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Abstract

The QCD axion provides one of the best motivated solutions to the Strong CP problem of the
Standard Model. Meanwhile, axion like particles appear as part of many high energy theories and
could play a role in solving various puzzles of cosmology and particle physics. In particular, owing
to their small couplings and their non-thermal production mechanisms, the QCD axion and axion
like particles are robust candidates for cold dark matter and have been the subject of extensive
research and experimental search effort.

I start by reviewing the motivation for axions and their phenomenology. I explain why an im-
portant aspect is the axion inflationary scenario, either pre- or post-inflationary, related to the time
when the global U(1) PQ symmetry that gives rise to the axion was last spontaneously broken. I
study a precise way to separate these scenarios, characterising them based on the density of axion
strings: the post-inflationary scenario corresponds to large string density at the time when the axion
mass becomes relevant and domain walls form which result in the network collapsing immediately
after, while the pre-inflationary scenario corresponds to negligibly low strings and domain walls
density having re-entered until today. An intermediate scenario when the string network re-enters
the horizon and is destroyed after the axion mass becomes relevant but before today is uncovered,
and I estimate the corresponding axion abundance and discuss phenomenological consequences.
Meanwhile, numerical simulations are used to find a relation between string density and the prob-
ability distribution of the radial mode over regions that have re-entered the horizon, which can be
related to the size of quantum fluctuations during inflation. This allows to predict the evolution of
the string density up until a value sufficient to collapse the network and estimate the time when
the network would be destroyed, which prescribes the inflationary scenario. Additionally, I discuss
alternative ways to restore the PQ symmetry even when quantum fluctuations are small, which can
similarly result in the post-inflationary scenario, and in some cases the intermediate scenario.

I also explain how the spectrum of gravitational waves emitted by axion string networks in
the post-inflationary scenario can be derived by combining effective field theory analysis with
numerical simulations. The spectrum is used to determine when such axions would be detectable
by gravitational waves detectors. Various constraints on axion like particles that could result
in observable gravitational waves are considered. As a result axion like particles in the post-
inflationary scenario with symmetry breaking scales in the range 1014 ÷ 1015 GeV and masses
10−28 ÷ 10−18 eV lead to gravitational waves observable by next generation detectors, both pulsar
timing arrays and space-based interferometers, while being compatible with constraints from dark
radiation, dark matter overproduction and isocurvature. I discuss the conditions under which
axions with such high symmetry breaking scales can be in the post-inflationary scenario.
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Chapter 1

Introduction

1.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (in short the Standard Model or SM) describes all directly
observed matter and three of the four fundamental forces affecting it, that is the electromagnetic,
weak and strong forces. It is a Lorentz invariant renormalisable quantum field theory (QFT)
based on the gauge group SU(3)⊗SU(2)L

⊗
U(1)Y , where the SU(3) gauge group corresponds

to the strong force which is described by what is known as Quantum Chromodynamics (QCD)
[2–4], and SU(2)L

⊗
U(1)Y to the weak force and electromagnetic forces which are unified in

the Glashow, Salam, Weinberg model [5–7] and are spontaneously broken down to the residual
symmetry SU(2)L

⊗
U(1)Y → U(1)EM. The SM Lagrangian contains renormalisable terms1 which

obey the underlying symmetries. These are the gauge symmetry and Lorentz symmetry, which
has combined CPT conservation (charge conjugation+parity transformation+time reversal) as a
consequence [9]. However, charge conjugation (C) i.e. that the action is invariant under replacement
of particles by antiparticles, parity (P) i.e. that the action is invariant under the flipping of the
sign of an odd number of spatial dimensions and time reversal (T) i.e. the action is invariant under
the flipping of the sign of the time dimension, are not imposed individually. Terms in the SM
Lagrangian can be broken into four types:

• Kinetic terms corresponding to the gauge bosons that mediate the various interactions: pho-
tons for electromagnetic, W−, W+ and Z bosons for the weak interaction and eight gluons
for the strong interactions. These terms look like −(1/4)XµνX

µν where Xµν is replaced by
the field strengths corresponding to the various interactions. These terms conserve CP.

• Dirac terms of the form iψ /Dψ, where /D is the covariant derivative, for each of the fermions
in the SM. These terms conserve CP.

