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Abstract

We present an innovative approach for capturing the complexity of ω-regular
languages using the concept of flowers. This semantic tool combines two
syntax-based definitions, namely the Mostowski hierarchy of word languages
and syntactic flowers. The former is based on deterministic parity automata
with a limited number of priorities, while the latter simplifies deterministic
parity automata by reducing the number of priorities used, without altering
their structure. Synthesising these two approaches yields a semantic concept
of flowers, which offers a more effective way of dealing with the complexity
of ω-regular languages. This letter provides a comprehensive definition of
semantic flowers and shows that it captures the complexity of ω-regular lan-
guages. We also show that this natural concept yields simple proofs of the
expressive power of good-for-games automata.

Keywords:
Flowers, ω-regular languages, Good-for-Games automata, Acceptance
conditions

1. Introduction

In this letter, we define flowers that capture the complexity of ω-regular
languages.

Flowers are a semantic concept that synergises two syntax based defini-
tions: the Mostowski hierarchy of word languages [1], which is defined over
the expressive power of deterministic parity automata with a restricted num-
ber of priorities, and syntactic flowers [2], which were introduced to simplify
deterministic parity automata (without changing their structure) by reducing
the number of priorities used (where possible).
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Freeing the beautiful concept of flowers from their syntactic shackles, we
derive a semantic definition of flowers that makes no references to the formal
acceptors of a language.

We obtain an alternative characterisation of the Mostowski hierarchy that
makes no reference to formal acceptors, while having a concept tightly related
to syntactic flowers that has proven useful for the simplification of determin-
istic parity automata, essentially providing a structure preserving translation
to an automaton from a minimal level in the Mostowski hierarchy, which co-
incides with the older Wagner hierarchy [3] that had been defined on Muller
automata.

We show that semantic flowers bear the thumbmark of a natural concept:
after establishing the standard connection to deterministic parity automata,
we show how organically this extends to good-for-games automata—not only
nondeterministic, but also alternating ones, and how smoothly it extends to
other acceptance mechanisms like Rabin, Streett, and Muller. The link back
to Muller automata reiterates the well-known link between the Mostowski [1]
and the Wagner hierarchy [3], linking flowers to both of them.

A word automaton recognising a language L is good-for-games (GFG)
if its composition with any game with winning condition L preserves the
game’s winner. These automata have been introduced in 2006 by Henzinger
and Piterman [4] and are similar in style to good-for-tree automata [5] and
history-deterministic automata [6]. GFG automata have been studied inten-
sively (see, for example, [7, 8, 9]).

The one-to-one relationship between deterministic and GFG acceptance
condition is easier to establish using semantic flowers than using existing
constructions from [10] and does not depend on deep classic insights like the
existence of finite state resolvers [11].

2. Preliminaries

We write N for the set of nonnegative integers. For a finite set X, we
use |X| to denote the number of its elements. We write B+(X) for the set
of positive Boolean formulas over X. We say that a set Y ⊆ X satisfies a
formula φ ∈ B+(X) if φ evaluates to true when all variables in Y are set to
true and all variables in X \ Y are set to false. Given a sequence x, x(i) is
the ith element of x (i starts from 0).
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2.1. Automata over infinite words

An alternating word automaton (with transition-based acceptance con-
dition) is a tuple A = (Σ, Q, q0, δ,Acc), where Σ is a finite alphabet, Q is
a finite set of states, q0 ∈ Q is the initial state, δ : Q × Σ → B+(Q) is a
transition function, and Acc is an acceptance mechanism. Alternating au-
tomata allow to combine both nondeterministic and universal transitions;
disjunctions in transition functions model the nondeterministic choices and
conjunctions model the universal choices.

An alternating word automaton is nondeterministic if the image of δ con-
sists only of such formulas that contain only disjunctions, and is deterministic
if the image of δ is a set of atomic subformulas (states).

A tree is a prefixed-closed set T ⊆ N∗. The elements of T are called
nodes and the empty word ε is the root of T . Given a finite alphabet Σ, a
Σ-labelled tree is a pair ⟨T, V ⟩ where T is a tree and V : T → Σ maps each
node of T to a letter in Σ.

A run (run tree) of A on an infinite word w is a Q-labelled tree ⟨T, r⟩
such that the following holds:

• r(ε) = q0;

• Let x ∈ T with r(x) = q and δ(q, w(|x|)) = φ. There is a set S =
{q1, · · · , qk} ⊆ Q that satisfies φ and for all 1 ≤ c ≤ k, we have x ·c ∈ T
and r(x · c) = qc.

