
1

POLAR-Express: Efficient and Precise
Formal Reachability Analysis of

Neural-Network Controlled Systems
Yixuan Wang∗, Weichao Zhou∗, Jiameng Fan, Zhilu Wang, Jiajun Li,

Xin Chen, Chao Huang, Wenchao Li, Qi Zhu

Abstract—Neural networks (NNs) playing the role of con-
trollers have demonstrated impressive empirical performance on
challenging control problems. However, the potential adoption
of NN controllers in real-life applications has been signifi-
cantly impeded by the growing concerns over the safety of
these neural-network controlled systems (NNCSs). In this work,
we present POLAR-Express, an efficient and precise formal
reachability analysis tool for verifying the safety of NNCSs.
POLAR-Express uses Taylor model arithmetic to propagate
Taylor models (TMs) layer-by-layer across a neural network to
compute an over-approximation of the neural network. It can
be applied to analyze any feed-forward neural networks with
continuous activation functions, such as ReLU, Sigmoid, and
Tanh activation functions that cover the common benchmarks for
NNCS reachability analysis. Compared with its earlier prototype
POLAR, we develop a novel approach in POLAR-Express to
propagate TMs more efficiently and precisely across ReLU
activation functions, and provide parallel computation support
for TM propagation, thus significantly improving the efficiency
and scalability. Across the comparison with six other state-of-
the-art tools on a diverse set of common benchmarks, POLAR-
Express achieves the best verification efficiency and tightness in
the reachable set analysis. POLAR-Express is publicly available
at https://github.com/ChaoHuang2018/POLAR Tool.

Index Terms—Neural-Network Controlled Systems; Reachabil-
ity Analysis; Safety Verification; Formal Methods

I. INTRODUCTION

Neural networks (NNs) have been successfully used for
decision making in a variety of systems such as autonomous
vehicles [1], [2], [3], aircraft collision avoidance systems [4],
robotics [5], HVAC control [6], [7], and other autonomous
cyber-physical systems (CPSs) [8], [9]. NN controllers can be

Yixuan Wang∗ and Weichao Zhou∗ contributed equally to this work. Yix-
uan Wang, Zhilu Wang, and Qi Zhu are with the Department of Electrical and
Computer Engineering at Northwestern University, Evanston, IL, USA (email:
{yixuanwang2024@u., zhilu.wang@u, qzhu@}northwestern.edu). Weichao
Zhou, Jiameng Fan, and Wenchao Li are with the Department of Electrical
and Computer Engineering at Boston University, Boston, MA, USA (email:
{zwc662, jmfan, wenchao}@bu.edu). Jiajun Li and Chao Huang are with the
Department of Computer Science at the University of Liverpool, Liverpool,
UK (email: {chao.huang2, j.li234}@liverpool.ac.uk). Xin Chen is with the
Department of Computer Science, University of New Mexico, Albuquerque,
NM, USA (email: {chenxin@unm.edu}).
We gratefully acknowledge the support from the National Science Foundation
awards CCF-1646497, CCF-1834324, CNS-1834701, CNS-1839511, IIS-
1724341, CNS-2038853, ONR grant N00014-19-1-2496, the US Air Force
Research Laboratory (AFRL) under contract number FA8650-16-C-2642.
This work is also supported by the grant EP/Y002644/1 under the EPSRC
ECR International Collaboration Grants program, funded by the International
Science Partnerships Fund (ISPF) and the UK Research and Innovation.

obtained using machine learning techniques such as reinforce-
ment learning [10], [11], imitation learning [12], [13], and
transfer learning [14]. However, the usage of NN controllers
raises new challenges in verifying the safety of these systems
due to the nonlinear and highly parameterized nature of neural
networks and their closed-loop formations with dynamical sys-
tems [15], [16], [17], [18], and adversarial perturbations [19],
[20], [21]. In this work, we consider the reachability verifica-
tion problem of neural-network controlled systems (NNCSs).

Uncertainties around the state, such as those inherent in state
measurement or localization systems, or scenarios where the
system can start from anywhere in an initial space, require the
consideration of an initial state set rather than a single initial
state for the reachability problem. Specifically, we define the
reachability problem for NNCSs as follows.

Definition 1 (Reachability Problem of NNCSs). The reacha-
bility problem of an NNCS is to determine whether the system
can reach a given goal state set from any state within an initial
state set of the system, whereas the bounded-time version of
this problem is to determine the reachability within a given
bounded-time horizon.

We show Fig 1 as an example of this set-based closed-
loop reachability analysis. It is worth noting that simulation-
based testings [22], which sample initial states from the initial
state set, cannot provide formal safety guarantees such as
“no system trajectory from the initial state set will lead to
an obstacle collision.” In this paper, we consider reachability
analysis as the class of techniques that aim at tightly over-
approximating the set of all reachable states of the system
starting from an initial state set.

Reachability analysis of general NNCSs is notoriously hard
due to nonlinearities that exist in both the NN controller
and the physical plant. The closed-loop coupling of the NN
controller with the plant adds another layer of complexity.
To obtain a tight over-approximation of the reachable sets,
reachability analysis needs to track state dependencies across
the closed-loop system and across multiple time steps. While
this problem has been well studied in traditional closed-loop
systems without NN controllers [23], [24], [25], [26], [27],
[28], it is less clear whether it is important to track the
state dependency in NNCSs and how to track the dependency
efficiently given the complexity of neural networks. This paper
aims to bring clarity to these questions by comparing different
approaches for solving the NNCS reachability problems.

https://github.com/ChaoHuang2018/POLAR_Tool

2

-0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

Fig. 1: An illustrating example of the reachability problem.
The system shown in the figure can start from any state in
the initial state set (black). Each polygon (blue) is the over-
approximation of the state set after a control step by the
NN controller. In this example, the over-approximation of the
reachable set falls in the target set (green). Therefore, this
goal-set-reaching verification problem is proven to be True.

Existing reachability analysis techniques for NNCSs typi-
cally use reachability analysis methods for dynamical systems
as subroutines. For general nonlinear dynamical systems, the
problem of exact reachability is undecidable [29]. Thus, meth-
ods for reachability analysis of nonlinear dynamical systems
aim at computing a tight over-approximation of the reachable
sets [30], [31], [32], [33], [34], [25], [27], [26]. On the other
hand, there is also rich literature on verifying neural networks.
Most of these verification techniques boil down to the problem
of estimating or over-approximating the output ranges of the
network [35], [36], [37], [38], [39], [40]. The existence of
these two bodies of work gives rise to a straightforward
combination of NN output range analysis with reachability
analysis of dynamical systems for solving the NNCS reach-
ability problem. However, early works have shown that this
naive combination with a non-symbolic interval-arithmetic-
based [41] output range analysis suffers from large over-
approximation errors when computing the reachable sets of the
closed-loop system [16], [15]. The primary reason is the lack
of consideration of the interactions between the NN controller
and the plant dynamics. Recent advances in the field of NN
verification feature more sophisticated techniques that can
yield tighter output range bounds and track the input-output
dependency of an NN via symbolic bound propagation [38],
[42], [40]. This opens up the possibility of improvement for
the aforementioned combination strategy by substituting the
non-symbolic interval-arithmetic-based technique with these
new symbolic bound estimation techniques.

New techniques have also been developed to directly ad-
dress the verification challenge of NNCSs. Early works mainly
use direct end-to-end over-approximation [16], [15], [43]
of the neural-network function, i.e. computing a function
approximation of the neural network with guaranteed error
bounds. While this approach can better capture the input-
output dependency of a neural network compared to output
ranges, it suffers from efficiency and scalability problems due
to the need to sample from the input space. This approach is
superseded by more recent techniques that leverage layer-by-
layer propagation in the neural network [17], [44], [45], [46].
Layer-by-layer propagation techniques have the advantage of
being able to exploit the structure of the neural network. They
are primarily based on propagating Taylor models (TMs) layer

by layer via Taylor model arithmetic to more efficiently obtain
a function over-approximation of the neural network.
Scope and Contributions: We present POLAR-Express, a
significantly enhanced version of our earlier prototype PO-
LAR [46]. Inherited from POLAR [46], POLAR-Express uses
layer-by-layer propagation of TMs to compute function over-
approximations of NN controllers. Our technique is applicable
to general feed-forward neural networks with continuous (but
not necessarily differentiable) activation functions. Compared
with POLAR, POLAR-Express has the following new features.

• A more efficient and precise method for propagating TMs
across non-differentiable ReLU activation functions.

• Multi-threading support to parallelize the computation
in the layer-by-layer propagation of Taylor models for
neural-network controllers, which significantly improved
the efficiency and scalability of our approach for complex
systems.

• Comprehensive experimental evaluation with recent state-
of-the-art tools such as RINO [47], CORA [48], and
Juliareach [49]. Across a diverse set of benchmarks and
tools, POLAR-Express achieves state-of-the-art verifica-
tion efficiency and tightness of over-approximation in the
reachable set analysis, outperforming all existing tools.

More specifically, compared with the existing literature [40],
[18], [48], [49], [47], [46], [44], we provide the most com-
prehensive experimental evaluation across a wide variety of
NNCS benchmarks including NN controllers with different
activation functions and dynamical systems with up to 12
states. In terms of the over-approximation approach for NN,
existing tools can be categorized into two classes. The first
class shares the common idea of integrating NN output
range analysis techniques with reachability analysis tools for
dynamical systems, such as α, β-CROWN [40], NNV [18],
CORA [48], JuliaReach [49], and RINO [47]. The second class
focuses on passing symbolic dependencies across the NNCS
and across multiple control steps during reachability analysis,
such as POLAR-Express and Verisig 2.0 [44]. Through the
comparisons, we hope this paper can also serve as an acces-
sible introduction to these analysis techniques, for those who
wish to apply them to verify NNCSs in their own applications
and for those who wish to dive more deeply into the theory
of NNCS verification.

