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SUMMARY
Organ function emerges from the interactions between their constituent cells. The investigation of cellular
organization can provide insight into organ function following structure-function relationships. Here, we inves-
tigate the extent to which properties in cellular organization can arise ‘‘for free’’ as an emergent property of
embedding cells in space versus those that are actively generated by patterning processes. Default cellular
configurations were established using three-dimensional (3D) digital tissue models. Network-based analysis
of these synthetic cellular assemblies established a quantitative topological baseline of cellular organization,
granted by virtue of passive spatial packing and the minimal amount of order that emerges for free in tessel-
lated tissues. A 3D cellular-resolution digital tissue atlas for the model plant species Arabidopsis was gener-
ated, and the extent towhich the organs in this organismconform to the default configurationswas established
through statistical comparisons with digital tissue models. Cells in different tissues of Arabidopsis do not
conform to random packing arrangements to varying degrees. Most closely matching the random models
was the undifferentiated shoot apical meristem (SAM) from which aerial organs emanate. By contrast, leaf
and sepal tissue showed the greatest deviation from this baseline, suggesting these to be themost ‘‘complex’’
tissues inArabidopsis. Investigation of the patterning principles responsible for the gap between these tissues
and default patterns revealed cell elongation and the introduction of air spaces to contribute toward additional
organpatterning complexity. Thiswork establishes a quantitativemorphospace to understand the principles of
organ construction and its diversity within a single organism.
INTRODUCTION

Since the emergence of multicellular organisms, an increase in

complexity has been shown to operate across multiple scales

and domains of life.1–4 One example of this is the advent of novel

cell types.1 This has been conflated to the capacity of organisms

to carry out novel biological processes and functions and the

ability to occupy new ecological niches.5,6

Functionality in multicellular systems may also emerge from

structure-function relationships in terms of the configurations

of the cells that make up organs.7,8 The relative position of

cells and cell types in space confers tissues with specific bio-

physical as well as biochemical properties. This is illustrated

by the misplacement of cells in tissues underpinning many

diseases and critical developmental processes, such as can-

cer,9–11 mechanical deformation during development,12 and

brain development.13

Control of the spatial arrangement of cells in plants is particu-

larly pertinent, as cells that share a cell wall cannot reconfigure

relative to one other once a pattern has been established.14,15

Toward understanding emergent organ function, a quantita-

tive understanding of the cellular configurations from which

they are constructed can be pursued. Mapping cellular connec-

tivity with a view to understanding system function has been per-

formed previously in nervous systems.8,16 The application of
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network science-based analyses of these cellular interaction

networks has proven useful in understanding both system-level

function and the role of individual cells.8,17 Cellular connectivity

mapping and network science have also been used to uncover

putative structure-function relationships in plant tissues,18–20

providing a path to understanding quantitative organ design

principles outside of nervous systems.

This study seeks to understand the organizational properties of

cells embedded in three-dimensional (3D) space. Specifically,

which topological properties passively emerge due to the inherent

properties of cells packed in space (complexity for free21) versus

those that are generated by active patterning mechanisms. We

address this question by taking a quantitative network-based

methodology to investigate multicellular organization to quantify

the spatial relationships of cells embedded in 3D space. Using

this approach, cells are considered nodes within a graph, con-

nected by edges if there is a shared physical boundary between

them. We build three families of virtual organ models that make

use of isotropic tessellations of centroid point clouds.22 These

models provide a baseline for the cellular configurations that

can arise due to 3D cell packing and identify topological features

associated with them. Comparison of these computationally

generated organs with cellular connectomes derived from the

plant Arabidopsis identified the extent to which active patterning

leads to the construction of different organs in this species.
e Author(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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RESULTS

Generation of a 3D digital single-cell atlas of
Arabidopsis tissues
Themodel plant Arabidopsis generates a diversity of tissues. We

sought to quantitatively analyze the diversity of cellular configu-

rations in this organism through the generation of a 3D digital sin-

gle-cell atlas. Comprehensive digital capture of cells in tissues

and their abstraction into connectivity networks enabled quanti-

tative approaches using network science to be pursued.23

Fully mature tissues were sampled, representing a morpho-

metric analysis of the endpoint of developmental patterning pro-

cesses.7 Tissues examined included the shoot apical meristem

(SAM) (representing the apical stem cell niche), the mature

root, the leaf (Figure 1A), the hypocotyl (stem from a seedling),

the flower components (anther, filament, pedicel, and sepal),

and maternal fruit tissue named the valve (Figure 1B). These

represent a broad sampling of the tissues produced by this

model plant species.