We represent transition function of nondeterministic automata as δ : Q×
Σ → 2Q and call a triple (q, a, q′) ∈ Q×Σ×Q a transition if q′ ∈ δ(q, a), and of
deterministic automaton as δ : Q×Σ → Q. A run (path) 1 ρ of an automaton
A on word w ∈ Σω (resp. w ∈ Σ∗) is an infinite (resp. finite) sequence of
transitions ρ(0), ρ(1), . . . where ρ(i) = (si, w(i), si+1) is a transition from δ
and s0 = q0. For deterministic automata, every word induces a unique run.
Slightly abusing the notation, we write δ(q, w) = q′ if the run of Aq on the
word w ∈ Σ∗ ends in q′. We denote by Aq the automaton obtained from A
by making q the initial state.

The set of transitions that occur infinitely often in a path ρ is denoted by
Inf(ρ). We may drop ρ if it is clear from the context. A run tree is accepting if

1In case A is nondeterministic, on an infinite word w, we have a run tree with only one
path.

3



all paths in the run tree are accepting. We say an infinite word w is accepted
by A if there exists an accepting run tree. We have the following acceptance
conditions:

• A parity condition is specified by a priority function π : δ → N that
assigns a priority to every transition of the automaton. A path ρ is
accepted if the highest priority that occurs infinitely often along ρ is
even. More formally, when max{π(t) | t ∈ Inf(ρ)} ≡2 0.

• A Rabin acceptance condition of index k is specified by k pairs of sets
of transitions, {⟨Bi, Gi⟩1≤i≤k}. A path ρ is accepted if there exists a
pair of bad and good transitions, ⟨Bi, Gi⟩, such that Inf(ρ) ∩ Bi = ∅
and Inf(ρ) ∩ Gi ̸= ∅. Informally, the accepting path should visit only
finitely often transitions of a bad set and infinitely often at least one
transition of the corresponding good set.

• A Streett acceptance condition of index k is specified by k pairs of sets
of transitions, {⟨Bi, Gi⟩1≤i≤k}. A path ρ is accepted if, for all pairs
of bad and good transitions ⟨Bi, Gi⟩, we have Inf(ρ) ∩ Bi ̸= ∅ implies
Inf(ρ) ∩ Gi ̸= ∅. Informally, the accepting path should visit infinitely
often transitions of a bad set only if it is visiting infinitely often also
transitions of the corresponding good set.

• A Muller acceptance condition is specified by a colouring function π :
δ → N that assigns a colour to every transition of the automaton and a
collection of sets of colours F . A path ρ is accepted if the set of colours
that occur infinitely often along the path is an element of F . Formally,
when {π(t) | t ∈ Inf(ρ)} ∈ F .

There are many ways to define GFG alternating automata. We present
the one using the letter games [4, 12]. An alternating automaton A is GFG
if Eve wins her letter game and Adam wins his letter game, respectively.

Eve’s letter game proceeds at each turn from a state q of A, starting from
the initial state of A, as follows:

• Adam chooses a letter a,

• Adam and Eve play on the one-step arena to resolve the transition
δ(q, a). This can be done by leaving the resolution of disjunctions to
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Eve and the resolution of conjunctions to Adam2.

A play of the letter game thus generates a word w and a path ρ of A on w.
Eve wins this play if either w /∈ L(A) or ρ is accepting in A. Adam’s letter
game is similar, except that Eve chooses letters and Adam wins if either
w ∈ L(A) or the path ρ is rejecting.

Both players of a GFG alternating automaton have strategies (resolvers)
to win their letter games, respectively. Note that strategies can only refer to
the past, not the future: these strategies therefore must not depend on the
part of the word that is not yet read.

In this paper, we use the common three-letter abbreviations to distin-
guish types of automata. The first (A, D, N) tells whether the automaton
is alternating, deterministic or nondeterministic. The second denotes the
acceptance condition (P for parity, R for Rabin, S for Streett, and M for
Muller). The last one usually denotes the type of input (i.e W for word or
T for tree), in our case we work only with word automata. Therefore, there
is no need to specify it and the third letter will be fixed to A for automaton.
For example, an DPA is a deterministic parity automaton, and a NRA is a
nondeterministic Rabin automaton. We may add G in front of the common
three-letter abbreviations for alternating or nondeterministic automata that
are GFG, for example, a GAMA is a GFG alternating Muller automaton.

