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Abstract
In this topical review, we present a brief overview of the differentmethods andmeasures to detect the
occurrence of critical transitions in complex systems.We start by introducing themechanisms that
trigger critical transitions, and how they relate to early warning signals (EWS) and brieflymention the
conventionalmeasures based on critical slowing down, as computed fromdata and applied to real
systems.We then present in detail the approaches formultivariate data, including those defined for
complex networks.More recent techniques like thewarning signals derived from the recurrence
pattern underlying the data, are presented in detail asmeasures from recurrence plots and recurrence
networks. This is followed by a discussion on howmethods based onmachine learning are usedmost
recently, to detect critical transitions in real and simulated data. Towards the end, we summarise the
challenges involvedwhile computing the EWS from real-world data and concludewith our outlook
and perspective on future trends in this area.

1. Introduction

Many real-world systems like ecosystems, climate, biological systems and engineering systems are complex and
are characterised by the ability to self-organise and adapt under external influences or environments. However,
due to theirmulti-component nature, nonlinear behaviour and complex pattern of interactions, they also show
multi-stability that creates the possibility of sudden, unexpected shifts fromone dynamical state to a different
one. These abrupt transitions are referred to as critical transitions.Many of these transitions occurwith
seemingly tiny changes in intrinsic or extrinsic conditions [1] and are difficult to anticipate. Quite often, such
transitions cause natural calamities or failures in engineering systems and infrastructure. Therefore, predicting
their occurrence is essential tomitigate disaster impacts and tomanage the risks involved [2, 3]. From core
collapse inmassive stars [4], erupting volcanoes [5] to cardiac arrests [6], such sudden phenomena are prevalent
in real-world complex systems at different scales [7]. The extinction of species [8] and resilience loss inmarine
and terrestrial ecosystems [9], glacial retreat andwarming oceans [10], onset andwithdrawal ofmonsoon [11],
natural hazards like cyclones [12] and earthquakes [13], regression of productive farmland orfisheries [14], the
surge of epidemics [15], seizures in epilepsy [16], changes inmental state in psychiatry [17, 18] and, failures in
electric power grids [19], transportation networks [20] and thermoacoustic systems [21] are all such critical
transitions that pose threats to humanity inmanyways.

These sudden transitions are often difficult to predict from the average response of the system.Hence any
characteristics that can be observed and captured as indicators of the approaching transition are very relevant.
More so, since it is often difficult to revert the system to the previous state once a critical transition has occurred.
Such characteristics, when obtained ahead of time, are termed as EarlyWarning Signals (EWS) [22]. There has
been considerable progress in the search for effective EWS in the aforementioned areas in recent years, derived
from statistical and nonlinear time series approaches.With the availability of abundant data and increased
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computational power,many data-driven approaches, especially those based onmachine learning, are nowbeing
explored.

An important step in isolating effective EWS is to identify themechanisms that cause the transitions. The
critical transitions in complex dynamical systems are generally understood using the idea of tipping. The term
tipping point refers to a threshold or critical value (of a parameter)near a transition, at which the systembecomes
highly vulnerable to changes such that, when perturbed, itmay not return to its previous state. Such transitions
can be desirable or undesirable depending on the context or their impact on humanwell-being. In some cases,
they imply the emergence of functionality in a system and a desirable change such as the recovery from a state of
mental depression [23] or from seizures [24] to normal functioning or recovery fromover-exploitedmarine
systems [25]. However,most often, such sudden transitions can be pathological, disastrous, or undesired [26].
Some of the changes can also be extreme events that occur in purely stochastic processes or can arise from
external phenomena, such as in the case of theCretaceous-Paleogenemass extinction event [27]. But when they
arise from changes in the inherent dynamics of the system, the system is said to undergo tipping. There are three
main types of tipping identified in complex dynamical systems, namely bifurcation-induced, noise-induced and
rate-induced tipping [28, 29]. The origin of this classification stems fromdynamical systems theory, where the
evolution of a given system is studiedwith differential equations that admit a set of parameters depending on the
details of the system. A bifurcation-induced tipping occurs when one ormore of the parameters of the system
reach critical values that cause a sudden shift or bifurcation to a new stable state. Prior tomany bifurcations,
critical slowing down (CSD) of dynamics, indicated through increased relaxation times, is observed. This leads
to long transients even in deterministic systems in the vicinity of bifurcations [30]. Anoise-induced tipping occurs
when randomperturbations force the system to tip fromone state to another in amulti-stable systemwith two
ormore stable states co-existing for the same set of systemparameters. In both of these cases, an alternate state
exists and the system can be considered to be quasi-static [28]. However, in the case of rate-induced tipping, one
ormore parameters change at a rate fast enough to prevent a steady evolution of the system, causing system
collapse or a critical transition evenwhen there is no pre-existing alternate state for the particular value of the
parameter(s) [28, 31]. It is alsoworthmentioning that an observed transitionmay also arise from a combination
of these phenomena.

In general, amathematicalmodel of a dynamical system should be sufficient to predict possible future
trajectories, given the current state and systemparameters. However, inmost cases we do not have a suitable
model with dynamical equations, to beginwith.Moreover, real systems are generally subject tofluctuations,
both intrinsic and extrinsic and therefore face the risk of critical transitions. The generic features exhibited by the
systems nearmany such transitions can be quantified usingmeasures that can be estimated fromobservational
ormeasured data or time series of the response of the systems. These data-driven approaches are now established
as an efficient way to arrive at early indicators of transitions or EWS for a range of complex systems [32–34].

While sudden transitions are well studied for simple isolated systems, there existmany challenges in
understanding how the heterogeneous nature in complex systems, such as networks of species, habitats, climate
or society, leads to transitions in response to changing conditions and perturbations. The EWS for such
transitions often involve the relationship betweenmultiple variables or the changes in the topological features of
the structure of the connections in the system. In such connected systems, the tipping of one unit can sometimes
induce cascades. For instance, changing the population of a predator in an ecosystem can cause cascades of shifts
across complex foodwebs [35].

Recent research in ecology and climate has led to the understanding of critical transitions and system
resilience when subjected to changing conditions. Such transitions are reported in ecological systems such as
shallow lakes, range-lands, woodlands, grasslands, rain-forests, saltmarshes, arid and semi-arid ecosystems [1],
the Amazon rainforest cover [36], Greenland andWest Antarctic ice sheets [10, 37], changes in the patterns of El
Niño oscillations [38], Atlantic OverturningCirculation [39], and coral reefs [40]. Also, in sociology, finance,
psychology and neuroscience, some applications of resilience indicators and associated concepts are reported
recently [32].