Generation of quantitative organ cellular patterning
morphospaces
The quantitative relationship between cellular organization in

Arabidopsis organs was examined using a quantitative topolog-

ical morphospace. This organ design space made use of con-

nectomes describing global cellular connectivity and consists

of two dimensions: local efficiency and global efficiency.24

Local efficiency deals with the impact of random failure of no-

des in the local increase of shortest path lengths between pairs

of nodes. This describes the resilience of a network to random

errors in terms of increased costs of transportation locally.

Global efficiency deals with the efficient routing of information

across the whole network. This is calculated by considering

the shortest paths between all pairs of nodes, addressing how

easily information can move across a given network. As the net-

works analyzed were subsampled to control for their size, we

term this normalized global efficiency. A trade-off between

communication efficiencies at these scales is therefore present

and represents a well-established means of analyzing spatially

constrained transport networks,25 including a multicellular

organ.

The normalized global efficiency of different Arabidopsis tis-

sues is relatively constant, suggesting that they are robust to

information transfer at this scale (Figure 1C). By contrast, differ-

ences in local efficiency are observed, suggesting a varying

capacity to buffer local communication efficiency against the

loss of individual cells across tissues. The ratio of epidermal to

internal cells in tissues did not have a large impact on degree

or transport efficiency (Figures S1A–S1C).

Generation of 3D virtual organ models
In order to explore the topological landscape that cells

embedded in 3D space occupy, a series of geometric, spatially

embedded models were developed. These models use isotropic

3D Voronoi tessellation originating from computationally posi-

tioned centroids to create ‘‘virtual organs’’ consisting of inter-

connected cells.26 The creation of these virtual organ prototypes

started with a set of centroids in 3D space, each representing a

single cell, which is expanded simultaneously in all directions.
Where two of these expanding centroids meet, a physical con-

tact between cells is created, delimiting the boundary of the cells

as well as providing an edge for the network formalism that we

use in this study. Different approaches to centroid positioning

were used to generate a diversity of multicellular topologies.

The space used to generate virtual organ models was con-

strained using a sphere that encapsulated the space within

which the cells are created (Figure 2A).

Method A: Random centroid positioning models
In the first series of models, iterative random positioning of cen-

troids was performed. The three coordinates for the centroid po-

sitionswere drawn froma uniform distribution ofmatching size to

the diameter of the sphere. Centroids lying within the sphere

were accepted, whereas centroids located outside the sphere

boundary were rejected (Figure 2A). This process was carried

out until a certain number of centroids was reached, from 4 to

512 nodes/cells (Figures 2B and 2C). With the centroids posi-

tioned, a deterministic isotropic 3D Voronoi tessellation was car-

ried out in order to define the volumes corresponding to each

cell.27 Upon construction of the cellular volumes, a network

was extracted, with nodes representing cells and edges repre-

senting physical connections between them.

In the extracted networks representing cellular connectivity,

the relationship between the number of nodes and edges in net-

works of increasing size was examined. A linear correlation was

observed in a log-log plot (Figure 2B), suggesting that this rela-

tionship is scale invariant, a property observed inmany randomly

generated networks.28

For each of the random centroid position networks, cell topo-

logical properties were analyzed using degree (number of neigh-

bors a cell has) (Figure 2C), betweenness centrality, and random-

walk centrality (how many shortest paths the cell lies upon in the

multicellular network) (Figures 2D, 2E, and S1).23 Increasing the

number of cells led to large topological variability in models with

respect to betweenness centrality and random-walk centrality,

indicating that these local and global properties are variant

across different organ sizes in this model class.

