the resulting

posterior is equal to the prior distribution. Likewise when ∆b = 1 we expect the

likelihood distribution to reduce to the distribution provided by normdistAtt . To

achieve this we propose the following formulae.

P(T |G) =
1
|S|
−∆b(

1
|S|
−normdistAtt(G,Gt)) (6.3)

What we can see is that the parameter ∆b controls to what degree the likelihood

distribution resembles the uniform distribution or the distribution provided by the

function normdistAtt . We see that when ∆b = 1, i.e. the view and the observations

have the same rating, the likelihood function reduces to the distribution provided

6.2. Likelihood Functions 117

Gi G P(T |G,bt = 0) P(T |G,bt = 5) P(T |G,bt = 10)
G1 a→ b 0.25 0.39 0.52
G2 a↔ b 0.25 0.212 0.17
G3 a b 0.25 0.212 0.17
G4 a← b 0.25 0.190 0.13

Table 6.1: Resulting likelihood distributions for three observations with identical graphs,
(a→ b), but different ratings.

by normdistAtt . Conversely when ∆b = 0 the distribution reduces to the uniform

distribution over the graph space, S, for the review we are modelling. The likelihood

distribution exhibits linear behaviour between these two extremes.

Example 35. Continuing on with Example 33 let us now assume we have three

observations that have an identical graph a→ b but the first has a rating of 0, the

second 5 and the third 10. Let us also assume we are modelling a review with

arguments a,b and a rating of 10. If we compute our likelihood distribution using

Equation 6.3 we see the results below in Table 6.1. We can see that when bt = 10,

i.e. ∆b = 1, the resulting likelihood function remains the same as is calculated in the

table in Example 33. Conversely when bt = 0, i.e. ∆b = 0 the resulting likelihood

function is a uniform distribution. When the rating is 5 however we see that the

likelihood distribution resembles a flattened version of the the distribution provided

by normdist.

Proposition 11. The function we have defined for P(T |G) in Equation 6.3 satisfies

RPR.

Proof. Let t1 = (G,b1) and t2 = (G,b2) be observations and (Args(G),b)) a view

s.t |b1− r| > |b2− b|. In both cases normdistAtt(G,Gt) is a constant term and the

only differing term in the likelihood would be ∆b. When ∆b is high, i.e t1, then

the likelihood tends to 1
|S| which in turn means the posterior tends to P(G) and thus

∑G∈S (P(G|t2)−P(G))2 > ∑G∈S (P(G|t1)−P(G))2

Once the likelihood distribution we can then update our prior distribution using

it using the update procedure depicted in Figure 6.1. A full example has been pro-

118 Chapter 6. Argument Reasoning using Supervised Learning

Gi P(G) P(T |G) P(G|T)
G1 0.504 0.522 0.762
G2 0.199 0.174 0.100
G3 0.199 0.174 0.100
G4 0.098 0.130 0.037

(a) Iteration 1

Gi P(G) P(T |G) P(G|T)
G1 0.762 0.522 0.909
G2 0.100 0.174 0.040
G3 0.100 0.174 0.040
G4 0.037 0.130 0.011

(b) Iteration 2

Gi P(G) P(T |G) P(G|T)
G1 0.909 0.522 0.979
G2 0.040 0.174 0.014
G3 0.040 0.174 0.014
G4 0.011 0.132 0.003

(c) Iteration 3

Gi P(G) P(T |G) P(G|T)
G1 0.979 0.522 0.990
G2 0.014 0.174 0.005
G3 0.014 0.174 0.005
G4 0.003 0.132 0.001

(d) Iteration 4

Figure 6.3: Four consecutive updates to the prior distribution of a review {(a,b),10} using
matching observations. We update the distribution with four identical observa-
tions of value (a→ b,10)

.

vided in Figure 6.3 showing how the posterior distribution changes as observation

are incorporated into the distribution.

Example 36. Assume we are trying to identify the distribution for a review

{(a,b),10}. To illustrate the update process we chose a simple scenario where we

have been provided with four identical matching observations which have a value

(a→ b,10). In other words the matching observations have exactly the same rating

as the review we are modelling. The starting prior distribution is given to us using

the unsupervised methods described in the previous chapter. Figure 6.3 shows how

after each iteration the most likely graph, a→ b, increases in probability mass and

in fact after four iterations the resulting distribution places almost all of its mass on

this observed graph. What we can see is that the G1 is converging to 1 due to the

fact that the data is repeatedly producing observations with G1 as the graph.

We note that the likelihood function for matching observations trivially satis-

fies APR as all observations using this likelihood function always have the same set

of arguments as the view in consideration.

6.2. Likelihood Functions 119

6.2.2 Updates with Similar Observations

We recall that a similar observation is a relevant observation that does not have the

exact same set of arguments as the view we are modelling. In this case we are con-

cerned with learning from the portion of arguments and attacks in the observation

that overlap with the arguments in the view. In order to make this comparison we

propose a similarity measure that compares the overlapping portion of the observed

graph with the graphs in the graph space for the view based on topological struc-

ture as well as similarities in grounded extension. Measuring topological structure

ensures that we are able to identify similarly structured graphs and measuring the

similarity in grounded extension allows us to see how similar the conclusions are

that both graphs reach. Further to this we enforce an additional measure which en-

sures that observations that have more arguments in common with the view’s graph

space contribute more to the update than observations that do not.

We begin by defining a similarity measure based on topological structure.

We start by assessing the similarity between the four possible types of rela-

tions (attack types) between two arguments. For ease of notation we refer

to the four possible attack types between any two arguments a,b given a set

of attacks R as follows: we say attackType((a,b),R) = a → b when (a,b) ∈

R & (b,a) 6∈ R, attackType((a,b),R) = a ← b when (b,a) ∈ R & (a,b) 6∈ R,

attackType((a,b),R) = a↔ b when (a,b)∈ R&(b,a)∈ R, attackType((a,b),R) =

a− b when (a,b) 6∈ R & (b,a) 6∈ R. Where there is no confusion we also say that

given an attack ∈ {a← b,a→ b,a↔ b,a−b} and a graph G = (A,R), attack ∈ G

iff attackType((a,b),R) = attack. With these attack types we build a similarity

measure to be able to measure the degree of similarity between two graphs in terms

of their attacks.

Definition 39. Let a,b be two arguments and let X ,Y ∈ {a← b,a→ b,a↔ b,a−b}

be two attack types for a,b. Let |arcs(X)| represent the number of attacks in X . We

define distatt(X ,Y) as:

120 Chapter 6. Argument Reasoning using Supervised Learning

distatt(X ,Y) =

0 if X = Y

1 if |arcs(X)| 6= |arcs(Y)|

2 if |arcs(X)|= |arcs(Y)| & X 6= Y

The measure captures the degree of dissimilarity between the attack types. We

note that this measure is the same as the Hamming distance except in the case of

distatt(a↔ b,a−b). The reason we give special treatment to these attack types is

because we want to ensure that they are treated dissimilar to distatt(a↔ b,a← b)

or distatt(a↔ b,a→ b). This is because they have the same grounded extension

and so in this sense are more similar. A tabulated version of the measure can be

seen in Table 6.2.

a→ b a↔ b a−b a← b
a→ b 0 1 1 2
a↔ b 1 0 1 1
a−b 1 1 0 1
a← b 2 1 1 0

Table 6.2: Table with attack distances between the different attack types

To compute the overall similarity between two graphs we simply add the sim-

ilarity scores for each pair of overlapping arguments as follows:

Definition 40. Given graphs G1 = (A1,R1) and G2 = (A2,R2) the shared posi-

tive arguments are A+
1,2 = A1 ∩ A2 ∩ A+ and the shared negative arguments are

A−1,2 = A1 ∩ A2 ∩ A−. We define a set of possible conflicts as C = A+
1,2 × A−1,2.

For a given possible conflict c ∈ C we define a distance diff(c,R1,R2) =

2 − distatt(attackType(c,R1),attackType(c,R2)). We say that the degree of

similarity between both graphs is given by the function similarity(G1,G2) =

∑c∈C diff(c,R1,R2).

Example 37. Consider two graphs G1 = a → b, G2 = a ↔ b → c. The set of

possible conflicts is {(a,b)}. From G1 we find the attackType((a,b),{(a,b)}) =

6.2. Likelihood Functions 121

a→ b and from G2 we find attackType((a,b),{(a,b),(b,a),(b,c)}) = a↔ b. The

similarity(G1,G2) = 1.

Next we consider the degree to which two graphs are related in terms of their

grounded extensions.