In this review, we present a summary of the variousmethods used for predicting critical transitions.We start
with a brief discussion of conventionalmeasures reported as effective EWS in various areas of research,
includingmeasures for spatial data (section 2).We then proceed to discuss novel techniques that are developed
for cases when data aremultivariate because of an underlying network structure or becausemultiple system
responses aremeasured (section 3).We discuss in detail the recently studiedmeasures based on the recurrence
patterns in the data using recurrence plots and recurrence networks (section 4). These provide insights into the
recurrence of the states reconstructed through delay embedding.We then present the detection of critical
transitions usingmachine learning techniques (section 5), that are relatively less explored but are useful in
detecting transitions in different contexts.Moreover, they aremostlymodel-independent and hence capable of
predicting transitions that are not necessarily preceded byCSD.We also caution about potential pitfalls in
detecting critical transitions using EWS (section 6). Towards the end, we discuss recent trends and possible
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avenues for future research in extending the applicability of EWS and enhancing our understanding of
transitions in complex systems (section 7).

2. Conventional EarlyWarning Signals

It is well established that near some bifurcation-induced transitions, dynamical systems exhibit the
phenomenon of CSD. This is consequent to an increase in the relaxation time seen close to bifurcation points in
dynamical systemswhereby once perturbed, the system takes long time to relax [1]. This can be exploited to
arrive at early warning signals of the approaching transitions. A list of bifurcations preceded byCSD alongwith
the nature of these transitions is listed in detail in [41]. Though a large number of bifurcations exhibit CSD, EWS
literature ismostly centred around fold bifurcations [1]. For this, close to the bifurcation point, a very small
change in parameter or a small perturbation can cause a large shift or transition to another stable state. Hence
fold bifurcations illustrate themechanism of sudden transitions verywell, exhibit CSD and canmodel a large
variety of transitions across fields [42]. For this reason, it remains amodel of choice, despite some criticism in the
past regarding its overuse [43].

The phenomenon of CSD forms the basis formanymeasures useful as EWS, including increased
autocorrelation and variance [22, 44]. The autocorrelationmeasures the linear correlation between two points
that are separated by a temporal lag in a time series. An increased relaxation timewould result in a larger
correlation between nearby points in the time series, and is true in particular for correlations of adjacent points,
i.e. the autocorrelation at lag-1 (ACF(1)). Thus an increasing trend inACF(1) serves as EWS for such transitions.
Since the impact of perturbations takes longer to decay as the system approaches a critical transition, the
variance of the systems response also increases [22, 45]. The changes in ACF(1) and variance are themost
popularly studied EWS and are successfully applied to detect critical transitions in awide variety offields [17,
46–49]. The increasing trends inACF(1) and variance as EWS can be formally derived from the theory of
stochastic dynamical systems [44, 50]. Starting from the linearised dynamics about the stable point of a system
perturbedwithwhite noise, it is shown that the variance approaches∞ and the ACF(1) approaches 1 as the
system approaches certain types of bifurcations [51, 52].

Apart from the variance, higher ordermoments of the amplitude distribution of the system’s response, such
as the skewness and kurtosis, change as the system approaches a critical point [53]. The estimation of these
quantifiers are listed in table 1. Thesemeasures are computed fromdata using a slidingwindow approach, where
the quantifier of interest is estimatedwithin awindowofW points in the time series which is slid forward in time
with a suitable time step to get the variations over time. If the quantifier shows significant trends over time, often
confirmed using rank correlation coefficients like Kendall’s correlation coefficient [54], it is taken as evidence of
CSD.While this technique is widely used, several caveats exist, which are discussed in detail in section 6.

The transitions that are accompanied byCSD can also be detected as changes in spectralmeasures.When the
system exhibits CSD, the time scales associatedwith the systembecome longer, resulting in higher prominence
for the lower frequencies of the power spectrum. This phenomenon is called spectral reddening [55, 56]. This
increase is equivalent to the increase discussed above in the lower lags of the autocorrelation, which is the Fourier
transformof the power spectrum. The power spectrum, S( f ), is assumed to scale with the frequency, f as
S( f )∼ f−β, whereβ is the power-law scaling exponent. Due to spectral reddening, β increases, since the power

Table 1. Some of the quantifiers commonly used as EWS, their estimation and the
corresponding standard error in estimation fromN points. The formulae used for
standard errors have the underlying assumption of normality in the sampling
distribution, which leads to the errors being underestimated [74]. These values should
hence serve as a lower bound on the estimated error.
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in lower frequencies in the spectrumbecomemore prominent. Hence, the scaling exponentβ is useful as a
warning signal in such cases [12, 57].

Another closely relatedmeasure is theHurst exponent,H, whichmeasures the long-term fluctuations in the
time series and consequently increases when the system exhibits CSD [58]. Themost popularmethod to
determine theHurst exponent is the detrendedfluctuation analysis (DFA) [59].We note that even certain
transitions, such as rate-induced tipping that are not known to be preceded byCSD,may also exhibit significant
trends inmany of the quantifiersmentioned above [31].

With growing confidence in EWS and the simultaneous rise in data availability and computational power,
their applications have expanded tomore areas. A highly relevant example is the abrupt climate change and its
implications.Many observation-based studies have identified trends in past climate shift events [60, 61] and
project dire consequences if we followpresent trends [62].

In the health sciences, research onCSD is particularly emphasised inmental health research and seizure
prediction [23, 46, 63]. CSD-basedwarning signals are discovered in self-reportedmomentarymood states in
depression [17, 64] (See figure 1) and bipolar disorder [65]. In seizure prediction, EWS are reported in
computational and in-vitro studies [16,66–69], though their detection in real data remains disputed [46, 70, 71].
Some of the conventional EWS such as rising autocorrelation precede transitions in chronic illnesses such as
asthma, cardiac arrhythmias [72] and ventricular fibrillation [6]. At a community level, these EWS are shown to
precede significant increases in hospital admissions for cardio-pulmonary diseases [73].

Several challenges in data collection and accuracy, as well as the complexity of interactions in the
aforementioned systems, have prompted an inquiry into spatial early warning signals (SEWS) [77]. Especially in
ecologywhere lack of long temporally-resolved data is amajor limitation, well-resolved spatial data can be
acquired formany large ecosystems. From this data (computed from snapshots ofmultiple time series or data
spread over a large number of spatial points), SEWS can be calculated analogously to their temporal
counterparts. AnR-based toolkit for SEWSdeveloped byGénin et al is described in [78]. Recently, extensive
studies on impending regime shifts in ecosystems based on simulated as well as real grid data collectedwith
remote sensingwere conducted as well [79]. A few other examples include changes in patch-size distribution
prior to desertification [80], increasing spatial variance in conjunctionwith changing spatial skewness prior to
vegetation collapse [81], increasing spatial correlation in spatially heterogeneous systems [82], increasing
recovery length for populations of yeast [83] and collapsingmarine benthic ecosystem [84], and increase in
several CSD-based indicators prior to grassland-to-woodland transitions in Savanna ecosystem [85].

