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A Fast Alpha-tree Algorithm for Extreme Dynamic
Range Pixel Dissimilarities

Jiwoo Ryu, Scott C. Trager, and Michael H.F. Wilkinson Senior Member, IEEE

Abstract—The α-tree algorithm is a useful hierarchical repre-
sentation technique which facilitates comprehension of images
such as remote sensing and medical images. Most α-tree al-
gorithms make use of priority queues to process image edges
in a correct order, but because traditional priority queues are
inefficient in α-tree algorithms using extreme-dynamic-range
pixel dissimilarities, they run slower compared with other related
algorithms such as component tree. In this paper, we propose
a novel hierarchical heap priority queue algorithm that can
process α-tree edges much more efficiently than other state-
of-the-art priority queues. Experimental results using 48-bit
Sentinel-2A remotely sensed images and randomly generated
images have shown that the proposed hierarchical heap priority
queue improved the timings of the flooding α-tree algorithm by
replacing the heap priority queue with the proposed queue: 1.68
times in 4-N and 2.41 times in 8-N on Sentinel-2A images, and
2.56 times and 4.43 times on randomly generated images.

Index Terms—alpha-tree, efficient priority queue, redundant
node redu, high-dynamic-range image, multi-spectral image

I. INTRODUCTION

UNDERSTANDING an image requires recognizing regions
and objects, based on features such as sizes, brightness,

and frequency on different scales. A hierarchical image
representation provides an efficient way to achieve this goal
by segmenting the image from finer to coarser scales [1]–[5].
Many of those applications use tree data structures to construct
the hierarchical representations, because the tree data structure
provides a natural and an efficient way to represent a hierarchy
of image partitions at different scales [6]–[9].

Alpha-trees are used in applications such as built-up urban
area detection, image/video segmentation, human anatomical
image segmentation, traffic sign recognition, or plant disease
identification [6], [7], [9], [10]. Segmentation, detection or
classification using α-trees can be done by filtering the α-tree
nodes using either hand-coded rules [6], or machine learning
[10]. Deep neural networks (DNNs) could be trained on α-tree
nodes just as in superpixel-based DNN algorithms [11], [12],
although we know of no published work on this topic. The
alpha-tree algorithm partitions an image by merging areas with
homogeneous gray levels or color, i.e. flat zones. A flat-zone
is a connected component (CC) where neighboring pixels in it
have low dissimilarities. The choice of the pixel dissimilarity
measure depends on the application and the computational
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Fig. 1. Illustration of α-tree representations built from an image of a rose
plant, using different pixel dissimilarity metrics of (a) L∞ norm, (b) L2 norm,
(c) L2 norm in CIELAB color space and (d) modified L2 norm in HSV color
space.

complexity. Previous studies used the L2 or L∞ norms in gray
scale or RGB color space [6], [7], [9]. It is also possible
to use other color spaces such as HSV, CIELAB, or to use
hyper-spectral images [13], [14], all of which lead to extreme
dynamic ranges in the dissimilarity measure.

Figure 1 shows α-tree scale spaces from finer (left) to
coarser (right) scale, using (a) L∞ norm in RGB color space,
(b) L2 in RGB, (c) L2 in CIELAB, and (d) L2 in HSV. L*, a*
and b* in CIELAB and H, S and V in HSV are normalized
before computing L2 norm. Note that the dissimilarity in H is
computed in a circular fashion, requiring a minor modification
to the L2 norm. Salient objects such as red roses and white
fungal leaf spots are preserved better in coarse scales in
CIELAB or HSV, making their identification easier. Using
higher dynamic range dissimilarity using L2 norm instead of
L∞ also provides much more information in resulting α-tree.
The four images shown in each of Fig. 1(b), (c) and (d) are
sampled from millions of scales in their practically continuous
scale spaces, while the four images in Fig. 1(a) are the only
images in this range in a scale space with only few hundred
scales. Silla compared RGB, CIELAB and HSV color spaces
in an α-tree application for disease detection on plants, and
found that using L2 norm in HSV color space provides the
best segmentation [10].

Use of higher-dynamic-range pixel-dissimilarity measures
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significantly improves the performance of α-tree, but it comes
with a high computational cost. The dynamic range of pixel
dissimilarities tends to become very high when dealing with
color or multichannel images. Even if each channel of a color
image is in low-dynamic-range (LDR) or high-dynamic-range
(HDR), its pixel dissimilarities tend to be in extreme-dynamic-
range (XDR), unless L∞ norm is used or dissimilarity values
are quantized.1 It is also possible to have pixel dissimilarities
in XDR on grayscale images in LDR. Zhang and Wilkinson
[15] introduced a 2-D Gabor filter to smooth out edges
along the direction of edge strength to reduce the chaining
effect, resulting in higher-dynamic-range pixel dissimilarities.
However, the α-tree algorithm has not made much progress
since [6], and to the best of our knowledge, there has been
no published study on the α-tree algorithm that works on
XDR images. In [6] an algorithm based on Berger’s union-find
algorithm using a hierarchical queue was proposed [16], which
works only on LDR or HDR pixel dissimilarities, due to the use
of the hierarchical queue. In [17] a parallel α-tree algorithm
based on the union-find algorithm was proposed, which also
works only on LDR or HDR because the computational cost of
merging subtrees of sub-image blocks increases exponentially
as the bit depth increases. In [18] an application of Kruskal
algorithm to build α-tree was proposed, which is essentially
a union-find-like algorithm which uses union by rank and
path compression to keep the tree depth low. A new approach
using homological-based tools was introduced in [19] which
proposed a parallel algorithm to build α-trees in 8-bit images.
Our previous work on α-tree algorithm used flooding algorithm
and hierarchical queue for LDR images, where the size of the
α-tree was estimated in prior to save the memory footprint of
α-trees [20].

Flooding (i.e. merge-based algorithm) is another type of
α-tree algorithm based on the original flooding algorithm for
max-tree construction [21]. Whereas union-find algorithms
construct the α-tree by merging neighboring CCs in the
order of increasing pixel dissimilarity, the flooding algorithm
constructs a CC at certain area by “flooding” the area at certain
level before moving on to another CC. Whereas union-find
algorithms process edges in an increasing order but constructs
CCs at seemingly arbitrary positions in an image, the flooding
algorithm newly created CCs are always adjacent to CCs that
already has been constructed but does not guarantee edges to
be processed in an increasing order.

Redundant edges (REs) are the biggest challenge in devel-
oping an efficient α-tree algorithm. REs are image edges that
create redundant and residual nodes in α-trees, which are α-tree
nodes that carry the same information as their child node [6],
[17]. They cause the major computational bottleneck in most
α-tree algorithms because more than approximately 75% of
edges are either redundant in α-tree construction [6]. Because
of REs, most conventional α-tree algorithms using union-find
or similar approach suffer a significant penalty on computation
cost since detection and removal of REs requires calling
FINDROOT, which is O(log|E|), to the best of our knowledge.

1Here we define bit depths lower or equal to 8-bit as LDR, higher than
8-bit and lower or equal to 16-bit as HDR and higher than 16-bit as XDR.

