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Abstract

Sustainable transport planning highlights the importance of walking to low-carbon

and healthy urban transport systems. Studies have identified multiple ways in which

vehicle traffic can negatively impact pedestrians and inhibit walking intentions.

However, pedestrian-vehicle interactions are underrepresented in models of pedes-

trian mobility. This omission limits the ability of transport simulations to support

pedestrian-centric street design. Pedestrian navigation decisions take place simul-

taneously at multiple spatial scales. Yet most models of pedestrian behaviour focus

either on local physical interactions or optimisation of routes across a road network.

This thesis presents a novel hierarchical pedestrian route choice framework that

integrates dynamic, perceptual decisions at the street level with abstract, network

based decisions at the neighbourhood level. The framework is based on Construal

Level Theory which states that decision makers construe decisions based on their

psychological distance from the object of the decision. The route choice framework

is implemented in a spatial agent-based simulation in which pedestrian and vehicle

agents complete trips in an urban environment. Global sensitivity analysis is used to

explore the behaviour produced by the multi-scale pedestrian route choice model.

Finally, simulation experiments are used to explore the impacts of restrictions to

pedestrian movement. The results demonstrate the potential insights that can be

gained by linking street scale movement and interactions with neighbourhood level

mobility patterns.
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Chapter 1

Introduction

The movement of people and vehicles on urban roads is coordinated though an

intricate mix of factors spanning physical infrastructure, laws, social norms, and

communication. The resulting behaviour of road users is diverse and multi-faceted.

It is also subject to change. The history of the automobile provides a rich case study

of the potential for new technologies to motivate broader societal change. As well

as these changes being evident in post-war suburban development and out-of-town

shopping centres, they are evident in the behaviour of road users. In the UK and

elsewhere new infrastructure such as traffic lights and road crossings were devel-

oped to help coordinate pedestrians’ and vehicles’ shared use of the carriageway.

Public information campaigns taught children how to cross the road and established

new norms regarding safety and responsibility.

Two concurrent trends are motivating continued research into these detailed

aspects of pedestrian and vehicle behaviour. First, the transition to a sustainable

transport system. Walking is a notable component of sustainable transport plans,

promising reduced vehicle emissions as well as significant improvements to pub-

lic health. A wide range of negative impacts of vehicle centric urban design and

transport planning on pedestrians are motivating alternative approaches to the de-

sign and management of city streets. Second, the development and anticipation of

autonomous vehicles. Sitting within a broader trend of ‘mobility innovation’, au-

tonomous vehicles promise to introduce a novel component to urban roads: an ex-

pansion of robotic automation into an uncontrolled, social environment. Improved
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safety and efficiency are in the offering, but, a thoughtful examination of urban

roads reveals these are just two among many, value laden, functions these spaces

provide.

The numerous influences on pedestrian behaviour give rise to a variety of ap-

proaches to quantifying and modelling pedestrian movement and pedestrian-vehicle

interactions on urban roads. A critical assessment of these methods identifies dif-

ferent behaviours that are included and excluded when making the simplifying as-

sumptions quantitative models require. Similarly, in representing the road envi-

ronment models necessarily make abstractions and define the spatial bounds of the

system. The types of assumptions made differ depending on the spatial scale of

analysis leading to distinct approaches to modelling pedestrian behaviour, broadly

grouped by academic fields.

1.1 Thesis objectives
The central question this thesis addresses is whether by integrating different ap-

proaches to modelling pedestrian behaviour a more robust assessment of pedestrian-

vehicle interactions can be made. By addressing this question this thesis aims to

make a contribution to pedestrian modelling that is relevant to the transport plan-

ning challenges posed by decarbonisation and vehicle automation. This objective is

expanded upon with the more detailed objectives below.

1. Critically review research into the determinants of pedestrian behaviour on

urban roads and the representation of this behaviour in models.

2. Identify a suitable theoretical approach to modelling pedestrian navigation

and movement at multiple spatial scales.

3. Develop a model of pedestrian movement in urban areas based on the out-

comes of objectives 1 and 2.

4. Explore the behaviour produced by the pedestrian model and apply it to an

assessment of the impacts of street infrastructure on pedestrian-vehicle inter-

actions.
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1.2 Thesis organisation

These objectives are addressed in the following chapters.

Chapter 2, Literature review, addresses objectives 1 and 2. This chapter ex-

pands on the themes introduced above, starting with a discussion of the transition

to sustainable urban transport and the role of transport technology in achieving this.

Following this a wide range of determinants of pedestrian behaviour and experi-

ence related to street level movement are reviewed. Finally, models of pedestrian

decision making urban areas are critically reviewed with a focus on distinguishing

between the representation of pedestrian decision making and the relevant spatial

scales of both the decision and movement. Based on this review a research gap

is identified in the lack of modelling approaches that integrate pedestrian decision

making across spatial scales, specifically, linking street level decisions related to

pedestrian-vehicle interaction with navigation over wider urban areas.

Chapter 3, Modelling framework, proposes a set of research questions to ad-

dress this gap and presents a suitable modelling framework, further addressing

objective 2 by drawing on the literature discussed in the Literature Review. This

framework defines the modelling purpose, justifies the use of an agent-based mod-

elling methodology, and presents the theoretical framework used to integrate models

of pedestrian decision making across spatial scales.

Having established this framework, Chapters 4, Upper-level route choice, and

5, Lower-level route choice, address objective 3 by developing models of pedestrian

movement at two spatial scales. Chapter 4 presents a model of pedestrians route

choices across an urban neighbourhood, where pedestrians must travel along multi-

ple road links to reach their destination. Chapter 5 presents a model of street level

pedestrian route choice and movement and its integration with upper-level route

choice presented in Chapter 4. Central to both chapters is the representation of road

crossing behaviour and pedestrian heterogeneity.

Chapter 6, Verifying multi-scale pedestrian route choice, and Chapter 7, In-

corporating multi-scale pedestrian movement into street infrastructure appraisal,

both address objective 4. In Chapter 6 the behaviour produced by the multi-scale
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pedestrian modelled is verified by running thousands of simulations of pedestrian

movement in three different environments. The sensitivity of metrics of pedestrian

behaviour to model parameters is assessed and the routes of pedestrian agents com-

pared to an alternative route choice model. The results from these analyses demon-

strate the breadth of pedestrian agent behaviour produced by the route choice model.

Building on this, Chapter 7, leverages this source of heterogeneous pedestrian

behaviour to explore the impacts of restrictions to pedestrian road crossing. These

restrictions are designed to represent laws or infrastructure that prevents, to vary-

ing degrees, pedestrians crossing outside of designated crossing infrastructure. By

performing simulation experiments in three environments the effects of the policies

on pedestrian accessibility and pedestrian-vehicle interactions are assessed. Differ-

ences in the effects between environments demonstrate the potential benefit of inte-

grating pedestrian navigation and movement across spatial scales. While the poli-

cies relate only to street-level pedestrian behaviour, their effects depend on larger

scale qualities such as road network morphology.

Chapter 8 concludes this thesis by summarising it contributions, limitations,

and directions for future work.



Chapter 2

Literature review

2.1 Introduction

This chapter draws together a wide range of research related to the study of pedes-

trian behaviour in cities and its relevance to sustainable transport systems. The re-

view begins, in Section 2.2, with the sustainable transport objectives of the United

Kingdom (UK) government and specifically the targets related to increasing walk-

ing and cycling and decreasing car use in urban areas. The targets set by the UK

government represent a significant break from historic trends. The challenge this

poses for traditional decision making is discussed in Section 2.2.2.

Section 2.2 also discussed how new technology features heavily in transport

decarbonisation plans, for example in the reliance on new types of vehicle such

as electric vehicles (EVs), electric scooters (eScooters), and autonomous vehicles

(AVs) to name just a few. In this context of transport innovation, the objective to

achieve mode shift towards walking stands out as a move away from using vehi-

cles rather than being reliant upon the proliferation of new ones (notwithstanding

the complexities of multi-model transport systems). Sustainable transport planning

paradigms provide the necessary perspectives and tools to achieve this target but

these do not always align with the representation of urban mobility in transport

simulations.

Having established the sustainable transport context for this work, the review

progresses to discuss specific barriers to improving pedestrian experience in urban
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areas in Section 2.3. Across safety (World Health Organisation, 2018), mobility

(Anciaes and Jones, 2020), health (Hoffmann, 2019; Retting et al., 2003) and well-

being (Bornioli et al., 2018), vehicles have been found to have negative impacts on

pedestrians. These impacts are produced through the behaviours of individual road

users and are experienced by pedestrians across spatial scales - from immediate

interactions with road users on a street to aggregate impacts across a whole journey.

Theory and evidence from a range of academic disciplines can be usefully applied to

understand and model such behaviour, and in particular the behaviour of pedestrian.

Section 2.4 reviews how pedestrian behaviour is modelled, grouping studies

by the spatial scale of pedestrian decision making and movement. Methods for

modelling pedestrian mobility tend to focus on a particular level of granularity and

spatial scale despite established theories explicitly detailing the way that multi-scale

decisions are structured. Multi-scale approaches to pedestrian models are reviewed

in Section 2.4.3 but notable gaps in the representation of pedestrian behaviour di-

rectly relevant to the negative outcomes listed above are found.

2.2 Transitioning to sustainable urban transport
Transport technology is potentially critical in assisting and obstructing the creating

of cities that better support sustainable transport modes such as walking and cy-

cling. Dealing with such uncertainties requires decision making processes that are

capable of acknowledging a wide range of uncertainties, testing decisions against

these unknowns.

2.2.1 Identifying sustainable transport futures

In the UK, emissions from domestic transport are greater than from any other sec-

tor at 23% of total emissions (UK Government, 2021). Passenger cars accounted

for 55% of transportation emissions in 2019 with road transportation overall ac-

counting for 90% (ibid). Accordingly, reducing emissions due to passenger cars

features heavily in the government’s transport decarbonisation plan (Department

for Transport, 2021) and carbon budget (Climate Change Committee, 2020). These

decarbonisation plans contain widespread technological and social changes to how
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people travel.

Among the many targets those related to modal shift from driving to walking

and cycling are notable. The UK’s Sixth Carbon Budget assumes a model shift from

driving to walking and cycling of 5-7% nationally by 2030 (Climate Change Com-

mittee, 2020) and the transport decarbonisation plan sets a target of half of all

journeys in towns and cities walked or cycled by the same date (Department for

Transport, 2021). Achieving this modal shift is not reliant on new technologies and

instead on changing travel behaviour. Such changes would embed physical activity

within urban travel with potential benefits to health and to the quality of urban ar-

eas, as will be set out below. Given this breadth of differences between vehicular

and active transportation modes it follows that planning for each of these constitutes

different paradigms, with different views on what a city should be.

Jones et al. (2018) identify three approaches to city transport planning that

have been broadly adopted over time in Western European cities, referred to as the

car based city, the sustainable mobility city, and the city of places. Jones et al ar-

gue that transport planning in western European cities has evolved through these

approaches, being predominantly car-centric in the mid 20th Century before transi-

tioning to sustainable, public transport focused mobility and now shifting again to

a place-making approach. These transitions, particularly from the car-based city to

the sustainable mobility city, are evident in an overview of the career of UK trans-

port planner Professor Sir Peter Hall (Chen, 2016). At the same time these high-

level trends obscure pockets of experimentation and stagnation. Pedestrian centric

planning has been prominent in some areas from the 1980s through the establish-

ment of the woonerf (Gill, 2006) and liveable streets (Appleyard, 1980). Jones et al

(ibid) highlight that the transition between paradigms is never complete; these three

approaches co-exist within cities and have their own geographies with the centre of

cities being more place based and the periphery more car based. But the categorisa-

tion makes clear the choices available to city transport planners. Encouraging a shift

from driving to walking and cycling corresponds to shifting planning approaches to

those of the sustainable mobility city and city of places.
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The city of places approach importantly identifies a broader set of objectives

for a transport system than those in either the car orientated or sustainable city ap-

proaches. Building on low emissions objectives, the city of places broadens this to

consider the role of transport planning in producing places to visit and spend time

at as well as the means to travel between them. The link and place categorisation of

streets further articulates this distinction (Jones and Boujenko, 2009) by acknowl-

edging that city streets are places in themselves as well as links to other places.

This is a specific example of the greater integration between land use and transport

planning identified in Banister’s ‘sustainable mobility paradigm’ (Banister, 2008).

A city of places has a specific relevance to pedestrian mobility and therefore

the objective of increasing the share of walking trips. This is demonstrated by

Jan Ghel’s evaluation of city places based on ‘street activity’ (Ghel, 2011; Gehl

and Svarre, 2013). The quality of places is measured in terms of the numbers of

people occupying them and the variety of activities being performed (for example

sitting, chatting, watching). Jones and Anciaes (2018) also distinguish between

metrics used to evaluate a city of places (e.g. intensity of street activities, social

interaction) from those used for a car-orientated or sustainable mobility city (e.g.

average network speeds and public transit frequency). Pedestrian mobility is least

distinguishable from these activities compared to other forms of mobility. Without

the need to disembark from a vehicle pedestrians can seamlessly transition between

using the place and link function of urban roads. The city of places approach can

therefore help achieve mode shifts from driving to walking.

The role of technology in transport decarbonisation cuts across planning ap-

proaches and paradigms. Vehicle electrification enables reductions in transport

emissions while maintaining or increasing levels of car ownership and use (Lang-

broek et al., 2017; Holtsmark and Skonhoft, 2014). But without changes in travel

behaviour these reductions are unlikely to be sufficient to reach sustainability targets

(Brand et al., 2019; Barrett et al., 2021). Electrification is also producing a plurality

of new mobility options, grouped under the banner of micromobility (Abduljab-

bar et al., 2021). These can be accessed by users through mobility-as-a-service
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platforms, themselves a transport technology, which integrate payment and routing

across transport modes (Lyons et al., 2019; Kamargianni et al., 2016) potentially

encouraging changes in travel behaviour (Matyas and Kamargianni, 2019). Vehi-

cle automation is similarly touted as a technology that will facilitate the transition

to more efficient, shared modes of transport (Martinez, 2015; Gurumurthy et al.,

2019), but could also entrench the auto-mobility systems and threaten sustainability

goals (Cavoli et al., 2017; Cohen and Cavoli, 2019; Wadud et al., 2016).

These innovations demonstrate that technology can disrupt as well as rein-

force existing mobility paradigms. A shared characteristic of these transport inno-

vations is that they continue to perpetrate a mobility-centric view of transport plan-

ning. While the potential sustainability benefits ought to improve public spaces, for

example through reducing noise and air pollution, by focusing on mobility these

technologies overlook the integration between land use and place-making called

for under the city of places approach and sustainable mobility paradigm. Greater

consideration of pedestrian mobility within these transport technologies could help

account for place making. Lyon’s walking-as-a-service concept identifies a poten-

tially virtuous circle whereby assisting pedestrian navigation increases footfall for

businesses (Lyons, 2020). The concept makes the connection between technologies

that support walking and the quality of places, in this case high streets. Another ex-

ample are appraisals of street design that simultaneously seek to improve the urban

realm and pedestrian mobility Anciaes and Jones (2016a).

The tendency for transport technology to marginalise pedestrians is exempli-

fied by the automobile. Through the twentieth century the car reshaped cities and

the behaviour of their inhabitants. The early history of this process is well docu-

mented in Peter Norton’s Fighting Traffic (Norton, 2011). The safety and congestion

problems that accompanied increasing car ownership through the 1920s and 1930s

were re-framed as the problems of cities designed for the pre-car era. Fixing these

problems involved the co-evolution of infrastructure and the formal and informal

‘rules of the road’ to create space for vehicles and make pedestrians responsible

for their safety. New York’s ‘Expressways’ (Caro, 2015) and London’s ‘Westway’
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(Moran, 2010) were designed to facilitate automobility through and out of the city.

Alongside these grand schemes were the creation of new laws and social norms re-

garding the use of street space, notably the invention of ‘jaywalking’, that redefined

the rights of pedestrians to street space (Norton, 2011). Similarly in Britain, new

laws, codes, and norms were established to facilitate the coordination of pedestri-

ans and vehicles (Moran, 2006), influenced strongly by Colin Buchanan’s Traffic

in Towns report (Buchanan, 1963). New road crossing infrastructure was created

with public information campaigns to educate pedestrians on how to safely cross

the road. As will be discussed further in Section 2.3, these interventions ultimately

prioritised personal vehicle mobility in urban areas at the expense of pedestrian

mobility and place-making.

Drawing comparisons with other technologies, scholars have identified the in-

tegration of automobiles into cities as an archetypal technological transition (Geels,

2002). Geel’s theory of technological transitions views technologies as sociotech-

nical configurations and makes explicit that technologies not only change the social

systems they operate in but require social change to endure. The stability of the au-

tomobility system results from linkages between “road infrastructures and car regu-

lations”, “cultural and symbolic meanings of cars” and “user practices and mobility

patterns” (ibid). Detailed analysis of these linkages (to use Geel’s phrase) reveal

points of weakness and strength (Urry, 2004; Cohen, 2012). From this perspective,

autonomous vehicles (AVs) stand out among other novel transport technologies as

particularly well positioned to entrench rather than disrupt the automobility system.

Indeed, this potential is at the heart of studies that anticipate the impacts of AV

mobility systems (Cohen and Cavoli, 2019; Wadud et al., 2016) whereby AVs are

expected to increase demand for vehicular travel in the absence of regulation.

As well as entrenching existing linkages, automating the driving task could cre-

ate create new ones. In interviews with AV developers Tennant and Stilgoe (2021)

uncover the ‘attachments’ AVs may require to operate successfully. Echoing the

reconstruction of street space in the early twentieth century, some developers ac-

knowledged the potential need to change urban environments to facilitate the tech-
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nology by reducing the occurrence of ‘edge cases’. The challenges of automating

interactions with pedestrians (Rasouli and Tsotsos, 2019; Markkula et al., 2020)

threaten to problematise ‘edge case’ pedestrian behaviour. For example, authors

have highlighted the possibility of pedestrians gaming AVs (Adams, 2015; Lin,

2013; Millard-Ball, 2018). This results from the inherently social nature of road

user interactions, based on communication and mutual understanding (this point is

discussed further in Section 2.4.1).

Sidewalk Labs, an Alphabet company, has proposed ‘Street Design Principles’

that aim to harmonise pedestrian and AV use of street space (Sidewalk Labs, 2019)

but whether such proposals are consistent with the place-making envisaged in a city

of places remains to be seen. Even without changes to infrastructure, tensions may

arise from the technology’s solidification of the laws, codes and norms currently

governing driver behaviour (Tennant et al., 2021). Seemingly subtle differences in

rule interpretations could be magnified by a homogeneous and ubiquitous fleet of

AVs (Himmelreich, 2018).

At the same time AVs may improve pedestrian safety (Fagnant and Kockel-

man, 2015; Anderson et al., 2014). However, such assessments focus narrowly on

collisions between pedestrians and vehicles. What sustainable transport paradigms

highlight, as well as authors critiquing this narrow focus of AV impacts (Cohen and

Cavoli, 2019; Legacy et al., 2019), are that the impacts of automobility encompass

more than the direct threat to pedestrian safety through collisions, as tragic as such

incidents are. These impacts are discussed further in Section 2.3.2.

Transformative visions of urban transport decarbonisation comprise sociotech-

nical changes. The task of switching travel behaviour from driving to walking

surfaces the complicated and at times antagonistic relationship between social and

technological components of change. Approaches to transport planning that in-

corporate place-making and land use considerations are considered helpful, if not

necessary, for achieving this mode shift. At the same time, emergent technolo-

gies promise to assist this transition by disrupting the incumbent mobility system.

However, the mobility-centric perspective of some of these technologies may be in



2.2. Transitioning to sustainable urban transport 39

conflict with place-centric perspectives. Among these technologies AVs stand out as

having potential to disrupt and entrench aspects of urban transport to the detriment

of pedestrians. This highlights the importance of studying pedestrian behaviour for

planning sustainable urban transport systems in the context of autonomous mobility

transitions.

2.2.2 Decision making for a sustainable transport future

Navigating the context outlined above is a challenge for decision makers. This

section discusses methods for making decisions in highly uncertain contexts in con-

nection to the objective of sustainable transport planning and specifically planning

for pedestrian travel in cities.

2.2.2.1 Dealing with uncertainty

The sociotechnical changes outlined above present decision makers with challenges.

The UK’s Transport Decarbonisation Plan (Department for Transport, 2021) gives

a high level vision of how decarbonisation will be achieved. Beyond this, decisions

must be made regarding how to implement and regulate new transport technologies

as well as how to encourage more people to walk and cycle. These decisions are

complicated by the novelty of the technologies and the need to either accelerate or

alter historic transport trends. The introduction of new transport modes and devia-

tion from historic trends reduces the utility of historic trends for informing decisions

about future investment and infrastructure (Lyons and Marsden, 2021). Lyons and

Marsden argue this amounts to a wicked problem - problems characterised by their

uniqueness, complexity and lack of a definitive formulation (different stakeholders

will have different perspectives on exactly what the problem is) (Rittel and Webber,

1973). Transport planning decisions may also be classed as exhibiting ‘deep un-

certainty’ (Lempert et al., 2003), a more quantitative formulation of the same basic

tenants of wicked problems. Deep uncertainty occurs where

analysts do not know, or the parties to a decision cannot agree on,

(1) the appropriate conceptual models that describe the relationships

among the key driving forces that will shape the long-term future, (2)
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the probability distributions used to represent uncertainty about key

variables and parameters in the mathematical representations of these

conceptual models, and/or (3) how to value the desirability of alterna-

tive outcomes

Wicked problems can also be defined by what they are not. Rittel and Webber

(1973) use the phrase ‘tame problems’ to refer to a class of problems which are

well defined and can be solved. For Kay and King (2020) these are small world

problems, common in the natural sciences or in idealised circumstances but not in

real societies.

Decision making in the context of ‘wicked problems’ or ‘deep uncertainty’ re-

quires a distinct set of methods designed to account for these intractable uncertain-

ties. Whilst tame problems can be solved by optimising well defined objectives this

approach does not translate to wicked problems for which a precise objective can-

not be agreed or defined. Scenario based planning methods, which evaluate policies

against a range of plausible future scenarios, can better account for the uncertainties

produced by sociotechnical change (Cohen and Jones, 2018; Lyons and Marsden,

2021). This “opening up” of future possibilities must also be accompanied with

strategies for “closing down” possibilities without biasing particular paths of action

(Lyons and Marsden, 2021). Kay and King (2020) emphasise the importance of

establishing and challenging narratives in order to make sense of such problems.

Narratives play an important role in scenario based planning whereby plans of ac-

tion are examined under distinct future scenarios, described in both qualitative and

quantitative terms.

Robust Decision Making (RDM) takes a computational approach to scenario-

based planning (Lempert et al., 2020; Popper, 2019). Global sensitivity analysis

techniques are used to explore the parameter space of high dimensional models of

the system (opening up) and dimensionality reduction techniques to identify regions

of parameters space that produce distinct outputs (closing down).

Across these methods there are some high-level similarities. The uncertain-

ties in the system are treated as unavoidable and accordingly predictions of future
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states of the system, to any degree of accuracy, are not entertained. Scenarios are

identified through a process that considers a wide range of future states of system

components and their interactions, typically producing a wider set of futures than

those produced through forecasts. Approaching decision making in this way aligns

with some aspects of Stilgoe et al. (2013)’s framework for responsible innovation.

The framework is designed to help guide new technologies towards beneficial out-

comes. This, in part, involves anticipation, asking“ ‘what if. . .?’ questions, to

consider contingency, what is known, what is likely, what is plausible and what is

possible”. The process of “opening up” future possibilities in scenario-based plan-

ning methods supports responsible innovation by anticipating different impacts of

the technology.

Once again, the emergence of AVs stands out as particular challenge for deci-

sion makers attempting to achieve a mode shift from vehicles to walking in terms

of the uncertainties surrounding this technology. It also provides an opportunity to

develop and apply suitable decision making methodologies. Lyons (2022) argues

the uncertainties surrounding AVs amounts to a wicked problem in-of-itself due to

both the transport systems AVs would operate in and their status as a nascent tech-

nology. Stilgoe (2020) argues the genuine capabilities of nascent technologies can

be difficult to distinguish from the hype surrounding them. Regulators may be hesi-

tant to place any restrictions on the development of nascent technologies for fear of

losing out potential benefits.

Within the literature a range of methods have been used to help inform deci-

sion making around AVs. These account for different aspects of transport systems

and different sources of uncertainty. The breadth of future scenarios within studies

varies, with quantitative model based studies tending to produce a narrower set of

scenarios due to the limitations of the models.

2.2.2.2 Modelling future mobility scenarios

Transport models have been widely used to study the potential impacts of AVs.

Simulations of autonomous taxi services in cities explore potential efficiencies that

could arise from increased sharing of vehicles (Fagnant and Kockelman, 2014;
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Bischoff and Maciejewski, 2016; Boesch et al., 2016; Spieser et al., 2014) and rides

(Zhang et al., 2015; Brownell and Kornhauser, 2014; Martinez, 2015). However

these studies are highly contingent on their assumptions of travel behaviour. The

limited exploration of alternative assumptions means the models do not sufficiently

account for intractable uncertainty surrounding future travel behaviour and technol-

ogy, which transport emissions are sensitive to (Wadud et al., 2016). For example,

Bischoff and Maciejewski (2016) assume all inner city car journeys are made by

AV taxis and Brownell and Kornhauser (2014) assume all synthesised trips are ser-

viced by AV taxi rather than considering a wide range of adoption values. Similarly,

Fagnant and Kockelman (2014) assume 3.5% of trips are made by AV taxi, Zhang

et al. (2015) assume 2% of trips and Spieser et al. (2014) include all trips made by all

modes of personal transportation as reported in a household travel survey. These as-

sumptions preclude other travel behaviour that could plausibly emerge. The results

are therefore useful as hypothetical examinations of a narrowly defined mobility

scenario and not an attempt to open up and close down the space of possible AV

mobility futures.

Other modelling exercises have attempted to account for potential changes in

travel demand that could result from the introduction of AV transport modes. May

et al. (2020) use an integrated land use and transport system dynamics model to ex-

plore the effects of AVs in Leeds, UK. Unlike the studies above, this model assumes

a constant travel time budget which allows changes in accessibility to have knock-

on effects for travel behaviour. In all scenarios which assume reduced travel costs

due to AVs an increase in vehicle travel distance is observed. Enforcing shared own-

ership produces a shift to more dense city centre residences. Azevedo et al. (2016)

also consider changes in travel demand in their agent-based simulation of future

AV mobility scenarios. The location of activities without a fixed location (such as

work or school) is allowed to change in response to the presence of a shared AV

mobility service. The model also includes multiple transport modes, with agents

choosing between these each day, providing an assessment of how the introduction

of a new transport mode could change the use of other modes. In a simulation of an
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AV transport option in Switzerland, Meyer et al. (2017) considered three scenarios

defined by varying AV performance. This addressed the assumption that AVs are

capable of operating in all road environments by considering a scenario in which

AVs operate only in extra-urban roads such as highways. In the model, average

accessibility was found to increase, however the geographical distribution of acces-

sibility change is uneven, with reductions in accessibility for denser urban area and

increases for suburban and rural areas.

By representing changing travel behaviours, these models can consider a

broader range of outcomes resulting from the introduction of hypothetical AV mo-

bility services. The scope of these studies is constrained by modelling methodolo-

gies which in turn limit the breadth of scenarios that can be considered. Qualita-

tive methods for scenario development are not constrained in the same way. Lyons

(2022) use a participatory methodology to develop and critique AV mobility scenar-

ios through in person workshops. Cohen et al. (2018) used discursive workshops in

which a broad set of narrative scenarios were used as probes for discussion.

At the same time, computational models offer the potential for a more detailed

analysis of specific policies related to the design and management of mobility ser-

vices such as AV taxis. Quantitative and simulation based models are embedded

within the transport planning process and are likely to continue to inform decision

making. Improving the representation of travel behaviour within these models can

enable the consideration of a wider set of scenarios and impacts in transport plan-

ning decisions. This can help avoid modelling exercises that close off plausible

scenarios of the kind identified in the qualitative studies discussed above.

The potential disruption posed by AVs introduces significant uncertainties.

Sustainable transport planning emphasises the importance of pedestrian movement

and place-making to developing sustainable urban transport systems. But these

components of urban transport systems are missing from models seeking to explore

the possible impacts of AV mobility systems. The transition to a car-dominant mo-

bility system through the twentieth century changed how pedestrians used street

space. Without incorporating pedestrians, transport models will preclude such im-
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pacts in the development of future mobility scenarios. Where scenario development

is not limited by models and instead qualitative and narrative methods are employed

such impacts are raised as pertinent to the development of future scenarios.

Incorporating pedestrian movement into models of future mobility systems can

help facilitate representation of a wider set of travel behaviours. In turn this enables

a broader set of future scenarios to be produced in modelling exercises. Existing

models of AV mobility systems do not include granular pedestrian movement. Hav-

ing identified this gap in the literature we proceed to discuss how pedestrian are

currently impacted by vehicular traffic as a guide to understanding what behaviour

should be incorporated into models that seek to anticipate the impacts of AVs on

pedestrians.

2.3 Pedestrian behaviour and experience
Planning for walking trips is central to the sustainable transport paradigm. Un-

derstanding how features of the urban environment affect pedestrian behaviour and

experience can help inform how to design transport systems that improve pedestrian

journeys.

This section distinguishes between two broad determinants of pedestrian be-

haviour and experience - the built environment and vehicle traffic - each broadly

related to separate academic fields, providing complementary perspectives on the

same phenomena.

2.3.1 The built environment effects

The role of the built environment in influencing behaviour is a prominent theme

within the planning and architecture literature. Jan Ghel’s ‘Life Between Build-

ings’ (Ghel, 2011) exemplifies a design philosophy that centres the role of the built

environment in shaping human behaviour. Ghel argues that human psychology and

cognition can be usefully applied to the design of spaces between buildings (streets,

plazas, courtyards, etc) to achieve certain behavioural outcomes, principally social

interactions.

Space Syntax is a well established methodology used “to describe and anal-
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yse patterns of architectural space - both at the building and urban level.” (Hillier

et al., 1983) These patterns take the form of axial maps (Hillier and Hanson, 1984;

Turner et al., 2005) which link spaces to one another based on uninterrupted lines

of sight. The resulting network of spaces has properties which predict patterns of

movement within cities (Hillier et al., 1993; Penn et al., 1998). Specifically, flows

of pedestrians and vehicles are better predicted by geometric (meaning the angle

between axial lines) and topographic properties of these networks than metric dis-

tances (Hillier and Iida, 2005). This conclusion identifies the configuration of urban

spaces as the principle determinant of pedestrian and vehicle movement.

Criticisms of this view highlight its apparent inconsistency with the decision

making of individual pedestrians (Ratti, 2004). Ratti argues that while aggregate

patterns of movement may appear to be governed by geometric and topographic

properties of urban space, the notion that individuals are insensitive to metric dis-

tance is inconsistent with multiple intuitive influences on people’s behaviour. This

criticism is partly addressed through Dalton (2003)’s integration of the aggregate

view of spatial behaviour provided by space syntax with a disaggregate analysis of

individual decision making, revealing a more nuanced picture in which both the lo-

cal configuration of space at intersections and the relative direction of a pedestrian

to their destination inform route choice decisions. Developments of the theory have

moved away from the pure ‘axial line’ representation of the environment to road

networks and metrics such as cumulative angular distance (Simons, 2021).

The connection Dalton (2003) makes between individual decision making and

aggregate patterns of behaviour (see also Conroy-Dalton (2001)) forms part of a rich

synthesis between Space Syntax and spatial cognition (Hillier, 2012). The spatial

cognition literature also identifies environmental influences on behaviour, though

the perspective in this case is that behaviour is influenced through the cognitive

representation of space through its influence on wayfinding decisions.

Cognitive maps (Tolman, 1948) are a foundational concept in the spatial cog-

nition literature, defined as “the internal representation of experienced external en-

vironments, including the spatial relations among features and objects” (Golledge
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et al., 2000). It is through the encoding and retrieval of spatial information in cog-

nitive maps that wayfinding decisions are made. Information is organised hierarchi-

cally in cognitive maps (Mark et al., 1999; Hirtle and Jonides, 1985; Chase, 1983;

Maki, 1981) with larger spatial scales corresponding to higher levels of the hierar-

chy than smaller spatial scales. Chase (1983) identified global environmental fea-

tures such as rivers as belonging to the top level hierarchy whilst locations within

neighbourhoods belonged to lower levels. Hirtle and Jonides (1985) and Stevens

and Coupe (1978) find that spatial locations are grouped within high level hierar-

chies representing larger spatial areas such as urban neighbourhood and states.

The cognitive map model of spatial cognition is supported by observations of

brain activity in animals and humans. O’Keefe and Nadel (1978)’s discovery of

‘place cells’ in the rodent hippocampus that are triggered by specific spatial lo-

cations has been followed by the discovery of head direction cells and grid cells

(which encode metric distances between locations) in animal brains, “collectively

form[ing] the neural basis of a cognitive map” (Grieves and Jeffery, 2017). Epstein

et al. (2017) review a significant body of evidence that the human hippocampus sim-

ilarly encodes spatial information and that this information is used when navigating

urban areas.

An important distinction in spatial cognition is between egocentric and allo-

centric spatial representation (Nadel and Hardt, 2004). Under egocentric repre-

sentation spatial knowledge is represented relative to the self whereas under allo-

centric representation spatial knowledge is represented without a particular vantage

point. Byrne et al. (2007) present a model of spatial cognition that represents the

encoding and retrieval of spatial information as requiring the “integration of ego-

centric and allocentric representations”, with multiple studies of the hippocampus

and its neighbouring regions supporting this model (Wang et al., 2020). This model

suggests allocentric spatial representations (i.e. map like representations) develop

through repeated, egocentric exposure to the environment. These exposures shape

the formation of the allocentric ‘cognitive map’.

Cognitive maps in turn shape future egocentric experience through spatial de-
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cision making and behaviour (Golledge et al., 2000; Kitchin, 1994). For example,

Passini (1984) analysed the decision making process of participants as they navi-

gated commercial complexes. The verbalised decision processes revealed wayfind-

ing decisions were hierarchically structured, with participants addressing decisions

pertaining to larger spatial scales first and then making decisions pertaining to

smaller, more immediate spatial scales. Wiener and Mallot (2003) present the re-

sults of two virtual reality navigation experiments that demonstrate the effect of cog-

nitive spatial hierarchies on wayfinding. These results support the hypothesis that

“route planning takes into account region-connectivity and is not based on place-

connectivity alone”.

Human spatial cognition also directly affects perceptions of distances, which

in turn can affect behaviour. Distances between within region locations tend to be

underestimated while distances between locations in different regions tend to be

over estimated (Newcombe and Liben, 1982; Sherman et al., 1979; Kosslyn et al.,

1974), although this effect is moderated by experience of moving through the envi-

ronment as well (Sherman et al., 1979). Manley et al. (2021) identify features of the

urban environment that affect people’s estimation of distance. The authors combine

metrics of landmarks and features, turns, network density and order, boundaries,

travel speed, topography, and euclidean distance to form a measure of cognitive

distance that reflect the way that each of these features augments human perception

of distance in the built environment.

Recent research has investigated whether non-physical ‘spaces’ - particularly

temporal and social - are encoded in the same way as physical spaces in the hip-

pocampus (Epstein et al., 2017). Tavares et al. (2015) find that hippocampal “ac-

tivity predicted changes in subjective affiliation and power between people and fic-

tional characters”, suggesting information about social relationships may be en-

coded in a similar way to relationships between physical locations. Nielson et al.

(2015) find that hippocampal activity predicted both the spatial and temporal lo-

cation of life events. Tavares et al. (2015) argue their results support the declar-

ative memory view (also termed the relational memory view) of the hippocampus
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(Eichenbaum and Cohen, 2014) which posits the hippocampus provides “a gen-

eral relational processing mechanism” (ibid) rather than the narrower function of

a cognitive map of the current physical space. Attempts to bridge these perspec-

tives frame the hippocampus as “encoding events as a relational mapping of objects

and actions within spatial contexts” (Eichenbaum and Cohen, 2014) and as using

“space and time as a primary scaffold for defining contexts” (Ekstrom and Ran-

ganath, 2018), organising other information around these central dimensions.

Within the psychology literature, the construal level theory (CLT) (Trope and

Liberman, 2011) considers how spatial, temporal, and social dimensions influence

decision making. According to CLT, choice construal (meaning how a decision is

framed by the decision maker) depends on the psychological distance the decision

maker associates with that decision (Trope and Liberman, 2010). Psychological

distance is defined by Trope and colleagues as the “extent of divergence from di-

rect experience of me, here and now along the dimensions of time, space, social

perspective, or hypotheticality” and is considered to be a “base psychological di-

mension that represents how spatial, temporal and social distances are perceived.”

Psychological distance is an egocentric distance metric.

Bar-Anan et al. (2007) present evidence for the congruence between spatial,

temporal, social and hypothetical dimensions supporting the argument that these

present an equivalence in terms of psychological distance. This congruence is also

supported by evidence, discussed above, of the similarities between the hippocam-

pal activity related to spatial relationships and social and temporal relationships

(Epstein et al., 2017; Eichenbaum and Cohen, 2014); Tavares et al. (2015) argue

their results support the proposition in CLT of an egocentric social dimension to

psychological distance.

CLT states that choices are construed at either a high-level, where the object

of the decision is psychologically distant from the decision maker, or at a low-

level, where the object is psychologically proximate (a two-level hierarchy). To

give an example, Fujita et al. (2006) found that participants’ stated preference be-

tween a ‘high-level’ and ‘low-level’ description of a task depended on the spatial
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distance between the participant and the task location. Participants preferred to de-

scribe the task “locking a door” as “putting a key in the lock” (low-level description)

when the house was located in the same city as the participant but as “securing the

house” (high-level description) when located in a different city. Similar results have

been observed for temporally proximate and distance actions (Liberman and Trope,

1998).

According to CLT, decisions pertaining to greater psychological distances are

made by decision makers in terms of ‘high-level’ construals that are abstract and

goal-orientated. Conversely, decisions pertaining to lesser psychological distances

are made in terms of ‘low-level’ construals that are less abstract and feasibility

orientated. CLT also argues that, in addition to ‘high-level’ construals, decisions

are evaluated more in terms of desirability criteria at greater psychological dis-

tances versus feasibility criteria at lesser psychological distances. This follows from

‘high-level’ construals being more abstract and goal orientated than ‘low-level’ con-

struals (Liberman and Trope, 1998; Trope and Liberman, 2003). This relationship

between psychological distance and desirability/feasibility trade-off suggests that

people may initially make choices based on desirability criteria but then revise these

choices as they become more proximate.

To explain the connection between psychological distance and ‘high-level’

construal, Trope and Liberman (2010) argue that more abstract ‘high-level’ con-

struals enable people to “traverse psychological distance” (and also that traversing

psychological distance prompts abstraction). Abstractions afford distance traversal

because they are more invariant than their component elements and therefore re-

main constant across psychological distances. This explanation is supported by ex-

periments which identify differences in how visual and verbal stimuli are identified.

Amit et al. (2009) find that verbal stimuli are better classified at distal psychological

distances. Conversely, visual stimuli are better classified at proximate psychological

distances. This relationship is explained as visual stimuli corresponding to less ab-

stract representations than verbal stimuli and therefore being congruent with lesser

psychological distance. The connection between visual processing mode and psy-
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chological construal is further developed by Yan et al. (2016) though a collection

of experiments that demonstrate that activating visual processing mode (through

a visual problem solving exercise) causes participants to adopt low level constru-

als, even in psychologically distant contexts. These findings suggest a connection

between visual information processing and psychologically proximal experience re-

sulting in low level construal of visual stimuli.

CLT has not been applied to the study of wayfinding behaviour but we can

identify commonalities with spatial cognition theory that suggest it may have rel-

evance in this field. The role of hierarchies in structuring decision making is cen-

tral to CLT, with high-level and low-level choice construal distinguished by their

level of abstraction and feasibility criteria. Cognitive spatial hierarchies affect route

choices, with people choosing coarser (i.e. more abstract) routes between larger

scale spatial hierarchies (Wiener and Mallot, 2003). Anchor points refer to spa-

tial features which features prominently in the hierarchical organisation of spatial

information (Gärling and Golledge, 2018). An analysis of vehicle trajectories in

London shows that routes tend to go via anchor points more than predicted by a dis-

tance minimising wayfinding strategy, suggesting these high-level features of the

environment affect wayfinding behaviour (Manley et al., 2015a).

CLT also explicitly discusses the low-level re-construal of decisions made ini-

tially under high-level construal. Wayfinding decisions are also made at varying

levels of detail, with the spatial scale affecting the level of detail. For example the

distinction between ‘fine’ and ‘coarse’ plans in Wiener and Mallot (2003)’s model.

Passini (1984) state the “execution [of wayfinding decisions] has to happen at spe-

cific points in space” and Golledge et al. (2000) argue their results comparing the

wayfinding ability of sighted and blind participants showed the groups did not differ

in their ability to form cognitive maps but that the blind participants’ “lack of visual

perception ... restricted their ability to recognize location cues along the route as

they traversed it”. This shows that visual information processing is integrated with

the use of cognitive maps, with each used in relation to different spatial scales.

At the same time CLT exhibits some differences to spatial cognition theory.
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First, CLT differs by identifying different decision making processes - in terms of

how goal oriented vs feasibility oriented the choice is - between the high and low

hierarchies. Second, CLT states that decision hierarchies are based on egocentric

psychological distance whereas the hierarchies of cognitive maps are based on a

spatial, allocentric representation of the environment. CLT may therefore compli-

ment spatial cognition theory by identifying non-spatial and egocentric aspects of

the environment that influence decision making, through high and low-level choice

construal. For example, role of dynamic components of the environment in shaping

decision making is not well integrated into the cognitive map framework. Authors

do acknowledge that cognitive maps are dynamic (Kitchin, 1994; Mark et al., 1999)

(owing to changes to the environments and to people’s relationship with the en-

vironment), however, by defining choice construal in terms of the base dimension

of psychological distance, CLT provides a more general theory of decision making

that may be relevant to explaining and predicting some environmental influences on

pedestrian behaviour.

2.3.2 Vehicle traffic effects

In the studies discussed above the urban environment is reduced to static forms rep-

resenting buildings, roads, rivers, and other prominent structures. This provides

only a partial representation of pedestrian behaviour and experience. Interactions

between road users, and particularly interactions between pedestrians and vehicles,

are also known to be an important determinant of pedestrian behaviour and experi-

ence in urban areas. Building on the discussion of how the presence of road users at

a particular location in the city owes something to the structure of the built environ-

ment, this section discusses studies which ask how, given the co-location of these

road users, they interact and affect one another. From this perspective, behaviour is

shaped through the combined decision making of pedestrians and drivers.

2.3.2.1 Safety

Research has identified multiple ways that cars and car-centric planning negatively

impact pedestrian walking experiences. Perhaps the most salient are collisions with
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vehicles which are responsible for around 474 deaths per year in the UK, out of

a total 2000 deaths caused by road traffic accidents (globally the impact is greater

with traffic incidents being the leading cause of death for those aged 5-29) (World

Health Organisation, 2018). Accordingly, a significant body of research investi-

gates the contributing factors to this threat. These studies consider both the granu-

lar movement and behaviour of pedestrians and vehicles at the street scale as well

as the characteristics of the wider urban area that contribute to the occurrence of

pedestrian-vehicle collisions.