In the context of climate, cross-correlation in the finely sampled time series fromdifferent spatial locations
anticipated ElNiño oscillations up to a year in advance with 3-in-4 likelihood [38]. On a smaller scale,Ma et al
recently demonstrated that the tumour-immune system can be treated as a two-dimensional spatially extended
system that exhibits bistability (healthy and disease state). In this context, rising spatiotemporal diffusion
coefficient obtained from the spatial snapshot data is an effective indicator (seefigure 2) [86]. There are
transitions that are not preceded byCSD [87, 88] and temporal and spatial EWSmay fail in these situations.
Moreover, spatial indicatorsmay also showdecreasing trends in some systems [22]. Some of these limitations are
addressed in later studies, such as the study of EWSprior to regime shifts that do not exhibit CSD [89] and using
multivariate data to test for false alarms [5, 90]. Other limitations such as the effect of largefluctuations and
heterogeneous stressors [91] cannot be avoided, which necessitates extra care with the interpretation of SEWS in
such cases.

3. EWS formultivariate data and complex networks

Inmany real-world systems,more than one response is often recorded over time and, the single variable
temporalmeasuresmentioned above are computed independently onmultiple variables [65]. The reliability of
an EWSdetection can then be estimated through the strength of EWS acrossmultiple variables. However, a
more general approach that encompasses the relationships betweenmultivariate data is likely to bemore robust.
Moreover,many single variable techniques described above, such as the ACF(1), are developed for evenly
sampled data, i.e. the time difference between adjacent observations is equal throughout the time series. In cases
wheremultiple variables aremeasured at the same time instant, data gaps often occur simultaneously in all
variables. In such cases, cross time seriesmeasures such as the correlation between the time series can still be
reliably calculated.

Multivariate data, in general, need not be spatial (or spatially restrictive) but can be the different responses of
the same systemor of the same variablemeasured fromdifferent parts of an interacting network of systems.
Often in real systems, suchmultivariate data sets are available asmultiwavelength data in astronomy, ECGor
EEG recordings frommultiple leads, data fromvarious spatial locations in ecology, etc. In this section, we
describe some notable examples of this approach in thewider scope of the detection of critical transitions.
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Many complex systems can be representedmathematically as high-dimensional systemswith random
environmental perturbations,modelled byfirst-order stochastic differential equations. The solution of such an
equation is the probability density function p(z, t) of deviations (in the state variables), z, from the equilibrium.
As outlined inChen et al [92], this function can be approximated as the solution to a linear Fokker-Planck
equation. If the fluctuations have reached a stationary distribution, the covariancematrix of the solutionwhich
gives the correlation between the state variables can be directly used to interpret the nature of dynamics. Even
when the analytical expression of the covariancematrix is generally not available for a real system, we can
estimate the elements of the covariancematrix,Ci,j directly from themultivariate time series dataXk(t) as the
covariance between the ith and jth time series [93, 94].

= = - -( ) [( [ ])( [ ])] ( )C Cov X X E X E X X E X, , 1i j i j i i j j,

where E represents the expected ormean value. The eigenvalues of the covariancematrix calculated using a
movingwindowon data can capture theCSD in the systemnear transitions. As shown byChen et al, the largest

Figure 1.EWSof a critical transition towards depression, in theweeks leading up to the episode. TheACF(1) and variance calculated
frommomentarymood states increase in theweeks prior to the episode. The onset of the episode is shown as a grey rectangle. The
bottompanels show the lag-1 correlations between the differentmeasuredmood states (PA = positive affect;MU = mental unrest;
NA = negative affect;WO = worry; SU = suspicious) at various stages ofmood shift. (Credit :WichersM,Groot P, C:, Psychother
Psychosom2016;85:114-116. Reproducedwith permission fromS. Karger AG, Basel [17]).
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eigenvalue of the covariancematrix is a usefulmetric to predict critical transitions because the dynamics along
the dominant eigenvector becomes slower and the variance along that direction increases as the system
undergoes CSD [92].

This is shown infigure 3 for a harvestingmodel, where the variation of the largest eigenvalue (λ1) and the
ratio of the largest eigenvalue and the second largest eigenvalue (l

l
1

2
) are shown for varying bifurcation

parameter. In this context, a data-driven algorithm, known as the eigensystem realisation algorithm, was used to
approximate the eigenvectors, and get EWS for the transitions [95].

In addition to themaximumeigenvalue of the covariancematrix, the autocorrelation of the projection of the
data on thefirst principal component, called degenerate fingerprinting is proposed as EWSuseful for
multivariate data [3, 96, 97]. So also,measures based onMin/MaxAutocorrelation Factor (MAF) analysis and
multivariate extensions ofmutual information are also proposed as EWSprior to critical transitions in specific
cases [96, 98–100].

An important class ofmultivariatemeasures rely on the framework of complex networks. Inmost cases, the
subsystems are treated as nodes and their interaction patterns are captured as links in the network. Then the
critical transitions occur as changes between emergent states, reflected as changes in network structure and
dynamics [32]. This framework benefits immensely from the extensive literature on graph theory that evolved
systematically over the past decades, and the relatively recent enquiries in social networks that have led to new
classes of networks and their influence on emergent dynamics [101].

A convenient way to represent these networks is in the formof an adjacencymatrix that captures links in the
network as elements of thematrix, given as:

Figure 2. ((a), (g))Transient-state ensemble average of tumour nuclei density as a function of growth rate r and simulation time. The
vertical grey lines correspond to the increasing growth rate (r) over simulation time, where spatial snapshots are shown at the top. The
snapshots are drawn in grayscale, where brighter regions represent higher tumour nucleus density. ((b)-(f), (h)-(l)) SEWS for
simulated spatial snapshots data obtained from the stochasticmodel of equation (5) in [86]. ((b), (h))Near-neighbour spatiotemporal
diffusion coefficient at lag-1 , ((c), (i)) spatial variance , ((d), (j)) spatial skewness , ((e), (k)) spatial kurtosis , and ((f), (l)) near-
neighbour spatial correlation as functions of growth rate r and simulation time. (Reproduced fromMa et al, 2022 [86]).
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= ( )⎧
⎨⎩

A
i j1 nodes and are connected

0 otherwise.
2ij

As the interactions in the system change in time, so do the associated links in the network.One of the easiest ways
to track these changes is through the distribution of the degrees of nodes ki. An interesting example is the loss of
low-degree nodes before cascading failures in artificial networks [102]. Another example is the change in degree
distribution, as observed before AtlanticMeridional Overturning Circulation (MOC) collapse [103]. Other
measures of network structure such as the link density, clustering coefficient, characteristic path length, etc can
also be used to detect transitions (see table 2).