It is possible to significantly alleviate the slowdown caused by
those edges by using a flooding algorithm using hierarchical
queue, because computational costs of hierarchical queue
operations are all O(1) [21]. However, since the number of
queues in the hierarchical queue is equal to the dynamic range
of the image, hierarchical queue becomes simply infeasible
in HDR and XDR since it needs millions if not billions of
queues and each deletion operation requires a linear scan of
those queues. Thus, current state-of-the-art algorithms suffer
significant inefficiency in XDR, and this problem becomes even
worse if higher pixel connectivity is used. For example, in 8-
pixel connectivity the number of edges is doubled compared
with 4-pixel connectivity, and hence the number of redundant
edges increases by three times.

The better design of the priority queue is the key to improve
the processing speed of the α-tree algorithm in XDR, because
as shown in Sec. III priority queuing is the major bottleneck
of the timing of alpha-tree algorithms in XDR. The priority
queue design is a well-studied subject in pending event set
(PES) in discrete event simulation (DES) [22]–[26]. The ladder
queue (LQ) is one of the best performing priority queue in PES
which has O(1) enqueue (push) and O(1) amortized dequeue
(pop) computational complexity by using a hierarchy of queues
each of which has dynamically set range and is only sorted
on demand [25], [26]. The structure of the LQ consist of the
top, the middle and the bottom rung where the top and the
middle rungs store items as unsorted arrays and the bottom
rung stores the only sorted array in the whole queue. The ladder
queue has some similarities with the hierarchical heap queue
(HHQ) we propose in this paper, such as the layered structure
and sorting of items only when it is necessary. However, the
LQ and the HHQ have some significant differences in their
structures and target applications. The LQ is not designed to
store a large number of items; the maximum number of rungs
set by [25] and [26] is from 2 to 5, which may store up to
a few tens of thousand items. The low number of rungs is
not only appropriate for handling PES where the number of
enqueues and dequeues are expected to be comparable, but also
necessary for low computation cost as enqueuing an item to an
LQ requires comparing the timestamp of the item to each rung.
This is very different from the priority queue in alpha-tree
algorithms, where up to millions or even billions of edges can
be stored in the priority queue. The purpose of LQ design is to
adopt to dataset with varying probability distributions, which
is not necessary in alpha-tree algorithms where the majority of
dissimilarity metrics have exponential or similar right-skewed
distribution. Even if the assumption of dissimilarity distribution
were to be wrong, it is easy to pre-determine the optimum
layer structure by inspecting the image before the alpha-tree
construction. However, we found empirically that assuming
exponential distribution always outperforms using the best fit
estimate in the HHQ.

In this study, we improve the α-tree algorithm by proposing
a novel HHQ algorithm that can handle REs very efficiently.
The proposed HHQ uses a hierarchy of queues that are sorted
only on demand. We also propose the priority queue cache
that not only handles high priority edges at very low cost,
but also allowing the HHQ to have a large number of levels
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by reducing its level inspection cost dramatically. Empirical
complexity analysis shows that both push and pop operation
of the HHQ are O(1) amortized. The comparative test using
the proposed HHQ, hierarchical queue [21], heap queue [27]
and trie queue [28] shows the HHQ significantly improves the
α-tree algorithm timing in XDR by reducing the computation
cost of REs. This paper is organized as follows: Section II
introduces a novel hierarchical heap priority queue and the
flooding α-tree algorithm using the HHQ, and Section III
shows runtimes, analysis and profiling results of the proposed
and other α-tree algorithms.

II. METHOD

A. Definitions

We briefly summarize the definition of the α-tree and related
terms here. We define terms pertaining to an image as follows:

• G = (V,E,w): the image represented as an undirected
graph.

• V : the set of pixels.
• E: the set of edges.
• C: the pixel connectivity.
• w: the edge-weight mapping (E→ R).
• W : the output set of w.

We refer to an edge-weight w(e) of an edge e ∈ E as an “α

value” of e. In many α-tree flooding algorithms, w(e) can also
be directly interpreted as a level of e, which acts as a loop
control variable in flooding algorithms: here we use those terms
interchangeably depending on the context. As we deal with
only single channel images in this paper, the pixel connectivity
can be only either 4-neighbor (4-N) or 8-neighbor (8-N).

An α-tree of an image G is a tree data structure where
nodes correspond to sets of connected pixels in the image (i.e.,
CCs). The inner nodes of an α-tree are formed by creating
unions of leaf nodes and/or other inner nodes, connected each
other by edges. Because the minimum spanning binary tree has
only |V |−1 nodes while the number of edges is |E|= 0.5C|V |,
there are always edges that are redundant, which are not used
in the α-tree construction [6]. We categorize α-tree edges into
following types:

• Redundant edge (RE) : an edge connecting nodes that are
already connected by another edges at lower levels [6].

• Residual edge: an RE that has the root node of an α-tree
as its descendant.

• Non-redundant edge (non-RE) : an edge that is not
redundant.

Figure 2 shows an example of α-tree construction from a
2×3 image, with REs and residual edges. Fig. 2(a) and (b)
show an 2×3 image with its pixel values and edge-weights
(i.e., α values), and the graph G = (V,E,w) representation of
the image, respectively. Fig. 2(c) shows an α-tree constructed
from the graph in Fig. 2(b), where there is an RE e0 and a
residual edge e4. A root node of a subtree where all nodes
have α values below or equal to αr is called root at level αr.
Node e6 and node e5 in Fig. 2(c) are root at level 5 and 2,
respectively.

Fig. 2. An α-tree built from a 2×3 image: (a) a 2×3 image with 4-N and l2

norm, (b) a graph G = (V,E,w) representation of (a), and (c) an α-tree built
from (b).

B. Priority Queues in Alpha-Tree Algorithms

Priority queues are an essential part of any α-tree flooding
algorithm. They are used to queue image edges in ascending
order of edge-weights, and they have a variety of data structures
including hierarchical queue, heap queue and trie queue [21],
[27], [28]. Hierarchical queues work very well in α-tree
flooding algorithms for LDR and HDR pixel dissimilarities
[20], but for XDR traditional priority queues are an inefficient
solution for α-tree flooding. This is because, as we show
in this section, approximately 85–90% of image edges in α-
tree flooding algorithms are handled inefficiently, which could
benefit from our optimized queuing strategy.

To investigate how the priority queuing works in α-tree
flooding algorithms, we ran the flooding algorithm on a
randomly generated image and recorded following information
from each edge:
• Queue time: the number of items removed from a priority

queue while an item is waiting in the queue.
• Qposmax(e): the maximum value of Qpos(e), where

Qpos(e) is the position of e is the queue. For example,
Qpos(e) = 0 when e has the highest priority in the queue.

• ranke: the α value rank of an edge e in E.
Here a rank of an edge or an item ranke is its position in
the hierarchy when all edges in E are sorted in ascending
order. In addition to the above, we also obtained histograms
of non-redundant, redundant, and residual edges.