Method B: Noisy perturbation of ordered centroid
lattices
This second class of model started from ordered lattices of cell

centroids and perturbing their positions with increasing amounts

of variability to overcome the order of this configuration (Fig-

ure 2F). The modeling process started with an ordered set of

512 centroids within a sphere. The centroids were then sepa-

rated 10 mm in the X- and Y- directions and staggered in the Z di-

rection, forming a regular structure similar to those obtained from

the optimal packing of spheres in 3D.29 This configuration can be

tessellated to obtain perfectly ordered lattices, with 12 neighbors

per node (Figures 2G and S2). However, slight changes in the

starting position of the centroids give rise to different systems

in terms of the local and global properties discussed before

(Figures 2H–2J and S2), even when breaking the initial symmetry

by a relatively small perturbation.29

Increasing the amount of noise applied to centroid positions

led to an increased degree (Figure 2H) and coefficient of variance

in degree (Figure 2I). The random-walk centrality of thesemodels

also decreased with increasing amounts of noise, whereas the
Current Biology 33, 4798–4806, November 20, 2023 4799



Figure 1. A quantitative morphospace of

cellular organization in Arabidopsis organs

3D renderings of Arabidopsis organs imaged and

analyzed in this study

(A) Tissues from the vegetative plant and (B) from the

flower. Samples were segmented at cellular resolution

in 3D and false colored. Cells are not drawn to scale.

Arabidopsis plant graphic in (A) and flower in

(B) adapted from Bouch�e 2018, https://figshare.com/

articles/2018_Arabidopsis_flowering_plant/7159937

and https://figshare.com/articles/Flower_Arabidopsis_

2018/7159928.

(C) Quantitative morphospace showing the local and

global transport efficiencies of real organs and each of

the three model classes generated. Error bars repre-

sent one standard deviation of the sample. See also

Figures S1–S3.
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Figure 2. Identification of default cellular configurations using virtual 3D organ models

Construction of 3D digital organ prototypes using different centroid positioning and Voronoi tessellations

(A) Schematic showing construction of random centroid positioning. Centroids are placed randomly in space, and only those within a sphere are retained.

(B) Plot showing relationship between numbers of nodes and edges in random centroid position models.

(C) Spatial distribution of degree (number of neighbors) in different size random centroid position models on organ surface and cross-sections.

(D and E) (D) Relationship between coefficient of variation in degree for the random centroid model and (E) betweenness centrality.

(F) Schematic showing construction of noisy centroid position models.

(G) Voronoi organ models with different amounts of centroid noise.

(H) Spatial distribution of the number of neighbors in models with varying amounts of centroid noise in organ cross-sections.

(I) Same as (D) for the noisy centroid allocation model.

(J) Same as (E) for the noisy centroid allocation model.

(K) Schematic showing method used to spatially bias centroid position in skewed centroid position models.

(L) Voronoi organ models with different amounts of centroid position skew.

(M) Spatial distribution of the number of neighbors in models with varying amounts of centroid position skewing in organ cross-sections.

(N) Same as (D) for the skewed centroid position model.

(O) Same as (E) for the skewed centroid position model. 30 independent subsamples were generated for each of the organs. See also Figures S1–S3.
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variability of this measure increased (Figure S2), indicating a pro-

gressive convergence in path length and its robustness. The

variance in path length, as measured by betweenness centrality

and random-walk centrality, remained relatively constant

(Figures 2J and S2).

Method C: Biased positioning of centroids
Although some tissues are ordered and lattice-like in nature, this

does not capture the full diversity of cell positioning observed in

organs. Examples of organs that deviate from these models

include cells in different layers of the radially symmetrical Arabi-

dopsis root, which are not spaced evenly in the longitudinal axis

but are regularly spaced in the radial orientation,30 and giant cells

in plant sepals.31 To explore the effects of this asymmetric cell

positioning on local and global cellular connectivity, an additional

set of models was constructed looking at non-uniform cell

distributions.

Centroids were positioned in a random and biased manner by

placing them following a normal distribution rather than uniform

distribution (Figure 2K). Using a normal distribution ensures that

cell positioning is not uniform within the synthetic organ: close to

the center of the distribution, coordinates are more likely to be

chosen, leading to a higher density of centroids.

