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Geometry of Random Cayley Graphs of Abelian Groups

Jonathan Hermon Sam Olesker-Taylor

Abstract

Consider the random Cayley graph of a finite Abelian group G with respect to k generators
chosen uniformly at random, with 1 < logk < log|G|. Draw a vertex U ~ Unif(G).

We show that the graph distance dist(id,U) from the identity to U concentrates at a
particular value M, which is the minimal radius of a ball in Z* of cardinality at least |G|,
under mild conditions. In other words, the distance from the identity for all but o(|G|) of the
elements of G lies in the interval [M — o(M), M + o(M)]. In the regime k > log |G|, we show
that the diameter of the graph is also asymptotically M. In the spirit of a conjecture of Aldous
and Diaconis [1], this M depends only on k and |G|, not on the algebraic structure of G.

Write d(G) for the minimal size of a generating subset of G. We prove that the order of
the spectral gap is |G|™2/® when k — d(G) < k and |G| lies in a density-1 subset of N or when
k—2d(G) < k. This extends, for Abelian groups, a celebrated result of Alon and Roichman [4].

The aforementioned results all hold with high probability over the random Cayley graph.

Keywords: typical distance, diameter, spectral gap, relaxation time, random Cayley graphs
MSC 2020 subject classifications: 05C12, 05C48, 05C80; 60B15, 60K37

Contents

1 Introduction and Statement of Results
2 Typical Distance: 1 < k < log |G|

3 Typical Distance: k < log |G|

4 Typical Distance: k > log |G|

5 Typical Distance for Nilpotent Groups
6 Diameter

7 Spectral Gap

8 Open Questions and Conjectures
References

Jonathan Hermon
jhermon@math.ubc.ca, math.ubc.ca/~jhermon/
University of British Columbia, Vancouver, Canada

14
22
25
27
28
33

34

Sam Olesker-Taylor
oleskertaylor.sam@gmail.com, mathematicalsam.wordpress.com
Department of Mathematical Sciences, University of Bath, UK

Supported by EPSRC EP/L018896/1 and an NSERC Grant Supported by EPSRC Grants 1885554 and EP/N004566/1

The vast majority of this work was undertaken whilst both authors were at the University of Cambridge


mailto:jhermon@math.ubc.ca
http://www.math.ubc.ca/~jhermon/
mailto:oleskertaylor.sam@gmail.com
https://mathematicalsam.wordpress.com

1 Introduction and Statement of Results

1.1 Brief Overview of Results and Notation

1.1.1 Brief Overview of Results

We analyse geometric properties of a Cayley graph of a finite group; the focus is on Abelian groups.
The generators of this graph are chosen independently and uniformly at random. Precise definitions
are given in §1.4.1. For now, let G be a finite group, let k& be an integer (allowed to depend on G)
and denote by Gy the Cayley graph of G with respect to k independently and uniformly random
generators. We consider values of k& with 1 < logk < log |G| for which Gy, is connected with high
probability (abbreviated whp), ie with probability tending to 1 as |G| grows. For an Abelian group
G, write d(G) for the minimal size of a generating subset of G.

- Typical Distance. Draw U ~ Unif(G). We show that the law of the graph distance between
the identity and U concentrates. The leading order term in this typical distance depends only
on k and |G| when 1 < k < log|G|/logloglog |G| and k — d(G) < k or k> log|G|.

- Diameter. For k < log |G| under mild conditions on the group and k > log |G| for any Abelian
group, we show that the diameter concentrates at the same value as the typical distance.

- Spectral Gap. For any 1 < k < log|G| with k — d(G) < k, we determine the order of the
spectral gap of the random walk on the random Cayley graph.

Introduced by Aldous and Diaconis [1], there has been a great deal of research into these random
Cayley graphs. Motivation for this model and an overview of historical work is given in §1.3.

1.1.2 Notation and Terminology

Cayley graphs are either directed or undirected; we emphasise this by writing Gz and G, respect-
ively. When we write Gy, or Gf, this means “either G or GZ”, corresponding to the undirected,
respectively directed, graphs with generators chosen independently and uniformly at random.

Conditional on being simple, Gz is uniformly distributed over the set of all simple degree-k
Cayley graphs. Up to a slightly adjusted definition of simple for undirected Cayley graphs, our
results hold with G, replaced by a uniformly chosen simple Cayley graph of degree k; see §1.4.2.

Our results are for sequences (G n)nen of finite groups with |G x| — oo as N — oo. For ease of
presentation, we write statements like “let G be a group” instead of “let (Gn)nen be a sequence of
groups”. Likewise, the quantities d(G) and, of course, k appearing in the statements all correspond
to sequences, which need not be fixed (or bounded) unless we explicitly say otherwise. In the same
vein, an event holds with high probability (abbreviated whp) if its probability tends to 1.

We use standard asymptotic notation: “<” or “o(-)” means “of smaller order”; “<” or O(:)”

“—7"

means “of order at most”; “<” means “of the same order”; “<” means “asymptotically equivalent”.

1.2 Statements of Main Results

1.2.1 Typical Distance for Abelian Groups

Our first result concerns typical distance in the random Cayley graph.

Definition A. For a group G, k € N and § € (0, 1), define the S-typical distance Dg, () via
Be, (R) == {z € G | distg,(id,z) < R} and Dg,(8) =min{R >0||Bg,(R)| > B|G|}.

Informally, we show that the mass (in terms of number of vertices) concentrates at a thin ‘slice’,
or ‘shell’, consisting of vertices at a distance M + o(M) from the origin, with M explicit.

Investigating this typical distance for Gj when k diverges with |G| was suggested to us by
Benjamini [7]. Previous work concentrated on fixed k, ie independent of |G|; see §1.3.

For an Abelian group G, write d(G) for the minimal size of a generating subset of G and

m.(G) = max{min;c(g m; ’ @?21 Zm, is a decomposition of G'}.



The condition 1 < logk <« log |G| is necessary for the type of concentration of measure we show
in Theorem A; see Remark A.4. Refinements of Theorem A are given in Theorems 2.2, 3.2 and 4.2.

Theorem A. Let G be an Abelian group. The following convergences are in probability as |G| — co.

- Consider 1 < k < log|G|; suppose k — d(G) =< k and d(G) < log|G|/loglog|G|. Write
Dt = |G|Y*/(2¢) and D~ = |G|'/*/e. For all § € (0,1), we have DGf (B)/D* =F 1.

- Consider k =~ Alog |G| with A € (0, 00); suppose d(G) < 1 log |G|/ loglog |G| and m.(G) > 1.
There exists a constant af € (0,00) so that, for all € (0,1), we have DG:—T (ﬁ)/(afk) —F1.

- Consider k > log |G| with log k < log |G|; write p :=logk/loglog |G| so that k = (log |G|)*.
(We allow p > 1.) For all 8 € (0,1), we have D (5)/(ﬁ log;, |G|) —F 1.

The implicit lower bound holds for all Abelian groups and all choices of k generators.

Remark A.1. We establish the concentration of typical distance via three distinct approaches, in
§2, §3 and §4. Conceptually, all involve sizes of lattice balls and drawing elements uniformly from
balls. A precise statement for each approach is given, as is an outline of the proof. In summary,
Theorem A is a direct consequence of Theorems 2.2, 3.2 and 4.2; see also Hypotheses A to C. A

Remark A.2. For smaller k, namely 1 < k < /log|G|/logloglog |G|, we can relax k — d(G) < k
to k—d(G) > 1. In order to generate the group, we certainly need k > d(G), by definition. In many
cases k — d(G) > 1 is necessary in order to generate the group whp, so this assumption can not
be removed. For a characterisation of these cases and related discussion, see [15, Lemma 8.1]. A

Remark A.3. Interesting is how we prove this theorem. It is common in mixing time proofs to use
geometric properties of the graph, such as expansion or distance properties. We do the opposite: we
use mixing techniques to prove this geometric result. This is in the same spirit as [25]; see §1.3. A

Remark A.4. We discuss briefly lack of concentration of measure if the condition 1 < logk <
log |G| fails. The method developed here can be applied to the regime log k < log |G|, for any G: it
gives |Dg, (8) —m| < 1 whp with m = [log,, |G|] < 1, for all 8 € (0,1). The values m — 1, m and
m + 1 differ by a constant factor. Hence, there is no concentration in the sense of Theorem A.
Results of Shapira and Zuck [35] and Marklof and Strombergsson [27] show that there exist
Abelian G and 1 < k > d(G) such that there is no concentration; see §1.3.3 for more details. [35, 27]
analyse the asymptotic laws of the diameter, but the deduction holds for typical distance too. A

1.2.2 Typical Distance for Nilpotent Groups
We can extend Theorem A to the set-up of nilpotent, rather than Abelian, groups G.

Definition B.1. A group G is nilpotent if its lower central series, ie the sequence (Gy)e>o defined
by Go = G and Gy = [Gy_1, G| for £ > 1, stabilises at the trivial group.

The step ¢(G) is the number of terms until stabilisation: £(G) = inf{¢ > 0 | G, = {id}}. The
rank d(G) is the minimal size of a generating subset. It is a standard fact that a symmetric set
S C G generates G if and only if S*" := {[G,G]s | s € S} generates G*P. Hence, d(G) = d(G?).

Definition B.2. Let G be a group and let S be a symmetric mutlisubset of G. Let Cay(G,S) be
the (right) Cayley graph of G wrt S. Let H > G. Let diamg(H) := max{dg(id, h) | h € H} denote
the diameter of H wrt the graph distance dg(-, ) on Cay(G,S).

Let diamg(G/H) denote the diameter of Cay(G/H,HS) where HS := {Hs | s € S}. Similarly,
for H> H' > G, let diamg(H'/H) denote the diameter of Cay(H'/H,HS); this is a slight abuse
of notation, as diamgg4sesy(H'/H) would be consistent with the definition of diamg (H).

Definition B.3. For 8 € (0,1}, let Ds(G, ) be the minimal r € N such that a ball of radius r
in Cay(G,S) contains at least B|G| elements of G. Write Dg(G?, B) == Dgan (G2, ), ie for the
minimal r € N such that a ball of radius r in Cay(G®", S#") contains at least |G*"| elements of G*P.



The following theorem bounds the typical distance Dg(G, 3) for 8 € (0, 1]—and, in particular,
the diameter by taking 5 := 1—for a nilpotent group G and a symmetric set of generators S in
terms of Dg(G?P, B), ie the corresponding typical distance in the Abelianisation.

Theorem B. Let G be a finite nilpotent group of step £ and rank d. Let k € N and let sq, ..., s € G.
Let S = [s1,s7 ", ..., sk, 5, '] be a symmetric multisubset of G. Then, for all 3 € (0,1], we have

0 < Ds(G, B) — Ds(G™, B) < diamg(G™)3/4 < (3Ds(G™, 8)/8)**.

ifd <k < {47'd"*log|G|/loglog|G|. Further, for all 3 € (0,1/2), we have

Ds(G™,1— B) ~ Ds(G™, B) < 2/ Btz (Cay (G, 5)),
where t,(Cay(G?®P, S2P)) is the relaxation time of the simple random walk on Cay(G?", S2P).

Theorem B is a corollary of a more general result to appear in an upcoming paper [18] by one
of the authors. We state it as Theorem 5.1 and explain how to deduce the first part of Theorem B
from it in §5.1. The second part of Theorem B is a standard Poincaré-type inequality using the
fact that graph distance is trivially 1-Lipschitz; this deduction was pointed out to us by Salez [33].

The argument for Theorem 5.1 builds on one due to El-Baz and Pagano [6] who, in turn, relied
on ideas of Breuillard and Tointon [8]. El-Baz and Pagano considered max{|S|,¢,d} =< 1. We are
primarily interested in & > 1, so we must keep track of the certain dependences on |S| and /.

For now, we explore some simple consequences of Theorem B.

Remark B. Whenever t,(Cay (G2, 52P)) < (diamg(G?P))?, for all fixed 3 € (0,1/2), we obtain
Ds(G™,1 - B) — Ds(G*, B) < Ds(G™,1/2).
If, in addition, d < k < {£¢7'd~*log|G|/loglog |G/, in the notation of Theorem B, then
Ds(G,1 - B) — Ds(G, B) < Ds(G*,1/2).
By Theorem A above, diamg(G?®P) > k|G?P|'/*—deterministically, in fact. Hence,
trel (Cay (G, 5%P)) < k?|G* >k implies  t,a(Cay(G*™, 5)) < (diams(Gab))2.

Theorem E below roughly gives t,(H) =< |H|?>/* for Abelian H. Precisely, it implies that the former
relation above holds whp when d(G) < 1, k> 1 and S = ZUZ ! with Zy, ..., Z;, ~'9 Unif(G). A

Theorem B and its consequences laid out in Remark B describe, in a formal manner, some of
the key differences between geometry in Abelian versus non-Abelian groups. We lay out a more
informal explanation in §5.2. We go through the Abelian proof, pointing out where it fails.

We discuss what adjustment to the approach is needed to establish a result analogous to
Theorem A. In particular, we reference our companion paper [14] in which we establish typical
distance for a particular matrix group, describing the main changes in that set-up.

1.2.3 Diameter

We can extend our proof to consider the diameter, ie the maximal distances between pairs of

vertices in the graph, in the regime k 2 log |G|. For a graph H, denote by diam H its diameter.
Our first diameter result gives concentration for k& 2 log |G| and log k < log |G|. Again, logk <

log |G| is a necessary condition; see Remark C.2. A refinement of Theorem C is given in Theorem 6.1.

Theorem C. Let G be an Abelian group. The following convergences are in probability as |G| — occ.

- Consider k =~ Alog |G| with X € (0, 00); suppose d(G) < }log|G|/loglog |G| and m,(G) > 1.
Let o € (0,00) be the constant from Theorem A. We have diam G5 /(afk) —F 1.



- Consider k > log |G| with logk < log |G|; write p :=logk/loglog |G| so that k = (log |G|)*.
(We allow p > 1.) We have diam Gf/(ﬁ log;, |G|) —F 1. The upper bound holds for all G.

The implicit lower bound holds for all Abelian groups and all choices of k generators.

Remark C.1. For any Cayley graph H one has DH(%) < diam H < 2DH(%)+1. Indeed, (21, ..., x¢)
is a path in the Cayley graph if and only if (zy, ..., x1) is a path when all generators inverted. Hence,
the typical distance and diameter are always equivalent up to constants. Theorem C gives conditions
under which they are asymptotically equivalent whp for random Cayley graphs.