Figure 3 shows priority queue statistics obtained from α-
trees built from single-channel 64-bit randomly generated 500×
500 images. High-priority edges (i.e. edges with weight ranks
close to zero) have both very short queue times and very
low Qposmax(e))s in both connectivities. We put an arbitrary
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Fig. 3. Priority queue statistics obtained from α-trees of single-channel 64-bit
randomly generated 500× 500 images. Top panels ((a) and (b)) show the
priority queue statistics obtained from an α-tree using 4-N, and bottom panels
((c) and (d)) show those obtained from an α-tree using 8-N. Left panels ((a)
and (c)) show mean queue times and Qposmax(e))s for each edge, and right
panels ((b) and (d)) show histograms of non-redundant, redundant, and residual
edges. The number of edges (|E|) in 8-N is about twice that as in 4-N.

threshold r0 in all panels in Fig. 3 at points where Qposmax(e))
becomes higher than 12, which corresponds to 0.45|E| in 4-
N and 0.25|E| in 8-N. The histograms in Fig. 3(b) and (d)
show that most of those high-priority edges are non-redundant,
meaning that they are the majority of edges that correspond
to inner nodes in an α-tree. This explains why r0 is higher in
4-N, as the number of inner nodes of a minimum spanning
tree is |V |−1 ≈ 0.5|E| in 4-N and |V |−1 ≈ 0.25|E| in 8-N.
Because most of those high-priority edges are removed from
the priority queue as soon as they are inserted, it is inefficient
to pay computational costs to process them in the priority
queue.

Low-ranking edges, on the other hand, have high queue times
and high Qposmax(e)). The higher queue times the edges have,
the more they have negative effects on computational costs of
priority queue operations, by increasing the number of items
in priority queues. The problem in α-tree flooding algorithms
is that most of those low ranking edges are residual edges.
They are inserted into a priority queue and stay there until
the α-tree construction is complete. This has a critical effect
on computational costs for priority queues with non-constant
time operations such as heap queues. We put thresholds r1 at
points where the residual edge distributions start. As expected,
r1 = 0.35|E| in 8-N is less than r1 = 0.60|E| in 4-N, because
there are more edges in 8-N while the number of edges to
build α-tree inner nodes remains the same (|V |−1).

The only edges that are actually need priority queuing are
edges within the range r0–r1, which is only about 10–15% of
all edges. This is not a problem in LDR or HDR, because
hierarchical queues can process insertions and deletions in
constant time. However, this is not the case in XDR, because
hierarchical queues are not available in that range. Therefore,
better ways to process edges with weight ranks below r0
and above r1 are necessary to improve efficiencies of α-tree
algorithms for XDR images. The simplest solution would be

to make separate queues for ranke < r0, r0 ≤ ranke ≤ r1 and
ranke > r1, but this is not a feasible because ranke is usually
not available unless the edges are sorted. Moreover, r0 and r1
are also unknown before building an α-tree. Thus, to improve
the priority queuing in α-tree, we need a novel priority queue
algorithm that processes only edges in range r0–r1, without
having to sort edges and without knowing values of r0 and r1
a priori.

C. The Priority Queue Cache

In this section we investigate how to deal with high-priority
edges in priority queues. As mentioned in the previous section,
high-priority edges are edges with low α-values that are
removed from a priority queue very soon after they are inserted
into the queue. We propose a priority queue cache that stores
a small number of the highest-ranking edges in a small array,
to bypass non-constant time insertion and deletion operations
of traditional comparison-based priority queue operations.

Fig. 4. Priority queue operations with a cache of size L; (a) queue insertion
and (b) queue deletion.

Figure 4 shows how (a) insertion and (b) deletion work in a
priority queue with a cache of size L. The cache is essentially a
priority queue of a very small size which always has a priority
over the main priority queue in both operations. The insertion
always tries to put a new item first into a cache, and an item
is only pushed into the main queue when the cache is full.
Likewise, the deletion always removes an item from the cache
first, and an item from the queue is only removed when the
cache is empty. The size L should be a very small number
to keep the cache insertion and deletion cost low, but large
enough to store all high-priority edges. We empirically found
L = 12 to be reasonable in most cases.

By using the cache in a priority queue, high-priority edges
can be processed quickly because they are processed only by
the cache, not the queue. This is a huge advantage especially
when queue operations are costly, and/or there are many high-
priority edges such as in 4-N. Although the cache can adopt
any priority queue data structures, we found that a simple
sorted array is the most efficient.

D. The Hierarchical Heap Priority Queue

In this section we propose a novel hierarchical heap priority
queue which optimizes priority queuing in α-tree flooding
algorithms in three ways: 1) by reducing the time complexity
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of priority queue insertions of residual edges, by using unsorted
arrays for low priority edges, 2) reducing time complexities
of insertion and deletion of high-priority edges, by using a
priority queue cache and 3) by keeping depths of heap queues
small by using multiple quaternary heap queues [29] instead of
a single binary tree. The data structure of the HHQ is similar
to that of the hierarchical queue and the heap queue, and it
has advantages of both queues: it has low computational costs
for insertion and deletions as in hierarchical queues, and it can
process XDR inputs as in heap queues.

The HHQ has a hierarchical array of queues sorted in
ascending order of their qlevels. Items in the HHQ are stored
in one of those queues according to their α values. This is
similar to hierarchical queues [21], but in hierarchical queues
α values are used directly as queue indices while in HHQs
we take the logarithm of α values to compute qlevels:

qlevel := bd log2(α +1)c (1)

The parameter d controls the number of levels of queues. The
advantage taking the logarithm of α is that we can keep the
number of queues feasible even if the dynamic range of α

is high, thereby removing one of the biggest disadvantage of
the hierarchical queue. However, items with different α values
can be stored in the same queue since different α values can
be floored to the same qlevel. We sort items at each level
using quaternary heap queues, but we sort only qlevels with
high priorities (qlevel < qthr), and those queues at low-priority
qlevels are left unsorted. This is because in an α-tree algorithm,
low-priority items in the queue are most likely become residual
nodes which we do not need to remove from the queue.

Figure 5 depicts how priority queue operations in an HHQ
work. Fig. 5(a) shows an HHQ storing 15 items at six different
qlevels. Numbers on each item represent their α values which
are used to compute their qlevels. In this example qthr = 4,
which means queues are sorted as quaternary heap queue only
if their qlevel is less than 4. Fig. 5(b) shows the insertion
of an item with α = 11 into the queue in Fig. 5(a). The
item is inserted into a sorted queue at qlevel = 3 since
qlevel = bd log2(α +1)c= 3 from Eq. 1 (d = 1 in this example).
Fig. 5(c) shows the queue after inserting an item with α = 41.
This item is inserted into the unsorted array at qlevel = 5.
Fig. 5(d) shows the removal of a top item from the queue. The
quaternary heap queue at qlevel = 0 becomes empty as a result,
thus top qlevel moves to the next non-empty qlevel, which
is 1. Removing eight further items leaves only one item with
α = 8 in sorted queues as shown in Fig. 5(e). Fig. 5(f) shows
what happens when the last item from the sorted queues is
removed. Since the next top qlevel at qlevel = 4 is unsorted
array, it needs to be transformed into a sorted queue, increasing
qthr by 1.

The computational cost of heap queue operations is loga-
rithmically proportional to the maximum size of the queue |E|.
By dividing the heap queue into an array of heap queues with
smaller sizes, we reduce the computational cost by a factor
of log4(d log2(|W |+1)) on average, where d log2(|W |+1) is
equivalent to the number of qlevels. The size of each heap
queue is predetermined by computing a histogram of the

qlevel values when the α values are computed. Because the
histogram is usually non-uniform, heap queues in the HHQ
have different sizes and different computational costs. We have
tried to equalize the computational costs by equalizing the
histogram, but this has not improved the overall timing of the
algorithm. This is possibly because the histogram equalization
does not make the queue sizes uniform due to the large number
of ties in α values and/or a non-uniform distribution of queue
sizes could be more beneficial than the uniform one because
of the use of unsorted arrays.