The X, Y, and Z coordinates were drawn from a normal distri-

bution centered at the boundary of a target sphere. Like the first

model, centroids located outside the sphere were discarded,

whereas centroids inside the sphere were kept until 512 valid

centroids were selected. Different values of s were used to

generate Gaussian distributions for centroid sampling around

an identical mean, resulting in 3D Voronoi tessellation models

with increasingly biased cell position toward one pole of the or-

gan (Figure 2L).

Greater bias in centroid position led to increases in average

degree (Figure 2M) and decreased coefficients of variation in

this samemeasure (Figures 2N and S2). A diminished coefficient

of variation was also observed in the betweenness centrality

(Figure 2O) and random-walk centrality of increasingly skewed

models (Figure S2). The use of biased centroid positions also

led to a broader distribution of cell sizes as compared with the

other two model classes (Figure S3).

Quantitative comparison on default cellular
configurations with multicellular complexity in a plant
species
Virtual digital tissue models and their analysis using network sci-

ence provide a developmental patterning baseline describing the

organizational features that can emerge in complex assemblies

of cells in the absence of active processes. We sought to

examine the extent to which cellular topologies in a complex

living organism deviate from these baseline organ designs.

In contrast to the tissue topologies in Arabidopsis organs,

each of the three classes of models had a relatively constant

local efficiency and varying global efficiencies (Figure 1C).

None of the models closely reproduced the real organs in terms

of both efficiency parameters. This suggested that the topolog-

ical features conferred to multicellular assemblies through

random cellular configurations are not observed in this plant spe-

cies, and additional patterning processes beyond mere cellular

packing are involved in plant tissue formation.
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Modification of random geometric models through cell
deletion and fusion
The inability of the random geometric models to fully recapitulate

observed tissue topologies in Arabidopsis prompted the ques-

tion as to which aspects of the models diverged from configura-

tions observed in nature.

Iterations of 3D Voronoi tessellation create virtual ‘‘tissues,’’

which are roughly the samesize and extendapproximately equally

in all directions from their centroids. This accurately reflects the

cellular packing that makes up tissues, which are under the con-

straints of mechanical interactions with their neighbors.14,32

Plant tissues sometimes deviate from these tessellated

models in 2 primary ways. The first is the presence of cell types

that are elongated relative to their neighbors. Examples of this

include the root cap, some leaf epidermal cells, and giant cells

in sepals.31,33 Elongated cells are not present in the models

generated. Although the third class of randommodel with biased

centroid positioning created a non-uniform cell density and cell

size distribution (Figure S4D), the larger cells were isotropic in

shape owing to their generation following a 3D Voronoi process,

which grows equally in every direction.

The second way in which plant tissues deviate from these

models is in the presence of air spaces. Many plant tissues

contain gaps within them, including photosynthetic tissues such

as leaves and sepals,34 which facilitate gas exchangewith internal

mesophyll cells.

Additional organ models were generated, which include each

elongated cell and air space. This was achieved by either fusing

or deleting virtual cells, respectively (Figure 3A).

The noisy centroid position model with 0.001 mm noise was

selected as the baseline model as it most closely represented

observed plant tissue topologies (Figure 1C). Fusion and deletion

were carried out in twoways. First, using a 512-celledmodel as a

template, node fusion and deletion were performed, reaching

variable numbers of final cells (Figure 3B). Additionally, starting

from a model with an appropriate number of extra cells, different

fractions of cells were randomly deleted, reaching 256 final no-

des (Figure 3C). These altered networks were plotted onto the

quantitative plant organmorphospace based on local and global

transport efficiency, comparing them with real tissues down-

sampled to 256 cells.

Progressive cell fusion made these models increasingly dis-

similar to observed tissues, shifting tissue transport properties

to greater normalized global efficiency values (Figure 3C). This

may be a consequence of networks becoming easier to traverse

through newly formed high-degree links (Figure 3D), whereas

local efficiency remained largely unchanged. Similar results

were observed when either the random packing (Figure S4) or

position bias models (Figure S4) were used as starting points.

