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Abstract Diabetic cardiomyopathy (CM), occurring in the absence of hypertension, coronary artery disease, and valvular or congenital heart 
disease, is now recognized as a distinct, multifactorial disease leading to ventricular hypertrophy and abnormal myocardial contract-
ility that correlates with an array of complex molecular and cellular changes. Animal models provide the unique opportunity to 
investigate mechanistic aspects of diabetic CM, but important caveats exist when extrapolating findings obtained from preclinical 
models of diabetes to humans. Indeed, animal models do not recapitulate the complexity of environmental factors, most notably 
the duration of the exposure to insulin resistance that may play a crucial role in the development of diabetic CM. Moreover, most 
preclinical studies are performed in animals with uncontrolled or poorly controlled diabetes, whereas patients tend to undergo 
therapeutic intervention. Finally, whilst type 2 diabetes mellitus prevalence trajectory mainly increases at 40- < 75 years (with a 
currently alarming increase at younger ages, however), it is a legitimate concern how closely rodent models employing young ani-
mals recapitulate the disease developing in old people. The aim of this review is to identify the current limitations of rodent models 
and to discuss how future mechanistic and preclinical studies should integrate key confounding factors to better mimic the diabetic 
CM phenotype.
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Graphical Abstract

Keywords Diabetic cardiomyopathy • Type 2 diabetes mellitus • Insulin resistance • Organ-to-organ interaction • Heart Failure

1. Introduction
The prevalence of type 2 diabetes mellitus (T2DM) is increasing world-
wide, afflicting all ages, sexes, and socioeconomic classes, ultimately leading 
to frailty and unhealthy ageing.1 Cardiovascular (CV) complications are the 
leading causes of morbidity and mortality in T2DM patients, accounting for 

about two-thirds of overall deaths as evidenced by the Framingham Heart 
Study.2 One of the specific CV complications in T2DM is diabetic cardio-
myopathy (CM), originally described as an early diastolic dysfunction pro-
gressing to systolic dysfunction and heart failure (HF) in the absence of 
hypertension, coronary artery disease, and valvular or congenital heart dis-
ease.3 The CARDIA study provided strong evidence for the diagnosis of 
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diabetic CM,4 identifying subtle diastolic and/or systolic myocardial abnor-
malities preceding the onset of overt CM and HF.5–7

Diabetic CM is now recognized as a distinct, multifactorial disease lead-
ing to ventricular hypertrophy and abnormal myocardial contractility that 
correlates with an array of complex molecular and cellular changes 
(Figure 1).8

With no pathognomonic feature identified as specific to human diabetic 
CM, however, asserting the ‘uniqueness’ of diabetic CM will require a thor-
ough consideration for the «metabolic exposome», including diet, lifestyle, 
glycaemia, obesity, sedentary behaviour, alongside unmodifiable confoun-
ders, such as genetic susceptibility, sex, and ageing, which are intertwined 
in the pathogenesis of diabetic CM.9

The complex impact of these factors are then magnified by other pro-
cesses linking the heart to the functional state of key metabolic organs, 
i.e. the adipose tissue, liver, kidney, and the gut (microbiota) that may sep-
arately exert noxious cardiac effects through a crosstalk mediated by e.g. 
proinflammatory cytokines, profibrotic factors, microvesicles, miRNAs, 
and immune cells. This endocrine organ-crosstalk evolves into a paracrine 
cellular-crosstalk between cardiomyocytes, fibroblasts, endothelial cells, 
and immune cells in the myocardium (Figure 2).

Whilst animal models provide the unique opportunity to investigate 
mechanistic aspects of diabetic complications, including diabetic CM, im-
portant caveats exist when extrapolating findings obtained from preclinical 
models of diabetes to humans because animal models do not recapitulate 
the full complexity of diabetic CM. Common features, such as insulin, glu-
cose levels, and dyslipidaemia occurring in diabetic CM, are generally well 
reproduced in most rodent models of diabetes (Table 1), but there are 
many open questions with clinical significance. For example, there is a clear 
lack of molecular data in human diabetic CM, to which we could compare 
findings obtained in rodent models. This is a great obstacle, as therapeutic 

responsiveness of mice and humans with diabetic CM diverge. Specifically, 
strict glycaemic control protects rodents from HF,63,64 but not humans,65

some antidiabetic agents even increase the risk for HF.66–69 Moreover, we 
do not have any models to predict which diabetic patient will develop dia-
betic CM, what the causal factors to promote either HF with reduced ejec-
tion fraction (HFrEF) or HF with preserved ejection fraction (HFpEF) from 
diabetic CM are, and to understand why strict glycaemic control does not 
ameliorate diabetic CM, etc. Failure to answer these burning questions sug-
gest the possibility that there are important pathogenic stimuli in human 

Figure 1 Mechanisms contributing to cardiomyocyte dysfunction in diabetic cardiomyopathy. Hormonal and metabolic alterations may result in hypergly-
caemia, insulin resistance, and lipid overload which cause through specific signalling pathways subcellular component abnormalities. This includes mitochondrial 
dysfunction, impaired metabolic flexibility, Ca2 + dysregulation, and activation of gene transcription programme involved in cardiac remodelling and senes-
cence. These molecular and cellular events contribute to diastolic and systolic dysfunction. GPCR, G protein-coupled receptor; IR, insulin receptor; ROS, re-
active oxygen species; RyR, ryanodine receptor.

Figure 2 Diabetic heart is at the cross-road of environmental factors, 
organ-crosstalk, and paracrine cellular-crosstalk between cardiomyo-
cytes, fibroblasts, endothelial cells, and immune cells in the myocardium.
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Table 1 Rodent models that recapitulate diabetic cardiomyopathy features found in humans

Animal model Cardiac/noncardiac alterations that recapitulate human features 
of diabetic cardiomyopathy

References

Mice HFD C57BL6 mice Early onset of metabolic alterations and cardiac LV dysfunction (5 weeks after 

starting HFD), obesity, hyperglycaemia, hyperinsulinemia, dyslipidaemia. 

Fatty liver, combined visceral/subcutaneous adiposity with increased rate of 
crown-like structures, mild diabetic nephropathy.

10–14

C57BL6/J mice + HFD + angiotensin II infusion. Model of HFpEF (LV hypertrophy and LV diastolic dysfunction; no change in 

LVEF).

12

ob/ob mice LV diastolic dysfunction and features of lipotoxicity. Reduced circulating leptin, 

excessive food intake, increased insulin, hyperglycaemia, hyperinsulinemia, 

and triglyceride levels. Compromised immune system, reproductive ability, 
altered incidence of malignancies (↑ or ↓).

15–17

C57BL/6N mice + HFD + po. L-NAME 

administration

Model of HFpEF (hypertrophic response, diastolic dysfunction, pulmonary 

congestion, reduction in contraction velocity and impaired relaxation). 
Reduced skeletal muscle strength.