Safety on individual roads

Research into pedestrian behaviour at the street level considers how conflicts

and collisions result from the road crossing and yielding actions of individual pedes-

trians and vehicles. Pedestrian road crossing behaviour is frequently analysed in

terms of gap acceptance - the time gap between vehicles that a pedestrian ‘accepts’

in order to cross the road. Gap acceptance studies identify local street environment

and traffic conditions that influence when pedestrians cross the road. Alternatively,

driver yielding studies consider factors that influence when drivers yield to pedes-

trians.

Whilst traffic rules and codes attempt to ensure safety by clearly stating which

users have right-of-way at any given time, observations of road crossing and yield-

ing find that significant proportions of road users violate these. Sucha et al. (2017)

found that in 36% of interaction events drivers did not yield to pedestrians in situ-

ations where the official rules obliged them to. Suh et al. (2013) found that a high

proportion of pedestrians exhibited gap seeking behaviour, choosing to cross the

road during a suitable gap in traffic rather than wait for a traffic signal. Várhelyi

(1998) observations at a single unsignalised mid-block zebra crossing suggested

drivers increased their speed in order to avoid stopping for pedestrians at the ze-

bra crossing. Pedestrian crossing behaviour also differes between locations with

and without crossing infrastructure (Dey and Terken, 2017). Identifying these non-

compliant behaviours provides a better understanding of how collisions between

road users arise.
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Pedestrian crossing and driver yielding behaviour are both dependent on the

behaviour of other road users. Drivers’ yielding decisions are affected by the as-

sertiveness (Schroeder and Rouphail, 2011) or apparent distraction (Sucha et al.,

2017) of pedestrians. Pedestrian gap acceptance depends on the speed of the ap-

proaching vehicle (Rasouli et al., 2018), the presence of other pedestrians (Sun

et al., 2003). Camara et al. (2018b)’s analysis of sequences of road crossing events

that frequently occur suggests that pedestrians seek clues from vehicle movement,

rather than direct communication with drivers, to anticipate the driver’s actions.

Similarly, Domeyer et al. (2020) better predicted aspects of pedestrian-vehicle en-

counters such as wait time with a model that included the joint state of both road

users than with models based on only either one of the road users. Tennant et al.

(2022)’s report into public attitudes towards AVs highlights the value placed on

role of social interaction in coordinating roads users, with a majority of participants

feeling that that eye contact and communication were important when using zebra

crossings. Together, these results provide strong evidence that conflicts and colli-

sions between road users result from and are mediated by the actions of each road

user in response to one another, a form of social interaction.

The Theory of Planned Behaviour (TPB, Ajzen (1991)) has been used study

why pedestrians choose to behave in ways that increase the risk of collisions, help-

ing to explain differences between pedestrians’ behaviour. Studies explain the ten-

dency for certain people to perform more risky road crossings in terms of them hav-

ing a more positive attitude towards committing violations (Moyano Dı́az, 2002) as

well as perceiving themselves to have a high level of control over their road crossing

behaviour (Evans and Norman, 1998; Evans, 2003).

Research has also found connections between pedestrian attitudes and cross-

ing behaviour. Cantillo et al. (2015) found latent variables representing crossing

option attractiveness (measuring the convenience and comfort of a crossing) and

security/safety were significant predictors of the utility of informal mid-block cross-

ing options. Similarly, Papadimitriou et al. (2016) surveyed 75 pedestrians before

observing their road crossing behaviour. Principal component analysis (PCA) of the



2.3. Pedestrian behaviour and experience 54

survey results identified three groups distinguished by attitudes to risk and journey

purpose. Including the principal components as latent variables in a crossing loca-

tion choice model revealed only the “risk taking and optimisation” principal com-

ponent was significant, suggesting that in terms of observed crossing behaviour, the

pedestrian sample consisted of two groups only - optimising risk takers and risk

averse.

Pedestrian safety can be more directly measured by the frequency and sever-

ity of conflicts between road users. The road crossing behaviour discussed above

may be considered risky due to its violation of laws, rules or norms but without

knowing whether the behaviour caused a conflict between road users it is diffi-

cult to ascertain the real risk posed by the behaviour. Svensson (1998) propose a

’severity hierarchy’, where interactions between road users are assigned an objec-

tive severity, with collisions having the highest severity and ‘near misses’ having a

lower but nearby severity. Laureshyn et al. (2010) propose a comprehensive set of

conflict indicators. Svensson and Hydén (2006) applied conflict severity metrics to

pedestrian-vehicle interactions, producing severity hierarchies for encounters at two

junctions used to argue the metrics provide information road user behaviour not pro-

vided collision statistics alone. The junction with a lower number of collisions had

a higher mean conflict severity and narrower distribution, suggesting the presence

of conflicts does not necessarily imply a risk to pedestrian safety. Domeyer et al.

(2020) use conflict indices extracted from a naturalistic driving dataset to model

pedestrian-vehicle interactions, and therefore distinguish between safe and unsafe

conflicts and the pedestrian and driver actions that produce them.

Analysis of conflicts has also been used to study the impact of changes to street

infrastructure and design. Ismail et al. (2010) compared conflicts at an intersection

before and after the introduction of a pedestrian scramble phase, finding clear dif-

ferences between the distributions of conflict indicators observed in the before and

after cases. Conflict severity has also been used to study the impact of changing a

road to a ‘shared space’ design which makes less of a distinction between vehicle

and pedestrian space (Kaparias et al., 2015). In each of these studies the collection
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and analysis of conflict metrics between pedestrians and vehicles is argued to be

important for the investigation of pedestrian safety. However, there remains a lack

of clarity regarding how to draw conclusions on pedestrian safety based on conflict

severity - whilst Svensson and Hydén (2006) found fewer collisions in high conflict

severity environments, studies of vehicle-vehicle conflicts have found high conflict

severity is correlated with collisions (Xie et al., 2018; Dijkstra et al., 2010).

Finally, research also identifies specific features of urban environments around

which conflicts and collisions tend to occur. Zheng et al. (2015) find that certain ur-

ban locations host a greater frequency of non-compliant crossing behaviour (where

pedestrian cross the road outside of established infrastructure) which suggests these

areas could be conflict hot spots. In an analysis of natural driving recordings Du

et al. (2013) found that areas such as car parks, community spaces and schools

hosted nearly double the rate of conflicts between pedestrians and the vehicle than

other urban areas. Similarly, in a big data analysis of pedestrian collisions Xie et al.

(2017) find crash hot spots tended to be located around the entrances and exits to

tunnels and bridges as well as in areas with high bus stop density.

These studies analyse pedestrian safety at the scale of a pedestrian’s immedi-

ate road environment. The factors identified as affecting safety are limited to the

behaviour of road users involved in the (potential) conflicts and the street infras-

tructure that mediates these interactions. Road crossing can concentrate in certain

areas of a city and the risk of collision is greater in locations where pedestrian and

vehicles are likely to be brought into conflict. Once pedestrians and vehicles are re-

quired to coordinate use of the same space (i.e. the carriageway) safety is strongly

shaped by pedestrian road crossing and vehicle yielding behaviour.

Safety across an urban area

Moving beyond this scale of analysis research has identified other factors af-

fecting pedestrian safety as well as replicating some of the findings discussed above.

In a detailed and comprehensive review of the built environment’s impact on road

safety, Ewing and Dumbaugh (2009) identify ways that safety is influenced by char-

acteristics of urban areas. They conclude that urban areas are safer than rural areas
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due to the lower vehicle miles travelled (VMT) per person in urban areas, identify-

ing a different kind of behaviour - travel mode choice - as being central to pedes-

trian safety. The role of road user behaviour and interactions at the street level

is also identified as an important determinant of safety but the focus of the anal-

ysis is identifying patterns of street design that encourage safer driving practices.

The ‘4Ds’ - density, diversity, design, and destination accessibility - encapsulate

this view, framing pedestrian safety as a property of the wider mobility system and

not only the result of individual road user characteristics and street infrastructure.

Similarly, ‘urban sprawl’ has been identified as a contributing factor to the risk of

pedestrian collisions, investigated through the production of a ’sprawl index’ that

combines indicators of residential density, land-use mix, centredness (measures of

concentration of population and economy in centre of metropolitan area), and street

accessibility (Ewing et al., 2003). The results found areas of increased density,

land-use mix and centredness (i.e. low-sprawl areas) had significantly fewer road

accident fatalities.

Analogous to the ‘sprawl index’, walkability indices have been used to mea-

sure the suitability of an area for walking as a transport mode. Southworth (2005)

defined walkability in terms of six attributes: connectivity of the street network,

linkage with other transport modes, fine grained and varied land use patterns, safety

from traffic and social crime, quality of path, path context (street design, visual

interest of the built environment, etc). Whilst walkability indices are composed

differently across the literature, indicators of street connectivity, land use mix and

residential density are common to most, with high connectivity, land use mix and

residential density giving higher walkability scores. Walkability indices have been

found to correlate well with walking activity in multiple locations and at varying

scales (Owen et al., 2004; Saelens et al., 2003; Stockton et al., 2016; Dhanani and

Vaughan, 2016) and therefore relate to pedestrian safety by identifying urban areas

that facilitate walking, rather than driving, as a mode of transport.

Research also identifies safety differences between types of road, as well as

types of built environment. Analysis of pedestrian deaths and injuries resulting
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from collisions with motor vehicles shows that vehicles pose a greater risk per mile

travelled on minor roads than major roads (Aldred, 2019). The author suggests

potential mechanisms for this influence: different pedestrian and driver behaviours

between major and minor roads, poorer visibility and greater pedestrian flows on

minor roads. Whilst the reason for the difference is uncertain, the finding supports

a perspective on road safety that sees collision risks as shaped by higher level cate-

gorisations of roads and urban areas.

These studies identify important, compounding ways in which the safety of

pedestrians is affected by qualities of the built environment. Land use which cre-

ates large distances between residential areas and locations for out of home activi-

ties makes driving the most suitable mode of transport. Similarly, designing roads

for high vehicle speed and throughput make environments more suited to driving.

These environmental factors increase the risk pedestrians are exposed to. This per-

spective on pedestrian safety complements more granular assessments that focus

on the behaviour and movement of pedestrians and vehicles when approaching and

crossing the road.

Pedestrians’ experiences of safety are therefore determined in part by the be-

haviour of drivers, their own behaviour, as well the built environment. This com-

pliments the discussion of environmental determinants of pedestrian behaviour in

Section 2.3.1 by linking the environment to interactions between pedestrians and

vehicles - not just the behaviour of individual road users. This is an additional

causal pathway, from the environment to pedestrian behaviour and experience via

pedestrian-vehicle interactions, that is also apparent in the following sections.

2.3.2.2 Barrier effect

Researchers have also investigated the impacts of vehicle traffic and vehicle-centric

road designs on pedestrian mobility, termed the barrier effect or community sev-

erance (the term community severance has connotations of impacts to social rela-

tionships as well so the term barrier effect is preferred when focusing on mobility

impacts) Anciaes (2015). The barrier effects is defined by Anciaes et al. (2016) as

“effects of transport infrastructure or motorised traffic as a physical or psychologi-
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cal barrier separating one built up area from another built-up area or open space”.

Whilst Anciaes et al. (2016)’s focus is on larger forms of transport infrastructure

such as “railways, motorways, and dual carriageways” studies also identify more

subtle ways roads can act as a barrier to pedestrian movement. At the scale of in-

dividual roads the barrier effect manifests as pedestrian’s choice of road crossing

location and whether this imposes additional journey time or distance costs that

could be alleviated through changes to crossing infrastructure or vehicle flow. Be-

yond this, research considers both the cumulative costs of barriers across whole

pedestrian trips and cases where barriers cause pedestrians to avoid certain destina-

tions altogether. As with pedestrian safety, this phenomena is produced at multiple

spatial scales, through both pedestrians’ experience of the immediate street envi-

ronment and the larger urban geographies they move through.

Studies into pedestrian crossing location choice identify factors related to traf-

fic, road design, infrastructure, and pedestrian attitudes that influence this choice.

Many of these are integrated in Anciaes et al. (2018)’s stated preference model

assigning monetary values to improvements to road crossing infrastructure. The

study’s survey includes a wide range of possible interventions including reducing

the number of lanes, reducing vehicle traffic, adding a median strip and reducing

vehicle speed, all of which had positive value to pedestrians. The following para-

graphs focus on three well-established factors: vehicle traffic, types of crossing

infrastructure, and crossing location.

The traffic level along a link is found be be a significant predictor of crossing

location choice in multiple studies, with higher traffic levels reducing the likelihood

of a pedestrian choosing to cross at an informal location (one without markings

or infrastructure) (Papadimitriou, 2012, 2016; Cantillo et al., 2015; Anciaes and

Jones, 2016b). The effect of traffic levels on crossing choice has also been observed

to vary between different road types. In Papadimitriou (2016) crossing choice is

compared between principle arterial (highest vehicle flow), minor arterial (medium

vehicle flow), and collector (lowest vehicle flow) road types in high and low traffic

conditions. On minor arterials and collectors, mid-block (informal) crossing prob-
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ability was observed to decrease and junction crossing probability increase with an

increase in traffic. On principle arterials there was no such change in crossing prob-

ability. This suggests that pedestrian road crossing locations are influenced both by

the current traffic level but also qualities that distinguish different road types such

as long-term average levels of flow or road design.

The types of crossing alternatives available to a pedestrian have also been re-

ported as influencing pedestrian crossing choice. Papadimitriou (2012) found the

presence of a traffic signal at a junction increased the likelihood of choosing to

cross at the junction. In Sisiopiku and Akin (2003) 87% of survey respondents said

the presence of a marked mid-block crossing (dedicated crossing infrastructure) af-

fected their decision to cross at a specific location and 74% said the presence of a

traffic signal affected this decision.

By surveying pedestrians’ stated preference of crossing location, Cantillo et al.

(2015) find that the location of a crossing alternative influences a pedestrian’s

choice, with greater distances associated with a reduced likelihood of choosing that

crossing option. Similarly, Chu et al. (2004) find that the likelihood of choosing

to cross at an intersection either end of a road was sensitive to the distance to the

intersection. The probability of choosing either a marked or informal mid-block

crossing option was far less sensitive, suggesting that on longer roads pedestrians

will typically choose to cross at mid-block locations. Sisiopiku and Akin (2003)

report 90% of survey respondents stated that the distance of a crossing to their des-

tination influenced their decision to use the crossing, with crossings further from

their destination being less desirable. Whilst the majority of pedestrians are influ-

enced by the availability and location of multiple crossing alternatives, the presence

of a group of pedestrians for whom these are not influential factors reveals important

heterogeneity between pedestrians.

The findings discussed so far consider how features of roads and crossing in-

frastructure affect where pedestrians cross the road. These crossing choices shape

pedestrian behaviour and experience by determining how a pedestrian traverses each

section of the road network. In turn, this impacts patterns of pedestrian movement
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over larger areas. Papadimitriou (2012) consider pedestrian choice of crossing lo-

cation along a journey of multiple road links, identifying that pedestrians choose to

delay road crossings on longer journeys but take crossings early on shorter journeys.

The authors also find a sequential choice model best explains the crossing choices

of the pedestrians. The authors argue these results suggest pedestrians make cross-

ing decisions sequentially with a limited planning horizon, incorporating both their

immediate environment and their position relative to their destination into the deci-

sion.

Barriers also cause people to avoid walking trips due to both the objective costs

imposed on pedestrian movement such as additional journey distance and time as

well as subjective perceptions of inaccessibility. Anciaes et al. (2019) find that peo-

ple that perceived traffic volumes and speeds as high on certain roads were more

likely to avoid walking to those roads altogether. These perceptions were also as-

sociated with reporting that traffic conditions impeded their ability to walk to local

places. This work builds on Appleyard and Lintel’s foundational study compar-

ing behaviour on three streets (Appleyard and Lintell, 1972). The study considered

three adjacent streets in San Francisco with light, moderate, and heavy levels of

traffic flow respectively finding that residents spent more time on low traffic streets.

Similarly, Biddulph (2012) studied the effect of differences in street design on street

activity on two residential streets in Cardiff. Unlike Appleyard and Lintel’s study,

the streets differed significantly in design as well as traffic flow; one street permitted

through traffic and had traffic calming measures and the other did not permit vehi-

cle through traffic. A higher frequency of longer stays in the street without through

traffic was observed.

The importance of subjective perceptions of the street environment is high-

lighted in these studies. In Appleyard and Lintell (1972)’s and Biddulph (2012)’s

studies the travel distances and times of partaking in the activities observed differed

little between streets with different levels of traffic flow. Similarly in Anciaes et al.

(2019)’s study, perceptions of traffic were found to impact walking intention inde-

pendently of the distance to the busy road. This suggests that the presence of vehicle
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traffic changed residents’ perceptions of the street environment which in turn inhib-

ited the trips they made. This explanation is supported by two studies by Bornioli et

al that evidence the negative impact of traffic on walking experience and the role of

negative experiences in inhibiting pedestrian trips. Bornioli et al. (2018) considers

“specific micro-qualities related to traffic and architectural style that could influ-

ence affective experiences.”. By measuring affective experiences the psychological

well-being conferred by different environments was evaluated. The results identi-

fied self-reported psychological benefits of walking in different built environments,

with perceived restorativeness rated more highly in non-traffic urban environments

than in those with traffic. Pedestrian well-being was found to be affected by the

immediate street environment pedestrians walk through. Crucially, a related study

found that negative affective experience reduces walking intention (Bornioli et al.,

2019).

Together these studies identify ways that the barrier effect influences pedestrian

movement. At small spatial scales the level of traffic and available crossing infras-

tructure on a road shape pedestrian movement by influencing the choice of crossing

location. Conditions of the immediate road environment shape people’s perceptions

and these perceptions determine travel behaviour and movement over larger spatial

scales including suppressing trips altogether and avoiding busy roads when walking

places. Vehicle traffic therefore affects pedestrian behaviour and experience across

multiple spatial scales through the barrier effect.

2.3.2.3 Health, well-being, and social interaction

Moving beyond safety and the barrier effect a broader range of of influences on

pedestrian experience can be identified, encompassing health (beyond the threat of

collisions with vehicles), well-being, and social interactions. As before these im-

pacts are produced through (in this cases indirect) interaction between pedestrians

and vehicles. These impacts are shaped both by the immediate environment and

the characteristics of larger urban geographies, with sprawling and vehicle-centric

urban environments playing a role in producing the vehicle traffic that pedestrians

interact with.
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Health and well-being

Air pollution is one of the most impactful pathways, with fossil fuel burning

vehicles being the dominant source of air pollutants in urban areas (Holman, 1999;

Hoffmann, 2019). Globally, “air pollution was ranked fourth as risk factor for pre-

mature mortality, only exceeded by hypertension, smoking and dietary risks” (Hoff-

mann, 2019). Air pollution increases the risk of both cardiovascular and respiratory

disease with a review across studies finding “an approximate 20% increase in car-

diovascular disease mortality risk per 10 µg/m3 increase in PM2·5 and an approx-

imate 2·5% increase in respiratory disease risk per 10 µg/m3 increase in PM10”

(Stevenson et al., 2016). High resolution models and sensing of air pollution in

cities reveal variation in pollution at the street level (Santiago et al., 2022; Hasen-

fratz et al., 2014). Increasing the spatial and temporal resolution of measurements

of air pollution exposure of road users reveals larger variations between populations

as well as higher mean exposure than reported in coarser analyses (Gurram et al.,

2019). Variations in exposure were due, in part, to variations in pollution concen-

trations between road links and differences between people’s routes through a city.

Repeated measurements of air pollution at 1Hz for each 30m of road in Oakland,

California further revealed spatial variation at the sub road link scale, with concen-

trations of NO2 twice as high around intersections that at mid block locations in

some cases (Apte et al., 2017). A complete representation of pedestrian exposure

to air pollution would therefore account for ambient back ground pollution levels,

variations between road links and potentially even sub road link variations (with

intersections in particular being high exposure environment). Exposure and its re-

lated health impacts are therefore partially determined by pedestrian movement at

multiple spatial scales.

Traffic noise is hypothesised to impact mental health and quality of life, how-

ever results are mixed and causality difficult to establish. Some studies do find

significant associations between traffic noise and measures of health related Quality

of Life (HRQOL) when controlling for socioeconomic and environmental factors

(Héritier et al., 2014; Dratva et al., 2010). However, in studies with larger sam-
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ple sizes and meta analysis this relationship is hard to establish. Roswall et al.

(2015)’s analysis of a sample of 38,964 people over three years found modelled

traffic noise exposure to be significantly associated with the mental health compo-

nent of HRQOL after controlling for socioeconomic factors, but the association was

greatly attenuated by the inclusion of lifestyle control variables. A meta analysis

similarly concluded that there is “is evidence of ‘very low’ quality that increasing

exposure to road traffic noise may be associated with depression and anxiety”, cit-

ing the complex pathways through which noise can impact mental health as making

causality difficult to establish (Dzhambov and Lercher, 2019). Furthermore, these

studies focus on residential noise exposure and not that experienced by pedestrians.

Botteldooren et al. (2011) estimated noise exposure experienced over the course of

a trip and found it correlated significantly with reported quality of life but without

controlling for socioeconomic or lifestyle variables (which were found to attenu-

ate this relationship elsewhere (Roswall et al., 2015)) causality remains elusive. So

whilst there is some evidence that traffic impacts well-being, a strong association or

causal effect remains to be established.

The research reviewed in this section considers indirect forms of interaction

between pedestrians and vehicles and the resulting impacts. These interactions nec-

essarily take place where pedestrians can perceive vehicle traffic and in this sense

are related to the immediate street environment. Research is accordingly conducted

at this scale, simulating and observing the experience of walking in these environ-

ments as well as modelling the air and noise pollution of a street segment. But, as

with safety, larger geographies are also relevant. Traffic is a product of the wider

urban and transport system, as shown by sprawl indices, and so any interaction with

vehicle traffic is to some extent a product of this wider system. More specifically

though, a pedestrian’s experience is also the result of continuous and varied expo-

sure to traffic across the journey which shapes their perceptions of the environment.

This is acknowledged through the use of virtual walks that present a trip through

a reasonably homogeneous environment, the road network analysis that similarly

models walking trips or the modelled effects of air and noise pollution across the
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whole of a pedestrian’s trip. In each case traffic is only ever experienced in the

immediate environment but the effect is attributed to the whole journey or area. A

pedestrian’s experience of vehicle traffic is therefore multi-scale, comprising of a

series of exposures to immediate traffic conditions that accumulate in some way to

a trip level experience that spans a larger geography.

Social interaction

As well as recording the impact of vehicle traffic on residents’ trips and street

activity, Appleyard and Lintell (1972) also measured the social ties between neigh-

bours on each street, finding that residents on the heavy traffic street had a higher

average number of friends and acquaintances on the street than on the light traffic

street. Residents’ statements explained this difference in social contacts was due to

the presence of traffic in part, but also a range of other factors including the number

of children living on the street and the number of years residents had lived there.

Similar findings were observed in a recent replication of Appleyard and Lintel’s

study in Bristol (Hart and Parkhurst, 2011). The residents on the light traffic street

had significantly more friends and acquaintances on the street than those on moder-

ate or heavy street, citing the traffic on the street as a barrier to forming friendships.

Biddulph (2012) also observed a higher frequency of social activity on a street with

greater traffic calming compared to one without traffic calming.

Identifying that vehicle traffic appears to inhibit social interactions between

residents prompts consideration of whether this phenomena can be identified across

larger geographic areas. Attempts to measure this ‘community severance’ tend

to consider larger spatial scales than the individual street comparisons discussed

above, creating opportunities to establish more general relationships between the

built environment and social connections. However, establishing the effects at these

scales proves elusive owing to the many factors that mediate social interaction.

Leyden (2003) investigated the connection between walkability and social cap-

ital by surveying residents in Gallway, Ireland. By asking how many destinations

they were able to access by walking and how well the residents knew their neigh-

bours (amongust other questions assessing social capital) the authors identified a
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significant association between the walkability of a neighbourhood and the social

capital of its residents (controlling for variables such as age, years spent living in

the neighbourhood, whether the resident had dependent children at home, and how

much television the resident watches).

Other studies have not been able to identify a significant association between

social capital and the built environment. (Hanibuchi et al., 2012) found that walk-

ability was not significantly associated with any measures of social capital once

measures of community history (the build period of the buildings and the length of

residents’ stay) and urbanisation were included. In a similar study of social cap-

ital and the built environment in Perth, Australia Wood et al. (2008) found that

the number of destinations within an 800m radius was negatively correlated with

their measure of social capital, also contradicting the link between walkability and

social capital. These inconsistent findings have been compared with other studies

in a systematic review of the relationship between the built environment and so-

cial capital (Mazumdar et al., 2018). The majority of significant findings conclude

that components of design (how the road network is laid out) and destination (the

proximity of a range of destinations) are associated with social capital - with areas

of greater accessibility to destinations by walking and more traditional road net-

work layouts (greater connectivity) having greater social capital. Another review,

Boniface et al. (2015), concludes that “Walkable environments can promote social

capital and social cohesion. Traffic and severance have important consequences for

social networks.” Though they also acknowledge that the direction of causality is

difficult to establish.

The findings presented in (Leyden, 2003) are explained in terms of more walk-

able neighbourhoods having a higher proportion pedestrian trips which results in

more opportunities for neighbours to interact. These explanations are in part sup-

ported residents’ claims that the presence of traffic inhibited street activity (Apple-

yard and Lintell, 1972; Biddulph, 2012; Hart and Parkhurst, 2011). It’s important

to note criticisms of this perspective. Schwanen et al. (2015) critiques the benign

construction of social capital presented in studies such as those discussed above,
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arguing that “analysts should not a priori assume that the local area or neighbour-

hood is the most relevant spatial scale for the formation of social capital among

such individuals.” and that social capital can also lead to the exclusion of those not

in the group. Potentially, a balance exists between facilitating local social interac-

tions through suppressing traffic, and facilitating travel to other destinations where

people also socially interact.

This section highlights how a class of interactions, those between pedestrians

and vehicles, affect pedestrian behaviour and experience in urban areas. These ef-

fects are related to but distinct from the affect of the built environment on pedestrian

behaviour. The spatial arrangement of buildings and roads in cities determines, in

part, where people colocate. But the details of this colocation, how people behave

and experience one another, are determined through the interaction of different road

users. These interactions are also connected to the environment, but it is funda-

mentally the presence of different kinds of road user, in this case pedestrians and

vehicles, that introduces a different set of determinants of pedestrian behaviour and

experience. As a result pedestrians’ health, well-being, and social interaction are

affected, with these effects identified through the direct interaction of pedestrians

and vehicles on individual streets as well as analyses of whole neighbourhoods and

cities.

2.4 Modelling pedestrian movement in urban areas

Section 2.3 identified a wide range of influences on pedestrian behaviour and ex-

perience, broadly grouped into effects of the built environment and effects of in-

teraction with vehicle traffic. Modelling pedestrian behaviour can help to account

for these influences when designing urban environments and appraising transport

proposals. This section reviews methods that are useful for representing the aspects

of pedestrian behaviour and experience discussed in Section 2.3. These existing

studies do not represent many of the behaviours discussed above and the specific

gap this research aims to address is discussed at the end of this section.

An important distinction in this discussion is between the spatial scale of the
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determinants of pedestrian behaviour. Conflicts with vehicles, road crossing deci-

sions, and social interactions result from dynamic interactions between pedestrians

and vehicles. These are small-scale influences in the sense that the information

pedestrians appear to be responding to in these situations is local to the pedes-

trian. These are categorised as ‘small-scale decisions’. Section 2.3 also discussed

non-local determinants of pedestrian behaviour, predominantly through wayfind-

ing decisions based on of the environment. These are categorised as ‘large-scale

decisions’.

The importance of dynamic interactions to small scale pedestrian decisions

makes agent-based modelling well suited to representing these decisions (Batty,

2001). Whilst the various crossing choice models discussed in the section above do

model small-scale decisions the process of a pedestrian moving through space is not

represented. Without connecting decision making to movement models cannot rep-

resent the complex interactions that characterise road environments. Accordingly,

the discussion of small-scale models is dominated by agent-based approaches to

modelling pedestrian decision making and movement at the street level.

At larger scales dynamic interactions become obscured by the wider urban

context; accordingly, different methods tend to be used. These studies model deci-

sions as being made based on spatial (and non-spatial) information across a wide

geographic area. Where ABM have been used to model such large-scale decision

making, this is achieved by providing agents with knowledge of the wider environ-

ment (such as road networks and activity locations) to base their decisions on.

2.4.1 Small-scale decisions

A foundational group of model of pedestrian movement are those based on social

forces (Helbing and Molnár, 1995; Helbing et al., 2001) and heuristics (Moussaid

et al., 2011). In these models agents’ movement decisions are based on the imme-

diate environment, defined in terms of a field of vision. Agents respond to other

agents and environmental features (such as walls and other barriers) within the field

of vision. These models demonstrate that realistic patterns of movement and coor-

dination can be produced through simple rules and limited knowledge of the envi-
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ronment, although agents are assigned a destination to move towards which may be

outside the field of vision. It’s through the continuous dynamic interaction among

pedestrian agents and between agents and the environment that these simple rules

give rise to realistic movement behaviour.

Tangential to these agent-based models are the ‘isovist agents’ used to model

natural movement (also called configurational movement) (Hillier et al., 1993; Penn

et al., 1998) through decisions based on an exosomatic visual architecture (Turner

and Penn, 2002; Turner, 2007b). Natural movement is the flows of people in build-

ings and cities predicted by an axial map (see the discussion of Space Syntax in

Section 2.3.1 above) representation of the space. The movement is ‘natural’ in the

sense that it arises purely from the spatial configuration of the environment. Turner

and Penn (2002) develop this by producing natural movement through an agent-

based model. In the model, each step agents choose their direction of movement

based on their isovist (the non-occluded region of the space), also referred to as

an exosomatic visual architecture, moving in the direction which affords the most

space. The resulting movement patterns match those predicted by the axial map rep-

resentation (Turner, 2007b) and are well correlated with observed flows in buildings

(Turner and Penn, 2002) but are produced through the small-scale decision making

of individual agents. Interactions between these isovist agents are limited and so

these models do not produce the kinds of emergent behaviour (lane formation, stop

and go traffic) produced by Helbing’s social force agents (Helbing et al., 2001). In-

stead they demonstrate that realistic flows through buildings and streets can be pro-

duced through only small-scale decision making. However, both groups of models

consider only pedestrian movement, restricting their application to pedestrian-only

spaces such as transit stations or galleries. When applied to pedestrian movement in

street environments interactions between road users are neglected (Penn and Turner,

2002).

Beyond pedestrian only spaces these simple rules are insufficient and must be

replaced or supplemented by additional decision making on behalf of the pedestrian

agents. In urban street environments road crossing behaviour is an important aspect
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of pedestrian movement to represent due to its connection to pedestrian safety and

the barrier effect. As discussed above, pedestrians exhibit a range of road crossing

behaviours that, to different extents, adhere to the laws, codes and norms defining

right of way for road users. Incorporating road crossing and driving yielding be-

haviour into models of pedestrian movement at the street scale is therefore relevant

to representing these aspects of pedestrian experience. In this vein, many stud-

ies develop agent-based models and micro simulations of pedestrian road crossing

using a variety of decision making frameworks and models. Additionally, the de-

velopment of autonomous vehicles is motivating increasingly high-fidelity models

of pedestrian decision making and road user interaction.

Non-compliant pedestrian road crossing behaviour (road crossing that deviates

from right-of-way guidance or laws) has been produced in several pedestrian move-

ment models using rule based decision making. Suh et al. (2013) develop pedes-

trian agents that used simple rules to decide when to cross the road. Implementing

these in VISSIM, a commercial transport micro-simulation software, produced road

crossing behaviour that did not comply with pedestrian traffic controls and instead

crossed through gaps in vehicles. By comparing with observations, authors demon-

strated the effect of pedestrian behaviour on wait times, evaluating the connection

between traffic, pedestrian behaviour and pedestrian mobility. Chao et al. (2015)

modelled pedestrian jaywalking using a rule based gap acceptance model, modifica-

tions to a social force model of pedestrian movement, and a model of vehicle move-

ment. However, the model was not validated and the focus of the study is producing

realistic looking movement for animation purposes. Feliciani et al. (2017) present

a cellular automata model of pedestrian road crossing for a single zebra crossing.

In the model vehicles are either compliant or non-compliant, with non-compliant

vehicles never yielding to pedestrians at the crossing. Pedestrians perceive a vehi-

cle’s speed, whether it is compliant or not, and the time gap the pedestrian requires

to cross to decide when it is safe to cross the road. Pedestrian agents are initialised

with heterogeneous time gap requirements, reflecting differences in perceptions of

safety and walking speed within the population.
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The representation of decision making and interaction in these models is lim-

ited to the use of simple rules. These simplifications potentially exclude plausi-

ble and observable pedestrian behaviours from the model. Wang (2012)’s method

improves on this by developing a micro-simulation of pedestrian road cross-

ing behaviour at signalised crossings, zebra (unsignalised) crossings, and mid-

block crossings (jaywalking). Pedestrian crossing location and time was modelled

through the iterative application of a binary logit choice model of gap acceptance

(when to cross the road). The logit model was calibrated and validated against

observations of pedestrians crossing the road in different environments and repro-

duced the observed behaviour of pedestrians continuing to walk along the pavement

until a suitable gap becomes available to cross the road. This micro-simulation rep-

resents detailed pedestrian decision making and diverse road crossing behaviour in

the presence of different crossing infrastructure.

More recently, and motivated in part by the development of autonomous ve-

hicles, studies have sought more granular and psychologically realistic models of

pedestrian crossing and movement along urban streets. Markkula et al. (2018)

model a pedestrian’s decision of when to cross a zebra crossing as a network of

binary ‘drift-diffusion’ decision nodes. Each node gradually accumulates informa-

tion from the environment varying the node ‘activations’ in the process. When

a threshold activation value is reached one of the binary options is chosen. This

model explicitly represents the cognitive process of retrieving information from the

environment and because this process happens over time the choice model naturally

incorporates the dynamic nature of the road environment. The model reproduces

the bimodal characteristic of the distribution of observed pedestrian zebra crossing

decisions - with greater proportions of pedestrians crossing either without waiting

for the car to slow down or once the car has fully stopped compared to those that

cross as the car is slowing down. Initial attempts have been made to estimate model

parameters (Giles et al., 2019). Tian et al. (2022) model road crossing decisions

with a logit based gap acceptance model. Rather than using the time gap between

vehicles as the gap indicator the authors use visual looming which measures the
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changing size of the vehicle’s image in the retina of the pedestrian. Visual looming

provides a connection between real world objects and perception of those objects,

producing a choice model that is more reflective of human cognition. Wang et al.

(2021) present a drift-diffusion based model, applied to a similar scenario to that

in Wang (2012). Pedestrian agents move along one side of the road tasked with

choosing a crossing location (either at a marked crossing or some other location on

the road) and crossing time. By using decision field theory to model this choice the

authors similarly represent the decision as a gradual process that intrinsically ac-

counts for the dynamic nature of the environment. By representing the connection

between perception, cognition and decision making these choice models are able to

incorporate different sources of heterogeneity between pedestrians such as ‘noisy

perception’ or biases towards certain features of the environments. This is not pos-

sible with standard logit or regression based choices models, where parameters are

set for the whole population and variances between agents are due to the uncer-

tainty in the parameter estimates rather than real psychological differences among

the population.

Models of pedestrian movement in ‘shared space’ environments a consider a

different form of more fluid road user interaction due to the lack of formal rules gov-

erning the right-of-way of different road users (Hamilton-Baillie, 2008). In some

cases this more informal movement is modelled by including additional terms in

a social force model, such as for pedestrian-vehicle interaction (Pascucci et al.,

2015; Anvari et al., 2015). Anvari et al do also impose additional rules on vehi-

cle movement to resolve conflicts that persist. Prédhumeau et al. (2022) similarly

uses a mixture of adjustments to social force models and rules to produce shared

space pedestrian movement, however, in this case additional rules are also imposed

on pedestrians to produce yielding and non-yielding movements in the presence of

vehicles. The need to add additional rules to handle the variety of pedestrian be-

haviour in shared-space scenarios connects to the open questions surrounding how

AVs could motivate restrictions to pedestrian behaviour discussed in Section 2.2.1.

What happens if AV developers do not account for all the ways pedestrians and ve-
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hicles coordinate themselves currently? This may restrict the scenarios AVs operate

in but also, as Norton (2011) argues occurred with the introduction of cars to city

streets, pedestrians may be required to adapt their behaviour.

These models provide tools for assessing the mobility impacts of pedestrian

road crossing behaviour. By producing conflicts between pedestrian and vehicle

agents both at formal and informal crossing locations the models can be used to

evaluate the safety of street designs in the presence of different pedestrian be-

haviours. The interactions between pedestrians agents, street infrastructure and ve-

hicle agents also determine the journey time and distance of the pedestrian agents,

enabling assessments of pedestrian accessibility and the barrier effect. However, in-

teractions between road users are treated as obstacle avoidance problems, reduced

to the mechanics of moving objects. This overlooks the role communication and ne-

gotiation play in coordinating road users’ movements (Straub and Schaefer, 2019;

Markkula et al., 2020; Tennant et al., 2022).

Game theory has been proposed as a potentially suitable model of road user

interaction in multiple road scenarios that explicitly represents social interaction be-

tween road users. Schönauer et al. (2012) used a mixture of the social force model

and game theory to simulate the interactions between agents in a shared space.

Fox et al. (2018) propose a sequential game theoretic model of two road users co-

ordinating their movement as they pass through an unsignalised intersection from

orthogonal directions. Initial attempts have been made to estimate the model’s pay

off values for pedestrians from movements of pedestrians in a laboratory setting

(Camara et al., 2018a). One complication of game theoretic models is specifying

which agents are involved in the game. The social force and drift-diffusion methods

discussed do not created a binary distinction between agents included and excluded

from the game and instead allow many agents to influence decision making to dif-

ferent degrees. Drift-diffusion models are also more cognitively plausible since

they assume people only make simple calculations rather than the more complex

identification of nash equilibria required by game theory.

The agent-based and micro-simulation models reviewed here use a variety
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of methods to model pedestrian decision making and produce realistic pedestrian

movement at the street level. This necessarily involves road crossing behaviour

which is shaped both by street design, infrastructure and the presence of other road

users (generally other pedestrians and vehicles). These are important aspects of

pedestrian experience in urban areas with direct relevance to safety and the barrier

effect. They are also directly relevant to AVs, which will be required to anticipate

and respond to these behaviours - though the extent to which they will replicate

current pedestrian-vehicle interactions remains to be seen. However, these models

are detached from location and trip purpose. While the natural movement produced

by isovist agents does, in aggregate, correspond to flows over whole urban areas,

the decision making of the individual agents lacks purpose and awareness of the

non-immediate environment.

2.4.2 Large-scale decisions

Counter to models of small-scale pedestrian decision making are models that in-

corporate knowledge of the wider urban area into decisions. These larger-scale

decision models better account for trip purposes and land use and model pedestrian

movement over larger spatial scales.

While natural movement models of pedestrian flows are based only on network

configuration, the varying correlations with observed flows for different radii over

which closeness and betweenness centrality measures (measures that predict pedes-

trian flows) are calculated implies a role for large-scale components of the environ-

ment in influencing pedestrian movement (Omer et al., 2015; Dhanani et al., 2017).

Additionally, incorporating land use components into a Space Syntax based model

of pedestrian movement improves the correspondence to observed flows (Omer and

Kaplan, 2017). In this study pedestrian movement is modelled with pedestrian

agents whose trip destinations are based on the relative weight of different land uses

and whose route choices were based on the network analyses used in space syntax

(minimising angular distance, topographic distance, and metric distance). Dhanani

et al. (2017) also incorporate land use into their model of pedestrian demand.

The inclusion of land use metrics in models of pedestrian behaviour deviates
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from the pure configurational perspective and represents movement as being based

on large-scale spatial decisions. Hoogendoorn and Bovy (2004) helpfully articulate

this view, separating out strategic, tactical and operational components of pedestrian

decision making that together produce flows on city streets. Routing and navigation

decisions are categorised as tactical level decisions, within which small-scale isovist

agents and larger-scale network optimal shortest paths each fall. In reality, it appears

that, along, neither of these two approaches satisfactorily align with either human

cognition or observed route choices. This is addressed in recent work that use novel

route choice and navigation methods that incorporate multiple aspects of cognition

to more accurately model flows of people in cities, discussed in Section 2.4.3 below.

However, before discussing multi-scale models of pedestrian decision mak-

ing, there is another aspects of large-scale models to address: network represen-

tations. Small-scale models generally adopt a high-fidelity representation of the

environment, for example, by using continuous spaces and distinguishing between

the carriageway and pavement. But, when modelling larger-scale decisions more

abstract road centre line (RCL) representations of the environment are generally

used. Where pedestrian dedicated space is allocated at either side of the carriage-

way (e.g pavement ans sidewalks) this simplification obscures movements across

the carriageway, precluding investigations related to the safety, the barrier effect

and well-being impacts of vehicle traffic discussed above. Addressing this, authors

have created pedestrian networks based on a pavement centre line representation

(PCL) (Ballester et al., 2011; Andreev et al., 2015; Timms, 1992; Rhoads et al.,

2020). Rhoads et al. (2020) provide the most comprehensive example, creating

PCL networks for 10 cities across three continents and using these to compare the

availability of pedestrian infrastructure and the effects of road closures on pedes-

trian mobility. Pedestrian movement was modelled using shortest path algorithms.

Palominos and Smith (2019) use a different approach to incorporating pedestrian

infrastructure into network representations of cities by measuring pavement and

carriageway widths of road links in London. Although not directly related to mod-

elling pedestrian movement their use of network centrality measures aligns with
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Space Syntax models of movement.

The small and large-scale pedestrian decisions modelled in these studies can be

contrasted in their representation of the environment. While small scale models use

continuous or grid based representations large scale models use network representa-

tions derived from road geometries or building polygons. There are also differences

in the ways pedestrian decisions are represented. Social force based methods are the

basis of pedestrian movement in small scale models, with pedestrian agents decid-

ing how to move based on the agents within their assigned field of vision. Beyond

these simple collision avoidance decisions are those related to road crossing and

vehicle interaction which for which a variety of methods are used (examples dis-

cussed include rule based, logit and drift-diffusion models). Unlike the well defined

field of vision, these use different rationales to justify which features of are included

in the decision making process. The more structured network representations used

in large-scale models result in a shared basis for decision making of edges and

nodes. Finally, the two scales lend themselves to analysis of different aspects of

pedestrian behaviour. The detailed representation of pedestrian-vehicle interactions

in small-scale models enable granular and dynamic assessments of safety and the

barrier effect. The large scale models incorporate the role of location and connect

pedestrian movements to trip purposes. Integrating these scales could enable a more

comprehensive assessment of pedestrian experience. Doing so requires developing

methods to integrate the different ways the environment and decision making are

represented at these scales. To this end, multi-scale models and theories related to

movement in cities are reviewed in the following section.

2.4.3 Multi-scale decisions

As mentioned in the previous section, accurately modelling flows of people in

cities requires accounting for spatial decisions made with respect to multiple spa-

tial scales. Recent approaches to modelling route choice distinguish between these

different scales by leveraging the flexibility afforded by agent-based modelling.

Wiener and Mallot (2003) propose a ‘fine-to-course’ wayfinding model in which a

route is comprised of fine scale information within a region and coarse space infor-
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mation for locations in another region. Manley et al. (2015b) model the navigation

decisions of taxi drivers in London, developing a novel route choice model based on

the hierarchical cognitive map representation of human spatial cognition discussed

in Section 2.3.1. Their model distinguishes between decisions made with respect

to different spatial scales comprising region based, node based, and route based

choices, with the spatial information available to agents at each of these scales dif-

fering. The resulting routes were found to correlate better with the observed routes

of taxi drivers compared to an optimal choice model. Filomena et al. (2020) present

a model of pedestrian navigation based on urban subdivisions. This agent-based

model also represents multiple scales of decisions making, distinguishing between

global regions and barriers and locally bounded knowledge of the road network.