2.2. Syntactic flowers.

Let A be a deterministic automaton. A syntactic flower with petals
c, . . . , d in A consists of

• a reachable state qc, called the centre of the flower and

• d− c + 1 petals ρc, . . . , ρd with the following properties:

– each petal ρi for c ≤ i ≤ d is a non-trivial run from qc to itself;

2There are different equivalent ways to describe how to find the successor states that
boil down to the corner case where the positive Boolean formula is given in disjunctive or
conjunctive minimal form: either Eve chooses a satisfying set of successor states first, and
then Adam selects one state from this set (which relates to a formula given in disjunctive
minimal form) or Adam selects a set of successor states such that each satisfying assign-
ment needs to contain at least one of them, and Eve then selects one state from this set
(which relates to a formula given in conjunctive minimal form).
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– for every infinite run ρ = ρ′0, ρ
′
1, ρ

′
2, . . . such that

∗ ρ′0 is a finite run from q0 to qc, and

∗ for all i > 0, ρ′i ∈ {ρc, . . . , ρd},

we define the max petal index e = max{i ∈ {c, . . . , d} | ∀j∃k >
j. ρ′k = ρi}. Then ρ is accepting if, and only if, e is even. That
is, the parity of the highest index of a petal that occurs infinitely
often in ρ determines acceptance.

For parity automata, this could, for example, be the case if the dominating
priority for each ρi is i.

Syntactic flowers have proven useful for the characterisation of the com-
plexity of parity automata by Niwiński [2]. Moreover, if a parity automaton
uses too many priorities (as witnessed by the absence of complex flowers),
they can be simplified without changing their structure. (The second cita-
tion is for the—simple—extension of this property to transition-based accep-
tance.)

Theorem 1 (flowers [2, 13]). Exactly one of the following conditions holds
for each ω-regular language L:

A) L is recognised by a DPA D that has a (reachable) syntactic flower with
petals c, . . . , d; or

B) L is recognised by a DPA D with priorities c + 1, . . . , d + 1. □

3. Flowers

The concept of flowers has so far been pegged to automata, hence our
reference to them as syntactic flowers in the preliminaries.

The core properties of flowers, however, is to characterise the complexity
of languages, and this is better characterised on the level of languages. We
therefore introduce (semantic) flowers as follows.

Let L be an ω-regular language over an alphabet Σ. A (semantic) flower
with petals c, . . . , d in L consists of

• a finite word ws ∈ Σ∗, called the stem and

• d−c+1 petals wc, . . . , wd ∈ Σ+ with the following properties: for every
infinite word w = w′

0, w
′
1, w

′
2, . . . such that
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– w′
0 = ws is the stem word, and

– for all i > 0, w′
i ∈ {wc, . . . , wd}.

we define the max petal index e = max{i ∈ {c, . . . , d} | ∀j∃k > j. w′
k =

wi}. Then w ∈ L if, and only if, e is even. That is, the parity of the
highest index of a petal, that occurs infinitely often in w, determines
acceptance.

We first show that, for deterministic parity automata, syntactic and se-
mantic flowers are related.

Theorem 2. Let L be an ω-regular language recognised by a DPA A. Then
L has a flower with petals c, . . . , d if, and only if, A has a syntactic flower
with petals c, . . . , d.

Proof. First, it is straightforward to construct a semantic flower from a
syntactic one: for the stem word ws, we can take any word ws such that
δ(q0, ws) = qc. Likewise, for each petal ρi, we define a word wi so that ρi is
the run of Aqc on wi.

Such words clearly must exist and trivially satisfy the flower constraints.
The other direction is less straightforward. We can, however, use an

indirect proof based on Theorem 1.
We assume for contradiction that A has no syntactic flower with petals

c, . . . , d and L has a flower with petals c, . . . , d. Then (by Theorem 1) there is
a DPA D that recognises L and only uses priorities c+ 1, . . . , d+ 1. Towards
contradiction, we successively build an infinite run of D that starts with the
stem word ws, followed by a sequence of petals. The selection of all but
the first of these petals (which can be selected arbitrarily; we use petal c)
is based on the transition with the maximal priority that occurs in the run
sequence that D produces when traversing the input word from the previous
petal: for priority p, we use petal wp−1.

This way, we produce an infinite run of D, whose dominating priority is
defined by the dominating priority of the maximal petal index of the input
word: if the priority of the run of D is p, then the maximal petal index is
p− 1.

Therefore, either D accepts while the word is not in L, or D rejects and
the word is in L.