Very often, networks are constructed from time series at different spatial locations using lag-0 Pearson
correlation coefficient so that spatio-temporal correlations are reflected in the topological properties of the
network. For example, Rodríguez et al have shown that percolation transition in functional networks
constructed from the correlation of time series of nodes precedes a bifurcation [104]. Early warning indicators of
vegetation transitions [105, 106]were also proposed in a similarmanner. Jentsch et al [107] showed spatial
correlations increasing among different nodes of amultiplex disease-behaviour network prior to a regime shift.

There are instances where an increase in network connectivity, which relates to increased cross-correlation,
happens before a critical transition [17, 23, 106]. In socio-ecological networks, an interaction network or

Figure 3.Variation of the (a) largest eigenvalue and (b) ratio of largest to second largest eigenvalue of the covariancematrixwith
varying bifurcation parameter, c (Reproduced from [92]).

Table 2.Complex networkmeasures used as EWS.Aij represents the
elements of the adjacencymatrix for the node pair i and j, andN is the
number of nodes in the network. For an undirected, unweighted
network,Aij = 1 if there is a link between i and j, and 0 otherwise [101].

Quantifier Calculation Reference
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community network considers interactions among subsystems, which represents the connectivity and strength
of interactions [106, 108]. Another network-based approach is proposed byGoswami et al [109], and applied
successfully to global stock indices for the detection of transitions intowell-knownperiods of politico-economic
volatility. Yet another approach based on correlation graphs is described in [110] andmodel-based early
warning systems for emergingmarkets in [111], etc.

Sometimes the conventional networkmeasures listed in table 2 are not sufficient and a closer inspection of
network dynamics in terms of other properties is required. For example, a characteristic of self-organised critical
transitions is long-range correlations that can bemeasured in terms of the transmission of information among
units. Specifically, the impact of a unit’s state on the state of thewhole system at a time can bemeasured by their
mutual information. For two random variablesX andY, themutual information is given by [115]

å= ( )
( )

( ) ( )
( )⎜ ⎟

⎛
⎝

⎞
⎠

M p i j log
p i j

p i p j
,

,
, 3X Y

i j
X Y

X Y

X Y

,
,

,
,

where pX,Y(i, j), pX(i) and pY( j) are the joint andmarginal probability distributions. The characteristic distance of
the decay ofmutual information in the system is found by fitting an exponential decay term to themutual
information. The increase in this distance, called information dissipation length (IDL), can detect the onset of
long-range correlations in the system that precede critical transitions. This was applied tomeasure the risk-
trading among banks by calculating the IDL of the returns of interest-rate swaps (IRS) acrossmaturities, for the
EUR andUSDmarkets [98] (See figure 4).

It is proposed that in networked systemswhere little information is available about the structure, EWS for
the collapse of networked systems can be obtained from their structural instability. The existence of cycles in the
interaction network is one property that adds stability to the system since it implies self-sustaining structures.
Thus, for a networked dynamical system, the transition to instability is concurrent with that from anetworkwith
cycles to onewithout cycles. The corresponding EWSwill be that which detects the last surviving cycle in the
network. This is illustrated using themodel of co-evolutionary ecosystems and applied to systems of species
evolution, epidemiology, and population dynamics [116].

Figure 4.The upper panels show the time series of IRS rates for variousmaturities over 12 years and the corresponding information
dissipation length (IDL) for the EUR andUSDmarkets. The inset shows the IDL and awarning threshold in the period leading up to
the LehmanBrothers bankruptcy. The bottompanels show themutual information between the rates of the 1-yearmaturity IRS and
othermaturities on two trade days. The IDL of the IRS rates acrossmaturities for a specific trade day is estimated by fitting an
exponential decay function. (Reproducedwith permission from [98]).
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Modelling systemic risk in terms of network structure is another popular approach, especially in the context
of economics andfinance [117, 118]. Here the network structure is characterised in terms of networkmotifs.
These are patterns of interconnections present in the given network in a significantly large number compared to
the number expected in randomised networks with the same single-node characteristics [119]. Squartini et al
suggested that in the context of interbank networks, the presence ofmotifs can be a cause for decreased
robustness [118] thatmay lead to tipping and hence can be an effective indicator of tipping. Sometimes the
transition depends crucially on the dynamics of a critical node. For example, reliable sensor species in ecological
systems are preferred for testing an upcoming transition in relatively small natural networks [95]. In these
networks, conventional EWS can be used once themost reliable species are identified. Another example of a
critical component is in chemical networks where recovery times act as EWS [120].We note that in both cases,
the actual transition is brought about by external, environmental influence, and hence can be considered to be
instances of noise-induced tipping.

4.Measures based on recurrences

The conventional EWS are computed from the time series i.e. the sequence of observed ormeasured data.Most
of these identify patterns in statisticalmeasures over time in the (often one-dimensional) time series. Amajor
drawback then arises from the underlying assumptions of linearity in the quantifiers used, which can be
misleading in the derived conclusions. An alternative approach, that does notmake these assumptions, is rooted
in the recurrence of states in dynamical systems theory. Thismethod of nonlinear time series analysis works by
recreating the overallmulti-dimensional dynamics of the system fromone-dimensional data. The trajectory
traced by a bounded dynamical system forms a geometrical structure in state space called an attractor, and the
points on the attractor recurwith a pattern that can capture the non-trivial structure of the attractor. Even in the
presence of small stochastic influences, the approximate structuremostly remains tractable with enough data. If
the associated structural properties of the attractor change as the system approaches a transition, these are
reflected in the recurrence patterns in the data. This useful insight can be exploited by visualising the patterns of
recurrences and quantifying themusing the framework of recurrence plots (RP) and recurrence networks
(RN) [21].

4.1.Measures from recurrence plots
Formost nonlinear time series analysis approaches the one-dimensional data isfirst embedded in a high-
dimensional space using themethod of delay embedding [121]. Taken’s delay embedding theorem guarantees
that the dynamics resulting from such an embedding is topologically equivalent to the dynamics of the full
multi-dimensional system [121]. In order to study the recurrences in the system, these embedded
M-dimensional vectors are used to construct the recurrencematrixR. The elements of thismatrix are defined as

e= Q - -   ( ) ( )R v v . 4ij i j

Here

vi and


vj are the corresponding vectors for two points i and j in the reconstructed state space,Θ is the

Heaviside step function, and ò is a threshold chosen to definewhen a state recurs [122]. A representation ofR,
known as a Recurrence Plot (RP), is a 2-dimensional discrete realisation that gives a visual representation of the
recurrences, with the 1s inR taken as black points and 0s as white spaces. Then the geometrical patterns in RP
can be quantified usingmeasures such as Recurrence Rate (RR), Determinism (DET), Laminarity (LAM), and
Entropy (ENT) as indicated in table 3 [122]. A python package for calculating recurrence-basedmeasures from
data can be found in [123].