We establish cutoff for the simple random walk on Gj, for many Abelian groups when 1 < k <
log |G| in [13, Theorem A]. Combined with Theorem A, it shows that i (G%) =< (diam G)?/k whp
when k — d(G) < k 2 log |G|. One can also consider non-Abelian groups; see [14, Theorem E|. A

Remark C.2. Analogously to Remark A.4, we have | diam G5 — [log, |G[]| < 1 whp when log k =<
log |G|. Again, [27, 35] imply that there is no concentration for some Abelian G when k< 1. A

Our next diameter result shows, in a well-defined sense, that, amongst all groups, when k —
log, |G| < k with log k < log |G|, the group Zg gives rise to the largest typical diameter.

Definition. For two random sequences o = (an)nen and B = (Bn)nen of reals, we say that
a < 8 whp up to smaller order terms if there exist non-random sequences (Yn)nen and (On)NeN
of reals with 6y — 0 as N — oo such that ({any < (14+0n)vn})neny and ({(1—0n)yn < BN})Nen
both hold whp. We say that a = 8 whp if « < 8 and < a whp up to smaller order terms.

We now define the candidate radius which we show is an upper bound for diam Gy, whp.
Definition D. Write R(k, n) for the minimal R € N with (}g) >n.

We now state our second diameter result. A refinement of Theorem D is given in Theorem 6.2.
Theorem D. Let G be an arbitrary group. Suppose that k —log, |G| < k and 1 < logk < log |G]|.
Then diam G, < R(k, |G|) up to smaller order terms whp; further, if H := 74, then diam Hy ~
R(k,2%) = R(k, |H|) whp. (The limit is as the size of the group diverges.)

This gives a quantitative sense in which Z¢ is the group giving rise to the largest diameter.

Corollary D. For all diverging d and n with n < 2% and all groups G of size n, if k —logyn =< k
and log k < logn, then diam G}, < diam Hj, where H = Z4 up to smaller order terms whp.

Wilson [36, Conjecture 7] conjectures an analogous statement for mixing times. We prove an
extension of this conjecture in [13, Theorems C and D] when restricted to nilpotent groups.

1.2.4 Spectral Gap

Our next result concerns the spectral gap and relaxation time of the random Cayley graph.

Definition E. Consider a reversible Markov chain with (real) eigenvalues 1 = Ay > Ay > -+ >
An > —1 of its transition matrix. The usual, respectively absolute, spectral gap is defined as

o= Izn;{l{l — X} =1— )X, respectively =, := rggl{l — [Nl =1 — max{| |, | Anl};
the usual, respectively absolute, relazation time is defined as te1 == 1/, respectively, t¥ = 1/v..

The spectral gap or relazation time of a graph, is that of the simple random walk on the graph.

It is classical that under reversibility in continuous-time the spectral gap asymptotically determ-
ines the exponential rate of convergence to equilibrium, whereas in discrete-time it is determined



by the absolute spectral gap; see [22, §12 and §20]. For a multiset z = [21, ..., 2x] with 21, ..., 2 € G,
we write G~ (z) for the undirected Cayley graph with respect to the generators z1, ..., 2.
A refinement of Theorem E is given in Theorem 7.1. We do not require k — oo as |G| — oo.

Theorem E. There exists a positive constant ¢ so that, for all Abelian groups G, all k and all
multisets of generators z of size k, we have

tr(G7(2)) >t (G (2)) > |G|**.

rel

For all § > 0, there exists a constant Cs > 0 so that, for all Abelian groups G, if k > (249)d(G), then

P(t;(Gy) < Cs|GPF) > 1 — C5274/%,
Further, for all € € (0,1), there exists a density-(1 — €) subset A C N so that if |G| € A then the
condition k > (2 + §)d(G) can be relaxed to k > (1 + 6)d(G); the constants now also depend on e.

The inequality t,(G~(2)) 2 |G|?/* was previously proved by Hough [20, Theorem 1.1]. That
theorem is only stated for G = Z, with p prime and k < logp/loglogp, which is the set-up of
the rest of the paper. It appears that this lower bound holds in greater generality, possibly with a
different absolute constant. The proof involves an elegant use of Minkowski’s theorem. We present
our own proof of the lower bound; it is the easier, and arguably less interesting, part of Theorem E.

The method of proof for this result is rather different to our previous results and also somewhat
different to those used by others to study the spectral gap of random Cayley graphs; see §1.3.4.

1.3 Historic Overview

In this subsection, we give a fairly comprehensive account of previous work on distance metrics
on and spectral gap of random Cayley graphs; we compare our results with existing ones. We also
mention, where relevant, other results which we have proved in companion papers; see also §1.4.3.

1.3.1 Motivation: Random Cayley Graphs and Cutoff for Random Walks

In their seminal paper, Aldous and Diaconis [1, 2] considered random walks on random Cayley
graphs. Diaconis [11] gave the following (paraphrased) motivation.

Erdés, when considering classes of mathematical objects, often combinatorial or graph
theoretic, would often ask, “What does a typical object in this class ‘look like’?” If an
object is chosen uniformly at random, are there natural properties which hold whp?

It is then natural to ask, “How does a typical random walk on a group behave?”

This lead Aldous and Diaconis [1, 2] to consider the set of all Cayley graphs of a given group G with
k generators. Drawing such a Cayley graph uniformly at random corresponds to choosing generators
Z1, ..., Zy ~4 Unif(G), conditional on giving rise to a simple graph; see §1.4.2. We study random
walks in [13, 14], establishing cutoff and showing universal mixing bounds in different set-ups.

1.3.2 Universality: The Aldous—Diaconis Conjecture

Aldous and Diaconis [1, 2] made the following (informal) conjecture: regardless of the particular
group G, provided k > log|G|, the random walk on the random Cayley graph exhibits cutoff
whp at a time which depends only on k and |G|. This was established for Abelian groups by Dou
and Hildebrand [12, 19]; in [14], we provide a counterexample using unit upper triangular matrix
groups. For more details, see our companion articles [13, 14] where we study cutoff extensively.

The point of the Aldous—Diaconis conjecture is that certain statistics should be “independent of
the algebraic structure of the group”, ie only depend on G through |G|. The current article shows
how very related statements to those above hold when “cutoff” is replaced by “typical distance”.
Namely, we give conditions under which the typical distances concentrates on a value that depends
only on k and |G|; see Theorems 2.2, 3.2 and 4.2.



1.3.3 Typical Distance and Diameter

Previous work on distance metrics (detailed below) had concentrated on the case where the number
of generators k is a fized number. The results establish (non-degenerate) limiting laws. This restricts
the (sequences of) groups which can be studied; eg, in order for it to be even possible to generate the
group—never mind having independent, uniform generators do so whp—one needs d(G) < k =< 1.
We discuss generation of groups further in [15, §8]; see in particular [15, §8.2] where we describe
adaptations made in order to obtain connected graphs in the references given below.

Our results are in a different direction: for us, & — oo as |G| — oo and we establish concen-
tration of the observables. This allows us to consider a much wider range of groups, in particular
with d(G) diverging with |G|. This line of enquiry was suggested to us by Benjamini [7]

Amir and Gurel-Gurevich [5] studied the diameter of the random Cayley graph of cyclic groups
of prime order. They prove (for fixed k) that the diameter is order |G|'/*; see [5, Theorems 1
and 2]. They conjecture that the diameter divided by |G|'/* converges in distribution to some
non-degenerate distribution as |G| — oo; see [5, Conjecture 3].

Marklof and Strombergsson [27] consider, as a consequence of a quite general framework, the
diameter of the random Cayley graph of Z,, with respect to a fixed number k of random generat-
ors, for a random n, without any primality assumption. They derive distributional limits for the
diameter, the average distance (defined with respect to various L, metrics) and the girth. They
determine limit distributions for each of these, and in some cases derive explicit formulas.

Shapira and Zuck [35] build on the framework of Marklof and Strémbergsson [27], again for
fixed k; they are able to consider non-random n, as well as Abelian groups of arbitrary (fixed)
rank, instead of only cyclic groups. In particular, they verify the conjecture of Amir and Gurel-
Gurevich [5, Conjecture 3]; they additionally work with average distance and girth.

Lubetzky and Peres [25] derive an analogous typical distance result for n-vertex, d-regular
Ramanujan graphs: whp all but o(n) of the vertices lie at a distance log,;_; n & O(loglogn); they
establish this by proving cutoff for the non-backtracking random walk at time log,;_; n.

Related work on the diameter of random Cayley graphs, including concentration of certain
measures, can be found in [23, 34].

The Aldous—Diaconis conjecture for mixing can be transferred naturally to typical distance: the
mass should concentrate at a distance M, where M can be written as a function only of k and |G|;
ie there is concentration of mass at a distance independent of the algebraic structure of the group.

In [14, Theorem E] we consider typical distance analogously to this paper; there the underlying
group is a non-Abelian matrix group. In contrast with the Abelian groups in Theorem A, the M
for these non-Abelian groups cannot be written as a function only of k and |G|.

1.3.4 Spectral Gap

Hough [20, Theorem 1.1] showed that, for any prime p, the relaxation time of the random walk
on any Cayley graph of Z, with respect to an arbitrary set of k generators is order at least
|Zp\2/k = p?/%_ provided that k < log p/loglog p. Using a different approach, we extend Hough’s
result, removing the restrictions on p and k and considering general Abelian groups; see Theorem E.
This extends, in the Abelian set-up, a celebrated result of Alon and Roichman [4, Corollary 1],
which asserts that, for any finite group G, the random Cayley graph with at least C.log |G|
random generators is whp an e-expander, provided C; is sufficiently large (in terms of €). (A graph
is an e-expander if its isoperimetric constant is bounded below by €; up to a reparametrisation,
this is equivalent to the spectral gap of the graph being bounded below by e.) There has been
a considerable line of work building upon this general result of Alon and Roichman. (Pak [29]
proves a similar result.) Their proof was simplified and extended, independently, by Loh and
Schulman [24] and Landau and Russell [21]; both were able to replace log, |G| by log, D(G), where
D(G) is the sum of the dimensions of the irreducible representations of the group Gj; for Abelian
groups D(G) = |G|. A ‘derandomised’ argument for Alon—Roichman is given by Chen, Moore and
Russell [9]. Both [9, 21] use some Chernoff-type bounds on operator valued random variables.
Christofides and Markstrom [10] improve these further by using matrix martingales and proving
a Hoeffding-type bound on operator valued random variables. They also improved the quantific-
ation for C., showing that one may take C. := 14 ¢, with ¢. — 0 as € — 0; this means that,



whp, the graph is an e-expander whenever k > (1 4 ¢.)log, D(G) and ¢ — 0 as ¢ — 0. They also
generalise Alon—Roichman to random coset graphs. The proofs use tail bounds on the (random)
eigenvalues.

Alon and Roichman [4, Theorem 2] also specifically consider Abelian groups. There they do a
calculation directly in terms of the eigenvalues, rather than using a probabilistic tail bound.

In [13, Theorem E], we analyse the spectral gap of Gy, for a nilpotent group G in the regime
k = log|G|: we show that Gy is an expander whp under a certain natural condition on k. In the
special case of Abelian groups, this becomes k — d(G) < k; the general condition is k — d(G) < k
where G is the direct product of the quotients in the lower central series of G. Hence in this set-up

it extends Theorem E by removing the restriction that |G| lies in a large-density subset of N.

There are some fairly standard ways in which one can get bounds on the (usual) spectral gap
of a Markov chain. The first is to look at the mixing time. For ¢ > 0 and € € (0,7¢;,], we have

tmix (€) X tre1 log(1/e),

where n is the size of the state space of the (reversible) Markov chain, 7y, is the minimal value
of the invariant distribution of the Markov chain and ¢ is a constant; see, eg, [22, Theorem 20.6
and Lemma 20.11]. Thus, if one can bound the mixing time at level 75, then one can bound the
relaxation time. This method is used by Alon and Roichman [4] and Pak [29]; we use it in [13].

Another method is to obtain a tail estimate on the value of a random eigenvalue; one can then
use the union bound to say that all (non-unitary) eigenvalues are at most some fixed value, which
in turn lower bounds the spectral gap (ie upper bounds the relaxation time).

All these references consider the regime k < log |G|; our results also apply when 1 < k < log |G|.
From a technical perspective, in order to obtain failure probability via a large deviation bound
for a random eigenvector of O(1/|G|), one needs k 2 log|G|. The purpose of this is to carry out
a union bound over the |G| eigenvalues; see, eg, [10]. Likewise, arguments that bound the 1/|G|¢
mixing time, for some constant ¢, in terms of some generator getting picked once (cf [31]) cannot
work unless k > log |G|. As such, to consider 1 < k < log |G|, a different approach is needed. We
still use a union bound, but instead of asking for an error probability O(1/|G|) for each eigenvalue,
we group together eigenvalues according to a certain ged and bound the error for each group.

1.4 Additional Remarks
1.4.1 Precise Definition of Cayley Graphs

Consider a finite group G. Let Z be a multisubset of G. We consider geometric properties, namely
through distance metrics and the spectral gap, of the Cayley graph of (G, Z); we call Z the gen-
erators. The undirected, respectively directed, Cayley graph of G generated by Z, denoted G~ (Z),
respectively GT(Z), is the multigraph whose vertex set is G and whose edge multiset is

{g.9-2} | g€ G, z€ Z], respectively [(g,9-2)|g€ G, z€ Z].

We focus attention on the random Cayley graph defined by choosing Z1, ..., Z; ~'4 Unif(G);
when this is the case, denote G} := GT(Z) and G}, := G~ (Z). While we do not assume that the
Cayley graph is connected (ie, Z may not generate GG), in the Abelian set-up the random Cayley
graph Gy, is connected whp whenever k — d(G) > 1; see [15, Lemma 8.1].

The graph depends on the choice of Z. Sometimes it is convenient to emphasise this; we use a
subscript, writing Pg.)(-) if the graph is generated by the group G and multiset 2. Analogously,
Pg, (-) stands for the random law Pg(z)(-) where Z = [Z1, ..., Z}] with Z1, ..., Z; ~" Unif(G).

1.4.2 Typical and Simple Cayley Graphs

The directed Cayley graph G (z) is simple if and only if no generator is picked twice, ie z; # z; for
all i # j. The undirected Cayley graph G~ (z) is simple if in addition no generator is the inverse
of any other, ie z; # zj_l for all i, j € [k]. In particular, this means that no generator is of order 2,
as any s € G of order 2 satisfies s = s~'—this gives a multiedge between ¢ and gs for each g € G.



Abusing terminology, we relax the definition of simple Cayley graphs to allow order 2 generators,
ie remove the condition z; # z; L for all i.

Given a group G and an integer k, we are drawing the generators 71, ..., Z; independently and
uniformly at random. It is not difficult to see that the probability of drawing a given multiset
depends only on the number of repetitions in that multiset. Thus, conditional on being simple, Gy,
is uniformly distributed on all simple degree-k Cayley graphs. Since k < \/@ , the probability of
simplicity tends to 1 as |G| — co. So when we say that our results hold “whp (over Z)”, we could
equivalently say that the result holds “for almost all degree-k simple Cayley graphs of G”.