18

Models of 

lipotoxicity

Alteration in myosin heavy chain acyl-CoA 

synthetase (MHC-ACS mice)

Lipotoxicity, myocardial macrophage infiltration, inflammation, abnormal 

cardiac metabolism, cardiac hypertrophy, LV dysfunction and premature 
death.

19,20

GPI-anchored human lipoprotein lipase 

transgenic mice (hLpLGPI mice)

Lipotoxicity, cardiac hypertrophy, abnormal cardiac metabolism, LV 

dysfunction, and cardiac fibrosis.

21

Myosin heavy chain-peroxisome 

proliferator-activated receptor α mice 

(MHC-PPARα mice)

Lipotoxicity, cardiac hypertrophy, abnormal cardiac metabolism, LV 

dysfunction, and cardiac fibrosis.

22

Myosin heavy chain fatty acid transport protein 

mice (MHC-FATP mice)

Lipotoxicity, LV diastolic dysfunction and prolonged QTc intervals. 23,24

Adipose TG lipase knockout mice Lipotoxicity. LV dysfunction and premature death. Reduced triglyceride 
hydrolase activity in skeletal muscle and adipose tissue. Reduced glycogen 

content in liver.

25

T1DM Streptozotocin Intraperitoneal route Reduction in heart rate, amplitude of contraction and of ventricular pressure, 
and prolongation on the rate of ventricular myocyte contraction and 

relaxation. Kidney enlargement. Reduced body weight and circulating insulin 

levels.

26–31

Intravenous route 32

T2DM db/db mice Decreased systolic function, abnormal diastolic filling, and electrophysiological 

alterations. Leptin receptor deficiency due to a point mutation. 
Hyperphagia, dyslipidaemia, progressive diabetic nephropathy.

33–35

Rat HFD Sprague-Dawley rats Lipotoxicity, cardiac fibrosis and hypertrophy. Increased plasma triglyceride, 

cholesterol and LDL, reduced HDL levels. Increased circulating markers of 
oxidative stress and inflammation.

36,37

Obesity Obese Zucker rats (fa/fa) Lipotoxicity and increased LV end-diastolic volume and stroke volume. 

Reduced cardiac levels of taurine, glutamate, glutamine, and glutathione; 
increased cardiac lactate levels. Primarily subcutaneous obesity.

38,39

DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats LV diastolic dysfunction, LV hypertrophy, and cardiac fibrosis, oxidative stress, 

and inflammation. Increased body weight, subcutaneous and visceral fat 
mass. Elevated serum insulin, LDL/HDL ratio and triglyceride levels.

40

T1DM Streptozotocin- Intraperitoneal route LV systolic and diastolic dysfunction, oxidative stress increased rate of 

apoptosis, mitochondrial damage, and fibrosis. Reduced body weight, 
increased circulating glucose and HbA1c levels.

41–44

- Intravenous route Reduced LV systolic and diastolic function. Polydipsia, polyuria, glycosuria, 

proteinuria, uraemia.

45,46

T2DM Zucker diabetic fatty rats (ZDF) Increased heart and LV weight, presence of fibrosis, depressed RV and LV 

systolic function. Dyslipidaemia. Respiratory muscle weakness. Diabetic 

neuropathy, microangiopathy, nephropathy, hypercoagulability.

47–53

Cardiac hypertrophy, increased extracellular matrix deposition and increased 54–60

Continued 
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patients with diabetic CM that are poorly reproduced by current rodent 
models.70 Obvious additional species-specific differences include but do 
not limit to chronicity of insulin resistance, differences in cardiac physi-
ology, such as heart rate, Ca2+ fluxes, sarcomere composition and vessel 
function, resistance to developing micro- and macrovascular diseases in ro-
dents, differential hormonal milieu, concentrations of various lipid spe-
cies,71 and control of diabetes (typically no in preclinical models vs. 
patients). Furthermore, whilst T2DM is traditionally a disease of the elderly 
in humans (i.e. 40 to < 75 years with increasing prevalence in the younger 
population,72,73 however), most rodent models employ young adult ani-
mals. Importantly, diabetic CM emerges in the midst of multiple organ dis-
orders, that may significantly alter cardiac function by modest yet chronic 
changes in ion concentration, pH, circulating abnormal proteins and meta-
bolites, subclinical increase in afterload, liver dysfunction, skeletal muscle 
dysfunction, presence of obstructive sleep apnoea (OSA), etc. However, 
current rodent models poorly reproduce such common comorbid 
conditions.

The aim of this review is to identify the current limitations of rodent 
models and to discuss how future preclinical studies should integrate key 
confounding factors to better mimic the diabetic CM phenotype as it pre-
sents itself in clinic.

2. Molecular aspects of diabetic CM
Abnormalities responsible for hallmarks of diabetic CM, i.e. cardiac stiff-
ness, hypertrophy, fibrosis, and ischaemia, eventually leading to HFpEF 
and/or HFrEF are highly complex. Both insulin resistance and chronic 
hyperglycaemia contribute to impaired cardiac contractility and structure 
via e.g. dysregulated intracellular Ca2+ homeostasis, abnormal PI3K/Akt 
pathway signalling, enhanced production of reactive oxygen species 
(ROS), advanced glycation end products (AGEs), cardiac protein 
O-GlcNAcylation, toxic fatty acid (FA) metabolites, as well as probably 
less well studied mechanisms, such as altered autophagy, and epigenetic 
dysregulation.74 These abnormalities do not emerge in isolation, but are in-
terconnected. For example, the metabolic inflexibility in cardiomyocyte 
metabolism with a shift towards FA oxidation and ensuing mitochondrial 
ROS production can trigger endoplasmic reticulum (ER) stress, cardiomyo-
cyte death, inflammation, and microvascular dysfunction.75

ER stress and mitochondrial dysfunction are key factors for the develop-
ment and progression of diabetic CM. Altered Ca2+ handling is widely be-
lieved to underlie depressed contractility, slow relaxation, and arrhythmias 
triggered in diabetic CM.76 In murine models with diabetic CM, prolongation 
of intracellular Ca2+ decay and consequential decrease in Ca2+ transient 
amplitude directly correspond to delayed relaxation and abnormal contract-
ility, respectively.76 The development of dysregulated Ca2+ cycling is facili-
tated by altered expression and/or activity of the L-type Ca2+ channels, 
ryanodine receptor, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a), and 
Na+/Ca2 + exchanger (NCX). In T2DM models, these alterations hamper 

mitochondrial Ca2+ uptake, provoking an energy supply-and-demand mis-
match with excessive mitochondrial ROS production.76 Moreover, ER 
stress, triggered by hyperglycaemia, free FAs, and inflammation, is an early 
event in diabetic CM, which may promote cardiomyocyte apoptosis and 
loss of function.77 Indeed, beyond changes in Ca2+-handling proteins per 
se, intercompartmental transfer of Ca2+ also occurs through the 
mitochondrial-associated membranes (MAMs; functional interaction sites 
between ER and mitochondria), exchanging lipids and Ca2+. In a diet-induced 
mouse model of diabetic CM recent evidence suggests that reticular- 
mitochondrial Ca2+ uncoupling is an early trigger of mitochondrial Ca2+ 

mishandling, leading to reduced mitochondrial bioenergetics and cardiac dys-
function.78 Mitochondrial dysfunction in diabetic hearts is further charac-
terised by changes in mitochondrial substrate utilization (i.e. increased 
reliance on FA-based energy production),79 oxidative stress,80 fragmented 
mitochondria,81 and impaired mitophagy.82 As opposed to T2DM models,78

hearts of streptozotocin-induced T1DM mice or neonatal murine cardio-
myocytes exposed to high glucose levels, display facilitated MAM formation 
with mitochondrial Ca2+ increase,83 underscoring important myocardial dif-
ferences in intracellular Ca2+ homeostasis between T1DM and T2DM.