Definition 41. Given two graphs G1 = (A1,R1) and G2 = (A2,R2) the degree to

which they are related in terms of their grounded extension is defined by the propor-

tion of overlapping arguments in their grounded extensions. We say the overlap in

the grounded extensions is distgr(G1,G2) = |(gr(G1)\gr(G2))∪ (gr(G2)\gr(G1))|

and that distgraph(G1,G2) = similarity(G1,G2)+distgr(G1,G2). We then define the

total distance between graphs as:

disttotal(G1,G2) =
distgraph(G1,G2)

∑G∈S distgraph(G,G2)

What we can see is that the final distance measure, disttotal is a combined

measure taking into consideration similarity in terms of topology of overlapping

graphs and similarity of grounded extensions.

Example 38. Consider two graphs G1 = a→ b and G2 = a→ b→ c. We find that

in this case similarity(G1,G2) = 1, distgr(G1,G2) = 0.5. If we now consider the

graph space S = Space({a,c},{b}), s.t. G2 ∈ S, that disttotal = 0.095.

We finally want to ensure that the difference in rating between view and ob-

servation influences the final likelihood distribution (as in the case of the matching

observation). We also add an additional constraint which is that we want to make

sure that an observation which has a higher degree of overlapping arguments with

the graphs space contribute more to the update than those that have a lower degree.

Definition 42. Given an view (A,r) and a similar observation t = (Gt ,rt). We say

that ∆Args = |A∩Args(G)|
max(|A|,|Args(G)|) . We then say that the likelihood function is this given

by:

P(T |G) =
1
|S|
−∆Args∆b(

1
|S|
−disttotal(G,Gt)) (6.4)

122 Chapter 6. Argument Reasoning using Supervised Learning

Gi P(G) P(T |G) P(G|T)
G1 0.504 0.221 0.457
G2 0.199 0.359 0.293
G3 0.199 0.198 0.162
G4 0.098 0.221 0.089
Observation = a↔ b→ c

(a) Iteration 1

Gi P(G) P(T |G) P(G|T)
G1 0.457 0.254 0.442
G2 0.293 0.310 0.347
G3 0.162 0.225 0.139
G4 0.089 0.211 0.072
Observation = a↔ b← c

(b) Iteration 2

Gi P(G) P(T |G) P(G|T)
G1 0.442 0.154 0.251
G2 0.347 0.462 0.590
G3 0.139 0.231 0.118
G4 0.072 0.154 0.041
Observation = a↔ b

(c) Iteration 3

Gi P(G) P(T |G) P(G|T)
G1 0.251 0.25 0.251
G2 0.590 0.25 0.590
G3 0.118 0.25 0.118
G4 0.041 0.25 0.041
Observation = b→ c

(d) Iteration 4

Figure 6.4: Four consecutive updates to the prior distribution of a review {(a,b),10} using
a mixture of matching, similar and non-relevant observations. In iterations 1
and 2 we see that We update the distribution with four identical observations
which in this example we assume have a value of (a→ b,10)

Example 39. Let a,b be positive arguments, c be a negative argument, v =

({a,c},10) a view and t = (({a,b,c},(a,c)),10). In this case ∆Args = 2/3, ∆b = 1.

Proposition 12. The function P(T |G) defined in Equation 6.4 satisfies APR.

Proof. Let t1 = (G1,b), t2 = (G2,b) be observations where G1 = (A1,R1) and G2 =

(A2,R2) s.t G1 v G2 and let v = (A,b′) be a view. ∆b is a constant and ∆Args is

larger for t1 than for t2. Therefore ∑G∈S P(t1|G) tends to 1
|S| as ∆Args decreases and

likewise ∑G∈S P(t1|G) tends to disttotal(G1,G) as ∆Args grows.

We note that our proposal can be adapted to settings in which ratings are not

used, i.e where a view is simply a set of arguments and observations are argument

graphs. In this case we can specify the uniform distribution as the prior distribution

for the view and adapt our proposals for the likelihood function by making ∆r = 1

as by doing so we remove the influence of the rating. Thus for a matching observa-

tion we would have a likelihood of P(T |G) = normdistAtt(G,Gt) and for a similar

observation we would have P(T |G) = 1
|S| −∆Args(1

|S| −disttotal(G,Gt)) .

Example 40. Using the same example as in Example 35 let us assume we are up-

dating the prior distribution using four observations as depicted in Figure 6.4. In the

6.2. Likelihood Functions 123

first and second iteration we see that the resulting likelihood places most of it mass

on graph a→ b and this is reflected in the resulting posterior distribution. In itera-

tion 3 we see that since the observation is a matching observation the likelihood dis-

tribution is much less flatter and the mass assigned to graph a→ b increases greatly

in this step. The final iteration uses a non-relevant graph and so a uniform/non-

informative distribution is used and this does not influence the resulting posterior.

Simulations

In the absence of labelled data for our reviews we use synthetic data to test our

proposal. Our primary motivation in these simulations is to demonstrate that our

approach produces reasonable posterior probability distributions that reflect the syn-

thetic data being used to produce them.

One simple expectation that we would have is that if the set of observations we

have contain the same graph many times, e.g. a← b appearing in 90% of the obser-

vations, we would expect that the resulting posterior increasingly accumulates mass

on that particular graph. In order to formally be able to measure this expectation we

define the concept of noise relative to an observed graph.

noise(G,T) = 1− |{t ∈ T |Gv t}|
|T |

Where for two graph G = (A,R) and t = (At ,Rt), G v t iff A ⊆ At and R =

{(a,b) ∈ Rt |a,b ∈ A}.

Example 41. Given a set of observations T = {t1, t2} where and t1 = (a→ b,10)

and t2 = (a→ b→ c,10). We see that t1 v t1 and t1 v t2 since the attack a→ b

exists in both observations. Consequently we find that noise(t1,{t1, t2}) = 0.

Our expectations is that the probability mass assigned to graph G ∈ T in the

posterior distribution should be inversely proportional noise(G,T). Moreover we

expect that the mass assigned to the graph should increase as the number of obser-

vations increase, i.e. |T | .

124 Chapter 6. Argument Reasoning using Supervised Learning

(a) noise = 0.75, no. of args = 3 (b) noise = 0.75, no. of args = 5

(c) noise = 0.5, no. of args = 3 (d) noise = 0.5, no. of args = 5

(e) noise = 0.25, no. of args = 3 (f) noise = 0.25, no. of args = 5

Figure 6.5: Plots showing P(G|T) against number of observations. The central
blue lines Figures (a), (b), (c) show the average posterior probabilities
for all G ∈ Space({a,b},{c}) and (d), (e), (f) show them for all G ∈
Space({a,b,c},{d,e}). The blue bands represent the 95% confidence inter-
vals.

6.2. Likelihood Functions 125

6.2.3 Synthetic Data

To observe how the posterior probability of a review’s graph G changes w.r.t noise

and number of observations we created multiple datasets for different combinations

of noise and dataset size. We started by specifying a set of positive arguments

{a,b,c} and negative arguments {d,e}. We experimented with 3 levels of noise

(0.25,0.5,0.75) and various numbers of observations in the range 5≤ N ≤ 25. For

each possible combination of noise and N we then created 150 synthetic datasets

(T1, ..,T150) for G where each graph in the set is randomly generated until we

achieved the required level of noise and N. To simplify the simulations we the fixed

the rating of every observation to 10. We then summarised the posterior probability

for that combination of noise and N by computing an average posterior probability

using all of the datasets i.e. P(G|T) = ∑
150
i=1 P(G|Ti)/150.

6.2.4 Results

Figures 6.5a, 6.5c and 6.5e show how the posterior probability of all graphs in

Space({a,b},{d}) change with different levels of noise and dataset size. Instead of

plotting the posterior probability for each individual graph in the graph space we

plot the average of all the graphs in that graph space along with the 95% confidence

interval bands denoted by the surrounding blue bands. Figures 6.5b, 6.5d and 6.5f

show a similar picture but for a larger graph space of Space({a,b,c},{d,e}). Note

that for all of the figures when the number of observation is 0 we report the prior

probability for the graph.

As can be seen in all cases there is a general trend for the model to assign a

higher posterior probability as more observations are added. Furthermore as noise

decreases this learning is much faster. As can be seen clearly in Figures 6.5a, 6.5c, a

larger starting prior noticeably influences the rate at which the posterior probability

grows when noise is high. This is also noticeable in Figure 6.5b even though the

graphs start with a prior probabilities that are all very small.

Figure 6.6 shows how using observations with different ratings affects the pos-

terior probability. The purple lines show the average posterior probability for graphs

in Space({a,b},{d}) when the rating for the view is 10. Each of the three lines use

126 Chapter 6. Argument Reasoning using Supervised Learning

Figure 6.6: Simulations showing the effect of ratings on the posterior probability

observations with average ratings of 2, 5 and 8 respectively. The red lines show

a similar picture but for graphs in Space({a,b},{d,e}). What can be seen is that

observations that use ratings very different to that of the view cause the posterior

probability to grow slower than when they are similar; this demonstrates the effect

of ∆b on the posterior. For more detailed analysis of these simulations please refer

to our supplementary results and analysis 1.