II. BACKGROUND

We first introduce the technical preliminaries and review
existing techniques for the safety verification of NNCSs. An
NNCS is often defined by an ODE that is governed by
a feed-forward neural network at discrete times. Although
it is undecidable to know if a state is reachable for an
NNCS starting from an initial state, we may compute an
over-approximated set of reachable states. The safety of an
NNCS can be proven by showing that the reachable set of
this NNCS does not contain any unsafe state. Although more
general safety or robustness of an NNCS can be proven by
computing an invariant for the system reachable states [50],
[51], [52], [53], it is still hard to handle a large number of
system variables and general nonlinear dynamics. Hence, most

3

Algorithm 1: Reachable set computation for NNCSs
based on set propagation.

Input: Definition of the system modules, number of
control steps K, the initial state set X0.

Output: Over-approximation of the reachable set in K
steps.

1: X0 ← X0, R ← ∅; # the resulting over-approximate set
2: for i = 0 to K − 1 do
3: Computing an over-approximation Ui for the NN

output w.r.t. the input set Xi;
4: Computing a set F of flowpipes for the plant

dynamics from the initial set Xi in a control step;
5: R ← R∪F ;
6: Evaluating an over-approximation for the reachable

set after the control step and assigning it to Xi+1;
7: end for
8: return R.

of the existing methods for reachability analysis use the set
propagation scheme [54]. That is, an over-approximation of
the reachable set in a bounded time horizon can be obtained
by iteratively computing a super-set for the reachable set in
a time step and propagating it to the set computation for the
next step. More precisely, starting from a given initial set X0,
a set propagation method computes an over-approximation of
the reachable set Φt∈[0,δ](X0, t) where δ is the time step, Φ
denotes the system’s evolution function (flowmap) that is often
unknown. It then repeats the above work from the obtained
reachable set over-approximation at the end of the previous
step and computes a new over-approximation for the current
one. The over-approximation segments are called flowpipes.
Such a scheme has been proven effective in handling various
system dynamics and efficient in handling large numbers of
state variables [16], [18], [45], [49], [46], [47].

Algorithm 1 shows the main framework of set propagation
for NNCSs. Starting with a given initial set X0, the main
algorithm repeatedly performs the following two main steps
to compute the flowpipes in the (i + 1)-th control step for
i = 0, 1, . . . ,K−1: (a) Computing the range Ui of the control
input. This task is to compute the output range of the NN
controller w.r.t. the current system state. Since the current
system state is a subset of the latest flowpipe, Ui is computed
as an over-approximate set. (b) Flowpipe construction for the
continuous dynamics. According to the obtained range Ui of
the constant control inputs, the reachable set in the current
control step can be obtained using a flowpipe computation
method for ODEs.

Existing methods can be mainly classified into the following
two groups based on their over-approximation purposes.
(I) Pure range over-approximations for reachable sets. The
techniques in this group aim at directly over-approximating
the range of the reachable set using geometric or algebraic
representations such as intervals [55], zonotopes [56] or other
sets represented by constraints. Such an approach can often be
developed by designing the over-approximation methods for
the plant and controller individually and then using a higher-

Fig. 2: Taylor model over-approximation of a flowmap.

level algorithm to make the two methods work cooperatively
for the closed-loop system. Many existing tools for computing
the reachable set over approximations under the continuous
dynamics defined by linear or nonlinear ODEs can be used
to handle the plant, such as VNODE-LP[24], SpaceEx [25],
CORA [26], and Flow* [27]. On the other hand, the task
of computing the output range of a neural network can be
handled by various output range analysis techniques developed
in recent years [57], [58], [59], [60], [35], [36], [61], [62], [39],
[38], [18], [42], [40]. The main advantages of the techniques in
this group are twofold. First, there is no need to develop a new
technique from scratch, and the correctness of the composed
approach can be proven easily based on the correctness of the
existing methods for the subtasks. Second, the performance of
the approach is often good on simple case studies since it can
use well-engineered tools as primitives. However, since those
methods mainly focus on the pure range over-approximation
work, and do not just lightly track the dependencies among the
state variables under the system dynamics, it may accumulate
significant over-approximation error when the plant dynamics
is nonlinear or the initial set is large, making the resulting
bounds less useful in proving properties of interest.
(II) Functional over-approximations for system evolution.
The reachable set over-approximation methods in this category
focus on a more challenging task than only over-approximating
the reachable set ranges. They seek to compute an over-
approximate function for the flowmap Φ of an NNCS. As
we pointed out in the previous section, Φ is a function only
in the variables representing the initial state and the time, and
it often does not have a closed-form expression. However, it
can be over-approximated by a Taylor model (TM) over a
bounded time interval. Fig 2 gives an illustration in which
the TM p(x0, t0 + τ) + [a, b] is guaranteed to contain the
range of the function Φ(x0, t0+τ) for any initial state x0 and
t ∈ [0, δ]. In practice, we usually require x0 to be in a bounded
set. Such a TM provides a functional over-approximation
rather than a pure range over-approximation which allows
tracking the dependency from a reachable state to the initial
state approximately. Functional over-approximations often can
handle more challenging reachability analysis tasks, in which
larger initial sets, nonlinear dynamics, or longer time horizons
are specified. Recent work has applied interval, polynomial,
and TM arithmetic to obtain over-approximations for NNCS
evolution [16], [15], [44], [46]. These techniques are often
able to compute more accurate flowpipes than the methods in
the other group but are often computationally expensive due
to the computation of nonlinear multivariate polynomials for

4

TABLE I: Summary of the tools evaluated in this paper.

Tool Category Plant
Dynamics

Activation
Function

Set
Representation

α, β-CROWN
+ Flow*

(I) nonlinear continuous Interval and
Taylor model

NNV (I) discrete linear,
continuous (CORA)

ReLU, tanh,
sigmoid

ImageStar

Juliareach (I) nonlinear continuous Zonotope + Taylor model

CORA (I) nonlinear continuous Polynomial zonotope

RINO (I) nonlinear differentiable interval + interval Taylor series

Verisig 2.0 (II) nonlinear differentiable Taylor model

POLAR-Express (II) nonlinear continuous Taylor model

tracking the dependencies.

Existing tools. We consider the following tools in the exper-
imental evaluation: NNV [18], Verisig 2.0 [44], CORA [48],
JuliaReach [49] and RINO [47]. Additionally we also simply
combine the use of α, β-CROWN [40] and Flow* [27] to
provide a baseline for the performance of pure range over-
approximation. We summarize the key aspects of the tools
in Table I. Basically, NNV, CORA, JuliaReach, and RINO
compute range over-approximations, while Verisig 2.0 and
POLAR-Express compute functional over-approximations.

Taylor models. Taylor models were originally proposed to
compute higher-order over-approximations for the ranges of
continuous functions (see [63]). They can be viewed as a
higher-order extension of intervals. A Taylor model (TM) is
a pair (p, I) wherein p is a polynomial of degree k over a
finite group of variables x1, . . . , xn ranging in an interval
domain D ⊂ Rn, and I is the remainder interval. Given a
smooth function f(x) with x ∈ D for some interval domain
D, its TM can be obtained as (p(x), I) such that p is the
Taylor expansion of f at some x0 ∈ D, and I is an interval
remainder such that ∀x ∈ D.(f(x) ∈ p(x) + I), i.e., p + I
is an over-approximation of f at any point in D. When the
order of p is sufficiently high, the main dependency of the f
mapping can be captured in p. Basically, the polynomial p can
be any polynomial approximation of the function f , and it is
unnecessary to only use Taylor approximations.

When a function f(x) is overly approximated by a TM
(p(x), I) w.r.t. a bounded domain D, the approximation
quality, i.e., size of the overestimation, is directly reflected
by the width of I , since f(x) = p(x) for all x ∈ D when
I is zero by the TM definition. Given two order k TMs
(p1(x), I1) and (p2(x), I2) that are over-approximations of
the same function f(x) w.r.t. a bounded domain D ⊂ Rn,
we use (p1(x), I1) ≺k (p2(x), I2) to denote that the width
of I1 is smaller than the width of I2 in all dimensions, i.e.,
(p1(x), I1) is a more accurate over-approximation of f(x).

TMs are proven to be powerful over-approximate represen-
tations for the flowmap of nonlinear continuous and hybrid
systems [64], [65], [66]. Although polynomial zonotopes [67]
are also polynomial representations, they are not expressed
in the same variables as the system flowmap functions and
therefore not functional over-approximations. Interval Taylor
Series (ITS) are univariate polynomials in the time variable
t where the coefficients are intervals. ITS are often used as
nonlinear range over-approximations for ODE solutions [24].

III. PROBLEM FORMULATION

We use the formal model presented in Fig 3 to describe the
behavior of an NNCS. It is a composition of four modules,
each of which models the evolution or input-output mapping
of the corresponding component in an NNCS. The top three
modules form the controller of the system, it retrieves the
sensor data y, computes the control input u, and applies it to
the plant at discrete times t = 0, δc, . . . , kδc, . . . for a control
step size δc > 0. The roles of the modules are described below.
Plant. This is a model of the physical process. We use an ODE
over the n state variables x and m control inputs u to model
the evolution of the physical process such as the movement
of a vehicle, the rotation of a DC motor, or the pitch angle
change of an aircraft. In the paper, we collectively represent
a set of ordered variables x1, . . . , xn by x. We only consider
the ODEs which are at least locally Lipschitz continuous such
that its solution w.r.t. an initial condition x(0) = x0 ∈ Rn is
unique [68].
Preprocessing Module. This module transforms the sample
data. It serves as the gate of the controller. At the time t =
kδc, for every k = 0, 1, . . . , it retrieves the sensor data y,
which can be viewed as the image under a mapping from
the actual system state x(t), and further transform it to an
appropriate format z for the controller’s NN component. For
instance, a typical preprocessing task in a collision avoidance
control system could be computing the relative distances of
the moving objects.
Neural Network. This is the core computation module for the
control inputs. It maps the input data z to the output value v
according to the layer-by-layer propagation rule defined in it.
In the paper, we only consider feed-forward neural networks.
Since the paper focuses on the formal verification of NNCSs,
the neural network is explicitly defined as a part of the NNCS.
Postprocessing Module. This module transforms the NN
output value to the control input. Typically, it is used to keep
the final control input in the actual actuating range or to filter
out inappropriate input values.