Despite the considerable advances in our mechanistic understanding, a 
particular concern is that the majority of these results were obtained 
from rodent cardiomyocytes and there is a clear lack of corresponding ob-
servations in human cells.

2.1 Investigating diabetic CM in preclinical 
models: the importance of clinical 
confounding factors
The majority of molecular mechanisms in the pathogenesis of diabetic 
CM has been investigated in rodent models of type 1 or T2DM 
(Table 1). The models consist of animals with defective insulin actions 
or signalling, altered cardiac glucose and/or FA utilization, enhanced oxi-
dative stress, and/or cardiac fibrosis.75,84 The most popular animal mod-
els include the chemical ablation of the β-cells of the pancreas by 
streptozotocin, genetic interference with leptin signalling (ob/ob and 
db/db mice, ZDF rats), the induction of insulin resistance by exposure 
to high fat diet (HFD) and transgenic animals with a cardiac-specific lipo-
toxicity.75 However, important confounding factors contributing to car-
diac remodelling and dysfunction are rarely considered when dissecting 
the signalling pathways leading to diabetic CM in rodent models. 
Experimental approaches that more closely mimic the clinical scenario 
in T2DM patients are detailed below:

2.1.1 Ageing
Many of the cardiac abnormalities (i.e. increased wall thickness and intersti-
tial myocardial fibrosis, cardiomyocyte hypertrophy) found in diabetic CM 
are analogous to those induced by ageing.85,86 Recent studies suggest that 
T2DM accelerates the ageing of the heart and may therefore represent a 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued  

Animal model Cardiac/noncardiac alterations that recapitulate human features 
of diabetic cardiomyopathy

References

Goto-Kakizaki rats (GK) Intraperitoneal 

injection of Streptozotocin + nicotinamide

heart size. Non-obese model of T2DM with moderate hepatic triglyceride 

accumulation. Age-dependent development of glomerulosclerosis. Hepatic 
lipotoxicity (increased accumulation of triglycerides, cholesterol, and free 

fatty acids). Increased serum and hepatic lipid peroxidation.
Otsuka–Long–Evans–Tokushima fatty (OLETF) 

rats

Late-onset hyperglycaemia, mild obesity, diabetes mostly in males, multiple 

recessive genes involved, age-dependent atrophy of pancreatic islets, 

diabetic nephropathy, primarily visceral obesity.

39,61,62

HFD, high-fat diet; LV, left ventricle; LVEF, left ventricular ejection fraction; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
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form of premature senescence leading to premature onset of HF.87 Indeed, 
T2DM has a dramatic impact on cellular senescence of different types of 
stem cells, including cardiac stem cells and potentiates the accumulation 
of senescent cells in the heart.88

Senescent cells display a complex phenotype including DNA damage and 
genomic instability, ER stress, mitochondria dysfunction, impaired con-
tractile function, hypertrophic growth, and change in gene expression in-
volving a rise of a unique secretory phenotype (senescence-associated 
secretory phenotype) and induction of senescence-associated beta- 
galactosidase positivity. Senescent cardiomyocytes secrete growth factors, 
creating a profibrotic microenvironment and promoting activation of car-
diac fibroblasts, which is harmful to the myocardium and triggers processes 
associated with maladaptive cardiac remodelling.86,89 Furthermore, T2DM 
induces epigenetic alterations, such as hypermethylation of CpG islands, in-
creased trimethylation of Histone 3 (H3) at lysine (K)4, H3K9, H3K27, and 
H4K20, as well as a decreased monomethylation and acetylation of H3K9. 
These epigenetic modifications contribute to senescence through changing 
the access of transcription factors to promoter/enhancer regions and are 
complemented by noncoding RNA regulation by microRNA (i.e. miR34a) 
and long-noncoding RNA.90 For practical and financial reasons, most ani-
mal studies make use of animals of young or moderate age. Data is accu-
mulating that aged animals respond differently to perturbations 
associated with diabetic CM, and we therefore advocate to evaluate the 
role of aging in relevant models.91

To further underscore the importance of senescence in the pathogen-
esis of diabetic CM, senolytic drugs have been shown to alleviate myocar-
dial hypertrophy, fibrosis, and diastolic dysfunction in db/db obese mice.92

Such observations have suggested diabetic CM as a model of premature 
cardiac ageing and that senolytic therapy can prevent this T2DM-related 
complication.93

2.1.2 Sex
Independent of age, women with T2DM are at higher risk of developing CV 
diseases (CVD) compared to age-matched men and tend to manifest a 
more severe cardiac remodelling in diabetic CM.94,95 Interestingly, this sex- 
dependent aggravation of diabetic CM has been successfully recapitulated 
in several female rodent models. For instance, ZDF female rats exhibit car-
diac hypertrophy with reduced capillary density and increased myocardial 
structural damage, even though males develop more pronounced fibro-
sis.96 Increased cardiac hypertrophy and endothelial dysfunction have 
also been shown in female GK rats compared to males.97 In the db/db 
mouse model left ventricular pro-hypertrophic and pro-oxidant gene ex-
pression were exaggerated in females leading to increased cardiomyocyte 
size compared to males.98 This difference is probably due to sex hormones 
and neurohormonal diversity coupled with gender-specific activation of 
molecular pathways involved in cardiac metabolism/remodelling.99,100 In 
support of this possibility, animal studies show a sexual dimorphism during 
the progression of CVD induced by diabetes. Based on the few experimen-
tal studies conducted on both sexes of humans and animals, differences in 
diabetic response seem to be related to relevant sexual dimorphism al-
ready present in the non-diabetic state, as demonstrated by differential li-
pid concentrations and profiles, insulin and glucose control, antioxidant 
system, nitric oxide (NO) production, energy metabolism, myocardial con-
tractility, and structure.99,101,102 The impact of this sex-dependent effect in 
diabetes is not fully understood, but differences in metabolic (e.g. glucose, 
lipid and insulin) control are likely to be pivotal.103 Specifically, in females, 
the interaction between cardiac insulin and oestrogen signalling, which 
share common pathways, may modulate many structural and functional 
features in healthy and diabetic states.103 An illustrative example is the 
sex-specific dichotomous FA handling pattern: increased accumulation of 
acylcarnitine (AC) and triglyceride (TG) metabolism with enhanced ROS 
production in cardiomyocytes has been reported in female GK rats 
compared to males,104 suggesting a sex-specific FA metabolism and redox 
biology with potential consequences in diabetic CM. Taken together, 
considering the equality in prevalence but disparity in clinical presentation, 
preclinical studies are highly recommended to study both sexes.100,105