1In d = 4 dimensions operators up to mass dimension 4 are renormalisable [8].
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• Kinetic (Dµϕ)†(Dµϕ) and potential −µ2
ϕ(ϕ†ϕ) + λϕ(ϕ†ϕ)2 terms for the Higgs boson ϕ. The

Higgs is a spin 0 scalar that is charged under the weak interaction, but not the strong or
electromagnetic interactions. These terms conserve CP.

• Yukawa terms −YψψLψRϕ for each of the fermions with the exception of neutrinos. These
terms describe the fermions’ ψ interactions with the Higgs boson and are responsible for
giving fermions Dirac mass upon electroweak symmetry breaking [10–12]. These terms violate
P and CP if there are complex phases in the Yukawa matrices, which has been observed
experimentally [13–18].

Fermions of the SM are split into quarks and leptons. Quarks carry color charge of one of three
colors and are thus subject to the strong force. For this reason quarks cannot generally be observed
as free states, at temperatures lower than about ΛQCD ≃ 200 MeV they are bound together into
composite particles called hadrons, either mesons which are a quark/antiquark pairs, or baryons
which are made up of three quarks or antiquarks2. There are in total six quark flavours which
are grouped in three generations, each generation containing a quark of electric charge 2/3 e: the
up, charm and top quarks, as well as a quark of electric charge −1/3 e: the down, strange and
bottom quarks. The weak interaction allows quarks to change flavour: from a quark with charge
−1/3 e to any other quark of charge 2/3 e by emitting a W− boson and vice versa by emitting a
W+ boson, and this is responsible for the eventual decay of second of third generation quarks into
the lighter first generation quarks. The transitions between various quarks are parametrised by the
Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Leptons on the other hand do not carry color charge so they are unaffected by the strong
interaction, at least at tree level. They similarly also come in six flavours grouped into three
generations, each generation containing one electrically charged particle: electron, muon and tau,
and a corresponding neutrino which does not carry electric charge. Leptons can also change flavours
via the weak interactions: a charged lepton can decay into a charged lepton and a neutrino of
different flavour plus an antineutrino of the original flavour.

All fermions in the Standard Model except neutrinos come in two chiralities, either left-handed
or right-handed, with only left-handed fermions interacting through the weak force. Fermion masses
are generated through the Yukawa terms above containing left and right-handed fermions once
the Higgs acquires a non-zero Vev [10–12]. For this reason neutrinos are exactly massless in the
Standard Model, as there are no right-handed neutrinos and thus no corresponding Yukawa terms
coupling to the Higgs.

Other than the residual gauge symmetry SU(3)⊗U(1)EM and the associated electric charge
and color charge which are conserved, there are additional accidental symmetries in the Standard
Model and correspondingly conserved quantities. These arise as a result of the truncation of the
Lagrangian down to renormalizable terms and are expected to be broken once higher dimension

2In the following, quantities expressed in units of eV are understood to be in natural units for which c = ℏ = kB = 1.
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operators are introduced. Examples for these include the baryon number U(1)B, the lepton number
U(1)L and more specifically the lepton number of each generation.

Finally the Standard Model can be tested for experimentally and the various parameters can be
measured, such as the gauge couplings, the masses of various particles and the CKM matrix, Higgs
mass and self-coupling (see [19] for recent values). There has been extensive evidence for the SM
such as the prediction of the existence of the Higgs boson, charm and top quarks, the prediction
of the masses of W± and Z bosons, the branching ratios of Z boson’s decays into fermion pairs,
the agreement between the predicted and measured anomalous electron dipole moment to high
precision. While the SM agrees well with particle accelerator experiments, there are various hints
to physics beyond the Standard Model, coming for example from various patterns and fine tuning
problems within the Standard Model or from cosmology.

1.1.1 Hints of physics beyond the Standard Model

• The discovery of neutrino oscillations [20, 21] points to a violation of the accidental lepton
flavour symmetry as well as non-zero masses for neutrinos. This accidental symmetry is
violated by non-renomalizable dimension five operators of the form Zi,jϕϕνiνj which allow
for Majorana masses for the neutrinos once the Higgs acquires a Vev. Extensions of the SM to
include heavy right handed neutrinos and a Higgs triplet can elegantly explain the smallness
of SM neutrino masses [22–28]. Similarly models for which the neutrino acquires a Dirac mass
have been considered [29,30].