Residual edges in Fig. 3 are stored in unsorted arrays in
the HHQs. Most of those unsorted arrays remain unsorted
until the α-tree construction is complete, because residual
edges have higher α values than that of the root node of
the α-tree. Therefore, the computational costs of queuing for
residual edges are constant in insertion and essentially zero in
deletion. Considering the fact that the number of residual edges
is 0.40|E| in 4-N and 0.65|E| in 8-N from Fig. 3, reducing
computational complexities of queuing for residual edges can
significantly improve timings of HHQ operations.

E. Flooding Alpha-tree Algorithm Using the Hierarchical Heap
Queue

Algorithm 1 Flooding α-tree construction algorithm
1: procedure FLOOD(V,E,w, |W |,C)
2: Compute w(E) and the difference histogram dhist
3: node := new AlphaTreeNode[|V |+ |E|]
4: queue := new HierHeapQueue(dhist,C, |W |)
5: curlevel := MAX(w(E))
6: Push 0 to queue at curlevel
7: stacktop := 0
8: Create a new node node[0] at curlevel
9: while node[stacktop].area < |V | do

10: while queue.minlevel ≤ curlevel do
11: p := queue.POP()
12: if p is visited then
13: continue
14: end if
15: Visit p
16: Push neighbors of p to queue at w(p,q)
17: if curlevel > queue.minlevel then
18: Create a new node node[newtop] at curlevel
19: Set node[stacktop] as a parent of node[newtop]
20: stacktop := newtop
21: else
22: Create a singleton node if curlevel = 0
23: Add the pixel p to node[stacktop]
24: end if
25: end while
26: newtop := node[stacktop].parent
27: if queue.minlevel < node[newtop].al pha then
28: Create a new node node[newtop] at queue.minlevel
29: end if
30: node[newtop] := node[newtop]+node[stacktop]
31: stacktop := newtop
32: curlevel := node[stacktop].al pha
33: end while
34: return node
35: end procedure

We have implemented a flooding α-tree algorithm using the
HHQ with a cache using HHQ. Algorithm 1 is the pseudocode
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Fig. 5. Illustration of hierarchical queue operations. (a) An HHQ storing 15 items. Numbers on each item represent their α values. (b) Inserting an item
with α = 11 into the queue. The item is inserted into a sorted queue at qlevel = 3 since qlevel = bd log2(α +1)c= 3 from Eq. 1 (d = 1 in this example). (c)
Inserting an item with α = 41, which is inserted into the unsorted array at qlevel = 5. (d) Removing a top item from the queue. The quaternary heap queue at
qlevel = 0 becomes empty, thus top qlevel moves to the next non-empty qlevel. (e) Removing eight more items. The item with α = 8 at qlevel = 3 becomes
the only item in sorted queues. (f) Removing the last item in the sorted queues. A non-empty unsorted queue at the next top queue is transformed into a
sorted queue, increasing qthr by 1.

of the flooding α-tree algorithm, which is similar to that in
[20] but for XDR. The key difference between Alg. 1 and the
one in [20] are (1) the histogram (dhist) computed in Alg. 1
is a histogram of quantized log of pixel dissimilarities (from
Eq. 1), instead of raw pixel dissimilarities used in [20], (2)
the root at level array (levelroot) from [20] is replaced by
keeping track of node traversal of the flooding algorithm as
a linked-list stack where stacktop in Alg. 1 represents the
top of the stack, and (3) isVisited array is used in the pop()
operation (queue.pop(isVisited)) in line 11 to discard REs. We
have implemented the α-tree flooding and the HHQ in C++,
thus the pseudocodes in this section are in C++ style. The C++
code is available at [30].

We define a C++ class for the hierarchical heap priority
queue as follows:

class HierHeapQueue
{

HQentry cache[L];
HeapQueue ∗∗HQ; . array of heap queues
HQentry ∗∗UA; . array of unsorted arrays
Imgidx qthr; . boundary between HQ and UA: a queue at

qlevel is HQ if qlevel < qthr and is UA otherwise
Imgidx L; . cache size

Imgidx num queues; . number of queues
Imgidx ∗queue sizes; . sizes of each queue
double d; . from Eq. 1

}

where HeapQueue is a standard quaternary heap queue [29],
Imgidx is an abstract datatype used for pixel indexing that
should have a dynamic range wider than [0, |V |+ |E|) and
HQentry is a struct used to store priority queue items as
follows:

struct HQentry
{

Imgidx pidx; . ending point of the edge
Pixel al pha; . edge-weight

}

where Pixel is an abstract datatype for pixel values.
Algorithm 2 shows the pseudocode of the constructor and

methods of the class HierHeapQueue. HIERHEAPQUEUE is
the constructor for the class HierHeapQueue, where class
variables are set and initialized. We found optimal values to be
Lin = 4, din = 45 rq = 0.15 in 4-N and Lin = 13, and din = 45
rq = 0.15 in 8-N from simulations (see Fig. 12 in Appendix).
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Algorithm 2 Hierarchical heap priority queue algorithm

1: procedure HIERHEAPQUEUE(dhist,C, |W |,Lin = 13,din =
45,rq = 0.15)

2: num queues := d× log2(|W |+1)
3: top qlevel := num queues . non-empty queue with the

highest priority
4: cache cur :=−1 . location of the last item in cache
5: qthr := brq×num queuesc
6: HQ := Array of num queues heap queues
7: UA := Array of num queues unsorted arrays
8: end procedure

9: procedure PUSH(pidx,al pha)
10: if al pha is lower than the lowest alpha value in HQ then
11: if cache is full then
12: PUSHQUEUE(cache[L−1].pidx,cache[L−1].al pha)
13: cache[L−1] := (pidx,al pha)
14: end if
15: cache[cache cur++] := (pidx,al pha)
16: else
17: PUSHQUEUE(pidx,al pha)
18: end if
19: end procedure

20: procedure PUSHQUEUE(pidx,al pha)
21: qlevel := d× log2(1+al pha) . from Eq. 1
22: if qlevel < top qlevel then
23: top qlevel := qlevel
24: end if
25: if qlevel < qthr then
26: Add (pidx,al pha) to HQ[qlevel]
27: else
28: Add (pidx,al pha) to UA[qlevel]
29: end if
30: end procedure

31: procedure POP(isVisited)
32: ret := cache[0].pidx
33: if cache cur = 0 then . cache has only one item

34: while CHECKQUEUELEVEL() = 0 do
35: top qlevel ++
36: end while
37: cache[0] := Top item from HQ[top qlevel]
38: POPQUEUE()
39: else
40: cache[0 : cache cur−1] := cache[1 : cache cur] . Shift

all items in cache towards the top by one slot
41: cache cur−−
42: end if
43: return ret
44: end procedure

45: procedure POPQUEUE
46: HQ[top qlevel]→ POP()
47: if HQ[top qlevel]→ cursize = 0 then
48: do
49: top qlevel ++
50: while CHECKQUEUELEVEL() = 0
51: end if
52: end procedure

53: procedure CHECKQUEUELEVEL
Ensure: The queue at a level top qlevel is a heap queue
54: if top qlevel < qthr then
55: return HQ[top qlevel].cursize
56: else
57: qthr++
58: HQ[qthr] := new HQ of size UA[qthr].size()
59: for each (pidx,al pha) in UA[qthr] do
60: if pixel pidx is not visited then
61: Add (pidx,al pha) to HQ[qlevel]
62: end if
63: end for
64: Delete UA[qthr]
65: return HQ[top qlevel].cursize
66: end if
67: end procedure

MINLEV is a method that returns the α value of the top item
in the queue. The insertion function PUSH first checks if the
new item should be inserted in cache, as in Fig. 4(a). If cache
is full and the new item has higher α value than the last item
of cache, the new item is inserted to the HHQ by calling
PushQueue method, whose algorithm is as we described in
Fig. 5(a).