2.1.3 Obesity/adiposity
Adipose tissue represents an intersection of pathways involved in longevity, 
genesis of age-related chronic diseases, metabolic dysfunction, and low- 
grade inflammation. Obesity and adiposity are causally linked to the 
development of T2DM and strongly contribute to diabetic CM.106 The car-
diac risk of obesity per se, without diabetes and other co-morbid conditions, 
is underscored by its close association with structural, functional, metabolic, 
and haemodynamic changes in the heart, leading to a condition clinically 
termed as obesity CM.107 Obesity CM hearts are characterised by progres-
sive increase in left ventricular (LV) mass, LV remodelling with interstitial fi-
brosis, and systolic dysfunction that may lead to HF in both patients and 
rodent models.10,108 Moreover, obesity CM has been recently described 
as energetic inefficient with reduced ATP delivery in human patients.109

Several wild type high-fat diet (HFD) or genetically modified rodent models 
have shown to partially recapitulate features of human obesity CM (Table 1). 
Although conflicting data exists as per the ability of HFD to induce myocar-
dial dysfunction, these are likely explained by differences in mouse strains, 
the duration and timing of dietary intervention, and composition of 
diet.109,110 Overall, the mechanisms by which adiposity contributes to car-
diac alterations largely overlap with those reported for diabetic CM and in-
clude oxidative stress, inflammation, apoptosis, dysregulated autophagy, 
hypertrophy, interstitial fibrosis, lipotoxicity, and metabolic disturbances. 
Observations indicate that not only the degree of adiposity counts but 
the location of body fat accumulation also influences the risk of cardiac 
dysfunction: ectopic adiposity (visceral, pericardial and epicardial) carries 
a higher risk than subcutaneous fat,111,112 probably through the release of 
pro-inflammatory and pro-fibrotic factors.113,114 Interestingly, the effects 
of HFD on cardiac remodelling seem to be reversible, as a switch from 
HFD to standard diet for 8 weeks reduced lipid accumulation, myocardial 
hypertrophy, and fibrosis, and improved myocardial function in 16-week 
HFD mice.78 These preclinical data are in line with clinical intervention 
studies, such as gastric bypass, caloric restriction or exercise, intended to 
reduce myocardial structural and functional consequences of diabetes or 
obesity.115,116

2.1.4 Sedentary life/exercise
Physical exercise is an important non-pharmacological treatment in T2DM, 
with high efficacy in delaying or preventing diabetic CM.117 Preclinical stud-
ies have identified some mechanisms underlying the exercise-related ben-
efits. Exercise inhibits the pathological processes of myocardial apoptosis, 
fibrosis, and microvascular alterations through improving myocardial me-
tabolism (improved glucose oxidation and reduced FA oxidation), restor-
ing the physiological regulation of Ca2+ (normalizing depressed expression 
and function of SERCA2a in HFD + streptozotocin rats) and protecting 
mitochondrial function.118 Beneficial cardiac effects of exercise are pro-
posed to be mediated by a decrease in adipose tissue senescence with 
its related pro-fibrotic secretome, independent of improvement in meta-
bolic status in HFD mice.119

2.1.5 Left ventricular pressure overload
Left ventricular pressure overload occurs in a variety of conditions, such as 
vascular stiffness in advanced age, hypertension, valvular heart disease, often 
in association with obesity, and diabetes. Its deleterious consequences, i.e. 
myocardial fibrosis and hypertrophy, are mediated by neurohormonal 
factors involving the sympathetic nervous system and the renin–angioten-
sin–aldosterone system (RAAS). The sympathetic nervous system provides 
the most powerful, but also deleterious, stimulation of cardiac function, via 
catecholamines and their post-synaptic β-adrenergic receptors (β-AR) in-
cluding β1-AR, β2-AR, and β3-AR subtypes.120 Interestingly, diabetic CM, 
similar to other forms of HF, displays alterations of autonomic control 
with reduction of parasympathetic activity and an increased activity of sym-
pathetic nervous system, which promotes decreased β-AR responsive-
ness.121–123 The latter increases heart rate, stroke volume, and peripheral 
vascular resistance and stimulates the RAAS, exacerbating left ventricular 
dysfunction. At the molecular level, elevated sympathetic drive enhances 
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β1-AR signalling, which promotes hypertrophy, interstitial fibrosis, cardiomyo-
cyte apoptosis and impairs energy metabolism and myocardial function.120

Additional mechanistic studies suggested that a canonical downstream effect-
or of β-AR, the cyclic AMP-dependent protein kinase A (PKA) may be involved 
in the deficient ventricular performance and metabolism in the mouse diabetic 
heart,124 potentially giving way to other cAMP effectors, such as the Epac pro-
teins.125 Interestingly, the relationship between insulin resistance and β-AR sig-
nalling is emerging as an important focal node in the pathogenesis of diabetic 
CM since hyperinsulinemia may play a role in desensitization of β-AR signalling 
in T2DM. This is well illustrated in a study showing that in a diabetic CM murine 
model induced by HFD, myocardial injury and dysfunction could be reversed 
by pharmacologically inhibition of β2-AR or G protein-coupled receptor ki-
nase 2 activity.126 In contrast to cardiac β1- and β2-AR, the role of the 
β3-AR in the diabetic heart has been hardly investigated. It was reported 
that a β3-adrenoceptor-mediated negative inotropic effect contributes to 
the altered positive inotropic response induced by β-adrenoceptor activation 
in diabetic rat heart.127

2.1.6 Chronic intermittent hypoxia
Prevalence and severity of OSA is higher among diabetic individuals com-
pared to non-diabetic subjects.128 OSA is associated with metabolic and 
CV co-morbidities including hypertension, arrhythmia, stroke, coronary 
heart disease, which supports OSA as a major health burden. 
Mechanistic studies in rodents subjected to chronic intermittent hypoxia 
(the pathophysiologic basis of OSA) found that OSA-induced CV dysfunc-
tion (vascular remodelling, endothelial dysfunction, early atherosclerosis 
and increased arterial blood pressure) depends on oxidative stress- and 
HIF1α-driven sympathetic overactivity. Specifically, increased levels of 
ROS and HIFα activate chemoreflex and suppress baroreflex, thereby 
stimulating the sympathetic nervous system, increasing LV afterload, and 
contributing to insulin resistance and T2DM.129