These models base the decision making of the agents on spatial cognition and cog-

nitive map theory, generating more realistic behaviour by applying different choice

mechanisms to different spatial scales.

Other examples of route choice models blending different heuristics and spa-

tial information to more accurately model pedestrian flows can be found. Bon-

giorno et al. (2021) find that pedestrians deviate increasingly from shortest paths

as the distance between origin and destination is increased. This is incorporated

into a route choice model that uses both the direction to the destination as well as

the road network to choose a route, improving the correspondence with observed

routes. Kielar et al. (2018) integrate multiple route choice strategies, each based

on different cognitive principles related to both small-scale and large-scale spatial

information. These studies highlight the importance of integrating different aspects

of spatial decision making to model pedestrian paths. Such multi-scale approaches

are discussed further in the following section.

While several of these models consider pedestrian movement they exclude in-

teractions between road users. Papadimitriou (2012) models road crossing choices

across an urban area. This work integrates road crossing decisions with route choice

decisions by using a nested logit discrete choice model. The nesting of choices

treats route choice as a sequential process which is multi-scale in the sense that



2.5. Conclusion 77

the immediate road environment is distinguished from the rest of the environment.

However, the logit choice modelling methodology lacks the granularity and poten-

tial for interaction afforded by the small-scale agent-based models discussed above.

Tong and Bode (2021) present a novel model of pedestrian route choice in which

agents sequentially update their routes in response to new information perceived

in the environment. This study identifies how the sensitivity of route choices to

novel environmental information changes as people progress and is an example of

multi-scale route choice applied to pedestrian route choice decisions within build-

ings rather than in cities.

The small-scale models discussed in this section incorporate aspects of pedes-

trian behaviour that result in non-compliant road crossing, with pedestrians seek-

ing to cross the road at locations and times that require coordination with vehi-

cles. There is variation in the types of pedestrian road crossing decisions that are

modelled, with some studies allowing greater flexibility over the choice of cross-

ing location and others modelling only decisions of when to cross given a specific

crossing location. Different models of pedestrian decision making are employed

including heuristics, discrete choice models, game theoretic models, and cognitive

perception models. Moving beyond a single street enables pedestrian movement to

be connected to locations and trip purposes. Models at this scale represent urban

areas using networks and model movement as resulting from decisions on these net-

works. Agent-based models of multi-scale urban movement have demonstrated the

increased realism of modelled behaviour achieved by integrating decisions made

pertaining to different spatial scales. However, a gap remains in the integration

of decisions at the street level which account for movement across the carriageway

(and the associated pedestrian-vehicle interactions) with movement decisions across

multiple streets.

2.5 Conclusion

Taking the UK government’s objective of achieving a modal shift from driving to

walking as a starting point, this review began by discussing the transport planning
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approaches that support active travel. The importance of place making was iden-

tified as particularly relevant to encouraging walking trips. Considering the emer-

gence of new transport technologies and their potential to support sustainable mo-

bility transitions highlighted potential tensions between the integration of land use

and transport planning required for place making and the mobility-centric nature

of transport technologies. AVs exemplify this tension since, more than any other

transport technology, they have the potential to entrench a vehicle-centric land use

system.

Navigating these tensions requires high-quality assessments of the choices

available to decision makers that better account for the uncertainties attached to

future travel behaviour. One way to improve such assessments is by improving the

representation of behaviour in models of urban mobility. Doing so can broaden

the range of impacts considered by such models and improve the utility of their

forecasts.

Models of future AV mobility services exclude pedestrians. Given the wide

ranging impacts on pedestrians of vehicle traffic this omission significantly limits

the ability of such models to produce a wide range of plausible future scenarios

and their impacts across different populations. Incorporating relevant pedestrian

behaviours into such models requires modelling street level pedestrian movement

and road crossing at whole neighbourhood or city spatial scales.

Existing models of pedestrian movement do not consider this range of spa-

tial scales and set of behaviours. Whilst models of some aspects of pedestrian

road crossing behaviour and pedestrian-vehicle/AV interaction have been devel-

oped, these are limited in their representation of urban geography and disconnected

from models of urban pedestrian flows. The following chapter sets out a multi-

scale decision making framework that can be used to model multi-scale pedestrian

decisions that addresses this gap.



Chapter 3

Modelling framework

3.1 Introduction

This thesis concerns the development of a novel model of pedestrian movement in

urban areas. Modelling involves formalising hypotheses and assumptions in ways

that can be “tested and refined through confronting their predictions with new data”

(Batty and Torrens, 2005). According to Epstein (2008), the choice “is not whether

to build models; it’s whether to build explicit ones”; models are fundamental to

studying real systems. It follows that modelling is a broad term encompassing many

different ways of explicitly stating hypotheses and assumptions about the world.

This plurality requires modellers to specify and justify the approach they have taken

to building an explicit representation of a real system. This is especially important

where multiple disciplines and perspectives can be brought to bear on a system

(complex urban systems being a prime example), leading to debates about what

kind of models are useful or necessary, such as that between data driven methods

(Anderson, 2008) and other epistemologies (Kitchin, 2014; Duarte and deSouza,

2020).

The chapter provides clarifications to these points and others. The framework

below sets out the system of interest and the approach that will be taken to model

it. The intention is to make explicit, at an early stage, the foundations of the model

so that later chapters can focus on modelling details and results. To begin, the

modelling objective is defined with reference to a research gap identified in the lit-
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erature review presented in Chapter 2; the research questions this thesis attempts to

answer are also presented. Following this, in Section 3.3 the modelling methodol-

ogy and purpose are given. This section explains what principles will be followed

in developing the model and the criteria used to assess the model. These principles

involve identifying suitable theories and observations of pedestrian decision mak-

ing on which to base model development, and these are discussed in Section 3.4.

Finally, the process for simulating and analysing pedestrian movement is set out in

Section 3.5.

3.2 Research gaps in models of pedestrian movement

Chapter 2 revealed a disconnect between models of pedestrian movement at the

street scale and at the neighbourhood or urban scale. At the street scale pedestrian

movement has been represented with sufficient detail to differentiate between road

crossing movements that do or do not comply with traffic regulations and social

norms. Dynamic interactions between pedestrians and vehicles have been modelled

in ways that account for the gradual nature of decision making and the role of com-

munication and negotiation in this context. And yet these behaviours have not been

integrated with larger scale models of pedestrian movement in which location and

urban form are paramount.

As outlined in Chapter 2.3, there are numerous negative contributions to pedes-

trian safety, mobility, and health from aspects of vehicle mobility. These negative

impacts have been studied in terms of the detailed movements of road users at the

street scale as well as patterns of mobility that are connected to larger urban geogra-

phies. Small scale models are suitable for representing road user behaviours such as

driver non-yielding and pedestrian jaywalking that impact safety and mobility. But

their limited scale means these behaviours are disconnected from a particular place

or location. Conversely, larger scale studies highlight the significance of different

urban forms and land uses in understanding mobility behaviour.

Bridging these two scales of pedestrian movement could support sustainable

transport planning by better representing how pedestrian experiences are shaped by
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both the behaviour of individual road users and by wider urban geographies. For ex-

ample, pedestrian movement is absent from many simulations of future autonomous

mobility systems. And yet, interacting with other road users in complex urban road

environments may be one of the hardest aspects of the driving task to automate

(Markkula et al., 2022). Without incorporating street level pedestrian movement

into city wide simulations of AVs, researchers are limited in the ways they can

explore how this new mobility service could alleviate or exacerbate the negative

impacts of vehicle mobility on pedestrians. Regardless of the development of new

mobility technologies, existing pedestrian movement models are unable to repre-

sent how both small and large scale phenomena interact to produce the impacts on

pedestrians reviewed in Chapter 2.3. A multi-scale pedestrian model could antici-

pate the impacts of changes to street infrastructure in ways that account for both the

behaviours of road users at the location of the infrastructure but also the significance

of its location within the wider urban area.

3.3 Modelling methodology and purpose

Our overarching research objective is to address this research gap by developing a

model of street-level pedestrian movement in urban areas in a way that represents

road crossing behaviour and dynamic interactions between road users through indi-

vidual level decision making.

Agent-based modelling is a suitable modelling methodology for addressing

this objective. A defining characteristic of agent-based modelling is the ability to

represent dynamic interactions between autonomous agents (Crooks et al., 2018).

Because of this, agent-based modelling is a well established methodology for mod-

elling granular pedestrian movement (Batty, 2001), as illustrated by the many agent-

based models and simulations of pedestrian movement discussed in Chapter 2.

The suitability of agent-based modelling stems, in part, from its inherent flexibil-

ity (Heppenstall et al., 2016); the modeller is constrained by software rather than

analytical mathematics. In our case this flexibility allows the decision making of

pedestrian agents, street level movement, road crossing, and road user interaction to
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all be represented in a single modelling framework.

This brings its own challenges in the form of a plurality of modelling ap-

proaches which can obfuscate comparisons between models. To combat this authors

have proposed approaches to model development, reporting, and evaluation that in-

troduce some standardisation to the process. Grimm et al. (2005) propose Pattern

Oriented Modelling (POM) as an approach to designing and evaluating agent-based

models. Edmonds et al. (2019) argue that making the purpose of the model explicit

helps ensure suitable model design as well as establishing the criteria the model

should be judged against. This section proceeds by outlining the modelling purpose

and how pedestrian agent behaviour will be designed in line with POM.

The purpose of the model developed in this project is to provide a description

of pedestrian movement that is granular (individual pedestrian trajectories through

streets) and has a wide geographical coverage (a neighbourhood). A descriptive

model, as opposed to descriptive text or images, has value “where the essence of

what is being described is how several mechanisms might relate over time” (Ed-

monds et al., 2019).

In our case the objective is to develop a model that describes how path find-

ing decisions made in relation to different sections of the urban environment (i.e.

different spatial scales) and in relation to dynamic components of the environment

combine to produce pedestrian trajectories.

The reason for developing a descriptive model, rather than an explanatory or

predictive one, is to contribute to the development of novel approaches for apprais-

ing changes to street infrastructure in light of new transport technologies. Antic-

ipating possible impacts of new transport technologies and associated changes to

street infrastructure requires considering the possibility that future behaviour differs

from past behaviour. Focusing only on reproducing past observations of pedestrian

trajectories may therefore be insufficient for anticipating possible future impacts.

Pedestrian use of street space has changed in response to the development of the

automobile and may continue to change as cities transition to sustainable transport

paradigms. Given these intractable uncertainties, there is value in developing a
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modelling approach that can generate pedestrian behaviour that deviates from his-

toric norms.

Modelling how pedestrians make decisions and how these decisions determine

their trajectories can better anticipate changes in future behaviour. By producing

trajectories ‘from the bottom up’ through a model of pedestrian perception and de-

cision making, the model will produce outputs across multiple scales - ranging from

individual cognitive processes to route choices and trajectories. This provides op-

portunities to validate model outputs against a broad range of evidence from mul-

tiple domains and avoid over fitting to pedestrian behaviour observed at a specific

place or time.

Edmonds and Moss (2005) make this point when setting out the advantages of

a descriptive modelling approach. Descriptive agent-based modelling, they argue,

“allows and facilitates a more direct correspondence between what is observed and

what is modelled” which makes a larger swathe of evidence available for model

validation. Grimm et al. (2005) argue that models designed to reproduce multiple

patterns are likely to be “structurally realistic”, meaning that “model components

correspond directly to observed objects and variables, and processes correspond to

the internal organization of the real system”. Polhill and Salt (2017) talk about

the “ontological structure” of a model, meaning the correspondence of the model

structure to the real system it is modelling, and also argue that the extent of this

correspondence is an important criteria for comparing and selecting models. Due to

the intractable uncertainties discussed above (which are often inherent to complex

systems) model structure becomes an important criteria itself.

However, a potential downside of this modelling approach is a loss of clarity re-

garding the intended applications of the model. The outputs of different components

of the model may correspond to very different processes and contexts, potentially

requiring different validation data and methodologies. This is a common complica-

tion of agent-based and microsimulation methodologies; by producing higher-level

behaviour from the actions and interactions of individual components such models

often integrate theories spanning multiple domains and settings.
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In this thesis, the model’s primary intended use is ultimately to predict pedes-

trian trajectories. However, to produce pedestrian trajectories the model also makes

predictions about pedestrian perception and cognition and, therefore, has potential

supplementary use as a model of these phenomena in urban environments. These

different uses require different validation data and methodologies, and this point

will be expanded upon in subsequent sections and chapters (specifically Section

6.5.5 and Section 7.4.3).

If explanation or prediction are not the modelling objectives, how will the

model developed in this theses be refined and evaluated? To answer this it is useful

to first clarify the differences between model verification, calibration, and valida-

tion. Verification is the process of ensuring that the model correctly implements

the mathematical expression of a theory (Thacker et al., 2004). This is achieved by

comparing model outputs under different parameter settings to ensure the param-

eters are affecting model outputs in the intended way. Calibration is the process

of tuning model parameters such that the model produces outputs - in this case

pedestrian trajectories - that most closely correspond with empirical data. Once the

model has been calibrated, its outputs can be viewed as predictions of pedestrian

behaviour in the calibration scenario. Validating the model then involves compar-

ing these predictions to a separate sample of empirical observations of the same

pedestrian behaviour to provide an estimate of how accurate the model is (Trucano

et al., 2006). It’s important that the validation data set is ‘out of sample’ of the

calibration data set. A permissive reading of this requirement is that the validation

data should not include observations included the calibration data. A stricter view

is that validation data should be drawn from a different source entirely.

The POM (Grimm et al., 2005) framework for designing and evaluating agent-

based models provides guidance on model evaluation that is relevant to the de-

scriptive pedestrian agent-based model presented in this thesis. According to POM,

“[p]atterns are defining characteristics of a system and often, therefore, indicators of

essential underlying processes and structures.” Patterns of real pedestrian behaviour

at multiple scales should be used to design model structure. The multi-scale pedes-



3.3. Modelling methodology and purpose 85

trian navigation model should then be evaluated by comparing patterns produced

by the model to the system across these multiple scales and not just at one scale.

The description of pedestrian movement sought in this thesis comprises trajectories

across an urban neighbourhood at street level granularity produced by pedestrian

decision making. Patterns of pedestrian movement should be produced at both the

street and neighbourhood level to facilitate multi-scale comparisons to observed

patterns of pedestrian movement. Model evaluation is further discussed below in

Section 3.5 and in later chapters.

These modelling objectives can now be articulated as research questions that

this thesis will address. The question of how pedestrian decisions should be repre-

sented to achieve good correspondence with the decision making of real pedestrians

is articulated in research question 1, listed below. Building on this, research ques-

tion 2 concerns the development of a computational model of pedestrian movement

at the street level. The final research question concerns the application of this multi-

scale pedestrian navigation model to appraisals of street infrastructure.

1. How should pedestrian decision making be structured when modelling street

level movement across urban neighbourhoods?

2. How should pedestrian movement on urban streets be modelled to incorporate

road crossing behaviour?

3. How does modelling pedestrian movement at these spatial scales inform the

appraisal of street infrastructure?

The remainder of this chapter addresses research question 1 by proposing a

framework for modelling street level pedestrian movement across an urban neigh-

bourhood. This framework is developed into a multi-scale pedestrian model in

Chapters 4 and 5 with the resulting behaviour verified using simulation experi-

ments in Chapter 6, together addressing research question 2. Finally, simulation

experiments are used to explore the impacts of restricting pedestrian road crossing

in Chapter 7 which addresses research question 3.
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3.4 Multi-scale pedestrian navigation framework

In developing this framework I attempt to provide a theoretical basis for pedestrian

agent decision making from which an agent-based simulation of multi-scale pedes-

trian movement can be developed. The framework considers the decision making

of individual able-bodied pedestrians walking from predefined trip origins to des-

tinations located within a fixed neighbourhood. To begin, I argue that Construal

Level Theory provides a suitable theory of decision making for the context of in-

tegrating street-level and neighbourhood level pedestrian navigation. Using this as

the theoretical basis of pedestrian agent decision making, the framework defines the

relevant spatial scales of decision making and which components of the real deci-

sion making process will be translated into the perception, decision making, and

action processes of a pedestrian agent.

3.4.1 Construal level theory for multi-scale pedestrian naviga-

tion

Chapter 2.4 discussed several psychological and cognitive theories that explain spa-

tial cognition and decision making as being structured hierarchically, with larger

spatial scales corresponding to higher levels of the hierarchy than smaller spatial

scales (Mark et al., 1999; Hirtle and Jonides, 1985; Chase, 1983; Maki, 1981).

While these theories have informed models of pedestrian navigation, the relation-

ship between spatial scale and decision hierarchy is not applicable to the scales

of pedestrian movement considered in this thesis. Decision hierarchies are distin-

guished by larger spatial scales (for example between local neighbourhood locations

and global features such as rivers (Chase, 1983)) than those spanning street and

neighbourhood level pedestrian movement. Furthermore, cognitive maps are con-

sidered static, or only slowly changing with time, in contrast to the dynamic road

environments pedestrians move in, where navigation decisions must be enacted at

a particular point in time with consideration to the movements of other road users.

Defining hierarchies in purely spatial terms fails to consider how the dynamic aspect

of an environment could contribute the formation of decision hierarchies.
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CLT proposes a two level hierarchy with decisions construed at either a high-

or low-level. CLT additionally explains how high- and low-level decisions are in-

tegrated. CLT can be distinguished by it’s use of ‘psychological distance’ - com-

prising spatial, temporal, social and certainty dimensions - in determining decision

hierarchy (referred to as construal level) (Trope and Liberman, 2011) rather than

the purely spatial distinction between hierarchies common to the theories discussed

above. The role of visual information processing also contributes to decision con-

strual, with visual information processing prompting low-level construal. Further-

more, CLT hierarchies are defined in relative terms through comparison of decision

making between a psychologically proximate and distant setting. Similarly, evi-

dence that visual information processing prompts low-level construal comes from

comparison to verbal information processing rather than identifying an absolute

level of visual information required to prompt low-level construal. This differs

from the use of absolute spatial scales in defining decision hierarchies (such as

identifying rivers as global environmental features compared to groups of locations

that belong to a neighbourhood) in theories of spatial cognition. The multiple di-

mensions of psychological distance and the comparative nature of CLT hierarchy

definition provides a more general description of multi-scale decision making.

CLT is a useful theory for describing decision making where a decision is

made in two settings that differ in the psychological proximity of the object of the

decision and the role of visual information processing in making the decision. It

therefore provides a suitable theoretical basis for a modelling framework that inte-

grates dynamic street level decisions with navigation to locations within an urban

neighbourhood. Following Passini (1984)’s characterisation of wayfinding, pedes-

trian’s first make navigation decisions pertaining to larger spatial scales and then

make decisions pertaining to smaller scales. However, pedestrians are able to revise

earlier navigation decisions at the time these decisions must be enacted. According

to CLT, this navigation decision will transition from being construed at a high-level

to a low-level if the decision was initially made from a psychologically distant po-

sition and is then reconsidered at a psychologically more proximate position with
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more significant visual perception. The modelling framework should therefore dis-

tinguish between high- and low-level decision construal where a decision is made

initially from a psychologically distant perspective and can be revised from a psy-

chologically proximate perspective.

The literature review identified dynamic and interactive aspects of road envi-

ronments as important influences on pedestrians’ road crossing decisions. At the

same time, people’s perceptions of walking accessibility are influenced by road

crossings located beyond the immediate street environment. As such, CLT’s dis-

tinction between high- and low-level construal may be usefully applied to modelling

road crossing decisions. When navigating to a location within the neighbourhood,

CLT suggests pedestrians’ road crossing decisions are based on a high-level con-

strual - one that is abstract and goal orientated. This is because the location is spa-

tially distant, temporally distant (it will take the pedestrian some time to get there),

more uncertain (the pedestrian cannot be sure what other road users will be doing)

and visually occluded, requiring the pedestrian to “traverse psychological distance”

to make decisions about navigating to this location. When navigating to locations in

the immediate road environment road crossing decisions may be re-construed at a

low-level - one that is less abstract and feasibility based. This is because road users

and infrastructure within a pedestrian’s immediate environment can be visually per-

ceived with ease and exhibit a higher degree of certainty owing to their spatial and

temporal proximity. This aligns with previous research that finds pedestrians choose

crossing locations sequentially, evaluating exactly how to progress along a road link

only once the pedestrian reaches that road link (Papadimitriou, 2012). It differs by

introducing multiple scales of decision making at which the same decision is con-

strued in different ways, initially at a high-level and then at a low-level.

For other navigation decisions that are less influenced by dynamic and inter-

active aspects of road environments, such as which turn to take at intersections,

it is harder to justify distinguishing between high- and low-level choice construal

between the immediate street environment and wider neighbourhood. The lack of

dynamic influences on such decisions limits the difference in psychological distance
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between street and neighbourhood settings; they differ in spatial distance but less

so in the other dimensions of psychological distance. Therefore, within the frame-

work, path finding decisions involving road crossing are integrated across spatial

scales on the basis of CLT whilst other path finding and movement decisions are

modelled at a single spatial scale only.

3.4.2 Representation of the urban environment

The components of real urban environments that are represented in the framework

are now established. These environmental components are used to distinguish be-

tween psychologically distant and proximate environments and therefore between

locations for which navigation decisions are construed at a high-level or low-level.

The psychologically proximate environment should be visible and the move-

ments of road users in the environment should exhibit a relatively high degree of

certainty. The road network provides a suitable way of distinguishing between

psychological proximity and distance for the following reasons. Visibility can be

measured by the angular distance between links in the network, with zero angular

distance implying greater visibility due to a lack of building occlusions. The pre-

dictability of road users decreases as they move through successive intersections,

due the potential for changes of direction and multifaceted interactions with other

road users and traffic infrastructure. By defining road network links as straight,

non-intersected sections of carriageway the current road link of a pedestrian can be

defined as psychologically proximate. Locations on the current road link are visi-

ble, due to its straightness; locations are temporally proximate because the link can

be traversed in a relatively short amount of time; and the movements of other road

users relatively predictable, given the link does not contain any intersections. This

distinction between proximate and distant locations is based on multiple compo-

nents of psychological distance - spatial, temporal, and certainty - and provides a

stronger distinction between decision hierarchies that one based only on seen and

unseen environments.

The representation of the environment also informs the decision making of

pedestrian agents. Decisions pertaining to psychologically distant locations are
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construed at a high-level and, accordingly, the representation of the environment is

abstract to afford “traversing psychological distance”. At a minimum. the abstract

representation must contain components of the built environment that enable an

agent to distinguish between desirable and undesirable paths. Additionally, because

the behaviour of interest is interactions between pedestrians and vehicles through

pedestrian road crossing, the abstract representation also needs to distinguish be-

tween crossing and non-crossing trajectories. This is provided by a road network

in combination with a pavement network. The road network represents the geome-

try and connectivity of carriageways and therefore the available directions of travel

at each intersection. The pavement network additionally represents the geometry

and connectivity of pavements, and therefore distinguishes between sides of the

road and crossing and non-crossing movements. The networks are static and coarse

representations of the environment that permit agents to identify desirable paths in

terms of the direction of travel the road crossings required to reach a destination.

When navigating the psychologically proximate environment decisions are

construed at a low-level and therefore a more detailed representation of the envi-

ronment is used. The detailed representation treats the space as continuous, repre-

senting the carriageway and pavements as polygons. The locations and velocities

of road users can be perceived as well as the presence of infrastructure such as road

crossings.

Figure 3.1 illustrates the distinction between the psychologically proximate

and distant environments. The representation of the environment is more abstract

beyond the current road link. Within the current road link a more detailed represen-

tation of the environment is available to the pedestrian; this includes the presence

of other road users and road crossing infrastructure.

The precise implementation of the distinction between these hierarchies is cov-

ered in Chapter 4 where the process of producing the model environment is detailed.

The following section proposes how decisions made based on high- and low-level

construals should be integrated.
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3.4.3 Decision making process

Having established the structure of pedestrian decision making and the related rep-

resentation of the urban environment the pedestrian route choice model can be de-

signed. Two levels of route choice decisions are defined, upper-level route choice

and lower-level route choice. Upper-level route choice identifies a path to psycho-

logically distant locations, those beyond the current road link, based on high-level

construal. Lower-level route choice identifies a path to psychologically proximate

locations, those within the current road link, based on low-level construal. Full de-

tails of route choice models are given in Chapter 4 (upper-level route choice) and

Chapter 5 (lower-level route choice). In this section the requirements of these route

choice models are put forward.

It’s helpful here to reiterate model objectives and purpose: to provide a gran-

ular description of pedestrian movement across an urban neighbourhood. This de-

scriptive model should enable exploration of how pedestrian movement and road

crossing behaviour is produced through pedestrian decision making in street envi-

Figure 3.1: a) Diagram illustrating the CLT route choice framework. Red pillars indicate
an origin and destination. Within the psychologically proximate environment
road users and crossing infrastructure can be perceived. The psychologically
distant environment is perceived as more abstract. b) Summary of upper-level
and lower-level route choice. Grey arrows indicate interaction between levels.
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ronments. To provide a rich description of pedestrian movement the route choice

models should relate “as strongly to the target domain as possible” (Edmonds and

Moss, 2005). This is achieved by representing multiple aspects of heterogeneity

between pedestrians from which a diverse set of trajectories may be produced.

Two sources of pedestrian agent heterogeneity are accounted for in this frame-

work: spatial knowledge and reasoning, and route choice preferences. Whilst the

modelling framework defines two levels of decision making, each related to a differ-

ent spatial scale, each level in this hierarchy contains it’s own range of spatial scales

which may continue to affect pedestrian decision making. Pedestrians may also dif-

fer in the extent of rational optimisation they apply to route choices, as mentioned

in the discussion of human navigation in Chapter 2. Variation is also produced

through different pedestrian agent preferences. Following the framework’s focus

on road crossing decisions, route choice preferences are expressed in terms of road

crossing preferences. While pedestrian route preferences will differ in other aspects,

road crossing choices have been identified as suitable to CLT’s distinction between

high and low-level construal and this continues to be the focus of pedestrian route

choice decisions. To summarise, the route choice model employed at each level of

the framework should:

• represent differences in spatial knowledge and reasoning

• represent different perceptions of the costs of crossing roads

• integrate with decisions made at the other level

Having established these universal requirements, the specific ways in which

upper-level and lower-level route choice achieve this can be set out. These require-

ments will be met in different ways owning to different scale and associated con-

strual of route choices at each level.

Upper-level route choices are made based on the abstract representation of the

environment given by the road network and the pavement network. Upper-level

route choice chooses a path on the road network and the pavement network. Paths

on the road network correspond to choices of which turns to take at intersections.
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The pavement network additionally distinguishes between sides of the road by ac-

counting for the availability of pedestrian designated space (the pavement) typically

available either side of carriageways. Paths on the pavement network therefore iden-

tify which, if any, road links to cross. Differences in spatial knowledge and reason-

ing are represented at this level by varying knowledge of the spatial networks across

the pedestrian population. Different preferences are represented through different

criteria for selecting between multiple candidate paths on this bounded section of

the pavement network.

Integration of upper-level paths with lower-level route choice is achieved

through low-level choice reconstrual. When a pedestrian agent enters and moves

along a road link their upper-level route choices must be enacted. The section of

the upper-level path that lies within the current road link becomes psychologically

proximate and so these route choices are reconstrued as lower-level route choices -

a set of way points the pedestrian agent moves between to reach the end of the road

link. The upper-level choice of which intersection turns to make remains unchanged

by low-level construal because there is no aspect of the psychologically proximate

environment that would alter this choice. Similarly, upper-level paths along one

side of the road are unaffected by low-level construal because is it assumed move-

ment along the pavement is not greatly impacted by the presence of other road users

or pavement geometry. (Future work could extend this to consider how low-level

construal could affect non-crossing upper-level choices.) However, low-level con-

strual of road crossing decisions does differ to high-level construal because of the

increased detail the pedestrian agent now perceives for their current road link. Prac-

tically, this means the pavement nodes of the upper-level path are retained as way

points and lower-level route choice additionally identified a crossing location that

is added to the set of way points.

As with the upper-level, lower-level route choice also incorporates differences

in spatial knowledge and reasoning and road crossing perceptions. Pedestrian

agents choose a specific road crossing location based on their perception of crossing

infrastructure and vehicle traffic, which they perceive for their current road link (the
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psychologically proximate environment). These perceptions are varied to produce

choices that optimise for the pedestrian agent’s preferences to a greater or lesser de-

gree. As outlined in Chapter 2, coordination between road users at the street level is

aided by infrastructure and social norms which regulate the flows of different road

users. As such, lower-level road crossing decisions incorporate different pedestrian

agent preferences regarding the road crossing infrastructure that are based on the

road conditions at the time of crossing.

Lower-level route choice additionally integrates with pedestrian movement by

pedestrian agents moving between the chosen lower-level way points. Represen-

tation of pedestrian movement is required to produce the dynamics of the psycho-

logically proximate environment, dynamics which influence route choice decisions

and ensure pedestrian trajectories are shaped by both ‘top down’ and ‘bottom-up’

processes. The level of detail of pedestrian movement should suit the modelling

context. Pedestrian movement may need to account for interactions with other road

users, the environment, or the target way point but could also simply assume pedes-

trians move at a constant rate in a straight line between way points. For this study

a simple social-force model of pedestrian movement is used to move pedestrian

agents between way points, detailed further in Chapter 5.

Once the end of the road link is reached the next road link, previously cate-

gorised as psychologically distant, becomes psychologically proximate. This means

both high- and low-level representations of the environment are updated due to the

progression of the pedestrian towards their final destination. The upper-level path

is re-chosen in light of the updated high-level representation and a new lower-level

path is chosen for the newly perceived road link.

3.5 Simulating and verifying pedestrian agent move-

ment
The multi-scale pedestrian navigation framework establishes how a model of pedes-

trian route choice should be structured. To simulate pedestrian movement a multi-

scale route choice model will be developed and used to guide the movement of
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pedestrian agents in an agent-based simulation (ABS) of urban mobility. The re-

sulting behaviour of pedestrian agents will be studied by performing simulation

experiments.

The multi-scale route choice model will be parameterised to produce the varied

pedestrian behaviour discussed above. In addition to the route choice model param-

eters, the initial conditions of the simulation will be given as inputs. These initial

conditions determine the origins, destinations, frequency, and volume of pedestrian

trips. Route choice model parameters are varied to explore the behaviour produced

by the model. Many simulation initial conditions are held constant to ensure the

same set of pedestrian trips are modelled each run, however, pedestrian agent trip

frequency and the volume of vehicle agents are varied to produce different traffic

conditions. Pedestrian agents share the environment with vehicle agents that simi-

larly complete trips in the study area according a vehicle route choice and movement

model.

Broadly two kinds of simulation experiments will be conducted. Firstly, the

multi-scale pedestrian route choice model will be verified by comparing patterns of

pedestrian agent behaviour at the lower-level and upper-level to the patterns of de-

cision making described by CLT and patterns of pedestrian behaviour (specifically

road crossing behaviour) identified in the literature. These verification experiments

establish ranges of route choice model parameter values that produce the desired

pedestrian agent behaviour. These experiments also establish how, when imple-

mented in a simulation, route choice model parameters affect pedestrian behaviour.

Sensitivity analysis and meta-modelling are used to quantify the effect parameters

have on pedestrian agent movement. This is used to develop a theoretical under-

standing of how different components of pedestrian path finding could impact jour-

neys and whether these impacts differ between different environments. Together,

this produces an understanding of how the decision making of individual pedestrian

agents produces patterns of movement at lower and upper spatial scales. These

simulation experiments are detailed in Chapters 5 and 6.

Building on this, a second set of simulation experiments seek to demonstrate
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the utility of modelling multi-scale pedestrian movement for exploring the impact of

interventions to street design and infrastructure. Simulations are performed under

different policy scenarios representing different interventions to traffic management

or street infrastructure. By performing many simulations under each policy scenario

the role of route choice behaviour in mediating the impacts of policies, as well as the

impacts of different urban environments and traffic flows, can be analysed. These

simulation experiments are detailed in Chapter 7.

Across all experiments the simulation outputs will be metrics that quantify

pedestrian agents’ routes and road crossing behaviour. These reveal how pedestrian

agents’ routes are shaped by their route choice preferences, their environment, and

interactions with other road users (i.e. vehicle agents). Additionally, metrics of

vehicle trips are recorded and analysed to compare the effect of parameter setting

on pedestrian and vehicle agent mobility.

Whilst these verification experiments will not validate the model, the work will

still provide a valuable contribution towards modelling pedestrian behaviour by de-

veloping the theory of how route choice decisions at the spatial scales in question

are conceived and integrated. The descriptive modelling approach will explore the

implications of the mathematical representation of these decisions and their inte-

gration. This can be a useful precursor to developing a predictive model and is a

valuable activity for developing theory regarding how a pedestrian’s route choice

decisions are shaped by their own characteristics as well as by dynamic and static

aspects of their environment. Exploring the full range of behaviour produced by the

model will inform the relative importance of model components and suggest ways

in which real pedestrian trips are shaped by their characteristics and environment.

Additionally, exploratory modelling permits comparisons of model outputs between

different idealised environments that, whilst not truly representative of any real city,

and therefore unsuitable for validation, inform how pedestrian movement is shaped

by the environment.
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3.6 Conclusion
The modelling framework has two objectives. Firstly to establish the research gap to

be addressed and the modelling approach that will be taken to address this gap. The

representation of multi-scale pedestrian decision making and movement in models

of urban mobility was identified as a gap. This gap will be addressed by developing

a descriptive agent-based model of pedestrian movement. This modelling approach

requires a theoretical basis to structure pedestrian agent decision making.

This motivates the second objective of the framework: establishing how pedes-

trian agent decision making will be structured in the model. A CLT based frame-

work for modelling street level movement of pedestrian agents across an urban

neighbourhood is presented for this purpose. This builds upon existing research by

integrating decisions made regarding the immediate street environment and those

made regarding the wider urban area, addressing research question 1 in doing so.

A core component of the pedestrian decision making framework is the treat-

ment of road crossing decisions. These decisions are identified as an important

component of street level pedestrian movement and require distinguishing between

sections of pavement on either side of the carriageway (the two sides of the road).

Pedestrian agents first choose a path in based on a more abstract but larger represen-

tation of the environment (high-level construal). They then choose a more detailed

path but only for their current road link (low-level construal). Through this pro-

cess the environment is represented in increasing detail; from a network of road

intersections to a continuous space populated by road users and crossing infrastruc-

ture. CLT provides the theoretical basis for representing decision making and the

environment in this way.

The following chapter develops this framework by presenting the decision

models used to model pedestrian route choice. Simulation experiments are then

developed which used the pedestrian route choice models to simulate pedestrian

movement.



Chapter 4

Upper-level route choice

4.1 Introduction
Chapter 3 presented a hierarchical Construal Level Theory (CLT) framework for

modelling street level pedestrian movement across urban neighbourhoods. The

framework provides the theoretical basis for route choice decisions, distinguish-

ing between two levels of decision making - upper and lower - when modelling

street level pedestrian movement at the neighbourhood scale.

According to the framework, upper-level route choice should be made based on

high-level decision construal that is abstract and desirability based. In this chapter

we present method for modelling route choice in this way. The chapter begins

by detailing how GIS data is used to build an abstract representation of the urban

environment that is suitable for high-level decision making. The upper-level route

choice model uses this abstract representation of the environment to choose a path

to a destination within the study area, as detailed in Section 4.3.

4.2 Representing the neighbourhood level environ-

ment
In the hierarchical CLT framework, upper-level route choice is made based on an

abstract representation consisting of a road network and a pavement network. The

production of the road network and pavement network from GIS data follows from

the requirements of these networks in the modelling framework. The road network
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is required to represent turning choices at intersections. Additionally, road links

must represent straight, non-intersected sections of carriageway in order to distin-

guish between psychologically proximate and distant environments. The pavement

network represents the connectivity of designated pedestrian infrastructure. Assum-

ing this is located beside carriageways, the pedestrian network therefore represented

road crossing movement as well as movement alongside carriageways. The road

network represents the geometry and connectivity of a study area’s carriageways

and the pavement network expands on this by distinguishing between the two sides

of a carriageway, and therefore crossing and non-crossing movement.

4.2.1 Identifying suitable data sources

The minimum requirement for producing these network representations are car-

riageway geometries. From these a road network based on carriageway centre lines

could be produced and a pavement network produced based on the assumption that

the edge of each carriageway boarders a pavement. However, additional geographic

data sources can improve the representation of the environment whilst simplifying

the data processing required to build the networks. Furthermore, additional infor-

mation about a study area can help improve the realism of pedestrian and vehicle

movements by representing right-of-way and the availability of pavement infras-

tructure in greater detail.

Two sources of geographic data were investigated: OpenStreetMap (OSM) and

Ordnance Survey (OS). OSM is the “world’s largest Volunteered Geographic Infor-

mation (VGI) platform” (Anderson et al., 2019) and is a well-used and valuable

source of free and open geographic data. OS “provides Great Britain’s national

mapping services” (Ordnance Survey, 2022). While OS does offer some open data

products these are limited. Many data sets, particularly the most detailed, are pro-

prietary and have license fees attached (although these are waived for research and

education purposes). Using open data sources with global coverage as the input to

a model lowers barriers to sharing, replicating and extending the work. We audit

and compare the availability of data in OSM and OS to inform a whether using

exclusively open data is feasible given the modelling objectives.



4.2. Representing the neighbourhood level environment 100

Ordnance Survey Data Availability

The OS Mastermap Topographic (OS-MT) data set contains polygons map-

ping land use across Great Britain with a high level of granularity and accuracy.

Polygons representing carriageways and pavements are identifiable through poly-

gon metadata.

OS also provides several data sets related to navigation and routing. OS In-

tegrated Transport Network (OS-ITN) provides a high resolution representation of

the road network, with lines representing carriageways and detailed information re-

lated to right-of-way (e.g. one way streets and turning restrictions). OS Open Roads

(OS-OR) is an open source road network data set which is less detailed but suitable

for routing and navigation purposes. The simplified road network representation of

the OS-OR data set is better suited to upper-level route choice than the OS-ITN. The

OS-ITN provides a high level of detail, for example detailing different paths through

junctions, that are not directly relevant to pedestrian movement. The OS-OR data

set simplifies junctions, typically to a single node, providing a representation lim-

ited to coarse road link geometry and turning decisions. However, the OS-ITN data

is suitable for modelling the movement of vehicle agents.

There is no OS data set that provides a network representing pedestrian ded-

icated street space and infrastructure. The OS ITN Urban Paths (OS-ITN-UP)

data set consists of line geometries that indicate the locations and connectivity of

pedestrian-only routes such as pedestrianised streets and paths through parks. These

do not directly integrate with the road network and do not indicate the presence of

road side pedestrian space such as pavements. As such, the OS-ITN-UP data set is

not suited to distinguishing between pedestrian and vehicle dedicated street space,

and therefore not well suited to the modelling objectives of this study. Instead, in-

formation about the presence and location of pavements must be extracted from the

OS-MT data set. By connecting the OS-ITN-UP data to the road network the rep-

resentation of pedestrian accessibility would be improved, however, this is outside

the scope of this study.

To summarise, OS provides three data sets that can be used to build the required
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representation of the built environment; OS-OR is a simplified road network that is

suitable for representing pedestrian decision making at intersections; OS-MT pro-

vides detailed land use polygons from which a pavement network can be produced;

and OS-ITN provides a more detailed road network suitable for modelling vehicle

movement. These data are only available for Great Britain but provide consistent

coverage and detail across this area because of the role of OS as Great Britain’s

mapping agency.

OpenStreetMap Data Availability

Assessing the availability of OSM data is complicated by its nature as volun-

teered geographic information which results in varying detail and coverage across

the world. The OSM data standard permits the recording of a vast array of ge-

ographic features but large discrepancies between the coverage of these features

exist. The proposed model requires a high coverage of data describing the road

network and the geometry of carriageways and pavements.

Barrington-Leigh and Millard-Ball (2017)’s study of the completeness of OSM

suggests that over 80% of the world’s road have been mapped. For the UK they es-

timate the coverage of OSM’s roads to be between 99-100%. OSM can therefore

be confidently relied upon for the road network component of the high-level envi-

ronment representation.

It is less clear whether OSM can provide sufficient data to produce the pave-

ment network representation. OSM conventions do not include the mapping of

carriageway or pavement spaces as polygons. However, there are multiple OSM

conventions for mapping pedestrian designated space. Provided sufficient detail

and coverage, these could serve as suitable sources of data for the pavement net-

work, as opposed to building a pavement network using carriageway and pavement

polygons from OS-MT.

Pedestrian space and pedestrian accessible routes can be mapped in OSM in

several ways. OSM features are assigned tags - key-value pairs of metadata that in-

dicate what real-world object the feature represents. The ‘highway’ tag is assigned

to line features to indicate that they represent any intentional route that connects one
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place with another. Two dominant conventions are used to indicate the presence of

dedicated pedestrian space. Firstly, ‘highways’ can be assigned the [“sidewalk”=

“both|left|right|no”] keyword tags to indicate the presence of pedestrian designated

space beside carriageways. However, this convention does not provide any spatial

information regarding the dimensions or exact location of pavements. Secondly,

line segments which record the ‘pavement centre line’ (PCL) - the line passing

through the middle of pavement geometries - can be added to the map. These are

referred to as ‘footways’ in the OSM data model and are assigned the tags [“high-

way”=“footway”] or [“footway”=“sidewalk”].

By indicating the location and geometry of dedicated pedestrian space, ‘foot-

way’ geometries could be used to produce a pavement network representation of an

urban environment, provided sufficient coverage of these features in OSM. Stud-

ies of the coverage of pedestrian designated space in OSM are ad-hoc and of lim-

ited relevance to the specific requirements of this research. Timaite et al. (2022)

present proof-of-concept results of a project intended to evaluate the suitability of

OSM transport network data for sustainable transport modes. The results cover four

metropolitan regions in England and suggest that the coverage of ‘footway’ links in

OSM is insufficient for the requirements of this research.

We undertook an additional survey of the coverage of pedestrian dedicated

space to more thoroughly evaluate the suitability of OSM data for the pedestrian

model pursued in this research. OSM data was downloaded for a sample of 112

urban areas in England and Wales, as defined by the boundaries in the Office for

National Statistics (ONS) ‘Major Towns and Cities (December 2015) Boundaries

V2’ data set, available from the Office for National Statistics’ ‘Major Towns and

Cities boundaries 2015 v2’ data set (Open Geogarphy Portal, 2023).

For each city three groups of OSM geometries were downloaded: the walka-

ble road network, highway geometries with sidewalk tags, and footway geometries.

The OSM queries used to identify each of these groups are shown in Table 4.1. The

walkable road network provides the ‘ground truth’ of an urban area’s road network

against which the coverage of mapped pedestrian infrastructure can be measured.
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This query was was adapted from the OSMnx (Boeing, 2017) query used to down-

load a walking network by omitting any geometries representing pedestrian only

spaces. The total length of footway geometries and the total length of highway ge-

ometries with sidewalk tags (geometries tagged as having sidewalks on both sides

of the road are counted twice) was calculated. This gives two measures of the

amount of pedestrian designated space data for each urban area. To make compar-

isons between urban areas these lengths were divided by twice the total length of

the walkable road network. This implicitly assumes that pavements are located on

both sides of every walkable road. This is a coarse assumption but is suitable for

the purposes of broadly assessing the coverage of pavement location data in OSM.

High coverage ratio values indicate greater equivalence between the availability of

pavement location data and the walkable road network.