A typical RP for the variable star Betelgeuse is shown infigure 5(a). In general, the patterns formed by the
recurrence of points can provide evidence for determinismor stochasticity in the dynamics of the system. The
diagonal lines in RP indicate that the trajectory visits the same region of the state space repeatedly and is
quantified asDET. The presence of vertical or horizontal lines,measured by LAM,means the systempersists in
the same region for some time.On the other hand, isolated pointsmay occur under noisy fluctuations, where
DET indicates statistical correlations in the data. Since the recurrence-basedmeasures are directly linked to the
nature of dynamics in state space, any change in the trajectory in this spacemanifests as a change in patterns of
the RP, and consequently as variations in themeasures computed from it.

To estimate the changes in these RPmeasures over time, a slidingwindow analysis of the time series near
transition is carried out [124]. For the variable star Betelgeuse, the RPmeasuresDET and LAMact as the EWSof
a possible critical transition in its dynamics [47] (See figures 5(b) and (c)). The success of recurrence-based
measures depends on the careful selection of embedding parameters and threshold ε. A detailed discussion on
this and established practices can be found in [127]. The applications of thesemeasures include the detection of
past climate states [125], detecting regime shifts in thermoacoustic systems [21] and agglomeration of particles
in a chemical system [126].
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More recently, anothermeasure called Recurrence Lacunarity (Λ)was used to detect regime shifts in
complex systems, especially to predict the onset of thermoacoustic instability. From theRP, the normalised
distributions of recurrence points for different window sizes are computed and the heterogeneity in their scaling
is used to get themeasureΛ [128].

4.2.Measures from recurrence networks
A further important extension in this direction is that of a recurrence network (RN), which is a complex network
that can be constructed fromRPwith its adjacencymatrixAij derived fromRij as [129]

d= - ( )A R . 5ij ij ij

Then, in general, all the known complex networkmeasures, given in table 2, can be used to indicate
transitions, and they can support and complement themeasures fromRP [121, 124].We note that the changes in
dynamics change the pattern of recurrences of the trajectory points in the state space and such changes will
reflect as changes in values of RNmeasures. Godavarthi et al [113] identified different dynamical regimeswith
difference in topologies of the associated RNs for a thermoacoustic combustor and showed that dynamical
transitions are reflected as changes in the characteristic path length, CPL (see figure 6). Here, CPL is less for

Figure 5. (a)Recurrence plot for the variable star Betelgeuse constructed from its brightness data (V-band) from1980 to 2019, prior to
a transition resulting in amajor dimming in the star. (b)DET and (c) LAMmeasures calculated from theRP. BothDET and LAM
showdefinite trends over time, and reach the 95% confidence interval shown in red. (Credit: George SV, Kachhara S,Misra R&
AmbikaG, A&A, 640 L21 2020Reproducedwith permission©ESO [47]).

Table 3.Recurrence based quantifiers useful as EWS.Rij are the
elements of the recurrencematrix, as defined in equation (4).P(l)
represents distribution of diagonal lines and P(v) represents that of
vertical lines in the RP. For details, see [122].
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periodic dynamics and increases due to the chaotic nature or stochasticity in the dynamics. Clearly, the trends in
networkmeasures depend on the nature of the transition, and prior knowledge of the systemdynamics will be
very useful.

Donges et al [130] used a combination of networkmeasures onRN to identify nonlinear regime shifts in
Asianmonsoon.Goswami et al [109]proposed community structure in recurrence networks as a way to detect
abrupt transitions in data with uncertainties, such as global stock indices and ElNiño-SouthernOscillation. An
interesting study byMarwan et al [114] showed a significant increase in network transitivity leading to sudden
transition in the alkenone paleothermometry data (see figure 7).

The notion of recurrence networks can be extended tomultivariate data as well, as illustrated byHasselman
et al [131]. They usedmultiplex Cumulative RecurrenceNetworks (CRN) asmodel networks that capture
changes inmental state for the same data set as discussed in [17] (see figure 1). The state of the individual was
captured across five variables, namelyMood (Mo), Physical (Ph), Self Esteem (SE),Mental Unrest (MU), Sleep
(Sl) andDay (Da), and recurrence was calculated cumulatively across all past time points. CRNs constructed this
way for allfive variables were thenmultiplexed in a singleMultiplex RecurrenceNetwork (MRN). The
topological properties of thisMRN showed indications of transition prior to the depression episode.

Figure 6.Variation of theCPLwith the equivalence ratio (j), which determines the dynamical regime of the combustor. TheCPL
decreases as thermoacoustic instability is approached, and increases again near lean blowout. (Reproducedwith permission from
[113]).

Figure 7.Detecting sudden transitions using RecurrenceNetworkmeasures. (a)Alkenone paleothermometry data used as proxy for
Sea surface temperature (SST). (b) Slidingwindow analysis of Transitivity (T), showing significant changes nearmajor climate shifts
(indicated by dashed lines). The grey band represents confidence interval of 90% (Reproducedwith permission from [114]).
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5. Prediction of transitions usingmachine learningmethods.

In recent years, with an increase in the size and number of available data sets, it has become computationally
efficient to invokemachine learning algorithms to predict critical transitions. Unlike themethodsmentioned
above,machine learningmodels are purely data-driven and are often difficult to interpret. However, they have
shown remarkable success in predicting sudden transitions, and are well-suited to deal with high-dimensional
data.Much of thework that deals with predicting critical transitions is fairly recent andmostly focuses on the
ability of themethod to do so in simulated dynamical systems.

While a detailed discussion ofmachine learning is beyond the scope of this review, we briefly introduce the
terminology andmethods that will bementioned in this section.We start with the data to be analysed, which is
represented using a number of its features in an n-dimensional feature space. In supervised learning, which
formsmost of the cases discussed in this section, this data is split into a training and a testing set. Amachine
learning algorithm learns on the training data by varyingmodel parameters such that a suitable loss function,
thatmeasures howdifferent the true output is from the estimated output, isminimised. Themodel performance
can be estimated by quantifying howwell themodel predicts the unseen testing set.

Thesemodels differ from each other in terms of how they fit the training data. A linear regressionmodel for
instancewouldfit a line to the training data, such that the error isminimised. Thefitted line can be used to
predict the output for an unknowndata set. Support vectormachines classify data in high-dimensional feature
space by drawing a boundary thatmaximises the distance of the categories from the boundary. A decision tree
uses data features to learn simple decision rules that are used to predict target values. A random forest is an
ensemble of decision trees trained on subsets of features and data to classify data. The class predicted by the
maximumnumber of trees is chosen as the class predicted by the forest. Artificial neural networks consist of
layers of connected neuronswhoseweights are trained to obtainmaximumprediction accuracy. Numerous
variations and improvements which are adapted forworkingwith various types of data exist for each of these
models. For instance, logistic regressionmodels can handle data with binary outcomes, convolutional and
recurrent neural networks work on image and time series data respectively and gradient boosted trees improve
on conventional random forests [132].