The method POP removes an item from the queue. As
described in Fig. 4(b), POP removes an item from cache,
and if cache becomes empty as a result, it removes an
item from the HHQ to keep the first slot in cache occupied
(lines 34–38). Before removing an item from the HHQ, it
makes sure that top qlevel is a non-empty heap queue (i.e.,
top qlevel < qthr and HQ[top qlevel].get cursize()> 0), by
iteratively invoking CHECKQUEUELEVEL until the condition
is met. CHECKQUEUELEVEL is the method that checks if
top qlevel is a heap queue, and if it is an unsorted array, it
converts the unsorted array into a heap queue, as described
in Fig. 5(c) (lines 58–64). When transferring an items from
the unsorted array to the heap queue, the subroutine checks if
the pixel pointed by an item has already visited by inspecting
isVisited. If the pixel already has been visited, this means there

is another path at a lower α-value that connects the endpoints of
an edge corresponding to the item being processed, thus making
it redundant or residual edge. Therefore, the algorithm discards
items pointing to already-visited pixels (line 60). We found
discarding REs to be crucial in the algorithm performance.
Experimental results in the following section show that 85–
88% of REs are discarded. After the loop in lines 34–38 is
finished, the top item from the queue replaces the first slot in
cache (line 37), and POPQUEUE is executed to remove the top
item from the queue. POPQUEUE removes a top item from
HQ[top qlevel] and finds a new top qlevel if HQ[top qlevel]
becomes empty, similarly to the deletion in hierarchical queue
[21].

III. RESULT AND DISCUSSION

We have implemented the α-tree flooding algorithm using
the proposed hierarchical heap priority queue in C++ [30]. We
have also implemented other α-tree algorithms for comparison:
union-find (UF) [16], flooding using hierarchical queue (HierQ)
[21], heap queue (HeapQ) [27] and trie queue [28]. In UF edges
are pre-sorted using radix sort and an α tree is built by iterating
over sorted edges in ascending order and creating unions of
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two subtree roots associated to the endpoints of edges [16].
In addition, we have used path compression to speed up the
search for subtree roots [31] and union by rank up to 16-bit to
reduce depth of the tree [32]. Flooding using HeapQ is mostly
an α-tree algorithm version of its max-tree counterpart [27],
except for the use of quaternary tree instead of binary tree to
reduce the depth of the tree. In TrieQ we have used 64-ary trie
where each single-bit trie node representing an edge has 64
child nodes stored in 64-bit data. Since the trie data structure is
designed to represent ranks of edges instead of their α values,
TrieQ is the only flooding algorithm in this study that operates
on ranks of edges instead of α values (see [28] and [30] for
detail). We have added an extra one bit as a child of each leaf
node in the trie, which is necessary to indicate the direction
of flooding, even though it nearly doubles the size of the trie.

We have applied the priority queue cache not only to the
proposed but also to other flooding algorithms, to investigate
how the cache affects performances of other types of priority
queues. Since all priority queues should produce the same
output given the same input, interactions between the cache
and the queue should be identical regardless of the choice of
priority queue, except for the trie which operates differently
as mentioned above. Optimal cache sizes can differ by queues
since computation timings of queue operations can be different.
We have used randomly generated images of size 100 Mpix
(unless stated otherwise) in different bit depths ranging from
6 bits to 64 bits, as well as five Sentinel-2A remotely sensed
images of size 120.56 Mpix [33]. The experiment has been
performed on a computer with an AMD Ryzen 7 4800H CPU
and 64GB memory.

A. Processing Speed and Memory Use

Figure 6(a) shows the processing speed and memory use
of different α-tree algorithms using HierQ, HeapQ, TrieQ,
UF, and HHQ, with and/or without the cache (C) and with
and/or without unsorted array (UA) in different bit depths in
4-N, on randomly generated images of size 100Mpix. The
priority queue cache improves all types of priority queues
especially the HHQ in all bit depths and the HierQ in 12–
24 bits. This is because the HHQ in all bit depths and the
HierQ in HDR and XDR have high computational costs for
deletion, thus the cache improves its performance significantly
by replacing the queue deletion (O(log |W |)) by the cache
deletion (O(1)). Runtimes of HeapQ are also improved by the
cache in all bit depths because computational complexities
of HeapQ operations are (O(log |E|)), which is independent
of the bit depth. The TrieQ benefits the least from the cache.
We presume that this is because the TrieQ already has quite
low computational costs for both insertion and deletion. The
proposed HHQ + C performs significantly better than any
other α-tree algorithms above 16 bits. It has processing speeds
of 5.46 Mpix/s in 32 bits and 4.79 Mpix/s in 64 bits, while
the best conventional α-tree algorithm (HeapQ) has those of
1.59 Mpix/s in 32 bits and 1.52 Mpix/s in 64 bits.

Figure 6(b) shows runtimes of α-tree algorithms in 8-N. The
cache still improves timings of priority queues, but performance
gains are not as high as in 4-N. This is because there are

fewer high-priority edges that benefit from the cache: 25% of
|E| in 8-N compared to 45% in 4-N. The ratio of non-REs
in 8-N is approximately half of that in 4-N. In the union-
find algorithm this is not a huge problem because edges are
processed in order of α values, and most of non-REs have
lower α values than the rest. However, in flooding algorithms,
all incident edges of pixels visited have to be inserted into
a priority queue in PUSHNEIGHBORS, thus having a large
number of superfluous edges has a huge negative effect on
flooding algorithms. The effect is especially severe for the heap
and trie queues because they have higher computation cost in
queue operations: flooding algorithms using these queues are
slowed down by approximately a factor of two in 8-N compared
to those in 4-N. Flooding algorithms using hierarchical and
HHQs are also slowed down but by a lesser degree (about
35–50%), because these queues do not suffer significantly from
pushing extra edges, as they have very low computation cost
in queue insertion. The proposed algorithm has processing
speeds of 3.41 Mpix/s in 32 bits and 2.94 Mpix/s in 64 bits,
while the best conventional α-tree algorithm (union-find) has
0.61 Mpix/s in both 32 and 64 bits.