This provides a contradiction and closes the proof. □
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A straightforward consequence is the following corollary.

Corollary 1. Let L be an ω-regular language. Then L is recognised by a
DPA with priorities c + 1, . . . , d + 1 if, and only if, L does not have a flower
with petals c, . . . , d. □

Defining flowers semantically proves to be an inroad to a particularly
easy extension of characterising the complexity of languages by their Rabin,
Streett, or Muller index as well as its extension to GFG automata.

Theorem 3. Exactly one of the following conditions holds for each ω-regular
language L:

A’) L has a semantic flower with petals c, . . . , d; or

B’) L is recognised by a GAPA (resp. GNPA) G with priorities c+1, . . . , d+
1. □

Proof. If A’ does not hold, then Corollary 1 says that there is a determin-
istic parity automaton with these priorities, which is also good for games.

If A’ holds, then we can just re-iterate the contradiction argument from
the second part of the proof of Theorem 2, this time with a GFG alternating
(resp. nondeterministic) automaton G.

Both strategies in letter games, of Adam and Eve, are combined to get a
sequence of transitions. This does not change the validity of the contradiction
argument: we still either have an accepting path for a word not in L (in this
case, Adam’s strategy was not GFG or G accepts this word, and therefore
does not recognise L; both cases contradict our assumption) or a rejecting
path for a word in L (in this case, Eve’s strategy was not GFG or G rejects
this word, and therefore does not recognise L; again both cases contradict
our assumption). □

In the case that the automaton is a GNPA, the proof is the same except
that we only need Eve’s strategy to construct the run (path). This also
provides a corollary that deterministic and GFG automata with the same
priorities are equally expressive without resorting to complex insights like
the existence of finite state resolvers [11].

Corollary 2. A language L is recognised by a GAPA (resp. GNPA) with
priorities c, . . . , d if, and only if, it is recognised by a DPA with priorities
c, . . . , d. □
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4. Flowers for Rabin, Streett, and Muller automata

By liberating the flowers from the syntactic structure of acceptors, they
can also serve as characterisations of other standard complexity measures of
languages: we use them to characterise languages with a Rabin, Streett, and
Muller index.

This follows from the observations that parity automata with

• c priorities can be viewed as Muller automata with c colours,

• priorities 1, . . . , 2k + 1 can be viewed as Rabin automata with k Rabin
pairs, and

• priorities 0, . . . , 2k can be viewed as Streett automata with k Streett
pairs, respectively

and there is a translation in the other direction through latest appearance
records [14, 15, 16] (LARs). The way LARs are updated is deterministic, so
that automata keep their type, such as GFG or deterministic.

Theorem 4 ([14, 15, 16]). An ω-regular language is recognised by a ⋆RA
with k Rabin pairs if, and only if, it is recognised by a ⋆PA with priorities
1, . . . , 2k + 1; a ⋆SA with k Streett pairs if, and only if, it is recognised by a
⋆PA with priorities 0, . . . , 2k; and a ⋆MA with k colours if, and only if, it is
recognised by a ⋆PA with k priorities, respectively, where ⋆ ∈ {D,GA,GN}.

Together with Corollary 1 and Theorem 2 we now get:

Corollary 3. An ω-regular language is recognised by a ⋆RA with k Rabin
pairs if, and only if, it does not have a flower with petals 0, . . . , 2k; a ⋆SA
with k Streett pairs if, and only if, it does not have a flower with petals
1, . . . , 2k + 1; and a ⋆MA with k colours if, and only if, it has no flower with
petals 0, . . . , k− 1 or no flower with petals 1, . . . , k where ⋆ ∈ {D,GA,GN}.

5. Conclusion

We have introduced semantic flowers as a simple and purely semantic way
to define the complexity of ω-regular languages. Taking inspiration from the
classic concept of syntactic flowers [2], we retain the ‘flower-power’ to capture
the different priorities needed by a deterministic parity automaton. As a
semantic concept, this extends to deterministic parity automata in general.
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While this is not surprising, it is useful. For example, the simple proof
that a language cannot be captured by an automaton with a simpler accep-
tance condition now extends, in all its simplicity, to GFG automata. This
strengthens the relevance of this natural measure of complexity beyond it
being a semantic characterisation of the Mostowski hierarchy of word lan-
guages [1].

We also show that, unsurprisingly, the concept can be used to describe
the expressive power of Rabin, Streett, and Muller automata, deterministic
and GFG, with a restricted number of pairs and colours.
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