Many of these techniques including decision trees and random forests [133, 134], support vectormachines
[135], convolutional neural networks (CNN) [34, 136, 137], and recurrent neural networks (RNN) [138, 139] are
used to predict sudden transitions. For instance, inHyland et al, the taskwas to predict circulatory failure from
ICUdata [133], using a set of static and dynamic features whichwere used to train a number ofmachine learning
algorithms, including gradient boosting trees, logistic regression andRNNs. InKobayashi et al, a feature set
derived fromordinal partition transition networkswas used to detect combustion instability using support
vectormachines [135].

As opposed to approaches that use features derived fromdata, RNNs learn patterns in time series themselves
to predict and classify them. So they are among themost successfulmachine learning approaches to predict
sudden changes in time series. RNNs typically possess a cyclic connection thatmakes the current state
dependent on past states. A number of RNNarchitectures exist, such as discrete-time recurrentmultilayer
perceptrons, gated recurrent units, long short termmemory (LSTM) and echo state networks (ESN) [140, 141].
Among these, discrete-time recurrentmultilayer perceptrons are used to predict epileptic seizures [142], gated
recurrent units are used to predict heart failure onset [143] andfinancial crises [144], and LSTMnetworks are
used to predict heart failure [133], financial crises [144], and rock bursts [145]. Also, combining RNNswith
CNNs is shown to be effective in predicting instabilities when the data is spatio-temporal in nature [146, 147].
This approach is useful, because convolutional neural networks arewell suited to learn patterns in spatial data,
whereas recurrent neural networks are well suited to time series.

Reservoir computers or echo state networks (ESN) are a class of RNN that have shown particular promise in
the prediction and classification of nonlinear dynamical systems [148]. These consist of an input layer, a hidden
layer with random connections and an output layer. In contrast to a regular RNN, the input and hidden layer
weights are notmodified during training, and onlyweights of the output layer are trained (See figure 8). Recent
work byKong et al [139]used amodified reservoir computer to predict critical transitions from a chaotic state to
collapse via crisis transitions in simulated dynamical systems. In addition to the regular input of the state of a
dynamical system, an additional input channel was added for the parameter of the system. Thismade the
reservoir computer ‘parameter-aware’, and trained the algorithmon data as well as the parameter associated
with that data. Such amodified reservoir computer was able not only to predict the point where the critical
transitionwill occur, but also to predict the distribution of the lifetimes of the chaotic transients in the parameter
regime beyond the transition point. Such parameter-aware reservoir computers are shown to be able to go
beyond the prediction of chaotic transients and collapse by Patel et. al [149], where the overall dynamics of
different chaotic systems over a range of parameter values, was predictedwith a high degree of confidence. The
authors were also able tomodify the input and prediction of the reservoir computer to accommodate noisy
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chaotic systems. The parameter-aware reservoir computers are also reported to predict the synchronisation and
amplitude death in dynamical systems [150, 151]. In the former, the systemwas able to predict the transition
point for both smooth and explosive synchronisation transitions by training the reservoir computer on a group
of asynchronous time series before the onset of synchronisation [150]. In the latter, the parameter-aware
reservoir computer was trained on data prior to amplitude death, andwas able to predict the onset of amplitude
death in a number of simulated systems [151].Moreover, the predictability, defined as the ability of the ESN to
predict the state of the system at a point in future, is also shown to decrease leading up to critical transitions
[152]. Deep extensions of reservoir computers, where the reservoir consists of stacked layers where each layer
feeds into the next, are studied to predict critical transitions in simulated slow-fast systems [153].

Machine learningwas also used recently to predict critical transitions in complex networks [154, 155]. Feed
forward neural networks (neural networkswithout a cyclic connection)were used to study critical transitions in
models of epidemic spreading in complex networks. Themodel was trained on the states of the node dynamics,
with labels indicating whether the networkwas before or beyond the critical point. Themethod could not only
anticipate a phase transition but also identify the critical point itself [154]. A graph attention networkwith a feed
forward regressor was shown to be useful in predicting disintegration in complex networks. The networkwas
trained on the topological structure of different synthetic and real-world complex networks, and could
anticipate system collapse [155].

Asmentioned earlier, whilemachine learning techniques are being used extensively for predicting critical
transitions, they aremodel-free and do not explicitly work on the principles of CSD. Recently, some approaches
have been adopted that combine principles of CSDwithmachine learning to predict critical transitions
[34, 137, 156, 157]. In [156], three EWSmeasures, namely the variance, autocorrelation and skewness were used
as input features for a support vectormachine, while the bifurcation point was used as the output. The trained
algorithm showed high accuracywhen predicting the bifurcation point inmultiple realisations of a simulated
stochastic slow-fast dynamical system, as well as in the IEEE 14-bus test system. In [157] the accuracy ofmachine
learningmodels enhancedwith EWSwas compared to amodel without any inputs about the EWS.Using EWS
data to train the neural networks was shown to enhance the performance inmost of the cases. In [34] and [137],
the authors compared the performance of awell trained convolutional neural network-long short-termmemory
(CNN-LSTM) deep learning algorithmwith conventional EWS such as the autocorrelation and variance in
predicting critical transitions. In [34], the neural networkwas trained using data from randomly generated 2-D
dynamical systems containing polynomial nonlinear terms up to cubic order. Then the bifurcations in these
dynamical systemswere identified and the time series were generated. The results suggested that the neural
network performedwell in predicting critical transitions arising fromdifferent bifurcations in both simulated
and real data [34].

The ReceiverOperatingCharacteristic or ROC curve is used to quantify the ability of amethod to correctly
classify data. It is a plot of the fraction of true positives versus the fraction of false positives, such that a higher
area under the curve indicates that the algorithm correctly classifiesmost of the data. The prediction accuracy
thus quantified using the area under the ROC curve for standard EWS and themachine learningmodel for
various simulated and real-world data, is shown infigure 9. Themachine learning probabilities calculated from
rawdata assign the three transitions correctly in almost all cases. In [137], nine different dynamicalmodels from
a variety offields were used to train aCNN-LSTMmodel, called EWSNet. The trained networkwas then used to

Figure 8. Schematic of a reservoir computer depicting the input, hidden and output layers. Unlike conventional neural network
architecture, only the weights of the output layer are trained in reservoir computers.
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identify transitions in simulated aswell as real-world data, achieving high classification accuracy in both. In
addition, the authors compared the results to variousmachine learning classification algorithms trained on
trends in classical early warning indicators and demonstrated that the CNN-LSTMarchitecture showed superior
performance.