We assume that the preprocessing and postprocessing mod-
ules can only be defined by a conjunction of guarded transi-
tions each of which is in the form of

γ(x) → x′ = Π(x) (1)

such that the guard γ(x) is a conjunction of inequalities
in x, and Π is a transformation from x. Here, we assume
that all guards are disjoint, and allow (1) to have polynomial
arithmetic and the elementary functions sin(·), cos(·), exp(·),
log(·),

√
· . Then the expressiveness is sufficient to define

lookup tables.

Fig. 3: Formal model of NNCS.

5

(a) (b)

Fig. 4: The 2D spacecraft docking environment. (a) The goal is
to start from some initial position and move towards the origin.
(b) The safe speed limit vsafe decreases as the position of the
spacecraft approaches the origin.

Example 1 (2D Spacecraft Docking). We consider the dock-
ing of a spacecraft in a 2D plane. The benchmark is de-
scribed in [69]. As shown in Fig 4, the control goal is
to steer the spacecraft to the position at the origin while
the velocity should be kept in a safe range. The whole
benchmark can be modeled by an NNCS with 5 variables:
x = (x, y, vx, vy, vsafe)

T wherein (x, y) denotes the posi-
tion of the spacecraft, (vx, vy) denotes the velocity, and
vsafe = 0.2 + 0.002054

√
x2 + y2 is a particular variable

that indicates a position-dependent safe limit on the speed.
The dynamics is defined as in equation 2 where fx and
fy constitute the control input u = (fx, fy) which is ob-
tained by a neural network controller κ. The input z =

(x
1000 ,

y
1000 , 2vx, 2vy,

√
v2x + v2y, vsafe) of the neural network

is prepossessed from x. The output v = (ux, uy) of the neural
network is postprocessed to fx = tanh(ux), fy = tanh(uy).

ẋ = vx, ẏ = vy, v̇safe =
0.002054(x · vx + y · vy)

vsafe

v̇x = 0.002054vy + 3× (0.001027)2x+ fx/12,

v̇y = −0.002054vx + fy/12,

(2)

Executions of NNCSs. Starting from an initial state x0 ∈ Rn,
for all i = 0, 1, . . . , the system state x(t) in the (i + 1)-st
control step t ∈ [iδc, (i + 1)δc] is defined by the solution of
the ODE ẋ = f(x,ui) w.r.t. the initial state x(iδc) and the
control input ui which is obtained as ui = h◦κ◦g◦π(x(iδc)),
where h, κ, g, π are shown in Fig 3. If we denote the solution
of the ODE w.r.t an initial state x0 and a particular control
input u′ by x(t) = Φf (x0, t,u

′), the system state at a time
t ∈ [iδc, (i+ 1)δc] for any i ≥ 0 from the initial state x0 can
be expressed recursively by

x(t) = Φf (x(iδc), t− iδc,ui)

where ui = h ◦ κ ◦ g ◦ π(x(iδc))
(3)

such that x(0) = x0. We also call this state a reachable
state. Without noises or disturbances from the environment,
an NNCS has deterministic behavior, and its evolution can
be defined by a flowmap function in the form of Φ(x0, t),
i.e., the reachable state from an initial state x0 at a time t is
x(t) = Φ(x0, t), and it is uniquely determined by the initial
state and the time. Unfortunately, Φ usually does not have a
closed-form expression.

Algorithm 2: Framework of POLAR-Express.
Input: Plant dynamics x′ = f(x,u), preprocessing g(·),

postprocessing h(·), NN controller κ(·), number of
control steps K, initial set X0.

Output: Over-approximation of the reachable set over the
time interval of [0,Kδc] with δc as control step size.

1: R ← ∅, X0 ← X0;
2: for i = 0 to K − 1 do
3: Computing a superset Yi for the range of π(Xi);
4: Computing a superset Zi for the range of g(Yi);
5: Computing a superset Vi for the range of κ(Zi), with

multi-threading support;
6: Computing a superset Ui for the range of h(Vi);
7: Computing a set F of flowpipes for the continuous

dynamics ẋ = f(x,u) with u ∈ Ui from the initial set
x(0) ∈ Xi over the time interval of [iδc, (i+ 1)δc];

8: R ← R∪F ;
9: Evaluating an over-approximation for the reachable set

at the time t = (i+ 1)δc based on F and assigning it
to Xi+1;

10: end for
11: return R.

The reachability analysis task with respect to two given
system states x,x′ and an NNCS asks whether x′ is reach-
able from x under the evolution of the system. Reachability
analysis plays a key role in the safety verification of dynamic
systems. However, it is a notoriously difficult task due to the
undecidability of the reachability problem on the systems de-
fined by nonlinear difference equations [70]. In order to prove
the safety of a system, most of the reachability techniques seek
to compute an over-approximation of the reachable set. If no
unsafe state is contained in the over-approximated reachable
set, the system is guaranteed to be safe.

IV. FRAMEWORK OF POLAR-EXPRESS

We present the POLAR-Express framework in Algorithm 2
to compute flowpipes for NNCSs. It uses the standard set-
propagation framework Algorithm 1 but has the following
novel elements: (1) Polynomial over-approximation for acti-
vation functions using Bézier curves. (2) Symbolic represen-
tation of TM remainders in layer-by-layer propagation. (3)
A seamless integration of the above techniques to compute
accurate flowpipes for NNCSs. The last two novel elements
are the new contributions of POLAR-express when compared
to POLAR: (4) A more precise and efficient method for
propagating TMs across ReLU activation. (5) Multi-threading
support to parallelize the computation in the layer-by-layer
propagation of TMs for NN. The details are explained below.
Computing Yi and Ui. Given a preprocessing or postprocess-
ing module and its input set which is represented as a TM, an
output TM can be obtained by computing the reachable sets
of the guarded transitions. Given a guarded transition of the
form (1) along with a TM S for x’s range, the reachable set
S′, i.e., the range of x′, can be computed by first computing
the intersection SI = S ∩ {x | γ(x)} and then evaluating

6

Algorithm 3: Layer-by-layer propagation using poly-
nomial arithmetic and TMs

Input: Input TM (p1(x0), I1) with x0 ∈ X0, the M + 1
matrices W1, . . . ,WM+1 of the weights on the
incoming edges of the hidden and the output layers,
the M + 1 vectors B1, . . . , BM+1 of the neurons’
bias in the hidden and the output layers.

Output: a TM (pr(x0), Ir) that contains the set
κ((p1(x0), I1)).

1: (pr, Ir)← (p1, I1);
2: for i = 1 to M + 1 do
3: (pt, It) ← Wi · (pr, Ir) +Bi;
4: Computing a polynomial approximation pσ,i for the

vector of the current layer’s activation functions σ
w.r.t. the domain (pt, It);

5: Evaluating a conservative remainder Iσ,i for pσ,i
w.r.t. the domain (pt, It);

6: (pr, Ir) ← pσ,i(pt + It) + Iσ,i;
7: end for
8: return (pr, Ir).

Π(SI) using TM arithmetic [71]. Although TMs are not closed
under an intersection with a semi-algebraic set, we may use
the domain contraction method proposed in [64] to derive an
over-approximate TM for the intersection.

A. Layer-by-Layer Propagation using TMs

POLAR-Express uses the layer-by-layer propagation
scheme to compute a TM output for the NN, and features
the following key novelties: (a) A method to selectively
compute Taylor or Bernstein polynomials for activation
functions. The purpose is to derive a smaller error according
to the approximated function and its domain. The Bernstein
polynomials are represented in their Bézier forms. (b)
A technique to symbolically represent the intermediate
linear transformations of TM interval remainders during
the layer-by-layer propagation. The purpose of using
Symbolic Remainders (SR) is to reduce the accumulation of
overestimation produced in composing a sequence of TMs.
The approach is described as follows.
Layer-by-Layer Propagation with Multi-Threading Sup-
port. The framework of layer-by-layer propagation has been
widely used to compute NN output ranges. Most of the existing
methods use range over-approximations such as intervals with
constant bounds [57], [72] or linear polynomial bounds [38],
zonotopes [62], [39], star sets [18]. Some TM-based meth-
ods are also proposed [16], [15], [45] to obtain functional
over-approximations for the input-output mapping of an NN.
However, the use of functional over-approximations in the
reachability analysis of an NNCS as a whole has not been
well investigated. Hence, we propose the following approach
to better over-approximate the input-output dependency than
the existing state-of-the-art.

Algorithm 3 presents the main framework of our approach
without using SR and focuses on the novelty coming from

Fig. 5: Single layer propagation

the tighter TM over-approximation for the activation func-
tions (Lines 4 and 5). Before introducing our selective over-
approximation method, we describe how a TM output is
computed from a given TM input for a single layer. The
idea is illustrated in Fig. 5. The circles in the right column
denote the neurons in the current layer which is the (i + 1)-
th layer, and those in the left column denote the neurons in
the previous layer. The weights on the incoming edges to
the current layer are organized as a matrix Wi, while we
use Bi to denote the vector organization of the biases in the
current layer. Given that the output range of the neurons in
the previous layer is represented as a TM (vector) (pi(x0), Ii)
where x0 are the variables ranging in the NNCS initial set.
Then, the output TM (pi+1(x0), Ii+1) of the current layer
can be obtained as follows. First, we compute the polynomial
approximations pσ1,i, . . . , pσl,i for the activation functions
σ1, . . . , σl of the neurons in the current layer. Second, interval
remainders Iσ1,i, . . . , Iσl,i are evaluated for those polynomials
to ensure that for each j = 1, . . . , l, (pσj ,i, Iσj ,i) is a TM
of the activation function σj w.r.t. zj ranging in the j-th
dimension of the set Wi(pi(x0)+ Ii). Third, (pi+1(x0, Ii+1))
is computed as the TM composition pσ,i(Wi(pi(x0)+Ii)+Iσ,i
where pσ,i(z) = (pσ1,i(z1), . . . , pσl,i(zk))

T and Iσ,i =
(Iσ1,i, . . . , Iσl,i)

T . Hence, when there are multiple layers,
starting from the first layer, the output TM of a layer is treated
as the input TM of the next layer, and the final output TM is
computed by composing TMs layer by layer. Besides, we use
(pj,i, Ij,i) for j = 1, . . . , l to represent the TMs associated
with the l neurons in a linear layer. The computation of
those TMs can be conducted in parallel. So is the propagation
through the activation functions in a layer. POLAR-Express
realizes such parallelism via multi-threading to retain time
efficiency when the dimension of the NN layers is large.