2.2 Crosstalk between metabolic organs and 
the heart beyond cardiac glucose toxicity
To date, there is a need to consider each major organ, i.e. heart, liver, 
adipose tissue, skeletal muscle, lung, kidney, and brain operating as an 
integrated network within the human body in response to dysregulated 
metabolism. In particular, T2DM is associated with progressive micro-
vascular disorders and systemic inflammatory processes, inducing fibro-
sis in several organs, including the CV system, liver, adipose tissue, 
kidney, and skeletal muscle. During the progression of these 
fibro-inflammatory processes, there are significant haemodynamic 
and metabolic interactions between these organs, which need to be as-
sessed to predict health trajectories in T2DM patients,130 and more 
specifically the progression towards diabetic CM and HF with pre-
served ejection fraction (HFpEF).131,132 Indeed, dysregulation of both 
the immune system and microcirculation through endothelial cell dys-
function and procoagulant changes contributes to diabetic CM beyond 
hyperglycaemia, insulin resistance, and metabolic derangements.74,130

Importantly, the microcirculation impacts on insulin sensitivity by af-
fecting the delivery of insulin and glucose to skeletal muscle. Thus, 
endothelial dysfunction and extracellular matrix remodelling promote 
the progression from prediabetes to diabetes and the development 
of diabetic CM and other T2DM complications, including HFpEF and 
chronic kidney disease (CKD).133,134 Thus, whilst HFpEF was initially 
considered as a disorder characterized by hypertension, cardiac hyper-
trophy, and diastolic dysfunction, the pandemics of obesity and T2DM 
have modified the HFpEF syndrome. As a result, HFpEF is now recog-
nized as a multisystem disorder involving the heart, lungs, kidneys, skel-
etal muscle, adipose tissue, vascular system, and immune and 
inflammatory signalling.131,135 We acknowledge that in clinical practice, 
HFpEF and diabetic CM are often difficult to distinguish. HFpEF can be 
the result of a large number of triggers, including diabetes, whereas dia-
betic CM refers to myocardial structural abnormalities that are pre-
dominantly caused by diabetes (Table 2).

How interorgan crosstalk during T2DM specifically contributes to dia-
betic CM requires further exploration. Animal models of T2DM represent 
a unique approach to test the mechanisms of such organ interactions and 
to assess how the pathological state developing in one organ, can lead to 
deleterious functional and structural consequences in the heart (Table 3).

2.2.1 Kidney
T2DM is directly related to both CKD and CVD. Patients with diabetes and 
CVD are twice as likely to develop CKD than those without CVD.133–136

Furthermore, the co-incidence of HFpEF and CKD is very strong since ap-
proximately 50% of the patients with HFpEF also suffer from CKD.132,137

To further underscore a pathophysiological crosstalk, activated inflamma-
tory cascades and endothelial dysfunction in renal injury promote features 
of HFpEF, such as cardiomyocyte stiffening and myocardial fibrosis.132

Beside clinical evidence, causal relationship between CKD and HFpEF 
came from an experimental rat model of CKD induced by nephrectomy, 
which resulted in a cardiac HFpEF-like phenotype, with left ventricular 
hypertrophy and diastolic dysfunction.138 The kidney-heart relationship 
is also achieved by complex interactions involving neurohormonal path-
ways.139 This is well illustrated with the RAAS system, which is overacti-
vated during CKD and causes a cascade of events leading to 
vasoconstriction, increased sodium retention, and reduced water excre-
tion. All of which increase blood volume expansion and restore perfusion 
pressure and therefore may contribute to the development of HFpEF.139

Beside its renal effects, aldosterone directly promotes cardiac fibrosis, 
left ventricular hypertrophy, and coronary microvascular dysfunction.135

Additional renal factors such as uremic toxins and galectin 3 may also 
have a direct impact on the heart and/or coronary microvasculature and 
therefore may play a role in the pathogenesis of HFpEF.140,141 Finally, in in-
direct support of a kidney involvement, large clinical studies established 
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Table 2 Comparison between diabetic cardiomyopathy 
and heart failure with preserved ejection fraction

Clinical presentation or 
factor

DCM HFpEF

Diabetes Mandatory Very common (>50%)

HFpEF Common, but also 
be HF(m)rEF

Mandatory

Age Elderly(>60 years) Very elderly (>75 years)

Sex distribution 50:50% Female 
dominance(∼70%)

Hypertension Very common Very common

Coronary artery 
disease (CAD)

No obstructive 
CAD

Obstructive CAD 
common (30%)

Obesity Very common 

(>80%)

Common (>50%)

Diastolic LV dysfunction By default Common

Myocardial metabolism Significantly altered 

Favouring FA 
over glucose 

Lipotoxity 

Ketone 
utilization

Usually altered  

Switch from FA to 
glucose  

Lipotoxicity

Mitochrondial dysfunction 
and lower biogenesis

+++ ++

Autonomic neuropathy ++ −
Fibrosis ++ +

DCM, diabetic cardiomyopathy; HFpEF, heart failure with preserved ejection fraction; LV, 
left ventricular.
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that whereas tight glycaemic control alone does not,65–69 but GLP-1 recep-
tor agonists142 and SGLT-2 inhibitors,143,144 which also improved kidney 
disease,142,144,145 lowered the risk for HF in diabetic patients. Thus, these 
important interactions between T2DM, renal dysfunction and diabetic CM 
seem to induce a downward spiral of deleterious events, whose interrup-
tion represents a novel therapeutic opportunity.146

2.2.2 Adipose tissue
A growing body of evidence supports the existence of a two-way adipose- 
myocardial axis in which products released from fat affect myocardial me-
tabolism and function, whilst peptides secreted from the heart affect FA 
disposal. Accumulation of ectopic fat in various organs, e.g. in heart, liver, 
pancreas and kidney has been identified as an important marker in the 
pathogenesis of T2DM in both human and animal studies.147–149

Although the causal relationship between the pathophysiological status 
of white adipose tissue and cardiac lipotoxicity remains elusive, elevated 
lipolytic rate in adipose tissue has been demonstrated to contribute to 
the overall augmentation of plasma lipid levels, as observed in the majority 
of patients suffering from HF. Excessive release of FA from adipose tissue 
contributes to myocardial insulin resistance with subsequent metabolic in-
flexibility characterised by a shift in cardiac energy expenditure towards a 
near-exclusive and less oxygen-efficient FA oxidation. The perpetuation of 
this metabolic deregulation leads to the development of cardiac lipotoxi-
city.150,151 Cardiac lipid overload promotes the formation of cytotoxic 
intermediates (diacyl-glycerols and ceramides) and enhances ROS gener-
ation through exacerbated peroxisomal and mitochondria FA oxidation. 
Both intermediate lipotoxic species and ROS affect mitochondrial function 
and Ca2+-handling proteins promoting cardiac dysfunction.152,153