Figures 6(c) and (d) show the memory use of α-tree
algorithms in different bit depths in 4-N and 8-N, respectively.
As the cache has a negligible effect on the memory use, we
omitted algorithms without the cache here. HierQ and HHQ
who use the HQentry structure in Sec. II-E have higher memory
use compared to the rest, because an HQentry item have to
store both α-value and a pixel index to visit, while in UF, HierQ
and TrieQ one of those do not need to be stored explicitly.
HHQ has higher memory use than HeapQ as it needs additional
pointers to queues at different levels of queues in addition to
HQs and UAs themselves. In our implementation of flooding
algorithm using TrieQ, an extra temporary memory is used
to track mappings from edges to their ranks, thus TrieQ has
the highest memory footprint in 8-N and 64-bit in 4-N as
the size of the temporary memory doubles as the connectivity
goes from 4-N to 8-N. HeapQ and HierQ have significantly
lower memory use in 6- and 8-bit because they reduce memory
use by predicting the number of redundant nodes using tree
size estimation (TSE) [20]. TSE can be applied to any α-tree
algorithms in LDR, but we have not implemented TSE on other
algorithms since HierQ significantly outperforms everything
else in terms of both timing and memory use in LDR. UF uses
union by rank, which requires an extra memory space to keep
track of ranks of each node only when the bit depth is lower
or equal to 16-bit because the frequency of nodes having the
same α value decreases significantly beyond 16-bit. This is
why the UF’s memory decreases from 16- to 18-bit.

Figure 7 shows the timings of α-tree algorithms as a function
of image sizes ranging from 2.25Mpix to 64Mpix. Fig. 7 (a)–
(d) show runtimes of α-tree algorithms in 4-N, in (a) 8-bit, (b)
16-bit, (c) 32-bit and (d) 64-bit, and Fig. 7 (a)–(d) runtimes
in 8-N, in (e) 8-bit, (f) 16-bit, (g) 32-bit and (h) 64-bit. Time
complexities of UF, TrieQ, and HeapQ are O(|E|log|E|) [16],
[27], [28], and that of HHQ is also O(|E|log|E|) as it also
uses heap queues. HierQ has a time complexity of O(|W ||E|)
[21], thus its runtimes increase exponentially as the bit depth
increases. While having the same time complexity as most
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Fig. 6. Performances of different α-tree algorithms using hierarchical queue (HierQ), heap queue (HeapQ), trie queue (TrieQ), union-find (UF), hierarchical
heap queue (HHQ), with and/or without cache (C) and with and/or without unsorted array (UA) on randomly generated images of size 100Mpix: (a) runtimes
of α-tree algorithms in 4-N, (b) runtimes of α-tree algorithms in 8-N, (c) memory use of α-tree algorithms in 4-N and (d) memory use of α-tree algorithms in
8-N.
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Fig. 7. Runtimes of α-tree algorithms as a function of image sizes ranging from 2.25Mpix to 64Mpix. (a)–(d) runtimes of α-tree algorithms in 4-N, in (a)
8-bit, (b) 16-bit, (c) 32-bit and (d) 64-bit. (e)–(h) runtimes in 8-N, in (e) 8-bit, (f) 16-bit, (g) 32-bit and (h) 64-bit. The proposed hierarchical queue shows
constantly low runtimes even in high bit depths and higher connectivity.

of other algorithms, HHQ has much better timings in all bit
depths except for 8-bit where HierQ dominates. This is because,

according to our finding based on an analysis on the HHQ
presented later in this section, HHQ processes 85–88% of REs
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in O(1). Once the REs are pushed into an HHQ, 85–88% of
them are never moved or inspected, before they are discarded
after a single check on isVisited array in line 60 in Alg. 2
if and only if the UA it belongs to turns into an HQ. The
computation costs of PUSH and POP for REs in the HHQ are
similar to those of PUSH and POP in the HierQ. Because the
proportion of REs is approximately 50% in 4-N and 75% in
8-N, processing 85–88% of REs in O(1) means processing
42.5% (in 4-N) and 66.6% (in 8-N) of all edges in a very lost
computation cost, as low as in HierQ. This is why the HHQ
does not scale badly with the number of pixels in XDR and/or
in 8-N, compared to other algorithms.

B. Analysis on the Proposed Hierarchical Heap Queue and
the Priority Queue Cache

In this section we provide empirical analysis on the proposed
HHQ and the priority queue cache. We have conducted an
empirical complexity analysis on the HHQ + C, by keeping
track of average number of memory moves (NMMs) in the
HHQ as a function of the number of items in the queue (Qsize)
in push and pop operations. Fig. 8 shows NMMs of the HHQ
+ C and a naive binary heap queue in push and pop operations
in the alpha-tree construction of a randomly-generated image
of size 1Mpix using 4N connectivity. The heap queue is “naive”
because it does not use the priority queue cache and it does
not try to reduce the number of NMMs by delaying the pop
operation until it is absolutely necessary, as in Heap + C in
Fig. 6. This data can be obtained by setting “PROFILE” macro
in our C++ code [30]. NMMs are smoothed over Qsizes using
Gaussian kernels (σ = 600 samples for push and 300 for pop)
for better visualization. Fig. 8(a) shows the push operation of
HHQ is O(1) with very flat NMMs on every Qsize. This is
likely due to low-cost push using the cache and UAs, and sizes
of HQs being kept low thanks to a large number of levels in
the HHQ and redundant edges being removed when UAs are
turning into HQs (line 60 in Alg. 2). Fig. 8(b) shows O(1)
amortized complexity of HHQ pop operations. NMMs of pop
operation shows high peaks in high Qsizes, with the highest
peak located near Qsize = 0.6M. The highest peak represents
transformation of UAs with a large number of items into HQs.
NMMs beyond this point are consistently high because those
pop operations were performed mostly in a large HQ instead
of a small one or the cache. It is interesting to note that NMMs
beyond the highest peak has a periodic pattern, which is likely
from HQ on each layer being emptied one by one.

In addition to the complexity analysis, we have investigated
the number of operations and statistics inside the proposed
HHQ and HHQ + C by altering the number of queue in the
HHQ and the cache size, to analyze how the proposed HHQ
and the priority cache speed up the processing speed of the
α-tree algorithm. Figure 9 shows statistics of operations in
the HHQ while the α-tree algorithm was running on a 64-bit
randomly generated image of size 1M pixels. Fig. 9(a) presents
the number of items moved inside heap queues in the HHQ.
This represents items, which are already pushed into the HHQ
before, being moved into or out from one of its heap queues.
It does not count an item pushed into or popped out of the
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Fig. 8. Empirical complexity analysis of the HHQ and the heap queue on
alpha-tree construction of an image of size 1M pixels using 4N. (a) The
number of memory moves (NMMs) in terms of the number items in queue
in push (b) NMMs in pop. The push and pop operation of HHQ show O(1)
amortized complexity.

HHQ, because those counts are constant and are irrelevant to
the performance of the queue. An item pushed into or popped
from the cache or a UA are counted as moves. Since we used
a 64-bit image, |W |= 264 and log2(|W |) = 64 here. The items
moves decay exponentially as the number of queues in the HHQ
increases, and this is mainly due to more REs being stored in
UAs instead of HQs thanks to the sufficient number of queues
in the HHQ. If an RE is stored in the same UA as a non-RE
that is incident to the same pixel that the RE is incident to, the
RE has to be sorted during CHECKQUEUELEVEL in Alg. 2.
The probability of REs being sorted decreases as the number
of queues in the HHQ increases, therefore the item moves
decreases exponentially as the number of queue increases. In
addition, the decrease in item moves is also thanks to the
lesser depths of quaternary trees in heap queues, by a small
amount. This is why the HHQ without UA performs better
than HeapQ as shown in Fig. 6. The item moves increases by
a small amount when the cache is added to the HHQ, both in
4-N and 8-N. This is due to the items moved into the queue
from the cache when a “cache miss” happens, which will be
defined later in this section, or an item is popped from the
HHQ to fill the empty cache.