Polynomial Approximations to TMs. Basically, a TM only
defines an over-approximate mapping and is independent of
the approximation method used for the polynomial part. Thus,
we consider using both Taylor and Bernstein approximations
when propagating through an activation function and choose
the one that produces less overestimation after a TM combina-
tion. The following example shows that the selection cannot be
determined only based on the approximation error. Given the
TMs (p1, I1), (p2, I2) which are both TM over-approximations
for the sigmoid function f(x) = 1

1+e−x w.r.t. a TM domain
x ∈ q(y) + J :

7

(p1, I1) = (0.5 + 0.25x− 0.02083x3, [-7.93e-5, 1.92e-4])

(p2, I2) = (0.5 + 0.24855x− 0.004583x3, [-2.42e-4, 2.42e-4])

(q, J) = (0.1y − 0.1y2, [-0.1,0.1]).

where y ∈ [−1, 1]. However the composition (p1(q(y)+ J)+
I1) produces a TM with the remainder [−0.0466, 0.0477],
while the remainder produces by p2(q(y) + J) + I2 is
[−0.0253, 0.0253] which is smaller. In other words, a smaller
polynomial approximation error does not always lead to a
smaller error in combination. Therefore, it motivates us to
do a selection after the combination. We generalize this
phenomenon by defining the accuracy preservation problem,
and obviously, the answer is No if TM arithmetic is used.

Definition 2 (Accuracy preservation problem). If both
(p1(x), I1) and (p2(x), I2) are over-approximations of f(x)
with x ∈ D, and (p1(x), I1) ≺k (p2(x), I2). Given an-
other function g(y) which is already over-approximated by
a TM (q(y), J) whose range is contained in D. Then, does
p1(q(y)+J)+I1 ≺k p2(q(y)+J)+I2 still hold using order
k TM arithmetic?

B. Bernstein Over-approximation for Activation Functions
Now we turn to our Bernstein over-approximation method

for activation functions. It first computes a Bernstein polyno-
mial for the function and then evaluates a remainder interval
to ensure the over-approximation. The polynomials are in the
Bézier form.

Definition 3 (Bernstein polynomial). Given a continuous
function f(x) with x ∈ [a, b], its order k Bernstein polynomial
pk(x) is defined by

n∑
i=0

(
f

(
a+

i

k
(b− a)

)(
k

i

)(
x− a

b− a

)i(
b− x

b− a

)k−i
)

(4)

Bernstein approximation in Bézier form. The use of Bern-
stein approximation only requires the activation function to
be continuous in (pt, It) and can be used not only in more
general situations but also to obtain better polynomial ap-
proximations than Taylor expansions (see [73]). We first give
a general method to obtain a Bernstein over-approximation
for an arbitrary continuous function, and then present a more
accurate approach only for ReLU functions. Given that the
activation functions in a layer are collectively represented as
a vector σ(z) and z ranges in a TM (pt, It). Then the order k
Bernstein polynomial pσj ,i(zj) for the activation function σj

of the j-th neuron. It can be computed as (4) while f is σj ,
a, b are the lower and upper bound respectively of the range in
the j-th dimension of (pt, It), and they can be obtained from
an interval evaluation of the TM.
Remainder Evaluation. The remainder Iσj ,i for the polyno-
mial pσj ,i can be obtain as a symmetric interval [−ϵj , ϵj] such
that ϵj is

max
s=1,···,m

(∣∣∣∣∣pσj ,i(
Zj−Zj

m
(s−1

2
)+Zj)

−σj(
Zj − Zj

m
(s− 1

2
)+Zj)

∣∣∣∣∣+Lj ·
Zj−Zj

m

)

wherein Lj is a Lipschitz constant of σj with the domain
(pt, It), and m is the number of samples that are uniformly
selected to estimate the remainder. The soundness of the error
bound estimation above is proven in [15] for multivariate Bern-
stein polynomials. Since the univariate Bernstein polynomial,
which we use in this paper, is a special case of multivariate
Bernstein polynomials, our approach is also sound.
More Precise and Efficient Bernstein Over-approximation
for ReLU. The above Bernstein over-approximation method
works on all continuous activation functions, however, if a
function is convex or concave on the domain of interest, a more
accurate Bernstein over-approximation that is represented as a
TM can be obtained as follows. Given a continuous function
f(x) with x ∈ D such that f is convex on the domain, the
Bernstein polynomials of f are no smaller than f at any point
in D. Thus, a tight upper bound for f can be computed as
one of its Bernstein polynomial p, while a tight lower bound
can be obtained by moving p straight down by the distance
which is equivalent to the maximum difference of f and p
for x ∈ D. When f is ReLU and 0 ∈ D, it is convex on D,
and its maximum difference to any Bernstein polynomial p is
p(0). This direct over-approximation avoids sampling for error
estimation and thus is more precise and efficient than [15].
We give the particular Bernstein over-approximation method
for ReLU functions by Algorithm 4. An example is illustrated
in Fig. 7, and the effectiveness of this approach is shown in
example 2.

Lemma 1. Given that pk(x) is the order k ≥ 1 Bernstein
polynomial of a convex function f(x) with x ∈ [a, b]. For all
x ∈ [a, b], we have that (i) f(x) ≤ pk(x) and (ii) pk+1(x) ≤
pk(x).

Proof. The Lemma is proven in [74] for the domain x ∈ [0, 1].
However, it also holds on an arbitrary domain x ∈ [a, b]
after we replace the lower and upper bounds in the Bernstein
polynomials by a and b.

Corollary 1. If p(x) is the order k ≥ 1 Bernstein polynomial
of ReLU(x) with x ∈ [a, b], then 0 ≤ ReLU(x) ≤ p(x) for all
x ∈ [a, b].

Lemma 2. Given that p(x) is the order k ≥ 1 Bernstein
polynomial of ReLU(x) with x ∈ [a, b] such that a < 0 < b,
then we have that p(x)− ReLU(x) ≤ p(0) for all x ∈ [a, b].

Proof. Since ReLU(x) is convex over the domain, by [74],
so is p(x). Therefore, the second derivative of p w.r.t. x is
non-negative. By evaluating the first derivatives of p at x = a
and x = b, we have that dp

dx |x=a ≥ 0 and dp
dx |x=b ≤ 1. Since

the first derivatives of ReLU(x) are 0 and 1 when x ∈ [a, 0)
and x ∈ (0, b] (ReLU(0) is continuous but not differentiable)
respectively, p(a) = ReLU(a), and p(b) = ReLU(b), we have
that the function p(x) − ReLU(x) monotonically increasing
when x ∈ [a, 0) and decreasing when x ∈ (0, b], and p(x) −
ReLU(x) is continuous at x = 0, hence its maximum value is
given by p(0).

Example 2. In Fig 6, an NNCS with ReLU as the activation
functions starts from an initial set near (0.4, 0.45) and moves
towards a target set enclosed by the yellow rectangle (see

8

Algorithm 4: Efficient and Tight Bernstein over-
approximation for ReLU functions

Input: Domain D = [a, b] (a ≤ b) of the ReLU function,
approximation order k.

Output: a TM that overly approximates the ReLU on D.
1: if a ≥ 0 then return (x, [0, 0]);
2: else if b ≤ 0 then return (0, [0, 0]);
3: else
4: Computing the order k Bernstein polynomial p;
5: ε← p(0);
6: return (p− 0.5ε, [−0.5ε, 0.5ε]);

details in benchmark 5 [16], [15]). POLAR-Express with this
new precise and efficient over-approximation approach for
the ReLU function generates tighter flowpipes than POLAR.
The runtime of POLAR-Express is 1.8s while the runtime
of POLAR is 7.1s. This result serves as evidence that this
novel Bernstein over-approximation for ReLU achieves better
verification efficiency and accuracy.

Fig. 6: POLAR-Express (blue) generates tighter over-
approximations than POLAR (green) under the same hyper-
parameters; the red curves are the simulated traces; the yellow
rectangle is the target set.

C. Using Symbolic Remainders

A main source of overestimation in interval arithmetic is
the computation of linear mappings. Given a box (Cartesian
product of single intervals) I , its image under a linear mapping
x 7→ Ax is often not a box and has to be over-approximated
by a box in interval arithmetic. For a sequence of linear
mappings, the resulting box is often unnecessarily large due to
the overestimation accumulated in each mapping, known as the
wrapping effect [55]. To avoid this class of overestimation, we
may symbolically represent the intermediate boxes and only
do an interval evaluation at last. For example, if we need to
compute the image of the box I through the linear mappings:
x 7→ A1x, . . . ,x 7→ Amx, the box I is kept symbolically
and the composite mapping is computed as A′ = Am · · ·A1.
A tight interval enclosure for the image can be obtained from
evaluating A′I using interval arithmetic.