6.2.5 Conclusion

In this chapter I have proposed a method for updating our (prior) probability distri-

bution for a review when labelled data becomes available, and by labelled data we

mean a review for which some annotator has provided what they believe to be the

correct argument graph for. The method uses an iterative process based on Bayesian

inference to update the distribution through the use of custom likelihood functions.

I identified two types of labelled graphs (observations) that we might en-

counter. The first is a matching graph which is a graph which is in the graph space

for the review that is being modelled. In this case I propose using a modified ver-

sion of the graph similarity measures, proposed in the previous chapter, in order to

construct our likelihood distribution. The second type of labelled graph is a graph

which has a portion of its graph overlapping with graphs in the graphs space for the

review we are modelling. In this case I propose a similarity measure that takes into

consideration graph topology and number of overlapping arguments. In both cases I

1https://github.com/robienoor/bayesianframeworklearningargumentation

6.2. Likelihood Functions 127

also account for how close the rating from the labelled graph is similar to the review

we are trying to model.

Evaluating the approach and seeing how well it performs requires large

amounts annotated data (each review needs to be assigned a corresponding graph by

a human annotator). Since this was not feasible I chose to generate synthetic data

and use this as part of a number of simulations. These simulations focused on ensur-

ing the proposal met certain expectations. In particular one expectation was that if,

for a given graph, we repeatedly update the graph with the same graph/graphs that

are very structurally similar that those graphs that are similar to this observation,

over the course of the simulation, acquire all the probability mass.

Chapter 7

Argument Interface

In the previous chapters I developed proposals for how to implement the first two

pipes in the pipeline depicted in Figure 1.1. The final pipe is an interface through

which the end user can interact with the data mined from the reviews. In this chapter

I consider the following:

1. What are the computational requirements for generating and storing proba-

bility distributions for a set of reviews?

2. When storing the extracted argument data (arguments + attacks) in a database

what would the data model look like?

3. What are the requirements for having a user interface interacting with this

extracted data?

The objective of this chapter was to understand what the requirements would

be for developing a system based on the proposals made in the previous 3 chap-

ters. In particular the chapter is focused on understanding what the technological

requirements for developing a system through which a patient can interact with the

extracted argument data. We believe that the system will have to be a “full-stack ap-

plication” in the sense that we will need both a database that enables us to store and

update the arguments and argument graphs produced through the argument pipeline

as well as an interface through which the user can interact with this data.

We will start by considering the challenges for generating and storing the prob-

ability distributions that we presented in the previous two chapters. We saw in Chap-

130 Chapter 7. Argument Interface

ter 5 how for each review we can algorithmically generate the probability distribu-

tion over the graph space for that review. Generating the probability distribution for

each graph can understandably be computationally demanding. The computational

requirements are proportional to the number of arguments in the review as well as

the polarities of the arguments. We consider how the computational requirements

can be reduced in Section 7.1.

In addition when we introduce labelled (argument graph) data, we then con-

sider the computational costs of producing and storing our posterior distributions.

We consider this n Section 7.2 as well.

Once we have produced a method for generating and storing the probability

distribution for the graph spaces for the reviews we then have to consider how a

system will read from this dataset. What we propose in Section 7.3 is that the

end user will not have to sample from this distribution and instead we propose

a sampling in advance an intermediate database that will store a single argument

graph per review.

Our proposal also contains suggestions on how the data model for this interme-

diate database should be. Lastly we consider the types of user interactions with the

dataset and think about ways in which the data can be explored and interacted with.

We consider two types of visualisation. The first is developing a simple ability to

view the arguments in the graph as well as the attack relations between them. We

propose that these depicted entities should be interactive and the user should have

the ability to label them as correct/incorrect. What this would enable the system

to do is to collect feedback on how the underlying models have performed; both

the argument extraction pipe as well as the probabilistic argumentation. We also

briefly consider the emerging field to text2sql models which are models that are ca-

pable of interpreting ’natural language queries’ into ’structured queries’, e.g. ’how

many people reported no side effects’ → select count(*) from arguments where

argument.type like ”no side effects”.

7.1. Storing Probability Distributions from Unsupervised Learning 131

7.1 Storing Probability Distributions from Unsuper-

vised Learning
Recall that the given a review (A, r) the size of the graph space is given by the

formulae blah. Using this formula we can calculate the total number of argument

graphs that we will be identified for this dataset using the formula:

Definition 43. Assume we have a dataset {(R,A,r), ..,(R,A,r)} where R is the tex-

tual review, A is the set of arguments identified in the review and r is the numerical

rating for the review. Let us also assume in this example that the superset of all

positive and negative arguments is A + and A − respectively. The total numer of

argument graphs for the dataset is then ∑
t
i=1 2mn.

As we can see as the term mn increases there is an exponential growth in the

size of the graph space. Likewise as the size of the dataset grows the total num-

ber of graphs that is having to be stored grows too as well. In the case where we

have no labelled data however we can exploit the fact that the way in which the

probability distribution for a graph space is identified is in fact determined only by

three variables; namely the number of positive arguments m, the number of nega-

tive arguments n and the rating of the review. What follows from this is then that

for a given dataset we only need to compute the graphs for the unique set of m,n,r

combinations and the unique set of probability distributions

Proposition 13. Given a set of reviews R = {(R1,A1,r1), ..,(Rn,An,rn)} the total

number of unique graph spaces for R is |{A|{A1, ..,An}}| and the total number of

unique probability distributions is |{(A,r)|{(A1,r1), ..,(An,rn)}}|

Proof. Any two sets of arguments, A1,A2 yield the same graph space if A1 = A2

hence if we have collection of reviews the number of unique graph spaces is equal

to the number of unique sets of arguments in those reviews, e.g. |{A|{A1, ..,An}}|.

Similarly, if we assume we are using an unsupervised learning approach, the number

of unique probability distributions is |{(A,r)|{(A1,r1), ..,(An,rn)}}|.

Example 42. Consider reviews Rev1 = (R,({A1,A2},4)), Rev2 = (R,({A1,A2},4))

and Rev3 = (R,({A1,A2},10)) where A + = {A1} and A − = {A2}. What we can

132 Chapter 7. Argument Interface

see is that since all three reviews share the same arguments they all yield the same

graph space. Furthermore since Rev1 = Rev2 they also yield the same (unsuper-

vised) probability distribution.

What this implies is that a computer will not have to hold in memory ∑
t
i=1 2mn

argument graphs and ∑
t
i=1 2mn associated probabilities, i.e. the graph space and

probability distribution for each individual review in the dataset. This is because in

fact a lot of the graph spaces will be duplicates in the dataset.

We can further reduce the number of graphs that we have to hold in memory

by abstracting away from (combinations of) individual arguments and focusing on

their polarities. Reviews that have the same combination of positive and negative

arguments may not have the exact same graph space but they are otherwise struc-

turally identical. What I propose is that we only generate graph spaces for unique

combinations of positive and negative arguments (focusing only on polarity). This

graph space will serve as the graph space template for any review that has the

same combination of positive and negative arguments. Thus when the graph space

for a particular review is required by the program we can instantiate it on-the-fly by

using this ‘cached’ graph space template.

With this in mind we therefore need only to worry about generating graph

spaces for the set of unique combinations of positive and negative arguments in the

dataset; i.e. we only need to generate all the necessary graph space templates.

Proposition 14. The number of unique graph space templates SR for a

set of review R where a review is (R,(A+,A−),r) is between 0 ≤ SR ≤

|{((|A+|, |A−|)|(R,(A+,A−),r) ∈R}|.

Proof. The number of unique graph spaces when we consider polarity is given by

given by |{((|A+|, |A−|)|(R,(A+,A−),r) ∈R}|. This therefore becomes the upper

bound for the number of number of unique graph spaces we have to store in memory.

This upper bound here is given when each review in the dataset has a unique

combination of positive and negative arguments. A similar line of reasoning hold

7.1. Storing Probability Distributions from Unsupervised Learning 133

when considering how much memory would be required to hold the associated prob-

ability distributions for each review. We will only generate the probability distribu-

tions for unique combination of graph spaces templates and ratings; this we refer

to probability distribution template. Thus, as in the previous case, at run time

when we require the probability distribution for a review we only need to lookup the

distribution using the combination of rating and positive and negative arguments.

In Figure 7.2 we see a diagram summarising the sequence of operations in

generating a probability distribution for a single review. The first step is to generate

the graph space template which either generated from scratch or taken from a cache

(if that graph space template was previously requested). The probability distribution

over this is then generated. If we are using unsupervised learning then it is possible

that there is already a cached version of the distribution (if the input arguments and

rating are the same of previously requested distribution).

Proposition 15. The number of unique probability distributions templates PR for

a set of reviews R where a review is (Rev,(A+,A−),r) is between to 0 ≤ PR ≤

|{(|(A+,A−,r)|(Rev,(A+,A−),r) ∈R}|.