In light of cell fusion functioning to create elongated cells, their

lack of impact on local transport efficiency reflects the observa-

tion that sepals lacking giant cells are observed and remain

functional.31

By contrast, cell deletion led to large relative decreases in local

efficiency and modest decreases in normalized global efficiency

(Figure 3B). Virtual organ models are therefore sensitive to loss

of cells (random failure), making them more difficult to traverse.

Deletion of cells brought organ models closer into the morpho-

space range occupied by plant organs than node fusion



Figure 3. Quantitative comparison of Arabidopsis organs with default cellular configurations

Quantitative analysis of virtual organ models with randomly packed cells model

(A) Schematic representation of the fusion and deletion of nodes in model networks.

(B) Quantitative morphospace using global and local transport efficiency of randomly packed cells with increasing amounts of total cells (magenta), fractions of

deleted cells (blue), or fused cells (green). All fusion and deletion templates are produced from the 512 cells model.Arabidopsis organ properties are shownwithin

the gray shaded area and black points.

(C) Comparison of downsampledArabidopsis organs (points) with synthetic networkswith a fraction of deleted cells (crosses), with 256 final cells. Each data point

in (B) and (C) corresponds to the average of 30 replicates of that model, with error bars extending to one standard deviation.

(D) Degree distributions of the randomly packed deletion and fusion models presented in (B).

(E) Comparison of degree distributions between downsampled real tissue networks from Arabidopsis organs and synthetic tissues, with varying degrees of node

deletion presented in (C). (D and E) The boxplots show the quartiles of the dataset, whereas the whiskers extend to show the remainder of the distribution. See

also Figures S3 and S4.

ll
OPEN ACCESSArticle
(Figures 3B and 3C). An overlap between some organs and

models is observed. For instance, the SAM, root, valve, anther,

filament, and pedicel are quite close to the networks generated

with 20% of random deleted nodes (Figure 3C). The hypocotyl

is close to 30% deletion, the leaf is close to 40% deletion, and

the sepal is unmatched by models presented here.
Although deleting cells decreased the average degree in these

networks (Figure 3D), this remained within the range of real plant

tissues (Figure 3E). By contrast, random fusion of cells did not

impact the overall degree distribution as much, predominantly

creating outliers in distributions while leaving average values

unchanged.
Current Biology 33, 4798–4806, November 20, 2023 4803



Figure 4. Distance of plant organ cellular configurations from

default topological space

(A) Plot depicting the extent of deviation of Arabidopsis organs from a default

organ design space. Using the 0.001 mm centroid noise method as a baseline

model, pairwise Euclidean distances between different Arabidopsis organs in

the local-global transport efficiency space are shown.

(B) Same as (A), using an 80 s cell positional bias model developmental

baseline. The boxplots show the quartiles of the dataset, whereas thewhiskers

extend to show the remainder of the distribution, except for points that are

determined to be ‘‘outliers,’’ using a method that is a function of the inter-

quartile range.
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Using the family of models using random and biased posi-

tioning of cell centroids as a starting point for node deletion

and fusion analyses yielded common patterns as the noisy

centroid starting point with respect to changes in degree and

placement within the quantitative morphospace (Figure S4).

Distance of Arabidopsis organs to a topological
developmental baseline
We sought to establish the extent to which the organization of

cells in the diverse tissues of the model plant Arabidopsis devi-

ates from the null-model configurations. In other words, to
4804 Current Biology 33, 4798–4806, November 20, 2023
what extent are active patterning processes required to generate

the cellular topologies observed across this plant?

Two models used were for comparison: the lattice noisy

centroid (0.001 mm) and the biased centroid positioning (80 s)

models, based on their proximity to real plant organs (Figure 1C).

For each of the plant organs, the Euclidean distance to each

developmental baseline was measured and plotted (Figure 4).

A similar ranking of organ complexity is observed with both

baseline models (Figures 4A and 4B). The Arabidopsis tissue

closest to the developmental baseline is the SAM. The undiffer-

entiated state of this pool of stem cells is therefore reflected by

minimal topological complexity present in the cellular

configuration.

Organs furthest from the developmental baseline included the

leaf and the sepal. The generative processes needed to make

these tissues, therefore, require the greatest amount of active

developmental patterning. These are highly specialized tissues

with airspaces that follow the specific functionality of the organ,

a structural difference captured by network metrics that can be

linked to their biological function. Such a difference in structure

was captured with additional processes, namely the deletion of

cells in our models.