Figure 4.1 shows that the coverage of footways and highway geometries with

sidewalk tags is low across all major towns and cities in England and Wales. Com-

paring the coverage of footways geometries and road geometries with sidewalks

tags shows that in general pedestrian space is mapped using separate footway ge-

ometries although a few places have greater coverage of sidewalk tags than foot-

ways. Grouping places into population quartiles shows footways coverage does

not tend to increase or decrease with the population of an urban area. From this

analysis it is clear the coverage of footways is insufficient for use as a pavement

network. Similarly, the coverage of sidewalk tags is insufficient to use as a basis for

approximating a pavement network.

Based on this assessment using only open data as input to the hierarchical CLT

route choice model is currently infeasible. Instead a mixture of open and proprietary

data from OS will be used.

4.2.2 Data processing

The OS-OR and OS-MT data sets provide the detail and coverage required by the hi-

erarchical CLT route choice framework. Additional processing is required to ensure

correspondence between the geometries in these data sets and the representation of

the urban environment proposed by the modelling framework.
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Walkable Road Geometries Footway Geometries Road Geometries With
Sidewalk Tags

[”highway”][”area”!∼”yes”]
[”highway”!∼”abandoned|
bus guideway|construction|
cycleway|motor|planned|
platform| proposed|raceway|
pedestrian|footway”]
[“footway”!∼“sidewalk”]
[”foot”!∼”no”]
[”service”!∼”private”]

[”highway”=”footway”]
[“footway”=“sidewalk”]

[“sidewalk”=“both|left|
right”]

Table 4.1: Queries use to select OSM ways that correspond to the walkable road network,
footway geometries, and road geometries with sidewalk tags.

(a) (b)

Figure 4.1: Footway and sidewalk tags coverage for 112 towns and cities in England and
Wales. a) Comparing the coverage of sidewalk tags and footways geometries.
b) Coverage of footway geometries grouped by population. The distribution
across all towns and cities is shown by the shaded area in the background.
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(a) (b) (c)

Figure 4.2: Data used to build model environment. a) OpenStreetMap data. shown for
reference. b) Ordnance Survey Open Roads. c) Ordnance Survey Mastermap
Topographic data with pavement polygons in red, carriageways polygons in
blue, and all other polygons, mostly building footprints, in grey.

Road network

From the full OS-OR data set, link and node geometries that lie within the

study area are selected. The specific study area will depend on the application

intended for the agent-based simulation; in Chapters 6 and 7 we use a catchment

area from a metro station as the study area.

The OS-OR road network geometries are simplified, using the OSMnx python

package (Boeing, 2017) in addition to our own software, by consolidating junctions

represented by multiple nodes to a single node and retaining only intersection nodes.

Road links are then simplified to single straight line geometries, with new nodes

added where the road geometry bends by more than 10°. The resulting geometries

correspond to straight and non-intersected section of carriageways connected by

nodes representing either bends in the road or intersections at which pedestrians

have a choice of which direction to travel in.

OS-ITN road network data is used to model vehicle agent routing and move-

ment. OS-ITN data is similarly filtered to select only geometries within the study

area. For the purposes of this study vehicle movement is modelled simply as the

global shortest path. Because of this further processing of the OS-ITN network is

not performed because the network does not need to correspond to a driver’s psy-

chological representation of the environment.

Pavement network

The process of producing a pavement network from land use polygons is more

involved; OS-MT polygons are used in combination with the simplified OS-OR
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descriptivegroup
(1:Path); (2:Path,Structure); (2:Path,Tidal,Water); (2:Road-
side,Structure); (1:Roadside); Path; Path,Structure;
Structure,Path; Path,Tidal Water; Roadside,Structure;
Roadside; Path,Roadside; Roadside,Path; General Sur-
face,Roadside,Structure

Table 4.2: ‘descriptivegroup’ metadata values used to classify OS-MT polygons as repre-
senting the pavement or other pedestrian dedicated space

data to produce the pavement network. Carriageway polygons are identified by

intersecting OS-MT polygons with road link geometries from the processed OS-OR

and OS-ITN road networks. Polygons that do not intersect road link geometries but

are surrounded by polygons that do are also categorised as carriageway polygons.

Pavement polygons are identified as OS-MT polygons using the ‘descriptivegroup’

metadata field. Polygons with ‘descriptivegroup’ values shown in Table 4.2 are

selected as pavement polygons. Some pavement polygons are also classified as

carriageway polygons due to being intersected by a road link geometry and these

are removed from the set of carriageway polygons. Traffic islands are also excluded

from the set of pavement polygons and do not feature in the pavement network.

At this stage the pavement and carriageway polygons are mapped against the

full OS-MT data set to inspect by eye the quality of the classification. A gap in

the continuity of pavement polygons was observed and by cross referencing against

Google Street View imagery it was confirmed that a topographic polygon had been

incorrectly excluded from the set of pavement polygons. This polygon was man-

ually included by noting its ID number and making an exception in the data pro-

cessing script. This exception was applied to only one polygon and was caused by

incorrect ‘descriptivegroup’ metadata.

Once the pavement and carriageway geometries have been identified the pave-

ment network is produced. The starting point is the OS-OR network. Working on

the assumption that pedestrians are able to walk along either side of every OS-OR

network link, pavement network nodes are placed at either end and either side of

each road link. This assumption could be later revised based on the availability of

pavement polygons. However, in this study we assume that pedestrian are still able
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to walk alongside a road link in the absence of a dedicated section of pavement.

The carriageway and pavement polygons are used to locate the pavement nodes by

casting 20m rays with an angular resolution of 10° in a 90° arc between pairs of

OS-OR links connected to a road node, illustrated in Figure 4.3a. The nearest in-

tersection between a ray and a pavement polygon is chosen as the pavement node

location. Where pavement polygons are not present, the intersection between the

ray and edge of the carriageway is used, based on the assumption that, in the ab-

sence of a pavement polygon, the edge of a carriageway corresponds to the edge of

a building. 660 out of a total of 666 pavement nodes are located by following these

rules. In the 6 remaining cases the edge of the carriageway is greater than 20m from

the road node and additional rules are needed to locate the pavement nodes. First,

the 90° arc constraint is removed and rays are cast across the whole space bordered

by the two road links - this identifies a further 2 pavement nodes. Second, pavement

island polygons are included as potential sites for pavement nodes - this also iden-

tifies a further 2 pavement nodes. The final 2 nodes are located by simply placing

the pavement node 5m from the road node directly in between the two connecting

links.

Pavement nodes provide a more detailed representation of the urban environ-

ment than the OS-OR network by distinguishing between sides of the road. Move-

ment between pavement nodes can therefore represent road crossing movement that

is perpendicular to the direction of movement implied by OS-OR road links. How

pavement network nodes are connected reflects the set of possible movements a

pedestrian can consider making when choosing an upper-level path. Given that

high-level construal makes more desirability based decisions, the connections be-

tween pavement network nodes should represent all possible movements. This can

be achieved by fully connecting the four pavement network nodes that correspond

to a road link, meaning that pavement network links represent line of sight move-

ment between nodes. This creates 6 pavement network links per OS-OR road link.

These are classified as non-crossing links where the link connects two nodes on the

same side of the road, direct crossing links where the link connects pavement nodes
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(a) (b) (c)

Figure 4.3: a) The process for locating a pedestrian node, illustrated by the orange circle.
b) The pavement nodes for a single road link. c) Pavement nodes belonging to
the same road link are connected to each other.

at the same end of a road link, and diagonal crossing links when a link connects

pavement node on different sides and different ends of a road link. These links are

illustrated in Figure 4.3c.

Alternative pavement network construction methods are more detailed. Rhoads

et al. (2020) build a comparable pavement network but use road crossing links to

represent the locations of road crossing infrastructure. Additionally, network links

follow the geometry of pavements more faithfully. This level of detail is reserved

for lower-level route choice in this study.

Linking Data Layers

Creating look-ups between data layers improves the legibility of the GIS en-

vironment and aides the development of the simulation. There are four data layers

in total: the OS-OR network, the OS-ITN network, the pavement network, and the

pavement and carriageway geometries. The pavement and carriageway geometries

are not directly used in upper-level route choice since the pavement network ab-

stracts the key features of these geometries, however, they are used for the more

detailed lower-level representation of the environment and so are also linked to the

other data layers.

The OS-OR network is used as the based layer that other GIS layers are linked

to. The pavement network is created based on the OS-OR network which makes

the linking of these two layers straightforward. Pavement network links are nested

within OS-OR links creating a 6:1 lookup from pavement to OS-OR links. Similarly
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pavement network nodes are nested within OS-OR nodes, creating a d:1 lookup

from pavement to OS-OR nodes, where d is the degree of the OS-OR node.

Creating a lookup from OS-MT pavement and carriageway geometries is more

complicated because these geometries do not align with the OS-OR link geome-

tries. To align these two layers, OS-OR road link voronoi regions are produced and

intersected to the OS-MT pavement and carriageway geometries. Pavement and

carriageway geometries are then dissolved to give two pavement polygons and one

carriageway polygon for each OS-OR road link. Since each carriageway polygon

maps the carriageway of a single OS-OR link these are used to link OS-ITN road

links with OS-OR road links. A many:many lookup between OS-ITN and OS-OR

links is produced by assigning OS-ITN links the OS-OR link IDs of the carriageway

polygons they intersect.

4.3 Upper-level route choice model
The OS-OR road network and the pavement network comprise the abstract upper-

level representation of the environment. Using these networks upper-level route

choice ‘traverses psychological distance’ and chooses a path to locations that are

psychologically distant. This section details upper-level route choice and it’s im-

plementation. To reiterate, the requirements set out in the modelling framework

are:

• represent differences in spatial knowledge and reasoning

• represent different perceptions of the costs of crossing roads

• integrate with decisions made at the other level (the lower-level)

Differences in spatial knowledge are produced by varying how much of the

pavement network pedestrian agents perceive when choosing an upper-level path.

Enforcing partial knowledge of the road network has been used to improve the real-

ism of models of human navigation. In Filomena et al. (2020) pedestrian agents are

only able to plan optimal routes within regions of a city’s road network. This builds

on models of driver navigation which similarly limit perfect knowledge of the road
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network to spatially bounded regions of the city (Manley et al., 2015b), and addi-

tionally varying knowledge of the nodes within the region across the driver agent

population. The regions in these studies represent meaningful urban sub-divisions

such as neighbourhoods. It is uncertain whether knowledge of the more detailed

pavement network should similarly be delineated by these, or other fixed regions.

Instead, partial knowledge of the pavement network is produced by assigning pedes-

trian agents a planning horizon, PH.

The planning horizon is a threshold distance, within which pedestrian agents

can perceive the pavement network. Two prominent distance metrics on road net-

works are link length and turning angle (Simons, 2021); minimising link length

produces ‘shortest paths’ while minimising cumulative turning angle produces ‘sim-

plest paths’. Turning angle is widely used as a distance metric when modelling

pedestrian movement (Turner, 2007a; Dalton, 2003) and so this is adopted as the

metric to define agents’ planning horizons with. Angular distance also approxi-

mates the visibility of the road network. The planning horizon therefore implies

reduced knowledge of visually occluded sections of the road network. Specifically,

a pedestrian agent’s planning horizon, PH, is a threshold angular distance within

which they can perceive the pavement network. Once a road link is traversed, the

upper-level path is re-planned to account for the planning horizon potentially ex-

tending to a new section of the pavement network.

The planning horizon is restricted to included only road links in the shortest

length road network path from pedestrian origin to destination, calculated using Di-

jkstra’s algorithm (Dijkstra et al., 1959) with link weight given by road link length.

Links along this path that lie within the planning horizon are identified and only the

section of the pavement network along these links is perceived by the pedestrian

agent. Restricting the planning horizon to lie along the shortest road network path

means that turning decisions are made based on the OS-OR road network alone.

The upper-level pavement network path inherits these turning decisions and pro-

vides additional detail by distinguishing between sides of the road. An alternative

approach would be to permit the planning horizon to extend in all directions. The
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upper-level path would then represent both turning and road crossing decisions,

with turning decisions being potentially influenced by the presence of road cross-

ings. This extension is left as a future direction of work.

Where the destination node lies within the planning horizon upper-level route

choice simply chooses a path to this. Otherwise the target pavement node is chosen

from the two pavement nodes at the far end of the final road link in the planning

horizon. Four pavement nodes are associated to this link, two at each end. Pavement

network paths to both far end pavement nodes are computed and the most desirable

path chosen.

Having established how variable spatial knowledge is represented through the

use of a planning horizon parameter PH, the method for choosing between alterna-

tive upper-level paths can detailed. As mentioned, a common approach to modelling

route choice in urban road networks is to use the shortest or simplest path. As well

as these base characteristics route choices have been also found to correlate with

components of the built environment (Salazar Miranda et al., 2021). Road crossing

choices are also influenced by a range of factors related to infrastructure and traffic

(Anciaes and Jones, 2020, 2017).

For the purposes of this study these detailed representations of pedestrian pref-

erences are not accounted for. Rather than seek to represent a wide range of subtle

pedestrian preferences, upper-level route choice is intended to represent, at a high-

level, different perceptions of links costs related to road crossing behaviour. Ac-

cordingly, upper-level paths are chosen by either a distance minimising or crossing

minimising heuristic, controlled by a Boolean parameter termed MC. These heuris-

tics are chosen to represent an abstract, desirability based choice that represents

carriageways as either a barrier or facilitator of pedestrian movement. Path distance

is given by the sum of pavement network link lengths. The number of crossings is

calculated by summing the number of pavement network links in the path that cross

a road. When distance minimising (MC = f alse), paths are first ranked on distance

then number of crossings and visa versa when minimising the number of crossings

(MC = true). If a single shortest path is not identified by ranking a path is randomly
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chosen from the tied candidates.

Varying parameters MC and PH changes the upper-level paths chosen by

pedestrian agents. High PH values means upper-level route choice will approxi-

mate optimal least cost paths and switching between MC = true and MC = f alse

changes the cost metric to optimise.

Figures 4.4a, 4.4b and 4.4c illustrate how differences between agents’ plan-

ning horizons can result in different route choices. In both cases the agent chooses

paths that minimise the number of crossings (MC = true) but having a lower plan-

ning horizon means that the agent in Figures 4.4a and 4.4b doesn’t account for the

left-hand turn when choosing an upper-level path until they reach the turning inter-

section. Because of this their path includes an additional road crossing.

Figures 4.4d and 4.4e illustrate the differences between the upper-level paths

produced by MC = true and MC = f alse path finding heuristics. The path in Figure

4.4d minimise route length by following successive diagonal crossing links. Choos-

ing to minimise the number of crossings instead produces a path that doesn’t cross

the road at all.

Upper-level route choice integrates with lower-level route choice through low-

level choice reconstrual when a pedestrian enters and moves along a road link. This

processes is detailed in Chapter 5 where the lower-level route choice model is pre-

sented. Under the CLT framework, road crossing decisions are reconstrued at the

lower-level due to the influence of dynamic interactions with road users. This means

an upper-level choice to traverse road crossing pavement network links must be re-

construed at the lower-level.

4.4 Conclusion

The data processing and route choice methodologies presented in this chapter

are designed to represent high-level construal of pedestrian movement decisions,

specifically road crossing decisions. Under high-level construal the environment is

represented in an abstract way by a road network and a pavement network. Road

network nodes represent turning decision points whilst pavement network nodes
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(a) (b) (c)

(d) (e)

Figure 4.4: a), b) % c) Two upper-level paths from origin O to destination D produced
using PH = 20° ( a) & b) ) and PH = 100° (c)). Road links within the planning
horizon are shown with solid lines and those outside with dashed lines. d) & e)
Upper-level paths where distance is minimised (MC = f alse) and the number
of crossings is minimised (MC = true).

additionally distinguish between sides of the road. The chosen pavement network

paths correspond to desired line-of-sight movement along pavements and across

roads. Through the use of a planning horizon to control spatial knowledge and

heuristics to rank alternative paths, a wide variety of paths can be produced, ranging

from globally optimal to myopic. Upper-level route choice therefore produces het-

erogeneous pedestrian route choices based on high-level construal. These choices

are insufficiently detailed from the perspective of street level pedestrian movement -

line-of-sight movement fails to account for interactions between road users and the

presence of street infrastructure. These upper-level paths must be reconstrued at the

lower-level where a specific road crossing location is chosen based on a continuous

environment occupied by other agents and road crossing infrastructure. This is the

subject of Chapter 5 where the lower-level route choice model is presented along

with its integration with upper-level route choice and pedestrian movement.



Chapter 5

Lower-level route choice

5.1 Introduction

The modelling framework presented in Chapter 3 distinguished between two levels

of decision making - upper and lower - and in this chapter the lower-level route

choice model is presented. The upper-level path represents an abstract plan of how

the pedestrian intends to travel towards its destination, but, this plan is enacted in

relation to the pedestrian’s immediate street environment. Under the framework,

this prompts low-level reconstrual of route choices initially made at the upper-level.

Specifically, the framework identified road crossing decisions as being subject to re-

construal between upper and lower levels. This is because road crossing decisions

are sensitive to environmental details, such as other road users and street infrastruc-

ture, which are only perceived within the psychologically proximate environment.

Non-road crossing movement is less sensitive to other road users. These decisions

are treated as invariant under high and low-construal and warrant less detailed con-

sideration but should still be accounted for at the lower-level.

This chapter begins with Section 5.2 identifying primary factors affecting

crossing choice reported in the literature and the ways these behaviours have been

modelled using established and novel methodologies.

Section 5.3 outlines how the environment is represented under lower-level

route choice. As set out in Chapter 3, lower-level route choice pertains to the psy-

chologically proximate environment which is defined as the pedestrian’s current
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road link. This section explains which components of real street environments are

represented and how this is achieved with GIS data.

The lower-level route choice model is then set out in Section 5.4. This cov-

ers the definition of choice alternatives and the methods used to choose between

them. Following the definition of the choice model it is tested in two small-scale

simulation experiments in Section 5.7. The small-scale simulation experiments are

used to establish suitable bounds for lower-level route choice parameters. In do this,

these experiments verify the pedestrian behaviour produced at the lower-level be-

fore scaling up to larger neighbourhood-scale simulations in the following chapters.

This corresponds with the POM methodology, discussed in Chapter 3, whereby pat-

terns produced by the models should be compared to the real system across multiple

scales. The results of the simulation experiments are discussed in Section 5.8 before

concluding in 5.9.

5.2 Road crossing behaviour

Studies into pedestrian crossing location choice identify factors related to traffic,

road design, infrastructure, and pedestrian attitudes that influence crossing loca-

tion choice. By considering ‘informal’ crossing locations, where the pedestrian

crosses at a location without crossing infrastructure, in addition to crossing loca-

tions with infrastructure, studies importantly account for pedestrians’ more hetero-

geneous compliance with normative or legal ‘rules of the road’ compared to other

transport modes.

The traffic level along a link is a significant predictor of crossing location

choice, with higher traffic levels reducing the likelihood of a pedestrian choosing

an informal crossing option (Papadimitriou, 2012, 2016; Cantillo et al., 2015; Anci-

aes and Jones, 2016b). The effect of traffic levels on crossing choice has also been

observed to vary between different road types. In Papadimitriou (2016) crossing

choice is compared between principle arterial (highest vehicle flow), minor arte-

rial (medium vehicle flow), and collector (lowest vehicle flow) road types in high

and low traffic conditions. On minor arterials and collectors, mid-block (informal)



5.2. Road crossing behaviour 116

crossing probability was observed to decrease and junction crossing probability in-

crease with an increase in traffic. On principle arterials there was no such change in

crossing probability. Anciaes and Jones (2016b) find that the ratio of people cross-

ing a road to the number walking on either side is lower on roads with high traffic

volumes. This suggests that pedestrian crossing behaviour is conditional both on

the current traffic level but also qualities that distinguish different road types such

as long-term average levels of flow or road design.

The types of crossing alternatives available to a pedestrian have also been re-

ported as influencing pedestrian crossing choice. Papadimitriou (2012) found the

presence of a traffic signal at a junction increased the likelihood of choosing to

cross at the junction. In Sisiopiku and Akin (2003) 87% of survey respondents said

the presence of a marked mid-block crossing (dedicated crossing infrastructure) af-

fected their decision to cross at a specific location and 74% said the presence of a

traffic signal affected this decision.

Cantillo et al. (2015) find that the location of a crossing alternative influences

a pedestrian’s choice. They surveyed pedestrians on location in urban areas and

recorded their stated preference of crossing location between an informal mid-block

crossing, a signalised crossing, and a pedestrian footbridge. Variables for the addi-

tional distance to the signalised crossing and to the foot bridge were significant in

their discrete choice model and indicated that a greater distance was associated with

a reduced likelihood of choosing that crossing option. Similarly, Chu et al. (2004)

find that the likelihood of choosing to cross at an intersection either end of a road

was sensitive to the distance to the intersection. The probability of choosing either

a marked or informal mid-block crossing option was far less sensitive, suggesting

that on longer roads pedestrians will typically choose to cross at mid-block loca-

tions, perhaps due to their likely proximity to either the pedestrian or destination.

Sisiopiku and Akin (2003) report that 90% of survey respondents stated that the dis-

tance of a crossing to their destination influenced their decision to use the crossing,

with crossings further from their destination less desirable. Whilst the majority of

pedestrians are influenced by the availability and location of multiple crossing al-
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ternatives the presence of a group of pedestrians for whom these are not influential

factors suggests some interesting heterogeneity between pedestrians.

Research has also found connections between pedestrian attitudes and cross-

ing behaviour. Cantillo et al. (2015) collected data on pedestrian attitudes towards

crossing roads. Two latent variables representing crossing option attractiveness

(measuring the convenience and comfort of a crossing) and security/safety were

included in their discrete choice model to account for the effect of pedestrian atti-

tudes. These latent variables were significant predictors of the utility of informal

mid-block crossing options, suggesting that a pedestrian’s attitude towards secu-

rity/safety and attractiveness influence their decision to cross the road at an informal

location.

Similarly, Papadimitriou et al. (2016) surveyed 75 pedestrians before observing

their road crossing behaviour as they walked through Athens. The survey was used

to identify principal components of pedestrian attitudes towards walking and road

crossing. Principal component analysis (PCA) identified three groups distinguished

by attitudes to risk and journey purpose. Including the principal components as la-

tent variables in a discrete choice model of crossing location choice improved the

fit of the model, suggesting that pedestrian attributes played a small but significant

role in crossing behaviour. Furthermore, only the “risk taking and optimisation”

principal component was significant in the model suggesting that in terms of ob-

served crossing behaviour, the pedestrian sample consisted of two groups only -

optimising risk takers and risk averse. Interestingly, the PCA also grouped together

survey respondents with low risk tolerance and low optimisation behaviour with

those that reported more frequent pedestrian activity, suggesting that those pedes-

trians that walked more were less willing to take risks. However, the opposite trend

was found in Sisiopiku and Akin (2003)’s study of pedestrian crossing choice where

occasional walkers were less willing to take risks in their crossing decisions.

These studies demonstrate that pedestrians’ choice of crossing location is in-

fluenced by a combination of physical infrastructure (such as crossing availability

and type, road type), traffic levels, and pedestrian attributes (predominantly risk tol-
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erance and route optimisation characteristics). These crossing choices determine

how pedestrians move along a road link. The resulting trajectories cut across the

carriageway, breaking the segregation between transport modes which introduces

the potential for conflicts. Modelling these choices can therefore help develop a

better understanding of how street space is shared by multiple transport modes.

Random utility theory discrete choice models are perhaps the most common

method used to model the choice of road crossing location and have been used

effectively to identify pertinent choice factors. Typical methods are logit models

(including nested and sequential logit) (Chu et al., 2004; Papadimitriou et al., 2016;

Papadimitriou, 2012) and latent variable models (Cantillo et al., 2015). Crossing

choice sets are identified and utility functions for each option defined using metrics

of physical infrastructure, vehicle traffic, and pedestrian attitudes (accounted for

using latent variable analysis). These methodologies are limited in certain respects.

The representation of interactions between pedestrians and vehicles is limited to

coarse space-time aggregations that do not capture short-term variations in traffic

such as gaps in vehicle platoons or driver yielding behaviour. Crossing choices are

similarly quantised into discrete locations which limits their ability to model the

diversity of pedestrian trajectories at the street level.

Gap acceptance and driver yielding models have historically also adopted sim-

ilar discrete choice methods to infer the contributing factors to pedestrian and driver

decisions (Sun et al., 2003; Sucha et al., 2017; Schroeder and Rouphail, 2011). In

these studies crossing location is treated as fixed but pedestrian and driver move-

ment are analysed at more granular scales that account for time gaps between ve-

hicles and interactions between individual drivers and pedestrians. Fixing crossing

location prevents the models from representing spatial heterogeneity in pedestrian

trajectories. It also precludes any effects of granular variations in vehicle flows on

pedestrian trajectories, such as informal crossings occurring during a break in traffic

that wouldn’t have otherwise. These methods also assume choice sets are constant

across the pedestrian population, further limiting representation of pedestrian het-

erogeneity.
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By implementing rule based road crossing decision making models within

micro-simulations authors have overcome some of the limitations highlighted above

(Suh et al., 2013; Chao et al., 2015; Feliciani et al., 2017). In these studies, pedes-

trian road crossing decisions are modelled dynamically in response to the move-

ments of vehicles. By assigning different decision making preferences or processes

to pedestrians the simulations are also able to produce heterogeneous choices and

therefore trajectories (ibid), despite crossing locations being fixed.

A broader critique of the models discussed above is that the pedestrian and

driver choice models make implicit assumptions about the decision making capa-

bilities of people that are unjustified. Random utility theory models assume the

ability to accurately measure a wide range of quantities and perform weighted sum

calculations to determine the ‘utility’ of a crossing option. Rule based approaches

avoid this assumption but, if insufficiently complex, can be unable to represent a

wide range of pedestrian behaviours.

Recent advances in modelling road user decision making suggest a more psy-

chologically realistic modelling approach is possible. Sequential sampling models

provide one such alternative approach to discrete choice modelling. Decision Field

Theory (DFT, also referred to as drift-diffusion models) has been used to model

perceptual decision making. DFT models explicitly represent a person’s gradual

retrieval of information from their memory or environment when performing two-

choice decision making tasks (Ratcliff, 1978; Ratcliff and Rouder, 2000). DFT

models have also been used to explain human decision making behaviours that vio-

late assumptions made in random utility theory (Busemeyer and Townsend, 1993).

DFT has been generalised to consider choices involving more than two alternatives

(Roe et al., 2001) and decisions involving comparisons between multiple attributes

of alternatives (Diederich, 1997; Busemeyer and Diederich, 2002).

In DFT models, information is obtained from all alternatives within the choice

set simultaneously, allowing direct comparison between alternatives at each time

step. Golman et al. (2019) presents a sequential sampling model of decision mak-

ing in two-player strategy games which takes a different approach. Rather than
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sampling information from all choice alternatives and comparing at each time step,

the agent samples information from a single alternative each time step. The sam-

pling probability is based on the alternative’s salience, with more salient alternatives

being sampled more frequently. Once sampled, the perceived utility of the strategy

is calculated and used to accumulate ‘activation’ for that strategy. The level of acti-

vation indicates the agent’s preference for a strategy. Recently, sequential sampling

models have been adapted to model road user interactions (Markkula et al., 2018)

and pedestrian road crossing (Wang et al., 2021). In this chapter we describe a

sequential sampling model of crossing location choice and implement it within an

agent-based model (ABM) of pedestrian and vehicle movement.

ABMs of have a rich history in pedestrian modelling and have been used to

model pedestrian movement in a variety of contexts, including museums (Turner

and Penn, 2002), retail markets (Ward, 2006), evacuations (Johansson et al., 2007),

carnivals (Batty et al., 2003), and shared street space (Anvari et al., 2015). De-

spite this, few studies attempt to model informal and formal movement across the

carriageway, an important source of pedestrian-vehicle conflicts. The authors are

aware of only two such studies (Wang, 2012; Wang et al., 2021).

Wang (2012) produce road crossing behaviour through the iterative application

of a gap acceptance model in which the probability of ‘accepting’ a gap in traffic

is modelled using a binary logistic regression model. This produces informal road

crossing where the pedestrian agent accepts a gap before reaching crossing infras-

tructure. If the pedestrian agent reaches crossing infrastructure before accepting a

gap they cross at the crossing infrastructure. Wang et al. (2021) use a DFT model

to model a similar scenario: pedestrians choosing a crossing locations as they walk

towards their destination on the other site of the road. In the model, preference for

each crossing alternative (informal vs marked crossing) is chosen based on three

attributes: efficiency, safety, and fairness in combination with time-varying weights

pedestrian agents assign to each of these attributes.

This chapter’s contribution is a novel model of pedestrian road crossing that

seeks to reproduce some of the road crossing behaviour discussed above whilst
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addressing some of the limitations of existing studies. Specifically, the difference

between our model and the two most similar studies discussed above is as follows.

Primarily, our model integrates a choice of whether or not to cross on a particular

road link with the choice of where along the road link to cross. This is achieved

through bi-directional interaction between upper and lower-level route choice which

is not represented in either of the above studies. An additional difference in our

crossing location choice model is the dynamic and heterogeneous perceptions of

crossing alternatives. This aspect of bounded rationality is not possible with the

logistic choice model presented in Wang (2012), however, the decision field theory

model in Wang et al. (2021) does permit similar dynamic variation in preferences.

5.3 Representing the street level environment
Lower-level route choice is made based on a continuous representation of the envi-

ronment. The main components of the lower-level environment are the pavement

network nodes located on the current road link and road crossing infrastructure.

Pavement network nodes form the way points of pedestrian agents’ lower-level

routes. Crossing infrastructure is represented as a straight line geometry connecting

coordinates on either side of the carriageway polygon, extracted from the OS-MT

data set. The straight line runs perpendicular to the road network link geometry.

The two coordinates represent the entrance and exit to the crossing and these are

also used as way points in lower-level routes.

Polygons representing the carriageway, pavement, and buildings are also per-

ceived by pedestrians at the lower-level. These influence pedestrian movement in-

directly through obstacle avoidance with pedestrian agents avoiding collisions with

walls. In practice, obstacle avoidance is simplified to reduce the computational cost

of simulations given the focus of the research on route choice.

5.4 Lower-level route choice model
Using the representation of the road link environment set out above, lower-level

route choice chooses way points to move between on the current road link. These

choices must satisfy the requirements set out in the modelling framework:
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• represent differences in spatial knowledge and reasoning

• represent different perceptions of the costs of crossing roads

• integrate with decisions made at the other level (the upper-level)

In the following subsections each of these requirements is addressed. Differ-

ences in spatial knowledge and perceptions of crossing cost are incorporated into

lower-level road crossing decisions, detailed in Section 5.4.1. Then the integration

of lower-level route choice with upper-level route choice is presented in Section 5.5

followed by integration with pedestrian movement in Section 5.6.

5.4.1 Road crossing decisions

Lower-level route choice reconstrues upper-level crossing decisions in greater de-

tail, choosing between specific crossing locations termed crossing alternatives. The

entrance and exit coordinates of the crossing alternative become the way points the

pedestrian agent moves between to navigate the road link.

To model the choice of crossing location a sequential sampling discrete choice

model is developed. This choice is modelled by repeatedly sampling choice al-

ternatives from the set of options and accumulating the perceived utilities to give

a preference score for each alternative, with an alternative chosen once its prefer-

ence value reaches a certain threshold. The model is adapted from that presented

in Golman et al. (2019) and has several features which makes it well suited to this

application.

The decision making process is gradual which allows the dynamics of the

model environment to affect decision making. In this case, crossing alternative

utilities are defined as dependent on the movements of other road users, allowing

road crossing decisions to be influenced by dynamic vehicle traffic. The review of

pedestrian road crossing behaviour at the start of this chapter identified risk tak-

ing and optimisation as core characteristics of pedestrian road crossing behaviour.

At the lower-level these preferences are represented in a detailed way through the

calculation of crossing alternative utility. This reconstrues the upper-level represen-

tation of these characteristics where paths are chosen based on either distance or
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crossing minimisation, with crossing minimisation corresponding to risk avoidance

and distance minimisation to route optimisation.

In Golman et al. (2019)’s model the sampling probability of choice alternatives

is interpreted as their salience, since higher probabilities lead to those alternatives

being ‘considered’ (having their utility accumulated) more often. In this sequential

sampling model, salience is used to represent differences in spatial knowledge at

the lower-level, with more proximate crossing alternatives being more salient. This

mirrors the use of a planning horizon at the upper-level. As pedestrian agents move,

their position relative to crossing alternatives changes. This results in changing

perception of the environment which affects decision making through the changing

sampling probabilities of crossing alternatives.

This modelling approach has advantages over other discrete choice models.

Unlike the iterative binary logit model approach used by Wang (2012) past per-

ceptions of utility continue to influence the choice, through the accrued activation.

Decisions can be interpreted as being made based time averaged perceived utility.

With the iterative binary logit model only a single road crossing decision is re-

quired to determine the pedestrian’s future trajectory. In DFT, preference for choice

alternatives is also accumulated gradually. The main difference with Wang et al.

(2021)’s DFT model to the one presented here is that in Wang et al. (2021) all al-

ternatives are compared each step of the model. Their model does not represent

choice alternative salience and therefore the role of distance in limiting knowledge

of choice alternatives. However, a DFT model such as the one presented in Wang

et al. (2021) does confer many of the same advantages of this sequential sampling

model and could be usefully applied in this context.

Below, the lower-level crossing choice model is defined mathematically and

the behaviour of model components demonstrated for an abstract road environment

illustrated in Figure 5.1. In this scenario, a pedestrian agent is added to the model

with origin O and destination D. The agent perceives two crossing alternatives - an

informal crossing at its current location and a marked crossing at point P - and uses

the sequential sampling model to choose between these as it moves along the road.
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Figure 5.1: A diagram of an abstract road environment in which a pedestrian moves from
origin O to destination D. The current position of the pedestrian is given by
xp(t). If the pedestrian crosses the road at their current location they would
move to point x′p(t). A marked crossing is located at P.

Activation Accumulation

At time t = 0 the activation of all crossing alternatives is set to zero as pedes-

trians are assumed not to have an initial crossing preference. At each time step each

crossing alternative’s activation value is updated according to

A j(t) =

γA j(t −1)+U j(t), if j is the sampled crossing alternative

γA j(t −1), otherwise
(5.1)

where A j is the activation for crossing alternative j, 0 < γ ≤ 1 is a decay factor, and

U j(t) is the utility of the sampled crossing alternative perceived by the pedestrian

agent. Decaying activation values assumes the greater importance of more recent

information gathered about a crossing alternative.

Throughout this thesis, crossing alternative activation is updated once per

model time step. Higher and lower frequencies could be used to represent addi-

tional differences between pedestrian’s decision making, with higher frequencies

implying greater deliberation between choice alternatives. For the objectives of this

project this is an unnecessary detail as a sufficient range of road crossing behaviour

can be produced with the current model definition.

Crossing Alternative Sampling

The sampling probability of crossing alternative j, p j(t), is given by

p j(t) =
eλd j(t)

Σ jeλd j(t)
(5.2)
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Figure 5.2: This figure shows how the distance metric, d j(t) and sampling probability, p,
change for a pedestrian with location xp(t) with a single marked crossing at one
end of the road and λ = 0.5. The distance to the informal crossing is 0 through-
out, giving a value of d j(t) = 1. The distance to the marked crossing initially
decreases and then increases. Initially, the informal crossing’s sampling prob-
ability is much greater, reflecting its greater proximity to the pedestrian. As
the pedestrian approaches the marked crossing the sampling probabilities con-
verge, before diverging again.

where d j(t) is the proximity distance metric and λ is a pedestrian agent attribute that

controls the sensitivity of salience to the distance metric d j(t). λ controls pedestrian

agents’ lower-level spatial knowledge. d j(t) is given by

d j(t) =
L−|xp(t)− x j|

L
(5.3)

where L is the length of the road the pedestrian is walking on, xp(t) is the position

of the pedestrian agent, x j is the position of crossing alternative j. L is used to

ensure that closer crossing alternatives have a higher value of d j(t) and that values

are scaled relative to the length of the road. The d j(t) values and sampling prob-

ability for the two crossing alternatives as a pedestrian moves from one end to the

other of the abstract road are shown in Figure 5.2. Low values of λ produce a more

uniform probability distribution that represents a pedestrian agent with good spatial

perception of all crossing alternatives. High values of lambda strongly bias nearby

crossings and represent a pedestrian agent with limited perception of crossings fur-

ther away. With more even sampling of all crossing alternatives the pedestrian agent

is better able to identify the crossing alternative that best suits its preferences.
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Crossing Alternative Utility

Crossing alternative utility is defined as a weighted sum of a journey detour

metric and a traffic exposure metric, representing a trade-off between preference

for reducing walking distance and avoiding risk associated with road crossing. The

weighting between these utility components is controlled by a parameter, α , permit-

ting differences in the perceived utility of crossing alternatives between pedestrian

agents.

The activation accumulation process requires the magnitude of crossing al-

ternative utility to be greater when the crossing alternative is more attractive (as

opposed to utilities expressed in terms of costs). Additionally, crossing alternative

attributes should be expressed on the same scale so that their weighting represents

a trade off between one and the other only and not any re-scaling.

The journey detour and traffic exposure attributes are given by the following

metrics. The journey detour metric Udetour
j (t) is

Udetour
j (t) = 1−

∆L j(t)
L

(5.4)

where L is the length of the road the pedestrian is walking on, and ∆L j is a measure

of the detour required to make use of crossing alternative j given by the difference

between walking distance to reach the destination via crossing alternative j and the

walking distance to reach the destination if the agent were to cross the road at their

current location. Carriageway width is assumed to be the same at both crossing

locations so differences in distance come from movement along the pavement. The

fractional difference is used to scale the metric relative to road link, fixing values

between 0 and 1 for all road links and crossing alternatives.

The vehicle exposure metric, Uexposure
j (t) is based on the number of vehicles

expected to pass through the crossing in the time it would take the agent to cross the

road assuming constant vehicle velocity. To ensure the metric is expressed on the

same scale as Udetour
j (t), this metric returns a binary value of either 0 or 1, where
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Uexposure
j (t) =

0, if 1 or more vehicles would pass through the crossing

1, otherwise
(5.5)

A fractional difference metric similar to Udetour
j (t) was not used for this at-

tribute because it is not clear how the vehicle flow on a road link should be nor-

malised in order to produce a metric whose values match the scale of the journey

detour metric. Whilst the vehicle exposure metric is binary, the time averaged value

lies in the range 0 ≥ x ≥ 1 due to variations in the numbers, speeds and positions

(relative to crossing alternatives) of vehicles on the road link at each time step. This

metric enables pedestrian agent decision making to respond to dynamic vehicle traf-

fic.

These two crossing alternative attributes are combined to give the perceived

crossing alternative utility U j(t) as

U j(t) = αUdetour
j (t)+(1−α)Uexposure

j (t) (5.6)

where α is a pedestrian agent parameter representing the pedestrian’s trade off be-

tween journey detour and vehicle exposure attributes. A high value of α represents

a risk taking pedestrian who values reduced journey detour more than avoiding ve-

hicle exposure. Varying α is the mechanism for representing different pedestrian

preferences at the lower-level.

As the pedestrian agent moves along a road the attributes of crossing alterna-

tives change depending on the location of the pedestrian and the flow of vehicles

on the road. The variation of utility in combination with the stochastic sampling

of crossing alternatives means that the rate of activation accumulation of crossing

alternatives varies.

Figure 5.3 shows the behaviour of the attribute metrics and utilities for the

abstract road scenario illustrated in Figure 5.1. Vehicles are added to the road on

the far left-hand side at position xv(0) = 0 every 5 seconds and move to the far
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right-hand side at 10ms−1 (around 22mph). Only one lane of vehicle traffic is con-

sidered in this example. The pedestrian agent is similarly added to the road at the

far left hand side such that xp(0) = 0. For the marked crossing Uexposure
mkd (t) = 1 for

all t since the pedestrian agent expects vehicle agents to yield at this crossing. For

the informal crossing, Uexposure
in f (t) switches between 0 and 1 as new vehicles enter

and move along the road link. When averaged over time Uexposure
in f (t)<Uexposure

mkd (t)

meaning the informal crossing alternative has reduced utility on the grounds of ve-

hicle exposure.

The value of the journey detour metric for the marked crossing, Udetour
mkd (t), is

around 0.6 until the agent passes its destination at which point it increases linearly

up to the maximum value of 1. This reflects the constant and then reducing detour

distance of the marked crossing once the agent moves further away from its des-

tination and towards the crossing. By definition, the journey detour metric value

for the informal crossing is a constant value of 1. The overall crossing alternative

utility is given by the weighted sum of these two metrics with α = 0.5 representing

a pedestrian which values journey detour and vehicle exposure equally. The utility

of the informal crossing tends to be higher than the marked crossing initially but is

overtaken by the marked crossing once the detour distance is sufficiently reduced,

at which point the additional journey detour costs are outweighed by the benefits of

lower vehicle exposure.

Figure 5.4 replicates this scenario but introduces greater variation in vehicle

flow by creating a 10s pause in vehicle additions coinciding with the time the pedes-

trian agent passes their destination. This is illustrative of a scenario where a gap in

traffic coincides with the pedestrian walking past its destination. This produces

consistently higher utility for the informal crossing alternative during this gap, il-

lustrating how the choice model is able to respond to short term variation in vehicle

traffic.

Crossing Alternative Selection

Pedestrian agents choose a crossing alternative when the activation for the al-

ternative reaches a threshold level determined by another parameter, ε . Figure 5.5
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Figure 5.3: The attributes and utilities of two crossing alternatives as perceived by a pedes-
trian agent moving along the road. The position of the pedestrian agent’s des-
tination, which is on the opposite side of the road, and the marked crossing are
marked in the figure by dashed vertical lines. The number of vehicles on the
road at each at time t is shown by the dotted black line in the chart below.

Figure 5.4: The attributes and utilities of two crossing alternatives as perceived by a pedes-
trian agent for a varying vehicle flow scenario. Vertical dashed lines indicate
the location of the pedestrian agent’s destination and the marked crossing alter-
native. The drop in vehicle numbers causes the perceived utility of the informal
crossing option to remain high.
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shows the activation for each crossing alternative as the pedestrian agent moves

along the road for a constant (top) and varied (bottom) traffic scenario for α = 0.5,

ε = 4, λ = 1 and γ = 0.9.

In the constant traffic scenario the utilities of both crossing alternatives are

comparably low due to the high vehicle exposure associated with the informal cross-

ing and high journey detour associated with the marked crossing. As a result neither

alternative accumulates sufficient activation to trigger a choice until the pedestrian

agent is close enough to the marked crossing for the journey detour utility to im-

prove. The marked crossing overtakes the informal crossing and reaches the thresh-

old activation level, triggering the choice. In the varied vehicle flow scenario the

gap in vehicle traffic is perceived by the pedestrian agent and leads to an increase

in the utility of the informal crossing alternative. The informal crossing alternative

accumulates sufficient activation to trigger the choice as the pedestrian passes its

destination on the other side of the road. The choice of crossing location is reactive

to the short term variations in vehicle flow, producing gap seeking road crossing

behaviour as pedestrian agents move along the street. Due to the stochastic nature

of the model the same choice will not be made in every case (the random seed is

held constant in this example). Once a crossing alternative is chosen the activation

accumulation process stops. However, in these diagrams activation continues to

accumulate as if the pedestrian agent continues to walk along the road rather than

cross; this is purely for illustrative purposes.

Finally, a time threshold parameter, τ , is used to enforce a choice of crossing

alternative in cases where the utility of all alternatives is not sufficiently high to

reach the threshold ε in a reasonable time frame given the decay factor γ . Once τ

simulation ticks have passed the pedestrian agent is forced to choose the crossing

alternative with the highest activation. The time threshold is only applied once

agents are unable to progress on their route without choosing a crossing alternative.