• The current best cosmological model requires that the majority of matter in the Universe is
non-baryonic, which cannot be explained by the SM. This additional matter is called Dark
Matter (DM) and there is extensive cosmological and astrophysical evidence for its existence,
which is discussed in the next Section on the ΛCDM model, together with a few candidates
for DM.

• Similarly, cosmological observations point to the Universe being filled with a substance with
negative pressure called Dark Energy (DE). One explanation for this could be a scalar field
stuck in a relatively flat region of its potential, which is very similar to the inflation which
is discussed in Section 1.3. However no such scalar or otherwise an explanation for DE is
available in the SM. Alternatively, it could be the zero-point (vacuum) energy density, however
a standard calculation shows that this energy is UV divergent [31] which is typically resolved
by introducing a UV cut-off M . The zero-point energy density in this case is expected to be
of the order ρΛ ∼ M4, however natural cut-offs such as the Planck scale M ∼ 1018 GeV or the
GUT scale M ∼ 1016 GeV or even the mass scale of the heaviest Standard Model particles
M ∼ 100 GeV lead to a disastrously large prediction, which is away from the observed value of
the cosmological constant by anywhere from 56 orders of magnitude for the Standard Model
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scale and up to the infamous 120 orders of magnitude for the Planck scale, which is known
as the cosmological constant problem.

• As I explain in Section 1.3 the inflationary paradigm is well-established in cosmology. One
of the ways this could be achieved is through the presence of at least one scalar field, the
inflaton, which has decayed in the early Universe to produce the SM matter. However, the
only such scalar available in the SM is the Higgs, whose self-coupling λϕ is too large for it
to be the inflaton while providing the right amplitude of the spectrum of primordial density
perturbations. Therefore some extensions are required to allow the Higgs to be the inflaton,
the minimum one being a non-minimal coupling to gravity (see [32] for a review on Higgs
inflation). Alternatively, the inflationary paradigm would require the addition of at least one
scalar field to the SM.

• The SM provides no explanation for the gauge group SU(3)⊗SU(2)⊗U(1) and in particular
why the electromagnetic and weak interactions are unified while the strong interactions are
not. Grand Unified Theories (GUTs) have been proposed to also unify the strong interaction
above a large energy scale ΛGUT ≃ 1016 GeV and these theories are based on larger symmetry
groups such as SU(5) [33] or SO(10) [34].

• The SM as a quantum theory describes three out of the four fundamental forces, with gravity
being described by General Relativity, which is a classical theory. Extensive research is
dedicated to finding the quantum theory of gravity, with many candidates being proposed
(see [35] for a recent review). Ideally such a theory would unify all four fundamental forces.

• The SM provides no explanation why there are three generations of fermions and also why the
masses of successive generations differ by large factors. An interesting observation is that these
factors are approximately powers of the so-called Cabibbo angle |Vus| ≃ 0.225, a coincidence
known as the flavour puzzle. An attractive solution is the Froggatt-Nielsen mechanism [36]
which involves the introduction of an additional flavour symmetry GF fermions are charged
under, such that renormalizable Yukawa couplings are forbidden for fermions other then the
top quark. Effective Yukawa couplings for fermions are then generated by non-renormalizable
couplings of the form (χ/ΛF )aL+bRψLψRϕ, where χ is a new scalar called the flavon, which
acquires a Vev upon spontaneous breaking of the symmetry GF at a scale ΛF between the
electro-weak and the Planck scale, while aL, bR are quantum numbers associated with the left
and right chiralities of the fermions. This way Yukawa couplings are approximately powers
of ⟨χ⟩ /ΛF which explains the flavour puzzle.

• The baryon and lepton number conservation means that the today matter/antimatter asym-
metry must be the result of the asymmetry in the initial conditions. This is however not
a very attractive explanation, particularly as the initial matter/antimatter asymmetry must
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have been extremely small but not zero before they annihilated to leave only the remain-
ing matter. Additionally this is incompatible with the inflationary paradigm, since inflation
is supposed to dilute the initial matter density to a negligible amount, with matter in our
Universe being the result of the decay of the inflaton. A more attractive solution is that
the asymmetry is generated by interactions, which requires the well-known Sakharov condi-
tions [37] that the responsible interactions violate baryon and lepton number conservation,
C and CP and that they happen outside of thermal equilibrium. If any of these conditions
does not hold the rate at which matter and anti-matter is produced are equal and thus no
asymmetry can be created. The CP violating terms in the SM are however insufficient to
produce the matter/antimatter asymmetry [38, 39], so this explanation requires extension of
the SM to contain additional CP violation as well as baryon number violation.