DISCUSSION

Since the emergence of multicellular organisms, there has been

a constant evolution of new cell types and structures, pushing

the upper limits of organismal complexity.1 The evolution of

complexity is thought to be connected to the capacity to occupy

new niches, expanding the biological range of multicellular or-

ganisms. This link also implies a relationship between structure

and function, an idea that pervades much of biological theory.7

The changes in structure can be composed of changes in the

building blocks of tissues and organs, as well as the physical

embedding and spatial arrangement of cells within them.

This study investigated the extent to which these configura-

tions are generated by active patterning mechanisms versus to-

pological features that emerge ‘‘for free’’ by virtue of cells being

embedded in space. Using network science, we quantitatively

compared properties of cellular order in real tissues (Figure 1)

with ‘‘default’’ cellular patterns that arise in digital organ models

(Figure 2).

From this analysis, a morphospace of organ design was con-

structed,35 taking into consideration global transport optimiza-

tion as well as local resilience to cellular failure. In this design

space, bothmodels and real plant tissues segregate into specific

regions. Some parts of this morphospace occupied by real tis-

sues cannot be reached with the null models and thus require

invoking active patterning mechanisms that can further shape

cell topologies. We model these mechanisms by introducing

deletion and fusion of cells upon the synthetic networks created

by the models. These processes are assumed to simulate the

creation of airspaces36,37 within a tissue as well as the presence

of elongated cells and cell anisotropy.31,33

Following this examination, we conclude that there is a base-

line of order given for free to organ connectomes by virtue of be-

ing composed of cells packed in 3D space. Simpler tissues, like

the undifferentiated SAM,19 deviate least from this default design

paradigm, whereas other more specialized tissues deviate
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further from this baseline complexity. The more specialized and

‘‘non-SAM-like’’ the tissue becomes, themore its local efficiency

drops, suggesting tissue complexity comes at the cost of

network robustness.

By contrast, normalized global efficiency remained relatively

constant across all organs examined. The preservation of this

property may reflect a mode of imparting resilience to organs,

whereby the movement of pathogens, such as viruses, from

cell to cell is hampered across these spatially and topologically

constrained systems.

This creates a usable principle of how to obtain high-order

network properties from local changes in topology. Such insight

might prove valuable to those constructing non-natural organs

and organoids from scratch and their use as models of dis-

ease,38–40 especially since the capacity to fabricate 3D organs

with 3D printing techniques has become a reality.41,42 Using

the design principles described here, tailored transport effi-

ciencies and resiliencies to cellular failure can be obtained,

paving the way for new biological tissues and organs with de-

signed functionalities.

The 3D digital tissue atlas generated in this study provides a

valuable resource to explore tissue complexity and 3D cell shapes

inArabidopsis. Toward this, cell types have been annotatedwithin

these represented datasets, enabling cell-type-specific analyses

to be performed. The data have been used previously to demon-

strate the efficacy of cell segmentation algorithms43 andmay also

be used as 3D templates to run diverse simulations of transport

and growth processes in different organs. Image and network

data are freely available at https://osf.io/fzr56/.
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This study did not generate new unique reagents.

Data and code availability

d Data generated in this study has been deposited to the osf repositories https://osf.io/fzr56/ and https://osf.io/k2npx/.

d All original code has been deposited at Zenodo at https://doi.org/10.5281/zenodo.8322918 and is publicly available as of the

date of publication.

d DOIs are listed in the key resources table.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Arabidopsis growth conditions
Arabidopsis plants were grown in soil (2:1:1, peat:pearlite:vermiculite) under glasshouse conditionswith 16 h light (23�C) and 8 h dark,

at 22 �C under glasshouse conditions. Samples from mature plants were collected and placed directly into the fixative 3:1

ethanol:acetic.

Organ staining, clearing and imaging
Cell walls were stained using themPA-PI method as previously described.20,44 Stained samples were placed in a 35mmCellviewCell

Culture Dish (Greiner, UK) and mounted in chloral hydrate clearing solution (4 g chloral hydrate, 1 mL glycerol, 2 mL water). Tissues

were imaged using an inverted Zeiss LSM710 Confocal with a 25X Oil immersion lens.