The time threshold is not expected to alter road crossing preferences because a) it

should only come into effect in a small number of cases and b) the choice is still

based on the activation level and therefore continues to reflect preferences.
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Figure 5.5: The activation accumulation process in constant (top) and varied (bottom) ve-
hicle flow scenarios. Vertical dashed lines indicate the location of the pedes-
trian agent’s destination, the marked crossing alternative, and the location at
which the pedestrian agent makes its crossing alternative choice. The horizon-
tal dashed line indicates the activation threshold to trigger a choice.

5.5 Integration between upper-level and lower-level

route choice
Having established the decision making and actions of lower-level route choice it

is helpful to summarise how upper-level and lower-level choices are integrated.

Firstly, upper-level paths shape lower-level choice construal. Upper-level paths that

do not cross the current road link are treated as unchanged by low-level construal of

this decision. In this case the lower-level way points are simply given by the pave-

ment nodes at either end of the non-crossing upper-level pavement network link.

Low-level construal of upper-level paths that do cross the current road link, via ei-

ther a direct or diagonal crossing link, does change the decision making process.
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(a) (b)

Figure 5.6: a) Direct crossing lower-level navigation between the nodes of the upper-level
path, shown by the dotted lines. b) Diagonal crossing lower-level navigation.
The pedestrian walks towards the end of the road link until it chooses to cross
at point C1.

For direct crossings the crossing location choice is made from a stationary posi-

tion at one side of the direct crossing link. For diagonal crossings, the pedestrian

agent chooses a crossing alternative while moving along the pavement since diago-

nal crossings represent movement to the other end of the road as well as across the

carriageway. In this case the agent is assigned the pavement node on the same side

and far end of the road as the target way point. These two scenarios are illustrated

in Figures 5.6a and 5.6b.

Secondly, lower-level route choice can shape upper-level route choice. When

traversing a diagonal crossing link, the pedestrian may reach the end of the road

before a crossing choice is made due to the crossing alternatives not providing suf-

ficient utility to reach the activation threshold. At this point a new upper-level path

is chosen due to the tactical planning horizon progressing. In this way, the initial

choice to cross based on a high-level construal (upper-level, abstract, desirability

based) is updated based on low-level construal (lower-level, detailed, feasibility

based) and no crossing is made.
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5.6 Pedestrian movement

A pedestrian movement model is used to move pedestrian agents between the cho-

sen way points on their current road link, simply integrating lower-level route choice

with pedestrian movement. Once the pedestrian agent is within 0.5m of a way point

the next way point becomes the agent’s target. Once the agent reaches a pavement

node at the end of the road link, the agent’s perception of upper-level and lower-

level environments progresses, prompting new upper-level and lower-level route

choices. The agent’s destination is similarly treated as a way point and on the final

link this is what the agent moves towards rather than the pavement nodes at the end

of the link.

Pedestrian movement is modelled using the ‘cognitive heuristic’ model of

pedestrian movement detailed in Moussaid et al. (2011). The basis of the model

is two heuristics: 1) that pedestrians walk in a direction that allows the most di-

rect path to their destination, accounting for obstacles and 2) that walking speed

is chosen to maintain a minimum time to collision to an obstacle. Each time step,

pedestrian agents identify their desired velocity by using these two heuristics to cal-

culate their desired walking direction and speed. In the absence of obstacles (such

as walls or other agents) this is the desired walking speed in the direction of the

pedestrian agent’s destination. If a wall or other pedestrian agent, within a thresh-

old distance, obscures the destination the desired direction of movement shifts to

avoid these and the agent may reduce speed to maintain a minimum time to colli-

sion. Furthermore, collisions with obstacles are modelled with an additional term

that represents physical contact forces.

The cognitive heuristic model was initially fully implemented but simplifica-

tions were later made to reduce the computational cost of simulation runs. Interac-

tions between the environment and pedestrian agents were excluded by removing

building boundaries from the model. Simulation results were compared with and

without the inclusion of building walls (for both the small-scale experiments pre-

sented in this chapter and the large-scale experiments presented in Chapter 6) and

were found to not significantly differ.
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Table 5.1 lists the ‘cognitive heuristic’ model parameters. These are taken

directly from Moussaid et al. (2011) apart from the angular resolution of the field

of vision which was increased to reduce computational cost.

Parameter Name Description Value
θ Angular field of vision 150deg
dmax Maximum vision distance 10m
angres Angular resolution of field of

vision
30deg

k Interaction force constant 5000
T Relaxation time - time re-

quired for ped to adjust veloc-
ity

0.5s

Table 5.1: Parameter values for the heuristic cognitive model of pedestrian walking. Apart
from θ , which was increased to reduce computational cost, values are taken from
Moussaid et al. (2011). The parameter T is referred to as τ in Moussaid et al.
(2011) but I have used the symbol T as in this thesis because τ refers to the time
threshold in the lower-level route choice model.

5.7 Small-scale simulation experiments
Small-scale simulation experiments are used to test and verify the behaviour pro-

duced by the lower-level route choice model. The previous sections defined a se-

quential sampling discrete choice model used to choose between crossing alterna-

tives at the lower-level and explained how lower-level route choices integrate with

upper-level route choices. The object of these experiments is to verify that the

lower-level route choice model produces road crossing behaviour that reflects the

behaviours reported in the literature. Specifically, parameter sweeps across lower-

level parameters α,λ ,γ,ε , and τ are used to identify the regions of parameter space

in which the following behaviours are produced:

1. Pedestrian agents’ choice of crossing location is sensitive to vehicle traffic

and crossing alternative attributes

2. Pedestrian agents can choose between crossing alternatives within a reason-

able time frame
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3. Pedestrian agents’ postpone crossing if no suitable crossing infrastructure is

available

To do this pedestrian movement is modelled over just 1-2 road links. In both

experiments upper-level route choice parameters, PH and MC, are held constant

and so variations in pedestrian agent behaviour are produced only by lower-level

route choice. This allows the lower-level route choice model to be tested. In the

following chapter, large-scale simulation experiments are performed which explore

the pedestrian agent behaviour produced by the complete CLT route choice model.

In both experiments all pedestrian agents perform the same trip, from a single

origin to a destination on the other side of the road. In Experiment 1 the destina-

tion is located on a neighbouring road link and in Experiment 2 the destination is

located on the same road link as the origin. Experiment 1 therefore tests the integra-

tion of lower-level and upper-level route choice as well as road crossing behaviour.

Experiment 2 only tests choices between crossing alternatives. In each simulation

experiment vehicle traffic is produced by vehicle agents travelling on the road links

pedestrian agents walk along. Vehicle traffic is unidirectional in both experiments.

Two levels of vehicle traffic are considered, high and low, differentiated by the time

average number of vehicle agents added to the environment.

5.7.1 Experiment 1: Setting epsilon and gamma parameter

bounds

Parameters γ , ε , and τ control when a choice of crossing alternative is triggered.

Experiment 1 seeks to identify value ranges for γ , ε , and τ that produce the be-

haviours listed above. In addition, ε and γ must satisfy ε(1− γ) ≤ 1 for it to be

possible to reach activation threshold ε given the maximum possible crossing alter-

native utility value of 1. Higher ε values or lower γ values inhibit decision making

and can prevent crossing alternatives from being chosen. Similarly, low ε and high

γ values will mean a crossing alternative can be chosen with very few sampling

iterations, limiting the influence of pedestrian preferences or road traffic conditions

on crossing choice.
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Because of these relations, ε and γ are instrumental in enabling lower-level

route choice to revise upper-level crossing decisions. If a pedestrian agent reaches

the end of a road link before a crossing choice is made, the upper-level path is re-

planned due to the progression of the planning horizon. Raising the threshold for

choosing a crossing alternative should increase the frequency of this occurring. At

the same time, postponing crossing should only occur where the pedestrian agent

perceives a lack of suitable crossing options and therefore should depend on the

agent’s perception of the street environment. This simulation experiment seeks to

identify the ε and γ bounds that balance these objectives.

The parameter τ affects when a crossing alternative choice is made by impos-

ing a strict time limit for activation accumulation. Using a time threshold means

that ε(1− γ) ≤ 1 is not strictly necessary for a choice to be made, but ε and γ val-

ues that do not satisfy this inequality are considered implausible as they mean all

choices would be made after exactly τ model ticks. In this experiment τ is held at

a constant high value because this parameters is not intended to influence crossing

behaviour and only ensure that pedestrian agents can always complete their jour-

neys.

5.7.1.1 Methods

Figure 5.7 illustrates the simulation environment used for this experiment. In each

simulation run 40 pedestrian trips from from origin O to destination D are mod-

elled. This number of pedestrian agent trips was deemed sufficient for establishing

the behaviour produced by the parameters and initial conditions. Because all trips

share the same initial conditions and traffic levels in both these small-scale experi-

ments a higher number of trips was not deemed necessary to establish the effect of

model parameters. Pedestrian agents are added to the simulation with a time period

of Tped = 80s, producing low densities of pedestrian agents such that crossing de-

cisions are not affected by pedestrian-pedestrian interaction. Pedestrian movement

is therefore effectively constant velocity motion towards the destination, which al-

lows lower-level route choice to be verified in isolation from the cognitive heuristic

model of pedestrian movement as well as upper-level route choice. In Chapter 6 all
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three model components are brought together in a more comprehensive exploration

of model behaviour.

Upper-level parameters are fixed (MC = f alse and PH = 100) to produce

agents that all choose the same initial upper-level path, shown in orange in Figure

5.7. This trip requires performing at least one road crossing. When the agent reaches

the diagonal crossing link, lower-level route choice is used to choose a crossing lo-

cation as the pedestrian agent walks along the pavement. The only crossing option

available on this section of the road network is an informal crossing. Alternatively,

the agent can continue walking to the end of the road at which point their upper-

level route is re-planned, which might allow them to avoid crossing informally.

The origin and destination of the vehicle agents are the start and end points

of the section of road network included in the model environment. Vehicles agents

move in one direction only.

Lower-level parameters ε , γ , and λ are varied between runs whilst the remain-

ing parameters are held constant at α = 0.1 and τ = 120. Setting α = 0.1 produces

vehicle exposure averse agents that should avoid crossing informally. Coarse pa-

rameter sweeps are first performed, where γ is increased from 0− 1 in 0.1 incre-

ments and ε is increased from 0−12 in 0.5 increments. Additionally, λ ∈ 0.5,1.5

is used to check the results for different lower-level spatial knowledge settings (the

effect of λ on road crossing is investigated more thoroughly in Experiment 2). For

each route choice parameter setting, a high (N̄v = 15) and low (N̄v = 1) vehicle

flow scenario is simulated. Following this, a more granular parameter sweep is

performed with γ ∈ 0.8,0.9 and ε increased from 4− 12 in 0.2 increments. Each

simulation run corresponds to one set of parameter inputs so the coarse parameter

sweep requires 11×13×2= 572 simulation runs and the granular parameter sweep

2× 70× 2× 2 = 560 runs. Table 5.2 summarises the parameter values and ranges

used in this experiment.

The proportion of pedestrians that do not cross the road link marked RL1 in

Figure 5.7 is recorded. High proportions indicate that pedestrian agents’ lower-level

route choice is causing the upper-level to change in response to the lack of suitable
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Figure 5.7: The GIS environment of Experiment 1. The upper-level path is shown in orange
and crossing infrastructure in blue.

crossing infrastructure.

Model Com-
ponent

Name Description Possible
Values

Experiment
1 Values

Experiment
2 Values

Stochastic
Processes

Seed Random Seed N 1 1

Agent Trips
Nped Number of pedestrian trips N 40 40
Tped Pedestrian addition time pe-

riod
N 80 80

N̄v Time average number of ve-
hicle agents

N 1,15 1,15

Lower-level
route choice

α Vehicle exposure and route
detour utility weighting

(0,1) 0.1 0−1

λ Crossing alternative sampling
distance sensitivity

R 0.5,1.5 0−2

γ Preference decay per time
step

(0,1) 0−1 0.9

ε Preference choice threshold R 0−14 5,8
τ Model ticks choice threshold R 120 120

Table 5.2: Simulation parameters used in experiments 1 and 2. Upper-level parameters are
not shown because upper-level paths are constant across all simulation runs.
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5.7.1.2 Results

Figure 5.8a shows the results from the coarse parameter sweep simulations. For

ε(1− γ) > 1 agents are unable to make a crossing choice due to γ prohibiting the

activation threshold, ε , from being reached. For low values of ε and high values of

γ the pedestrian chooses an informal crossing location regardless of vehicle traffic

level. This region of parameter space can equally be excluded because crossing

choices should be sensitive to vehicle traffic.

A small section of parameter space close to the ε(1− γ)≤ 1 boundary can be

identified where pedestrian agents are sensitive to the traffic level and do not choose

to cross informally in high vehicle flow scenarios. The granular parameter sweep

(Figure 5.8b) shows that for γ = 0.9 and 5≤ ε ≤ 8 pedestrian agents postpone cross-

ing under high vehicle scenarios but cross informally in low vehicle flow scenarios.

This behaviour is observed for both λ = 0.5 and λ = 1.5.

Fixing parameter ranges as γ = 0.9 and 5 ≤ ε ≤ 8 therefore ensures the model

produces the behaviours listed above. Under high vehicle flow scenarios these val-

ues enable feedback from the lower to upper-level of the route choice hierarchy.

5.7.2 Experiment 2: Setting alpha and lambda parameter

bounds

Experiment 1 established ε and γ parameter bounds that ensure crossing choices can

be made as well as postponed. Experiment 2 focuses on the choice between crossing

alternatives and seeks to verify that lower-level route choice produces road cross-

ing behaviour that is responsive to dynamic vehicle traffic, pedestrian preferences,

and crossing alternative attributes. The design of the sequential sampling model is

intended to respond to these factors in ways that are consistent with reported pedes-

trian road crossing behaviours, as discussed in Section 5.4. This is now verified by

simulating a pedestrian agent’s choice between two crossing alternatives.

5.7.2.1 Methods

Figure 5.9 illustrates the simulation environment used for this experiment. As with

Experiment 1, in each simulation run 40 pedestrian trips from from origin O to
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(a)

(b)

Figure 5.8: a) Proportion of pedestrian agents that postpone crossing. The black line marks
the boundary ε(1− γ) ≤ 1. Only a small region of the ε − γ parameter space
produces behaviour that is dependent on vehicle flow. b) A more granular pa-
rameter sweep focusing on the region where behaviour is vehicle flow depen-
dent. Both figures show that in this scenario crossing choice is approximately
independent of independent of λ

destination D are modelled. The upper-level path is a single diagonal crossing link

leading from the origin to destination meaning pedestrian agents move along the

road while choosing a crossing location. One marked crossing is located on the road

and so the pedestrian agent perceives two crossing alternatives: a marked crossing

and an informal crossing. Vehicle agents are spawned at the right of the road link

of the road and travel to the left.

Two configurations of crossing infrastructure placement are considered. In

one configuration the marked crossing lies between the pedestrian origin and desti-

nation, termed the between configuration, and in the other the marked crossing lies

beyond the destination, termed the beyond configuration. As before, two levels of

vehicle flow are considered: high (N̄v = 15) and low (N̄v = 1). Together this pro-
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duces four different street environment scenarios in which pedestrian agents make

road crossing choices.

Lower-level route choices in each of these environments should differ in ways

that are consistent with the behaviours identified in the literature. Road crossing

behaviour is compared between scenarios by performing parameters sweeps across

lower-level parameters for each scenario. Regions of the parameter space that pro-

duce the required differences between scenarios can then be identified. Doing so

verifies that lower-level route choice is able to produce the desired road crossing

behaviour and helps define a suitable range for lower-level parameter values.

For each scenario lower-level parameters are stepped through the following

ranges (summarised in Table 5.2): γ = 0.9, ε ∈ 5,8, 0 ≤ α ≤ 1, and 0 ≤ λ ≤ 2.

The fixed γ value follows from Experiment 1, as does the two ε values taken from

the extremes of the ε bounds established in Experiment 1. α and λ are increased

in increments of 0.1 and 0.2 respectively. Along with the two ε values this make

for 242 simulation runs per scenario and a total of 4 scenarios (between/beyond

crossing configuration and high/low traffic flow).

The proportion of pedestrians choosing to cross at the marked crossing is mea-

sured for each parameter setting. (The only other option is crossing informally so a

high proportion choosing one implies a low proportion choosing the other.) Addi-

tionally, the trajectories of pedestrian agents are recorded and visualised to inspect

the agents’ crossing locations.

5.7.2.2 Results

Figure 5.10 shows the proportion of pedestrian agents who chose to cross at an

informal location in each of the four scenarios for each value of α and λ , ε ∈ 5,8,

and γ = 0.9.

The figure shows that changes in α and λ produce qualitative differences in

crossing behaviour. Agents with low α and λ predominantly choose the marked

crossing, especially in the high vehicle flow scenarios. These parameter settings

represent agents which value avoiding vehicle exposure and sample both crossing

alternatives relatively equally. By considering both crossing alternatives equally
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Figure 5.9: The GIS environment for Experiment 2. Pedestrian agents choose a route from
origin O to destination D. Crossing infrastructure for ‘between’ and ‘beyond’
configurations is shown in dark and light blue respectively. Vehicle agents
move along the road link indicated by the white line in the black carriageway.

these agents correctly identify the alternative that suits their preference (the marked

crossing).

Increasing α increases the frequency of informal crossing. This follows from

high α values producing agents that value shorter trip detours more than avoiding

vehicle exposure. Increasing the value of λ also increases the frequency of informal

crossings because higher values of λ produce pedestrian agents that are less able

to consider crossing alternatives further away from them and are therefore biased

towards the (by definition) nearby informal crossing alternative.

The level of vehicle flow also has a clear effect on crossing behaviour. Com-

paring high and low vehicle scenarios shows that increasing vehicle flow tends to

reduce the proportion of informal crossing, although, this depends on agents’ pref-

erences. If agents value reducing trip detour far more that avoiding vehicle exposure

(high α) increasing vehicle flow does little to change their crossing behaviour.

The location of the marked crossing also affects crossing behaviour. For pa-

rameter settings that produce agents with preference for journey detour savings
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(high α) we observe an increase in informal crossing in the beyond configuration

compared to the between configuration. The effect is also much larger in the low ve-

hicle flow scenarios where, for certain parameter values, the dominant road crossing

behaviour switches from marked crossing to informal crossing from one crossing

configuration to another. The ε = 8 setting also amplifies the difference between

crossing configurations showing that a higher activation threshold can increase the

effect of crossing preferences on crossing behaviour. Agents with these preferences

change their choice of crossing in response to the additional detour required to use

the marked crossing in the beyond configuration leading to an increase in (time op-

timal) informal crossings. However, when vehicle flow is high and ε low the effect

of crossing location is dampened.

(a) (b)

Figure 5.10: Proportion of pedestrian agents choosing to crossing at an informal location
for a) ε = 5 and b) ε = 8.

Finally, the pedestrian agents’ trajectories for a selection of parameter values

are shown in Figures 5.11 and 5.12. Differences in pedestrian crossing choices

between scenarios are clear, with more uniform sets of paths produced in runs with

high vehicle flow and low α , and more varied paths in scenarios with lower vehicle

flow and high α . Low α produces agents which prioritise avoiding vehicle exposure

over journey detours and, as a result, their use of road space is more normative

(crossing at a marked crossing) and ordered (less variety of paths). Conversely,

preference for avoiding journey detours produces agent trajectories that are ‘non-

compliant’ with road crossing norms. Figures 5.11 and 5.12 also illustrate the ability
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of lower-level route choice to generate road crossing at a variety of locations due to

the continuous representation of space and definition of informal crossing location

as the pedestrian agent’s current location.

In some cases a high proportion of pedestrian agents choose to cross at a

marked crossing located behind them, requiring them to change direction and move

back towards the start of the road link. This occurs because pedestrian agents ac-

cumulate activation as they walk along the pavement and may choose a marked

crossing once they have walked past it. Additionally, because the pedestrian agents’

destination is located on the road link there isn’t the possibility of continuing onto

the next road link if a crossing choice is not made, like in Experiment 2. The result

is that street level trajectories are unrealistic for some parameter settings. How-

ever, this ‘back tracking’ does not affect the road crossing component of street level

trajectories. The results in Figure 5.10 show that the road crossing behaviour pro-

duced by lower-level route choice reflects the characteristics of real road crossing

behaviour recorded in the literature whilst the trajectories in Figures 5.11 and 5.12

show that the non-road crossing components of pedestrian agent trajectories are un-

realistic in certain conditions. This is a limitation of lower-level route choice that is

accounted for in subsequent analysis by not using the walking distance of pedestrian

agents as a meaningful metric of behaviour, instead measuring behaviour using the

chosen upper-level paths and lower-level crossing locations.

5.8 Discussion

The results show that lower-level route choice is able to generate some of the ob-

served features of pedestrian road crossing behaviour such as dependence on traffic

levels, trade offs between journey detour and vehicle exposure, heterogeneity be-

tween pedestrians, and dependence on crossing location. Additionally, they demon-

strate the integration between lower and upper-level route choices, with high-level

construal giving way to low-level construal as pedestrian agents move through the

environment.

The parameter sweeps demonstrate the different roles the parameters α , λ ,
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Figure 5.11: A heat map of the trajectories of pedestrian agents in the between configura-
tion. Lighter colours indicate more popular paths. Pedestrians move along the
road according to a social force model which includes interactions between
pedestrians and between pedestrians and the environment.

Figure 5.12: A heat map of the trajectories of pedestrian agents in the beyond configuration.
Lighter colours indicate more popular paths.
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ε and γ play in producing crossing location choices. Setting parameter values of

γ = 0.9 and 5≤ ε ≤ 8 ensures crossing decisions are made and that low-level choice

construal can change initial high-level decisions.

The α and λ parameter sweeps in Experiment 2 show that the value ranges

0 ≤ α ≤ 1 and 0 ≤ λ ≤ 2 enable lower-level route choice to range between high

and low levels of informal crossing in response to both changes in the parameters

and the environment. α is naturally bounded from above and below and so the range

0 ≤ α ≤ 1 encompasses all possible values. Low values of α produce agents which

prioritise avoiding vehicle exposure rather than journey detour and therefore tend to

cross at marked locations.

λ is bounded from below by 0 but has no upper limit. Low values of λ produce

agents that consider all crossing alternatives evenly, interpreted as optimising their

choice for their preferences, whereas high values of λ produce agents that consider

closer alternatives more frequently, limiting the ability to identify a suitable cross-

ing alternative. The results show that for λ ∼ 2 in the low vehicle flow scenarios

pedestrian agents almost always cross informally, regardless of their preferences or

marked crossing location. Permitting higher values of λ would therefore increase

the region of parameter space where the behaviour of pedestrian agents is insen-

sitive to their preferences or the environment. For this reason the upper bound of

λ ≤ 2 is imposed.

Whilst the road crossing choices of agents respond in intuitive ways to model

parameters and environmental conditions, the tendency to back-track in certain sit-

uations is not representative of real pedestrian behaviour. This limits the the lower-

level choice models to providing a description of road crossing behaviour only, and

not a complete description of street level trajectories.

This chapter has employed parameter sweeps to identify suitable parameter

value ranges within which plausible road crossing behaviour is produced. The

model has not been calibrated or validated against observations of pedestrian cross-

ing choice. Doing so could establish distributions of parameters values that would

simulate the heterogeneity of a real pedestrian population. An alternative approach



5.9. Conclusion 147

is taken in the following chapters, whereby sensitivity analyses across the whole

parameter space are performed. This limits the applicability of the model for repre-

senting pedestrian behaviour in a well-defined situation in favour of exploring how

multi-scale route choice determines pedestrian behaviour under a wide variety of

behavioural settings.

5.9 Conclusion

This chapter presents the lower-level route choice model. Initially abstract upper-

level route choices are re-construed at the lower-level where a specific road crossing

location is chosen. Upper-level route choice shapes, but does not fully determine,

lower-level route choice. This choice is made based on a continuous representation

of the environment occupied by other agents and road crossing infrastructure. A se-

quential sampling approach is used to model a pedestrian’s gradual deliberation and

eventual choice between discrete crossing alternatives. The activation accumulation

process produces crossing location choices that respond to the local environment of

the pedestrian agent as they move along the road. The integration of upper-level and

lower-level route choices is also specified, as well as the integration of lower-level

route choices with pedestrian agent movement. In this way, street level pedestrian

route choice has been integrated with route choices over larger spatial scales fol-

lowing the hierarchical CLT modelling framework.

The behaviour produced by the lower-level route choice model is explored in

two small-scale simulation experiments. These experiments are used to establish

parameter bounds within which a wide range of plausible pedestrian road cross-

ing behaviour is produced. The model reproduces some observed characteristics of

pedestrian road crossing behaviour such as trade offs between journey detour and

traffic exposure, sensitivity to traffic conditions, non-compliant (informal) crossing,

and dependence of crossing choice on the proximity of crossing alternatives. By

representing these sources of pedestrian heterogeneity the lower-level route choice

model provides a rich description of pedestrian movement at the street level. The

following chapter builds on this with simulations of pedestrian trips across an ur-
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ban neighbourhood in which upper-level and lower-level route choice combine to

produced varied pedestrian trajectories at multiple scales.



Chapter 6

Verifying multi-scale pedestrian

route choice

6.1 Introduction

Having established the upper-level and lower-level route choice models, street level

pedestrian movement across an urban neighbourhood can now be modelled. Chap-

ters 4 and 5 demonstrate how the route choice models produce pedestrian agent

trajectories in highly constrained situations comprising only a few different origin-

destination trips. This chapter establishes how the CLT route choice parameters

influence pedestrian agent behaviour when a greater variety of trips are modelled.

To address this question the CLT route choice model is implemented in an

agent-based simulation (ABS) of pedestrian and vehicle trips in three different en-

vironments. Sensitivity analysis is used to establish the effects of route choice com-

ponents on metrics of pedestrian agent movement at the street and neighbourhood

level. This analysis builds on the small-scale experiments conducted in previous

chapters by producing pedestrian trajectories for a variety of trips. This allows

the influence of lower-level and upper-level route choice components on patterns

of pedestrian movement at multiple scales and between environments to be com-

pared, providing a more complete verification of the CLT route choice model. Ad-

ditionally, the paths produced by the CLT route choice model are compared to an

alternative route choice model - a network optimal least cost model - which helps
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demonstrate the contribution of the CLT route choice model.

This chapter proceeds by detailing the spatial ABS used to simulate pedestrian

movement in Section 6.2. The methods for the global sensitivity analysis and least

cost model comparison are explained in Section 6.3 and the results presented in

Section 6.4. Section 6.5 discusses these results before concluding in Section 6.6.

6.2 Agent-based simulation description
The CLT route choice model is verified by using the model to simulate the move-

ment of pedestrians. The components of the ABS are described below following

the structure proposed in Crooks et al. (2018).

6.2.1 Overview

The ABS consists of pedestrian and vehicle agents completing trips in a section of

an urban road network. Each simulation run is defined by parameters that control

the number and frequency of pedestrian and vehicle trips as well as the CLT route

choice model used by pedestrian agents to navigate.

For each pedestrian agent we record its origin and destination pavement node,

the pavement network links it traverses, and its road crossing locations. These ob-

servations are aggregated over the pedestrian population of each run and used to

characterise the pedestrian behaviour produced by the input parameter values.

Parameter sweeps are used to identify parameter ranges that produce differ-

ent road crossing behaviour and verify whether parameters are affecting pedestrian

agent behaviour in the desired manner. From this conclusions are drawn regard-

ing how pedestrian agent road crossing behaviour depends on interactions between

components of the CLT route choice model and the simulation environment.

The assumptions made in developing the ABS are predominantly those of the

CLT route choice model. Within the simulation, the uncertainty surrounding pedes-

trian decision making is represented by the range of CLT route choice parameters

(representing levels of spatial knowledge and route preferences).

Aspects of pedestrian decision making that are absent from the route choice

model will be absent from the ABS. Notably, this includes yielding decisions of
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pedestrian agents. The CLT route choice model accounts for vehicle traffic in the

choice of a crossing location, but subsequent decisions regarding whether or not to

cross the road at a particular time are not included. These decisions are often re-

ferred to as ‘gap-acceptance’ decisions. Group effects (pedestrian agents belonging

to a group) are also not represented.

The pedestrian behaviours that are represented by the CLT route choice model

have been identified in the literature. In short, we assume that the ABS parame-

ter space maps to a set of pedestrian agent routes that encompass the real set of

routes that would be produced by pedestrians moving in the same urban space.

This assumption is interrogated through the simulation experiments presented in

this chapter by analysing what behaviour is produced by the extremes of the param-

eter distributions.

The ABS also makes simplifying assumptions about how vehicles move on ur-

ban streets but this should have limited consequences because vehicle movement

impacts the outcomes of interest only through the vehicle exposure attribute of

crossing alternatives. The vehicle exposure attribute is a coarse, binary measure

and therefore is less sensitive to the details of vehicle movement.

The ABS is developed using open source Java software Repast Simphony

(North et al., 2013) and is available at https://github.com/obisargoni/

multiscale-ped-abm.

6.2.2 World

Each simulation tick corresponds to 1 second and the simulation environment is

represented by a continuous GIS space.

Agent Trips

Activity schedules and choices around activity locations are treated as exter-

nal to the ABS. Pedestrian and vehicle agents are simply assigned an origin and

destination coordinate and move between them. Trip chaining is not included and

vehicle agents do not park or pull over.

The number of pedestrian trips to model, Np, is given as an input to the sim-

ulation. Pedestrian agents are added to the simulation with a fixed time period,

https://github.com/obisargoni/multiscale-ped-abm
https://github.com/obisargoni/multiscale-ped-abm
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Tp, until Np have been added. The simulation ends once all pedestrian agents have

completed their trips.

Vehicle agents are continually added to the simulation to produce the traffic

conditions that pedestrian agents respond to. The level of vehicle traffic is given as

a simulation input by setting the desired time average number of vehicle agents N̄v.

Vehicle agents are added to the simulation when the total number of vehicle agents

drops below Nv. Vehicle agents continue to be added to the simulation until the run

ends.

Simulation Environments

Trips are simulated in three different environments: two synthetic grid environ-

ments and one environment built using real geometries, shown in Figure 6.1. Sim-

ulating pedestrian agents in different environments enables analysis of how route

choices are dependent on the environment as well as on the route choice parame-

ters.

The environments are designed to be comparable in terms of spatial extent

and the number of road intersections. The real road network environment is a 1km

catchment area (measured by road network distance) around Clapham Common

tube station in South West London. Transport for London analysis reports that

average daily walking distance was 1.2km in 2017/18 with walk stages (walks that

form part of a larger trip - a walk to a metro station is a walk stage) comprising

0.5km of this average (Transport for London, 2018). Given this average, a 1km

catchment area is considered to be a suitable upper limit of walking distance to a

metro station.

The processed road network consists of 130 intersections, defined as nodes

with degree 3 or greater, and 263 nodes in total. The high number of nodes with de-

gree 2 is the result of breaking up curved road geometries into sequences of straight

road links. (The processing of road network data is discussed in Section 4.2.)

The two synthetic road networks are both 1km catchment area grids with right-

angle turns. The Uniform Grid environment has uniform link length of 125m in the

horizontal direction and 100m in the vertical direction, 131 intersections and 159
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Figure 6.1: The road network for each of the model environments.

nodes in total. The Quad Grid is produced using a quad tree algorithm (Eisenstat,

2011) that produces a variety of road link lengths. The Quad Grid network has link

lengths from 15.6m to 500m (one road link is 500m, the next largest link length is

250m), 132 intersections and 153 nodes in total. In both synthetic grid environments

carriageway width is set to 10m and the pavement width to 3m, apart from on the

shortest links in the Quad Grid environment where these widths are halved. The

pavement network is produced from the pavement polygons in the same way as for

the Clapham Common environment.

Crossing Infrastructure

Marked crossing alternatives (MCAs) are added to the environment by placing

straight lines between pavement polygons at the entrances to side roads and around

4-way intersections. This assumes pedestrians have right-of-way at these locations.

This is based based on the UK Highway Code which states that pedestrians have

right-of-way when crossing at side roads (The Highway Code, 2022a). The sim-

ulation does not include traffic lights and the placement of MCAs around 4-way

intersections assumes pedestrian right-of-way where, in reality, right-of-way would

typically alternate between vehicle and pedestrian flows.

Side roads are identified as those which join intersections approximately at a

right angle to both adjacent road links. Strictly enforcing the right angle condition

in the Clapham Common network results in few MCAs and so a more relaxed con-

dition of 90±45° is used. This produces a good coverage of MCAs which ensures
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that pavements are well connected.

In the Uniform Grid environment MCAs are placed at either end of every road

link owing to the uniform 90° angles between road links and uniform 4-way inter-

sections. In the Quad Grid environment all 4-way intersections and side roads have

MCAs but the irregular block sizes mean that there are long stretches of pavement

that only have MCAs at either end or on one side of the road. Unlike the grid en-

vironments, in the Clapham Common environment the more irregular placement of

MCAs means that for some trips informal crossings are necessary when following

the shortest road network path.

Trip Origins and Destinations

The origins and destinations of pedestrian and vehicle trips are coordinates that

are uniformly randomly distributed throughout the environment and referred to as

ODs. Vehicle ODs are located at road network nodes. In each simulation environ-

ment 91 nodes are assigned as vehicle ODs and act and both sources and sinks for

vehicle agents. These nodes are chosen from a uniform random distribution across

all junction nodes in the road network with non-junctions nodes added if needed to

make up 91 ODs in total. Vehicle agent trips origins and destinations are sampled

from a uniform random distribution across all vehicle ODs.

All pedestrian trips share the same destination, a single OD located at the cen-

tre of each environment. This is the entrance to a metro station in the Clapham

Common environment and can be similarly interpreted in the synthetic grid envi-

ronments. Using a single, central destination creates unidirectional pedestrian flows

to the metro station. (Appendix A includes simulation results for two-way pedes-

trian flows in the Clapham Common environment which, with the exception of a

shift in average route length, are approximately the same as the one-way results.)

Pedestrian agent trip origins are sampled uniformly from the other pedestrian

ODs. Pedestrian ODs are located on pavement polygons with 305 ODs in each en-

vironment. These are chosen by randomly selecting a sample of pavement polygons

and choosing a random location in each polygon (to avoid ODs clustering close to

one another). Pavement polygons within 50m of the destination OD were excluded.
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In the Clapham Common, Quad Grid and Uniform Grid environments there are

333, 242 and 286 road links respectively; 305 ODs were chosen to provide good

coverage across the road links in each environment.

In all simulation runs 200 pedestrian trips are modelled. This number was

chosen to give a high coverage of trip origins across the environment. A higher

number of trips would provide better coverage of the environment at the cost of

longer simulation runs. At this stage of model verification it was desirable to have

shorter runs to enable more expansive exploration of the parameters space. The

implications of this are discussed at the end of this chapter, in Chapter 8 and, as

mentioned above, in Appendix A.

Ten rounds of vehicle agent additions are performed to initiate traffic condi-

tions before pedestrian agents are added.

6.2.3 Interactions

Pedestrian agents interact with the environment and vehicle agents through the CLT

route choice model - at the upper-level through a choice of pavement network path

and at the lower-level through a choice of crossing location. Additionally, physical

interactions with other pedestrian agents and with the environment shape pedestrian

movement through Moussaid et al. (2011)’s ‘cognitive heuristic’ model. Pedestrian

agents do not physically interact with vehicle agents, they only interact through

their perception of vehicle traffic when choosing a crossing location.

Vehicle agents similarly interact with the environment through their route

choice decisions. Vehicle agents are constrained to move along the road centre

line of OS-ITN road network links which constitutes another form of environment

interaction. Vehicle agents interact with other vehicle agents through a simple car

following model with no overtaking, adapted from Krauss (1998) and detailed fur-

ther below. When vehicle agents reach an intersection they progress onto the next

link once there is capacity for an additional vehicle. Vehicle agents also physically

interact with pedestrian agents by yielding to them when they cross the road. Ve-

hicle agents’ velocities are updated such that they never collide with a pedestrian

agent. Pedestrian crossing can therefore cause vehicle queues and delays.
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Through these interactions flows of pedestrian and vehicle agents are shaped

by the environment and by the presence of other agents.

6.2.4 Agents

Pedestrian Agents

Pedestrian agents’ decisions are governed by upper-level and lower-level route

choice which determines the way points the pedestrian agent moves between. Once

these way points are chosen pedestrian agents move between them according to

Moussaid et al. (2011)’s ‘cognitive heuristic’ model, as discussed in Chapter 5.

Pedestrian agents are defined by their walking speed, origin and destination

and the route choice model parameter values they are initialised with. The pedes-

trian population in each run is homogeneous, meaning that all pedestrian agents are

assigned the same values for route choice parameters, as this helps to isolate the

effect of each parameter on pedestrian agents’ behaviour.

Pedestrian agents’ route choice parameters are detailed in Chapters 4 and 5 and

can be summarised as follows. Parameters PH and MC control upper-level route

choice and represent the high-level spatial knowledge and preferences of pedestrian

agents. α and λ represent risk taking and route optimising characteristics of the

pedestrian agents at the lower-level; together they control which crossing alterna-

tives are perceived as more attractive. γ controls the rate of activation decay, ε the

activation threshold for alternative choice, and τ the maximum duration of activa-

tion accumulation; together they control how easily a choice is made.

Pedestrian agents’ speed is drawn from a lognormal distribution v ∼

Lognormal(1.5ms−1, 0.3ms−1) (limited between 1.6kmph < v < 9.0kmph) with

skew = 0.6 (Willis et al., 2004). The positive skew of the lognormal distribution

means below average speed pedestrian agents are more frequently added to the

model.

Vehicle Agents

Vehicle agents are characterised by their origin and destination, maximum

driving speed, acceleration, and deceleration. Vehicle agents follow the shortest

path on the OS-ITN road network (link weight given by link length) from their
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origin node to destination node.

Vehicle agents move according to a car following model adapted from Krauss

(1998) (the model is adapted slightly by removing random perturbations to vehi-

cle velocity). Each simulation tick, with duration ∆t, vehicle agents update their

velocity and position according to

v(t +∆t) = max(0,vdes(t)) (6.1)

x(t +∆t) = x(t)+ v(t)∆t (6.2)

vdes(t) is the vehicle agents’ desired velocity. The desired velocity is the min-

imum of: the vehicle agent’s maximum allowed velocity, vmax; its velocity were it

to accelerate as if in free flow conditions, v(t)+a∆t; or the safe following velocity,

vsa f e(t). This means that in the absence of obstructions a vehicle agent will accel-

erate continuously until its maximum velocity is reached. However, the presence of

obstacles such as other vehicle agents means the vsa f e(t) can be lower than vmax. In

the case of vehicle following, vsa f e is given by

vsa f e(t +∆t) = vl(t)+
g(t)−gdes(t)

v̄
b + r

(6.3)

where vl(t) is the velocity of the leader vehicle, g(t) is the position of the ve-

hicle agent, gdes(t) is the desired following distance from the lead vehicle agent,

v̄ is the average of the two vehicles’ velocities, b is a constant that represents the

desired deceleration rate, and r is a constant that represents the vehicle agent’s re-

action time. Using gdes = rvl(t) ensures the vehicle maintains a safe following

distance from other vehicle agents. When required to yield to pedestrian agents a

fixed safe distance of gdes = 2m and vlt = 0ms−1 is used. Vehicle agents have a

field of vision of 20m and only adjust their speed with respect to objects within this

distance. Remaining constants are taken from Krauss (1998): r = 1s, a = 0.8ms−2,

and b = 4.5ms−2. vmax = 11.2ms−1 (25mph) is chosen as a suitable speed limit

for urban areas given the mixture of 20mph and 30mph urban speed limits in the
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UK (The Highway Code, 2022b). ∆t = 1s is used because each simulation tick

corresponds to 1s.

Table 6.2 summarises the ABS parameters.

6.3 Methods

6.3.1 Global sensitivity analysis

The small-scale experiments in Chapter 5 verify the behaviour produced by lower-

level route choice across just 1-2 road links. These experiments are expanded to

enable verification of two additional aspects of the CLT route choice model:

• the effect of upper-level route choice on pedestrian behaviour

• whether lower-level route choice continues to affect pedestrian behaviour in

the same way when enacted on multiple road links

Upper-level route choice parameters were held constant in the small-scale ex-

periments. Expanding the spatial scale of the experiments creates a role for upper-

level route choice, and therefore parameters MC and PH, to affect pedestrian agent

movement. The small-scale experiments were also conducted on only one section

of the road network. Simulating movement over a larger section of the road network

helps verify whether these findings - the way pedestrian agent behaviour responds

to vehicle traffic and lower-level parameters - is sustained in a larger study area.

The use of the full CLT route choice model expands the parameter space that

must be explored in these experiments. Global sensitivity analysis is used to navi-

gate this challenge and ensure the parameter space is fully explored and the results

reflect the influence of parameter values across the space equally. Output metrics are

defined and used to characterise neighbourhood and street scale aspects of pedes-

trian agent movement.

6.3.1.1 Simulation inputs: model parameters and initial conditions

The ABM has 11 inputs, referred to as model or simulation parameters, which are

listed in Table 6.2: 7 control the route choice model used by the pedestrians agents;
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3 control the number and density of pedestrian and vehicle agents in the simulation,

termed initial conditions; 1 parameter sets the random seed.

Table 6.2 lists the parameter bounds or fixed values used in the global sensitiv-

ity analysis. The bounds for of lower-level parameters ε , γ , α , and λ are set based

on the results from Experiment 1 and 2 in Chapter 5. α is, by definition, bounded

from below and above by 0 and 1 so the full range of this parameter is considered.

λ is naturally bounded from below by zero and the small-scale simulation experi-

ments show that for λ > 2 pedestrian agents tend to cross informally irrespective

of preferences and crossing location in lower vehicle flow settings. This is consid-

ered implausible so 2 is used as the upper limit of this parameter. Similarly, for

values of ε < 5 or ε > 8 pedestrian agents did not adjust their road crossing choices

in response to changes in the street environments so these are used as the bounds

for the ε parameter. Small-scale experiments found that fixing γ = 0.9 does not

significantly limit the behaviour of pedestrian agents so this is retained here.

The bounds of the remaining lower-level parameter, 30 ≤ τ ≤ 120, are chosen

based on the assumption that this permits a sufficient number of activation accu-

mulation iterations for crossing alternative preference to be established. Pedestrian

agent behaviour should not be sensitive to this parameter as it is intended to en-

sure pedestrian agents can always complete their journeys and not to influence road

crossing behaviour. Using lower values of τ could influence crossing behaviour by

forcing agents to choose prematurely while larger τ values could slow simulation

runs without providing any benefit.

Nv parameter bounds are set to produce sparse and dense traffic conditions at

either extreme. At Nv = 20 all road links in each environment have high levels of

capacity whilst at Nv = 700 a small large proportion of road links are close to or

at full occupancy throughout the simulation. Beyond Nv = 700 the number of road

links at full occupancy steeply increases in the Quad Grid environment, as shown

in Table 6.1 which reports the occupancy level of road links for extreme Nv values.

This suggests that traffic starts to enter grid-lock with this level of vehicle agents.