In contrast to equation-basedmodels and real-world time series that are generally used to study EWS, [158]
studiedwarning signals in an agent-basedmodel, using an LSTMneural network architecture. The authors used
large data sets of time series simulated using an agent-basedmodel of repeated public good games, which
showed critical transitions. Thesewere used to train an LSTMnetwork and predict transitions in an unseen
simulated data set. The predictionwas studied as the distance to the transitionwas reduced, and the results were
compared to traditional EWSmetrics. The authors also studied themicro-level interactions using time series
from each node of the agent-basedmodel.

Machine learning algorithms have added an important tool in the prediction of critical transitions and can
tackle a wider range of transitions and even extreme events [159, 160]. However, they require large data sets for
training, which is often not possible in real-world scenarios. For instance the deep learningmodel in [133]was
trained on≈36,000 patient admissions, whereas themodels used for predicting extreme events in [160]were
trainedwith 18,000 time series points. Powerful new techniques that combine differential equationmodels
alongwithmachine learning are a vitalmiddle path that has shown promise in recent years and could be theway
forward in efficiently predicting critical transitions.

6. Reliability ofmeasures as EWS

Asmentioned,much of EWS analysis is conducted using a slidingwindow approach over sufficiently long data
sets. However, thismethod is prone tomisdetections arising fromdata quality, as well as from the inherent
dynamics of the system. For instance, systemswith a longer response time requiremore data before a transition
in order to identify warning signals. Thismeans that the amount of data required seems to depend on the total
range of systemdynamics captured and not on the length of the data alone [161]. Evenwith the same length of
data, the number of points required tomake a reliable estimation of a quantifier varies between the different
quantifiers being used (see table 1). In situations such as rapid changes in environment [162], large external
influences, or, cases where the systemparameters change too rapidly for the system to settle, the interpretation of
EWSbecomes a question of speed as well as reliability.

The effects such as the topology of connected systems, under-sampling or insufficient data before the
transition [163, 164], can lead to false negatives. False positives, on the other hand, can occur due to a number of
reasons, such as serial correlations due to overlap in thewindows or due to the presence of trends in data

Figure 9.Prediction accuracy quantified using the area under the ROC curve for ACF(1), variance and a deep learningmodel. The
inset shows the probability predicted for a fold (F), transcritical (T), Hopf (H) or no (N) bifurcation, by themodel. The data are from
(A) fold bifurcation in a harvestingmodel; (B)Hopf and (C) transcritical bifurcation in a consumer-resourcemodel; transcritical
bifurcations from two variables, (D)provaccine opinion and (E) total infectious from a behaviour-diseasemodel; (F) sediment data
transitioning to anoxic states in theMediterranean sea; (G)Hopf bifurcation in data from a thermoacoustic system; and (H)
transitions in ice core records. (Reproducedwith permission from [34]).
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[165, 166]. The effect of serial correlations in data when testing for significance using theKendall τ correlation
was studied byHamed andRao [165]. Systematic false positives occurring due to trends in the data can
sometimes be removed by using detrending techniques such as localfirst-order polynomialfit, global higher-
order polynomial fit ormoving averages [166]. Conversely, the features introduced by particular types of
detrending techniquesmay be required by deep learning algorithms, in order to effectively detect critical
transitions [167]. Afinal possibility is when the transition does not occur due to various reasons, evenwhenCSD
did occur, in reality. For instance, warning signalsmay be correctly predicting seizure susceptibility, but no
seizuremay happen due to the internal regulatorymechanisms of the brain [66]. These are not false positives in
the true sense butwill be treated as such inmany studies.

An alternative approach to test for significance, with lessermisdetections is bootstrapping or surrogate
testing [168]. First, multiple surrogate data sets consistent with a null hypothesis are generated based on a
property of the original data set. The commonly used surrogates include randomly shuffled surrogates,
autoregressivemodel-based (AR(1)) surrogates and iterated amplitude adjusted Fourier transform (IAAFT)
surrogates [169]. Randomly shuffled surrogates preserve the amplitude distribution of the data, and hence the
globalmoments of the time series. AR(1) surrogates generatemultiple instances of anAR(1) process, preserving
the ACF(1) and the variance of the original data set. The IAAFT surrogates preserve the frequencies present
globally in the original data while randomising the Fourier phases in the data. The significance is tested based on
the percentile of the correlation coefficient of the original data set in comparison to the distribution of
correlation coefficients in the surrogates. The bootstrappingmethodwas successfully implementedwith
recurrence-based EWS for significance testing for climate transitions frommarine proxy record of sea surface
temperature [124].

7.Outlook andperspective

In this review, we present an overview of the set ofmeasures that can function aswarning signals in predicting
critical transitions in complex systems. Apart from conventional EWS that arise fromCSD,we also discuss
recent trends in detecting critical transitions in extended and connected systems. In spatial systems, these are
often studied using spatial extensions of commonly used EWS such as spatial autocorrelation and variance.We
anticipate and encouragemore applications using insights from SEWS. There aremany situations where spatial
data is relevant, although not at a scale as big as ecosystems. Thus neuroscience, transportation systems, electric
power grid etc are some of the areas where spatial ordermatters, and critical transitions are highly relevant. For
general extended systems, we discussmethods based onmultivariate quantifiers and complex network
measures.

In general, conventionalmeasures performwell when the transitions are preceded byCSD.However, in
cases of noise-induced or rate-induced transitions, themeasures based on patterns of recurrences offer a new set
ofmeasures that are effective for short and non-stationary data sets [170].Wefind that trends inDET, LAMand
CPL can give indications of these transitions thatmight be confirmedwith supporting evidence from
conventionalmeasures, when applicable. The utility of recurrence-basedmeasures comes from their ability to
detect the nature of dynamical regimes that the systemdisplays, indicating the type of transition.

Amajor thrust in the recent past is the use ofmachine learning and deep learningmethods to study and
predict critical transitions. Thesemethods have shown considerable promise in learning and predicting the
dynamics of nonlinear systems, including predicting upcoming critical transitions. In this context, we include
details on how techniques frommachine learning, such as reservoir computers and convolutional neural
networks are used to predict upcoming critical transitions.

However, an important aspect to be consideredwhile applying the abovementioned EWS is the reliability of
detected EWS as indicators of critical transitions, and how to decreasemisdetections.We discuss how to avoid
false negatives and be careful about false positives.We proceed to describe some recent under-explored
developments in the field of EWS, and some areas that hold scope for further research in the field.

In biological systems, a separate line of studies exists focusing on dynamical networkmarkers. Here, critical
transitions are associatedwith complex diseases such as lung injury, cancer [171], and type-1 diabetes [172],
where a pre-disease state can be identified using dynamical network biomarkers (DNBs). A rapidly emerging
area is the spread of infectious diseases, fuelled by the urgency of issues related to theCOVID-19 pandemic
[173]. Some other areaswhere the EWS framework has shown promise are chemical reaction networks [120],
biological systems [174], gene expression dynamics [175], and socio-ecological systems [3]. The development of
newEWS in these and related areas, as well as adapting existing frameworks to them, should open newdirections
with applications to real complex systems and processes.