• An additional CP-violating term can be written in the SM Lagrangian and is consistent with
the symmetries of the model:

L ⊃ θQCDg
2
s

64π2 ϵµναβGaµνG
a
αβ . (1.1)

While this term turns out to be a total derivative it ends affecting the physics due to the
anomalous axial symmetry, and in particular can be probed be the neutron’s electric dipole
moment (nEDM). The vanishing of the nEDM constitutes a fine tuning problem for the
parameter θQCD known as the Strong CP problem. I discuss the Strong CP problem and the
QCD axion solution in more detail in Chapter 2.

• Treating the SM as an effective field theory, the mass squared of the Higgs boson receives
quantum corrections for each fermion and boson it couples with. For example at leading
order for a fermion the correction is of the form:

δm2
ϕ ∼ −g2

ϕ,fΛ2
UV , (1.2)

where ΛUV is some UV cut-off at which we would expect new physics to show up. However
such a correction for a natural coupling gϕ,f ≃ O(1) dominates over the measured mass
of the Higgs boson mϕ ≃ 125 GeV unless the cut-off is ΛUV ≲ O(1 TeV) which is smaller
than the energy scale accessible by the LHC. This means that quantum corrections to the
Higgs potential must somehow cancel to a high degree of accuracy, which constitutes a fine
tuning problem called the hierarchy problem. Among the solutions proposed for this is
Supersymmetry, which would ensure an exact canceling between the negative corrections
from fermions and positive corrections from bosons.
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1.2 The post-inflationary ΛCDM Universe

Meanwhile, the cosmological evolution of the Universe appears well described by the ΛCDM model,
which is the simplest model that explains the observed abundance of light elements, the spectrum of
temperature anisotropies in the Cosmic Microwave Background data, and the observed accelerated
expansion of the Universe. It is based on General Relativity, which is currently the best description
of gravity available, and the cosmological principle which states that the Universe is homogeneous
and isotropic over large scales. The cosmological principle reduces the metric to the standard
Friedmann-Robertson-Walker (FRW) form [40–42], in comoving polar coordinates (r, θ, ϕ):

ds2 = dt2 −R(t)2
(

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
)
, (1.3)

where R(t) denotes the scale factor of the Universe, k parametrises the geometric curvature of
the Universe, with k > 0 corresponding to a closed Universe and k < 0 to an open Universe. The
standard General Relativity treatment of extracting the Christoffel connection, the Riemann tensor
and the Ricci scalar from the FRW metric can be applied (see [43] for an introduction to General
Relativity), resulting in the Friedmann equations:

3M2
PH

2 = ρ− 3kM2
P

R2 +M2
PΛ , (1.4)

R̈

R
= − 1

6M2
P

(ρ+ 3P ) + Λ
3 , (1.5)

where the Hubble parameter is defined as H = Ṙ/R, P is the pressure, MP is the reduced Planck
mass MP =

√
8πG ≃ 2.4 × 1018 GeV and Λ is the cosmological constant. The Friedmann equation

is sometimes divided by the critical energy density today ρc = 3M2
PH

2
0 to give:

Ωr(t) + Ωm(t) + Ωk(t) + ΩΛ(t) = E(t) = H2

H2
0
, (1.6)