To avoid entering this traffic regime and producing very different traffic conditions
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Nv Environment 50th 90th 99th

20
CC 0.0 0.3 0.6
QG 0.1 0.4 0.7
UG 0.1 0.2 0.4

700
CC 0.9 7.8 47.0
QG 2.3 14 64.6
UG 2.7 7.8 24.2

750
CC 0.3 4.8 84.3
QG 1.4 16.7 88.0
UG 2.8 8.2 32.8

800
CC 0.2 3.4 89.6
QG 1.5 20.6 86.2
UG 2.9 8.4 37.6

Table 6.1: The table shows the 50th, 90th and 99th percentile occupancy level of road links
in each of the three environments under different vehicle number settings, Nv.
The occupancy is calculated at the time average number of vehicles on a road
links divided by its capacity, multiplied by 100. The 99th percentile values refer
to the most congested road links in the environment, generally the most central
links. For Nv = 800 the 90th percentile occupancy in the Quad Grid environ-
ment differs considerably from the other two environments, showing that vehicle
agents are more congested in this environment.

between environments, the upper bound Nv = 700 is chosen.

The bounds for Tp were similarly chosen to produce sparse and dense popula-

tions of pedestrian agents. This was judged using a visualisation of the simulation.

The upper bound of Tp = 80 means that pedestrian agents rarely interact with one

another whilst Tp = 5 produces a dense group of pedestrian agents that converge on

the destination at a similar time.

MC is defined as a Boolean and so the full set of possible values are accounted

for in the following simulations. PH is naturally bounded from below from 0 but

this would mean agents are unable to perceive any of the pavement network which is

unrealistic. The lower bounds of 20° is used instead. The PH = 360° upper bound

was chosen to provide near complete network knowledge for pedestrian agents.

Based on the trips that pedestrian agents undertake in each environment, this up-

per bound provides optimal pavement network knowledge for all trips in the grid

environments and 75% of trips in the Clapham Common environment.

Of the 11 simulation parameters 8 are varied between runs. In addition to γ
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two other model parameters are fixed: Nped = 200 and the random seed is held

constant. This is so the same 200 pedestrian agent trips are modelled each run. This

means that changes in pedestrian agents behaviour are attributable to changes in

route choices alone.

Model Com-
ponent

Name Description Possible
Values

Sobol GSA
Values

Stochastic
Processes

Seed Random Seed N 1

Agent Trips
Np Number of pedestrian trips N 200
Nv Time average number of ve-

hicle agents
N 20−700

Tp Pedestrian addition time pe-
riod

N 5−80

Upper-level
route choice

MC Route choice heuristic Boolean {true, f alse}
PH Planning horizon angular dis-

tance
R 20−360

Lower-level
route choice

α Vehicle exposure and route
detour utility weighting

(0,1) 0−1

λ Crossing alternative sampling
distance sensitivity

R 0−2

γ Preference decay per time
step

(0,1) 0.9

ε Preference choice threshold R 5−8
τ Model ticks choice threshold R 30−120

Table 6.2: Simulation parameters.

6.3.1.2 Output metrics

Four metrics are used to quantify pedestrian agents’ routes: mean upper-level path

length, percentage of pedestrian agents whose path length is equal to the shortest

path length, mean frequency of postponing crossing, and percentage of road cross-

ings that are at informal (rather than marked) crossing locations.

Mean upper-level path length for each simulation run, is given by

L̄ =
Σp,qlp,q

Np
(6.4)

where lp,q is the length of network link q in pedestrian agent p’s completed

upper-level path and Np is the number of pedestrians in the run. L̄ is an estimate



6.3. Methods 162

of the mean distance travelled by pedestrians in the simulation run (estimate since

agents’ deviate from these links when crossing the road and avoiding other pedes-

trian agents).

Route choices are compared to the shortest path by calculating the percent-

age of pedestrian agents whose path length is equal to the shortest path length, SP.

To ensure fair comparison to the agent’s path, shortest paths are constrained to the

section of the pavement network that follows the agent’s road network path. Com-

parisons to the shortest path therefore reflect the effects of model parameters and

not the effects of restricting upper-level paths to follow the shortest road network

path.

The road crossing behaviour of pedestrian agents is measured in two ways.

The mean frequency of postponing crossing, P̄, is given by

P̄ =
P

Np
(6.5)

where P is the number of times pedestrian agents postpone crossing in a run.

This measures the frequency of lower-level route choice changing upper-level route

choice. This is the same metric analysed in Experiment 1 in Chapter 5 (see Section

5.7.1.2).

The percentage of road crossings that are at informal (rather than marked)

crossing locations, I, is also recorded. This is the same metric that was analysed

in Experiment 2 in Chapter 5 (see Section 5.7.2.2).

Since the number of pedestrian agents and trips is held constant across all

runs, variations in these metrics between runs are due to differences in path finding

behaviour alone.

The sensitivity of L̄, SP, P̄, and I to each of these parameters is calculated using

the total effect Sobol sensitivity indicator. Sobol indices (SIs) are a variance-based

measure of sensitivity given by the conditional variance of output metric Y with re-

spect to input parameters Xi (Saltelli et al., 2008). SIs are expressed as a proportion

of total output metric variance. The total effect SI, STi , measures the total sensitiv-

ity of an output metric to parameter Xi, accounting for all interactions between Xi
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and other parameters. We use the SALib python library (Herman and Usher, 2017)

to sample parameter values from the Sobol pseudo-random distribution to produce

256 estimates of STi for each model parameter Xi, requiring 2,560 simulation runs

using the Satelli method for calculating Sobol indices.

GSA simulations were run on a Windows Server with a 3.30GHz processor and

128Gb of memory. The 2560 model runs took 120, 90 and 220 minutes to complete

for the Uniform Grid, Quad Grid and Clapham Common environments.

6.3.2 Least cost model comparison

The CLT route choice model is compared to an optimal least cost route choice model

to clarify the differences of this approach to other route choice methodologies.

In this model pedestrian routes are given by the least cost path on the pavement

network. As with the CLT model the least cost path is constrained to the section of

the pavement network that follows the agent’s road network path. This ensures that

the same total amount of spatial information is available under each model. To

account for road crossing and vehicle traffic we parameterise the weight of road

crossing pavement network links as follows:

wi =


li, if the link does not cross a road

li + kρvi, if the link crosses at location with crossing infrastructure

li + jρvi, if the link crosses at location without crossing infrastructure
(6.6)

where li is the length of link i, ρvi is the time average vehicle density of the road the

pavement network link crosses (calculated from vehicle trajectories produced in the

simulations) and k, j ∈ {0,500,1000,1500,2000}. For each level of vehicle flow

represented in the 2560 runs performed in the GSA and all combinations of j and

k, a total of 6400 parameter settings, we compute the least cost pavement network

paths for every unique pedestrian trip simulated in the GSA. In the Clapham Com-

mon environment the median increase in the weight of road crossing links ranges

from 0.2−2.1% between parameter settings, with maximum increases ranging from



6.4. Results 164

Figure 6.2: The origins (white) and destination (green) of pedestrian agents, with road links
coloured by the proportion of pedestrians that travel along each link across
all simulations. Road links that no pedestrian agents travel on are not shown.
The brightest colour is assigned to all road links with proportions of pedestrian
agents in the 99th percentile.

17− 5600%. We also used parameter values of k, j ∈ {0,100,200,300,400,500}

and these results are shown in Appendix A Section A.2.

6.4 Results

6.4.1 Global sensitivity analysis

The results of the global sensitivity analysis simulations are summarised in the fol-

lowing figures: Figure 6.2 shows the origins and destinations of pedestrian trips and

the proportion of pedestrian agents travelling on each road link; Figure 6.3 plots

the output metrics against parameter values for every model run with a trend line

to show the relationship; Figure 6.4 provides an aggregate view of these plots with

histograms showing the distribution of L̄, SP, P̄, and I across simulation runs and

the sensitivity of each metric to each model parameter (zero sensitivity is equivalent

to a flat trend line).

Across all environments and output metrics, parameters τ and Tp had minimal

impact, as show by the sensitivity indices in Figure 6.4. For this reason they have

been omitted from Figure 6.3.

Route Length
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Routes are typically longest in the Uniform Grid environment and shortest in

the Clapham Common Environment. L̄ has a similar range in all three environments,

but is least varied in the Quad Grid environment.

L̄ tends to be most sensitive to MC, PH and ε , although in Uniform Grid en-

vironment L̄ is not sensitive to MC at all. Increasing PH decreases L̄. Setting

MC = true and increasing ε increases L̄.

L̄ is also sensitive to al pha and Nv to a lesser degree. Increasing α tends to

decrease route lengths. This follows from high α values making pedestrian agents’

crossing choices based more on trip distance than vehicle exposure. Similarly, in-

creasing Nv increases route lengths.

Shortest path similarity

SP is similarly distributed in the three environments, ranging from 8% to 38%

in the Uniform Grid, 4% to 34% in the Quad Grid, and 2% to 37% in the Clapham

Common environment. Since these shortest paths are constrained to follow the

same road links as the pedestrian agents, agents following these shortest paths have

similar L̄ values to those that do not, with a maximum difference in L̄ of between

6.4% (Uniform Grid) and 9.1% (Clapham Common).

As with L̄, PH, MC and ε account for most of the variance of SP. Increasing

PH increases SP while increasing ε and setting MC = true decreases SP. Again, α

and Nv have a slight effect for the same reasons that these parameters affect L̄.

Crossing behaviour

The distribution of P̄ is similar across all three environments. Postponements

occur most frequently in the Uniform grid environment (mean P̄ = 1.4) and least

frequently in the Clapham Common environment (mean P̄ = 0.68). In all environ-

ments a large region of parameter space produces P̄ > 1. For context, pedestrian

agents perform an average of between 4.4-5.7 road crossings in each environment

with the maximum only ranging from 5.7 to 7.4. Therefore, postponing one road

crossing corresponds to around 20% of an agent’s upper-level road crossing deci-

sions being altered by lower-level decision making.

P̄ is approximately equally sensitive to ε , PH, and MC in all three environ-
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ments, with increases in ε increasing P̄. Increasing PH tends to increase P̄ and

setting MC = true tends to decrease P̄, though again MC has no effect in the Uni-

form Grid environment. PH has a far greater effect on postponements in the grid

environments.

The results for I show a wide range of informal crossing rates in all three

environments. I ranges from 0% to 72% in the Uniform Grid, 7% to 82% in the

Quad Grid, and 32% to 77% in the Clapham Common environment, with an average

of 23%, 41%, and 55% in respectively. The higher frequency of informal crossing

in the Clapham Common environment reflects the reduced availability of marked

crossing infrastructure in this environment.

I shows higher sensitivity to lower-level parameter α and Nv than other metrics,

with increases in α and decreases in Nv producing higher rates of informal crossing.

Upper-level parameters PH and MC also contribute to the variation of I, particularly

in the Quad Grid environment, with increases in PH also increasing the rate of

informal crossing.

6.4.2 Least cost model comparison

As with the CLT model, the least cost path model distinguishes between the pres-

ence and absence of crossing infrastructure and levels of vehicle traffic. The result-

ing routes show a similar level of variation in L̄ as shown by the results in Table

6.3.

Uniform Grid Quad Grid Clapham Common
Model Mean L̄ STD Mean L̄ STD Mean L̄ STD
CLT 743m 6.6m 732m 5.2m 682m 6.4m

Least Cost 733m 6.0m 697m 6.6m 658m 6.5m

Table 6.3: Comparison of L̄ mean standard deviation and variance calculated over parame-
ter settings.
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Figure 6.3: Scatter plots with regression lines for each model parameter and output metrics.
Parameters τ and Tp are omitted because they had little impact on any of the
output metrics.

6.5 Discussion

6.5.1 Global sensitivity analysis

The pedestrian behaviour produced by the CLT route choice model has been ex-

plored with GSA. The results show that the model is able to produce a wide range

of pedestrian trajectories spanning an urban neighbourhood. This is shown by the

distribution of L̄ and SP across model runs, produced through variations in pedes-

trian agents’ route choices and levels of vehicle traffic. Additionally, integrating

street level and neighbourhood level decisions reveals multi-scale influences on road

crossing behaviour.

The variation in metrics L̄, SP, and P̄ is predominantly due to three parame-

ters: MC, PH, and ε . As PH increases L̄ tends to decrease, showing that increasing

spatial knowledge enables agents to identify more optimal routes. Choosing to min-
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Figure 6.4: Histograms of output metrics across multiple simulation runs, with the y-axis
showing the number of runs which produced values in each bin. Below the
histograms are the total effect sensitivity indices of each metric and parameter.
Confidence intervals are given by the variation across the 256 indices values
produced from the 2560 simulation runs.

Figure 6.5: Comparison between paths produced by the hierarchical CLT model and a con-
strained least cost path model. Each path corresponds to a different parameter
setting. In this case the standard deviation is 12m for CLT path lengths and
5.1m for least cost path lengths.

imise the number of road crossings (MC = true) rather than route length increases

L̄. Higher values of ε also increase route lengths by make it harder for agents to

choose a crossing location, causing agents to postpone crossing more frequently

and not follow their desired upper-level path.

These parameter effects are also reflected in variations in SP. For high PH and
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MC = f alse settings nearly all pedestrian agents should choose optimum upper-

level paths. However, in all environments a maximum of only around 40% of agents

follow the shortest path. This demonstrates that pedestrian agents deviate from opti-

mal paths as a result of lower-level route choices. High ε values inhibit a pedestrian

agents’ choice of crossing alternative, shown by the increase in P̄. Additionally,

high levels of vehicles traffic, Nv, combined with sensitivity to traffic levels (low α)

reduce the ability of pedestrian agents to follow shortest paths. Ultimately, it is the

interaction between these lower-level parameters that affects agents’ choices1.

The model produces a broad set of street level trajectories. The wide range of

I values across model runs shows that pedestrian agents can be made to the cross

road at marked locations to a greater or lesser degree, particularly in the grid envi-

ronments due to the increased coverage of crossing infrastructure. I also responds

to model parameters in intuitive ways. Firstly, it is far more sensitive to lower-level

parameters α , λ and Nv that other metrics meaning these parameters tend to affect

lower-level decisions only and play less of a role in altering upper-level decisions.

Increasing α increases the importance of the journey time attribute of a crossing

location and this is reflected in the increase in the rate of informal crossing. As Nv

decreases the frequency of informal crossing also increases showing that pedestrian

agents are perceiving lower levels of vehicle flow and adjusting their road crossing

behaviour accordingly. This demonstrates that lower-level decision making is pro-

ducing the intended road crossing behaviour when implemented in a larger scale

simulation.

Integrating street and neighbourhood navigation decisions into a single mod-

elling framework has enabled comparisons of the effects of decision making at each

of these scales on pedestrian agent behaviour. Metrics L̄ and SP are calculated from

pedestrian agents’ upper-level routes on the pavement network. It follows that these

metrics are predominantly sensitive to upper-level parameters MC and PH. How-

ever, non-zero values for lower-level parameter sensitivity indices show routes are

also impacted by street level decision making.

1The variation in sensitivity indices indicated by the error bars is due to the sensitivity of the
outputs to a particular parameter also depending on the values of the other parameters.
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This is further evidenced by P̄ which measures the frequency of lower-level

decision making changing upper-level routes. This is the process by which lower-

level parameters produce variance in L̄ and SP. In all environments P̄ is highly

sensitive to ε . Higher ε values mean a higher activation threshold must be reached

to trigger a choice of crossing location, therefore making it harder for a choice to

be made before the agent reaches the end of the road link. In the Clapham Com-

mon environment P̄ is also highly sensitive to α , Nv, and MC which shows that, in

this environment in particular, pedestrian agents are postponing crossing to avoid

vehicle exposure. These results show the framework is producing core behaviours

outlined by CLT: the re-construal of initially abstract high-level decisions when

psychological distance between the decision maker and the object of the decision is

reduced.

The model also produces interaction from upper to lower-level decision mak-

ing. This is most clearly demonstrated by I, the rate of informal crossing, being

sensitive to upper-level parameters despite crossing location being chosen at the

lower-level. This sensitivity means that the frequency of informal crossings de-

pends on the route chosen at the upper-level (i.e. the pavement network route).

For example, increasing PH tends to increase the rate of informal crossing in the

Quad Grid environment. Increasing the spatial knowledge of agents changes their

crossing behaviour by changing which road links upper-level paths cross at. Inter-

estingly, P̄ is also sensitive to upper-level parameters meaning that the process of

lower-level decision making affecting upper-level routes is itself dependent on the

upper-level routes. The hierarchical CLT framework has therefore enabled multi-

scale influences on road crossing behaviour to be identified.

Comparisons between road network environments reveal how components of

the CLT model are dependent on the environment. MC is the only parameter to af-

fect an output metric (I) in opposite ways between environments. Agents which

minimise the number of crossings in upper-level paths perform fewer informal

crossings in the Clapham Common environment but more in the Quad Grid environ-

ment (as a proportion of their road crossings). This can be explained by differences
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in the locations of crossing infrastructure between the environments. In the Quad

Grid environment minimising crossings at the upper-level leads agents to cross road

links with less crossing infrastructure which biases the informal crossing option.

Additionally, MC has far less effect on all output metrics in the Uniform Grid

environment than in the other two environments. This follows from the Uniform

environment having multiple paths that satisfy both the shortest distance and fewest

crossings heuristics, making the choice of path more indifferent to which heuristic

is used. As the road network becomes less uniform in the Quad Grid and Clapham

Common environments, MC tends to become more influential. Conversely, PH

tends to be more influential in the grid environments where the more uniform pave-

ment network link lengths required larger planning horizons to identify more opti-

mal upper-level paths. (Clear discontinuities in the plot of L̄ against PH in Figure

6.3 can also be seen at 90° for the grid environments, a result of having uniform

90° turns in the grids.) The varied link lengths (e.g. different link lengths on either

side of the road) in the the Clapham Common environment mean optimal paths can

be identified even with a minimal planning horizon (e.g. by avoiding walking on a

longer side of the road).

Another notable difference between environments is the greater sensitivity of

output metrics to ε in the Uniform Grid environment. This is due to the uniform

length of road links in this environment which allow for ε to determine lower-level

route choice more systematically. In the more realistic environments ε has less of

an effect.

6.5.2 Least cost model comparison

Comparison to the least cost route choice model shows both models can produce a

similar level of variation in upper-level route lengths. The least cost model produces

a variety of routes by using historic vehicle count data in combination with two

parameters to weight different network links. The CLT route choice model has

produced a similar variation in route lengths through the dynamic decision making

of agents moving through and responding to their environment. Figure 6.5 compares

the paths produced by these two models for one OD pair. For this OD pair, the CLT
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route choice model distributes pedestrian agents more evenly across the pavement

network, also producing a larger standard deviation in route lengths (12m compared

to 5.1m). Comparing the methods for individual trips reveals differences between

the two methods that are obscured by the statistics calculated over all trips in Table

6.3. Additionally, the least cost model with the narrower parameter range of k, j ∈

{0,100,200,300,400,500}, shown in Appendix A Section A.2, produces a smaller

standard deviation of route length than the CLT route choice model. Together, these

results show the the CLT route choice model produces pedestrian route alternatives

that are qualitatively different to those produced by a least cost model, doing so

through a combination of heuristics, bounded rationality, and dynamic route choice.

6.5.3 Validity of parameter bounds

The effect of different pedestrian preferences on movement have been explored

using GSA. The choice of parameter bounds was intended to fully encompass the

pedestrian agent behaviour that can be produced by the model. The results provide

some indication this has been achieved. Figure 6.3 shows the response of all output

metrics to PH appears to tapers off towards the upper PH bound, suggesting that

pedestrian agent behaviour changes little beyond this limit. The largest change in SP

in response to PH occurs for lower-mid PH values, again suggesting that increasing

the upper or lower bound will have minimal impact on the results.

The response of metrics L̄, SP, and P̄ to ε appears to taper at upper bound,

suggesting that pedestrian agent behaviour changes little for ε > 8. Changes in

pedestrian agent behaviour may be observed beyond the lower ε bound, but as dis-

cussed in Chapter 5 this could limit the ability of pedestrian agents to respond to

traffic levels.

I shows a clear tapering in response to high Nv values, suggesting the upper

limit of vehicle traffic is producing near minimal informal crossing. However,

higher Nv values may continue to produce changes in L̄, SP, and P̄. The results

that only a maximum of 40% of pedestrian agents followed the shortest path sug-

gests that the lower Nv bound could be reduced further to better test the model.

By definition, pedestrian agents should all follow the shortest path for certain route
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choice settings (high PH, MC = f alse, low ε , high α). To observe 100% of pedes-

trian agents following the shortest path the level of vehicle traffic may need to be

lower than considered in these experiments.

The remaining parameters, τ , λ , and Tp, were found to have minimal effects of

the output metrics for the range of values used in simulations. A more parsimonious

model is therefore possible, where values for these parameters are fixed.

6.5.4 Limitations

A number of assumption and simplifications were made in developing the simu-

lation used to explore the behaviour produced by the CLT route choice model. I

discuss these below and the effect they are likely to have had on the results.

Absence of noise in vehicle agent movement model

The car following model used to control the movement of vehicle agents does

does not include random perturbations to vehicle speed. Random perturbations to

vehicle speed are typically needed to reproduce stop-go traffic waves at higher ve-

hicle densities (for example in canonical single infinite lane traffic simulations).

The absence of random perturbations to vehicle speed in this simulation produces

unrealistically consistent vehicle speeds and potentially reduces the occurrence of

gaps in vehicle traffic which, in turn, potentially limits pedestrian road crossing.

However, the simulation does contain other ways vehicle agents’ speed can be in-

terrupted: vehicle agents slow down or stop for crossing pedestrians and must wait

at junctions for capacity on connecting road links. Because of this, the impact of

excluding random perturbations to vehicle speed is expected to be small.

Role of the cognitive heuristic model of pedestrian movement

The movement of pedestrian agents is controlled by the cognitive heuristic

model, detailed in Section 5.6. The simulation experiments in this chapter build

on those in Chapter 5 by varying pedestrian agent densities (through the Tped pa-

rameter), in principle warranting the use of this more detailed model of pedestrian

movement and interaction. However, given the low number of pedestrian agents

added to the simulation (200) and the shortest time period of Tped = 5s pedestrian

agent densities remain low in all simulation runs. Additionally, interactions with
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the environment (walls) were excluded to reduce computational cost (this simplifi-

cation is discussed in Section 5.6. As a result, pedestrian agents effectively move at

constant speed towards their destination meaning that the cognitive heuristic model

of pedestrian movement is mainly redundant. I expect similar results would be ob-

tained by modelling pedestrian agents’ movement as a constant velocity straight

line without having a significant effect on the results. The cognitive heuristic model

would have an effect if higher pedestrian densities were simulated. This would also

require using a smaller model time step (see below). At low pedestrian densities

the pedestrian movement model is currently introducing unnecessary computational

cost.

One second time step

A 1s time step is too coarse to effectively model high density pedestrian move-

ment. At high densities smaller time steps of < 0.1s are required to avoid very high

collision forces that displace pedestrian agents large distances in a single step (a

model artefact commonly observed when too large a time step is used). That these

are not observed is a further illustration that simulated pedestrian densities are too

low for the cognitive heuristic model to have an effect.

Varying pedestrian speeds

Pedestrian agents are assigned different desired walking speeds using a log-

normal distribution. The lower-level route choice model accumulates activation at

a constant rate of once per time step. When a diagonal pavement crossing link is

chosen, faster moving pedestrian agents will have fewer opportunities to accumu-

late activation due to reaching the end of the road in fewer time steps. This creates

an unintended causal link between walking speed and road crossing choices, the

impact of which will be for faster moving pedestrian agents to tend to cross fur-

ther towards the end of the road and to postpone crossing more often. To correct

for this the rate of activation accumulation could be adjusted to account for pedes-

trian agent speeds, creating a consistent activation accumulation process across all

pedestrian agents. (It is possible that faster moving pedestrians do tend to cross in

systematically different locations, which would be an interesting model prediction
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to test.)

Constant random seed

The activation accumulation process of lower-level route choice uses random-

ness when sampling crossing alternatives. To properly account for the effect of

randomness on model outcomes, multiple experiments should be performed with

different random seeds rather than the single fixed random seed used in this chapter

and in Chapter 5. The crossing alternative sampling probability, given by Equation

5.2, is implemented using a pseudo-random uniform number distribution whose se-

quence is determined by the random seed. The risk of not performing replicate

simulation runs with different random seeds is that the results are contingent in

some way on the particular sequence of random numbers produced by the chosen

random seed. However, because each pedestrian agent samples crossing alternatives

many times to make a crossing decision and because the order in which agents will

sample alternatives changes based on other model parameters (for example chang-

ing upper-level parameters will change when pedestrian agents attempt to cross the

road) it is unlikely that measurably different crossing behaviour would be observed

with different random seeds. Nonetheless, the lack of replicate simulations is a

limitation that should be addressed going forward.

6.5.5 Future work

To develop this work further it is necessary to validate the model. Given the com-

plexity of the model - typical of ABMs and micro-simulations that produce high-

level patterns ‘from the bottom up’ - there is not a single, well defined approach

to validation. instead, there are multiple model components that require different

approaches to validation. A central premise of the model is that road crossing de-

cisions are reconstrued from a high to a low level in a manor in-keeping with CLT.

To validate this process - represented in the model by the interaction of upper and

lower-level route choice would require a bespoke experimental design that seeks to

measure peoples cognition and/or decision making in real or simulated urban en-

vironments. For example, by replicating the experiments used to validate choice

construal (Fujita et al., 2006; Liberman and Trope, 1998; Yan et al., 2016) in an
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urban route choice context. Validating this aspect of the model more closely aligns

with it’s purpose as a tool for studying pedestrian cognition and perception rather

than a tool for transport planning.

Alternatively, validating the upper and lower-level route choice models by ob-

serving pedestrian road crossing choices in urban settings would be more aligned

with providing useful insight for transport planning and street design. For exam-

ple, the virtual game-like experimental methodologies Wang et al. (2021) or field

observations (Wang et al., 2010) can be used to validate road crossing models and

are also applicable to the lower-level route choice model presented in this thesis.

Similarly, the detailed origin to destination recording of people’s road crossing be-

haviour used by (Papadimitriou, 2016) to study pedestrian road crossing could also

be used to verify the routes produced by the CLT route choice model. By emu-

lating these validation methodologies different models of road crossing could be

compared to the CLT route choice model (as well as to other versions of the CLT

route choice model that use different crossing alternative choice sets or upper-level

route choice heuristics), helping to establish which is most accurate in a particular

context and ultimately to better anticipate people’s behaviour when designing urban

streets.

Finally, the computational cost of the model may be reduced through simpli-

fying or removing components of the model, the most computationally expensive

of which is, firstly, the ‘cognitive heuristic’ pedestrian movement model (discussed

in Section 6.5.4 above) and, secondly, the sequential sampling crossing location

choice model.

By addressing these limitations the CLT route choice framework could be used

for a more granular appraisal of traffic management and urban design. Walka-

bility (Talen and Koschinsky, 2013) and pedestrian quality-of-service (Macdonald

et al., 2018; Anciaes and Jones, 2016a) analysis could be extended to account for a

broader set of possible pedestrian trajectories that are responsive to the movements

of other road users.
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6.6 Conclusion

The CLT route choice model presented in Chapters 4 and 5 represents specific char-

acteristics of pedestrian route choice and road crossing, broadly grouped into ‘spa-

tial knowledge’ and ‘route preferences’ categories. The experiments we perform in

this chapter and Chapter 5 robustly test the CLT route choice model by examining

behaviour at two spatial scales (street level and neighbourhood level), simulating

trips in multiple environments, and widely exploring the parameter space. While

the route choice model may fail to represent or parameterise some additional as-

pects of pedestrian decision making, the model verification performed in this chap-

ter extensively tests the components that have been incorporated.

This chapter verifies that components of upper-level and lower-level route

choice models are producing the intended pedestrian behaviour when used to model

a variety of pedestrian trips in an urban neighbourhood. To do this, we implemented

the CLT route choice model in a spatial ABS and perform global sensitivity analy-

sis for three simulation environments. Pedestrian trips in three environments were

simulated to verify which aspects of pedestrian agent behaviour are shaped by the

environment independently to the route choice model.

The results show that movement at both the neighbourhood and street level is

affected by decision making at both scales, although upper-level parameters MC and

PH predominantly control measures of upper-level paths L̄ and SP. Comparison to

an optimal least cost route choice model demonstrates the CLT route choice model

is able to produce a similarly wide variety of routes, predominantly through upper-

level route choice. Additionally, the model produces a wide variety street level

trajectories due to the representation of informal crossing behaviour.

The CLT route choice model could therefore serve as an alternative source of

pedestrian route alternatives, both at the neighbourhood and street scale. The advan-

tages of such a method would be the increased granularity of the route alternatives

and their interpretability in theoretically robust psychological terms. Additionally,

by connecting granular pedestrian movement with larger scale navigation the CLT

route choice model could support more detailed assessments of pedestrian walk-
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ing experience and street infrastructure. This is developed in the following chapter,

Chapter 7, where different road crossing restrictions are simulated and compared.



Chapter 7

Incorporating multi-scale pedestrian

movement into street infrastructure

appraisal

7.1 Introduction

In Chapter 6 we used global sensitivity analysis to explore the pedestrian agent be-

haviour produced by the CLT route choice model in three simulation environments.

This chapter builds on this analysis by introducing policies that restrict pedestrian

road crossing behaviour, using the simulation methodology developed in Chapter 6

to analyse the effects of these policies.

In urban street environments road user movement is coordinated through a

mixture of physical infrastructure, laws, rules, and social norms (Tennant et al.,

2021). These multiple layers have developed over time, often in direct response

to increasing volumes of vehicle traffic (Moran, 2006, 2010), and constitute both

‘bottom-up’ (for example emergent social norms) and ‘top-down’ (for example in-

frastructure delivered by a central authority) influences. This is typical of socio-

technical systems in which practices, regulations, maintenance networks, and in-

frastructure, are aligned to a particular technology and successfully perform societal

functions such as the movement of people (Geels, 2002).

The transition to more sustainable urban transport systems is motivating
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changes to socio-technical configurations that govern road users. Plans to in-

crease walking and cycling in urban areas (Department for Transport, 2021) de-

mand changes to infrastructure and urban street space allocation (Gössling, 2020;

Cervero et al., 2019). Micro-mobility (encompassing e-scooters, dockless bicycles

and other new single rider vehicles) can compete for street space with pedestrians

(Zhang et al., 2023) and may require additional infrastructure (Zagorskas and Burin-

skienė, 2020) and regulations (Sareen et al., 2021) regarding their operation. At the

same time, autonomous vehicles could make new demands of street infrastructure

to help facilitate their operation (Tennant and Stilgoe, 2021).

Among these competing and changing demands of urban roads, attempts to en-

sure both mobility and safety exemplify tensions between different road users and

values. Mobility is a core function that roads perform (Jones and Boujenko, 2009)

as reflected in the evaluation of roads in terms of vehicle speed and throughput met-

rics (Jones and Anciaes, 2018). Simultaneously ensuring the safety of road users is a

challenge that has been addressed in different ways. Traditional approaches to traf-

fic engineering seek to design out interactions or potential conflict points between

road users. However, this can lead to environments that, by providing additional

space for cars, encourage high vehicle speeds which ultimately reduce the safety

of the environment (Ewing and Dumbaugh, 2009) and walking intentions (Anciaes

et al., 2019). Alternative approaches view vehicle speeds and traffic levels as the

principle (inversely proportional) determinants of road safety. Accordingly, speed

limits may be reduced and roads designed to encourage lower speeds, for example

by increasing the potential for conflicts between road users in the hope that drivers

adjust their behaviour accordingly (Dumbaugh and Gattis, 2005). Such interven-

tions improve the safety for road users partially the expense of vehicle mobility,

highlighting how tensions between safety and mobility may be more accurately ex-

pressed as tensions between vehicular and active transport modes.

Interventions related to safety and mobility tend to be made in relation to differ-

ent spatial scales as well as in relation to different transport modes. A network-level

perspective is generally considered necessary for assessing and improving the link
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function of urban roads. Studies argue that cycle infrastructure investments should

be prioritised based on network connectivity (Natera Orozco et al., 2020; Szell et al.,

2021) and that the effects of increases to road network capacity on vehicle traffic are

determined by the intervention location relative to the rest of the network (Sloman

and Hopkinson, 2020). Similarly, walkability assessments include assessments of

the connectivity of road networks (Southworth, 2005; Dhanani et al., 2017; Sevt-

suk et al., 2016). Analysis of road safety takes a less explicitly network-level per-

spective with high risk areas identified based on the locations of incidents without

consideration of the routes being taken by those at risk (Xie et al., 2017; Wang and

Kockelman, 2013; Lovelace et al., 2016). Interventions to improve infrastructure

safety are generally assessed at the link level (Anciaes et al., 2018; Cantillo et al.,

2015; Hensher et al., 2011). Assessing street infrastructure interventions at both the

link-level and neighbourhood level could provide a more thorough and integrated

assessment of the impacts on safety and mobility.

In this chapter the agent-based simulation (ABS) developed through this the-

sis is used to explore the potential trade offs between mobility and safety and how

interventions to street infrastructure affect these. This agent-based approach can

be contrasted to existing methods designed to assess the effect on pedestrians of

changes to street infrastructure. Anciaes et al. (2018) propose a methodology to ap-

praise the value of infrastructure designed to reduce the barrier effect of roads such

as pedestrian crossings. This detailed and thorough method is limited to considering

interventions at single specific sections of road or intersections. This narrow geo-

graphical focus prevents analysis of how the impacts of interventions are shaped

by movement patterns across multiple scales - from link level to the wider urban

area - or the impacts of interventions covering multiple locations. Papadimitriou’s

work models pedestrian road crossing choices across multiple road links (Papadim-

itriou, 2012, 2016), but does not consider how interventions to street infrastructure

could change pedestrian and vehicle behaviour. Elsewhere, simulations have been

used to explore the effects of different traffic management policies on pedestrian

and vehicle behaviour but have used simple and homogeneous models of pedestrian
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movement (Sidewalk Labs, 2019).

The multi-scale model of pedestrian movement that has been developed in

this thesis can be leveraged to address these gaps. This agent-based approach can

provide a richer description of how the impacts of such ‘top-down’ interventions

emerge through the actions of individual agents and their interactions with one an-

other and with street infrastructure. Additionally, the ABS incorporates a wide

range of pedestrian route choice behaviours. This provides a source of pedestrian

heterogeneity which can improve impacts assessments by broadening the set of be-

haviours that interventions are tested under.

The following section explains how the ABS is adapted to the tasks of explor-

ing the impacts of changes to street infrastructure, specifically interventions that

limit where pedestrians are able to cross the road. In Section 7.3 the results of the

simulation experiments are presented and in Section 7.4 they are discussed. Section

7.5 concludes this chapter.

7.2 Methods

7.2.1 Simulation scenarios

We use the ABS of multi-scale pedestrian movement developed in this thesis to

explore the impacts of three policies that restrict pedestrian agents’ road crossing

ability. Specifically, pedestrian agents are prevented from crossing roads informally

to varying degrees in each of the policies. These are intended to represent the ef-

fect of laws or infrastructure (for example guard rails) that ensure pedestrians cross

the road at marked crossing only. These policies can be contrasted to the CLT

route choice model parameters which produce more or less informal road crossing

through the preferences of individual pedestrian agents 1.

By restricting informal crossings, the policies confine pedestrian-vehicle inter-

1The CLT route choice model assumes all pedestrians evaluate an informal crossing option. The
policies to restrict informal crossing could therefore also be interpreted as representing different
kinds of pedestrian agents that do not consider crossing informally on all road links. Here we do not
distinguish between these two cases - pedestrians themselves deciding to to entertain an informal
crossing option and physical barriers removing such an option - and instead focus on the effects of
such differences in road crossing behaviour.
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actions to a predetermined set of locations. Under certain traffic engineering per-

spectives this helps ensure safety by reducing the potential locations of pedestrian-

vehicle conflicts, but, as discussed above, ‘shared-space’ designs are based on an

opposing philosophy. Where pedestrians can be expected to cross the road gains

significance in the context of autonomous vehicle testing and deployment. Stud-

ies argue that validating autonomous vehicle performance requires establishing the

operational design domain (ODD) of the vehicle (Weissensteiner et al., 2023; Stil-

goe, 2021) which in urban areas will include the behaviour of other road users

(Vinkhuyzen and Cefkin, 2016; Domeyer et al., 2020). Simulating policies that

restrict pedestrian road crossing behaviour at the neighbourhood scale helps to un-

derstand how the impacts of such policies are contingent on a particular urban envi-

ronment, thereby addressing questions regarding the wider social and behavioural

impacts of vehicle automation (Borenstein et al., 2017; Cavoli et al., 2017).

The effects of these policies are investigated by simulating pedestrian agent

trips under each in three different road network environments and under a range

of trip and route choice parameter settings. As in Chapter 6, for each simulation

run output metrics characterising the behaviour of pedestrian and vehicle agents are

produced which are used to compare the effects of the three policies.

The three simulation environments used in Chapter 6 are used again in this

analysis: Clapham Common, Quad Grid, and Uniform Grid. This allows analy-

sis of how the effects of these policies could be contingent on the road network

morphology and associated road crossing infrastructure of each environment. The

locations of marked crossings are also unchanged: placed at the entrance to side

roads and around junctions with four or more entries and exits (i.e. road nodes with

degree 4 or higher)2.

Three crossing restriction policies are considered: ‘always’, ‘sometimes’ and

‘never’. The ‘always’ policy permits informal crossing on all road links and cor-

responds to the implementation of the CLT route choice model presented thus far.

2One additional marked crossing was manually added to a junction in the Clapham Common
environment. This was required because, when preventing informal crossing under the “never”
policy, a small number of pedestrian agents were unable to progress past this junction in some
simulation runs.
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Under this policy pedestrian agents always perceive an informal crossing alternative

when choosing a crossing location under lower-level route choice (in addition to the

marked crossing alternatives represented by line geometries).

The ‘sometimes’ and ‘never’ policies restrict the ability of pedestrian agents

to perform informal crossings. Under the ‘never’ policy, informal crossing is pre-

vented on all road links. The ‘sometimes’ policy represents a more balanced ap-

proach to regulating the movements of pedestrians in which informal crossing is

only prevented on the busiest roads. In the Clapham Common environment, infor-

mal crossing is prevented on roads classed as A-Roads (in the UK road classification

system A Roads have regional strategic importance and typically high levels of ve-

hicle traffic), a total of 54 links connected to 54 intersections. To replicate this in

the synthetic grid environments stretches of road that pass through and around the

centre of the road network are treated as A-Roads; 48 links connected to 45 intersec-

tions in the Uniform Grid environment and 47 links connected to 45 intersections in

the Quad Grid environment. Figure 7.1 shows the road network for each environ-

ment and the roads on which informal crossing is prevented under the ‘sometimes’

policy.

Pedestrian agents are prevented from crossing informally in the simulation by

making an adjustment to the upper-level and lower-level route choice models. At

the lower level an informal crossing alternative is not included in the crossing al-

ternative choice set on road links where informal crossing is prevented. At the

upper-level the pavement network is edited to reflect the unavailability of informal

crossing. Road crossing pavement network links are removed if it is not possible

for pedestrian agents to cross (road links without marked crossings and where infor-

mal crossing is prevented). This prevents pedestrian agents choosing an upper-level

path they would be unable to traverse at the lower-level.

In the original upper-level route choice model, paths on the pavement network

are constrained to follow the shortest road network path from origin to destination.

(Recall that pedestrian agents first choose a path on the road network and that their

perception of the pavement network is defined by the number of road network links
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that lie within their planning horizon.) When informal crossing is restricted, this

route can become impossible for a pedestrian agent to complete due to the edits

to the pavement network. The road network is not edited since a pedestrian agent

starting on a different side of the road might still be able to follow the shortest road

network path without crossing informally.

To ensure all pedestrian agent trips can be completed a further adjustment to

upper-level route choice is made. If no pavement network path to the end of a

pedestrian agent’s planning horizon exists, the constraint to follow the shortest road

network path is removed and the pedestrian agent chooses an upper-level path to

their destination with complete knowledge of the pavement network. In practice,

this never occurs in the grid environments due to the availability of marked crossings

at either end of each road link but does occur in the Clapham Common environment

due to the lower coverage of marked crossings.

The need to re-plan upper-level paths in this way reflects the severity of pre-

venting informal crossings, particularly where the coverage of marked crossings is

sparse or uneven. In real urban environments informal crossing is rarely impossi-

ble, even if it is illegal or uncustomary. But for this study, the restriction serves

as a way to highlight the extent to which informal crossing behaviour is necessary

to avoid significant detours given the placement of marked crossings. Because in-

formal crossings increase the potential for conflicts between road users the effect

of these policies can be related to balancing safety and mobility afforded by urban

roads.

The three environments (Uniform Grid, Quad Grid, Clapham Common) com-

bined with the three policies (‘always’, ‘sometimes’ and ‘never’) produces 9 scenar-

ios. For each scenario 2,560 model runs are performed. Each run uses a different set

of parameter values which determine the path-finding behaviour of the pedestrian

agents, the trip frequencies of pedestrian agents and the time average number of

vehicle agents travelling in the environment. Parameter value ranges are the same

as those used in Chapter 6, shown in Table 6.2. Parameter values are sampled using

the Sobol pseudo-random number sequence (Saltelli et al., 2008) using a uniform
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Figure 7.1: The road network for each of the model environments. Informal crossing is
prevented on the highlighted links in under the ‘sometimes’ policy.

distribution across each parameter’s value range.

7.2.2 Evaluation metrics

Five metrics are used to analyse the effects of the policies: mean upper-level path

length, L̄; total number of road crossings, NC; crossing location entropy, CLE; cross-

ing location dispersion CLD; and the average speed of vehicle agents, S̄V . Metrics

NC, CLE, and CLD measure lower-level pedestrian movement and road crossing

behaviour and L̄ measures upper-level route choices. S̄V is used to emasure interac-

tions between pedestrian and vehicle agents.

L̄ is given by

L̄ =
Σp,qlp,q

Np
(7.1)

where lp,q is the length of network link q in pedestrian agent p’s completed

upper-level path and Np is the number of pedestrians in the run. This metric was

used in Chapter 6 to analyse pedestrian agent route choices.

CLE is a measure of the diversity of road crossing locations in each run. This

metric is determined by street-level movement patterns of pedestrian agents. To

calculate CLE, first the diversity of crossing locations on each road link in a given

simulation run is calculated. Each road link is divided into 2m segments3, with the

3The analysis was repeated with 5m segments. 5m segments were found to be too course and did
not identify changes in road crossing behaviour
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first segment located at the start of the road from the pedestrian agent’s perspective.

The number of crossings in each segment is counted and divided by the total number

of crossings on that link to give pi,l , the probability of a crossing taking place in

segment i on link l. The diversity of crossing locations on that link is then calculated

using the Shannon Entropy formula H = −Σi pilog(pi) (Shannon, 1948) to give

CLEl , the crossing location entropy of link l.

Links on which all road crossings occurred in the same segment i will have a

low CLEl value where as links on which pedestrian agents crossed at a variety of

locations will have a high CLEl value. To illustrate this, the simulation results from

Chapter 4 are presented again in Figure 7.2 below.

Individual links’ entropy values are then averaged to give CLE. Road links

typically vary in length which means that the number of 2m segments, nl , will vary.

This raises the issue of how to average the entropy values of different road links.

One approach is to normalise each link’s entropy by the maximum possible value

for that link, log(nl), as per the normalisation method used by Marin et al. (2022) for

comparing entropy values between network components of varying size. However,

in this case normalisation is not appropriate. Consider the CLEl value for two road

links with different lengths - L1 is 4m long and L2 is 10m long - where on both

links crossings are evenly split between the first and second 2m segments. The

unnormalised CLEl values would be equal:

CLEL1 =CLEL2 =−(0.5∗ log(0.5)+0.5∗ log(0.5)) (7.2)

but the normalised values would not:

|CLEL1|=
−(0.5∗ log(0.5)+0.5∗ log(0.5))

log(2)
= 1 (7.3)

|CLEL2|=
−(0.5∗ log(0.5)+0.5∗ log(0.5))

log(5)
= 0.43 (7.4)

By averaging the unnormalised values CLE measures how spread out in space

road crossings are rather than how spread out relative to the length of each road
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Figure 7.2: Crossing locations in two scenarios with brighter colours indicating a greater
density of road crossings at that location. Where crossings are more evenly
spread along a road link CLE is higher.

link. This better represents the aggregate patterns of street-level pedestrian agent

movement.