Although TM arithmetic uses polynomials to symbolically
represent the variable dependencies, it is not free from wrap-
ping effects since the remainder is always computed using

Fig. 7: The TM over-approximation p(x) + I of ReLU(x)

is given by p(x) = pB,k(x) − pB,k(0)
2 and I =

[−pB,k(0)
2 ,

pB,k(0)
2]) where pB,k(0) is the Bernstein polynomial

pB,k(x) evaluated at x = 0. As shown, for x ∈ [a, b](a < 0 <
b), the bounds of the interval remainder I are tight for any
order k ≥ 1 Bernstein polynomials approximation.

interval arithmetic. Consider the TM composition for comput-
ing the output TM of a single layer in Fig. 5, the output TM
pσ,i(Wi(pi(x0) + Ii) + Bi) + Iσ,i equals to QiWipi(x0) +
QiWiIi+QiBi+ pRσ,i(Wi(pi(x0)+ Ii)+Bi)+ Iσ,i such that
Qi is the matrix of the linear coefficients in pσ,i, and pRσ,i
consists of the terms in pσ,i of the degrees ̸= 1. Therefore,
the remainder Ii in the second term can be kept symbolically
such that we do not compute QiWiIi out as an interval but
keep its transformation matrix QiWi to the subsequent layers.
Given the image S of an interval under a linear mapping, we
use S to denote that it is kept symbolically, i.e., we keep the
interval along with the transformation matrix, and S to denote
that the image is evaluated as an interval.

Next, we present the use of SR in layer-by-layer propaga-
tion. Starting from the NN input TM (p1(x0), I1), the output
TM of the first layer is computed as

Q1W1p1(x0) +Q1B1 + pRσ,1(W1(p1(x0) + I1) +B1) + Iσ,1︸ ︷︷ ︸
q1(x0)+J1

+Q1W1I1,

which can be kept in the form of q1(x0) + J1 + Q1W1I1.
Using it as the input TM of the second layer, we have the
following TM
pσ,2(W2(q1(x0) + J1 + Q1W1I1) + B2) + Iσ,2

=Q2W2q1(x0) + Q2B2 + p
R
σ,2(W2(q1(x0) + J1 + Q1W1I1) + B2) + Iσ,2︸ ︷︷ ︸

q2(x0)+J2

+ Q2W2J1 + Q2W2Q1W1I1

for the output range of the second layer. Therefore the
output TM of the i-th layer can be obtained as qi(x0) +
Ji + QiWi · · ·Q1W1I1 such that Ji = Ji + QiWiJi−1 +
QiWiQi−1Wi−1Ji−2 + · · ·+QiWi · · ·Q2W2J1.

We present the SR method in Algorithm 5 where we use
two lists: Q[j] for QiWi · · · · ·QjWj and J [j] for Jj to keep
the intervals and their linear transformations. The symbolic
remainder representation is replaced by its interval enclosure
Ir at the end of the algorithm.

9

Algorithm 5: TM output computation using symbolic
remainders, input and output are the same as those in
Algorithm 3

1: Setting Q as an empty array which can keep M + 1
matrices;

2: Setting J as an empty array which can keep M + 1
multidimensional intervals, J← 0;

3: for i = 1 to M + 1 do
4: Computing the composite function pσ,i and the

remainder interval Iσ,i using the BP technique;
5: Evaluating qi(x0) + Ji based on J and Q[1]I1;
6: J← Ji and Φi ← QiWi;
7: for j = 1 to i− 1 do Q[j]← Φi · Q[j]; end for
8: Adding Φi to Q as the last element;
9: for j = 2 to i do J← J+Q[j] · J [j − 1]; end for

10: Adding Ji to J as the last element;
11: end for
12: Computing an interval enclosure Ir for J+Q[1]I1;
13: return qM+1(x0) + Ir.

Time and space complexity. POLAR-Express and POLAR
have similar time and space complexity. Although Algorithm 5
produces TMs with tighter remainders than Algorithm 3,
because of the symbolic interval representations under linear
mappings, it requires (1) two extra arrays to keep the interme-
diate matrices and remainder intervals, and (2) two extra inner
loops that perform i− 1 and i− 2 iterations in the i-th outer
iteration. The size of QiWi · · · · ·QjWj is determined by the
rows in Qi and the columns in Wj , and hence the maximum
number of neurons in a layer determines the maximum size
of the matrices in Q. Similarly, the maximum dimension of
Ji is bounded by the maximum number of neurons in a
layer. Because of the two inner loops, the time complexity
of Algorithm 5 is quadratic in M , whereas Algorithm 3 is
linear in M .

Theorem 1. In Algorithm 2, if (p(x0, τ), I) is the i-th TM
flowpipe computed in the j-st control step, then for any initial
state c ∈ X0, the box p(c, τ) + I = p′(τ) + I contains the
actual reachable state φN (c, (j − 1)δc + (i− 1)δ+ τ) for all
τ ∈ [0, δ].

V. BENCHMARK EVALUATIONS

We conduct a comprehensive comparison with state-of-the-
art tools across a diverse set of benchmarks. In addition, we
discuss in detail the applicability and comparative advantages
of different techniques. The experiments were performed on
a machine with a 6-core 2.20 GHz Intel i7 CPU and 16GB
of RAM. For tools that can leverage GPU acceleration such
as α, β-CROWN, the experiments were run with the aid of an
Nvidia GeForce GTX 1050Ti GPU. The multi-threading sup-
port is realized by using the C++ standard library. Considering
the overhead introduced by multi-threading, we also measure
the performance of the application under a single thread to
identify the bottleneck caused by multi-threading.
Benchmarks. Our NNCS benchmark suite consists of Bench-
marks 1-6 [16], [15], Discrete Mountain Car (MC) [17],

TABLE II: Reachability verification tasks for Benchmark 1-6.

Benchmark Initial set Target set1 N

1 [0.8, 0.9]× [0.5, 0.6] [0, 0.2]× [0.05, 0.3] 35

2 [0.7, 0.9]× [0.7, 0.9] [−0.3, 0.1]× [−0.35, 0.5] 10

3 [0.8, 0.9]× [0.4, 0.5] [0.2, 0.3]× [−0.3,−0.05] 60

4
[0.25, 2.27]× [0.08, 0.1]

×[0.25, 0.27]
[−0.2,−0.1]× [0, 0.05] 10

5
[0.38, 0.4]× [0.45, 0.47]

×[0.25, 0.27]
[−0.43,−0.15]× [0.05, 0.22] 10

6
[−0.77,−0.75]× [−0.45,−0.43]

×[0.51, 0.54]× [−0.3,−0.28]
[−0.1, 0.2]× [−0.9,−0.6] 10

Adaptive Cruise Control (ACC) [18], 2D Spacecraft Dock-
ing [69], Attitude Control [46], Quadrotor-MPC [17] and
QUAD20 [46]. Benchmark 6, Attitude Control, and QUAD20
are directly used or incorporated with minor modifications
in recent ARCH-COMP AINNCS competitions [75]. The
remaining examples either do not appear in ARCH-COMP
or are substantially different from the mentioned instances
(e.g., ACC is 8-dimensional in this paper, whereas 6-
dimensional in ARCH-COMP). All the benchmarks are on-
line at https://github.com/ChaoHuang2018/POLAR Tool/tree/
main/POLAR Express Benchmarks, where the dynamics and
NN in each benchmark are formatted in the languages required
by the tools. The details of the benchmarks are as follows.
Benchmark 1-6. The reachability verification task asks if the
NNCS can reach the target set from any initial state in N
control steps, as in Table II.
Discrete-Time Mountain Car (MC). It is a 2-dimensional
NNCS describing an underpowered car driving up a steep hill.
We consider the initial set defined by x0 ∈ [−0.53,−0.5] and
x1 = 0. The target is x0 ≥ 0.2 and x1 ≥ 0 where the car
reaches the top of the hill and is moving forward. The total
control steps N is 150.
Adaptive Cruise Control (ACC). The benchmark models the
moves of a lead vehicle and an ego vehicle. The NN controller
tries to maintain a safe distance between them. We use the
definition of the initial and target set given in [45], and the
number of control steps is N = 50.
2D Spacecraft Docking (Example 1). The initial set is defined
by x, y ∈ [24, 26], vx = vy = −0.1378, and vsafe ∈
[0.2697, 0.2755] which is directly computed based on the
ranges of x, y. The total control steps N is 120. In this
benchmark, we only verify the safety property. That is, the NN
controller should maintain

√
v2x + v2y ≤ vsafe all the time.

Attitude Control & QUAD20. The reachability problems for
the two benchmarks are the same as the ones given in [46].
Quadrotor-MPC. This benchmark is originally given in [45].
It consists of a quadrotor and a planner. The position of the
quadrotor is indicated by the state variables (px, py, pz), while
the velocity in the 3 dimensions is given by (vx, vy, vz). The
velocity of the planner is (bx, by, bz) which has a piecewise-
constant definition: (bx, by, bz) = (−0.25, 0.25, 0) for t ∈
[0, 2] (first 10 steps), (bx, by, bz) = (−0.25,−0.25, 0) for
t ∈ [2, 4], (bx, by, bz) = (0, 0.25, 0) for t ∈ [4, 5], and

1The target set is defined on the first two dimensions by default.

https://github.com/ChaoHuang2018/POLAR_Tool/tree/main/POLAR_Express_Benchmarks
https://github.com/ChaoHuang2018/POLAR_Tool/tree/main/POLAR_Express_Benchmarks

10

(bx, by, bz) = (0.25,−0.25, 0) for t ∈ [5, 6]. The control input
θ, ϕ, τ is determined by an NN “bang-bang” controller, which
is a classifier mapping system states to a finite set of control
actions. The initial set is defined as px−qx ∈ [−0.05,−0.025],
py − qy ∈ [−0.025, 0], and pz − qz = vx = vy = vz = 0.
The verification task asks to prove that all reachable states
in 30 control steps should be in the safe set −0.32 ≤
px − qx, py − qy, pz − qz ≤ 0.32.
Evaluation Metrics. The tools are compared based on their
performance on all of the benchmarks. Since tools use different
hyper-parameters, we tune their settings for each benchmark
and try to make them produce similar reachable set over-
approximations and compare the time costs. For a tool that
is not able to handle a benchmark, we present its result with
the best setting that we can find. Those hyper-parameters can
also be found in the Github collection.
Stopping Criteria. We stop the run of a tool when the
reachability problem is proven, or the tool raises an error
or is terminated by the operating system due to a runtime
system error such as being out of memory. Hence, every ver-
ification produces one of the following four results: (Yes) the
reachability property is proven, (No) the reachability property
is disproved, (U)nknown the computed over-approximation is
too large to prove or disprove the property with the best tool
setting we can find, (DNF) (did not finish) a tool or system
error is reported and the reachability computation fails.
Experimental Results. Table III and Fig. 8 show the results.
Because Quadrotor-MPC is a hybrid system, only POLAR-
Express, Verisig 2.0, and α, β-CROWN + Flow* are able to
deal with it. According to CORA’s manual, the tool does
not have an API to directly model hybrid systems with NN
controllers. It is verified to be safe by POLAR-Express with
13.1 seconds and by Verisig 2.0 with 961.4 seconds. The result
is Unknown for α, β-CROWN + Flow* after 10854 seconds.