Adipose tissue is an important source of inflammatory mediators 
(Tumor Necrosis Factor: TNF-α, Interleukin 6: IL6, Interleukin 8: IL-8, 
Monocyte chemoattractant protein-1: MCP-1) and adipokines (leptin, re-
sistin, and omentin), which may act in an autocrine, paracrine, and endo-
crine manner, ultimately furthering cardiac injury.114,154 In contrast, the 
anti-inflammatory adipokine, adiponectin is inversely correlated with myo-
cardial adiposity. Whilst visceral adipose tissue contributes to a low-level 
and sustained systemic inflammation, pericardial and epicardial fat can dir-
ectly affect the underlying myocardium by local diffusion of secreted 

inflammatory mediators.155–157 Another ectopic fat source known to influ-
ence the heart is the perivascular adipose tissue (PVAT), whose volume in-
creases proportionally to visceral adipose tissue.158 In obesity, PVAT has 
been shown to shift from an anti-inflammatory and vasodilatory profile to-
wards a proinflammatory status with impaired vasodilation favouring the 
progression of vascular disease.159,160

Finally, a prominent role for atrial and B-type natriuretic peptides (ANP 
and BNP, respectively) has been proposed in the crosstalk between the 
heart and the adipose tissue.161 As such, the induction of lipolysis by natri-
uretic peptides secreted by the damaged heart has been suggested to 
counteract obesity, with a disproportionately greater effect in reducing vis-
ceral adipose tissue than subcutaneous adipose tissue.162 On the other 
hand, increased release of adipocyte FA may contribute to cardiac steatosis 
and cardiac cachexia.163

Further analysis of the crosstalk between adipose tissue and the heart 
may identify new treatment options, such as targeting lipolysis and cardiac 
lipid metabolism in diabetic CM to avoid its progression towards HFpEF.

2.2.3 Liver
Several studies support the bidirectional crosstalk between the heart and liver 
and the consequences of simultaneous development of hepatic metabolic dis-
eases, diabetic CM, and HF. A better understanding of this hepato-cardiac axis 
is required to ensure an effective management of T2DM patients with heart 
or liver diseases in order to improve overall prognosis.

Whilst T2DM and metabolic diseases (obesity and non-alcoholic fatty li-
ver disease) are important risk factors to induce cardiac dysfunction,108,164

a growing body of evidence suggests that the dysfunctional heart per se 
could affect both systemic metabolism and liver function, and thus, create 
a vicious injurious cycle between heart and liver. The close association 
among cardiac and metabolic diseases suggests a common pathophysio-
logical basis. Notably, in metabolic diseases, the heart and liver share similar 
intracellular defects such as mitochondrial dysfunction, ER stress, lipotoxi-
city, and disrupted Ca2+ homeostasis. Interestingly, MAM exchange phos-
pholipids and Ca2+ as well as regulate metabolic homeostasis and 
signalling.165 Of note, reduction of ER-mitochondria communication was 
observed in both heart78 and liver166 of HFD mice. In the heart, decreased 
ER-mitochondria communication caused mitochondrial dysfunction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Subcellular hallmarks in major experimental rodent models of diabetic cardiomyopathy

MICE RATS

HFD Transgenic T1DM T2DM T1DM T2DM

C57BL6 ob/ob MHC-PPARα STZ db/db STZ ZDF GK

Fatty acid oxidation ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Glucose oxidation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Lipotoxicity ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Oxidative stress ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Inflammation ↑ ↑ N/A ↑ ↑ ↑ ↑ ↓
Apoptosis ↑ ↑ N/A ↑ ↑ ↑ ↑ ↑
Calcium handling ↓ ↓ ↓ ↓ ↓ ↓ ↑/= ↓
Mitochondrial 

function

↓ ↓ ↓/= ↓ ↓ ↓ ↓ ↓

Molecular changes  
(expression/ 

activity)

↑CD36 Leptin 
mutation

↑Cardiac PPARα 
↑CD36

↑NADPH oxidase (subunit 47) 
↑PPARα ↑creatinine kinase 

↓miR-133 ↑miR-195

Leptin receptor 
mutation

↑NLRP3 ↑SERCA

References 10,83,84, 

220–227

84,220,221,228– 

232

22,84,233 22,84,220,234–243 84,220,232,244–248 84,222,249– 

254

84,220,221,255– 

261

84,237,262– 

269

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; HFD, high-fat diet; GK, Goto-Kakizaki rats; MHC-PPARα, mice with cardiomyocyte-specific overexpression of peroxisome 
proliferator activated receptor α (PPARα), STZ: streptozotocin; ZDF, Zucker diabetic fatty rats; SD, Sprague-Dawley; miR, microRNA; N/A, data not available.
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leading to diabetic CM, whereas in the liver, disrupted ER-mitochondria in-
teractions undermine hepatic metabolic flexibility and insulin sensitivity. 
Therefore, targeting MAM could be a new strategy to concomitantly im-
prove both heart and liver function in T2DM.

In addition, the heart secretes proteins referred to as cardiokines, which 
go beyond local cardiac effects, and mediate changes in extracardiac tis-
sues, including liver function. For example, the cardiac ANP attenuates gly-
colysis and increases gluconeogenesis in rat liver.167 Other studies showed 
that the heart controls systemic metabolism via the cardiac-specific 
microRNA-208a and the mediator complex subunit 13 (MED13) signalling 
in rodent cardiomyocytes.168 Overexpression of MED13 or inhibition of 
miR-208a in cardiac tissue of transgenic mice enhanced lipid uptake, 
β-oxidation, mitochondrial content, and other genes involved in FA utiliza-
tion in adipose tissue and liver,169 supporting the existence of a functionally 
relevant, metabolic crosstalk between the heart and liver.

2.2.4 Skeletal muscle
Sarcopenia is characterized by a loss of skeletal muscle strength due to re-
duction in the quality and quantity of muscle mass, replacement of myofi-
bers with fat, changes in muscle metabolism, oxidative stress, degeneration 
of neuromuscular junctions, and increased fibrosis. Whilst sarcopenia has 
been described in elderly individuals, mounting evidence suggests a higher 
prevalence in T2DM patients. Sarcopenia in T2DM patients may be caused 
by different mechanisms, such as impaired insulin sensitivity, chronic hyper-
glycaemia, advanced glycosylation end products, subclinical inflammation, 
microvascular, and macrovascular complications.170 It seems that the op-
posite also applies; patients with sarcopenia are at increased risk to develop 
T2DM due to reduced organismal capacity to catabolise high-energy nutri-
ents.170,171 In addition, sarcopenia is associated with CVD172,173 and both 
share common risk factors, such as altered glucose metabolism, insulin re-
sistance, inflammation, and metabolic syndrome.174 For instance, T2DM 
patients with chronic HF exhibit severe skeletal muscle fibre atrophy, capil-
lary remodelling and impaired mitochondrial function, characterized by 
mitochondrial complex I dysfunction with ROS overproduction.175

2.2.5 Brain
Recent studies shed light on the relationship between the brain and CV sys-
tem, and how the brain-heart axis regulates T2DM.176 Cohort studies high-
light the link between Alzheimer’s disease and T2DM,177 whilst drugs that 
are currently approved for the treatment of T2DM, such as metformin, 
have shown promising results in improving cognitive function, and even 
preventing the development of Alzheimer’s disease in diabetic patients.178