Proof. The unsupervised learning process produces one unique probability distri-

bution for a given combination of positive arguments, negative arguments and a

rating, i.e. (|A+|, |A−|,r), based on the Definition 29 which specifies that the final

distribution for a review (|A+|, |A−|,r) is given by AggDist(G,r)
∑G∈SAggDist(G,r) . Therefore, the

total number of probability distributions templates the system will have to store is

based on the number of positive and negative arguments in the set of reviews, R. If

there are no reviews in the set of reviews, R then the total number of templates is

0. If every review in the set of reviews is different in its combination of positive and

negative arguments then this is the upper bound and we will have to store a graph

for each review.

We now discuss briefly how much physical memory is potentially saved dur-

ing run time by templates for the graph space and probability distributions. Both

134 Chapter 7. Argument Interface

+ +

−

a b

c

Figure 7.1: The graph on the left is a template for a graph in the graph space for reviews
with 2 positive arguments and one negative arguments. The graph on the right
is a set of arguments using the template. Templates can be used to generate
argument graphs and graph spaces on the fly

arguments and attacks in an argument graph can be denoted by an integer value.

In Python this occupies 4bytes of data. Secondly the individual probabilities in the

probability distributions can be represented as Float values. Float value in most

applications occupy 8 bytes of data. In the example below we describe how much

memory is saved by employing templates.

Example 43. Continuing on from Example 42 we find that we have to compute 1

graph space template. This template will be for graphs with 1 positive argument and

1 negative argument. We will also only have to store two probability distributions.

The first will be for reviews with 1 positive, 1 negative argument and a rating of 4.

reviews with 1 positive, 1 negative argument and a rating of 10. The total amount of

data for probability distributions is thus 64 bytes. The amount of data for the graph

space is 12bytes.

In the example above we see that the total memory requirement for represent-

ing the review is 78 bytes. This is in contrast to 164bytes that would otherwise

be necessary had we stored an individual graph space and associated probability

distribution. In summary in this section we have demonstrated that through care-

ful implementation of how argument graphs are generated and stored we are able

to lower the computational resource requirements for running this in a real world

system.

7.2. Storing Probability Distributions from Supervised Learning 135

7.2 Storing Probability Distributions from Super-

vised Learning
In the previous section we focused on how templates for both the graph space and

probability distributions could be used in order to improve the memory require-

ments of the system. This is assuming the dataset we were working with does not

contain any labelled data; i.e. observations as per the definitions in Chapter 6. In

this section we describe the computational cost that comes when labelled data is

available; more precisely the memory requirements of having to store the posterior

probability distributions.

Going back to our discussion of templates we noted that the determining factor

for the types of graph space templates that we generate is the number of positive

and negative arguments in reviews in the dataset. Since the only change that oc-

curs when we use a supervised learning approach when using labelled data is the

resulting probability distribution we can continue to use the graphs space templates

to store the graphs.

If we recall the supervised learning method it involves computing a similarity

score by comparing the (labelled) graph against all of graphs in the review. This

process means that for each review we end up with a slightly different distribution

depending on the rating and the individual arguments. This means that the proba-

bility distribution templates no longer work once labelled data is introduced and the

lower bound essentially changes to |{(|(A+,A−,r)||(Rev,(A+,A−),r) ∈R}|.

7.3 Data Model For arguments and Counter Argu-

ments
In order to store the arguments and the argument graphs we require a basic data

model. In the previous section we explored how the underlying argumentation sys-

tem can be implemented. We spoke about deconstructing the task of building the

probability distributions for the graph space for each review into smaller and more

manageable processes. For an illustrated sequence of operations please refer to the

136 Chapter 7. Argument Interface

Figure 7.2: Sequence of operations for generating a probability distribution for a review

appendix Figure A.1.

So far our discussion has focused on how best to compute and store the graph

spaces and associated probability distributions. Ultimately however our objective is

to have a system where we can retrieve argument graphs for each review but also

handle queries such as:

• “In how many reviews has argument a attacked argument b?”

• “Show me other examples of where argument a has been countered by argu-

ment b”

• “On average how many times does argument a defeat argument b”

For example consider two arguments for acne medication: A - “drug was inex-

pensive” and B - “drug had undesirable side effects”. A patient may want to know

how often in the reviews has A been more dominant of an argument than B or on

average which argument is stronger etc.

To be able to handle such queries we need a data model that can store individual

7.3. Data Model For arguments and Counter Arguments 137

No Graph P(G) Bin

G1 a→ b 0.25 0≤ P(G)< 0.25
G2 a↔ b 0.25 0.25≤ P(G)< 0.5
G3 a b 0.5 0.5≤ P(G)< 0.9
G4 a← b 0.1 0.9≤ P(G)≤ 1

Table 7.1: Example of probability bins

attacks between arguments. To do this we propose that, for each review, we identify

the probability distribution for the review’s graph space. We then predict a graph

for the review by sampling from this distribution. We lastly store the details of that

graph in a relational database whose schema can be seen in Figure 7.7. If we repeat

this procedure for all reviews our relational database can then be used to answer

queries such as those mentioned previously.

In order to sample from the probability distribution we essentially wish to take

the graph with a high probability. A simple way to do this would be to take the graph

that has the highest probability assigned to it, i.e: max(P(G)|G ∈ Space(Review)).

Another approach would be to sample from the probability distribution as you

would from a multinomial distribution. In this approach we allocate each graph in

the graph space a bin whose size corresponds to the probability assigned to it. We

then produce a random number in range [0,1] and find the first bin whose probability

is greater than or equal to the random number. An example of how these bins can

be computed is given below.

Example 44. Consider the graphs in the Figure 7.1. If we generate a random num-

ber between 0 and 1, say x = 0.5 we see that the first bin whose probability is larger

than x is G3 therefore we would sample graph G3. If x = 0.8 then we also sample

G3 again. If x = 0.4 then we sample G2 and so on.

We can see that using this sampling approach that the probability that a graph is

selected is directly proportional to how much probability mass it has been assigned.

The larger the probability mass the more likely that the random number will fall

within the boundaries of its bin and vice versa. Although this approach requires a

few more steps (in comparison to just taking the graph with the largest probability),

138 Chapter 7. Argument Interface

Figure 7.3: Data model for reviews, arguments and attacks

it does ensure that other graphs in the graph space are not completely ignored and

also have a chance to be sampled.

Once a sampling approach has been decided and a graph has been selected for

a review we can then store this graph review in our relational database using the

schema in Figure 7.7. In this schema the review is stored in a table, the correspond-

ing arguments in a separate table and the attacks in their own tables.

Once the database has been populated with all of the argument graphs one

can then proceed to query the database. As an example consider the example query

below which has been translated into the corresponding (structured query language)

SQL syntax:

question: What are all of the counter arguments to argument A?

query:

select label from

(select

argument.id as argument_id,

argument.argument_label as argument_label,

attack.id as attack_id,

attack.argument_id,

attack.counter_argument_id

from argument

full join attack on argument.id = attack.attacked_id

where argument.label = ’A’

and attack.attacker_id IS NOT NULL) as attackers

7.4. Natural Language Queries 139

inner join

argument on argument.id = attackers.attacker_id

One can also answer questions such as ’what is the most popular attack on A’

or ’total number of attacks on A’ using the appropriate SQL command such as max,

count and avg commands.

Whilst having the ability to make these queries is valuable it is only helpful to

users who can construct such queries. In order to make this functionality available to

non-technical users (which are mostly patients who will interact with this database)

then it we propose using a automated translation service through which the user

can enter their query in natural language and the service will convert it into an

executable SQL query.

7.4 Natural Language Queries
In recent years there has been an interest in developing algorithms that can translate

natural language queries into SQL. Over the past few years a number of machine

learning approaches have been proposed for this ‘text2sql’ task in which the al-

gorithm/model is fed a natural language query such as ’how many people are over

85?’ and the model then outputs a corresponding SQL query such as ‘select count(*)

from table where age > 85’ for a targeted database.

This area of research is particularly exciting as it enables individuals to query

databases without requiring them to construct the queries themselves. In particu-

lar this is appealing to applications whose user-base are incapable of writing such

queries. In our case we do not expect that uses will be able to read/write SQL but

they may wish to interact with the argument database through natural language.

Whilst this is not the focus of the thesis I spent some time exploring the feasibility

of fine tuning a pretrained text2sql models to work with our database.

One model in particular that has acquired prominence in recent years is the T5

model [76]. The T5 model is a transformer based model that has been pretrained on

a large corpora comprising both unsupervised NLP tasks (masked-token prediction).

In terms of fine-tuning this base T5 model then T5 is trained using pairs of ’free text

140 Chapter 7. Argument Interface

k Acc ex Acc lf
1 0.94 0.89
2 0.77 0.77
3 0.88 0.88
4 1 1
5 0.94 0.94
Avg 0.91 0.90

Table 7.2: Results from 5-fold validation on text2sql dataset

queries’ and ’SQL’.