In recent studies, by assigning strengths to connections based on cross-correlations, global teleconnections
are derived from global climatological data like sea surface temperature, that predict and uncover rainfall
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anomalies, draughts, disease outbreaks, ElNiño etc [176–178]. For instance, the relationship between the
temperature and relative humiditymeasured at two geographically separated regions in the Indian subcontinent
is shown to anticipate the arrival andwithdrawal of the Indianmonsoon [179]. However, due to the large range
of spatial and temporal scales involved, this area still posesmany challenges. The construction ofmultilayer or
multiplex networks frommultivariate or spatial data can be a good approach here, and in similar contexts, that
can provide better andmore useful predictions.

Many complex systems have active tipping points of interactingmulti-stable systemsmodelled by complex
networks. Then the topological features of the network also play a role in inducing transitions and hence are
useful in derivingmeasures of EWS. In this context, the vulnerability of the tipping networks to cascades
depends on the topology and hence is important to consider features like clustering that can trigger cascades.
Identifying generic indicators based on complex networkswill be very interesting sincemodelling complex
systems in a quantitatively accurate way is still difficult to achieve.Moreover, whether a typical node of the
networkwill start tippingfirst, followed by others or is an integrated cooperative transition affecting all nodes at
the same time is not always very clear. Hence for predicting instability and vulnerability in such complex
systems, several targeted research efforts are required.

There are a few instances wheremodelling complex systems using dynamical systems on complex networks
can give relevant information and canmodel the dynamics of real-world systems. Recent studies establish
sudden transitions and tipping in such systems, like explosive synchronisation and explosive death,multiplexing
induced critical transitions etc. [180–183]. In these theoreticalmodels of coupled dynamical systems, explosive
synchronisation ismost often associatedwith hysteresis [184], and themost general pathway is an adiabatic
change in the coupling parameter. Such a transition is peculiar because there is little to no indicationwhen the
coupling parameter approaches the threshold of synchrony, and then suddenly thewhole network synchronises.
While the order parameters and other characteristics in such transitions arewell studied, possible EWS for these
transitions remain elusive.

In the context of purelymodel-based studies of EWS, agent-basedmodels are suggested as complementary
to equation-basedmodels [185]. Using this approach, Füllsack et alhighlighted subtleties in critical transitions
arising from complex interactions obscured in equation-basedmodels [186]. A very recent line of work explores
hidden transitions inmultiplex networks, that carry signatures offirst-order transitions [187]. It would be
interesting to identify EWS in this scenario, with possible applications tomultivariate data.

Understanding the underlying dynamical processes that induce tipping is essential both from a research
point of view and for applications in designing proper interventions and latermonitoring the recovery process.
While data-driven studies cannot be ofmuch use, the dynamical system approach based on standard systems or
models can throw light on them.Arriving atmodels will also help to isolate the underlying processes that
generate the critical transitions.However, historical data can help immensely in establishing ‘normal’ patterns of
behaviour in natural systems that are considered to be ‘stable’ for a long time. In this case, data-driven
approaches can help generate better-suitedmodels of such systems inwhich parameters can be varied artificially
and the impact on the system can be studied in simulations. Some of the thrust areas for suchmodelling
approaches are global climate change, socioeconomic developments and finance.

Even though the trends in various computedmeasures are interpreted as an indication of upcoming critical
transitions, the details of the trends and their variations are not studied. They can throw light on themechanisms
underlying the transitions and can give afiner level of characterisation. One of the perspectives in this direction
can be isolating the scaling behaviour of individual EWSmeasures near the transitions and the possibility of their
use in identifying the nature of transitions based on the corresponding scaling indices. Even beyond critical
transitions, substantial attention has been directed towards the anticipation of extreme events [188, 189]. For
instance, Beims&Gallas showed that even extreme events can be anticipated using quantifiers that are closely
related to the dynamics of the system in phase space, such as the alignment of the Lyapunov vectors [190].
Another approach in this direction is suggested byHalekotte et al [191] focusing on theminimal fatal shock that
can change the state of a system suddenly. This shock-induced tipping quantifies themagnitude of the shock as a
global stabilitymeasure that can provide information onweak points constituted by certain substructures of the
network and understand their topological and dynamical origin.

The availability ofmultiple EWS allows for cross-checking and parallel analysis that can prepare us for
anticipated sudden changes and hence reduce the risks of irreversible and irreparable damages. In a few special
cases, this also encompasses chances for promoting desired transitions. However, the time frame involved in
arriving at EWS is very crucial inmany contexts for public awareness and adaptive or preventive interventions.
More studies are needed to develop EWS that provide information on the time frame and/or the probability of
the transition.Only such EWS can lead to specialisedmitigation strategies [57]. This would require the choice of
suitable thresholds for any of themeasures beyondwhich tipping can be confirmed in the system.With an
increase in the size and number of data sets to be analysed, this has become a real challenge. In this direction,
variousmachine learning approaches are increasingly becoming useful to extract common features. Trained
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machine learningmodels have the additional advantage of computing EWS fast enough to be useful for starting
mitigation strategies and related procedures well in advance.

Also,more attention needs to be on the transitions that have no indication of CSDbut can be driven by
stochasticity [192]. Recent studies indicate the occurrence of such transitions infinancial crises, where an early
prediction is highly useful and sought after [193]. Infinancialmarkets, contradicting evidence exists for CSD
prior to sudden transitions [192, 194, 195]. Very recently, dynamics of currency and crypto-currency exchange
rates was investigated for EWS [164, 196], and for evidence of transitions without CSD [197]. The nature of the
processes that lead to these transitions and themechanisms underlying them require detailed further studies.

A related objective will be a good estimate of the riskwhich is the product of the probability of transition and
its negative impact or losses.While studies on EWS that can predict the transition have advanced inmany cases,
the ignorance of impacts persists. This will help to design protocols to reduce risks. Some of the other challenges
for the futurewould be to identify and reduce the chances of false positives and false negatives. A possible future
direction is traced by Laitinen et al, taking a probabilistic approach to EWSdetection [198].

With the literature on critical transitions and EWS growing, it is important to understand the overall context
of some of these concepts and their impact in combating daunting issues such as climate change and
socioecological systems that involve challenges present at different spatial and organisational scales [199]. These
issues need immediate attention in terms of the development of estimation of risk andmitigation strategies.
Fortunately, computational resources and thewidespread availability of datamake it possible to address them.A
unified framework incorporating data-based and analytic approaches, like synergy of data science, network
science and EWS theory, is crucial for arriving at newmeasures fromdata. So also, optimising and designing
automatedwarning systems,machine learning based detection, and testing of EWSwith large data sets to judge
their practical applicability and unforeseen issues are relevant for further research.
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