2.3 Investigating diabetic CM in preclinical 
models: the role of cellular crosstalk within 
the heart
In analogy to interorgan signalling, adjacent cells also communicate in a 
paracrine and autocrine fashion, where a given cell can detrimentally affect 
neighbouring cells, leading to a vicious cycle and subsequent cardiac dys-
function. In addition to its signature parenchymal cells, the contracting car-
diomyocytes, the heart contains many other cells, including fibroblasts, 
smooth muscle cells, endothelial cells, and resident macrophages. 
Healthy crosstalk between these different cells ensures myocardial homeo-
stasis, but a pathologically altered cell-cell communication may initiate and 
propagate adverse cardiac remodelling leading to the development of dia-
betic CM.135,179

2.3.1 Fibroblasts/cardiomyocytes
Cardiac fibroblasts play a crucial role in extracellular matrix (ECM) turn-
over, as they are involved in both synthesis and degradation of ECM com-
ponents through matrix metalloproteinasesand tissue inhibitors of 
metalloproteinases. Fibroblasts adhere to ECM proteins through integrins 
that are critical mediators of cell attachment, adhesive signalling, and re-
modelling of collagen fibrils. Excessive cardiac ECM deposition is a key 

feature of the remodelling response in diabetic CM and promotes myocar-
dial stiffness and cardiac dysfunction in rodent models of diabetes.180

Experimentally, high glucose levels induce cardiac fibroblasts into a state 
of increased proliferation,181 with increased DNA and collagen synthesis 
as well as fibronectin and TGF-beta-1 gene expression.182,183 Genetic in-
hibition of α11β1 integrin in STZ diabetic mice prevents the progression 
of fibrosis and abnormal cardiomyocyte growth, indicating that this specific 
integrin plays a critical role in modifying fibroblast-cardiomyocyte-ECM in-
teractions.184 Crosstalk between cardiomyocytes and fibroblasts is also as-
sociated with a cardiomyocyte switch to a fibrogenic phenotype, 
characterized by increased synthesis and release of cytokines that induce 
fibroblast proliferation and activation, as well as proinflammatory mole-
cules that trigger fibrosis through activation of immune cells.180

2.3.2 Endothelial cells
Diabetic CM is associated with coronary microvascular dysfunction, 
which impairs coronary blood flow and myocardial perfusion.185

Abnormalities in the coronary microcirculation result from endothelial 
cell dysfunction, which is considered a central mechanism in HFpEF 
pathophysiology.8,160 Indeed, endothelial cells have altered paracrine 
signalling to cardiomyocytes by reducing the bioavailability of vasodila-
tor molecules, NO and endothelium-derived hyperpolarizing factors 
(EDHFs), thereby limiting blood flow and promoting leukocyte infiltra-
tion in the myocardium.186 The latter leads to activation of myofibro-
blasts and interstitial collagen deposition. As part of T2DM-associated 
glucotoxicity and lipotoxicity, endothelial cells generate ROS and 
reactive nitrogen species (RNS) that uncouple endothelial NO syn-
thase (eNOS) activity (by oxidizing eNOS cofactor tetrahydrobiopter-
in) leading to decreased NO bioavailability.187 This effect together 
with insulin resistance converges on and minimizes the activity of 
guanylate cyclase and cyclic guanosine monophosphate- protein kinase 
G signalling that results in deranged titin phosphorylation and 
increased cardiomyocyte hypertrophy, exacerbating wall stiffness in 
diabetic hearts.188 Endothelial cells can also contribute to the develop-
ment of cardiac fibrosis through endothelial-to-mesenchymal transi-
tion to myofibroblasts.189

2.3.3 Immune cells
Numerous experimental and clinical studies have reported a role of adap-
tive immunity in diabetic CM pathogenesis.190–192 T2DM is associated with 
chronic systemic inflammation, which leads to leukocyte activation and re-
cruitment to various organs, further aggravating inflammatory cardiac tis-
sue remodelling over time.191 This chain of events results in cardiac 
fibrosis as resident fibroblasts become activated in response to pathophy-
siologic conditions, which for the heart, leads to wall stiffening and de-
creased contractility.180 Although the role of B cells is still unclear, T 
cell-derived immune response has been shown to contribute to the pro-
gression of diabetic CM.192 In particular, in STZ-induced rodent models 
of diabetic CM, increased infiltration of T lymphocytes into the myocar-
dium is positively correlated with increased collagen deposition and wall 
stiffness,191 whilst genetic depletion of CD4+ T cells protects against car-
diac fibrosis and impairment in LV function.192,193 Yet, recent studies have 
further delineated the contribution of each T-lymphocyte subset in diabet-
ic CM. Proinflammatory T helper cells Th1, Th17, and Th22 subtypes are 
increased in diabetic CM,194 whereas the activation of anti-inflammatory 
Th2 and Foxp3+ Treg subtypes is delayed or impaired,195 overall promot-
ing chronic inflammatory tissue damage. Increased neutrophil/lymphocyte 
ratio (an indicator of systemic inflammation) is associated with the occur-
rence of subclinical diabetic CM.196 As per potential mechanisms involved, 
the sphingosine-1-phosphate (S1P)/S1P-receptor signalling axis regulating 
T cell trafficking, activation, and polarization may be of importance.197

Indeed, targeted deletion of T-cell S1P-R or administration of fingolimod 
(an S1P-receptor modulator) both reduce myocardial fibrosis and improve 
cardiac function in STZ-induced diabetic CM mice.192,198

Macrophages also play a key role in regulating inflammatory responses 
and homeostatic maintenance of the myocardium. Normally in injured 
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tissue, efferocytosis allows macrophages to engulf apoptotic cells and cel-
lular debris to reduce inflammation.199 Efferocytosis is regulated by many 
processes in high-glucose milieu. In particular, the metalloproteinase disin-
tegrin and metalloproteinase domain-containing protein 9 (ADAM-9) 
were shown to be upregulated in macrophages, secondary to a downregu-
lation of miR-126, which increased MER proto-oncogene, tyrosine kinase 
(MerTK) cleavage with a net effect of reduced efferocytosis.200

Interestingly, human diabetic hearts display the same molecular signatures 
in terms of miR-126, ADAM9, and cleaved MerTK expression, suggesting 
that this pathway may be involved in regulating human diabetic CM pro-
gression. Recently, cardiac-resident MHCIIhigh macrophages showed a 
pathogenic role in cardiac remodelling through production of IL-10. The 
profibrotic effect of IL-10 autocrine loop promotes macrophages to se-
crete osteopontin and TGFβ, which induce cardiac fibroblasts into produ-
cing collagen that results in cardiac fibrosis with increased cardiac 
stiffness.201 Therefore, a new understanding of communication between 
cardiac macrophages and fibroblasts could lead to novel therapeutic strat-
egies for diabetic CM and its progression towards HF.