A. Challenges with Running Other Tools
We found soundness issues when running the CORA tool

for Benchmark 5 and the QUAD20 example. In Benchmark
5, both simulation traces and reachable sets of CORA deviate
from the other tools. In QUAD20, the reachable sets computed
by CORA cannot cover the simulation traces (i.e. not an over-
approximation). We contacted the authors of CORA and they
confirmed that this issue is caused an internal bug. We fixed
it and updated the results in Table III.

The default setup in JuliaReach reports the runtime of
running the same reachable set computation the second time
after a “warm-up” run (whose runtime is not included), likely
to take advantage of cache effects or saved computations. For
a fair comparison with the other tools, we report the runtime
of the first run.

RINO has three “DNF”s caused by division-by-zero errors.
Both RINO and JuliaReach have their own plot functions,
while the other tools plot reachable sets in MATLAB. This
is an issue in several examples such as the plot function in
RINO taking too long to plot the reachable sets.

For the most complicated QUAD20 example, Verisig 2.0
failed after 17939 seconds during 1-step reachable set compu-
tation, α, β-CROWN + Flow* failed after 3 control steps, NNV

failed after 1 step, CORA failed after 20 steps, the reachable
set of JuliaReach explodes after 25 control steps, and RINO
has the division-by-zero error.

B. Experimental Comparison and Discussion

According to the experimental results in Table III and Fig 8,
POLAR-Express can verify all the benchmarks and achieve
the overall best performance in terms of the tightness of the
reachable set computations and runtime efficiency. We can also
observe that the multi-threading support for POLAR-Express
helps to reduce runtime in higher dimensional systems. How-
ever, because of the overhead involved, it may take longer than
the single-threaded version for some of the lower dimensional
benchmarks. Thus, we believe that multi-threading support
will be more suitable for higher-dimensional tasks.

Verisig 2.0 can only handle NN controllers with differential
activation functions (e.g., sigmoid and tanh). In the lower-
dimensional benchmarks, the reachable sets computed by
POLAR-Express and Verisig 2.0 almost overlap with each
other. However, POLAR-Express takes much less time to com-
pute the reachable sets in all cases. In the higher-dimensional
benchmarks, compared with POLAR-Express, Verisig 2.0 ei-
ther has much larger over-approximation errors (e.g., Fig 8
(g) (h) (k)) or can only compute fewer steps of reachable sets
(e.g., Fig 8 (i) (j) (l)).

NNV and α, β-CROWN are pure (symbolic) bound esti-
mation techniques. As explained in Section II and can be
observed in Fig 8, these methods can produce large over-
approximation errors when used in reachable set computations,
even if the bound estimations are relatively tight compared
with function-over-approximation-based approaches. Due to
the closed-loop nature of NNCSs, a large over-approximation
will also slow down the reachable set computations for the
subsequent control steps, as evident in the runtime of α, β-
CROWN+Flow* in Table III even though α, β-CROWN itself
is quite efficient [76].

JuliaReach’s runtimes are close across many benchmarks
despite the substantial differences in the system dynamics
and the neural networks in those benchmarks. After break-
ing down those runtimes, we notice that memory allocation
always constitutes the largest portion of the runtimes which
makes the difference of benchmarks less significant. On the
other hand, it fails to verify Benchmark 2 and Benchmark
5 due to large over-approximation errors. CORA can achieve
similar runtime efficiency and over-approximation tightness as
POLAR-Express in some benchmarks, despite the soundness
issues as noted earlier. RINO can only handle neural networks
with differential activation functions such as sigmoid and tanh.
It is quite efficient on the lower-dimensional systems but is
slow for the higher-dimensional systems.

VI. CONCLUSION AND FUTURE WORK

We present POLAR-Express, a formal reachability verifica-
tion tool for NNCSs, which uses layer-by-layer propagation
of TMs to compute function over-approximations of NN con-
trollers. We provide a comprehensive comparison of POLAR-
Express with existing tools and show that POLAR-Express

11

(a) (b) (c)

-0.2 -0.1 0 0.1 0.2 0.3

x0

-0.05

0

0.05

0.1

x1

Benchmark 4 (sigmoid)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8: Computed reachable sets of all examples by different tools. POLAR-Express (blue sets), Verisig 2.0 (cyan sets), α, β-
CROWN + Flow* (grey sets), NNV (yellow sets), CORA (green sets) and simulation traces (red curves), JuliaReach and RINO
have their own plotting support and are not shown in this paper.

12

TABLE III: Verification results. Dim indicates the dimensions of input for NN controllers in each benchmark. NN Architecture
lists activation functions and network structures in each benchmark. For example, ReLU (n×k) represents that the network has
n hidden layers and k neurons per layer. Hidden layers and the output layer use ReLU as an activation function. ReLU tanh
represents that hidden layers use ReLU and the output layer uses tanh. For each tool, we provide verification results and
time in seconds. If a property cannot be verified, it is marked as U (Unknown). If a tool crashes on a benchmark with an
internal error, it is marked as DNF. mt is short for multi-threads (we used 12 threads) and st is short for single-thread. The
runtime of POLAR-Express is decomposed into the running time of the propagation of TMs in the neural-network controller
(multi-threading support) and separately the reachability computation for the dynamical system. For neural-network controller
that does not have any ReLU activation function, the single-threaded version of POLAR-Express is exactly the same as our
prior prototype POLAR [46].

Benchmarks Dim NN Architecture POLAR-Express (mt) POLAR-Express (st) Verisig 2.0 (mt) α, β-CROWN + Flow* NNV JuliaReach CORA RINO

Benchmark 1 2

ReLU (2 x 20) Yes (0.54 + 0.08) Yes (0.09 + 0.08) – U (230.1) DNF Yes (19.7) Yes (6.7) –
sigmoid (2 x 20) Yes (0.77 + 0.09) Yes (1.0 + 0.09) Yes (26.6) U (506.8) U (14.0) Yes (16.9) Yes (6.7) Yes (1.0)

tanh (2 x 20) Yes (1.44 + 0.18) Yes (2.6 + 0.14) Yes (62.1) U (299.3) U (18.6) Yes (17.2) Yes (3.2) Yes (1.9)
ReLU tanh (2 x 20) Yes (0.55 + 0.08) Yes (0.1 + 0.07) – U (293.5) U (18.0) Yes (17.2) Yes (4.6) –

Benchmark 2 2

ReLU (2 x 20) Yes (0.13 + 0.02) Yes (0.02 + 0.01) – U (112.9) U (13.6) U (18.8) Yes (4.0) –
sigmoid (2 x 20) Yes (0.37 + 0.17) Yes (0.6 + 0.15) Yes (6.5) U (134.5) U (6.8) U (18.9) Yes (1.1) Yes (0.3)

tanh (2 x 20) Yes (1.3 + 0.5) Yes (2.7 + 0.5) U (4.7) U (161.1) U (5.9) U (18.9) DNF DNF
ReLU tanh (2 x 20) Yes (0.26 + 0.5) Yes (0.1 + 0.4) – U (85.5) U (17.1) U (18.9) Yes (1.0) –

Benchmark 3 2

ReLU (2 x 20) Yes (1.2 + 0.85) Yes (0.4 + 0.75) – U (217.8) U (21.0) Yes (17.6) Yes (4.5) –
sigmoid (2 x 20) Yes (3.3 + 0.8) Yes (7.1 + 0.8) Yes (38.2) U (353.0) U (26.8) Yes (17.5) Yes (2.6) Yes (2.8)

tanh (2 x 20) Yes (3.2 + 0.8) Yes (6.2 + 0.7) Yes (31.9) U (424.6) U (27.1) Yes (17.7) Yes (2.4) Yes (6.5)
ReLU sigmoid (2 x 20) No (1.4 + 0.8) No (0.6 + 0.7) – U (141.2) U (20.6) No (17.7) No (2.2) –

Benchmark 4 3

ReLU (2 x 20) Yes (0.15 + 0.02) Yes (0.03 + 0.02) – U (75.4) DNF Yes (16.6) Yes (3.0) –
sigmoid (2 x 20) No (0.24 + 0.02) No (0.17 + 0.02) No (5.7) No (139.5) DNF No (16.7) No (0.9) No (0.3)

tanh (2 x 20) No (0.23 + 0.02) No (0.17 + 0.02) No (4.6) No (160.9) DNF No (16.9) No (0.9) No (0.1)
ReLU tanh (2 x 20) Yes (0.14 + 0.02) Yes (0.03 + 0.02) – U (89.6) U (5.4) Yes (16.9) Yes (1.0) –