Fig. 9(b) shows the number level inspections performed
in the HHQ. We define the level inspection as checking
a level in a hierarchy of queues if it is empty of items.
CHECKQUEUELEVEL in Alg. 2 performs the level inspection
which is called at least once whenever POPQUEUE is executed.
The cache reduces the number of level inspections by orders
of magnitude, both in 4-N and 8-N. This huge decrease in the
number of level inspections comes from high priority edges
causing top qlevel of the HHQ to fluctuate. For example,
when an edge with α = 0 enters the HHQ without cache
whose top qlevel is 1000 at the time, the edge will be stored
at an HQ at level 0 and top qlevel will be updated to 0
since qlevel = d× log2(1+α) = 0 from Eq. 1. This edge will
be popped immediately right at the next POP, and after the
edge with α = 0 has left the queue CHECKQUEUELEVEL has
to inspect 1000 empty levels until top qlevel climbs all the
way back up to 1000. Having a cache in the HHQ solves
this problem by queuing the high priority edges in the cache
instead of HQs. The cache acts as a “breakwater” that protects
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Fig. 9. Statistics in the HHQ in terms of its parameters, using a 64-bit randomly generated image of size 1Mpix. (a) The number of items moved inside heap
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queues in the HHQ. (d) The number of items moved inside heap queue, the number of level inspections and the number of items moved in the cache as a
function of the cache size.

the HHQ against waves of edges, keeping top qlevel from
fluctuating along with the high-frequency fluctuation of α

values of edges entering the HHQ. The significant reduction
in the number of level inspections thanks to the cache allows
the HHQ to have higher number of queues that leads to even
lower computation cost. Even a cache of size 1 reduces the
number of level inspections significantly, as shown in Fig. 9(d).
However, a cache with small sizes increases the number of item
moves in the HHQ due to a high probability of the cache being
overflowed or emptied causing a lot of items moves between
the cache and HQs. Enlarging the size of the cache alleviates
this problem, but larger cache sizes leads to higher computation
costs for item moves insides the cache. The optimal cache size
is a size that compromises the number of level inspections,
item moves in HQs, and item moves in the cache. We found the
optimal cache size usually lies between 4 and 20 depending on
the type of priority queue and the connectivity. See Fig. 12 in
Appendix for the detail. Having a cache in the HHQ also makes
the implementation of the HHQ easier. Without the cache it is
possible to turn low-priority UAs to HQs prematurely if the
all of the first batch of edges have high α values, which will
significantly slow down the HHQ as the benefit of using UAs
is reduced. Avoiding this without using cache is not a trivial
task, therefore it can be said that the cache is imperative part
of the HHQ.

Fig. 9(c) shows pRE sorted , the share of REs sorted in the
cache or HQs in HHQ. The definition of pRE sorted is as follows:

pRE sorted :=
|{e ∈ ERE |e is sorted in an HQ}|

|ERE |
ERE := {e ∈ E|e is redundant or residual}

(2)

Clearly, it is desirable to have a low pRE sorted . When the
number of queues is 1, in which case the HHQ becomes
a HeapQ, pRE sorted becomes 1. As the number of queues
increases pRE sorted decreases exponentially, and the use of
cache also decreases pRE sorted by a small margin because REs
sorted in the cache does not count in pRE sorted . The values of
pRE sorted using optimal parameters (see Fig. 12 in Appendix)

are 15% without cache and 12% with cache, which means the
HHQ processes 85–88% of REs in O(1).

Fig. 9(d) shows the HHQ statistics in terms of the cache
size. Level inspections decrease exponentially, down by 75%
as the cache size increase from 0 to 1. However, small cache
sizes increase the item moves inside HQs, especially in 8-N.
This is because items in the cache has to be transferred more
frequently when the cache size is small, due to higher chance
of cache overflow. We define probabilities of cache miss, cache
hit and other cache-related statistics as follows:

pcache :=
|{e ∈ E|e is stored in cache}|

|E|

pcache miss :=
|{cached items moved to HQ}|

|{cached items}|
pcache hit := 1− pcache miss

pcache hit R := pcache hit of REs

pcache R :=
|{e ∈ (E−ERE)|e is stored in cache}|

|E|
pcache hit NR := pcache hit of non-REs

pcache NR :=
|{e ∈ ERE |e is stored in cache}|

|E|

pcache moves R :=
number of RE item moves inside cache

number of item moves inside cache
(3)

As defined in Eq. 3, we define cache miss as an event when
an item entered to the cache is moved to an HQ, because a new
item with a higher priority enters to the cache that is already
full. This happens more often in 8-N because the frequency of
pushes in 8-N is approximately double of that in 4-N. Cache
misses cause extra item moves into and from HQs, which is
why item moves in HQ in 8-N peaks much higher than in
4-N. Because push and pop operations in the cache are O(L),
increasing the size of the cache increases its computation cost
quadratically while the benefits of using cache quickly become
flattened. We found small cache sizes below 20 are usually
the best compromise, as the simulation on randomly generated
images in Fig. 12 in Appendix shows. We used a simple sorted
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Fig. 10. Statistics of the cache in the HHQ in (a) 4-N and (b) 8-N, from
HHQ + C run on a 64-bit randomly generated image of size 1Mpix.

array to implement the cache. There are other implementation
choices with better time complexities such as circular array or
linked list, but we found that a simple sorted array of a very
small size has the best performance.

Figure 10 shows statistics of the cache in the HHQ in, from
HHQ + C run on a 64-bit randomly generated image of size
1Mpix. The proportions of non-REs (pcache NR) and their cache
hit rates (pcache hit NR) shows over 40% in 4-N and over 20%
in 8-N edges are cached and 99% of them are cache hit. This
attributes the cache to process 37.1% and 20.8% of non-RE
edges in O(1), in 4-N and 8-N respectively. Due to low pcache R
and pcache hit R, the cache saves the computations costs of only
1.5% and 5.9% of REs in 4-N and 8-N, respectively; however,
increasing the cache size improves the overall performance of
the priority queue by reducing high cache miss rate of REs.
We analyzed the cache statistics of other priority queues in
Fig. 13 in Appendix.