2.4 Investigating diabetic CM in preclinical 
models: identifying new biomarkers and 
therapeutic targets
2.4.1 Biomarkers
Since T2DM patients at high risk of developing HF display altered metab-
olism in cardiomyocytes, with underlying changes in protein and metabolite 
profiles related hyperglycaemia, lipotoxicity and oxidative stress, a systems 
biology approach may identify a specific signature of diabetic CM. To re-
duce disease burden, it is imperative to develop non-invasive biomarkers 
to detect and characterize diabetic CM processes at their early and pos-
sibly reversible stages in order to reveal new therapeutic targets and to fol-
low disease progress. These last years, new methods have emerged, which 
offer a great potential to identify such biomarkers. Big datasets derived 
from in silico predictive models, imaging, and OMICS technologies (meta-
bolomics, lipidomics, transcriptomics, proteomics) may be used for devel-
oping multiparametric datasets to assist improved diagnostic and 
therapeutic decisions.

Metabolic alterations and insulin resistance are early signs of future car-
diac dysfunction and have a causative role in the development of diabetic 
CM.202 Metabolomics using different analytical techniques such as magnetic 
resonance spectroscopy, mass spectrometry and chromatography203 are 
powerful approaches to follow simultaneous changes in multiple metabol-
ite levels occurring in the diabetic heart. Indeed, cardiac energetic metab-
olism assessed by the PCr/ATP ratio, is reduced in some studies,204

although some discrepancies exist depending on the models.205,206 In par-
allel, lipid metabolism is altered with increased FA oxidation and lipid 
accumulation.147

In silico predictive methods have the potential to reveal or to con-
firm effective biomarkers. Using this approach and exploiting 
meta-analysis of transcriptomic datasets, differential expression levels 
of lysyl oxidase like 2 (LOXL2) and electron transfer flavoprotein beta 
subunit (ETFβ) in serum and heart tissue of 6–16-week-old db/db 
mice correlated closely with a reduced LV diastolic dysfunction, sup-
porting the use of LOXL2 and ETFβ as early predictive biomarkers for 
diabetic CM.207

Moreover, systematic multiorgan biobanking of porcine models of 
diabetes and obesity subjected to molecular profiling by transcrip-
tomics, proteomics and metabolomics has been proposed to better 
understand tissue-specific pathogenic mechanisms and organ crosstalk 
with the prospect of revealing novel molecular targets.208

In the field of imaging technologies, the development of machine learning 
algorithms aims to provide more accurate biomarkers.209 Thus, combining 
imaging, radiomics and multi-OMICS data with machine learning will pro-
vide large datasets of parameters allowing to find biomarkers for early diag-
nosis and monitoring progress of diabetic CM.

2.4.2 New therapeutic targets
Drug development is time-consuming and costly, urging the use of precision 
medicine to replace the ‘one size fits all’ paradigm with more patient tailor-
ing approaches. Understanding T2DM-specific mechanisms shall lead to op-
portunities of developing better therapies. Mechanistic studies have 
demonstrated dramatic glucotoxicity in the heart, and linked it to acceler-
ated sugar-related protein modifications, such as O-GlcNAcylation210

and AGE formation,211 as well as increased ROS formation.212 Yet, most 
interventional studies focusing on the reduction of plasma glucose in 
T2DM patients found at most modest improvement213 and even deleteri-
ous effects in HF outcomes.66–69 To underscore the importance of alterna-
tive mechanisms, recent benefits obtained with SGLT2 inhibitor (SGLT2i) 
treatment for HF and CKD were partly independent of their hypoglycaemic 
effects.143,144 Many potential mechanisms have been proposed for 
SGLT2i.214–216 For example, it has been suggested that a nephroprotective 
effect with natriuresis, diuresis and decreased blood volume that reduced 
preload and afterload are possible mechanisms.143,144 Reduced cardiac oxi-
dative stress and fibrosis have also been observed with SGLT2i treat-
ment.217 Occurrence of ketoacidosis prompted the idea that plasma 
ketone bodies may serve as an alternative and efficient source of cardiac 
fuel.218 It has also been proposed that SGLT2 inhibitors have off-target 
pharmacology by directly inhibiting cardiac NHE1 activity and protect the 
myocardium under ischaemic conditions.219 Nevertheless, confirmation 
of SGLT2i’s specific cardioprotective mechanisms remains elusive to date.

Research efforts need therefore to focus on finding therapeutic strat-
egies to inhibit pathophysiological pathways and reduce the risk of diabetic 
CM. In addition, the understanding of diabetic CM pathophysiology should 
generate awareness regarding its multiorgan nature. Thus, holistic ap-
proaches considering the complexity of myocardial damage induced by 
T2DM along with the functional interplay between different key organs 
will advance our knowledge of diabetic CM. This type of multidimensional 
approach will increase the likelihood of early diagnosis and the translational 
success of new drugs in development. Currently, there are no specific ther-
apies for diabetic CM. Further refinement of diabetic CM molecular signa-
tures derived from improved preclinical models should provide new 
mechanistic insights leading to specific targets, drugs, biomarkers, and ef-
fective patient management in the future.

3. Future perspectives
Animal models have provided valuable insight into the initiation and progres-
sion of diabetic CM, including the revelation of some underlying molecular me-
chanisms. In addition, they are irreplaceable for testing new treatments and 
identifying possible side-effects. Despite these undeniable virtues, experimen-
tal models have failed to reproduce all structural, functional, and molecular al-
terations of human diabetic CM, posing as one of the obstacles to advance 
patient care. An additional intriguing issue with pathophysiological relevance 
is the failure of antidiabetic drugs to combat diabetic CM. Given the myriads 
of confounding factors in clinical reality, it is probably impossible to propose 
a single best model of rodent diabetic CM recapitulating human diabetic 
CM in its entirety. Indeed, diabetic patients experiencing various additional 
‘stresses’ (advanced liver or kidney disease, sarcopenia, OSA, Alzheimer’s dis-
ease, etc.) may therefore develop different versions of diabetic CM, hence 
would mostly benefit from tailored therapeutic interventions. Thus, the design 
of rodent models for studies on diabetic CM is complex and should involve 
commonly coexisting comorbidities in humans to reflect specific endotypes. 
Such new models may include but do not limit to middle-aged or old animals 
(10–12 months or and ∼ 2 years of age) fed with HFD and undergoing inter-
mittent hypoxemia, or HFD model with experimental renal impairment (i.e. 
1K1C, 2K1C), or HFD + carbon tetrachloride to induce additional liver injury 
to cover the full spectrum of NAFLD. Models also need optimizing in terms of 
duration and composition (e.g. Omega 3/Omega 6 ratio) of HFD, use of ro-
dents with different ages, both genders, etc. We believe that the development 
of endotype-specific models will be the preclinical response to personalised 
medicine, facilitating the discovery of new targets and translation to bedside.’
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