CLD is given by the average distance of crossing locations from the centre of

all crossing locations (given be the mean latitude and longitude of all coordinates)

(Rey et al., 2020). A low dispersion value indicates a higher proportion of cross-

ings occurring in the centre of the environment, whereas a higher dispersion value

indicates that crossings are made widely spread out from the centre.

The fifth evaluation metric is the average speed of vehicle agents in the simu-

lation run, S̄V . In the simulation, all vehicle agents adhere to the same maximum

speed limit and in the absence of other agents will only decelerate to avoid exceed-

ing this limit. In the presence of other agents, vehicle agents will reduce their speed

to match the speed of the vehicle ahead of them and to yield to crossing pedestrian

agents. Because of this, changes in average vehicle agent speed between runs are

almost entirely produced through interactions with other agents4. Average vehicle

agent speed, S̄V , is therefore used to measure the extent of competition for carriage-

way space.

4It takes vehicle agents 14s to reach the maximum speed. Depending on the distribution of
vehicle origins and destinations, it’s possible for slight differences in average speed to occur without
interactions as a result of the accelerating period of a vehicle agent’s journey comprising a greater
or lesser share of the whole journey. However, this effect is negligible because the distribution of
vehicle origins and destinations being constant across simulation runs.
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7.2.3 Analysis

First, we assess effect of the policies on pedestrian agent behaviour. Then, we assess

the effect of the policies on competition for carriageway space. Building on this,

the causal pathways from policy setting to pedestrian agent behaviour to changes in

carriageway competition are investigated in order to explain how the polices change

pedestrian-vehicle interactions when sharing carriageway space.

The metrics L̄, CLE, and CLD are used to assess the effects of crossing re-

striction policies on pedestrian agent behaviour, summarised by the hypothesis H1

below:

• H1.0: Restricting informal crossing does not affect pedestrian behaviour, as

measured by L̄, NC, CLE, and CLD

• H1.1: Restricting informal crossing does affect pedestrian behaviour, as mea-

sured by L̄, NC, CLE, and CLD

By measuring street-level pedestrian trajectories, CLE should exhibit a clear trend

between crossing restriction policies, since the policies directly affect street-level

pedestrian behaviour. The effect of policies on L̄, NC, and CLD is less evident

from the policy definition. These are metrics of pedestrian movement at the scale

of the whole environment and are shaped by neighbourhood-level features such as

network morphology and street-level features such as marked crossing infrastruc-

ture. How policies to restrict pedestrian behaviour at the street-level manifest to

neighbourhood-scale patterns are best revealed through the simulation methodol-

ogy used here.

These hypotheses will be tested with linear regression models in which L̄, NC,

CLE, and CLD are the dependent variables and the policy setting is an independent

variable. The policy setting is represented with a one-hot encoding consisting of two

categorical variables sometimes and never representing these two policies. Equation

7.5 gives the regression model equations used to test these hypotheses. Because the

exact same set of simulation parameter values (α,ε,τ,λ ,MC,PH,Tp,Nv) are used

when simulating each policy setting, these parameters do not need to be included
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as controls in the regression models to identify the effect of the policies on the

evaluation metrics.

L̄

NC

CLE

CLD


∼ sometimes+never+ const (7.5)

While the environments are designed to be similar in certain respects, direct

comparisons of the output metrics between environments cannot be easily inter-

preted, in particular when comparing the Clapham Common environment to the

two grid environments. Instead, the analysis focuses on comparing the differences

between the effect of the policies on the output metrics between environments. As

in Chapter 6, the distribution of each metric across all simulation runs is visualised

to further compare policy settings. This compares the range of values produced

by varying simulation parameters (α,ε,τ,λ ,MC,PH,Tp,Nv) between each policy

setting and between environments.

Despite CLE and CLD measuring road crossing behaviour, the results of the

above hypothesis tests do not inform whether interactions between pedestrian and

vehicle agents are changed by restricting informal crossing. To answer this ques-

tion, S̄V is must be compared between policy settings. Furthermore, because the

policies only affect pedestrian agents, any change in S̄V due to the policies should be

explainable in terms of changes in pedestrian agent behaviour. The directed acyclic

graph (DAG) shown in Figure 7.3 illustrates this argument. Changes in S̄V are only

produced by conflicts between agents and there are two ways that agent conflicts can

be affected. N̄v directly affects conflicts by changing the number of vehicle agents

in the simulation and therefore the competition for carriageway space. Conflicts

are also affected by changes in pedestrian agent road crossing behaviour, which in

turn will be affected by crossing restriction policies. The only causal path through

which the policies can affect S̄V is through pedestrian agent behaviour. The ques-

tion of whether the policies affect S̄V in this manner is summarised by the following
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hypotheses:

• H2.0: Restricting informal crossing does not affect vehicle speed

• H2.1a: Restricting informal crossing affects vehicle speed by changing the

number of pedestrian road crossings

• H2.1c: Restricting informal crossing affects vehicle speed by changing the

dispersion of pedestrian road crossings

• H2.1b: Restricting informal crossing affects vehicle speed by changing the

crossing location entropy of pedestrian road crossings

H2.0 addresses whether or not the informal crossing policies affect S̄V . The

three alternative hypotheses, H2.1a, H2.1c, and H2.1b address how the policies

affect S̄V . The alternative hypotheses each identify a different aspect of pedes-

trian crossing as the mediator between the policies and pedestrian-vehicle conflicts.

H2.1a considers the number of crossings, a non-spatial metric of pedestrian cross-

ing behaviour. H2.1c considers crossing dispersion, a global spatial measure of

crossing locations. H2.1b considers crossing location entropy, a local spatial mea-

sure of crossing locations.

These hypotheses are tested also with linear regression models. H2.0 is tested

by taking S̄V as the dependent variable and the policies as the independent variables,

as shown in Equation 7.6.

S̄V ∼ sometimes+never+ const (7.6)

The regression model defined by Equation 7.6 can only indicate whether or

not policies affect pedestrian-vehicle interactions. Hypotheses H2.1a, H2.1c, and

H2.1b each propose a different explanation for how policies affect these interac-

tions. Each of these hypotheses are tested with a two-stage least squares regression

(2SLS) instrumental variable (IV) analysis (Huntington-Klein, 2021; Pokropek,

2016), summarised by the equation pairs 7.7, 7.9, and 7.8. 2SLS consists of per-

forming two linear regressions. The first regression is used to predict the ‘treatment’
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Figure 7.3: A directed acyclic graph illustrating the possible causal paths affecting S̄V . N̄v

affects conflicts indirectly, because pedestrian agent route choices respond to
the level of vehicle traffic, and directly, because higher levels of vehicle traffic
increases competition for carriageway space.

variable (NC, CLE, or CLD) with the policy (which acts as the ‘instrument’). This

first stage is given by the regression models given by Equation 7.5. The predicted

treatment variables, N̂C, ˆCLE, and ˆCLD, isolate the variation in NC, CLE, and CLD

due to the policies. In the second regression, S̄V , is modelled as dependent on the

predicted treatment variable and the controls. The second regression provides the

effect size of the association between changes in pedestrian agent behaviour due to

the policies and changes in S̄V due to the policies. Comparing these effect sizes, in

combination with the results from the first stage regression (Equation 7.6) explains

how the policies affect S̄V through changes in pedestrian agent behaviour.

H2.1a :
NC ∼ sometimes+never+ const

S̄v ∼ N̂C + const
(7.7)

H2.1b :
CLE ∼ sometimes+never+ const

S̄v ∼ ˆCLE + const
(7.8)
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H2.1c :
CLD ∼ sometimes+never+ const

S̄v ∼ ˆCLD + const
(7.9)

All simulation parameters are normalised using min-max rescaling (suitable

since these are sampled from uniform distributions) and metrics S̄V , NC, CLE, and

CLD are normalised by z-score rescaling (subtracting the mean and diving by the

standard deviation).

Through this analysis the simulation is used to explore how top-down restric-

tions on pedestrian behaviour could change competition for carriageway space. By

simulating each policy for a broad range of pedestrian agent and traffic settings, any

identified differences between policies should be robust to uncertainties in pedes-

trian behaviour. The multi-scale nature of the simulation allows both global and

local features of road crossings, as well as crossing frequency, to be measured and

their effect on pedestrian-vehicle interaction quantified. Measuring competition for

carriageway space is directly relevant to competing theories of pedestrian safety,

such as whether conflicts should be designed out of or into urban roads (Ewing and

Dumbaugh, 2009; Hamilton-Baillie, 2008). Here, we use crossing restriction poli-

cies to restrict the potential locations of pedestrian-vehicle interactions and observe

how this changes the competition for road space ‘from the bottom up’.

7.3 Results

Each simulation experiment produces 2,560 values for output metrics L̄, NC, CLE,

CLD, and S̄V . Table 7.1 presents the mean and standard deviation of each metric

across simulation runs, an aggregation over route choice and trip frequency param-

eters. The distribution of these metrics across simulation runs is shown for each

experiment in Figures 7.4 - 7.6. These distributions show that the effects of model

parameters on outputs varies between scenarios. (See Appendix B for figures show-

ing the sensitivity indices of evaluation metrics to simulation parameters under the

three policy settings.) Comparisons between policy settings help explain how the

policies are affecting agent behaviour.
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Environment Policy L̄ σL̄ NC σNC CLE σCLE CLD σCLD S̄V σSV

always 682 6.4 5.3 1.2 0.46 0.11 313 10 9.3 0.4
sometimes 717 6.4 5.5 0.8 0.38 0.1 308 9 9.4 0.4Clapham

never 742 16.7 5.3 0.5 0.18 0.05 306 6 9.4 0.4
always 732 5.2 4.4 0.8 0.26 0.12 394 17 8.7 0.7

sometimes 730 5.0 5.0 0.4 0.17 0.10 380 5 8.7 0.7Quad
never 725 7.6 5.2 0.2 0.17 0.07 386 3 8.7 0.7

always 743 6.6 5.7 0.0 0.17 0.15 321 6 9.7 0.3
sometimes 741 6.3 5.7 0.0 0.15 0.12 325 6 9.7 0.3Uniform

never 735 8.2 5.7 0.0 0.14 0.08 329 9 9.6 0.3

Table 7.1: Descriptive statistics for the five output metrics in each of the simulation exper-
iments. Values are coloured to indicate within environment rank: green=largest,
yellow=middle, red=lowest. If values are tied no colour is applied.

First stage 2SLS results are shown in Table 7.2 and second stage results are

shown in Tables 7.3, 7.4, and 7.5. These tables report the regression coefficients

and their standard errors. Because these results are produced with simulated data p-

values are not reported. Simulated data lacks a clear distinction between the sample

and global population that the interpretation of p-values is based on. The sample

size can be arbitrarily increased by running more simulations and indeed simulation

experiments typically involve large numbers of simulation runs. Large numbers of

simulation runs can inevitably lead to low p-values without necessarily providing

greater insight into the phenomena being simulated. Instead we focus on report-

ing effect sizes (in the form of regression models coefficients) and their variability

between runs (in the form of coefficient standard errors).

7.3.1 Pedestrian behaviour

7.3.1.1 Path Length

The effect of restricting informal crossing on L̄ differs between environments. The

largest change is observed in the Clapham Common environment, where L̄ increases

from an average of 682m in the ‘always’ scenario, to 717m in the ‘sometimes’ sce-

nario, to 742m in the ‘never’ scenario. In the grid environments restricting informal

crossing tends to slightly reduce L̄. In the Quad Grid environment, L̄ decreases from

an average of 732m in the ‘always’ scenario, to 730m in the ‘sometimes’ scenario,

to 725m in the ‘never’ scenario. In the Uniform Grid the decrease is from 743m,
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Metric Environment sometimes never const Adj R2

L̄
Clapham 1.31±0.01 2.23±0.01 −1.18±0.01 0.836

Quad −0.39±0.03 −1.07±0.03 0.48±0.02 0.194
Uniform −0.28±0.02 −1.07±0.02 0.45±0.02 0.204

NC

Clapham 0.20±0.03 0.06±0.03 −0.09±0.02 0.007
Quad 0.88±0.02 1.28±0.02 −0.72±0.02 0.284

Uniform 0.03±0.02 −1.25±0.02 0.41±0.02 0.359

CLE
Clapham −0.57±0.02 −1.91±0.02 0.82±0.01 0.639

Quad −0.80±0.03 −0.85±0.03 0.55±0.02 0.151
Uniform −0.12±0.03 −0.21±0.03 0.11±0.02 0.007

CLD
Clapham −0.64±0.03 −0.78±0.03 0.47±0.02 0.116

Quad −1.18±0.02 −0.70±0.02 0.62±0.02 0.233
Uniform 0.54±0.03 1.00±0.03 −0.51±0.02 0.165

S̄V

Clapham 0.23±0.03 0.37±0.03 −0.20±0.02 0.022
Quad −0.05±0.03 −0.08±0.03 0.04±0.02 0.001

Uniform 0.02±0.03 −0.06±0.03 0.01±0.02 0.001

Table 7.2: Normalised variable coefficients and adjusted R2 values for the regression mod-
els given by Equations 7.5 and 7.6 for each simulation environment. These re-
sults compare the effects of policies on L̄, NC, CLE, CLD, and S̄V .

to 741m, to 734m. The L̄ regression coefficients in Table 7.2 further confirm that

restricting informal crossing increases trip length in the Clapham Common envi-

ronment and decreases it in the grid environments, with effect sizes increasing with

increasing restrictions and errors remaining small compared to coefficient values.

The larger ‘sometimes’ and ‘never’ regression coefficients and adjusted R2 value in

the Clapham Common environment confirms the greater effect of the policies here.

The distributions of L̄ in Figures 7.4-7.6 show that the relative influence of

simulation parameters and policy setting also differ between environments. In the

Clapham Common environment very little overlap in the distributions of L̄ is ob-

served. This means that, while route choice parameters do vary route choice, the

policies tend to have a greater effect. Again, this results from the need for pedestrian

agents to follow different road network paths when informal crossing is restricted.

In both grid environments the distributions of L̄ in different policy settings are

highly overlapping. Furthermore, in the ‘never’ setting high frequencies of minimal

and maximal L̄ values are observed. In these environments model parameters, rather

than the policy setting, predominantly determine L̄. Again, this follows from the
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greater coverage of marked crossings in these environments.

An increase in the standard deviation of L̄ distributions between the permissive

‘always’ setting and restrictive ‘never’ setting is also observed; from 6.4m to 17m in

the Clapham Common environment, 5.2m to 7.6m in the Quad Grid environment,

and 6.6m to 8.2m. This means that simulation parameters have greater impact on

upper-level paths when informal crossing is prevented.

The large increase in L̄ with crossing restrictions observed in the Clapham

Common environment is due to the incomplete coverage of marked crossings,

which requires pedestrian agents to take detours along different road links in the

‘sometimes’ and ‘never’ policy settings. In the grid environments marked cross-

ings are more evenly distributed across the environment and so preventing informal

crossing does not prevent the pedestrian agents from traversing any particular road

link. The decrease in L̄ can only be explained by pedestrian agents’ routes com-

prising more ‘diagonal crossing’ links when informal crossing is prevented, since

these links traverse the space more efficiently. (The difference in L̄ between policy

settings is approximately the same in both grid environments - another indication

this result is due to the diagonal link effect and not some other feature of the envi-

ronment.) Because pedestrian agents do not walk along diagonal crossing links this

gives a false impression that their journeys are shorter when in fact their trip lengths

are virtually unchanged by the policies. The reduction in L̄ between policy settings

in the grid environments is an artefact of the model and does not represent a real

change in trip length.

7.3.1.2 Crossing behaviour

Numbers of crossing

The effect of restricting informal crossing on NC also differs between environ-

ments. In the Clapham Common environment restricting informal crossing tends

to increase NC, however, the ‘sometimes’ policy has a larger effect than the ‘never’

policy. The regression coefficient for the ‘sometimes’ policy is 0.2±0.03 while the

coefficient for ‘never’ is 0.06± 0.03. This inconsistent relationship with crossing

restriction is reflected in the low adjusted R2 of 0.007.
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In the Quad Grid environment a more consistent response is observed, with NC

increasing as informal crossing is restricted; from an average of 4.4 crossings per

pedestrian agent under the ‘always’ setting, to 5.0 under the ‘sometimes’ setting, to

5.2 under the ‘never’ setting. This consistent increase is reflected in a high adjusted

R2 value for the NC regression model in this environment.

In both the Clapham Common and Quad Grid environments restricting infor-

mal crossing narrows the distribution of NC values, as shown by Figures 7.4 and 7.5.

This means that preventing informal crossing reduced the influence of simulation

parameters on the number of crossings pedestrian agents perform.

In the Uniform Grid environment the number of crossings changes very little

- either in response to the policies or simulation parameters - due to the regularity

of the environment. While the ‘never’ policy does produce a slight reduction in

the number of crossings, the average number of crossings only falls from 5.685

under the ‘always’ setting to 5.676 under the ‘never’ setting and is therefore not

considered to be a material difference in pedestrian agent behaviour.

Crossing location entropy

In all three environments crossing locations become more ordered as restric-

tions are increased. The Clapham Common environment exhibits the greatest

change in CLE in response to crossing restrictions, decreasing from 0.46 in the

‘always’ setting to 0.18 in the ‘never’ setting. The change is less in the grid envi-

ronments; from 0.26 to 0.17 in the Quad Grid and from 0.17 to 0.14 in the Uniform

Grid. This differences is reflected in the larger adjusted R2 of the CLE regression

model for the Clapham Common environment.

The distributions of CLE values further illustrate the effects of the policies.

The large overlap between ‘sometimes’ and ‘always’ distributions in all three envi-

ronments shows that when informal crossing is partially restricted disordered road

crossing locations on the unrestricted road network dominate the overall pattern,

leading to a distribution similar to that of the ‘always’ policy. The wide range

of CLE values under the ‘sometimes’ and ‘always’ policies shows the CLT route

choice model is able to produce road crossing behaviour encompassing both highly
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disordered and ordered crossing locations, demonstrating the model’s ability to pro-

duce heterogeneous pedestrian paths at the street level. This is particularly the case

in the grid environments, where a larger overlap between the ‘never’ distribution and

the other two distributions is observed compared to the Clapham Common environ-

ment. This shows that in the grid environments large regions of the parameter space

produce equally as ordered road crossing behaviour as preventing informal cross-

ing with a ‘top-down’ intervention. The limited overlap with the ‘never’ policy in

the Clapham Common environment shows that, in this environment, the policy is

producing behaviour rarely produced by the route choice model.

The ‘never’ distribution is also narrower in all three environments. This means

that the influence of simulation parameters on CLE is reduced when informal cross-

ing is prevented. This differs from L̄, which exhibits a broadening distribution as

informal crossing is prevented. Route choice parameters’ ability to produce changes

in CLE is diminished when informal crossing is prevented.

On the whole, preventing informal crossing suppresses the effect of model pa-

rameters on road crossing behaviour and produces more ordered crossing locations.

The overlap between all three distributions shows that highly ordered road cross-

ing locations can be produced through both top-down restrictions and bottom-up

decision making of pedestrian agents.

Crossing location dispersion

Crossing restrictions tend to decrease CLD in the Clapham Common and Quad

Grid environments and increase CLD in ine Uniform Grid environment. The size of

the policy effects are comparable between the environments, but with differences in

the relative impacts of the ‘never’ and ‘sometimes’ policies. In the Clapham Com-

mon and Uniform Grid environments increasing the level of restriction increases the

effect on CLD, albeit in different directions. In the Quad Grid environment CLD is

reduced more by the ‘sometimes’ policy than the ‘never’ policy. This suggests that

preventing all informal crossing makes pedestrian agents tend to cross more towards

the start of their journeys than when informal crossing is only partially prevented.

As with both NC and CLE, restricting informal crossings narrows the distribu-
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Figure 7.4: Results for the Clapham Common environment.

tion of CLD, particularly for the Quad Grid environment, showing again that these

restrictions limit the influence of simulation parameters on pedestrian agent road

crossing behaviour.

Comparing the regression coefficients between regression models reveals

which metric between NC, CLE, and CLD is most strongly affected by the poli-

cies in each environment. In the Clapham Common environment the ‘never’ policy

has the greatest effect on CLE, followed by CLD and NC. In the Quad Grid environ-

ment, the ‘never’ policy has the greatest effect on NC, followed by CLE and CLD,

though the coefficient values for CLE and CLD are close to one another. Finally,

in the Uniform Grid, the ‘never’ policy has the greatest effect on NC, followed by

CLD and CLE. However, this is predominantly due to simulation parameters hav-

ing nearly zero effect on NC in this environment; any small effect due to the policy

produces a large effect size.
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Figure 7.5: Results for the Quad Grid environment.

7.3.2 Pedestrian-vehicle interactions

In this section the effects of the policies on S̄V are presented along with the results

of the 2SLS analysis that attempts to explain these effects in terms of road crossing

behaviour. Unlike the pedestrian behaviour metrics, the mean S̄V values in Table 7.1

show very little variation between policy settings. This is illustrated by the highly

overlapping S̄V distributions between policies in all three environments shown in

Figures 7.4-7.6.

The sensitivity indices for S̄V (see Figures B.1-B.3 in Appendix B) show why

this is the case - S̄V is almost entirely determined by the number of vehicle agents in

the simulation, N̄v. S̄V is only slightly sensitive to parameters related to pedestrian

agent behaviour and it follows that policies that affect pedestrian agent behaviour

will have a limited effect on S̄V compared to variations in N̄v.

Nonetheless, the results in Table 7.2 show small effects of the policies on S̄V . In

all three environments, the effect size of the ‘never’ policy is greater than the ‘some-
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Figure 7.6: Results for the Uniform Grid environment.

times’ policy, showing that preventing all informal crossing has a greater effect than

preventing some. The direction of influence differs between environments. In the

Clapham Common environment restricting informal crossing tends to increase S̄V

but in the Quad Grid environment it tends to decrease S̄V . The effect of the policies

is inconsistent and weaker in the Uniform Grid environment. The ‘sometimes’ and

‘never’ coefficients are smaller than in the other environments, the coefficients have

opposing signs, and the standard error is high.

Based on the regression results H2.0 is rejected for the Clapham Common and

Quad Grid environments. In the Uniform Grid environment, the weak and incon-

sistent relationship between policies and S̄V does not warrant further investigation

- H2.0 is not rejected for this environment. While the coefficient standard errors

are also high for the Quad Grid environment the inconsistent direction of the effect

differentiates the Uniform Grid result.

The results of the 2SLS used to investigate hypotheses H2.1a, H2.1b, and
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H2.1c are shown in Tables 7.3-7.5 for both stage 1 and stage 2 regression mod-

els. (The stage 1 results are the same as those shown in Table 7.2.) The stage 2

regressions correlate the change in NC, CLE, and CLD due to the policies with S̄V .

The magnitude of the stage 2 regression coefficients together with the adjusted R2

values indicate which metric of pedestrian road crossing behaviour provides the best

explanation for the change in S̄V .

These results are also shown in Figure 7.7 in which the predicted values N̂C,

ˆCLE, and ˆCLD are correlated with S̄V . The trend-lines on these figures show the

association between changes in these three metrics of crossing behaviour due to the

policies and changes in S̄V due to the policies. The figures show only small changes

in S̄V between policy settings compared to the large range of values produced within

each policy setting (within policy variation is predominantly caused by the number

of vehicle agents in the simulation run).

In the Clapham Common environment S̄V increases with increasing crossing

restrictions. At the same time NC increases, CLE decreases, and CLD decreases.

The stage 2 regression coefficient for N̂C is 0.29± 0.06; the coefficient for ˆCLD

is −0.17± 0.02; and the coefficient for ˆCLE is −0.07± 0.01. The highest second

stage adjusted R2 value is 0.022 for ˆCLD, followed by 0.020 for ˆCLE, and 0.004 for

N̂C.

While the coefficient for N̂C is highest, this metric provides a poor explanation

for the increase in S̄V . First, all else being equal, increases in the number of road

crossings should decrease vehicle speed due to the greater competition for carriage-

way space. The observed association between the increase in NC with increases in

S̄V must be due to other aspects of pedestrian road crossing behaviour changing at

the same time. Second, the lower adjusted R2 value for this metric is due to NC

increasing under the ‘sometimes’ policy more than under the ‘never’ policy (this is

also reflected in the low adjusted R2 value of 0.01 in the first stage regression for

NC). This does not align with the change in S̄V , which increases more under the

‘never’ policy than under the ‘sometimes’ policy.

The CLD second stage regression exhibits the second largest coefficient. Addi-
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tionally, CLD is reduced more by the ‘never’ policy than by the ‘sometimes’ policy

and therefore produces a higher R2 value in the second stage regression. CLE sec-

ond stage regression has the smallest magnitude coefficient but a similar adjusted

R2 value to CLD. Changes in the dispersion of pedestrian agents’ crossing locations

and the crossing location entropy both provide a good explanations for the change

in vehicle speed due to crossing restriction policies. Preventing informal crossing

tends to make crossings more concentrated in the centre of the Clapham Common

environment and occur at more ordered locations on each road length. The central-

isation and greater order of pedestrian crossings produced by the policies changes

pedestrian-vehicle conflicts in a way that increases S̄V , despite slight increases in

the number of crossings.

In the Quad Grid environment S̄V decreases with increasing crossing restric-

tions. At the same time NC increases, CLE decreases, and CLD decreases. The

stage 2 regression coefficient for N̂C is −0.04± 0.01; the coefficient for ˆCLD is

0.03± 0.02; and the coefficient for ˆCLE is 0.05± 0.02. The variability in effect

sizes between runs is far higher in this environment as indicated by the high errors.

The adjusted R2 values are 0.001 for N̂C, 0.001 for ˆCLE, and 0.000 for ˆCLD.

In the Quad Grid environment the magnitude of the second stage regression co-

efficients is similar for N̂C, ˆCLE, and ˆCLD. In this environment NC increases more

strongly and consistently with increasing crossing restrictions than in the Clapham

Common environment. The response of CLE and CLD to crossing restrictions is

similar in magnitude and direction to the Clapham Common environment, apart

from CLD which decreases less in the ‘never’ setting than in the ‘sometimes’ set-

ting.

These results help explain why in the Quad Grid restricting informal cross-

ing tends to slightly reduce vehicle speed. Firstly, restricting informal crossing

produces a large and more consistent increases in the number of road crossings.

Secondly, the effect of restrictions on CLD, which in the Clapham Common envi-

ronment was most strongly associated with an increases in vehicle speed, is incon-

sistent in this environment leading to a lower ˆCLD coefficient. The magnitude of the
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Stage Y Scenario N̂C sometimes never const Adj R2

1 NC
Clapham 0.2±0.03 0.06±0.03 −0.09±0.02 0.007
Quad 0.88±0.02 1.28±0.02 −0.72±0.02 0.284

2 S̄v
r

Clapham 0.29±0.06 9.35±0.01 0.004
Quad −0.04±0.01 8.72±0.01 0.001

Table 7.3: 2SLS IV regression model results for treatment variable NC.

Stage Y Scenario ˆCLE sometimes never const Adj R2

1 CLE
Clapham −0.57±0.02 −1.91±0.02 0.82±0.01 0.639
Quad −0.80±0.03 −0.85±0.03 0.55±0.02 0.151

2 S̄v
r

Clapham −0.07±0.01 9.35±0.00 0.020
Quad 0.05±0.02 8.72±0.01 0.001

Table 7.4: 2SLS IV regression model results for treatment variable CLE.

ˆCLE regression coefficient is similar in the two environments and so there are not

additional changes in CLE in the Quad Grid environment to counter act the effect

of the increased number of crossings.

Based on the comparison of the first and second stage regression results within

and between environments, it appears that the increase in S̄V with restrictions in

informal crossing in the Clapham Common environment is driven primarily by the

reduction in CLD (accept H2.1b) and further supported by the reduction in CLE

(accept H2.1c). In the Quad Grid environment, a slight decrease in S̄V is observed

due to an increase in NC with crossing restrictions that is not countered by the re-

ductions in CLD and CLE suggesting that here all three hypotheses have validity

but that H2.1a dominates the overall pattern.

7.4 Discussion
We have performed a series of simulation experiments which explore the effects

of three crossing restriction policies on the metrics L̄, NC, CLE, CLD, and S̄V

across three environments. Pedestrian agents navigate according to the CLT route

Stage Y Scenario ˆCLD sometimes never const Adj R2

1 CLD
Clapham −0.64±0.03 −0.78±0.03 0.47±0.02 0.116
Quad −1.18±0.02 −0.70±0.02 0.62±0.02 0.233

2 S̄v
r

Clapham −0.17±0.02 9.35±0.00 0.022
Quad 0.03±0.02 8.72±0.01 0.000

Table 7.5: 2SLS IV regression model results for treatment variable CLD.
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Figure 7.7: Scatter plots showing how changes in metrics NC, CLE and CLD between cross-
ing restriction policies correlate with changes in S̄V between policies. The x-
axes show normalised road crossing metric values predicted by the informal
crossing policy (equivalent to the mean value for each policy). The y-axes
show S̄V for each simulation run. Triangles indicate the mean S̄V and crossing
metric value under each policy. Linear trend-lines, their equations, and p-values
for the crossing metrics are shown in black. Regression equation coefficients,
adjusted R2 values, and p-values are rounded to 3 decimal places.

choice model developed in this thesis. A core component of this model is a pedes-

trian agent’s choice between a marked and informal crossing location under lower-

level route choice. The results show the policies affect pedestrian movement and

pedestrian-vehicle interactions and that these effects are dependent on both the en-

vironment and the (multi-scale) behaviour of pedestrian agents. This suggests that

representing multi-scale pedestrian route choice can contribute to an understanding

of how transport outcomes related to mobility and safety are produced and could be

affected by interventions to street infrastructure. The following discussion elabo-

rates on this conclusion.

7.4.1 Pedestrian behaviour

The differences in L̄ between policy settings reveals the extent to which pedestrian

accessibility is dependent on informal crossing in each environment. The reduced
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availability of marked crossings in the Clapham Common environment produces a

larger change in L̄ compared to the grid environments. This result demonstrates a

contribution of the multi-scale CLT route choice model with regards to assessing

pedestrian accessibility. Additionally, the route choice model enables the effect of

policies on different components of decision making to be represented. For exam-

ple, in all three environments permitting informal crossing reduces the influence of

PH on L̄ (see Figure B.1 in Appendix B), meaning that pedestrian agents’ knowl-

edge of the road network is less important when roads can be more easily crossed.

Road crossing behaviour was analysed with metrics NC, CLE, and CLD. NC

is minimally affected by the policies in the Clapham Common and Uniform Grid

environments but increases due to restrictions on informal crossing in the Quad Grid

environment.

CLE measures how regular pedestrian crossing locations are, with highly or-

dered trajectories across the carriageway producing low CLE values. The ‘never’

policy has the greatest effect on CLE in the Clapham Common environment; com-

pared with both the ‘always’ policy and ‘sometimes’ policies, the ‘never’ policy

produces more ordered crossing locations for almost every parameter setting. How-

ever, in the grid environments, particularly the Uniform Grid, the effect of the poli-

cies is less distinct from that of CLT route choice parameters. In the Uniform Grid,

highly ordered crossing locations can arise through agent decision making as well

as through ‘top-down’ restrictions. Increasing the coverage of marked crossings in

the Clapham Common environment could increase the overlap between ‘always’

and ‘never’ distributions. In this way, the CLT route choice model could inform the

placement of crossing infrastructure to encourage more ordered road crossing be-

haviour through pedestrian decision making rather than through direct restrictions.

CLD is reduced by restricting informal crossing in the Clapham Common and

Quad Grid environments but increases in the Uniform Grid environment. Given

that all pedestrian agents move to a single destination in the centre of each environ-

ment, a reduction in CLD implies a higher proportion of road crossings being made

towards the end of pedestrian agent trips.
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By identifying different effects of pedestrian behaviour between environments,

these results demonstrate a contribution of modelling multi-scale pedestrian move-

ment using the CLT route choice model. CLE depends on street level pedestrian

behaviour and so the effect of the policies is broadly the same in each environment

- a reduction in CLE as informal crossing is restricted. Yet, notable differences

are also observed. The availability of crossing infrastructure in the grid environ-

ments makes the impacts of the ‘never’ policy less distinct from the ‘always’ policy

compared to the Clapham Common environment.

The L̄, NC and CLD metrics are dependent on neighbourhood level pedestrian

behaviour, not just street-level behaviour as is the case with CLE. As a result, they

exhibit greater differences between environments. Differences in crossing avail-

ability drive the different responses of L̄ to the policies. In the Quad Grid the

average number of crossings changes in response to the policies far more than in

the other environments. In the Clapham Common and Quad Grid environments

CLD is reduced by restricting informal crossing but increased in the Uniform Grid

environments. Additionally, CLD is affected more by the ‘never’ policy than the

‘sometimes’ policy in the Clapham Common environment but not in the Quad Grid

environment.

Because the policies only directly affect street-level route choices, these differ-

ences can only be identified through a multi-scale model that connects street-level

and neighbourhood-level route choices. Whilst the choice of crossing location is

made at the street-level only, the availability of crossing infrastructure depends on

the structure of the road network. Network morphology also affects how pedestri-

ans travel to reach their destination. These two influences combine to produce the

observed differences between environments.

The CLT route choice model also enables the effects of policies on different

components of decision making to be represented (in addition to policy effects on

agent behaviour). For example, the increased sensitivity of output metrics to PH

in the ‘sometimes’ and ‘never’ policy settings show that policies will have a dif-

ferential affect across the pedestrian agent population based on their knowledge



7.4. Discussion 208

of the road network. This is an advantage of adopting a modelling approach in

which model structure is based on relevant psychological theory. An alternative

model such as a network optimal least-cost route choice model is less able to ex-

plain pedestrian agent behaviour in psychological terms.

7.4.2 Pedestrian-vehicle interactions

Having established how restricting informal crossing affects pedestrian route

lengths and road crossing behaviour, we now discuss the way these changes af-

fect pedestrian-vehicle interactions. Pedestrian-vehicle interactions are measured

by S̄V . Reductions in S̄V must result from increased competition between agents for

carriageway space. Since the policies only affect pedestrian agent behaviour any

difference in S̄V between policy settings is due to changes in pedestrian agent road

crossings.

The first point to highlight is that S̄V is predominantly determined by the num-

ber of vehicle agents Nv. As a result only slight differences in S̄V are observed

between policy settings. However, the direction and magnitude of these differences

varies between environments. As restrictions on informal crossing increase, S̄V

tends to increase in the Clapham Common environment and decrease in the Quad

Grid environment. (A small and inconsistent change in S̄V was observed in the

Uniform Grid environment.) This shows that in these simulations street-level re-

strictions produce different neighbourhood-level impacts through the emergent use

of carriageway space by pedestrian agents.

The different effects of the policies on S̄V between environments are explained

by drawing on the 2SLS results. In the Clapham Common environment the reduc-

tion in CLD with increasing crossing restrictions provides the best explanation for

the increase in S̄V . This suggests that concentrating pedestrian agent road crossings

at the centre of the environment increases the average vehicle speed.

In the Quad Grid environment NC increases in response to restricting infor-

mal crossing more than in the Clapham Common environment, and this provides

the best explanation for the small decrease in S̄V . CLD decreases in response to

crossing restrictions in this environment. In the Clapham Common environment
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the reduction in CLD is associated with an increase S̄V , however, in the Quad Grid

environment this change in pedestrian agent behaviour appears to be out-weighted

by the increase in the number of crossings.

These results show that pedestrian-vehicle interactions across an urban neigh-

bourhood are produced through multiple, competing components of pedestrian

agent behaviour. At the lower-level the policies have the same effect on pedestrian

behaviour - CLE reduces in all environments showing that crossings become con-

sistently more ordered at the street level. However, the effect on S̄V differs, which

means that, at the neighbourhood scale, the aggregate impacts of pedestrian-vehicle

competition for carriageway space is shaped by environmental components such

as network morphology and crossing infrastructure. These differences are emer-

gent phenomena, not apparent from the model or policy definition, which show

that, within the simulation, street level interactions between pedestrian and vehicle

agents are influenced by the wider environment.

7.4.3 Implications for transport planning

Adopting a complexity science approach to studying urban transport systems

(Crooks et al., 2018) has helped to bridge the gap between small-scale and sys-

tem wide analyses of pedestrian behaviour. Existing research has linked system

wide interventions such as congestion pricing to street level outcomes of pedestrian

safety through, for example, the use of a system dynamics model of congesting

pricing (Naumann et al., 2022). The contribution of our analysis is to focus on

how different road network and crossing infrastructure designs produce different

behaviour.

Camara et al. (2020)’s review of models of pedestrian behaviour highlights the

importance of accounting for psychological and human factors in the development

of autonomous vehicles. These factors are instrumental in producing pedestrian-

vehicle interactions (Markkula et al., 2022) but are typically only modelled in sce-

narios consisting of single intersections or road links (Camara et al., 2020; Tian

et al., 2020; Ridel et al., 2018). We have used a pedestrian route choice model based

on theory and models from the psychology literature to generate pedestrian-vehicle
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interactions across a whole urban neighbourhood.

This approach has revealed differences in pedestrian-vehicle interactions be-

tween a grid based road network, typical of planned cities designed around the au-

tomobile (Quad Grid), and an older, less planned road network typical of European

cities (Clapham Common) (Boeing, 2019). Simulations of AV taxis in different

cities (for example Lisbon (Martinez, 2015), Singapore (Azevedo et al., 2016), and

Austin (Fagnant and Kockelman, 2018)) incorporate different trip distributions and

transport networks, but not differences in pedestrian-vehicle interactions between

these environments. Our results address this gap in two ways. First, with no re-

strictions on road crossing pedestrian agents’ crossing locations are more ordered

in the grid environments. This suggests that pedestrian behaviour may be more

predictable or easily navigated in these environments. Second, preventing infor-

mal crossing has less of an impact on pedestrian accessibility and road crossing

behaviour in the grid environments (as indicated by the greater overlap of the distri-

bution of output metric values between policy settings). Imposing such restrictions

in a natural road network, for example with the objective of making pedestrian be-

haviour more predictable, may require additional investment in crossing infrastruc-

ture to avoid reductions in pedestrian accessibility and even then may always host

less ordered road crossing locations (CLE values for the Clapham Common envi-

ronment are higher than the Quad Grid environment under the ‘sometimes’ policy

and about equal under the ‘never’).

Performing simulations over a range of CLT route choice model parameters

provides a robust assessment of the policy impacts on the evaluation metrics L̄, NC,

CLE, CLD, and S̄V . Simulation parameter value ranges encompass a wide range of

plausible pedestrian behaviour, producing behavioural heterogeneity between sim-

ulation runs. This heterogeneity may be representative of the real heterogeneity in

pedestrian behaviour, but without empirical validation (as is the case here), is better

interpreted as accounting for the uncertainty regarding real pedestrian behaviour.

For example, in the Clapham Common environment the L̄ distributions under the

‘always’ and ‘sometimes’ settings share virtually no overlap. The conclusion that



7.4. Discussion 211

restricting informal crossing on some road links reduces pedestrian accessibility

is therefore robust to uncertainty in pedestrian behaviour. This is not the case in

the grid environments where large overlaps between policy distributions show that

behaviour change could compensate for changes in L̄ due to the loss of informal

crossing. The same pattern is found for the CLE metric, which displays less overlap

between distributions in the Clapham Common environment than the grid environ-

ments.

Existing research has accounted for crossing availability (Rhoads et al., 2021)

and spatial cognition (Manley et al., 2021) in assessments of pedestrian accessibil-

ity. This study builds on these approaches by integrating the two via the CLT route

choice model and its implementation in an agent-based simulation. This provides

a method for ‘opening-out’ uncertainties related to pedestrian behaviour (Lyons

and Marsden, 2021) in ways that could make assessments of interventions to ur-

ban mobility systems more robust to uncertainties inherent to complex systems. It

could also contribute to testing of autonomous vehicles. Studies have used simula-

tion methods to generate and run simulation scenarios to test autonomous vehicles

(Mullins et al., 2018). Nishiyama et al. (2020) simulate “behaviorally diverse traffic

participants” to better test the autonomous systems but do not represent pedestrians.

Such approaches could be improved by incorporating a source of diverse pedestrian

behaviour that extends across multiple road links.

A key area of improvement for this analysis is the placement of road cross-

ing locations. Crossing locations were set with a simple method applied in all three

environments. Alternatively, the locations of marked crossing in the Clapham Com-

mon environment could be be based on the locations of real crossing infrastructure.

The simulation could then be used to explore how different arrangements of cross-

ing locations and pedestrian rights of way produce different outcomes compared to

an empirical base case. Using the real locations of crossing infrastructure in the

Clapham Common environment could also provide a fairer comparison between

environments. This would likely reduce the impact of restricting informal crossing

in the Clapham Common environment, although a reduced impact would still be
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expected in the grid environments given their regularity. A full discussion of study

limitations and future work is given in Chapter 8.

The complexity of the simulation presented in this chapter poses a challenge to

validation, as discussed in Section 3.3. In this chapter the CLT route choice model

is used to explore the impact of restricting where people can cross the road. Vali-

dating the model outcomes requires an experiment that replicates, to some extent,

these policies, by collecting data on pedestrian crossing locations to measure how

well these correspond with the crossing locations of pedestrian agents in the simu-

lation. This is a different form of validation to seeking to validate the reconstrual of

route choice decisions, discussed in Section 6.5.5. However, separately validating

these different components of the model is called for under Pattern Oriented Mod-

elling (POM) (Grimm et al., 2005) as a way to robustly validate complex models.

Validating the different model components can help to build confidence in model

outcomes when simulating novel transportation scenarios such as new street designs

for which historic data on crossing behaviour may be unavailable or irrelevant.

7.5 Conclusion

The multi-scale CLT route choice model developed through this thesis is imple-

mented in a series of simulation experiments that explore the impacts of ‘top-down’

restrictions to pedestrian behaviour. Specifically, three policies are simulated in

which informal crossing (i.e. jaywalking) is ‘always’, ‘sometimes’, and ‘never’ per-

mitted. Through comparisons between policy settings and simulation environments

(Clapham Common, Quad Grid, and Uniform Grid) the impacts of the policies are

assessed.

By considering the effect of the policies on pedestrian mobility the experiments

highlight how pedestrian accessibility is dependent on informal crossing behaviour.

Whilst the idealised simulation environment and simple methodology for placing

crossing infrastructure exaggerates the effect of the polices in this instance, the re-

sults demonstrate how this methodology could be usefully applied to inform the

placement of street infrastructure. The results also show that the impacts of the
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policies on pedestrian-vehicle interactions depend on both local and global char-

acteristics of pedestrian road crossing behaviour. To explain the differences in the

effects of policies on pedestrian-vehicle interaction between environments requires

accounting for behaviour at both scales.

Designs and appraisals of urban streets could be supported by this simulation

methodology. The representation of heterogeneity and uncertainty in pedestrian

behaviour indicate the extent to which the impacts of policies are contingent on

changes in pedestrian behaviour. Additionally, the results show that the impacts of

policies are contingent on multi-scale components of pedestrian route choice. Incor-

porating a representation of multi-scale pedestrian route choice into such appraisals

could therefore better identify the impacts of proposed interventions to urban streets

or of novel transport technology such as autonomous vehicles.



