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A New Preconditioner on Gauss-Seidel Method for
H-Matrices

M. T. Darvishi and M. Azimbeigi
Department of Mathematics, Razi University, Kermanshah 67149, Iran

Abstract. In order to accelerate the convergency of Gauss-Seidel method to solve systems of linear equations when the
coefficient matrix is an H—matrix, a new preconditioner is introduced. The convergency of the new preconditioned method is
proved.
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INTRODUCTION
Consider the following system:

Ax=b, x,b € R", (1

where A € R"*" is a nonsingular matrix. To accelerate convergency of iterative methods to solve (1), the precon-
ditioned methods are often used. Evans et al. [1] presented a preconditioner and improved the convergency rate of
AOR iteration method for the original lincar system (1) when A is an L-matrix. They showed that, under certain
assumptions, some iterative methods which apply on some preconditioned systems are faster than iterative methods
when one apply them to the original system (1). Sometimes, their assumptions are too strong in many cases. Hence,
Li et al. [2] improved their method and presented a new preconditioner, which overcome the shortcomings in [1]. To
solve the linear system (1), many preconditioners have been proposed [3, 4, 5, 6, 7, 8].

For any splitting, A = M — N with det(M) # 0, the basic iterative method to solve system (1) is

XD = (I ® 1, k=0,1,2,...
where x(9 is an initial vector. Matrix M~ !N is called an iteration matrix of the basic iterative method and the method
is convergent if p(M~IN) < 1.

In comparison of two convergent iterative methods, the faster method is that with smaller spectral radius of its iteration
matrix. The effective method to decrease the spectral radius is to precondition the linear system (1), namely,

PAx = Pb, @)
where P is a nonsingular matrix. The corresponding basic preconditioned iterative method is given in general by
D — s INpx® M, k=0,1,2,...

where PA = Mp — Np. Authors in [8] set Py = I+ Sq and authors in [9] set Pg = I+ Kg where S and Kg have the
following forms

0 —oar» 0 0 0 0 - 0 0
0 0 —hays - 0 —Biaxi 0 0 0
Sa=1] : : : ,Kg = 0 0
0 0 0 _O‘nflanfl,n : : 0
0 0 : 0 0 0 0 —Br1ann1 0O
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In this paper we introduce a new preconditioner by setting P=1+Sq+ Kg with above Sy and Kg. Numerical
results show that the spectral radius of iterative matrix in our new preconditioned system is lower than spectral radii
of iterative matrices of preconditioned systems in [8] and [9]. First we change system (1) to PAx = Pb or

Agpx =1 3)
where Agg = (I+So +Kg)A, b' = (I+Sq+ Kg)b. By splitting A = I — L — U we have
Agp=I1—L—U+Sq+Kg—SoL—SeU—KgL—KgU.
Therefore, the iteration matrix of Gauss-Seidel(GS) method for system (3) is

Tug — Mg (1L Ky ~Pugl (U =S+ Pagl)

where Pyg = (S +Kp).
We would like Mg be anonsingular matrix, as Mg is a triangular matrix, hence it is enough that its diagonal elements
be nonzero. The diagonal elements of Mg are 1 — ®a;ir1.ai+1,i, = 1,2,...,n—1, therefore, Mg is a nonsingular
matrix if

OGaii1 a1 71, i=1,2,...,n—1 @

From now on, by assuming (4), we show that p (M;éNaﬁ) < 1, that is, the Gauss-Seidel method for (3) converges.

PRELIMINARIES AND NEW PRECONDITIONER

Without loss of generality, we split A in (1) as A =1 — L — U, where [ is the identity matrix, —L and —U are strictly
lower and upper triangular matrices of A, respectively. Also we assume thata; ;1 #0and a;; 1 # 0.

Definition 1. [10]. The splitting A =M —N is called an H-splitting if <M > —|N| is an M-matrix, where |N| = (|n;;|)
and < M > is the comparison matrix of M.

Lemma 1. [10]. Let A= M — N be a splitting. If it is an H-splitting, then A and M are H-matrices and p(M—'N) <
p(<M>"1|N)) < 1.

Lemma 2, [11]. Let a real matrix A have non-positive off-diagonal entries. Then matrix A is an M-matrix if and only
if there exist some positive vectors u = (uy, - 7un)T > 0 such that Au > 0.

Theorem 1. [8]. Let A be an H-matrix with unit diagonal elements, Aq = (I+ Sq)A =My —Ng, Mg =1 —L — SgL
and No, =U — S¢+ SoU. Let u = (u1, ..., un)T be a positive vector such that < A > u > 0. Assume that a; i1 7 0 for
i=12,---,n—1, and '

o= X Ll = By il 4 g i

i |aiivt | XG_y a@ivn,jluj

then OC; >1fori=1,2,--- .n—1andfor0<o; < OC; , the splitting Aq — Mg —Ng is an H-splitting and p(Myz'Ng) < 1
5o that the iterative method (2) converges to the solution of system (1).
Theorem 2. [9]. Let A be an H-matrix with unit diagonal elements, Ag = (I + Kg)A = Mg —Ng , Mg =1 — L+ Kg —
KgL and Ng =U+KgU. Let u = (11, ...7un)T be a positive vector such that < A > u > 0. Assume that a;;—1 # 0 for
i=2,--,n and '
i — Yo% |aixlug — Yoo laielu 4 laii1|uia