Our asymptotic evaluation does not depend on the particular choice of Z, so the statistics in
question depend very weakly on the particular choice of generators for almost all choices. In many
cases, the statistics depend only on G via |G| and d(G). This is a strong sense of ‘universality’.

1.4.3 Overview of Random Cayley Graphs Project

This paper is one part of an extensive project on random Cayley graphs. There are three main
articles [13, 14, 16] (including the current one [16]), a technical report [15] and a supplementary
document [17] containing deferred technical proofs. Each main article is readable independently.

The main objective of the project is to establish cutoff for the random walk and determining
whether this can be written in a way that, up to subleading order terms, depends only on k and
|G|; we also study universal mixing bounds, valid for all, or large classes of, groups. Separately,
we study the distance of a uniformly chosen element from the identity, ie typical distance, and the
diameter; the main objective is to show that these distances concentrate and to determine whether
the value at which these distances concentrate depends only on k and |G].

[13] Cutoff phenomenon (and Aldous—Diaconis conjecture) for general Abelian groups; also, for
nilpotent groups, expander graphs and comparison of mixing times with Abelian groups.

[16] Typical distance, diameter and spectral gap for general Abelian groups.

[14] Cutoff phenomenon and typical distance for upper triangular matrix groups.

[15] Additional results on cutoff and typical distance for general Abelian groups.

The proofs of a number of auxiliary lemmas are deferred to the supplementary document [17].
These are primarily of a technical and computational nature. We do this deferral in order to keep
the current manuscript as focussed as possible on the conceptually important matters.
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2 Typical Distance: 1 < k < log |G|

This section focusses on concentration of distances from the identity in the random Cayley graph
of an Abelian group when 1 < k < log |G|. (Subsequent sections deal with k& 2 log |G|.) The main
result of the section is Theorem 2.2.

The outline of this section is as follows:

- §2.1 states precisely the main theorem of the section;

- §2.2 outlines the argument;

- §2.3 gives some crucial estimates on the size of lattice balls;
- §2.4 is devoted to the lower bound;

- §2.5 is devoted to the upper bound.



2.1 Precise Statement and Remarks

To start the section, we recall the typical distance statistic.

Definition 2.1. Let H be a graph and fix a vertex 0 € H. For r € N, write By (r) for the r-ball in
the graph H, ie By (r) :={h € H | dg(0,h) < r}, where dy Is the graph distance in H. Define

Dy (8) = min{r > 0| |By(r)| > BlH|} for 5 e (0,1).
When considering sequences (ky, Gn)nen of integers and Abelian groups, abbreviate
DN (B) = Diy(z1,nze)(B)  Where  Zy, ..., Zyy ~ Unif(Gy).
Finally, considering such sequences, we define the candidate radius for the typical distance:
O = kn|Gn[Y*Y /(2¢) and Dy = kn|Gn|V*V Je for each N €N.
As always, if we write Dy, then this is either D;{, or Dy, according to context.

We show that, whp over the graph (ie choice of Z), this statistic concentrates. The result will
be valid for all Abelian groups, under some conditions on k in terms of G. Further, the value at
which the typical distance concentrates, which will be ®* above, depends only on k and |G|. This
is in agreement with the spirit of the Aldous-Diaconis conjecture.

Hypothesis A. The sequence (kn,GnN)nen satisfies Hypothesis A if the following hold:

lim inf |Gn| = oo, thUPkN/log|GN| =0, lim'nf(kN —d(Gy)) =
N—o00 0o

N—o00 N—
k‘N — d(GN) -1 k‘N d(GN) loglog kN
and for all N € N.
kn ~ log |Gn]| log |G|

We study 1 < k < log|G| here. In Remark 2.3 below, we give some sufficient conditions
for Hypothesis A to hold. Throughout the proofs, we drop the N-subscript from the notation, eg
writing k or n = |G|, considering sequences implicitly. Write Dy (8) for the S-typical distance of Gj.

We now state the main theorem of this section.

Theorem 2.2. Let (ky)nen be a sequence of positive integers and (Gn)nen a sequence of finite,
Abelian groups; for each N € N, define Z(ny = [Z1, ..., Zy, ] by drawing Z, ..., Z,, ~d Unif (Gy).
Suppose that (ky, Gn)nen satisfies Hypothesis A. Then, for all 8 € (0,1), we have
DL(B)/D% —F 1 (in probability) as N — oco.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Abelian groups, ie Hypothesis A need not be satisfied—we just need lim sup y ky/log|Gn| = 0.

Remark 2.3. Write n := |G|. Any of the following conditions imply Hypothesis A:

1 <k < logn/logloglogn and k—d > 1;

1<k <y/logn and k —d > loglogk;
1<« k< logn/logloglogn  and k—d > dk for some suitable 0 = o(1);
d < logn/logloglogn and k—dxk. A

2.2 Outline of Proof

As remarked after the summarised statement (in Remark A.3), when considering properties of the
random walk on a graph, such as the mixing time, geometric properties of the graph are often
derived and used. In a reversal of this, we use knowledge about the mixing properties of a suitable
random variable to derive a geometric result. We explain this in a little more detail now.

10



For the lower bound, for any Cayley graph G of an Abelian group of degree k, (trivially) we
have |Bg(R)| < |Bix(R)|, where By (R) is the k-dimensional lattice ball of radius R. If | B (R)| < n,
then immediately |Bg(R)| < n, and so Dg(3) > R for all 5 € (0, 1), asymptotically in n.

Consider now the upper bound. We fix some target radius kL and draw Wy,..., W) ~
Geom(1/L) in the directed case. For the undirected case, we multiply each W; by a uniform sign.
It is well-known that the law of W := (W1, ..., W}) given ||[W||; = R is uniform on the discrete L,
sphere of radius R. Since the |W||; = Zlf |[W;| is an iid sum, it concentrates around its mean, ie
kL, when kL > 1. So this is roughly like drawing uniformly from a sphere of radius kL, except
that we have the added benefit that the coordinates W1, ..., Wy, are (unconditionally) independent.

We can then interpret W; as the number of times which generator ¢ is used in getting from the
identity to W - Z = W1 Zy + - - - + Wi Zy.. We show that W - Z is well-mixed whp when L takes a
certain value given below. Now, if the law of W-Z is mixed in TV and |W{|; < kL(1+43J) whp, then
the law of W Z conditional on |W||; < kL(149) is also mixed in TV. Thus, using the concentration
of ||W||1, we deduce that a proportion 1 — o(1) of vertices € G can be written as © = w - Z for
some w with |w||y = kL; this gives a path of length approximately kL from the identity to x.

We show this mixing estimate via a (modified) Lo argument, where W is conditioned to be
‘typical’, namely we define a set YW and condition that W & W. The most important part is
to bound the probability that two independent copies of W are equal conditional on both being
in W; this must be o(1/n). Since |W||; concentrates and W is uniform on the sphere of this
radius, we need to choose L so that the sphere of radius kL has volume slightly more than n. In
high dimensions—here we consider balls in k£ > 1 dimensions—(discrete) spheres and balls are of
asymptotically the same volume. Thus the desired radius coincides with that of the lower bound.

In an ideal world, we would directly sample W uniformly from a ball of radius kL. However,
the lack of independence between the coordinate causes difficulties, in particular in Lemma 2.13
below. We thus use this vector of geometrics as a proxy for the uniform distribution, but with the
key property that the coordinates are independent.

iid

2.3 Estimates on Sizes of Balls in Z*
We desire an R so that | By (RF)| = n, where Bif (R) is the lattice ball of radius R, ie

By (R)={weZ"||w|i <R} and Bj(R)={weZ||w| <R}

Definition 2.4. Set w = max{(logk)?, k/n'/(®)}. Note that 1 < w < k < logn. Define

Ry =inf{R € N | |Br(R)| > ne“}.

The following lemma controls the size of balls. Its proof is given in [17, §E]; see in particular
[17, Lemmas E.2a and E.3a] where the index ¢ corresponds to a type of L, lattice balls; take ¢ := 1
to recover the usual L; lattice balls here. Recall ©* from Definition 2.1.

Lemma 2.5. Assume that 1 < k < logn. For all £ € (0,1), we have

Ro—D[/D <1 and |Bp(D(1-¢))| < n.

2.4 Lower Bound on Typical Distance

From the results in §2.3, it is straightforward to deduce the lower bound in Theorem 2.2.

Proof of Lower Bound in Theorem 2.2. Let £ € (0,1) and set R == Ro(1 — &). Since the un-
derlying group is Abelian, applying Lemma 2.5, we have |By(R)| < |Br(R)| < n. Hence, for all
B € (0,1) and all Z, we have Di(8) > R = Ro(1 — &), asymptotically in n. O
2.5 Upper Bound on Typical Distance

The argument given here is in a similar vein to that of [13, §2.7]; there we analysed the mixing
time of the random walk on the (random) Cayley graph. Let ¢ > 0 and set L := (1 + 3¢)Ro/k.
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Draw W = (W;)¥ ~ Geom(1/L)®*; later, we condition on |[W|; < kL. Here the geometric
random variables have support {1,2,...}. Define x := (x;)¥ as follows: in the undirected case,
xi ~14 Unif ({£1}); in the directed case, x; := 1 for all i. Set S := (YW)- Z where xW = (x;W;)}.
Define W’ and x’ as independent copies of W and x, respectively; set S’ .= (x'W') - Z.

In [13, §2.7], a key ingredient was conditioning that the auxiliary variable W was ‘typical’ in a
precise sense. There we were interested in the law of the random walk; the introduction of typicality
was a tool to study this, for establishing mixing bounds for the random walk. Here, somewhat in
reverse, we can choose which random variable we study.

Definition 2.6. Abbreviate Ly := L(1 — log k/\/k). Define
W={weZk | Lo+ 1< |Jw|/k < L, max; w; < 3Llogk}.

When W and W’ are independent copies, write typ == {W, W' € W}.
Lemma 2.7 (Typicality). We have P(W € W) =< 1 and hence P(typ) < 1.

Proof. Recall that E(W;) = L and Var(W;) < L?, so |[W|; = Zlf W, is approximately distributed
as N(kL,kL?). The three parts follow easily from this representation as an iid sum of geometrics.

- The lower bound on ||[W]|; holds with probability 1 — o(1) by Chebyshev’s inequality.
+ The upper bound on |[W]|; holds with probability bounded away from 0 by Berry—Esseen.
+ The upper bound on max; W; holds with probability 1 — o(1) by the union bound. O

We control the Ly distance between S conditional on W € W and the uniform distribution.

Proposition 2.8. Suppose that Hypothesis A is satisfied. Then
. 2
E(|[Pe.(S€-|Wew) - Unlf(G)Hz) = o(1),

where we recall that Pg, (-) is the random law corresponding to the random Cayley graph Gj,.
Here, the expectation E(-) is over the random choice of generators, ie over Gj.
The proof of this proposition uses a number of auxiliary lemmas. Given the proposition, we now

have all the ingredients to prove the upper bound on typical distance; we show this immediately.

Proof of Upper Bound in Theorem 2.2. Let W have the law of W conditional on W € W. By
Proposition 2.8, the Ly distance between S := W-Z and Unif(G) is o(1) whp. Thus the support S of
S is a proportion 1—o(1) of the vertices whp. In particular, there is a path of length at most Lk from
id to all vertices in S whp, as |W||; < Lk by definition of typicality. Hence Dy (3) < Lk = (1+3¢)Ro
whp. Applying Lemma 2.5 then gives (Di(8) — D)/® < 4e whp. O

The remainder of this subsection is devoted to proving Proposition 2.8. We have
E(|[Pe, (S €-|W e W) - Unif(G)|) =nPB(S =S| typ) — L,

recalling that x” and W' are independent copies of x and W, respectively, and S’ .= (x'W')-Z. We
note here that the probability on the right-hand side is annealed over the choice Z of generators.
First we control the probability that xW = x’W’; in this case we necessarily have S = 5’.

Lemma 2.9. We have P(xW = x'W' | typ) = o(1/n).
Proof. Recall that Ly := L(1 — log k/vk). Consider the directed case first, ie x = 1 = x’. Then,
P(W =W, typ) < 2wl >k(Lo+1) P(W =w=W)
k
= Zwelwli=k(potn PV = w) [Ty P(W; = w;)

k- —1\w;—
= Y wefwlhsk(Lorny PW = w) Ty L7H(1 — L)t
=Y i fwlh sk(zorny POV = w) - L7F(1 — L7 llh=k
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< Lfk(l . Lfl)kLo _ (L’l(l . Lfl)L(lfw/logk/k))k
< (eL)_k exp(\/klog k:) <n e ek,

with the final inequality using the fact that L > (1 + 2¢)n'/*/e. Indeed, L = (1 + 3¢)Ro/k by
definition and Ry > D(1 —¢) by Lemma 2.5, recalling that D = D~ = kn'/* /e from Definition 2.1.
In the undirected case, we also need to impose x = X/, which happens with probability 27%, and
is independent of (W, W’). Hence, the same inequality holds with the event {W = W’} replaced
by {xW = x’W'}, recalling that 2D~ = DT from Definition 2.1. Finally, P(typ) =< 1.
Thus, Bayes’s rule combined with the above calculation gives

P(xW = xX'W' |typ) <n”'e " < 1/n. O
The following lemma describing the distribution of v - Z for a given v € Z* is crucial.

Lemma 2.10. For all v € Z* with ged(vy, ..., v, n) = 7, we have
v+ Z ~ Unif(vG).

Sketch of Proof. We can decompose G as & Zy,,. Now, (U, ..., Ug) ~ Unif (¢ yZyn,,) if and only
if U; ~ Unif(yZy,) independently over j € [d]. The different coordinates of v - Z are independent
and YZy,; = ged (v, M) Lom; = ged (1, ..., Vg, Mj) Ly, . Thus, it suffices to consider d = 1, ie G = Z,,.

We use induction on k: write v-Z = (v1 21+ - ~+vg—1Zk—1)+ vk Zg. By the induction hypothesis,
01721+ 4+ Vk—1Zk—1 ~ Unif(aZ,) where a := ged(vy, ..., vp—1,n) 1n and vy Zy, ~ Unif(bZ,,) where
b := gcd(vg, n)n. It then suffices to show that a X +bY ~ Unif(cZ,) where X, Y ~!d Unif(Z,,) and
c = ged(a,b)in. Let @’ :=ac™! and V' = bc™! so that aX +bY = c(a’X +V'Y) and ged(a’,b') = 1.
The fact that o' X 4+ b'Y ~ Unif(Z,,) follows, in essence, from Euclid’s algorithm.