To generate the training data we focus on a simple set of queries that the user

may want to ask the database. These queries make use of the SELECT statement

and the COUNT statement. In essence we want the user to be able to ask in free

text the following queries:

• How many times is arg a attacked by arg b?

• In which reviews is arg a attacking b?

Whilst we acknowledge that the user may want to write free text queries that

make use of other aggregate operators such as TOP 10, MAX or AVG due to limited

resourcing we did not have scope produce labelled data for these types of queries.

To generate training we programatically produced 100 SQL queries and then

for each query a human annotator (myself) provided 3 corresponding natural lan-

guage queries. The SQL queries were generated by using a template into which we

randomly inserted the aggregate type (select, count(*)) and inserted the argument

and counter argument. By doing this we generate a dataset of 300 pairs of SQL to

natural language queries.

This training data was then split into an 80:20 training split and was used to

train the T5 model. The main parameters that we changed was the number of epochs

for which we were training for and we found that 5 epochs were sufficient for model

training. Since our dataset was so small we could not produce a validation training

set to monitor performance during training. We used a 5-fold validation here which

means that we 80:20 training:test sample was performed 5 times.

7.4. Natural Language Queries 141

To measure performance for the model we chose to use a performance metric

that is commonly used to benchmark text2SQL performances. We report two forms

of accuracy. The first is execution accuracy, Accex, which is defined as:

Accex =
Nex

N

Where N is defined as the number of queries and Nex is defined as the number of

queries that can be executed and return the correct rows for that query. For example

‘show all examples of where argument C attacks argument B’ would be mapped to

‘SELECT * FROM attackview where attacker = C and attacked = B’. This query

can be directly executed using the schema we have define without any adjustment

and will return the correct rows for our query.

The second metric is logical form accuracy, NLF , and is defined as:

Accl f =
Nl f

N

Where Nl f is defined as the number of queries in which the predicted sequence

matches the target sequence exactly, i.e. the strings are an exact match. Accl f

is desirable to report as Accex can sometimes reward predictions where the output

query unintentionally returns the correct result, i.e. the query is executable SQL

and the rows returned are those desired. For example ‘show all examples of where

argument C attacks argument B’ could be mapped to ’SELECT * FROM attackview

where attacker = C LIMIT 1’. In this example output query it might be the case that

the first result returned by adding the constraint ’LIMIT 1’ will have an attacked =

’B’. The Nl f score therefore penalises such results but also penalises results where

the predicted query is correct but does not exactly match the target string. For

example SELECT * FROM attackview where attacked = B and attacker = C’. In this

example the attacker and attacked conditions have been switched but are identical.

The results are shown in Table 7.2. We can see that both Accl f and Accex

remain mostly similar throughout each of the 5 experiments. This suggests that any

error caused is purely because the returned rows were incorrect. We also see that

142 Chapter 7. Argument Interface

text query translated sql

show reviews where ’cheap medication’
attacks poor ’side effects’

select * from table
where
attacker = ’cheap medication’
and attacked =’side effects’

in which reviews is ’side effects’ the attacker
select * from table
where
attacker =’side effects’

number of times where ’no side effects’
is attacked by ’minimal benefits’

select count(*) from table
where
attacker =’minimal benefits’
and attacked = ’no side effects’

Table 7.3: Examples of free text queries translated to SQL

the average accuracies reported around or above 0.9 which suggests that there may

be room for improvement with the addition of more training data. Some examples

of generated SQL queries can be seen in Table 7.3.

7.5 Interface
In this section we explore options for the interface through which the end-to-end

argumentation system can be interacted with. In particular in this section we pro-

pose designs for how the interface can be used to assist in developing the first two

pipes in the pipeline; that is allowing the user to identify arguments and secondly

allowing the user to identify attacks.

This type of functionality would allow the user to update and train the under-

lying models, both for argument detection and graph prediction in real time. This

setup would accelerate the learning process of the models particularly if multiple

users were to be using the system.

In terms of visualising the predicted graphs to the user we felt it was important

that any visualisation did not necessarily interfere with the normal experience and

instead the mined information was optionally visible to the user. We suggested that

this could be implemented by first highlighting the spans of text which have been

identified as an argument. To differentiate between positive and negative arguments

we use blue to denote positive and red for negative. In order to visualise the attacks

7.5. Interface 143

Figure 7.4: Argument Browser. Pro arguments highlighted in blue and counter arguments
in red

the user can hover his/her cursor over the argument and an arrow(s) will be shown

between the arguments in conflict. In this way the user can experience the review

as they normally would but additionally they are able to see easily which of the

arguments exist and which ones are in conflict.

As mentioned earlier on one of the stated objectives the system was that it

would assist the user in quickly navigating all of the important arguments in that set

of reviews. To do this the user should have the option of quickly navigating through

the arguments and counter arguments that have been recorded in the system. To

achieve this we offer the user various options when hovering over an individual

arguments:

• View other reviews containing this type of arguments

• View other counter arguments to this argument

• View basic statistics about this argument, e.g. how many time this argument

has appeared in the dataset etc.

We felt that by offering these options only upon hovering over the text the user

has an unobstructed view of the text and can therefore read as they normally would

and additionally engage with the argumentation system when they wanted.

144 Chapter 7. Argument Interface

Figure 7.5: Hovering over argument reveals information about the argument and show
statistics about counter arguments

Figure 7.6: Searching via text2Sql would allow users to retrieve other reviews with similar
arguments

Given our limited success with text2Sql models we also propose the addition

of a search bar at the top of the page in which the user can query the argument

database. The user can type in their query and an appropriate response will be

displayed in the interface. We identified that there are essentially two categories of

response. There are those in which the SQL query is simply a select statement, i.e

’select * from counterarguments etc’ in which case the user is requesting to see a

list of reviews. The second category is those in which the user is requesting the user

of some type of SQL aggregate function i.e ’ select count(*) from’ etc. In this case

the user is expecting a single numerical answer.

In the case where the user has requested a select statement then we simply

return a view of all of the reviews returned by executing the SQL statement. In

the case where the user has requested the use of some sort of aggregation operator

we return an additional window at the top of the interface in which we present the

numerical response, we also additionally return all of the reviews upon which the

7.6. Conclusion 145

Figure 7.7: Searching via text2Sql would allow users to retrieve other reviews with counter
arguments

aggregate query was run.

7.6 Conclusion
In this chapter I have discussed the requirements to build a full-stack application

through which a patient can interact with the reviews and the ‘structured’ argument

data extracted for a set of reviews. I have considered the computational require-

ments needed store and produce probability distributions over the reviews. In order

to reduce the amount of memory required to store the distributions for each review

we propose the use of argument graph space templates and probabilistic graph tem-

plates. In the case of argument graph space templates these ensure that, where two

or more reviews have the same combination of positive and negative arguments we

do not need to store in memory separate graph spaces for the reviews. In the case

of probability distribution templates where two or more review have the same set of

arguments and the same rating, and no labelled data has been considered (unsuper-

vised setting) we do not need to store in memory separate probability distributions

for these reviews since they will be identical.

Following this I consider how the user will interact with the system. I note

that since this data will be stored in a relations database an appropriate method is

needed to ensure non-technical users (those unfamiliar with SQL syntax) are able

to query the data. I propose a text2SQL model for tackling this problem which

is a machine learning model capable of taking a free-text human readable query

and converting it into a corresponding SQL query that can be executed against the

146 Chapter 7. Argument Interface

database containing the structured argument data. The text-2-SQL model means

that user’s can interact with the data on the system with queries such as ’what are

counter arguments to this argument’ and expect a visual response.

Finally I provide some suggestions of how the interface will look. I describe

functionality that I believe is key to the interface such as viewing arguments in the

review and the ability to see counterargument in the review as well as potential

counter arguments in other reviews (by looking at what counter arguments have

been made against the all examples of that argument label, e.g. if user is reading an

argument with label ‘cheap medication’ the system will look at all arguments that

have attacked that in the database).

Whilst the proposals in this chapter have not been evaluated this is certainly

something I wish to pursue in the future. For one I would like to understand how

poorly extracted data influences the reader’s experience. For example if the model

has incorrectly identified an argument and a counter-argument how does this effect

the conclusion the reader draws.

Chapter 8

Conclusions

This thesis attempts to address the problem patients face when reading medical

information on the web. The patient is faced with the task of synthesising and pro-

cessing the arguments and counter arguments to the drugs found in this information.

In order to limit the scope of my investigation I chose to focus on patient provided

drugs reviews on the internet as a source of arguments and counterarguments for the

drugs due to their increasing commonplace. I stated in Chapter 1 that a number of

issues may arise for the user when reading over the reviews. Firstly there is issue of

’volume’ that poses a challenge to the reader since they will be required to interpret

the opinions in each review, keep track of these opinions and ultimately form a bal-

anced opinion. Secondly there is the issue that reviews are not simply collections of

side effects that the drug has caused but also have more complex information that

can be modelled with computational models of argumentation.