Data preprocessing
Prior to cell segmentation, image stacks were normalized in MorphoGraphX27 using the ITK plugin Normalize Stack with settlings X,

Y, Z radius 25, X, Y, Z s = 0.5, Threshold = 50 and Blur factor = 0.7. A Gaussian Blur was next applied to the image with a radius of

0.3-0.5, depending on the tissue.

Polygonal meshes capturing cell surfaces were generated using the 3D Marching Cubes algorithm, with a cube size ranging from

0.7-1.0 depending on the tissue, followed by 30 smooth passes at the time of the mesh creation to preserve cellular connectivity.45
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Segmentation and generation of cellular connectivity networks
An ITK autoseeded watershed was applied to segment the cells of tissues in 3D (www.itk.org). The outputs of this process were

manually curated to ensure accuracy and fuse multiple segments representing individual cells. Segmented cells were used for

both geometric analyses and polygonal meshes for topological analyses, as outlined below.

Topological analyses of cellular connectivity were performed on segmented organs using the generated polygonal meshes and the

algorithm included in 3DCellAtlas.46 Entire segmented organs were topologically analysed, however only a subset of the cells within

this tissue, representing regions which were segmented to the highest quality were reported on. Additional cells between the ana-

lysed portion of the tissue and sample boundary provided a topological buffering which limit the impact of edge effects due to the

incomplete imaging of whole organs (Figure S3).19,20 Cell interfaces less at 1 mm2 were removed from the network as this may arise

due to noise present in the image acquisition and analysis pipeline. Topological analyses of cellular connectivity were performed us-

ing NetworkX in Python.47

METHOD DETAILS

3D Voronoi models
Voronoi models were generated computationally placing centroid positions using MorphoGraphX,27 which were used in Voronoi

tessellation within a bounding mesh.22 Centroids were then imported into MorphoGraphX using the ‘Load Point Cloud’ process in

CellMaker.27,48 Surface meshes were created using the CellMaker in order to prevent centroids on the surface of the model from

growing infinitely in Voronoi tessellation due to lack of a boundary.With both centroids and a surfacemesh loaded, 3D Voronoi tessel-

lation of points was then carried out using the ‘Voronoi Cells from Point Cloud’ process (relevant parameters: cage points = 1000,

minimum distance cage points = 1.0, threshold merging = 0.01).

Network extraction and analysis
Cellular connectivity networks of virtual and real segmented organs were extracted in MorphoGraphX.46 Edge lists were produced

and imported into Python as an undirected network using the NetworkX library.47 Graph objects in NetworkX are stored as adjacency

dictionaries for fast lookup and data manipulation. Node network measures were computed using standard NetworkX functions.47,49

In the case of betweenness centrality,50 all data shown corresponds to the log transform of the original measures. Global and local

efficiencies were calculated using a Python script using NetworkX (version 1.1), following the formula and process described in

Latora and Marchiori.24

Random positioning model
Centroids were computationally positioned in a cube with random coordinates following a uniform distribution usingMorphoGraphX.

This cube had double the length, width and height of the target sphere radius. Centroids falling outside of the sphere were rejected,

while centroids inside of the sphere were accepted, until the desired number of centroids was reached (from 4 to 512 nodes). This

point cloud of centroids was then 3D tessellated using the Voronoi tessellation process.22 30 replicate models were created for each

set of parameters used.

Centroid noise model
A regular lattice configuration spanning a target-sized sphere was pre-computed and used as the starting point for this family of

models. This lattice was generated using Python following a triangular conformation with 12 edges per node. To this point cloud

of orderly placed centroids, increasing amounts of positional noise were applied, using a uniform distribution of specified range

(from +/-0.001 mm to +/-4 mm). Upon this transformation, the point cloud was tessellated using 3D Voronoi tessellation.22 30 replicate

models were created for each set of parameters used.