Benchmark 5 3

ReLU (3 x 100) Yes (2.4 + 0.02) Yes (1.8 + 0.02) – U (111.4) DNF U (18.6) Yes (3.4) –
sigmoid (3 x 100) No (4.2 + 0.02) No (3.7 + 0.02) No (93.1) U (229.3) DNF U (19.0) U (1.3) U (7.2)

tanh (3 x 100) Yes (4.2 + 0.02) Yes (3.8 + 0.02) Yes (74.2) U (263.0) U (125.0) U (18.7) Yes (1.2) Yes (2.7)
ReLU tanh (3 x 100) Yes (2.5 + 0.02) Yes (2.1 + 0.02) – U (96.1) U (4.1) U (18.8) Yes (1.7) –

Benchmark 6 4

ReLU (3 x 20) Yes (0.2 + 0.05) Yes (0.05 + 0.05) – U (149.8) U (8.8) Yes (19.6) Yes (8.6) –
sigmoid (3 x 20) Yes (0.47 + 0.05) Yes (0.7 + 0.05) Yes (24.3) U (217.5) U (9.9) Yes (19.5) Yes (2.7) Yes (0.6)

tanh (3 x 20) Yes (0.5 + 0.05) Yes (0.7 + 0.05) Yes (18.8) U (259.1) U (9.1) Yes (20.4) Yes (3.7) Yes (0.5)
ReLU tanh (3 x 20) Yes (0.2 + 0.05) Yes (0.05 + 0.05) – U (109.3) U (5.9) Yes (19.6) Yes (5.1) –

Discrete Mountain Car 2 sigmoid tanh (2 x 16) Yes (3.0 + 0.12) Yes (4.0 + 0.14) Yes (70.3) U (450.0) U (18.1) – – DNF

ACC 6 tanh (3 x 20) Yes (2.6 + 0.15) Yes (4.4 + 0.14) Yes (1980.2) U (1806.4) U (39.6) U (29.9) Yes (3.7) Yes (10.1)

2D Spacecraft Docking 6 tanh (2 x 64) Yes (15.8 + 29.7) Yes (25.5 + 29.8) U (3331.0) U (3119.7) U (74.0) Yes (37.3) Yes (33.5) DNF

Attitude Control 6 sigmoid (3 x 64) Yes (8.0 + 0.6) Yes (10.1 + 0.5) U (1271.5) U (582.6) U (358.2) Yes (19.9) Yes (1.9) Yes (121.3)

QUAD20 12 sigmoid (3 x 64) Yes (316.8 + 212.5) Yes (809.4 + 197.6) U (17939.7, 1step) U (370.2, 3step) U (325.5, 1step) U (60.6, 25step) U (2297, 20steps) DNF

achieves state-of-the-art efficiency and tightness in reachable
set computations. On the other hand, current techniques still
do not scale well to high-dimensional cases. In our experiment,
the performance of Verisig 2.0 degrades significantly for the
6-dimensional examples, and POLAR-Express is also less ef-
ficient in the QUAD20 example. We believe state dimensions,
control step sizes, and the number of total control steps are the
key factors in scalability. As TMs are parameterized by state
variables, higher state dimensions will lead to a more tedious
polynomial expression in the TMs. Meanwhile, a large control
step or a large number of total control steps can make it more
difficult to propagate the state dependencies across the plant
dynamics and across multiple control steps. We believe that
addressing these scalability issues will be the main subject of
future work in NNCS reachability analysis.

REFERENCES

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[2] X. Liu, C. Huang, Y. Wang, B. Zheng, and Q. Zhu, “Physics-aware
safety-assured design of hierarchical neural network based planner,” in
ICCPS. IEEE, 2022, pp. 137–146.

[3] X. Liu, R. Jiao, B. Zheng, D. Liang, and Q. Zhu, “Safety-driven interac-
tive planning for neural network-based lane changing,” in Proceedings
of the 28th Asia and South Pacific Design Automation Conference, ser.
ASPDAC ’23, 2023.

[4] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy compression for aircraft collision avoidance systems,” in DASC.
IEEE, 2016, pp. 1–10.

[5] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[6] S. Xu, Y. Fu, Y. Wang, Z. O’Neill, and Q. Zhu, “Learning-based
framework for sensor fault-tolerant building hvac control with model-
assisted learning,” in BuildSys, 2021, pp. 1–10.

[7] T. Wei, S. Ren, and Q. Zhu, “Deep reinforcement learning for joint
datacenter and hvac load control in distributed mixed-use buildings,”
IEEE Transactions on Sustainable Computing, vol. 6, no. 3, pp. 370–
384, 2021.

[8] K. Julian and M. J. Kochenderfer, “Neural network guidance for UAVs,”
in AIAA Guidance Navigation and Control Conference (GNC), 2017.

[9] Q. Zhu, W. Li, H. Kim, Y. Xiang, K. Wardega, Z. Wang, Y. Wang,
H. Liang, C. Huang, J. Fan, and H. Choi, “Know the unknowns:
Addressing disturbances and uncertainties in autonomous systems,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, ser. ICCAD ’20, 2020.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[11] Y. Wang, S. S. Zhan, R. Jiao, Z. Wang, W. Jin, Z. Yang, Z. Wang,
C. Huang, and Q. Zhu, “Enforcing hard constraints with soft barriers:
Safe reinforcement learning in unknown stochastic environments,” in
ICML. PMLR, 2023.

[12] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in ICML, 2004, p. 1.

[13] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” RSS, 2018.

[14] S. Xu, Y. Wang, Y. Wang, Z. O’Neill, and Q. Zhu, “One for many:
Transfer learning for building hvac control,” in BuildSys, 2020, pp. 230–
239.

[15] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “Reachnn: Reachability
analysis of neural-network controlled systems,” TECS, vol. 18, no. 5s,
pp. 1–22, 2019.

13

[16] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,” in
HSCC. ACM Press, 2019, pp. 157–168.

[17] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
verifying safety properties of hybrid systems with neural network
controllers,” in HSCC, 2019, pp. 169–178.

[18] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “Nnv: the neural network
verification tool for deep neural networks and learning-enabled cyber-
physical systems,” in CAV. Springer, 2020, pp. 3–17.

[19] Y.-S. Wang, L. Weng, and L. Daniel, “Neural network control policy
verification with persistent adversarial perturbation,” in ICML. PMLR,
2020, pp. 10 050–10 059.

[20] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Divide and slide: Layer-
wise refinement for output range analysis of deep neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 11, pp. 3323–3335, 2020.

[21] Z. Wang, C. Huang, and Q. Zhu, “Efficient global robustness certifi-
cation of neural networks via interleaving twin-network encoding,” in
DATE’22: Proceedings of the Conference on Design, Automation and
Test in Europe, 2022.

[22] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, 2020.

[23] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theor. Comput. Sci., vol. 138, no. 1, pp.
3–34, 1995.

[24] N. S. Nedialkov, “Implementing a rigorous ode solver through literate
programming,” in Modeling, Design, and Simulation of Systems with
Uncertainties, ser. Mathematical Engineering, A. Rauh and E. Auer, Eds.
Springer Berlin Heidelberg, 2011, vol. 3, ch. Mathematical Engineering,
pp. 3–19.

[25] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in Proc. of CAV’11, ser. LNCS, vol.
6806. Springer, 2011, pp. 379–395.

[26] M. Althoff, “An introduction to cora 2015,” in Proc. of ARCH’15, ser.
EPiC Series in Computer Science, vol. 34, 2015, pp. 120–151.

[27] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Proc. of CAV’13, ser. LNCS, vol.
8044. Springer, 2013, pp. 258–263.

[28] S. Kong, S. Gao, W. Chen, and E. M. Clarke, “dreach: δ-reachability
analysis for hybrid systems,” in Proc. of TACAS’15, ser. LNCS, vol.
9035. Springer, 2015, pp. 200–205.

[29] D. S. Graça, J. Buescu, and M. L. Campagnolo, “Boundedness of the
domain of definition is undecidable for polynomial odes,” Electronic
Notes in Theoretical Computer Science, vol. 202, pp. 49–57, 2008,
proceedings of the Fourth International Conference on Computability
and Complexity in Analysis (CCA 2007).

[30] T. Dreossi, T. Dang, and C. Piazza, “Parallelotope bundles for polyno-
mial reachability,” in HSCC. ACM, 2016, pp. 297–306.

[31] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349–
370, 1999.

[32] Z. Yang, C. Huang, X. Chen, W. Lin, and Z. Liu, “A linear programming
relaxation based approach for generating barrier certificates of hybrid
systems,” in FM. Springer, 2016, pp. 721–738.

[33] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” in HSCC. Springer, 2004, pp. 477–492.

[34] C. Huang, X. Chen, W. Lin, Z. Yang, and X. Li, “Probabilistic safety
verification of stochastic hybrid systems using barrier certificates,”
TECS, vol. 16, no. 5s, p. 186, 2017.

[35] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in CAV. Springer, 2017, pp. 3–29.

[36] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in CAV. Springer, 2017, pp. 97–117.

[37] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Learning and
verification of feedback control systems using feedforward neural net-
works,” IFAC-PapersOnLine, vol. 51, no. 16, pp. 151–156, 2018.

[38] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal se-
curity analysis of neural networks using symbolic intervals,” in 27th
{USENIX} Security Symposium ({USENIX} Security 18), 2018, pp.
1599–1614.

[39] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev, “Fast and
effective robustness certification,” in NeurIPS, 2018, pp. 10 802–10 813.

[40] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z.
Kolter, “Beta-crown: Efficient bound propagation with per-neuron split
constraints for neural network robustness verification,” NeurIPS, vol. 34,
2021.

[41] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM, 2009.

[42] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Ef-
ficient neural network robustness certification with general activation
functions,” NeurIPS, vol. 31, 2018.

[43] J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu, “Reachnn*: A tool
for reachability analysis of neural-network controlled systems,” in In-
ternational Symposium on Automated Technology for Verification and
Analysis. Springer, 2020, pp. 537–542.