The full details, fleshing out all the rigorous details, are given in [17, Lemma F.1]. O

We thus now need to control [YG|, as P(vU = z) = 1/|yG| if U ~ Unif(G) and ged(y,n) z.
Lemma 2.11. For all Abelian groups G and all v € N, we have

|GI/InG| <",

Proof. Decompose G as &{ Zp,, with d = d(G) and some my,...,mg € N. Then 7G can be
decomposed as &¢ ged(y, m;)Zy,,. Hence |G| = H‘f(mj/gcd(%mj)) > Hf(mj/'y) =|G|/y¢. O

These two lemmas are used in [13, §2.7] in an analogous way to here. Define
Vi=yxW—-—xW' and g:=gced(Vi,...,Vi,n).
Corollary 2.12. We have
nP(V-Z=0,V#0]|typ) <E(g"D1L(V #0) | typ).
Proof. The conditioning does not affect Z. The corollary follows from Lemmas 2.10 and 2.11:

nP(V-Z=0,V#0, typ) =nE(B(V-Z=0]|V)L(V £ 0)1(typ))
=E((IG|/1eG[)1(V # 0)1(typ))
<E(g"D1(V # 0)1(typ)). O

Lemma 2.13. Given Hypothesis A, we have E(gXS1(V #0) | typ) = 1 + o(1).

Proof. Each coordinate of V' is unimodal and symmetric about 0. This means that we can write

[Vi| ~ Unif{l,...,Y} conditional on Vj # 0,
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where Y is a certain N-valued random variable. This implies that
P(Vi € vZ | V4 #0) =E([Y/v]/T) < 1/4.
The probability of V; = 0 is roughly 1/(2L) < n~'/*; in particular, it is at most 3n~'/*. The
coordinates are independent. Since P(typ) < 1, we thus have
k
P(a=7typ) S (1/7+3/n'/")".

We have g = ged(V4, ..., Vi, n) < min; V;. So, g < 6Llogk < 3n'/*log k under typicality. Hence,

nl/k o k
E(g'L(V #0) | typ) < 300, P4 (1/y +3/n'/%)".

We handle almost exactly the same sum in [13, Corollary 2.15]. Hypothesis A here is designed
precisely to control this sum; it is identical to [13, Hypothesis A]. There the 3/n'/* part is replaced
with 2/n'/* but exactly the same arguments apply showing that the sum is 1 + o(1). O

Proposition 2.8 now follows immediately from Lemmas 2.9 and 2.13 and Corollary 2.12.

Proof of Proposition 2.8. By Lemmas 2.9 and 2.13 and Corollary 2.12, we have

nP(S=5"|typ) <nP(V=0]|typ) +nP(V-Z =0,V #0]typ)
<nP(V=0|typ) +E(g*1(V #0) | typ) = 1 + o(1). O

3 Typical Distance: k < log |G|

This section focusses on concentration of distances from the identity in the random Cayley graph
of an Abelian group when k =< log|G|. (The previous section dealt with 1 < k < log |G| and the
next deal with k& > log |G|.) The main result of the section is Theorem 3.2; see also Hypothesis B.

The outline of this section is as follows:

- §3.1 states precisely the main theorem of the section;

- §3.2 outlines the argument;

- §3.3 gives some crucial estimates on the size of lattice balls;

- §3.4 is devoted to the lower bound;

- §3.5 is devoted to the upper bound under additional constraints;

- §3.6 describes how to relax these additional constraints;

- §3.7 describes an extension for L;-type graph distances to L4-type.

3.1 Precise Statement and Remarks

To start the section, we recall the typical distance statistic.

Definition 3.1. Let H be a graph and fix a vertex 0 € H. For r € N, write By (r) for the r-ball in
the graph H, ie By (r) :={h € H | dg(0,h) < r}, where dy Is the graph distance in H. Define

Dy (B) = min{r >0 | [Bu(r)| > B|H|} for B€(0,1).
When considering sequences (ky, Gn)nen of integers and Abelian groups, abbreviate
DN (B) = Day (2,2, )(B)  where  Zy, ..., Zy, ~ Unif(Gy).
As always, if we write Dy, then this is either D;{, or Dy, according to context.

We show that, whp over the graph (ie choice of Z), this statistic concentrates. Here we consider
k = Alog |G| for any A € (0,00). The result holds for a large class of Abelian groups. Further, for
these groups, the typical distance concentrates at ayk where ay € (0,00) is a constant; so this
depends only on k and |G|. This is in agreement with the spirit of the Aldous—Diaconis conjecture.
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Recall that any Abelian group can be decomposed as 69 1 Ly, for some d,mq,...,mq € N. For
an Abelian group G, we define the dimension and mzmmal side- length respectively, as follows:

d(G) :=min{d € N | @jzl Zm, is a decomposition of G'};
m.(G) = max{min;c(g m; ’ 69?:1 L, is a decomposition of G'}.

It can be shown that there is a decomposition which is optimal for both these statistics: there exist
d,my,...,mq € N so that @3;:1 Z; is a decomposition of G with d = d(G) and minjcjqm; =
m4«(G). From now on, we assume that we are always using such an optimal decomposition.

There are some conditions which the Abelian groups must satisfy.

Hypothesis B. The sequence (kn,Gn)nen satisfies Hypothesis B if
im gy =00, Hm gy /log|Gy| € (0,00), liminfy, (Gy)=

N—o0 N—o0 N—oc0

and d(Gy) < ;log|Gn|/loglog|Gn| forall N €N.
We are now ready to state the main theorem of this section.

Theorem 3.2. Let (ky)nen be a sequence of positive integers and (Gn)nen a sequence of finite,
Abelian groups; for each N € N, define Z(yy = [Z1, ..., Zy\ | by drawing Z, ..., Zk ~Hd Unif (G ).

Suppose that (ky,Gn)nen satisfies Hypothesis B. Let \ = limsupy kn/log |G n|. Then there
exists a constant o € (0,00) so that, for all 8 € (0,1), we have

D% (B)/(aikn) —F 1 (in probability) as N — oo.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and for
all Abelian groups, ie Hypothesis B need not be satisfied—we just need limy ky /log |G x| € (0, 00).

For ease of presentation, in the proof we drop the N-subscripts.

Remark 3.3. In §3.7, we describe an extension from the usual L;-type graph distances to Lq-type.
An analogous concentration of typical distance is given. See Hypothesis B’ and Theorem 3.11. A

3.2 Outline of Proof

The outline here is very similar to that from before; see §2.2. In particular, the lower bound is
exactly the same idea. For the upper bound, we were trying to bound the expectation of a d-th
power of a gcd. Issues arose when k& became too large while k — d is fairly small; see the proof of
Lemma 2.13. Particularly, the factor 7% needs to be countered by (1/y + 3/n'/*)* in a suitably
strong sense. This arose from the fact that we used the estimate

P(Vy € vZ) <P(Vy € 4Z | Vi #0) +P(Vy =0) < 1/ +3/n'/".
Once this was raised to the power k, the second term became an issue. We alleviate this by defining
={ie[k]|V; #0} andstudying P(V; €Z|i€cI).

The problematic term 3/ n'/* then does not exist as we consider only non-zero coordinates of V.

IfG= @?:1 L, then we are actually interested in V; modm; for each j. Recall that m. =
min; m;. ‘Typically’, one has |V;| < m,. Indeed, k =< log |G|, which means that E(|V;|) < 1, but
m, > 1 by assumption. We suppose initially that m. is large enough so that max; |V;| < m. whp.
Thus looking at V; = 0 or V; = 0 mod m; is no different.

For large |Z|, the ged analysis goes through similarly to before. When |Z| is small, eg smaller
than d, it is more difficult to control; in this case, we use a fairly naive bound on the gcd, but
control carefully the probability of realising such an Z. The case Z = (), which corresponds to
V =0, is handled by taking the lattice ball to be of large enough volume.

Previously we used a vector of geometrics as a proxy for a uniform distribution on a ball. Here
we are able to let W be uniform on a ball. The coordinates are no longer independent, which makes
the ged analysis slightly complicated. However, since we only consider ¢ with V; # 0, this can be
handled; see Lemma 3.9. This uniformity simplifies some other calculations somewhat.
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3.3 Estimates on Sizes of Balls in Z*

We wish to determine the size of balls Bi(R) when k < logn. In particular, we are interested in
the growth when the volume is around n.

Definition 3.4. Define M (k,N) to be the minimal integer M satisfying |Bif (M)| > N.

Lemma 3.5. For all A € (0,00), there exists a function w >> 1 and a constant o™ so that, for all
€ (0,1), if k = Alogn, then M := MZF(k,ne) satisfies

ME <otk =atAlogn and |B,§t (aik(l —¢))| < n.
This will follow easily from the following auxiliary lemma controlling the size of lattice balls.

Lemma 3.6. There exists a strictly increasing, continuous function c¢* : (0,00) — (0, 00) so that,
for all a € (0,00), we have

| BiE (ak)| = exp(k(c*(a) + (1))
Proof. The directed case follows immediately from Stirling’s approximation and the fact that
|Bf (ak)| = |{b e 2% | Thbs < ak}] = (l2k]+h) = (LoD

Consider now the undirected case. Omit all floor and ceiling signs. By considering the number
of coordinates which equal 0, we obtain

By (ak)| = X0 A where  A; = A;(k,a) = (281 (Firah,
Choose i, = i.(k,a) that maximises A;. Then A;, < |B, (ak)| < (k + 1)A;-. Observe that

Ay (k — )2
A; o 2(1 + 1)(k(1 + a) — i)’

and hence one can determine i, as a function of k£ and a, conclude that i.(a, k)/k converges as
k — oo and thus determine c¢*(a) in terms of the last limit. We omit the details. Knowing this
limit allows us to plug this into the definition of A; and use Stirling’s approximation to get

A;. = exp(k(c™(a) +0(1))),
for some strictly increasing function ¢~ : (0, 00) — (0, 00). Since k+1 = €°*) | the claim follows. [J
From this lemma, Lemma 3.5 follows easily.
Proof of Lemma 3.5. Set a := ¢~ !(1/)). The upper bound is an immediate consequence of the

continuity of c¢. The lower bound follows from the exponential growth rate. O

3.4 Lower Bound on Typical Distance

From the results in §3.3, it is straightforward to deduce the lower bound in Theorem 3.2.

Proof of Lower Bound in Theorem 3.2. Let ¢ € (0,1) and set R = afk(1 — &). Since the un-
derlying group is Abelian, applying Lemma 3.5, we have |Bif(R)| < |Bf(R)| < n. Hence, for all
B € (0,1) and all Z, we have Df(8) > R = af k(1 — €), asymptotically in n. O

3.5 Upper Bound on Typical Distance Given m.(G) > k

Define M¥, w and ot as in Definition 3.4 and Lemma 3.5. In this subsection we draw W ~
Unif(Bf (MF)), ie uniform on a ball of radius M. We show that W* - Z is well-mixed on G, and
hence its support contains almost all the vertices.
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Proposition 3.7. Suppose that Hypothesis B is satisfied. Then
E(|[Pa, (W* - Z € -) — Unif(G)||2) = o(1),

Given this proposition, the upper bound in Theorem 3.2 follows easily.

Proof of Upper Bound in Theorem 3.2 Given Proposition 3.7. The support S of W=*.Z satisfies
|S¢|/n < € if |[Pg, (W - Z € -) — Unif(G)||2 < e. Combined with Lemma 3.5 and Proposition 3.7,
the upper bound in Theorem 3.2 follows. O

The remainder of this subsection is devoted to proving Proposition 3.7. We tend to drop
the 4-superscript from the notation, only writing + or — if there is ambiguity. Let W, W’ ~iid
Unif(Bg(M.,)) and let V := W — W’. The standard Ly calculation gives

E(|[Pa, (W - Z €-) — Unif(G)|]2) =E(mP(V-2=0|2) —1) =nP(V-Z =0) - 1.

First, it is immediate that P(V = 0) = P(W = W') = |Bp(M.,)|™! < n7le™® < n~1. Now
consider V' # 0. As in §2.5, it is key to analyse certain gecds. In this section, we set

g; =ged(Vi,...,Vi,m;) foreach jel[d; set g:=gcd(Vi,..,Vi,n).

The following lemma is equivalent to Lemma 2.10, rephrased slightly.
Lemma 3.8. Conditional on V, we have V - Z ~ Unif(&9_, g;Zm,).

For the remainder of this subsection, we assume that the minimal side-length m. = m.(G)
satisfies m, > k =< M.,. In the next subsection, we remove this assumption: we extend the proof
to m. > 1, as in Hypothesis B. Given m. >> k, we have max;c) |V;| < min;eq m;. Hence,

IT={iclk]|ViZ0modm;Vje[d}=/{iclk]|W:#W/}
To analyse the expected ged, we breakdown according to the value of Z.

Lemma 3.9. There exists a constant C' so that, for all I C [k] with I # (), we have

nP(V-Z=0|Z=I1)<E(g*|Z=1)<

C21(2M, )4 142 when |I| <d+1,
1+5-(3)%-11 when |I|>d+2.

Lemma 3.10. For all I C [k] with |I| < k, we have P(Z = I) < e~ “n~'+t°()_[f T = (), then the
o(1) term may be taken to be 0.

Given these two lemmas, we have all the ingredients required to prove Proposition 3.7, from
which we deduced the main theorem (Theorem 3.2). We defer the proofs of Lemmas 3.9 and 3.10
until after the proof of Proposition 3.7, which we give now.

Proof of Proposition 3.7. Here k <~ Alogn, M = M, < ak <~ allogn and d < ilog n/loglogn.
As noted previously, the standard Lo calculation gives

E(|[Pa, (W - Z €-) — Unif(G)||2) =E(P(V-Z2=0]|Z) - 1)
—nB(V-Z=0)—1=nY,cyP(V-2=0,T=1) -1
Consider I = (). Then V- Z = 0 (for all Z). By Lemma 3.10, we have P(Z = () < n~te~“. Thus
nP(V-Z2=0,IT=0)<e“=o(1).

Consider I C [k] with 1 < |I| < d+ 1. There are at most (d + 1)(d_’i1) < k92 guch sets I. Since

log k = loglogn + log A 4 o(1), we have k%t2 < n?/3. Applying Lemmas 3.9 and 3.10 gives

nP(V-Z=0,I=1I)<02%3a\logn)? 271 p=itell) < p=d=2p=1/4,
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noting that d < k =< logn and so 2¢ = n°Y). We now sum over all I with 1 < |I| <d + 1:
nZ1§\II§d+1P(V Z=0,T=1I)< n~tt=o(1).