Biased centroid position model
Using MorphoGraphX, Centroids 3D coordinates were generated using a Gaussian distribution with mean set to the boundary of the

target sphere. Centroids falling outside of the sphere were rejected, while centroids inside of the sphere were accepted, until the

desired number of centroids was reached (512 nodes). The usage of a Gaussian distribution instead of a uniform distribution led

to the creation of different regions within the sphere: close to the mean of the 3DGaussian distribution centroids were tightly packed,

while on the other end of the point cloud centroids were located further apart. As a control parameter, the s of the normal distribution

was used to control the bias in the positioning of the nodes: with high spread the Gaussian distribution more closely resembles a

uniform distribution, while at lower spreads the bias is accentuated. This way, the 3D Voronoi tessellation gives rise to a wider range

of cell sizes (Figure S3). 30 replicate models were created for each set of parameters used.

Fusion and deletion of nodes in the models
Fusion of nodes was addressed by random choice of a node and merge of that node with a randomly (uniformly) chosen neighbor. In

this way, all the previous node’s connections are inherited by the second. This was carried out until a given fraction of nodes had been

fused. In a similar manner, randomdeletion was carried out by removing a node and its edges from the graph, chosen using a random
e2 Current Biology 33, 4798–4806.e1–e3, November 20, 2023
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uniform distribution from the graph’s set, until a given fraction of nodes had been removed. Due to the impact of network fragmen-

tation into global efficiency calculations, only fully connected networks were considered for further analysis.

Distance to default cellular configuration calculations
To compute the distance of each tissue to these baseline configurations, a Euclidean distance was used using two dimensions, local

efficiency and global efficiency, following the formula:

D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ðLE1 � LE2Þ2+ðGE1 � GE2Þ2

ir

Where D stands for the topological distance between each of the topological datasets and LE and GE stand for local and global

efficiency, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model replicates in synthetic organs
30 independently produced replicate organs were used for each of the models and set of parameters used.

Subsampling of model networks and organ connectomes
To compare networks obtained by node deletion, starting templates were downscaled by removing the outer layer cells from the

starting 512 cell model. The outer-inner location of the nodes was identified by their degree, with lower degree nodes being present

on the outer edge of the graph. The subsampling was performed so that after removing a given fraction of nodes by random deletion,

the resulting graph would remain at 256 cells and thus be comparable to both the real organ andmodel connectomes downscaled to

the same size.

To compare biological organ networks with differing sizes, connectomes for each Arabidopsis organ were subsampled to defined

sizes. Starting from a random node in the graph, a breadth-first search algorithm51 was used to choose a 256-node sized connected

subgraph. This process was repeated 30 times to obtain independent replicates, which were later processed by calculating their

respective local and global efficiencies, and other network measures.

Statistical details
Boxplots in this article show the mean value of the distribution as a central line within the box. The limits of the box represent the

quartiles of the distribution while the whiskers extend to show the remainder of the sample. Outlier points were determined using

the inter-quartile range method.

For all distributions shown in the quantification of organs and models, each data point corresponds to the mean value of 30 rep-

licates, with error bars extending to one standard deviation of the distribution from the average value.
Current Biology 33, 4798–4806.e1–e3, November 20, 2023 e3


	A quantitative morphospace of multicellular organ design in the plant Arabidopsis
	Introduction
	Results
	Generation of a 3D digital single-cell atlas of Arabidopsis tissues
	Generation of quantitative organ cellular patterning morphospaces
	Generation of 3D virtual organ models
	Method A: Random centroid positioning models
	Method B: Noisy perturbation of ordered centroid lattices
	Method C: Biased positioning of centroids
	Quantitative comparison on default cellular configurations with multicellular complexity in a plant species
	Modification of random geometric models through cell deletion and fusion
	Distance of Arabidopsis organs to a topological developmental baseline

	Discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Arabidopsis growth conditions
	Organ staining, clearing and imaging
	Data preprocessing
	Segmentation and generation of cellular connectivity networks

	Method details
	3D Voronoi models
	Network extraction and analysis
	Random positioning model
	Centroid noise model
	Biased centroid position model
	Fusion and deletion of nodes in the models
	Distance to default cellular configuration calculations

	Quantification and statistical analysis
	Model replicates in synthetic organs
	Subsampling of model networks and organ connectomes
	Statistical details