[44] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee,
“Verisig 2.0: Verification of neural network controllers using taylor
model preconditioning,” in CAV, A. Silva and K. R. M. Leino, Eds.
Cham: Springer International Publishing, 2021, pp. 249–262.

[45] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and
I. Lee, “Verifying the safety of autonomous systems with neural network
controllers,” TECS, vol. 20, no. 1, pp. 1–26, 2020.

[46] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Polar: A polynomial
arithmetic framework for verifying neural-network controlled systems,”
in Automated Technology for Verification and Analysis: 20th Interna-
tional Symposium, ATVA 2022, Virtual Event, October 25–28, 2022,
Proceedings. Springer, 2022, pp. 414–430.

[47] E. Goubault and S. Putot, “RINO: robust inner and outer approximated
reachability of neural networks controlled systems,” in Proc. of CAV’22,
ser. LNCS, S. Shoham and Y. Vizel, Eds., vol. 13371. Springer, 2022,
pp. 511–523.

[48] N. Kochdumper, H. Krasowski, X. Wang, S. Bak, and M. Althoff, “Prov-
ably safe reinforcement learning via action projection using reachability
analysis and polynomial zonotopes,” CoRR, vol. abs/2210.10691, 2022.

[49] C. Schilling, M. Forets, and S. Guadalupe, “Verification of neural-
network control systems by integrating taylor models and zonotopes,”
in Proc. of AAAI’22. AAAI Press, 2022, pp. 8169–8177.

[50] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” IEEE Transactions on Automatic Control,
vol. 67, no. 1, pp. 1–15, 2022.

[51] C. Huang, S. Xu, Z. Wang, S. Lan, W. Li, and Q. Zhu, “Opportunistic
intermittent control with safety guarantees for autonomous systems,”
Design Automation Conference (DAC’20), 2020.

[52] Y. Wang, C. Huang, and Q. Zhu, “Energy-efficient control adaptation
with safety guarantees for learning-enabled cyber-physical systems,” in
ICCAD, 2020, pp. 1–9.

[53] Z. Wang, C. Huang, H. Kim, W. Li, and Q. Zhu, “Cross-layer
adaptation with safety-assured proactive task job skipping,” vol. 20,
no. 5s, sep 2021. [Online]. Available: https://doi.org/10.1145/3477031

[54] X. Chen and S. Sankaranarayanan, “Reachability analysis for cyber-
physical systems: Are we there yet?” in NASA Formal Methods - 14th
International Symposium, NFM 2022, Pasadena, CA, USA, May 24-27,
2022, Proceedings, ser. Lecture Notes in Computer Science, vol. 13260.
Springer, 2022, pp. 109–130.

[55] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis.
Springer, 2001.

[56] G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathemat-
ics. Springer, 1995, vol. 152.

[57] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NASA Formal Meth-
ods Symposium. Springer, 2018, pp. 121–138.

[58] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural
networks with mixed integer programming,” ICLR, 2019.

[59] C.-H. Cheng, G. Nührenberg, and H. Ruess, “Maximum resilience of
artificial neural networks,” in International Symposium on Automated
Technology for Verification and Analysis. Springer, 2017, Conference
Proceedings, pp. 251–268.

[60] A. Lomuscio and L. Maganti, “An approach to reachability analysis for
feed-forward relu neural networks,” CoRR, vol. abs/1706.07351, 2017.
[Online]. Available: http://arxiv.org/abs/1706.07351

[61] W. Ruan, X. Huang, and M. Kwiatkowska, “Reachability analysis of
deep neural networks with provable guarantees,” in IJCAI, 2018, pp.
2651–2659.

[62] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and
M. Vechev, “Ai2: Safety and robustness certification of neural networks
with abstract interpretation,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 3–18.

https://doi.org/10.1145/3477031
http://arxiv.org/abs/1706.07351

14

[63] M. Berz and K. Makino, “Verified integration of ODEs and flows using
differential algebraic methods on high-order Taylor models,” Reliable
Computing, vol. 4, pp. 361–369, 1998.

[64] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Taylor model flowpipe
construction for non-linear hybrid systems,” in Proc. of RTSS’12. IEEE
Computer Society, 2012, pp. 183–192.

[65] X. Chen, “Reachability analysis of non-linear hybrid systems using
taylor models,” Ph.D. dissertation, RWTH Aachen University, 2015.

[66] X. Chen and S. Sankaranarayanan, “Decomposed reachability analysis
for nonlinear systems,” in RTSS. IEEE Press, Nov 2016, pp. 13–24.

[67] M. Althoff, “Reachability analysis of nonlinear systems using conser-
vative polynomialization and non-convex sets,” in Proc. of HSCC 2013.
ACM, 2013, p. 173–182.

[68] L. Perko, Differential Equations and Dynamical Systems (3rd edition).
Springer, 2006.

[69] U. Ravaioli, J. Cunningham, J. McCarroll, V. Gangal, K. Dunlap, and
K. Hobbs, “Safe reinforcement learning benchmark environments for
aerospace control systems,” in 2022 IEEE Aerospace Conference. IEEE,
2022.

[70] V. D. Blondel and J. N. Tsitsiklis, “Overview of complexity and
decidability results for three classes of elementary nonlinear systems,”
in Learning, control and hybrid systems. Springer London, 1999, pp.
46–58.

[71] K. Makino and M. Berz, “Taylor models and other validated functional
inclusion methods,” J. Pure and Applied Mathematics, vol. 4, no. 4, pp.
379–456, 2003.

[72] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and
L. Daniel, “Evaluating the robustness of neural networks: An extreme
value theory approach,” arXiv preprint arXiv:1801.10578, 2018.

[73] G. G. Lorentz, Bernstein Polynomials. American Mathematical Society,
2013.

[74] T. N. T. Goodman, H. Oruç, and G. M. Phillips, “Convexity and
generalized bernstein polynomials,” Proceedings of the Edinburgh Math-
ematical Society, vol. 42, no. 1, p. 179–190, 1999.

[75] D. M. Lopez, M. Althoff, L. Benet, X. Chen, J. Fan, M. Forets,
C. Huang, T. T. Johnson, T. Ladner, W. Li et al., “Arch-comp22
category report: artificial intelligence and neural network control systems
(ainncs) for continuous and hybrid systems plants,” in Proceedings of
9th International Workshop on ARCH22, 2022.

[76] M. N. Müller, C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The third
international verification of neural networks competition (vnn-comp
2022): summary and results,” arXiv preprint arXiv:2212.10376, 2022.

VII. BIOGRAPHY

Yixuan Wang (wangyixu14@gmail.com) is a doc-
toral student at the ECE Department, Northwestern
University, Evanston, IL, USA. His research focuses
on design, adaptation, and verification for learning-
enabled cyber-physical systems by exploring the in-
tersection of formal methods and machine learning.

Weichao Zhou (zwc662@bu.edu) is a doctoral stu-
dent at the Department of Electrical and Computer
Engineering, Boston University, Boston, MA, USA.
His research focuses on reinforcement learning, for-
mal verification for learning-enabled control sys-
tems, and specification-guided imitation learning.

Jiameng Fan (jmfan@bu.edu) received the Ph.D.
degree in Electrical Engineering from Boston Uni-
versity, Boston, MA, USA. He is working as a
software engineer at Google LLC.

Zhilu Wang (zhilu.wang@u.northwestern.edu) re-
ceived his Ph.D. degree in 2022, from the De-
partment of Electrical and Computer Engineering,
Northwestern University, Evanston, IL, USA. He is
working as a software engineer at Google LLC.

Jiajun Li (j.li234@liverpool.ac.uk) is a doctoral
student at the Department of Computer Science,
University of Liverpool, Liverpool, UK. His research
interests include formal methods, program synthesis,
and high-performance computing.

Xin Chen (chenxin@unm.edu) received his Doctor
rerum naturalium (Doctor of natural sciences) from
RWTH Aachen University, Germany in 2015. He is
currently an assistant professor of Computer Science
at the University of New Mexico, Albuquerque, NM,
USA. His research interests mainly focus on solving
the safety and security problems for the dynamical
systems equipped with AI controllers using numer-
ical and formal methods.

Chao Huang (chao.huang2@liverpool.ac.uk) is a
Lecturer (Assistant Professor) at the Department of
Computer Science, University of Liverpool, Liver-
pool, UK. He is also an adjunct assistant professor
in the Department of Electrical and Computer Engi-
neering at Northwestern University, US. His research
interests include design and verification of intelligent
systems, of which the components involve machine
learning techniques.

Wenchao Li (wenchao@bu.edu) is an Assistant
Professor at the Department of Electrical and Com-
puter Engineering at Boston University, Boston, MA,
USA. He received his Ph.D. in Electrical Engineer-
ing and Computer Sciences from the University of
California, Berkeley. His research sits at the intersec-
tion of formal methods and machine learning, with a
focus on building safe and trustworthy autonomous
systems.

Qi Zhu (qzhu@northwestern.edu) is an Asso-
ciate Professor at the Department of Electrical and
Computer Engineering in Northwestern University,
Evanston, IL, USA. He received his Ph.D. in Elec-
trical Engineering and Computer Sciences from the
University of California, Berkeley. His research in-
terests include design automation for cyber-physical
systems (CPS) and Internet-of-Things (IoT), safe
and robust machine learning for CPS and IoT, cyber-
physical security, and system-on-chip design.

	Introduction
	Background
	Problem Formulation
	Framework of POLAR-Express
	Layer-by-Layer Propagation using TMs
	Bernstein Over-approximation for Activation Functions
	Using Symbolic Remainders

	Benchmark Evaluations
	Challenges with Running Other Tools
	Experimental Comparison and Discussion

	Conclusion and Future Work
	References
	Biography
	Biographies
	Yixuan Wang
	Weichao Zhou
	Jiameng Fan
	Zhilu Wang
	Jiajun Li
	Xin Chen
	Chao Huang
	Wenchao Li
	Qi Zhu