Consider I C [k] with d+2 < |I| < L := 2 logn/loglogn; then L —2d > 1. Similarly to above,
there are at most L(¥) < k%+! such sets I. Applying Lemmas 3.9 and 3.10 gives

nP(V-Z=0,I=1I)<n W <= Lblp=t/4
noting that k% < n?/3t°(1) We now sum over all I with d + 2 < |[I| < L:
N aracin<r PV Z2 =0, T=1) <n™ /" =o(1).
Finally consider I C [k] with |I| > L. Sum over these using Lemma 3.9:
nY <k PV-Z2=0,T=1)<1+5-(3)* " =1+0(1).
Combining these four parts into a single sum, we deduce the result. O

It remains to prove the auxiliary Lemmas 3.9 and 3.10.

Proof of Lemma 3.9. The first inequality is an immediate consequence of Lemma 3.8.
Note that g < 2M, since max; |V;| < 2M.,. For «, 8 € Z, write a1 8 if a divides 8. Thus

E(g! |Z=1) <YM y"P(ViViel|I=1)

For a set I C [k], write Wy == (Wj);er and WA 1 := W\ ;. Consider conditioning on Z = I. Let

Wi\ and W\’ ; be given; since Z = I, we have WA = W\’ ;- Let U have the distribution of W; given
W\ and define U’ analogously. Write D; := D;(v) == {71 (U; — U])}. Then

P(V;Viel |I=1,||Wy|.)=P(D;Viel).
By exchangeability, it suffices to consider the case I = {1,...,¢}. We then have
P(D; Vi€ I) =P(Dg)P(De—y | Dg) -+ P(Dy | Do, ... Dg) = [T~ P(Di | Dis1, ey De).

For i € [k], define M; := M. —|[W\ 11, i1|l1 and M analogously. Let i € [(—1]. Let (wiy1, ..., ur)
and (uj,q,...,uy) be two vectors in the support of (U1, ..., Ur). Then,

conditional on  (Usy1,...,Up) = (Uig1,...;uwe) and  (Ujyq,...,Up) = (ujyq, ..., up),

3

we have (Uy,...,U;) ~ Unif (B;(R)) and (Uj,...,U]) ~ Unif(B;(R')) for some R,R €R.

(Recall that the subscript in By, denotes the dimension of the ball.)
In the case of undirected balls, the law of U; — U/ given this conditioning is symmetric and
unimodal on Z \ {0}; see [30, Theorem 2.2]. It follows, as in the proof of Lemma 2.13, that
P(D; | D;yy,.... D;) <1/7.
Further, this holds not just conditional on D;, N--- N D, , but conditional on any choice of
(Uis1, ..., Up) and (U{, 1, ..., Uy) which satisfy D;; ;N---ND, . By the same reasoning, P(D;") < 1/7.
Hence, for undirected balls,

P(D; Viel) =PV Viel |T=1)<~ 1.

(The —-superscript emphasises that this is for undirected balls.)

We now turn our attention to directed balls. In this case, U; and U] are both unimodal, but
with potentially different modes, if R # R’. Instead of direct computation, we compare with
the undirected case. Specifically, if U; and U/ have the same sign in the undirected case, then
[Vi| = |U; — U/| has the same law as in the directed case. The choice of sign is independent of
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everything else; the two have the same sign with probability % Hence, by conditioning on the
specific values of (U1, ...,Ur) and (Uj 4, ..., Uy), we obtain

K2

1y 2 P(D; | Diyys o Dy ) 2 5P(DF | Dy, D).

For v = 2, note that the probabilities are actually the same: this is because x — y is even if and
only if |x| — |y| is even, since z and —z have the same parity.
From this we deduce, for both the undirected and directed cases, that

E(g! | Z=1) <1421+ 530 4@/l = 142071 4 20 5700, (7/2) 11,
A case-by-case analysis, according to d — |I|, completes the proof. O

Proof of Lemma 3.10. Recall from Definition 3.4 that | By (M. )| > ne*. Thus

—1 1
<nlev,

P(Z=0)=P(W=W') =|Bp(M,)]|
Using the law of W} given W\ determined in the previous proof, we have

e PW=W)  B(M) By (M.)]
W = W) = B = T, = i)~ BB M. — WD = Bl

It is a standard balls-in-bins combinatorial identity that
|BF(R)| = [{be z§ | 1o < RY| = (147,
For the undirected case, we can choose a sign for each coordinate. Hence we see that
|BF (B)] < |B; (R)| = [{be Z" | Ty bi| < RY| < 2°(15*).

Abbreviate M = M, and ¢ := |I|. It suffices to consider I with ¢ < ck, for an arbitrarily small
positive constant ¢. From Lemma 3.5, we have M < 2ak. So

| B (M)] < 2°(M)*) < (2e(20k/¢+ 1)) < (Beak/0)",

with the last inequality requiring 2ak/¢ > 1, which holds if ¢ is sufficiently small, as ¢ < ck. Now,
for ¢ sufficiently small, the map ¢ + (8eak/f)¢ is increasing on [1, ck]. Hence

’BEE(M)‘ < <8€ak/€)£ < (SGQ/C)Ck < (860[/0)20/\10gn — nQC)\IOg(SECE/C).

Taking ¢ — 0, this exponent tends to 0. Hence, |Bif (M)| = n°("). This proves the lemma. O

3.6 Relaxing Condition on Minimal Side-Length to m.(G) > 1

For the upper bound, we have been assuming that the minimal side length m.(G) satisfies m.(G) >
log |G|. (Recall that the lower bound had no conditions on m.(G).) We now describe how to relax
this condition to m.(G) > 1. We could go even further, with statements like “only a small number
of jin G = 69?:1 Zm; have m; =< 17. Since we have no reason to believe our other conditions are
optimal, we settle for the simpler m.(G) > 1.

In this proof we consider both L; and L., balls. To distinguish these we use a superscript:

- By1(R) will be the L; ball in ¢ dimensions of radius R;
+ Byoo(R) will be the Ly, ball in ¢ dimensions of radius R.

For a set I C [k], recall that we write W := (W;);cr and W1 := (W;);¢r.

We describe the adaptations for undirected graphs. The adaptations for directed graphs are
completely analogous: simply replace appearances of Z* with Zl_i and |W;| with W;.
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QOutline of Proof. The idea behind the proof is intuitive. Since R =< k, by symmetry we have
E(|W;|) < R/k < 1 for all i. Thus ‘almost all’ the coordinates should be smaller than any diverging
function (these coordinates are good). Further, the contribution to the radius ||W||; due to the bad
coordinates should be small, ie o(k). Roughly this allows us to replace k with k = k(1 — o(1)) and
R with R = R(1 — o(1)). Choosing R := /105 nk - (1 + 2¢) for € > 0 then gives

R> a5y lognE -(L+¢) and hence |Bg,(R)|> n.
This was the key element in the proof previously; the remainder of the proof is as before. O

We now proceed formally and rigorously.

Relaxing Minimal Side-Length Condition. Let € > 0 and X := limy kxn/logny. Set R = axk(1+
2¢) and draw W ~ Unif(By 1(R)). Let v satisfy 1 < v < m(G). For w € ZF, define

J(w) = {i € [k] | |wi| < v}.

Call these coordinates good. By Markov’s inequality, |[k]\ J(W)| < k/v = o(k) whp as E(|W;]) < 1.

As always, we look at two independent realisations W and W’. We then wish to look at
coordinates i € [k] which are good for both W and W', ie in J = J(W) N J(W’). We need
to make sure that the contribution to the radius from the (abnormally large) bad coordinates is
not too large. For § > 0 and w € Z*, write Ls(w) for the collection of the [25k]-largest (in absolute
value) coordinates of w. We then define typicality in the following way: for 4,6’ > 0, set

W= {w e Z" | |wly < R, [[K]\ T (w)| < 5k, weswll < 0k}

In particular now, if w,w" € W, then ||wsw)ng @)l > k —26'k. It is not difficult to see that we
can choose 4,6 = o(1) with P(W € W) =1 — o(1); we give justification at the end of the proof.

Consider now W, W’ ~iid Unif(By, 1(R)). We have the following conditional law:
Wy, W5 ~id Unif(BEl(R) N BE)OO(V)) conditional on = W\ 7 =w, 7= W\/j and J=1J
where J=JW)nJW'), k:=|J| and R:=R—|w 7|
Write typ :== {W, W’ € W}. On the event typ, given J = J and (W7, W?%), we have
k>k(1-6)=k(1—-0(1)) and R>R(1-06)=R(1-o0(1)).
In particular, we may choose 7 > 0 sufficiently small but constant (depending on €) so that
R>ayq_mk(l—n)(1+€) and k=>k(l1—n), and hence |BE,1(R)| > n.
Since typicality holds with probability 1 — o(1), we have
|BE,1(‘E) M BE,OO(V)| > n.
The remainder of the proof follows similarly as before. Formally, we define W and W’ as follows:
W, =W, and W,:=W/ for icJ;
W;=0 and W,=0 for i¢J.
Since this is a projection, {W; = Wi} C {W; = W} for any I C [k]. Now instead of decomposing
according to the value (or size) of Z := {i € [k] | W; # 0}, we use the set Z :== TN J. The fact that
|BE’1(R) N BE,OO(I/)| > n allows all the previous estimates for Z to follow through for Z here.
The last change to mention is the ged calculations of Lemma 3.9. The only property of the
distribution of (W, W’) required was that each coordinate (while not independent) is unimodal and

symmetric about 0, even conditional on W; = W} and W} = wj for some I C [k] and wy, w} € Z!.
For (W, W), this property still holds. Hence the identical argument applies here too.
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It remains to argue that P(W € W) = 1 — o(1) for some §,¢6" = o(1). First, as noted above,
P(|[k] \ T(W)| > 0k) = o(1) by Markov’s inequality and the fact that E(|]WW;]) < 1. We now show
that P(|[W,,w)ll1 > ¢’k) = o(1) for an appropriate choice of ¢’ = o(1), to be determined later.
We do this via a union bound over all (mlgm) possible values of the set Ls(W).

We first bound the above probability by a certain one involving independent random variables.
Consider Y := (Y11, ..., Yi&x) where Y7, ..., Y3, ~14 Geomg(f3), where 3 is picked so that E(||Y||1) =
k(1/B—1) = 2R and &1, ..., & ~14 Unif ({—1, +1}); recall that R = ak(1+2¢). Here, the Geometric
distribution Geomg is supported on {0, 1,2, ...}. We have E(e¥*) < 1 since k < R. Given £ € [0, R],
the law of Y conditioned on ||Y||; = ¢ is the same as that of W conditioned on |W{|; = £.

It is straightforward that the law of |Y| := (Y7, ..., Y%) conditioned on ||Y'||; = £ is stochastically
increasing in ¢. Indeed, one can couple |Y| = (¥71,...,Y)) conditioned on ||Y|; = ¢ with |Y| =
(Y1,...,Y)) conditioned on ||Y|; = ¢+ 1 by first sampling the former, then picking a random
coordinate and increasing it by +1 to obtained the latter. It follows that the law of |Y| given
YL > R stochastically dominates the law of (|W1],...,|Wx|) which is a mixture of the laws of
Y] = (Y3, ..., Y%) conditioned on ||Y||; = ¢ for different ¢ € [0, R].

Since {||Yz,(v)ll1 > 0’k} is a monotone increasing event wrt |Y|, we have

P([Wes ol > 8'k) S P([Yz,0n)ll > 8k [ Y] > R).

Next, note that P(||Y|l; > R) = 1, by our choice of 3, and
P(EZTY; > 0'k) < e FE(exp (ST Yi)) = e TRE () 12981,
These together with Bayes’s rule and the union bound then gives
P(IWeym Il > 6'k) SP(IYe 00l > 0'k) < (1a5)e” FE(™) 24
Next, there exists some universal constant C' > 0 such that
([2§k]) < exp(Ckélog(1/9)).

We then obtain P(|[W,, w1 > 0'k) = o(1), as required, by taking

§' == 6(2C1og(1/5) + 4log E(e™)) < dlog(1/5) = o(1). O

Remark. We believe that the typical distance should concentrate if £ =< log|G| and k —d > 1
without any condition like that on m.(G). However, without any such condition, we do have
reason to believe that the value at which this concentration happens should depend on more than
just k and |G|—the algebraic structure of G should be important. This exact phenomenon occurs
when studying the mixing time of the random walk on the Cayley graph. See [13, Theorem A], in
particular contrasting the case k < log |G| < d(G) with 1 < k <log|G| and d(G) < log|G|. A

3.7 Typical Distances for L,-Type Graph Distances

Graph distances in Cayley graphs have some special properties. Consider a collection z = [z1, ..., 2k]
of generators and distances in the Cayley graph G(z). For a path p in G(z), for each i € [k], write
pi.+ for the number of times z; is used, p; _ for the number of times z; * is used (if in the undirected
case, otherwise p; — = 0) and p; = p; + — p;,—. The path connects the identity with p - z. Then
the length, in the usual graph distance, of p is ||p||1 = Z]f(pi7+ + pi—).

For any g € [1,00), define the L, graph distance of p by ||p|[d == Z]f(p§7+ + p{ _). For the Lo
graph distance, define ||p||co == max;{p; + + ps,— }. (The usual graph distance is given by ¢ = 1.)

For Abelian groups, clearly for any ¢ € [1,00) an L, geodesic, ie a path of minimal L, weight,
will only use either z; or z; ! not both (since the terms in the product can be reordered), ie
pi+pi,— = 0 for all i. Thus ||p||¢ = Z’f |pi|9. Similarly, any L., geodesic p can be adjusted into a
new path p’ with p- 2 = p’ - 2z and ||p[lc = [|p'||c satisfying p} , p; _ = 0 for all i.

We define the L, typical distance Dg(.),q(-) analogously to Dg(z)(-), ie the ¢ = 1 case.
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Hypothesis B’. The sequence (ky,Gn)nen and g € [1,00] jointly satisfy Hypothesis B’ if the
following conditions hold (defining k'/* := 1 for k € N):

lim gy =0, lim kn/log|Gn| =0 and lim k]l\,/q|GN|1/kN/m*(GN)=0;

N—o0 N—oc0 N—oc0

if g€ (1,00) then additionally ky <log|Gn|/loglog|Gy| for all N € N;
d(Gn) - { 1 for undirected graphs,

lim sup

Nos  ky i for directed graphs,

recalling that d(H) is the minimal size of a generating set for a group H.

Finally, we set up a little more notation. Let I'(-) denote the Gamma function. Let
C; =2T(1/q+ 1)(ge)/1, Cf=3C; and qu(k,n) = k:l/qnl/k'/qu,

where the case ¢ = oo is to be interpreted as the limit ¢ — oo; eg, C, = 2 and DT (k,n) = nt/k.