These problems lead me to the research question I was addressing in the thesis

which was ‘Is it possible to assist patients in synthesising the information pre-

sented in online medical drug reviews?’. The question was further broken down

into two questions namely: ‘How can we extract information from the reviews

to present to the reader?’. This question deals with the extraction of arguments

and counter arguments in a review since this is what patients are trying to ascertain

from the review. The second question is ‘How can we structure this information

to allow the information to be easily synthesised by the reader?’. This questions

deals with how one can take the arguments and counter arguments and identify

148 Chapter 8. Conclusions

more meaningful structured information between the arguments/counter arguments

that will help the user navigate their way through the reviews.

To address this problem I have proposed a pipeline of tasks needed to help

patients better synthesise the positive and negative aspects in the drug reviews; in

other words arguments and counter arguments in patient provided drug reviews for

medications they are interested in. To this end I proposed a pipeline through which

arguments are extracted, attacks/argument graphs identified and finally visualised

for the user. The first pipe in the pipeline dealt with the task of argument extraction.

In Chapters 3 and 4 I address the issue of ‘how to extract important informa-

tion from drug reviews‘. In Chapter 3 I proposed the use of a rule-based approach

to extract seven types of arguments. I demonstrated that using a combination of

keywords and pattern matching that it is possible to target the extraction of partic-

ular arguments relevant to drug reviews. A rule based approach is however limited

in that it does not scale as the dataset grows and the types of arguments a user may

encounter vary.

To address these shortcomings I proposed a machine learning approach in

Chapter 4. I produced an annotated dataset of a total of 680 reviews and identi-

fied 41 argument types. After the annotation process I discovered that the annotated

arguments were always contained within a single sentence. In terms of choosing a

natural language processing model it meant I chose to frame the problem as a sen-

tence classification problem. I chose to use a pretrained language model and used it

as a sentence multi class classification model and reported reasonably high recalls

and precisions.

In Chapter 5 and 6 I address the issue of ‘how to structure the information

extracted’ in the previous two chapters. In these chapters I dealt with the task of

identifying the argument graph for a review. Our proposal makes use of the con-

stellations approach to probabilistic argumentation. I consider the possible set of

argument graphs that the review can be assigned and identify as probability distri-

bution over that set. Our probability distribution is given by a function that utilises

the rating of the review in order to identify the distribution. The function is designed

8.1. Contributions 149

such that if the rating is high, graphs with more positive features (defined in Chapter

5) are given more probability mass and vice versa.

In Chapter 6 I extend my approach to be able to incorporate annotator sub-

mitted argument graphs for a review. I propose the use of Bayesian inference to

be able to update the probability distribution if an annotator submits what they feel

is the ‘true‘ argument graph for the review. In order to test my proposal I demon-

strate, through the use if synthetic data, that the resulting distribution once annotator

provided argument graphs have been incorporated is as expected.

In Chapter 7 I tackle the question of what an end-to-end system would look

like. In the Chapter I outline the requirements for implementing the system as an

end-to-end system. This includes considering computational costs associated with

storing and updating the probability distributions for each review. In addition I make

some simple proposals for what I expect the interface to look like. In particular

I focus on the user’s ability to interact with the argument graph data generated.

I suggest the use of text-to-SQL queries that would enable the user to query the

argument graph data that has been captured by the system using free-text queries. I

also make some basic proposals for how the front-end would look like.

8.1 Contributions
The contribution this thesis makes are:

1. A workflow for training a machine learning model to detect argu-

ments/counter arguments in reviews. This was proposed in Chapter 4. This

workflow is flexible and ensures that the users are not limited to a finite set

of labels when annotating/training a model. This is valuable since during

the annotation process the annotator may come across an argument that does

not resemble any argument that they have previously encountered. Once the

annotation process is completed the labels are grouped together if they are

semantically similar so as to simplify/reduce the set of labels we are training

the model to detect.

2. Is the ability to mine argument graphs from reviews through an algorithm

150 Chapter 8. Conclusions

that works both without supervision (Chapter 5 and with supervision Chapter

6 when human provided labelled data is available. Whilst there have been

some efforts to mine arguments from reviews [77] none to our knowledge has

produced one that can continue to learn from labelled data.

3. Our proposals for visualising the mined argument graphs within the reviews.

This encompasses our use of text2SQL models for allowing users to query the

arguments using free text queries and our proposals for visualising arguments

and counter arguments in a review.

8.2 Limitations
There limitations with the current work are as follows:

1. A full evaluation of the user interface was not conducted. Such as study would

be helpful in understanding if the full ‘end-to-end’ system is ultimately useful

to the user. Whilst, efforts were made to test individual pipes an evaluation of

the interface with real users would encapsulate all of these. This is something

that I would like to revisit in the future.

2. A lack of labelled graph data for the supervised learning chapter meant that

we was limited to using synthetic data and simulations. Again a more thor-

ough validation would be something I would wish to undertake going for-

ward.

8.3 Going Forward
Going forward I would like to better focus on the following:

1. The ability of the argument extraction model to extract individual symptoms:

Much work has been done of extracting medical terminology from patient

provided feedback/text [78] [79]. These models could be used to find more

specific arguments in the text related to symptoms. For example we could

consider ‘I had a back ache’ and individual argument and not have to abstract

it into a more generic argument type, e.g. ‘negative side effect’.

8.3. Going Forward 151

2. Furthermore many more pre-trained language models have emerged in recent

years [80] [81]. I would like to explore the potential performance improve-

ments in argument extraction if I was to use these models. In particular I

would be keen on bench marking all of the state-of-the-art models against our

dataset.

3. Investigate other extensions (preferred semantics) as part of our unsupervised

method for identifying a probability distribution for a review. I believe the

current proposal could be extended to encompass a wider range of semantics

and thus introduce greater flexibility in how the system expresses confidence

in an argument graph.

4. Question-answering system: Since the pipeline essentially extract an argu-

ment graph for each review it would be nice to explore the possibility of

having a chat style interface in which the system can interact with the user

using natural language. Much progress has been made in this front with the

emergence of large language models [82] [83] [63] that can be fine-tuned to

perform conversational tasks. This line of work would mean that patients

could interact with the mined arguments through a chatbot in addition to/as

opposed to reading through the reviews. This would mean they could poten-

tially parse the arguments related to a drug much faster.

Bibliography

[1] Angela Coulter, Alf Collins, et al. Making shared decision-making a reality.

2011.

[2] Natalie Joseph-Williams, Amy Lloyd, Adrian Edwards, Lynne Stobbart,

David Tomson, Sheila Macphail, Carole Dodd, Kate Brain, Glyn Elwyn, and

Richard Thomson. Implementing shared decision making in the nhs: lessons

from the magic programme. Bmj, 357, 2017.

[3] Catherine Foot, Helen Gilburt, Phoebe Dunn, Joni Jabbal, Becky Seale,

Joanna Goodrich, David Buck, and Jeremy Taylor. People in control of their

own health and care. 2014.

[4] Romy Lamers, Maarten Cuypers, Marieke de Vries, Lonneke vd Poll-Franse,

Ruud Bosch, and Paul Kil. Pd47-07 the effect of a preference sensitive online

decision aid on localized prostate cancer treatment: First results of a random-

ized cluster controlled trial. The Journal of Urology, 197(4):e898, 2017.

[5] Margaret Holmes-Rovner, Akshay Srikanth, Stephen G Henry, Aisha Lang-

ford, David R Rovner, and Angela Fagerlin. Decision aid use during post-

biopsy consultations for localized prostate cancer. Health Expectations,

21(1):279–287, 2018.

[6] Muhammed Ordu, Eren Demir, Chris Tofallis, and Murat M Gunal. A

novel healthcare resource allocation decision support tool: A forecasting-

simulation-optimization approach. Journal of the operational research so-

ciety, 72(3):485–500, 2021.

154 Bibliography

[7] Erin K Tagai, Suzanne M Miller, Alexander Kutikov, Michael A Diefenbach,

Ronak A Gor, Tahseen Al-Saleem, David YT Chen, Sara Fleszar, and Gem

Roy. Prostate cancer patients’ understanding of the gleason scoring system:

Implications for shared decision-making. Journal of Cancer Education, pages

1–5, 2018.

[8] Siti Noorsuriani Maon, Naffisah Mohd Hassan, and Sharidatul Akma Abu Se-

man. Online health information seeking behavior pattern. Advanced Science

Letters, 23(11):10582–10585, 2017.

[9] Young Ji Lee, Bernadette Boden-Albala, Elaine Larson, Adam Wilcox, and

Suzanne Bakken. Online health information seeking behaviors of hispanics in

new york city: a community-based cross-sectional study. Journal of medical

Internet research, 16(7):e3499, 2014.