laii—1| Xizy lai1lux

B =

then ﬁi/ >1fori=2,---,nandfor0 < f; < ﬁi/, the splitting Ag = Mg — Ng is an H-splitting andp(MElNﬁ) <150
that the iterative method (2) converges to the solution of system (1).
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Theorem 3. By assumptions of Theorems I and 2, if Aqg = (I + Pyp)A = Myg — Ngg where Myg = (I — L+ Kg —
PogL) and Nog = (U — So + PogU), suppose that u = (u1,uz, . )T is a positive vector such that < A > u > 0,
also ajip1 #Z 0 fori=1,2,....n—1land a; ;1 #0 for j =2,3,...,n, also OC;, ﬁi/ are defined in Theorems 1 and
2, respectively. Then OC; > 1, ﬁ]/ > 1 and for any 0 < o < Oci/, 0<Bj< ﬁ]/ every splitting Aqg = Mg — Ngp is an
H-splitting andp(M;éNaﬁ) <L

Proof. By Theorems 1 and 2, we have oc; > 1 and ﬁ]/. > 1. Thus it is enough to show that Ayg = My — Nyg is an
H-splitting and p(M(;éNaﬁ) <1.
By Lemma 1 it is enough to show that splitting A = Mg — Nyg is an H-splitting. But by Definition 1 we must show
that < Mg > —|Ngg| is an M-mairix. Also, by Lemma 2 if there exists a positive vector u such that <A > u > 0 then
A is an M-matrix. Thus it is enough to show that there exists « > 0 such that (< Mg > —|Ngg|)u > 0.
We know that

Mg =1—L—SqL, Ng =U — Sg + SaU,

Mg =I1—L+Kg—KpL, Ng =U+KgU,

MO‘B = (I—L+KB —S(XL—KBL)7 N(xﬁ = (U —Sa +S(XU+KBU)7

therefore
<Mgg > —|Nog| =< Mg +Kg(I —L) > —|Ng + KgU]|

now, we prove the following
[(< Mg > —|Nagl)u] = [(< Mo > —|Na|)u] + [(< Mg > —|Ng|)u], Q)
or we must prove that

(<Mq+Mg—(I—L)>)u—|Ne+Ng—Ulu

> (< Mg >+ < Mg >)u— (|No| + [Ng ©)

relation (6) holds if we have the followings
|Na+NB_U|”§(|Na|+|NB|)” @)
(<KMo +Mg—(IT—L)>)u>(<My >+ < Mg >)u. (%

To prove (7) we have
[|[No +Ng —Ulul;

n
:|ﬁiflai,i71ai71,i|”i+ Z |ﬁi71ai,i—1ai—1,j_(ai,j—aiai,i+1ai+1,j)|”j
j=itl

and
[([Nee| + [Ng [ )uli

n
= |ﬁiflai,iflai71,i|”i+ Z (|ﬁi71ai,i71ai71,j —di,j| + |ai,j - aiai,i+1ai+1,j|)”j
j=it1
hence, it is enough we prove the following

n

Y, (UBiwaiirai1j—aijl+lai; — chaiiiiair j|)u;
j=irt
n
> Y Biaiiai1,;—(aij— ohaiiiai,)u;
j=irt
the above relation holds if we have the following

|Bi1aii1ai1j| < |Bi1aii1ai1,j —aij
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which it holds, because A is an H-matrix.
To prove (8) we have

(< Mo +Mg —(I—L) >)uli
i1
=1 = caii1@iilui— Y l0iai 101+ Bioraii—1ai-1,; — aijluj
=

and

(< Mg >+ < Mg >)ul;
i1
= (1= aiipraivril + D — Y (laij — taiiai, |+ laij — Bi1aii1ai1,j])uj

j=1
also, it is enough we prove the following

i1
— ) laiaiiaicj+Biaii1ain,j —aijlu;
=1
i1
> — Y (laij — OGaiiriair,j|+laij — Bi1aii1ai1,j|)u;

j=1
as there exists j such that a;; # 0, therefore

|oGaii1aiv,;—aij+ Bic1aii—1ai1,;—aij +ai |
<|oGaiiv1air1,j —aij+ Bic1aii—1ai-1,; — ai j|
<lai,j — 0Gaiir1aie1,j| + laij — Bic1aiji—1ai-1 |

then

|tiaiiv1aic1,j —aij+ Bi-1aii1ai-1,j — @i j+ ai |
<lai;— aii1aiv1,j| +|aij — Bic1aiic1ai-jl,  j=1,---,i—1

adding the above relations completes the proof, because we can select «; small enough. Note that if <A > u > 0 then
for all positive n, we have <A > 7 > 0. O O

NUMERICAL EXAMPLE
Example 1. Consider the following Laplace equation
lixe + 1ty = 0, on R = [0,0.5]
with boundary conditions
u(0,y) =0, u(x,0)=0, u(x,0.5)=200x, u(0.5,y)=200y.
Applying the finite difference method with the uniform mesh size and » points, we obtain a linear system Ax = b.

We solved the system by four different methods and different values of n. In all cases the spectral radii of the new
method was the least one.
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