When these are sequences (ky, |Gn|)nen, for N € N and ¢ € [1, 0], write ’Dﬁ,q = @;t(kN, IGnN).
Similarly, for a sequence (G'n)nen of finite groups with corresponding multisubsets (Z(n)) ven
of sizes (kn)nen, for N € N, 8 € [0,1] and ¢ € [1, 00|, define Di’q = DGi(Z(N))(ﬂ).
Using an extension of the methodology from this section (§3), along with analysis of L, lattice
balls, we can prove the following theorem. We have already considered ¢ = 1 and k =< log|G/|.

Theorem 3.11. Let (kn)nen be a sequence of positive integers and (G n)nen a sequence of finite,
Abelian groups; for each N € N, define Z(ny = [Z1, ..., Zy, ] by drawing Z, ..., Z,, ~1d Unif (G ).
Suppose that (kn,Gn)nen satisfies Hypothesis B'. Then, for all § € (0,1), we have

Dﬁ’q(ﬂ)/CDﬁ’q —P 1 (in probability) as N — oc.

Moreover, the implicit lower bound holds for all choices of generators and for all Abelian groups,
only requiring the conditions in Hypothesis B which depend only on (ky,|Gn|)nen and gq.

The arguments used to prove this theorem really are analogous to those used in this section (§3).
The only real difference is that we have to look at lattice balls under an L, norm and in dimension
1 € k < logn, rather than L; and k < logn. Other than this, the remainder of the analysis, in
particular the reduction to a gcd and the consideration of the set Z of non-zero coordinates of W,
is exactly the same. (Now W is uniform on an L, ball of appropriate radius.) We do not give the
details here; they can be found in [15, §7].

We remark that k < log |G| is not covered when ¢ € (1,00), ie ¢ ¢ {1,00}. This, in essence, is
because we need estimates on the volume of L, balls. These can be estimated very precisely when
g € {1,000}, but our estimates are less precise otherwise. See [15, Lemma 7.2b] for specifics.

4 Typical Distance: k > log |G|

This section focusses on concentration of distances from the identity in the random Cayley graph
of an Abelian group when k >> log |G|. (The previous sections dealt with 1 < k < log|G|.) The
main result of the section is Theorem 4.2.

The outline of this section is as follows:

- §4.1 states precisely the main theorem of the section;

- §4.2 outlines the argument;

- §4.3 gives some crucial estimates on the size of lattice balls;

- §4.4 is devoted to the lower bound;

- §4.5 is devoted to the upper bound.

4.1 Precise Statement and Remarks

To start the section, we recall the typical distance statistic.
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Definition 4.1. Let H be a graph and fix a vertex 0 € H. For r € N, write By (r) for the r-ball in
the graph H, ie By (r) :={h € H | dg(0,h) <r}, where dy is the graph distance in H. Define

Dy () =min{r > 0| |Bu(r)| = f|H|} for f € (0,1).
When considering sequences (ky, Gn)nen of integers and Abelian groups, abbreviate
DN (B) = Day(z1,.ze,)(B)  Where  Zy, ..., Zyy ~" Unif(Gy).
Finally, considering such sequences, we define the candidate radius for the typical distance:

Dy = pzﬁllog\GNVlogk;N where pn =logky/loglog|Gy| for each N €N.

As always, if we write Dy, then this is either D% or D} according to context. Up to subleading
order, the typical distance will be the same for the undirected graphs as for the directed graphs.

We show that, whp over the graph (ie choice of Z), this statistic concentrates. Here we consider
k > log |G|. The result holds for all Abelian groups; in fact, the implicit upper bound is valid for
all groups. Further, the typical distance concentrates at a distances which depends only on k and
|G|. This is in agreement with the spirit of the Aldous—Diaconis conjecture.

Hypothesis C. The sequence (ky,nn)nen satisfies Hypothesis C if

lim inf kiN — 0o and liminf M

=0.
N—o00 lognN N—oc0 IOgTLN

Theorem 4.2. Let (kny)nen be a sequence of positive integers and (Gn)nen a sequence of finite,
Abelian groups; for each N € N, define Z(ny = [Z1, ..., Zy| by drawing Z, ..., Zy, ~1d Unif (G ).
Suppose that (ky, |G n|)ven satisfies Hypothesis C. Then, for all § € (0,1), we have

DL(B)/Dn —F 1 (in probability) as N — oco.

Moreover, the implicit lower bound holds deterministically, ie for all choices of generators, and the
implicit upper bound holds for all groups, not just Abelian groups.

As always, for ease of presentation, in the proof we drop the N-subscripts.

4.2 OQutline of Proof

When k£ > log|G|, one can see that the typical distance statistic D must satisfy D <« k. By
symmetry, the expected number of times a generator is used when drawing from a ball is o(1).

An approximation is then that each generator is either chosen once or not at all. If R are chosen,
then there are precisely (1];) ways of doing this. We choose R with (lk%) ~ |G|.

4.3 Estimates on Sizes of Balls in Z*

We consider balls and spheres in the Ly and Lo, senses: write By, 1(-), respectively Sk 1(+), for the
Ly ball, respectively sphere, in ZF; write By oo (1) for the Lo, unit ball in ZF.

Lemma 4.3. For all R > 0, we have
B (R <28 (H3Y) and [T (R) N BEL(] > (1))

Furthermore, if R < k, then both
2R(L1E51J%Tk) = exp(Rlog(k/R) - (1+0(1))) and (LIIE’/J) = exp(Rlog(k/R) - (1+ o(1))),
with different o(1) terms, naturally. In particular, if k = (logn)? > logn and € > 0 is constant, then

’5;::1((1 + E)pfpl log;, n) N Bk}oo(l){ > n.
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Proof. In the first display, the upper bound is proved in [17, Lemma E.2a]; the lower bound is the
usual formula for the number of subsets of [k] of size R. The second display is a simple application of
Stirling’s approximation and asymptotics of the binary entropy function. The final display follows
by combining the previous two and performing a simple calculation. Indeed, take

R:=(1+¢); 7 log,n = (1+¢)logn/log(k/logn) < k.
Thus, applying the first lower bound followed by the second asymptotic equality,
[S2(B) N Broo (D] = (7))

= exp(Rlog(k/R) - (1+ o(1)))
=exp((1+¢)logn-(1+0(1))) > ntte/2 > n. O

4.4 Lower Bound on Typical Distance

From the results in §4.3, it is straightforward to deduce the lower bound in Theorem 4.2.

Proof of Lower Bound in Theorem 4.2. Let & € (0,1) and set R :=D(1 — &), recalling that
D= p—fl logn/logk where p=1logk/loglogn, ie k= (logn)’.
Since the underlying group is Abelian, applying Lemma 4.3, a simple calculation gives
Bu(R)| < | B (R)| < exp(Dlog(k/D) - (1 - 1)) < .

Hence, for all 8 € (0,1) and all Z, the typical distance satisfies Dy () > R = D(1 — £). O

4.5 Upper Bound on Typical Distance

Lemma 4.3 gives a quantitative sense in which | By 1(R)| & |Sk,1(R) N Byoo(1)| > <Ukﬂ); informally,
this means that we do not really lose any volume by restricting to the sphere and requiring that
each generator is used at most once. We show the upper bound for arbitrary groups.

Proof of Upper Bound in Theorem 4.2. Let ¢ > 0 and set R = D(1 + &). Draw W, W' ~iid
Unif(Sk.1(R) N B,oo(1)). Define S == ZV* ... 2,V and S similarly. We show that S is well-mixed
whp (this time in the Ly sense) to deduce the upper bound. By the standard Lo calculation,

E(|Pc, (S € ) — Unif(G)[3) = nB(S = §') — 1.

If W # W, then there exists an ¢ € [k] with W; = 1 and W/ = 0 or vice versa. Then, by uniformity
and independence of the generators, S'S~! ~ Unif(G) for all (not just Abelian) groups. Thus,

nP(S=5)—1<nP(W=W)=n|S.1(R)NBro(l)| " <1,

using Lemma 4.3. This means that W - Z is well-mixed in the Ly sense, so has support n — o(n).
Thus, n — o(n) of the vertices are within distance R = D (1 + £) of the identity. O

Remark. This upper bound, ie on typical distance with k > log |G|, can be easily deduced from
mixing results proved in the *90s. Specifically, it was shown by Dou and Hildebrand [12, Theorem 1]
that the mixing time for the usual random walk is upper bounded by p—fl log;, |G| for any group;
Roichman [31, Theorems 1 and 2] subsequently gave a simpler proof, using an argument not that
dissimilar from our proof above. The lower bound does not follow from mixing results, though.
There are a few reasons for including the proof above. Foremost is that we use the same
argument in §6.2 to obtain universal bounds for k with k — log, |G| < k, not just k& > log|G|.
Additionally, we need to do most of the work for the lower bound anyway, and it demonstrates
how easily our method adapts to this new regime. A
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5 Typical Distance for Nilpotent Groups

Recall the definition of nilpotent and the corresponding distance-based definitions in Definition B.

5.1 Formal Statements for Dominance of Abelianisation

If Zy,..., Z), ~1 Unif(Q), then [G,G]Zy, ..., [G,G])Zy ~'? Unif(G2P). In the case that k > d(G)
is constant, the asymptotic law of diamy,,—1(G?P)/|G?P|/* as |G| — oo was determined by
Shapira and Zuck [35], where ZUZ ™! == [Zy, Z] ', ..., Zy, Z; ']. El-Baz and Pagano [6] proved that
the asymptotic laws of diam ;-1 (G)/|G*|/* and diam -1 (G*?)/|G*P|'/* are the same when
k > d(G) and ¢ are fixed. Theorem 5.1 below forms a quantitative version of the results of [6].
We are primarily concerned with the case k > 1. This means that we must keep track on the
dependence of certain constants on |S| and £. (5.3) below is stated for a general symmetric set of
generators S, but we are particularly interested in the case that S = ZUZ ™!, where Z1, ..., Z;, ~'4
Unif(G), as above. The asymptotics of D,z -1 (G, 8) can be determined using Theorem A.

The following theorem is to appear in Hermon et al [18]. As stated before, its argument builds
on arguments of El-Baz and Pagano [6], who built on those of Breuillard and Tointon [8].

Theorem 5.1 ([18]). Let G be a finite nilpotent group of step ¢ and rank d. Let k € N and
$1,...,8, € G. Write S :== [sl,sfl, ...,sk7s;1]. Then, for all 8 € (0,1], we have

Ds(G*, B) < Ds(G, ) < Dg(G?, B) + diamg(Gs) and (5.1)
diamg ([G, G]) < 3, diamg(G;/Giy1) < S5 203K ([diamg (G2P) /K1Y + 242 + 4)).  (5.2)

Theorem B follows as a corollary of this. We repeat the statement below for convenience.

Theorem B. Let G be a finite nilpotent group of step ¢ and rank d. Let k € N and let s1, ..., s, € G.
Let S = [s1,s7 ", ..., 5k, 5; '] be a symmetric multisubset of G. Then, for all 3 € (0,1], we have

0 < Ds(G, B) — Ds(G™, B) < diamg(G™)3/4 < (3Ds(G™, 8)/8)**. (5.3)
ifd <k < {='d"log|G|/loglog|G|. Further, for all 3 € (0,1/2), we have
DS(Gabv 1- ﬁ) - DS(Gabaﬁ) < 2\/6_1tre1 (CaY(Gaba Sab))v (54)

where t,c)(Cay(G?®P, S2P)) is the relaxation time of the simple random walk on Cay(G?", S2P).

Proof of Theorem B Given Theorem 5.1. The first inequality in (5.1) implies the first in (5.3).
For the second inequality in (5.3), the second in (5.1) implies that it suffices to show that

. 1
diamg(G3) < diamg(G*)?/*  whenever d <k < og |G|

~ 16¢d*loglog |G|’ (5:5)

One can show that |G;/G,11] < |C¥"”°\dz_1 using standard arguments a la [6, Equation (2.3)]. A
precise proof will appear in [18]. It follows that |G| = Hle |Gi/Git1] < \Gab\gdlz.

Assume that d < k < 7507'd "log|G|/loglog|G|. The general lower bound on the diameter
from Theorem A for Cayley graphs of Abelian groups, we have

diams (G™) Z k|G™ /% > |G| W) > (log|G)))*.
Finally, this together with (5.2) gives

diamg(G2) < i, 2773k ([diamg (G*°) /K] + 27i2)
< (2k) (62 + diamg(G™)'/?) < diamg(G*P)%/4,
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where in the last inequality we used the fact that d < k < mflgoigli‘gm. This proves (5.5).
The last inequality in (5.3) follows from the fact that

diamg(G®) < 2Dg(G™,1/2) +1 for B >1/2

and we can fit |diamg(G?P)/(2r + 1)] disjoint balls of radius 7 = Dg (G2, 8) in Cay(G?P, 52P).
We turn to (5.4). Let H be an Abelian group and S’ a symmetric set of generators. We show

Ds/(H,1— ) — Dg/(H, ) < 2¢/B tra(Cay(H, 5")) for all € (0,1/2). (5.6)

This implies (5.4) by taking H = G®> and S’ = S2P. It remains to prove (5.6).
Let f : H — Z be given by f(h) := distg/(id, k). Then, f is 1-Lipschitz wrt distg/ (-, --). Hence,

EU L) = Yhermes s (F(h) - F(hs))? < 1.

Let P be the transition matrix of simple random walk on Cay(H,S’). Let m be the uniform
distribution on H. For g,¢’ € R let

(9.9 )r =Er(g9') where E(u):=3,.gm(h)u(h) for ueRC.

We have E(f, f) = (I — P)f, f)» by [22, Lemma 13.6]. By the Courant—Fischer characterization
of the eigenvalues of I — P, explained in [22, Remark 13.8], we have

Vary (f) < trel (Cay(H, S’))E(f, ) < tra (Cay(H, S’)) where Var,(f) == E.(f?) — (I[*Zﬂ(f))2
An application of Chebyshev’s inequality concludes the proof of (5.5), and hence of Theorem B. [

5.2 Intuition Behind Dominance of Abelianisation

Theorems B and 5.1 explain some key differences to the geometry of the graph in the non-Abelian
versus Abelian set-ups in a formal manner. The current subsection gives intuition for why this
domination of the Abelianisation occurs, including where the Abelian proof breaks down. The
intuition here addresses non-Abelian groups more generally, in a wider sense than Theorem 5.1.
Draw W, W' ~id Unif(By,(R)) for some R as before. Define S and S according to W and W,
respectively. In the Abelian set-up, W = W’ implies S = S’, but this is not the case generally. Then,

nP(S=5)-1=nP(S=5|W#W)P(W#£W)-1
+nP(S=S5|W=W)P(W=W.