C. Performance on Real-World Images

In addition to the experiment on randomly generated images,
we conducted an experiment on Sentinel-2A remotely sensed
images [33], to show how the proposed and other α-tree
algorithms perform on real-world images that have higher
correlations between neighboring pixels compared to randomly
generated images. To most α-tree algorithms except for HierQ,
the distribution of pixel values does not necessarily have an
effect on their timings. Instead, the number of ties and zeros
in α values are the major factors in how fast α-tree algorithms
run. The pixel distribution might affect the number of ties in α

values in a low bit depth and/or when using certain dissimilarity
measures, but it is not always the case. For example, even
images with large flat zones, which would create many ties
and zeros in α values in a low bit depth, will not create
as many of those in XDR images since XDR images with
their fine-grained quantization can preserve uniqueness of pixel
dissimilarities even when the pixel distribution has a very small
variance. Even in low bit depth, it is possible to have a low
number of ties. Zhang and Wilkinson used odd Gabor filters
in pixel dissimilarity to alleviate the chaining effect, which
can yield different floating-point dissimilarities even for 8-bit
neighboring pixel pairs with the same pixels values, depending
on their Gabor filter outputs [15].
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Fig. 11. Processing speeds of α-tree algorithms using the HHQ, HHQ + C,
HeapQ and HeapQ + C on five three-channel 16-bit remotely sensed images
from Sentinel-2A of size 120.56Mpix, and those of randomly generated images
of the same number of channels, bit depth and size, in (a) 4-N and in (b) 8-N.

Figure 11 shows processing speeds of α-tree algorithms
using the HHQ, HHQ + C, HeapQ and HeapQ + C on five
three-channel 16-bit remotely sensed images from Sentinel-2A
of size 120.56 Mpix, and those of randomly generated images
of the same number of channels, bit depth and size; Fig. 11(a)
is in 4-N and Fig. 11(b) is in 8-N. To see the effect of the
dynamic range, we incrementally downshifted each pixel from
0 to 13. The dynamic range of pixel dissimilarities without
downshifting is 48-bit since we used L2 norm, and it goes
down to 9-bit since downshifting on each channel by 1 will
decrease the dynamic range of the L2 norm by 3 bits. HeapQ
+ C performs much faster on Sentinel-2 images compared with
HeapQ + C on randomly generated images. This is because
having more ties in pixel dissimilarities directly affects the
number of swaps performed in the heap queue, and Sentinel-
2 images produces many more ties compared to randomly
generated images even in 48-bit. In the proposed hierarchical
heap queue, the consequence of having a lot of ties is less
straightforward. As the number of ties increases, Heap queues
in the HHQ perform faster but it becomes harder for the HHQ
to distinguish redundant and non-REs when they have the same
α value, making it difficult for the HHQ to save computation
cost on REs by separating them on UAs. The difference in
processing speed between HHQ + C on Sentinel-2 and HHQ
+ C on randomly generated images is not as high as in HeapQ
+ C, especially in 4-N and in lower bit depths. An interesting
phenomenon is that the performance of HHQ + C drops once
the bit-depth goes below 18-bit where too many REs become
indistinguishable from non-REs due to ties in α value. HeapQ
+ C outperforms HHQ + C in LDR on Sentinel-2 images,
because thanks to the high number of zeros and ties in α value,
the vast majority of edges stored in a few heap queues in the
HHQ, eliminating all the benefits of the HHQ and rendering
it an inefficient heap queue. However the under-performance
of the HHQ in LDR is irrelevant since the HierQ outperforms
other algorithms by a large margin on such data.

D. Algorithm Profiling

Figure 12 shows profilings of α-tree algorithms in (a) 32
bits and (b) 64 bits. All flooding algorithms in this figure use
cache in their priority queues. Compared with the heap queue,



SUBMITTED TO IEEE TRANS. PATTERN ANAL. MACH. INTEL. 13

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

Bit depth

(a)

0

50

100

150

R
u

n
 t

im
e

(s
)

Priority queue

Difference (and histogram) computation

Flooding

Initialization

Sorting

Finding subtree roots (FindRoot())

Creating unions

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

Bit depth

(b)

0

50

100

150

200

250

R
u

n
 t

im
e

(s
)

Union-find                     Flooding (hierarchical queue)              Flooding (trie queue)                  Flooding (heap queue)           Flooding (hierarchical heap queue)

Union-find                     Flooding (hierarchical queue)              Flooding (trie queue)                  Flooding (heap queue)           Flooding (hierarchical heap queue)

Fig. 12. Profilings of α-tree algorithms in (a) 4-N and (b) 8-N. The hierarchical heap queue significantly reduces the priority queue timing in high dynamic
ranges, without having to run extra computations such as in the trie queue. In 64 bits, the hierarchical queue reduces the priority queue timing by a factor of
47.038s
11.737s ≈ 4.01 in 4-N and 143.7610s

19.3700s ≈ 7.43 in 8-N, by replacing the heap queue. These numbers are consistent with ratios of the number of edges processed by
those priority queues, which are 0.55|E|

0.15|E| ≈ 3.67 in 4-N and 0.75|E|
0.1|E| = 7.5 in 8-N (Fig. 3).

the HHQ significantly reduces the priority queue timing in both
connectivity. In 64 bits and 4-N, the runtime of priority queue
is reduced from 47.0s to 11.7s by replacing a HeapQ with an
HHQ, which is approximately a factor of 4.0. This is consistent
with the ratio of the number of edges that have to be processed
by those queues from what is shown in Fig. 3(a), Sec. II-B: the
HHQ processes 0.15|E| edges from the edge-weight rank of
r0 = 0.45|E| to r1 = 0.60|E|, while the heap queue processes
0.55|E| edges from r0 = 0.45|E| to |E|, which is 0.55|E|

0.15|E| ≈ 3.67
times that of the HHQ. This is also the case in 8-N: the HHQ
runs 7.43≈ 143.8s

19.4s times faster than the heap queue, where the
ratio of the number of edges processed is 0.75|E|

0.1|E| = 7.5 from
Fig. 3(c). This makes clear that the HHQ improves the priority
queue timing mainly by handling residual edges better than
traditional priority queues.

The HHQ takes more time computing the pixel differences
and their histogram. This is because Eq. 1 has to be computed
for each edge-weight, but the computation time increase due to
this computation is insignificant compared to the time saved by
the more efficient priority queue. The trie queue also runs faster
than the heap queue, but flooding using trie queue requires
sorting all edges and creating mappings between the edge
indices and the ranks, which takes much time and causes more
cache misses. Union-find does not seem to be affected by the
connectivity: it has seemingly the same runtimes and the same
profiles in both connectivities.

IV. CONCLUSION

We analyzed the priority queuing in flooding α-tree algo-
rithms in XDR, and implemented a new hierarchical heap
queue algorithm that significantly improves α-tree algorithm
speed in XDR, largely by avoiding processing of REs. With
the help of our efficient α-tree algorithm, a wider variety of

pixel dissimilarity measures in XDR can be used in future
α-tree applications on both color or multichannel images and
XDR images. The proposed algorithm improved timing of the
flooding α-tree algorithms by 1.68 times in 4-N and 2.41 times
in 8-N on Sentinel-2A images, and 2.56 times and 4.43 times on
randomly generated images. Lower speedups in multichannel
images (Sentinel-2) is due to higher cost on computation of
pixel dissimilarities, which is constant with respect to the α-
tree algorithm. The proposed HHQ with cache have shown
superior performance compared to HeapQ especially in images
with fewer ties in α values.

In future work, we will try to apply the proposed hierarchical
heap queue to other applications that use priority queues, as
the proposed queue can outperform traditional priority queues
in any applications where items with low priorities are ignored,
such as the minimum spanning algorithm. We are also designing
an efficient parallel algorithm for α-tree construction in all
dynamic ranges.
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