[10] Linqi Lu, Jiawei Liu, and Y Connie Yuan. Health information seeking behav-

iors and source preferences between chinese and us populations. Journal of

Health Communication, 25(6):490–500, 2020.

[11] Vladan Starcevic. Cyberchondria: challenges of problematic online

searches for health-related information. Psychotherapy and psychosomatics,

86(3):129–133, 2017.

[12] Sharon Swee-Lin Tan and Nadee Goonawardene. Internet health information

seeking and the patient-physician relationship: a systematic review. Journal

of medical Internet research, 19(1):e9, 2017.

[13] Sanjiv Ahluwalia, Elizabeth Murray, Fiona Stevenson, Cicely Kerr, and

Jo Burns. ‘a heartbeat moment’: qualitative study of gp views of patients

bringing health information from the internet to a consultation. British Jour-

nal of General Practice, 60(571):88–94, 2010.

[14] Surfing, self-medicating and safety: buying non-prescription and complemen-

tary medicines via the internet. BMJ Quality & Safety, 12(2):88–92, 2003.

Bibliography 155

[15] Jennifer Cole, Chris Watkins, and Dorothea Kleine. Health advice from in-

ternet discussion forums: how bad is dangerous? Journal of medical Internet

research, 18(1), 2016.

[16] Sasha Shepperd, Deborah Charnock, and Bob Gann. Helping patients access

high quality health information. Bmj, 319(7212):764–766, 1999.

[17] Luca Soldaini, Andrew Yates, Elad Yom-Tov, Ophir Frieder, and Nazli Go-

harian. Enhancing web search in the medical domain via query clarification.

Information Retrieval Journal, 19(1-2):149–173, 2016.

[18] Luca Soldaini and Nazli Goharian. Learning to rank for consumer health

search: a semantic approach. In European conference on information retrieval,

pages 640–646. Springer, 2017.

[19] Jimmy Jimmy, Guido Zuccon, Bevan Koopman, and Gianluca Demartini.

Health cards for consumer health search. In Proceedings of the 42nd Interna-

tional ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 35–44, 2019.

[20] Christopher V Almario, Michelle S Keller, Michelle Chen, Karen Lasch,

Lyann Ursos, Julia Shklovskaya, Gil Y Melmed, and Brennan MR Spiegel.

Optimizing selection of biologics in inflammatory bowel disease: develop-

ment of an online patient decision aid using conjoint analysis. Official journal

of the American College of Gastroenterology— ACG, 113(1):58–71, 2018.

[21] Bibiana Martinez, Francis Dailey, Christopher V Almario, Michelle S Keller,

Mansee Desai, Taylor Dupuy, Sasan Mosadeghi, Cynthia Whitman, Karen

Lasch, Lyann Ursos, et al. Patient understanding of the risks and benefits of

biologic therapies in inflammatory bowel disease: insights from a large-scale

analysis of social media platforms. Inflammatory bowel diseases, 23(7):1057–

1064, 2017.

[22] Christopher C Yang, Haodong Yang, and Ling Jiang. Postmarketing drug

safety surveillance using publicly available health-consumer-contributed con-

156 Bibliography

tent in social media. ACM Transactions on Management Information Systems

(TMIS), 5(1):1–21, 2014.

[23] Felix Gräßer, Surya Kallumadi, Hagen Malberg, and Sebastian Zaunseder.

Aspect-based sentiment analysis of drug reviews applying cross-domain and

cross-data learning. In Proceedings of the 2018 International Conference on

Digital Health, pages 121–125, 2018.

[24] Lianzhuang Qu and Patrick YK Chau. Nudge with interface designs of online

product review systems–effects of online product review system designs on

purchase behavior. Information Technology & People, (ahead-of-print), 2022.

[25] Swarnaseetha Adusumalli, HueyTyng Lee, Qiangze Hoi, Si-Lin Koo,

Iain Beehuat Tan, Pauline Crystal Ng, et al. Assessment of web-based con-

sumer reviews as a resource for drug performance. Journal of medical Internet

research, 17(8):e4396, 2015.

[26] Vinaya Manchaiah, Rebecca J Bennett, Pierre Ratinaud, and De Wet

Swanepoel. Experiences with hearing health care services: What can we learn

from online consumer reviews? American Journal of Audiology, 30(3):745–

754, 2021.

[27] Kawsar Noor, Anthony Hunter, and Astrid Mayer. Analysis of medical argu-

ments from patient experiences expressed on the social web. In International

Conference on Industrial, Engineering and Other Applications of Applied In-

telligent Systems, pages 285–294. Springer, 2017.

[28] Kawsar Noor and Anthony Hunter. Analysing product reviews using proba-

bilistic argumentation. In Henry Prakken, Stefano Bistarelli, Francesco San-

tini, and Carlo Taticchi, editors, Computational Models of Argument - Pro-

ceedings of COMMA 2020, Perugia, Italy, September 4-11, 2020, volume 326

of Frontiers in Artificial Intelligence and Applications, pages 295–306. IOS

Press, 2020.

Bibliography 157

[29] Kawsar Noor and Anthony Hunter. A bayesian probabilistic argumentation

framework for learning from online reviews. In 32nd IEEE International Con-

ference on Tools with Artificial Intelligence, ICTAI 2020, Baltimore, MD, USA,

November 9-11, 2020, pages 742–747. IEEE, 2020.

[30] Philippe Besnard, Claudette Cayrol, and Marie-Christine Lagasquie-Schiex.

Logical theories and abstract argumentation: A survey of existing works. Ar-

gument & Computation, 11(1-2):41–102, 2020.

[31] Phan Minh Dung. On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games. Artificial

intelligence, 77(2):321–357, 1995.

[32] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An intro-

duction to argumentation semantics. The Knowledge Engineering Review,

26(4):365–410, 2011.

[33] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran. Generalizations of

dung frameworks and their role in formal argumentation. IEEE Intelligent

Systems, 29(1):30–38, 2013.

[34] Leila Amgoud and Claudette Cayrol. A reasoning model based on the pro-

duction of acceptable arguments. Annals of Mathematics and Artificial Intel-

ligence, 34(1):197–215, 2002.

[35] Didier Dubois and Henri Prade. An introduction to bipolar representations

of information and preference. International Journal of Intelligent Systems,

23(8):866–877, 2008.

[36] Leila Amgoud and Srdjan Vesic. A new approach for preference-based ar-

gumentation frameworks. Annals of Mathematics and Artificial Intelligence,

63(2):149–183, 2011.

158 Bibliography

[37] Leila Amgoud and Jonathan Ben-Naim. Ranking-based semantics for argu-

mentation frameworks. In International Conference on Scalable Uncertainty

Management, pages 134–147. Springer, 2013.

[38] Stefano Bistarelli, Paolo Giuliodori, Francesco Santini, and Carlo Taticchi.

A cooperative-game approach to share acceptability and rank arguments. In

AI3@ AI* IA, pages 86–90, 2018.

[39] Paul-Amaury Matt and Francesca Toni. A game-theoretic measure of argu-

ment strength for abstract argumentation. In European Workshop on Logics in

Artificial Intelligence, pages 285–297. Springer, 2008.

[40] Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, and Nicolas Maudet.

A comparative study of ranking-based semantics for abstract argumentation.

In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[41] Phan Minh Dung, Robert A Kowalski, and Francesca Toni. Assumption-based

argumentation. Argumentation in artificial intelligence, pages 199–218, 2009.

[42] Sanjay Modgil and Henry Prakken. The aspic+ framework for structured ar-

gumentation: a tutorial. Argument & Computation, 5(1):31–62, 2014.

[43] Alejandro J Garcı́a and Guillermo R Simari. Defeasible logic programming:

An argumentative approach. Theory and practice of logic programming, 4(1-

2):95–138, 2004.

[44] Hengfei Li, Nir Oren, and Timothy J Norman. Probabilistic argumentation

frameworks. TAFA, 7132:1–16, 2011.

[45] Anthony Hunter. Some foundations for probabilistic abstract argumentation.

Computational Models of Argument: Proceedings of COMMA 2012, 245:117,

2012.

[46] Régis Riveret and Guido Governatori. On learning attacks in probabilistic

abstract argumentation. In Proceedings of the 2016 International Conference

Bibliography 159

on Autonomous Agents & Multiagent Systems, pages 653–661. International

Foundation for Autonomous Agents and Multiagent Systems, 2016.

[47] Hiroyuki Kido and Keishi Okamoto. A bayesian approach to argument-based

reasoning for attack estimation. In Proceedings of the 26th International Joint

Conference on Artificial Intelligence, pages 249–255, 2017.

[48] Learning and updating user models for subpopulations in persuasive argumen-

tation using beta distribution. In Proceedings of the 17th International Con-

ference on Autonomous Agents and Multiagent Systems, volume 17, pages

1141–1149. Association for Computing Machinery (ACM), 2018.