We should really be doing this conditioned on typicality, but we omit this here for simplicity. The
handling of the first term is similar in the non-Abelian and Abelian cases: roughly, S’S~! ~ Unif(G)
given W # W’ under some conditions; this balances the n-factor and cancels with the —1.

It is the last term which depends on the Abelian property: Pz (S = 5" | W = W') = 1 if the
group is Abelian; the probability of W = W’ must then balance the n-factor. This is why we chose
the balls precisely so that the volume was slightly larger than n. If the group is non-Abelian, then
P(S =5 | W =W’) may be much smaller than 1, meaning that P(WW = W’) need not be so small.

This exactly the situation in our companion paper [14] in which we study certain non-Abelian
matrix groups. In the simplest case, we consider upper-triangular, 3 x 3 matrices with 1s on the
diagonal and all strictly-superdiagonal entries in Z,, with p prime. One has

1 a ¢ 1 d (¢ 1 a+d c+cd +ab+a'db
01 b]-{0 1 ¥]=10 1 b+ v for all a,a’,bV,c,c € Z.
0 0 1 0O 0 1 0 0 1

This group satisfies an appropriate version of P(S = S’ | W # W') ~ 1/n = 1/p?. It is easy to see
that W = W' implies that the two immediately-superdiagonal terms in S and S’ are equal—indeed,
the Abelianisation G** = G/[G, G] precisely corresponds to these. One can prove that

P(S=95|W=W)~1/p=p*/n

when 1 < k < logn =< logp, under appropriate typicality conditions. This means that we need
only choose the radius R so that the ball has volume p?, not n = p> as in the Abelian case. This
is precisely the change from |G| = p? to |G*| = p? predicted by Theorem B. More details on this
can be found in our companion paper [14]; see, in particular, [14, §5 and Theorem 5.1].
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6 Diameter

In this section we consider the diameter of the random Cayley graph. Our analysis is separated

into two distinct sections.

§6.1 We show that the diameter concentrates for k 2 log|G|, and that the value at which it
concentrates is the same as for typical distance.

§6.2 We show, for k& with k — log, |G| < k, that the group giving rise to the largest diameter
amongst all groups is Z4.

6.1 Concentration for k > log |G|

Recall that in Theorem 3.2 we showed, in the regime k =< log n and under some assumptions, that,
up to subleading order terms, the typical distance concentrates at ak, for some constant a. The
next theorem shows, in the same set-up, that the diameter does the same. The argument uses the
typical distance result as a ‘black box’, then extending from this to diameter.

Theorem 6.1. Let (ky)nen be a sequence of positive integers and (Gn)nen a sequence of finite,
Abelian groups; for each N € N, define Z(yy = [Z1, ..., Zy\ | by drawing Z, ..., Zg ~1d Unif (Gy).

Suppose that (kn,GNn)nen satisfies either Hypotheses B or C. For \ € (0,00), let ai: € (0,00)
be the constant from Theorem 3.2; for each N € N, write py = logky/loglog|Gn|, so that
kn = (log|Gn|)PN. Then the following convergences in probability hold:

diamGN(Z(N))/(aiEkN) —F1 when limy kx/log|Gn|= A€ (0,00);

diam Gn (Z(w))/ (225 log, [Gn|) =7 1 when limy ky/log |G| = oo.

Moreover, the implicit lower bound on the diameter holds deterministically, ie for all choices of
generators, and for all Abelian groups, and, when k > log |G|, the implicit upper bound holds for
all groups, not just Abelian groups.

Remark. We only state and prove the result for k& = log |G|, but the argument can be extended to
allow k& < log |G|, provided log|G|/k diverges sufficiently slowly. This requires a little more care;
we do not explore the details here. A

As always, we drop the N-subscripts in the proof, eg writing diam Gy, or |G|.

Proof of Theorem 6.1. Clearly diam Gy, = Dy (1) > Dy () for all 5 € [0, 1]. Hence typical distance
is trivially a lower bound on the diameter. It remains to consider the upper bound.

Assume first Hypothesis B, so k =~ Alog |G| for some A € (0,00). Let £ < 1, vanishing slowly
and specified later. Define o := af as in Theorem 3.2. Let A := [Z1, ..., Z(1_¢)x] be the first (1—-¢)k
generators and B := [Z(l_g)k_H, .., Zx] be the remaining ek. By transitivity, it suffices to consider
distances from the identity. The idea is to take L steps using A and then one more using B, where
L is the minimal radius of a ball in the |A|-dimensional lattice of volume at least ne®, for some
slowly diverging w. Write M = «k. By Lemma 3.5, we have L/M ~ 1 — e =~ 1. The key point is
that when k < log |G| replacing k with (1 —¢)k changes the typical distance by a factor 14 0._,0(1).

By Theorem 3.2, whp, A is typical in the sense that the proportion of elements of the group
which can be reached via a word of length at most L, using only the generators from A, is at least
1 —e7Y, for some v > 1, independent of ¢.

Condition on A, and that it is typical; write P for the probability measure induced by this
conditioning. Denote by H the set of elements which can be reached in the above sense. (This is
the vertex set of the ball of radius L in G(A).) Fix « € G. Note that if b ~ Unif(G), then

Pz €bH)>1—¢" where bH:={b-h|he H}.

Furthermore, if b,5’ ~ Unif(G) are independent then the events {x € bH} and {x € ¥'H} are
P-independent; this is because we have conditioned on A, and so H is a deterministic set.

Using the ek generators from B, informally we get ek Bernoulli trials to get to « using bH for
b € B, and each trial has success probability 1 — o(1). Formally, write R for the set of elements
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reachable from the identity via a word of length at most L+1 (ie the ‘range’); let ' be an arbitrary
element of B, so b’ ~ Unif(G). (Recall that the conditioning makes H non-random.) Then

P(x ¢ R) <P(x ¢ BH) =PB(x ¢ bHVb € B) = B(a ¢ ¥'H)' " < ek,
Since v — 0o, we may choose ¢ — 0 so that ve — oco. Then, since k =< logn, we have
P(R#G)=PBzeGstx¢R)<nP(x¢R)<ne " =o(l).

Averaging over A establishes an upper bound of diam Gy, < L 4+ 1 whp, and L < M(1 + ¢).

Finally consider Hypothesis C, so k > log|G|. Exactly the same argument holds here, using
the typical distance to first get to almost all the elements and then one more step. Recall from
Theorem 4.2 that the upper bound is valid for arbitrary groups. O]

6.2 Universal Bounds for k — log, |G| <X k

In this subsection we show that the group Z¢ gives rise to the random Cayley graph with the
largest diameter when k — log, |G| < k whp, up to smaller order terms.
Recall that 3(k,n) is the minimal R € N with (}];) >n.

Theorem 6.2. Let (kn)nven be a sequence of positive integers and (Gn)nen a sequence of finite
groups; for each N € N, define Z(ny := [Z1, ..., Zy] by drawing Z1, ..., Zi ~d Unif(Gy).
Suppose that liminfn (ky — logy |Gn|)/kn > 0 and limsupy log kn/log|Gn| = 0. Then

limsupy_, o, diam Gy (Z(n))/R(kn,|Gn|) <1 in probability.
Further, if Gy = Z4~ for each N, then the diameter is given by R(kn, |Gn|):
diamGN(Z(N))/i)‘{(kN, |GND —>P 1.

Proof. From Lemma 4.3 and Theorem 6.1, when k > log|G|, the diameter concentrates at
R(k, |G|) when the underlying group is Abelian, and this is an upper bound for all groups.

Thus it remains to consider k with k — log, |G| < k and k =< log|G|. All that was required
for the upper bound on typical distance when k > log |G| was that P(W = W’) <« 1/|G| where
W, W' ~Hid Unif(Sy 1 (D) N Bkoo(1)) with D = D(1 + £), where ® was the candidate typical
distance radius and £ > 0 was a constant. We show that the analogous statement holds here.

Let £ > 0 be fixed and set R := R(k,|G|)(1 + &). Before proceeding, let us determine some
estimates on K. Let h: (0,1) — (0,1) : p— —plogp — (1 — p) log(1 — p) denote the binary entropy
function (in nats). It is standard that Stirling’s approximation, like in Lemma 4.3, gives

(%) = exp(k h(r/k) - (1 + o(1))).
Thus, if k —log, |G| < k, then we see that R(k, |G|) < k. Further, the fact that the derivative of h
is continuous and strictly positive on (0, 1) gives (112,) > |G|; hence P(W = W') < 1/|G|.

This shows that the typical distance Dy (5) < R(k,|G|) whp up to smaller order terms for all
constants 8 € (0,1). This is then converted from a statement about typical distance to one about
the diameter via the same method as used previously (in §6.1), noting that R(k, |G|) < k.

Finally, we need to show a matching lower bound when G' = Z4, the hypercube. A generator
need never be applied more than once here, as all elements have order 2. Thus, for R < %k, we have

Be(R)| < 50 (%) < (R+1)(E) < k() however the generators are chosen.

But, it is clear from the above asymptotic form for (’qf) that k(lkz) < |G| if R =R(k,|G|)(1 = &),
by continuity of the binary entropy function h(-). Hence, the diameter is greater than R. O

7 Spectral Gap
In this section, we calculate the spectral gap; see Theorem E. We first prove it for £ > 3d(G). In

§7.4, we explain how to extend to k — 2d(G) < k and then to k — d(G) =< k for a density-(1 — ¢)
subset of values for |G|. The lower bound holds deterministically, without any conditions.
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7.1 Precise Statement

For an Abelian group G, we write d(G) for the minimal size of a generating set. It is convenient
to phrase the statement in terms of the relazation time, which is the inverse of the spectral gap.

Theorem 7.1 (Spectral Gap). First, there exists an absolute constant ¢ > 0 so that, for all Abelian
groups G and all multisets z of generators of size k, we have

(G (2) > ta (G (2)) > c|G*/*. (7.1a)

Second, for all § > 0, there exist constants cs,Cs > 0 so that, for all Abelian groups G, if
k> (2+6)d(GQ) and Zi, ..., Zj, ~4 Unif(G), then
P(t;,(Gy) < Cs|GI*F) > 1 — Cs27F/ <. (7.1b)

rel

Furthermore, for all ¢ € (0,1), there exists a subset A C N of density at least 1 — e so that if
|G| € A then then condition k > (2 4 6)d(G) can be relaxed to k > (1 + §)d(G) and (7.1b) still
holds; the constant C's now also depends on ¢, ie becomes Cs., but cs need not be adjusted.

We prove this for the non-absolute spectral gap, ie minyz1{1 — A}, where the minimum is over
eigenvalues; the same proof also works for the absolute spectral gap, ie miny.1{1 — |A[}.

7.2 Lower Bound on Relaxation Time
In this subsection, we establish the lower bound on the relaxation time in Theorem 7.1, ie (7.1a).

Proof of Lower Bound in Theorem 7.1. Write n := |G|. Abbreviate simple random walk by SRW.
We may assume that k < logs(3n), as otherwise (7.1a) indeed holds for some ¢ > 0. Indeed, t,e 2 1
and n** < 1if k > logn. Let L := |1((n)'/¥ —1)]. By our assumptions, L > 1. Consider the set

A={w-Z|weZF and |w;| < LVi=1,..,k} CG. (7.2)

Clearly |A| < (2L + 1)* < %n Let ¢t > 0, and let (Y5)s>0 be a continuous-time rate-1 SRW on Z.
Write 74 for the first exit time of a set A by SRW on G started from the identity. Observe that

Po(Tac > t) > Po(maxgepo e |Ysl < L)*, (7.3)

where 0 € A is the identity of the group. Lemma 7.2 below provides a lower bound on the probability
that the exit time from {—L,...,L} by Y is at least t/k. It gives

Po (maxgeqo,i/u |Vs| < L) > exp(—372(t/k) /(L +1)2).
Substituting this into (7.3) we get
Po(Tac > t) > exp(—xtn?/(L +1)%). (7.4)

The minimal Dirichlet eigenvalue of a set A is defined to be the minimal eigenvalue of minus
the generator of the walk killed upon exiting A; we denote it by A4. For connected A, Lemma 7.3
below states that, for all a € A, we have

—%IOgPa(TAc > t) — A4 ast— oo.
From this and (7.4), it then follows that A4 < A where
A=3im?/(L+1)% < 7r2/((%n)1/lC + 1)2.
[3, Corollary 3.34] controls the relaxation time in terms of quasi-stationary hitting times. It gives
tret = (1= 2]A[)/A > 1/(2X).

This concludes the proof of the lower bound, modulo Lemmas 7.2 and 7.3. O
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It remains to state and prove the quoted Lemmas 7.2 and 7.3. The proofs are deferred to [17, §D].

Lemma 7.2, Let £ € N and 7 = inf{s > 0 | |Ys| = £}, where (Y;)s>0 Is a continuous-time rate-1
simple random walk on Z. Let 0 := %ﬂ/ﬁ and A '=1 — cos0. Then, for all s > 0, we have

Po(r > s) > e > exp(—%s(m/0)?).

The proof of the next lemma follows a standard quasi-stationarity argument. For a transition
matrix P and a set A, let 74c be the exit time of A and A4 be the minimal Dirichlet eigenvalue,
defined to be the minimal eigenvalue of minus the generator of the chain killed upon exiting A, ie of

I4— Psy where (14— Pa)(z,y) ::1(x,y6A)(1(x:y)—P(x,y)).

Lemma 7.3. Consider a rate-1, continuous-time, reversible Markov chain with transition matrix
P. Let A be a connected set, and let A4 and T4- be as above. Then, for all a € A, we have

f%logIPa(TAc > t) — A4 ast— oo.

Remark. Our proof gives an explicit form for ¢ in (7.1a). If k < logn, then we get
trel > 207 2|G)* - (14 0(1)).

Indeed, in this case, in the definition of the set A in (7.2), we can take L = |1(en)/*] for any
e > 0, making |A|/|G| arbitrary small. One can improve the constant by replacing A with

{w-Z|we Z* and Zle lwi|> < L(k,n)},

where L(k,n) is the maximal integer satisfying [{w € Z* | 1| |w;|* < L(k,n)}| < In. JAN

7.3 Upper Bound on Relaxation Time

In this subsection, we establish the upper bound on the relaxation time in Theorem 7.1, ie (7.1b).
We prove it for the usual relaxation time t..; the same proof applies to bound the absolute relaxa-
tion time t7,,. In particular, we bound the probability that 1 — A2 is small; a completely analogous
calculation bounds the probability that 1 + A, is small. We only present the former calculation.

For ease of presentation, we assume first that k& > 3d(G). In §7.4, we explain how to relax this
condition, to prove the complete theorem.