which makes clear the various relative contributions: radiation Ωr = ρr/(3H2
0M

2
P ), matter Ωm =

ρm/(3H2
0M

2
P ), geometric curvature Ωk = −k/(H2

0R
2) and cosmological constant ΩΛ = Λ/(3H2

0 ) to
the energy budget today E(t0) = 1 and in the following I denote quantities today by the subscript
0. The cosmological constant term is required to be positive since observations show R̈ > 0
today, however for ordinary matter and radiation the pressure is positive, thus either a positive
cosmological constant or an additional unknown component with negative pressure is required
in the Universe. Since each of these components evolves differently in time with Ωr ∼ R(t)−4,
Ωm ∼ R(t)−3, Ωk ∼ R(t)−2 and ΩΛ is constant, a naive expectation is that each of these components
have dominated the energy budget of the Universe in this order. Under this expectation the history
of the Universe can be summarised as follows.
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After the end of inflation and subsequent reheating, which are discussed shortly in Section
1.3, the Universe is radiation dominated with the SM particles in thermodynamic equilibrium at
a large temperature. Relatively light degrees of freedom m ≲ T are relativistic and having equal
production and annihilation rates. Once the temperature decreases below their mass, they become
heavy and their production is inhibited by their mass, so their equilibrium density quickly decreases
due to the annihilation. Eventually when their annihilation rate falls below the Hubble parameter
they freeze out and are no longer in equilibrium, even then they continue to decay if they are
unstable, which is the case for most SM particles. Thus, as the Universe cools down SM particles
successively become massive, annihilate as well as decay into lighter particles, culminating with
electron/positron annihilation. The remaining SM matter today is primarily made up of stable
particles (protons, neutrons inside nuclei and electrons) which survived annihilation with their
antiparticles due to the matter/antimatter asymmetry, which is expected to have been generated
by some dynamical mechanism.

Additionally, as the Universe cools down the energy of radiation becomes smaller than the
binding energy of nuclei, allowing protons and neutrons to form them. This way the light nuclei
(deuterium d, tritium t, helium 3He and 4He and lithium 7Li) are produced, which is called Big Bang
Nucleosynthesis (BBN), as opposed to heavier nuclei which are produced inside stars much later
in the cosmological history. At temperatures below about 1 MeV the rate of interactions that turn
protons into neutrons such as p+ e− ↔ n+ νe becomes smaller than the Hubble rate, which fixes
the ratio between protons and neutron at subsequent times, apart from the neutron decays. From
here on the neutrons are expected to fuse with protons to form nuclei through a couple interaction
chains, however both these chains require the initial production of deuterium: p+n → d+γ which
is broken down even at temperatures significantly below the deuterium binding energy ≃ 2 MeV due
to the high photon to baryon ratio. The formation of deuterium becomes possible at temperatures
below O(0.05 ÷ 0.1) MeV and from here on formation of heavier nuclei proceeds through:

d+ d → 3He + n 3He + d → 4He + p , (1.7)

and
d+ d → t+ p t+ d → 4He + n , (1.8)

until the point where the temperature is too small to allow for nuclear fusion. Finally, lithium is
produced by either

4He + t → 7Li + γ , (1.9)

or
3He + 4He → 7Be 7Be + e− → 7Li + νe , (1.10)

and heavier nuclei are difficult to be produced at this stage due to the lack of stable nuclei of atomic
mass 5 or 8.
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After BBN the Universe continues to cool until eventually the temperature becomes of the order
of the binding energy of hydrogen atoms. At this time protons and electrons bound into atoms,
and from here on the photons are allowed to travel freely through the Universe. This is called
recombination, or last scattering and is the source of the Cosmic Microwave Background (CMB).
At later times no more energy is transferred into radiation and matter eventually comes to dominate
the energy density of the Universe, since its energy density dilutes slower with the expansion of the
Universe than that of radiation. Under gravitational attraction matter finally forms the galaxies
and stars present in the Universe today, which in the literature is called structure formation.

Since its discovery, the CMB has become one of the most important tools to study cosmology,
as it allows for very precise determination of various cosmological parameters. This is done by
considering the pattern of the baryonic acoustic peaks in the CMB temperature power spectrum,
which are caused by acoustic oscillations of the baryon/photon fluid at times before recombination.
The position and relative amplitude of acoustic peaks can be used to determine the various com-
ponents that appear in the Friedmann equation (1.6) as well as the density of baryonic matter. In
particular the third acoustic peak is sensitive to the total density of matter Ωm, the second acoustic
peak to the density of baryonic matter Ωb, these together with the position of the first peak deter-
mine the curvature and cosmological constants Ωk and ΩΛ respectively (see [44] for a review). The
latest result are Ωm(t0) ≃ 0.3, Ωb(t0) ≃ 0.05, Ωk(t0) ≲ 0.01, ΩΛ(t0) ≃ 0.7 [45]. Thus the Universe
today is dominated by the cosmological constant, which has the associated problem of being too
small as discussed in Section 1.1.1, or alternatively by Dark Energy, an unknown substance with a
peculiar equation of state PDE/ρDE < −1/3. Either way, the exact reason for the acceleration of
our Universe remains an open question and is subject to intensive research.