Chapter 8

Conclusion

A novel model of pedestrian navigation and movement has been presented and im-

plemented in a spatial agent-based simulation (ABS). In the following sections the

main findings and contributions of the thesis are summarised. Following this a cri-

tique of the methodology and analysis is given before discussing areas of future

work. The thesis ends with some closing thoughts about this works contribution to

pedestrian modelling and sustainable transport planning more broadly.

8.1 Main findings
In this section the thesis objectives set out in the Introduction are restated with a

brief discussion of how each objective is met.

Objective 1. Critically review research into the determinants of pedestrian

behaviour on urban roads and the representation of this behaviour in models.

This objective is addressed in Chapter 2, Literature review, in which research

on the determinants of pedestrian behaviour in urban areas is categorised into two

groups: the built environment and and vehicle traffic. Studies discussed under the

built environment determinants of pedestrian behaviour focused on the role of the

arrangement of buildings and roads in cities influences behaviour, drawing connec-

tions between the organisation of the built environment and the people’s internal

cognitive representation of such spatial information. These determinants of be-

haviour were contrasted to those related to interactions between road users, in par-

ticular between pedestrians and vehicles. These interactions are mediated by the
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built environment as well as multiple forms of rules (laws, codes, social norms,

etc...). The review additionally highlighted the historic precedent for pedestrian be-

haviour to change in relation to changes to transport technology, specifically during

the rise in auto-mobility through the first half of the 20th century.

The review of these determinants of pedestrian behaviour and experience in-

formed the criticism of existing models of pedestrian movement in urban areas. This

critique finds that models tends to represent pedestrian decision making at a single

spatial scale. In most studies pedestrian decisions are modelled as being based on

knowledge of their immediate environment or based on knowledge of the global en-

vironment. Very few models integrate decisions across these scales, with no known

examples of models that do so at the granularity and scale to represent road crossing

behaviour across an urban neighbourhood.

The review therefore identifies, firstly, that pedestrian behaviour is determined

by factors that act at multiple spatial scales, and , secondly, that the connection

between street level road user interactions and navigation across the urban envi-

ronment is not represented in pedestrian models. Given the significant role of

pedestrian-vehicle interactions in affecting multiple aspects of pedestrian experi-

ence, the importance of walking to sustainable urban transport, and the prospect

of autonomous vehicles creating new tensions between road users, improving the

representation of pedestrian behaviour in transport simulations is a relevant and po-

tentially impactful avenue of research.

Objective 2. Identify a suitable theoretical approach to modelling pedestrian

navigation and movement at multiple spatial scales.

This objective is addressed in Chapter 3, Modelling framework. The frame-

work identifies construal level theory (CLT) as a suitable theory for guiding the

development of a multi-scale pedestrian model. CLT was introduced in Chapter 2

as part of the discussion of spatial cognition and its role in determining pedestrian

behaviour. In contrast to cognitive map theory, CLT makes distinctions between

decision hierarchies based on psychological distance, an egocentric distance metric

that incorporates spatial, temporal, and social components. The incorporation of
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a temporal component into this hierarchical theory of decision making was argued

to make CLT suitable for modelling pedestrian decision making at the street and

neighbourhood level because of the influence of interactions between road users,

which requires a dynamic as well as spatial representation of the environment.

Alongside establishing a suitable theory to base multi-scale pedestrian deci-

sions on, the framework outlines the need for the model to represent heterogeneity

in pedestrians’ decision making. Accounting for heterogeneity allows the model to

produce a wide variety of route choices, and therefore trajectories. Given the poten-

tial for behaviour change, the need to produce a wide range of behavioural scenarios

was identified as an important feature of the model for enabling an exploratory and

descriptive modelling approach. This way, the model can be used to evaluate trans-

port outcomes against a wide range of scenarios, aligning with the methods for

accounting for uncertainty making identified in the literature review. The frame-

work identifies differences in spatial knowledge and reasoning and route choice

preferences as two sources of heterogeneity in pedestrian behaviour that should be

represented in the route choice models.

Having established these principles, the approach to modelling multi-scale

route choices was set out. Following CLT’s distinction between high-level and

low-level choice construal, the framework distinguished between two levels of

pedestrian decision making: upper-level route choice and lower-level route choice.

Upper-level route choice concerns navigation to locations that are psychologically

distant and is based on high-level choice construal - abstract and goal oriented.

Lower-level route choice concerns navigation to locations that are psychologically

proximate and is based on low-level choice construal - detailed and feasibility ori-

ented. Integration between these two levels is achieved through the reconstrual

of upper-level decisions at the lower-level, made possible by to the movement of

pedestrians bringing initially psychologically distant locations closer.

Objective 3. Develop a model of pedestrian movement in urban areas based

on the outcomes of objectives 1 and 2.

This objective is addressed in Chapters 4, Upper-level route choice, and 5
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Lower-level route choice which together present a novel model of multi-scale pedes-

trian route choice. Following the modelling framework established in Chapter

3, the route choice model comprises upper-level route choice, lower-level route

choice, and their integration (predominantly discussed in Chapter 5). Both upper

and lower-level route choices represent road crossing decisions but, following CLT,

these choices are made based on different information and methods.

The modelling framework identifies two sources of pedestrian heterogeneity

that should be incorporated into the route choice models: spatial knowledge and

route choice preferences. At the upper-level, this is achieved by limiting pedes-

trian agents’ knowledge of the pavement network (the abstract representation of the

environment upper-level route choices are based on) and by either choosing paths

that minimise distance or the number of crossings (representing two different route

choice preferences). At the lower-level this is achieved through agents’ sampling of

crossing location alternatives and their perception of alternatives’ utility based on a

weighing of vehicle exposure and journey detour attributes.

Upper and lower-level route choice models are designed to produce a wide

variety of plausible pedestrian agent paths, depending on the models’ parameter

values. This is verified in a limited way in these chapters by producing upper and

lower-level paths between only two origin-destination pairs at each level. Based

on these verifications, lower-level parameter bounds were imposed. This limited

verification of route choice behaviour is expanded upon in Chapter 6.

Objective 4. Explore the behaviour produced by the pedestrian model and ap-

ply it to an assessment of the impacts of street infrastructure on pedestrian-vehicle

interactions.

This objective is addressed in Chapter 6 and 7. Chapter 6, Verifying multi-scale

pedestrian route choice, provides a comprehensive verification of the pedestrian

agent behaviour produced by the CLT route choice model. This is achieved by im-

plementing the route choice model in a spatial agent-based simulation of pedestrian

and vehicle trips in three different environments. The results of these simulation

experiments demonstrate that:
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• the route choice model can be tuned to produce pedestrian agents that almost

entirely cross either at marked crossings or at informal locations

• the route choice model produces street level road crossing behaviour is sen-

sitive to the level of vehicle traffic (this was verified for a single road link in

Chapter 5 but Chapter 6 shows this behaviour is maintain over multiple links)

• upper-level routes are sensitive to vehicle traffic, meaning that 1. the model

achieves feedback from lower to upper levels as well as upper to lower and

2. the model produces the barrier effect as an emergent phenomenon through

the decision making of individual agents

Together these findings demonstrate the suitability of the CLT route choice

model as a method for generating route alternatives with the primary advantage

over an optimal weighted network path model being the combination of scale and

granularity of trajectories and interpretability in terms of theoretically robust psy-

chological parameters.

Chapter 7, Incorporating multi-scale pedestrian movement into street infras-

tructure appraisal, builds on Chapter 6 by applying the same simulation experi-

ment methodology to an assessment of the impacts of restrictions to pedestrian road

crossing behaviour. Pedestrian trips are simulated under three policies that restrict,

to varying degrees, the ability of pedestrian agents to cross the road informally (i.e.

to jaywalk). These policies only directly affect lower-level route choices. How-

ever, their impact on pedestrian-vehicle interactions differs between the environ-

ments due to differences in road network morphology and the related distribution of

road crossing infrastructure. These differences emerge from the multi-scale naviga-

tion and movement of pedestrian agents, demonstrating the potential for modelling

pedestrian behaviour at these scales to reveal influences on the environment on road

crossing behaviour and to provide a more comprehensive assessment of the impacts

of interventions to street infrastructure.

Chapter 7 used a causal inference methodology - two-stage linear regression

- to identify how the policies changed pedestrian-vehicle competition for carriage-
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way space. Without this additional analysis, the results would only indicate that

there was a change in competition, but not which aspect of pedestrian behaviour

was responsible for this change. The simulation experiment methodology used in

Chapters 6 and 7 is well suited to such analysis because the causal paths (illustrated

by the directed acyclic graph shown in Figure 7.3 in Chapter 7) are known to the

modeller but their relative influence on simulation outcomes is not. This is because

the outcomes result from the complex interactions produced by the simulation. Ad-

ditional ‘meta-modelling’ is required, in this case two-stage linear regression, to

provide detailed explanations of how these outcomes are produced.

8.2 Thesis contributions
The research contributions of this thesis are summarised below.

Chapter 3: Construal level theory route choice framework.

• Section 3.4: Novel application of the construal level theory as a basis for

integrating pedestrian route choice decisions across street and neighbourhood

urban environments.

Chapter 4: Developing a novel pedestrian route choice model for trips across

multiple urban roads.

• Section 4.2.1: An assessment of the coverage of OSM ‘footways’ data across

100 UK cities.

• Section 4.2.2: A novel methodology for the production of a ‘pavement net-

work’ from Ordnance Survey vector GIS data.

• Section 4.3: A novel pedestrian route choice model that makes use of the

detailed representation provided by the ‘pavement network’. The model uses

bounded spatial knowledge and heuristics to produce route heterogeneity.

Chapter 5: Modelling road crossing location choice and integrating this with

neighbourhood level route choice.
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• Section 5.4: A novel model of pedestrian road crossing location choice that

accounts for informal road crossing, dynamic interaction between road users,

and bounded spatial reasoning.

• Section 5.5: Integration of street-level (lower-level) and neighbourhood-level

(upper-level) route choice models according to the CLT framework presented

in Chapter 3.

• Section 5.7: A bespoke parameter sweep methodology for identifying suit-

able values ranges for lower-level route choice parameters.

Chapter 6: Simulating multi-scale pedestrian movement.

• Section 6.2.2: Development of synthetic road network environments and a

method for locating crossing infrastructure based on network morphology.

• Section 6.3.1 & 6.4.1: Application of a global sensitivity analysis methodol-

ogy to compare pedestrian road crossing and route choice behaviour between

environments and to identify the relative influence of each component of the

CLT route choice model.

• Section 6.3.2 & 6.4.2: Comparison of the CLT route choice model to a least

cost weighted network model to clarify the contribution of the CLT model.

Chapter 7: Using the multi-scale pedestrian simulation to explore the impact

of crossing restriction policies.

• Section 7.2.1: Development of policy scenarios based on the partial and com-

plete restriction of informal road crossing based on road classification.

• Section 7.2.2: Novel ‘crossing location entropy’ metric used to measure the

regularity of pedestrian agent crossing locations.

• Section 7.2.3: Application of two-stage least squares regression to test hy-

potheses regarding how (in addition to whether) the policies produce the ob-

served changes in pedestrian agent behaviour.
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• Section 7.3: Identification of different impacts of crossing restrictions on

pedestrian behaviour and pedestrian-vehicle interactions between environ-

ments.

8.3 Critique of the methodology
The criticisms of the thesis offered below focus on two central components:

• the assumptions embedded in the CLT route choice model

• the representation of the simulation environment used to explore the be-

haviour produced by the CLT route choice model

• model calibration and validation

Other aspects of the analysis, such as the design of the simulation experiments

and accompanying analysis use comparatively well-established methods that, while

not without limitation, do not warrant detailed criticisms here.

8.3.1 Assumptions and limitations of the CLT route choice

model

The upper-level and lower-level route choice models embed a number of assump-

tions about pedestrian decision making that limit what pedestrian behaviour can be

produced by the models.

Upper-level route choice permits a wide variety of pavement network paths to

be chosen but these are restricted to follow the shortest road network path. This

prevents differences in pedestrians agents’ planning horizons or upper-level route

preferences from producing paths that follow different road links. As such, the

model makes limited use of the pavement network as an improved representation

of the urban environment from a pedestrian perspective. Addressing this restriction

would mean pedestrian agents’ choices of which roads to walk down are based on

a more realistic representation of the environment and could produce different out-

comes compared to a road network representation - highlighting the implications of
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choices made when representing the environment as a network. Redesigning upper-

level route choice would require an alternative way of defining a pedestrian agent’s

planning horizon and the end node(s) of candidate upper-level paths. Without care-

ful design this would greatly increase the computational cost of the model.

Lower-level route choice presents a novel method for modelling a pedestrian’s

choice of road crossing location. This model produces some unrealistic street level

pedestrian trajectories. Pedestrian agents can choose to cross at a location they

have already walked past, meaning agents turn and walk back along the pavement

to get to their crossing location. Because of this only the road crossing locations

of pedestrian agents were analysed and not their street-level trajectories. A more

realistic integration of road crossing decisions and pedestrian movement is required

to better represent the real walking distances of pedestrians in urban environments.

Sequential sample model and its parameters

The discrete choice methodology used for lower-level route choice is based

on sequential sampling models developed in the mathematical psychology litera-

ture. Similar modelling approaches have been applied to pedestrian road crossing

decisions (see discussion of existing models towards the end of Section 5.2) and

the thesis methodology does not provide a robust comparison of these different ap-

proaches. Doing so would help guide the development of robust models of pedes-

trian road crossing behaviour.

Related to this is a critique of the validity of lower-level route choice parame-

ters as representing real components of pedestrian decision making. The parameter

α controls the relative weighting of vehicle exposure and detour attributes of cross-

ing alternatives. The tendency for pedestrians to primarily consider these features

of crossing infrastructure is well established in the literature and in road crossing

models. Lower-level parameters ε - the activation threshold - and λ - controlling the

relative salience of nearby crossings - also influence route choices. The use of ac-

tivation thresholds for triggering choices is well established in sequential sampling

models of decision making, but more evidence is required to establish whether this

form of model is suitable for road crossing decisions. Similarly, the literature re-
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view in Chapter 5 identified that the proximity of a crossing influenced pedestrians’

choice but whether the λ parameter correctly represents this effect has not been

established here. Establishing whether these are meaningful parameters through

comparisons between models or model validation (see Section 8.3.3 below) is a

necessary step to progressing the model from being a descriptive tool to providing

explanatory or predictive capabilities.

Representation of time in the route choice model

The representation of time in the CLT route choice model also warrants further

discussion and critique. Journey time differs from journey distance in ways that can

be meaningful to pedestrians when choosing between alternative routes. The upper-

level route choice model does not represent this distinction, with route alternatives

characterised by their length and number of crossings only. An implication of this

is the absence of crossing wait times from the model. Waiting to cross the road

is common in busy urban areas and routes of equal distance may incur different

journey times due to different crossing waits. Crossing waits may be longer at roads

with higher levels of traffic, so their inclusion is directly relevant to the themes of

the barrier effect and road crossing behaviour addressed in this thesis.

Representing journey time would enable modelling a pedestrian’s desire to

take the fastest, rather than the shortest, route. This could produce a different set of

trajectories - pedestrians with a preference for the fastest route may avoid crossing

certain roads due to an expectation of longer wait times at those locations - and

therefore better account for how vehicle traffic affects pedestrian trajectories. Addi-

tionally, accounting for crossing wait times as part of a journey time route attribute

helps distinguish wait time from other aspects of pedestrians’ perceptions of road

crossings - such as safety - and their influence of route choice.

This is also the case in lower-level route choice, where the absence of wait

time as a crossing alternative attribute means the vehicle exposure attribute - calcu-

lated base on vehicle agent movements - doesn’t distinguish between the effects of

crossing safety and crossing wait time on road crossing decisions. This is an impor-

tant distinction: signalise crossings can increase safety but may require longer wait
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times that crossing informally.

However, the dynamic nature of lower-level route choice (sequential sampling,

changing traffic conditions, changing pedestrian location) means that time is implic-

itly represented despite the absence of journey time as an explicit attribute of choice

alternatives. The representation of time is apparent in the activation accumulation

process which provides pedestrian agents with a memory of past road conditions

but allows them to update their preferences based on more recent information. Ex-

tending lower-level route choice to incorporate crossing wait times requires that

pedestrian agents anticipate future road conditions as well as remember past ones.

How should this anticipation be modelled? The challenge of calculating route at-

tributes is acknowledged in the route choice framework by choices made with lim-

ited planning horizon or spatial knowledge. Crossing wait times are uncertain and

challenging to calculate and therefore a model of wait time anticipation would also

need to facilitate this distinction. Alongside anticipating future waits, pedestrian

agents would need to wait at crossings for a suitable crossing opportunity rather

than crossing as soon as they reach their crossing locations as they do currently.

This suggests the integration of an additional gap acceptance mode into the route

choice framework that is used to both anticipate and produce pedestrian agent waits.

Incorporating wait times, and journey time more broadly, would better reflect

a purposeful comparison of crossing location options based on anticipation of near

future traffic conditions. At the lower-level, I expect this would change pedestrian

agent behaviour by motivating more informal crossings in cases where a longer

crossing wait is anticipated at a marked crossing option. At the upper-level, I ex-

pect modelling pedestrians as choosing fastest routes would produce more trips that

avoid large junctions, possibly leading to more road crossing on smaller roads.

A final criticism of the representation of time in the model relates to the choice

of a 1s time step. This limitation is discussed in Chapter 6.5.4 and is briefly reiter-

ated here for completeness. The 1s time step is too coarse to model high pedestrian

and vehicle densities which renders the use of a social force model of pedestrian

movement somewhat redundant. To apply the model to higher pedestrian densities
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the time step would need to be reduced.

8.3.2 Simulation environment and initial conditions

Street infrastructure

The simulation environment provides a highly simplified representation of real

road environments. This representation is sufficient for the objectives of this thesis

in that it represents pedestrian and vehicle movement and the interactions that re-

sult from the decisions of these agents. However, the movement of pedestrians and

vehicles and their interaction is also mediated by infrastructure that is not repre-

sented in the simulation. Specifically, traffic lights and road crossing signals which

coordinate the shared use of carriageway space by pedestrians and vehicles are not

represented.

Because of this lack of detail in the representation of the environment, the

simulation results, particularly those in Chapter 7 which measure competition for

carriageway space between pedestrian and vehicle agents, do not provide a realistic

measurement of vehicle speed and the frequency of pedestrian-vehicle interactions.

Instead, the differences in results between environments and policy settings provide

an initial indication of the value of integrating street-level and neighbourhood-level

pedestrian movement.

Synthetic road networks

Related to the limited realism of the simulation environments is the use of

synthetic road networks to compare to the real Clapham Common road network en-

vironment. The synthetic networks enable a controlled comparison between road

network morphologies, while keeping trip distributions constant across the environ-

ments. This is a useful way of verifying how pedestrian behaviour depends on the

road network. However, this also means results from the simulation experiments do

not have direct application to the design of any real urban environments. Simplified

representations of the environment have allowed a detailed assessment of the CLT

route choice model but more realistic representations are needed to make the model

useful for sustainable transport planning.

Pedestrian and vehicle trips
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The pedestrian and vehicle trips that are simulated are a greatly simplified rep-

resentation of real travel behaviour. Only a small sample of pedestrian trips (200 in

each simulation run) with a shared destination are modelled in both Chapters 6 and

7. Appendix A Section A.1 reports that the conclusions in Chapter 6 are not changed

when a larger sample of 300 trips heading both to and from the metro station are

modelled (600 trips in total). However, a different distribution of trip lengths was

observed and repeating these simulation experiments with a larger number of more

diverse pedestrian trips may still produce different results. For example, the cross-

ing location dispersion (CLD) metric used to analyse crossing behaviour in Chapter

7 can be expected to vary with changes to pedestrian trip origins and destinations.

This is because CLD is a measure of where crossings take place across the whole

environment. Different trips will result in trajectories along different sets of road

links, in turn changing the road links on which pedestrian agents cross the road.

In the N = 200 trips to the central metro station scenarios modelled in Chapter 7,

restrictions to informal road crossing increased and decreased CLD in the Clapham

Common and Quad Grid environments. If the trips were all from the central loca-

tion, these trends may be reversed. If trips between other locations were included

CLD may no longer change in relation to crossing location restrictions. It is there-

fore necessary to consider a broader, more realistic range of pedestrian trip origins

and destinations to more accurately model how restrictions to road crossing would

impact pedestrian-vehicle interactions.

8.3.3 Model calibration and validation

A notable absence in this thesis is calibration or validation of pedestrian agent be-

haviour against observations of real pedestrian route choices, at either the street

or neighbourhood level. Chapters 4 and 5 established CLT route choice parameter

ranges that met some basic assumptions about what constitutes plausible pedestrian

behaviour. Building on this Chapter 6 verified that these pavement value ranges

produce a wide range of pedestrian street-level trajectories.

I argue this verification of pedestrian behaviour is sufficient given the descrip-

tive modelling purpose set out in the modelling framework of Chapter 3. Evaluating
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the impact of crossing restriction policies under the wide range of pedestrian agent

behaviour produced by these parameter ranges, Chapter 7 provides a robust assess-

ment of how the impact of the policies differs between environments. However,

without calibrating the model against observations, it is not possible to say how

the breadth of pedestrian behaviour used in these analyses compares to the breadth

of behaviour found in the Clapham Common area, or any other other urban area.

Incorporating a wide range of behaviour when assessing the impacts of interven-

tions is a useful way of acknowledging and accounting for uncertainties resulting

from the potential for behaviour change. At the same time, calibration is needed to

ground such assessments so that the extent to which modelled behaviour deviates

from observed behaviour can be made explicit.

8.4 Future work
Some future directions of research are now suggested. These address the above

criticisms as well as proposing ways in which this research could be applied to real

transport planning problems.

8.4.1 Modelling pedestrian behaviour

Decision construal in urban areas

CLT is proposed in this thesis as a suitable way to model pedestrian decision

making in relation to navigation and movement in urban areas. To progress this

approach to modelling pedestrian behaviour evidence of choice reconstrual in the

context of pedestrian route choice needs to be established. CLT and spatial cog-

nition theory share a hierarchical representation of cognition and decision making.

CLT offers a more general theory by distinguishing between hierarchy levels based

on psychological distance, which, alongside spatial distance, incorporates temporal

distances, social distances, and levels of certainty. To what extent do these ad-

ditional factors shape people’s perception of and decision making in urban areas?

Investigating the role of dynamic components of the environment, such as the move-

ment of other road users, in defining cognitive hierarchies would help to align CLT

with the existing, robust application of spatial cognition to wayfinding and naviga-
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tion. This could be investigated with surveys and interviews in which people explain

how they make route choice decisions that are dependent on interactions with other

road users as well as comparisons of peoples’ routes between busy and empty street

environments.

Comparing and integrating models of pedestrian road crossing

A broader objective of future work is to compare and integrate different ap-

proaches to modelling pedestrian behaviour. The need to integrate multiple models

of pedestrian decision making in order to produce a variety of known road cross-

ing behaviour is highlighted by Markkula et al. (2022), arguing “that to reproduce

a set of well-established empirical phenomena in naturalistic driver-pedestrian in-

teraction, we need to combine a large number of existing psychological models,

integrating theories of sensory noise, Bayesian perception, evidence accumulation

decision-making, long-term valuation of action affordances, behavioural game the-

ory, and theory of mind.” The set of “well-established empirical phenomena” the

authors refer to are five behaviours related to pedestrian and vehicle yielding at

marked crossings. A central tenant of this thesis is that outcomes for pedestrians

related to such street level interactions manifest across larger spatial scales (for ex-

ample the barrier effect). To this list of five behaviours and the multiple theories

employed to model them we might add how pedestrians choose where to cross the

road and how these choices relate to larger scale movement.

This thesis makes an initial attempt to integrate these different scales. A com-

plete model of pedestrian decision making is an unrealistic and impractical objec-

tive. But without attempting to integrate different approaches it is not possible

to establish how different components of the environment and pedestrian decision

making interact to produce meaningful outcomes for pedestrians. This view follows

from the arguments for a adopting a descriptive modelling purpose (Edmonds and

Moss, 2005) whereby when modelling complex systems, the representation of the

system should only be simplified once there is confidence that the simplification

does not exclude meaningful interactions or impacts.
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8.4.2 Appraising changes to urban streets

The work presented in this thesis can also be extended to address more applied

research questions related to the design and management of urban streets. Below

we discuss two specific, and related, areas: crossing infrastructure and autonomous

vehicles.

Crossing infrastructure

Chapter 7 applies the CLT route choice model to compare the effects of re-

stricting informal crossing in different environments. One of the primary causes of

differences between the environments are the differences in the coverage of marked

crossing infrastructure. A clear extension of this work is to analyse different strate-

gies for marked crossing placement, observing the differences between different

arrangements of crossing infrastructure for pedestrian outcomes. This could pro-

vide an alternative method for identifying and addressing the barrier effect in urban

areas, one that is based on network level connectivity rather than choosing between

different interventions for a single location. This would compliment attempts to

reduce the barrier posed by specific roads by identifying whether and where pedes-

trian accessibility can be improved through the cumulative effect of reduced barriers

across whole trips.

The development of a pavement network representation of the urban environ-

ment, built from Ordnance Survey data, is a thesis contribution which could be

exploited to greater effect in such assessments. The methodology for producing the

pavement network can be used to produce networks representing the availability

and connectivity of pavement infrastructure for urban areas across the UK. Ord-

nance Survey data does not include the locations of crossing infrastructure. These

are held by local transport authorities and are not generally available free of charge.

Open Street Map may be a suitable alternative resource, from which crossing in-

frastructure locations could be extracted and used in combination with the pave-

ment network to develop pedestrian simulations in multiple UK towns and cities.

Using established transport simulation tools such as PTV VISSIM (Vissim, 2022)

or Sumo (Lopez et al., 2018) would enable a more realistic representation of the
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environment, within which the pedestrian agents move and interact.

Autonomous vehicles

Another related area this work could be applied is in the development and test-

ing of autonomous vehicles - one of the motivations for developing a multi-scale

pedestrian model. The results from Chapter 7 suggests that preventing informal

crossing could change pedestrian-vehicle interactions in different ways between en-

vironments, in particular between grid environments typically of modernist, planned

cities and more natural road networks found in older cities. Restricting informal

crossing had a greater effect on pedestrian route lengths and vehicle speed in the

Clapham Common environment than either of the grid environments. These results

suggest that attempts to restrict street level pedestrian behaviour can have knock-on

effects for pedestrian mobility over multiple road links.

The operation of autonomous vehicles may be contingent on certain behaviours

or rules that are specific to certain regions. For example, Waymo’s autonomous

vehicles have been predominantly operated in Tempe, Arizona, an American sub-

urb built around vehicle mobility. Switching from one context to another could

therefore require additional testing to understand if the limitations of the vehicles

differ in the new location. Interactions with pedestrians may appear unchanged if

modelled at only small-scales, involving small numbers of pedestrians on single

roads. But the collective effect of multiple vehicles and pedestrians moving around

a neighbourhood could impose different limitations or contingencies to the vehi-

cles’ operation, as suggested by the differences in pedestrian-vehicle carriageway

competition found in Chapter 7. By integrating street-level and neighbourhood-

level pedestrian decision making simulation tools may be better able to anticipate

the challenges posed by adopting autonomous vehicle technology from one region

or city to another.

8.5 Final conclusion

Against a trend of falling carbon emissions across many sectors of the UK econ-

omy, transport related emissions have yet to fall. Transport decarbonisation plans
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explicitly state the need for wide spread changes in travel behaviour. In this con-

text, models based on extrapolating historic trends can acts as barriers to change by

treating necessary changes as outlier events. An alternative approach is to focus on

the behaviour of individuals from which travel patters emerge, a complex systems

perspective in which plausible and diverse future scenarios are generated through

the actions and interactions of individuals. This project has adopted this approach

to modelling pedestrian road crossing. We have integrated street-level road cross-

ing decisions with neighbourhood-level route choices to explore how interactions

between pedestrians and vehicles emerge from route choices that are shaped both

by the environment and the agents within the environment. In combination with

other methods, such models can support endeavours to design pedestrian friendly

urban environments.



Appendix A

A.1 Two-way pedestrian flows
An additional simulation experiment was performed to test whether global sensi-

tivity analysis (GSA) results change when bidirectional pedestrian flows are simu-

lated. The same GSA methodology described in Chapter 6 was used (same range

of parameter values and 2560 simulation runs) but with a different set of pedestrian

trips. N=600 pedestrian trips were simulated, with trips both to and from the central

metro station (all trips either began or ended at the metro station, no trips between

non-metro ODs were simulated). As before, the ODs of trip origins and destina-

tions were chosen randomly based on a uniform probability distribution across all

candidate locations, with a total of 305 pedestrian ODs created.

The comparison between one-way and two-way pedestrian results in Figure

A.1 shows that the sensitivity indices of the four output metrics to model parameters

are not materially changed by the introduction of bidirectional pedestrian flows,

other than L̄ which has changed due to a different set of trips being simulated.

A.2 Least cost model comparison with alternative

parameters
Chapter 6 also presents results of a comparison between the CLT route choice model

and a least cost route choice model (see Section 6.4.2. The least cost model results in

Chapter 6 are produced by using parameter values k, j ∈ {0,500,1000,1500,2000}.

Here results for a narrower range of parameter values are presented, k, j ∈

{0,100,200,300,400,500}, which helps establish how the CLT route choice model
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Figure A.1: Comparison of results for one-way (unidirectional) and two-way (bidirec-
tional) pedestrian flows in the Clapham Common environment

differs from a least cost model. In the Clapham Common environment, this range

of parameter values produces median increases in the weight of road crossing links

ranging from 0.03−5.4%, with maximum increases ranging from 3.5−1400%.

Table A.1 shows the mean and standard deviation of upper-level path lengths.

The CLT results are the same as those shown in Table 6.3 in Chapter 6 but the least

cost model results are those produced with this alternative parameter range. The

main difference to the results in Chapter 6 is that the standard deviation of the least

cost path lengths is now lower than that of the CLT path lengths where as before

the standard deviations of the two methods were similar. Given the wide parameter

range of k, j ∈ {0,500,1000,1500,2000} used in Chapter 6, this suggests that the

range of path lengths produced the CLT route choice model represents an upper

bound of route length variation achievable by shortest path methods.

Uniform Grid Quad Grid Clapham Common
Model Mean L̄ STD Mean L̄ STD Mean L̄ STD
CLT 743m 6.6m 732m 5.2m 682m 6.4m

Least Cost 729m 1.5m 692m 2.1m 653m 2.8m

Table A.1: Comparison of L̄ mean standard deviation and variance calculated over param-
eter settings for k, j ∈ {0,100,200,300,400,500}
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B.1 Incorporating multi-scale pedestrian movement

into street infrastructure appraisal: sensitivity

indices results
Chapter 7 uses the CLT route choice model to explore the impact of restricting

informal crossings. The results presented in the chapter focus on the effect of the

polices on the pedestrian behaviour, as measured by L̄, NC, CLE, CLD, and S̄v.

In this appendices additional results produced by these simulation experiments

are presented. These results are the sensitivity indices of each outcome metric

to each simulation parameter, compared between the ‘always’, ‘sometimes’, and

‘never’ policy settings. The sensitivity indices show how the policies change the

influence of different components of the CLT route choice model.

B.1.1 Pedestrian behaviour

B.1.1.1 Path length

The sensitivity indices shown in Figures B.1-B.3 provide additional information

about how upper-level paths are affected by each policy. In all three environments

restricting informal crossings reduces the sensitivity of L̄ to lower-level route choice

parameters. The policies reduce the influence of lower-level route choice by remov-

ing informal crossing alternatives from the choice set. Accordingly, output metrics

should become less sensitive to lower-level parameters, as observed.

Sensitivity to PH increases greatly as informal crossing is restricted. A larger

PH value helps pedestrian agents choose paths which have crossing infrastructure



B.1. Incorporating multi-scale pedestrian movement into street infrastructure appraisal: sensitivity indices results235

Figure B.1: Sensitivity of each output metrics to model parameters for the Clapham Com-
mon environment scenarios.

which explains why this parameter becomes more influential. Recall also that sen-

sitivity indices measure the proportion of variation in an output metric that is at-

tributable to changes in each input parameter. It follows that decreased sensitivity

to some parameters is match by increased sensitivity to others, and this also con-

tributes to the rise in PH sensitivity. The increased standard deviation of L̄ between

the ‘always’ and ‘never’ settings shows that PH gains absolute and well as relative

influence over L̄. This is particularly true in the Clapham Common environment, in

which PH sensitivity and L̄ standard deviation increase the most, due to the reduced

coverage of marked crossings.
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Figure B.2: Sensitivity of each output metrics to model parameters for the Quad Grid en-
vironment scenarios.

On the other hand, L̄ becomes less sensitive to upper-level parameter MC as

informal crossing is restricted. It appears that whether agents prioritise minimis-

ing crossings or route length becomes less influential when confronted with detours

due to the unavailability of crossing infrastructure. The large decrease in MC sen-

sitivity observed between ‘always’ and ‘sometimes’ policy settings in the Clapham

Common environment may also explain the increased sensitivity to ε between these

policies, a change that is inconsistent with the other environments.

In the Uniform Grid environment the only influential upper-level parameter is

PH. It follows that decreasing influence of lower-level parameters increases the
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Figure B.3: Sensitivity of each output metrics to model parameters for the Uniform Grid
environment scenarios.

relative influence of PH. In the Quad Grid environment, the variation of link length

and block size creates some variation in the coverage of marked crossings - there

are road links without any mark crossings within the study area. Therefore, as with

the Clapham Common environment PH gains importance as informal crossing is

restricted. However, this does not translate to large variations in L̄ between policy

settings because of the coverage of marked crossings remains high.

B.1.1.2 Crossing behaviour

Numbers of crossing

The sensitivity of NC to simulation parameters changes less between pol-
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icy settings than other pedestrian behaviour metrics. In both the Quad Grid and

Clapham Common environments NC is predominantly sensitive to MC and this

doesn’t change much between policy settings. NC is only very slightly sensitive to

lower-level parameters in the ‘always’ setting and not at all when informal crossing

is restricted.

The biggest change in sensitivity between policy settings is in the Clapham

Common environment where sensitivity to PH greatly increases as informal cross-

ing is prevented. This follows from the planning horizon becoming more important

to the route length of pedestrian agents when informal crossing is restricted and

longer routes resulting in more crossings.

The standard deviation of NC across simulation parameters is approximately 0

in the Uniform Grid environment and so these sensitivity indices are not meaningful.

Crossing location entropy

Turning to the sensitivity indices for the CLE metric, similar trends to the L̄

metric are observed - the reduced influence of lower-level parameters and increased

influence of the upper-level PH parameter. As with L̄ this is due to the restric-

tions limiting the influence of lower-level route choice - where informal crossing is

prevented there is no way for vehicle traffic to influence pedestrian agents’ routes.

Another shared trend is the decreasing sensitivity to MC and increasing sensi-

tivity to PH with increased crossing restrictions. MC is predominantly responsible

for controlling the number of crossings performed. In the ‘always’ setting these

can occur at any location and so high crossing frequencies translates to high CLE,

making CLE sensitive to MC. As informal crossing is restricted MC continues to

drive crossing frequency but the locations of these crossings become more ordered

and therefore affect CLE less. Conversely, CLE becomes more sensitive to PH as

pedestrian agents are prevented from crossing informally; in the Clapham Common

environment, CLE switches from being more sensitive to MC than PH to being

more sensitive to PH than MC.

The standard deviation of CLE reduces as informal crossing is restricted,

meaning that the route choice parameters have less influence overall. The wider
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range of CLE values produced in the ‘always’ setting suggests that route choice

components amplify one another to produce highly ordered and disordered crossing

behaviour.

Crossing location dispersion

The sensitivity indices for CLD respond differently to the informal crossing

policies between the environments. In the grid environments sensitivity to lower-

level parameters decreases as informal crossing is restricted and sensitivity to PH

increases. Sensitivity to MC is generally unchanged, apart from increasing under

the ‘sometimes’ policy in the Quad Grid environment. When informal crossing is

permitted in these environments, crossing dispersion is as sensitive to lower-level

parameters as upper-level parameters, showing that street level route choice deci-

sions have an impact of the global distribution of crossing locations. This changes

as informal crossing is prevented, showing that the restrictions limit the ability for

lower-level route choice to affect crossing behaviour across larger spatial scales.

Conversely, in the Clapham Common environment sensitivity to lower-level

parameters α and ε increases when informal crossing is completely restricted. In

this environment CLD is predominantly sensitive to upper-level parameters in all

policy settings but particularly in the ‘always’ and ‘sometimes’ settings. The in-

creased sensitivity to α and ε in the ‘never’ setting can only be explained as the

result of the large decrease in sensitivity to MC, which means that these parame-

ters’ gain relative importance. In the Clapham Common environment street-level

route choices do not affect the global distribution of crossing locations, which is far

more strongly determined by MC when informal crossing is allowed and PH when

it isn’t.

B.1.2 Pedestrian-vehicle interactions

The sensitivity indices for Sv are approximately the same between policy settings

and between environments. SV is predominantly sensitive to NV and this is un-

changed by restricting informal crossing. In the Clapham Common environment

sensitivity to Tped and PH increases when informal crossing is prevented. The

change in sensitivity indices indicates a small change in pedestrian-vehicle inter-
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actions but this is better shown by the linear regression models and t-tests applied

in Chapter 7.
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C.1 List of publications and conference attendance
Journal publications

Thompson Sargoni, O., & Manley, E. (2023). Neighbourhood-level pedestrian nav-

igation using the construal level theory. Environment and Planning B: Urban Ana-

lytics and City Science, 0(0). https://doi.org/10.1177/23998083231158371

Conference proceedings

Obi Thompson Sargoni and Ed Manley. 2020. A sequential sampling

model of pedestrian road crossing choice. In Proceedings of the 3rd

ACM SIGSPATIAL International Workshop on GeoSpatial Simulation (GeoSim

’20). Association for Computing Machinery, New York, NY, USA, 10–19.

https://doi.org/10.1145/3423335.3428163

Other conference attendance

Obi Thompson Sargoni, Hannah Gumble, Nicolas Palominos. 2022. Measuring the

space between buildings through OpenStreetMap data. Poster in GIS Research UK

2022.

Obi Thompson Sargoni and Ed Manley. 2021. Investigating the effect of pedestrian

network representation on edge centrality. In Conference on Complex Systems 2021

UrbanSys workshop (Transport, Smart Cities, Complexity and Urban Networks)

Obi Thompson Sargoni and Ed Manley. 2020. Modelling adaptive pedestrian road

crossing behaviour. In AAMAS Agent-based modelling of Urban Systems (ABMUS)

workshop. (short paper accepted but workshop cancelled due to COVID-19)
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Rhoads, D., Solé-Ribalta, A., González, M. C., and Borge-Holthoefer, J. (2021). A

sustainable strategy for Open Streets in (post)pandemic cities. Communications

Physics, 4(1):1–12.

Ridel, D., Rehder, E., Lauer, M., Stiller, C., and Wolf, D. (2018). A Literature Re-

view on the Prediction of Pedestrian Behavior in Urban Scenarios. In 2018 21st

International Conference on Intelligent Transportation Systems (ITSC), pages

3105–3112.

Rittel, H. W. and Webber, M. M. (1973). Dilemmas in a general theory of planning.

Policy sciences, 4(2):155–169.

Roe, R. M., Busemeyer, J. R., and Townsend, J. T. (2001). Multialternative decision

field theory: A dynamic connectionst model of decision making. Psychological

Review, 108(2):370–392.

Roswall, N., Høgh, V., Envold-Bidstrup, P., Raaschou-Nielsen, O., Ketzel, M.,

Overvad, K., Olsen, A., and Sørensen, M. (2015). Residential Exposure to Traf-

fic Noise and Health-Related Quality of Life—A Population-Based Study. PLOS

ONE, 10(3):e0120199.

Saelens, B. E., Sallis, J. F., Black, J. B., and Chen, D. (2003). Neighborhood-Based

Differences in Physical Activity: An Environment Scale Evaluation. American

Journal of Public Health, 93(9):1552–1558.

Salazar Miranda, A., Fan, Z., Duarte, F., and Ratti, C. (2021). Desirable streets:

Using deviations in pedestrian trajectories to measure the value of the built envi-

ronment. Computers, Environment and Urban Systems, 86:101563.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,

Saisana, M., and Tarantola, S. (2008). Global Sensitivity Analysis: The Primer.

John Wiley, Chichester, England ; Hoboken, NJ.

Santiago, J.-L., Sanchez, B., Rivas, E., Vivanco, M. G., Theobald, M. R., Garrido,

J. L., Gil, V., Martilli, A., Rodrı́guez-Sánchez, A., Buccolieri, R., and Martı́n,



BIBLIOGRAPHY 268

F. (2022). High Spatial Resolution Assessment of the Effect of the Spanish Na-

tional Air Pollution Control Programme on Street-Level NO2 Concentrations in

Three Neighborhoods of Madrid (Spain) Using Mesoscale and CFD Modelling.

Atmosphere, 13(2):248.

Sareen, S., Remme, D., and Haarstad, H. (2021). E-scooter regulation: The micro-

politics of market-making for micro-mobility in Bergen. Environmental Innova-

tion and Societal Transitions, 40:461–473.

Schönauer, R., Stubenschrott, M., Huang, W., Rudloff, C., and Fellendorf, M.

(2012). Modeling Concepts for Mixed Traffic: Steps toward a Microscopic

Simulation Tool for Shared Space Zones. Transportation Research Record,

2316(1):114–121.

Schroeder, B. J. and Rouphail, N. M. (2011). Event-Based Modeling of Driver

Yielding Behavior at Unsignalized Crosswalks. Journal of Transportation Engi-

neering, 137(7):455–465.

Schwanen, T., Lucas, K., Akyelken, N., Cisternas Solsona, D., Carrasco, J.-A., and

Neutens, T. (2015). Rethinking the links between social exclusion and transport

disadvantage through the lens of social capital. Transportation Research Part A:

Policy and Practice, 74:123–135.

Sevtsuk, A., Kalvo, R., and Ekmekci, O. (2016). Pedestrian accessibility in grid lay-

outs: The role of block, plot and street dimensions. Urban Morphology, page 18.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system

technical journal, 27(3):379–423.

Sherman, R. C., Croxton, J., and Smith, M. (1979). Movement and structure as

determinants of spatial representations. Journal of Nonverbal Behavior, 4(1):27–

39.

Sidewalk Labs (2019). Sidewalk Labs Street Design Principles. https://

sidewalklabs.com/streetdesign. [Last Accessed: 2019-05-07].

https://sidewalklabs.com/streetdesign
https://sidewalklabs.com/streetdesign


BIBLIOGRAPHY 269

Simons, G. D. (2021). Network centrality measures and their correlation to mixed-

uses at the pedestrian-scale. http://arxiv.org/abs/2106.14040.

[Last Accessed: 2022-09-27].

Sisiopiku, V. P. and Akin, D. (2003). Pedestrian behaviors at and perceptions to-

wards various pedestrian facilities: An examination based on observation and

survey data. Transportation Research Part F: Traffic Psychology and Behaviour,

6(4):249–274.

Sloman, L. and Hopkinson, L. (2020). The carbon impact of the national roads

programme. Technical report, Transport for quality of life, Machynlleth.

Southworth, M. (2005). Designing the Walkable City. Journal of Urban Planning

and Development, 131(4):246–257.

Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., and Pavone, M.

(2014). Toward a Systematic Approach to the Design and Evaluation of Auto-

mated Mobility-on-Demand Systems: A Case Study in Singapore. In Meyer,

G. and Beiker, S., editors, Road Vehicle Automation, Lecture Notes in Mobility,

pages 229–245. Springer International Publishing, Cham.

Stevens, A. and Coupe, P. (1978). Distortions in judged spatial relations. Cognitive

Psychology, 10(4):422–437.
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