Eigenstatistic Preliminaries. Decompose G as @&¢ Zm;- An orthogonal basis of eigenvectors for P,
the transition matrix of the corresponding discrete-time walk, is given by

d
(fo |z €G) where fu(y) = cos(2m > ziy;/m;j),
with corresponding eigenvalues given by

(Ao |2 € G) where X, = %Zle cos(2m(z - Z;)),

where Z; =xz;/m; forall j=1,..,d and z-Z;= Z‘;:l z; 7] Jm;

is the standard inner-product on R%, where Zf is the j-th coordinate of the i-th generator Z;;
here we identify Z and Z; with elements of R? in a natural manner. This can be verified via an
elementary calculation. Alternatively, it can also be derived from the fact that (f, | * € G) are the
real parts of the characters of GG in the representation-theoretic sense.

Observe that Ay = 1. Our goal is to bound min{l — A, | z € G\ {0}} from below. For « € R,
let {a} be the unique number in (-3, 3] so that « — {a} € Z. A simple calculation shows that
2(mp)? > 1—cos(2mp) > 2(mp)? for all p € [—4, 3]; see [17, Lemma D.1]. It follows from this that

1=, > 258 (5.2,)2 A (7.5)
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Outline of Proof for G = Z,,. 1t is instructive to consider the case d = 1, as it serves as motivation
for the definitions of s.(z) and A(s) below. If d = 1 then G = Z,,. Let s = s(x) = n/gced(n, ).
Observe that {2Z;} ~ Unif{{1/s},{2/s}, ..., {1}}. Recall that, here, {m/s} € (-1, 1], as above.

Consider first the case s = s(z) < C’nl/’“. In this case, 1 — A, > cn~2/% provided that at least
q = [cks®*n=2/%] of the generators Z; do not satisfy that {#Z;} = 0. Hence P(1 — \, < cn=?/F) <
%sq_k < s79%/10 where the last inequality holds provided that ¢ > 0 is sufficiently small. There
are at most ¢ different € G with s(x) = £. The union bound then says that there is no z with
s(z) < Cn'/* such that 1 — A, < en™2/% whp.

Now consider the case s = s(z) > Cn'/*. Let V; := ¢ — 1 if [{2Z;}| € J;, where J; := [0, 53]
and J; = (451, 557] for € > 1, where M := [4n'/*]. Then, Y;/M? < Y?/M? < {2Z;}*. Finally,
a simple combinatorial calculation, which we later present, gives P(+ Zle Y; < 1/10) < 27%/n.
The proof can now be concluded by a union bound over all 2 such that s(z) > Cn'/k.

In the above calculation, we obtain a better upper bound on P(1 — \, < cn~2/*) when s(x)
is large. When d > 1, loosely speaking, our argument allows us to reduce the analysis to the case
that G = Z,y,, for any j € [d]. This reduces the analysis to the one above, with the quantity n

above remaining the same, rather than taking the value m;; above, the fact that n = |G| only
played a role in bounding |{z € G | s(xz) = ¢}|. By the above analysis, we want to pick j such that
m;/ ged(z;, mj) = max;epq mi/ ged(z;, m;) =: s.(x). We consider the two cases s,(z) > Cn'/*

and s, (z) < Cn'/* and derive the same estimates on P(1 — A, < en~2/%), with s, (z) playing here
the role of s(x) above, as in the case d = 1 outlined above.

To conclude by a union bound, we also require an upper bound on rs = |{z € G | s.(z) = s}|
from which we can deduce that ) __ -1/« res~9%%/10 = o(1). This is where we require the assumption
that k > 3d—or with a bit more care, that k > (2 + €)d for some constant & > 0. A

Proof of Upper Bound in Theorem 7.1. For each x € GG, we make the following definitions:

g; = gj(z) == ged(z;, m;) for each j > 1;
sy = 8,(x) == max{m;/g; |j e{1,...d}};
A(s) ={z € G| s.(x) =s} for each s > 1;

={j € {1,...,]} | ged(j,j') =1}| for each j > 1.
From this, we claim that we are able to deduce, for s > 2, that
s A\ d s . d d
[A()] < (X5 0()" < (1+ 3550 - 1) < (357)" (7.6)
Indeed, ¢(j) < j — 1 for j > 2, and observe that
if r divides m, then |{a € {1,...,m} | gcd(a,m) =r}| = ¢(m/r);

hence, summing over the set of possible values for m;/g;, which by definition of A(s) is {1, ..., s},
we have |A(s)|'/? < > 5=1¢(j). We are then able to deduce the upper bound, ie (7.1b), from
Proposition 7.4, which we state precisely below. Indeed, first write

p(s):== max P(]1 -\, <en 2/]“)

z:54 (x)=s

We control this probability using (7.5, 7.6), along with Proposition 7.4 below, which states that

—9RM10 where s, (x) < Cn'/k
P(LYF (2.2} <en %) < 5«(2) A= ’
(i Limafz- 2} < en )= 27k /n where  s,(z) > Cn'/k,

for some absolute constants ¢ and C. Applying these and letting ¢’ := ¢ - % gives
oy B(L= Ao < ¢n/%) < nmax,s opn pls) + Ygerecnin [A(5) p(s)
<27k ypomdy 524(25)~9/10 < 9=k,
where we have used k > 3d and the fact that s.(z) > 1 for all  # 0. Hence, by the union bound,
Pt > n?* /) =P(y < n"#F) =P(3z € Gst 1 -\, < n~ /%) <27F,
This concludes the proof of the upper bound when &k > 3d(G), modulo Proposition 7.4. O
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It remains to state and prove the quoted Proposition 7.4, then extend the range of k.

Proposition 7.4. There exist absolute constants ¢ € (0,1) and C such that

54 (x) R0 where s, (x) < Cn'/*, (7.7a)

P(LSF {2232 <en %) <
(5 2 ) 27%/n where s, (x) > Cn'/*, (7.7b)

Proof. Fix z € G. First consider the case that s == s,(z) > Cn'/*, ie (7.7b). Let j == j(z) be

a coordinate satisfying s = m;/g;. Denote m = mj(,) and g := g;(,). Observe that z; 7] ~Aid
Unif{g, 2g, ..., m} for each i. Hence, for each i, we have
U; =7, Z] ~ Unif{1/s,2/s,...,1}. (7.8)
By averaging over (a;)¥_;, where a; = D eeqnangy x0Z¢ /my}, recalling that {a} is the
unique number in (—3, 1] so that a — {a} € Z, it suffices to show that

k 2 —2/k —k
bl,...,bkrél[afi/zl/ﬂp(% S U+ b} < en™¥F) <27k, (7.9)

Replacing ¢ with 4¢ we may assume that b; € %Z for all i. Indeed, if
b — £/s| <1/(2s), ie |b;—¢/s| =min{|b; —a||aec iZ},
then {U; + ¢/s}? < 4{U; + b;}?. Hence
if %ijl{U,- +b;}2 <en~?* then %Z?:f{Ui +0/s}% < den~2/F,

If b; € 1Z, then {U; +b;} has the same law as {U;} by (7.8). Hence, we may assume b; = 0 for all i.

We now split [0, %] into M = [4n'/*] consecutive intervals of equal length .Jy, ..., Jys, where
Ji =10, 5% and Jp = (55F, 557] for € > 1. Let Y; := ¢ — 1 if |{U;}| € Jo. Clearly, 1Y;/M? <

1Y2/M? < {U;}*. It thus suffices to show that

P(3 Y, Yi < &) <27%/n.

This last claim follows by a simple counting argument: there are M* total assignments of the Y;j-s,
but at most L(k) := ((12}2/110]) < 2% assignments satisfy Ele Y; < 15, since L(k)/M* < 27Fp~1,

We now prove the case s = s,(z) < Cn'/*, ie (7.7a). By the same reasoning as for (7.9), it
suffices to show that

ma.

1k : N2 —2/k —9k/10
- bke[f}i/Z,l/Q]P(k S {Ui+ b} <en?F) <s . (7.10)

Regardless of b;, there is at most one a = a(b;) € {1/s,2/s,...,1} such that {a + b;}? < (2s)72,
and hence by (7.8), for all ¢, we have

P{U; + b} < (25)72) < 1/s.

If there is no such value a(b;), then set a(b;) := —1.
If {U; +b;}? > (25)~2 for at least ¢ := k - 4cs?>n =2/ of the i-s, ie

if [{ie{l,..k}|U;#a(b)}|>gq then %Zle{Ui + ;Y2 > en2k,

as desired. As s < Cn'/*, by taking ¢ sufficiently small in terms of C, we can make ¢/k sufficiently
small so that the following holds:

P(|{i € {1, b} | Ui # alb)}] < ) S (5)s"~" 557210, O
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7.4 Relaxing the Conditions on k

In this subsection, we explain how to relax the conditions on k. First we can relax from k > 3d(G)
to k — 2d(G) =< k, valid for every group size n = |G|.

We now give conditions under which this can be relaxed to k — d(G) < k. If G = Z for a
prime p, then one can relax this further to k¥ — d 2 d, and even allow k — d(G) < d(G), provided
p diverges. (In this case, the term 27% has to be replaced by another term which tends to zero
at a slower rate as k — o0.) This follows from the fact that now we only need to consider (7.6)
above with s := p and we can replace (7.6) with |A(p)| = p? — 1. So the condition k& — d(G) =< k is
sufficient when G = Zg with p prime.

We now show that if |G| is ‘typical’ (in a precise sense), then the same condition is sufficient.
In the proof above, in (7.6), we used the crude bound

A()] < (Tiepy 00) < (35%)".

Instead, recalling that we write 4! n to mean that ¢ divides n, we can use the improved bound

A(s)] < (Siepi1in)”.

In [17, Lemma F.7], we show that, for all € > 0, there exists a constant C! and a density-(1 — ¢)
set B. C N such that, for all n € B, and all 2 < s < n, we have

Dicls i1(itn) < C!s(log s)2.

Using this to derive an improved bound on |A(s)|, and adjusting some of the constants in the proof
in an appropriate manner, an inspection of the proof reveals that, for all n € B, and all § > 0,
there exists a positive constant C; 5 so that, for all Abelian groups of size n, if £ > (1 + J)d, then

P(trel(Gr) > Cesn/*) < e7H/Ces,

8 Open Questions and Conjectures

We close the paper with some questions which are left open.

1: Typical Distance and Diameter for All Abelian Groups

In our typical distance theorem, there were some conditions on the group. We allowed any group
with d(G) < log |G|/ loglogk if 1 < k < log |G|, but once d(G) became larger than this or k be-
came order log |G|, we had to impose conditions. We conjecture that these are artefacts of the proof.

Conjecture 1. Let G be an Abelian group. Suppose that 1 < k < log|G| and k —
d(G) > 1. Then the typical distance statistic concentrates at a value which depends
only on k and G, not the particular realisation of the generators. Further, if k < log |G]|
and k — d(G) < k, then it concentrates at a value which depends only on k and |G)|.

The claim when 1 < k < log|G| and k — d(G) < k is a natural extension of Theorem 2.2.
Further, if k& < /log|G|/logloglog |G|, then k — d(G) > 1 is sufficient, by Hypothesis A. Once
we relax to k — d(G) > 1, for larger k, we still expect concentration of typical distance for all
Abelian groups, but now the value will likely depend on the specific group. Compare this with the
occurrence of cutoff for the random walk on the random Cayley graph established in [13].

There are two levels on which concentration occurs: first, for a fixed graph G(z), one draws
a U ~ Unif(G) and looks for concentration of dist(id, U) at some value, say f(z); second, one
draws Z uniformly and looks for concentration of f(Z). The second is the meat of Conjecture 1.
Indeed, our lower bound on typical distance holds for all Abelian groups and all Cayley graphs
with k generators, thus necessarily Pg(.)(dist(id, U) 2 E|G|Y*) = 1 — o(1) for all such Cayley
graphs G(z). Additionally, our spectral gap estimate (Theorem E) says that the gap is order
|G|~2/* if k — 2d(G) < k (or when k — d(G) =< k and |G| is ‘typical’) whp over uniform Z.
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Since u + dist(id, u) is a 1-Lipschitz function, by Poincaré’s inequality Varg.)(dist(id,U)) <
tye1(G(z)). For all multisets z of size k satisfying the aforementioned spectral gap estimate from
Theorem E (which holds whp for G}), using our deterministic lower bound on the typical distance,
we see that distg . (id, U) concentrates at some value f(z), which may depend on z, by Chebyshev’s
inequality. We conJecture that in fact f(Z) concentrates at some value D.

It is easy to see that the typical distance and diameter are always the same up to constants. We
conjecture that the diameter of Gy, concentrates whp whenever 1 < k < log|G| and k —d(G) > 1.
We leave open the question of finding conditions under which the diameter and typical distance
are asymptotically equivalent whp.

2: Isoperimetry for Random Cayley Graphs
The isoperimetric, or Cheeger, constant of a finite d-regular graph G = (V, E) is defined as

D, = min - $(S) where @(S) = %H{a b} €E|ac S be S}

1
d1<|s|<i|v]
More generally, the isoperimetric constant is defined for Markov chains; see [22, §7.2]. For a given
stochastic matrix P, it is easy to see that the original chain P, the time-reversal P* and the
additive symmetrisation (P + P*) all have the same isoperimetric profile. Thus the isoperimetric
constant for a directed Cayley graphs is the same as that for the undirected version.

The following conjecture asserts that the Cheeger constant is, up to a constant factor, the same
as that of the standard Cayley graph of Z% where L is such that n =< L*.

Conjecture 2. There exists a constant ¢ so that, for all ¢ € (0, 1), there exist constants
ne and M, so that, for every finite group G of size at least n., when k > M., we have

P(®.(Gr) < C\G|_1/k) <e,
where @, (Gy) is the Cheeger constant of a random Cayley graph with k generators.

By [26, Theorem 6.29], which regards expansion of general Cayley graphs, along with out upper
bound on typical distance (and hence on diameter), we can prove this conjecture up to a factor k.

By the well-known discrete analogue of Cheeger’s inequality, discovered independently by mul-
tiple authors—see, for example, [22, Theorem 13.10]—we have 1y < ®, < \/27. Determining the
correct order of ®, in our model remains an open problem. We conjecture that the correct order
of @, is given by /7, ie order |G|~1/*, using Theorem E for the order of the spectral gap.

The celebrated Alon—-Roichman theorem states that the Cayley graph of any finite group G
is a (1 — €)-expander (ie ®, > 1 —¢) whp when k& > C.log|G|, for some constant C¢; the best
known upper bound on C. is O(1/&?). Naor [28, Theorem 1.2] refines this for Abelian groups he
showed that one can in fact bound |(I) -1 < 5\/10g|S|/log|G | for all S with 1 < |S] < 5|V|
simultaneously, when k/logn > C/&? for a constant C. In recent work, Sah, Sawhney and Zhao [32]
extended Naor’s result to all groups.
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