[49] Nico Potyka. Interpreting neural networks as quantitative argumentation

frameworks. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 35, pages 6463–6470, 2021.

[50] Artur d’Avila Garcez, Dov Gabbay, and Luı́s C Lamb. Argumentation neu-

ral networks. In International Conference on Neural Information Processing,

pages 606–612. Springer, 2004.

[51] Régis Riveret, Dimitrios Korkinof, Moez Draief, and Jeremy Pitt. Probabilis-

tic abstract argumentation: an investigation with boltzmann machines. Argu-

ment & Computation, 6(2):178–218, 2015.

[52] Pierpaolo Dondio. Towards argumentative decision graphs: Learning argu-

mentation graphs from data. In AI3@ AI* IA, 2021.

[53] Marco Lippi and Paolo Torroni. Argumentation mining: State of the art and

emerging trends. ACM Transactions on Internet Technology (TOIT), 16(2):10,

2016.

[54] Simone Teufel, Jean Carletta, and Marc Moens. An annotation scheme for

discourse-level argumentation in research articles. In Proceedings of the ninth

conference on European chapter of the Association for Computational Lin-

guistics, pages 110–117. Association for Computational Linguistics, 1999.

160 Bibliography

[55] Zeljko Kraljevic, Thomas Searle, Anthony Shek, Lukasz Roguski, Kawsar

Noor, Daniel Bean, Aurelie Mascio, Leilei Zhu, Amos A Folarin, Angus

Roberts, et al. Multi-domain clinical natural language processing with med-

cat: the medical concept annotation toolkit. Artificial intelligence in medicine,

117:102083, 2021.

[56] Christos Sardianos, Ioannis Manousos Katakis, Georgios Petasis, and Vangelis

Karkaletsis. Argument extraction from news. In ArgMining@ HLT-NAACL,

pages 56–66, 2015.

[57] John Lawrence and Chris Reed. Mining argumentative structure from natural

language text using automatically generated premise-conclusion topic models.

In Proceedings of the 4th Workshop on Argument Mining, pages 39–48, 2017.

[58] Adam Z Wyner, Jodi Schneider, Katie Atkinson, and Trevor JM Bench-Capon.

Semi-automated argumentative analysis of online product reviews.

[59] Simone Gabbriellini and Francesco Santini. A micro study on the evolution of

arguments in amazon. com’s reviews. In International Conference on Princi-

ples and Practice of Multi-Agent Systems, pages 284–300. Springer, 2015.

[60] Leila Amgoud and Srdjan Vesic. On the role of preferences in argumentation

frameworks. In Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE

International Conference on, volume 1, pages 219–222. IEEE, 2010.

[61] Joao Leite and Joao Martins. Social abstract argumentation. In IJCAI, vol-

ume 11, pages 2287–2292, 2011.

[62] J Richard Landis and Gary G Koch. The measurement of observer agreement

for categorical data. biometrics, pages 159–174, 1977.

[63] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, et al. Language models are few-shot learners. Advances in

neural information processing systems, 33:1877–1901, 2020.

Bibliography 161

[64] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage chal-

lenge corpus for sentence understanding through inference. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 1112–1122, New Orleans, Louisiana, June 2018. Association

for Computational Linguistics.

[65] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D.

Manning. A large annotated corpus for learning natural language inference.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 632–642, Lisbon, Portugal, September 2015. Asso-

ciation for Computational Linguistics.

[66] Jakub Piskorski, Jacek Haneczok, and Guillaume Jacquet. New benchmark

corpus and models for fine-grained event classification: To bert or not to bert?

In Proceedings of the 28th international conference on computational linguis-

tics, pages 6663–6678, 2020.

[67] Ken Barker, Parul Awasthy, Jian Ni, and Radu Florian. Ibm mnlp ie at case

2021 task 2: Nli reranking for zero-shot text classification. In Proceedings of

the 4th Workshop on Challenges and Applications of Automated Extraction of

Socio-political Events from Text (CASE 2021), pages 193–202, 2021.

[68] John Lawrence and Chris Reed. Argument mining: A survey. Computational

Linguistics, 45(4):765–818, December 2019.

[69] Aspect based sentiment analysis.

[70] Hai Ha Do, Angelika Maag, and Abeer Alsadoon. Deep learning for aspect-

based sentiment analysis: a comparative review. Expert systems with applica-

tions, 118:272–299, 2019.

[71] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In

Proceedings of the tenth ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 168–177, 2004.

162 Bibliography

[72] Andrea Gasparetto, Matteo Marcuzzo, Alessandro Zangari, and Andrea Al-

barelli. A survey on text classification algorithms: From text to predictions.

Information, 13(2):83, 2022.

[73] Phan Minh Dung and Phan Minh Thang. Towards (probabilistic) argumenta-

tion for jury-based dispute resolution. COMMA, 216:171–182, 2010.

[74] Anthony Hunter and Kawsar Noor. Aggregation of perspectives using the

constellations approach to probabilistic argumentation. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 34, pages 2846–2853,

2020.

[75] Oana Cocarascu, Antonio Rago, and Francesca Toni. Extracting dialogical

explanations for review aggregations with argumentative dialogical agents. In

Proceedings of the 18th International Conference on Autonomous Agents and

MultiAgent Systems, pages 1261–1269. Association for Computing Machin-

ery, 2019.

[76] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of

transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21(140):1–67, 2020.

[77] Teeradaj Racharak. Abstract argumentation for summarizing product reviews:

A case study in shopee thailand. In 2019 11th International Conference on

Knowledge and Systems Engineering (KSE), pages 1–6. IEEE, 2019.

[78] Mike Conway, Mengke Hu, and Wendy W Chapman. Recent advances in

using natural language processing to address public health research questions

using social media and consumergenerated data. Yearbook of medical infor-

matics, 28(01):208–217, 2019.

[79] Oladapo Oyebode, Chinenye Ndulue, Ashfaq Adib, Dinesh Mulchandani,

Banuchitra Suruliraj, Fidelia Anulika Orji, Christine T Chambers, Sandra

Bibliography 163

Meier, Rita Orji, et al. Health, psychosocial, and social issues emanating from

the covid-19 pandemic based on social media comments: text mining and the-

matic analysis approach. JMIR medical informatics, 9(4):e22734, 2021.

[80] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebas-

tian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Met-

zler, et al. Emergent abilities of large language models. arXiv preprint

arXiv:2206.07682, 2022.

[81] Tiffany H Kung, Morgan Cheatham, Arielle Medenilla, Czarina Sillos, Lorie

De Leon, Camille Elepaño, Maria Madriaga, Rimel Aggabao, Giezel Diaz-

Candido, James Maningo, et al. Performance of chatgpt on usmle: Potential

for ai-assisted medical education using large language models. PLOS Digital

Health, 2(2):e0000198, 2023.

[82] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits

of transfer learning with a unified text-to-text transformer. The Journal of

Machine Learning Research, 21(1):5485–5551, 2020.

[83] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,

Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon,

Matthias Gallé, et al. Bloom: A 176b-parameter open-access multilingual

language model. arXiv preprint arXiv:2211.05100, 2022.

	Introduction
	Problem Statement
	Research Question

	Argumentation Pipeline
	Extracting Arguments
	Reasoning with Arguments
	Interacting with Arguments
	Visualising Arguments

	Published Works

	Background
	Abstract Argumentation
	Other Argumentation Frameworks

	Probabilistic Argumentation
	Probabilistic Argumentation for Learning Abstract Argument Graph Structures
	Other Machine Learning Approaches in Argumentation

	Argument Extraction
	Argument Extraction
	Evaluation of Extracted Arguments
	Evaluation of Argument Graphs
	Discussion and Literature Review

	Argument Extraction with Machine Learning
	Text Classification with Pretrained Models
	Dataset
	Training
	Pretrained Text Classification Models

	Results
	Relevant Literature
	Conclusion and Future Directions

	Argument Reasoning using Unsupervised Learning
	Introduction
	 Reviews as Argument Graphs

	Modelling a Review with Probabilistic Argumentation
	Probabilistic Argumentation
	Analysing the Polarity of an Argument Graph
	Ranking Argument Graphs

	Experiment
	Predicting Ratings for Reviews
	Predicting Graphs for Reviews

	Related Works

	Argument Reasoning using Supervised Learning
	Bayesian Framework for Updating Probability Distribution
	Likelihood Functions
	Updates with Matching Observations
	Updates with Similar Observations
	Synthetic Data
	Results
	Conclusion

	Argument Interface
	Storing Probability Distributions from Unsupervised Learning
	Storing Probability Distributions from Supervised Learning
	Data Model For arguments and Counter Arguments
	Natural Language Queries
	Interface
	Conclusion

	Conclusions
	Contributions
	Limitations
	Going Forward

	Appendices
	Bibliography