On the other hand, there exist another puzzle related to the density of matter. The CMB
is used to determine the density of baryonic matter Ωb(t0) ∼ 0.05 much smaller than the total
density of matter Ωm(t0) ∼ 0.3. Additionally, the majority of baryonic matter today, and definitely
all the baryonic matter at the age of recombination, is expected to come from light nuclei which
have formed through BBN (such as helium), rather than heavy nuclei which formed inside stars
at much later times. The BBN prediction of the baryonic matter density is consistent with the
CMB determination of the baryonic matter density [46–49], which confirms that the vast majority
of matter is not baryonic. This additional matter is called Dark Matter (DM), since it should have
very weak coupling to radiation (and baryonic matter) in order to have evaded direct detection.
The baryonic acoustic peaks could differentiate between dark and baryonic matter due to the
vastly different strengths of coupling to radiation, since the baryons travel together with photons
and encounter the gravitational potential generated by dark matter, which is allowed to cluster due
to its vanishing couplings to radiation (and baryonic matter).

Additional evidence for DM comes from astrophysics, such as the average velocity of galaxies
in the Coma cluster [50], rotation of spiral galaxies [51–53], large scale structure, gravitational
lensing [54]. An in depth review of the history of DM as well as additional references can be found
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in [55]. Simulations of “hot” versus “cold” dark matter further show that dark matter must be
dominantly cold to explain the scale structure of the Universe [56–59], point being that if dark
matter has too large velocities it would be unable to cluster under the effect of gravity in a way
consistent to the observed structure of the Universe. In fact a lower bound is placed on the mass
of “hot” dark matter particles in thermal equilibrium ≳ 1 keV [60], while an upper bound on the
masses of neutrinos is mν ≲ O( eV) [61]. For this reason Standard Model left-handed neutrinos do
not make a good candidate to explain Dark Matter [57]; similarly to Dark Energy its origin lies
beyond the Standard Model. However, the addition of heavier right-handed neutrinos could avoid
this bound [62].

Perhaps the most well-known candidates for DM are weakly interacting massive particles
(WIMPs), which constitute a large class of potential candidates from various beyond the Stan-
dard Model theories such as the lightest supersymmetric partner in the case of supersymmetric
theories [63, 64] or light Kaluza-Klein particles in theories with extra dimensions [65]. These have
in common the fact that they are either produced thermally or from decays of heavier particles
which are themselves produced thermally3 [66]. The main attractive feature of WIMPs is the
observation that assuming weak scale interactions their freeze-out abundance is at the same level
as the dark matter density [67], a coincidence dubbed the “WIMP miracle” for typical masses of
the order of 100 GeV, while being predicted by theories that attempt to simultaneously solve the
hierarchy problem and the unification of the strong and electroweak forces. The direct detection at-
tempts for WIMPs have so far been inconclusive, see [68] for a recent review of the direct detection
bounds, while the lack of evidence for weak scale Supersymmetry from the Large Hadron Collider
has somewhat weakened the motivation for WIMPs. However, reasonably natural supersymmetric
models could have evaded detection by the Large Hadron Collider [69] and there is still parameter
space to be explored by direct detection.

Axion like particles (ALPs) are another class of well motivated candidates for DM. The main
representative is the QCD axion, which was initially proposed as a solution to the Strong CP
problem [70–76]. It involves the introduction of an additional U(1) symmetry, the so-called Peccei-
Quinn (PQ) symmetry, which is spontaneously broken at a high energy scale and the QCD axion
is its associated pseudo Nambu-Goldstone bosons (PNGB). The QCD axion is made to couple to
the topological charge ϵµναβGaµνGaαβ in such a way that it effectively turns the fixed parameter
θQCD into a dynamic one, which then relaxes to the value that minimizes the energy θQCD = 0. It
also turns out that axion like particles (ALPs) are numerous in string theory [77–83], with some
potential candidates for the QCD axion 4 These ALPs are generically very weakly interacting with
matter and radiation and are primarily produced non-thermally with relatively low momentum,
as explained in more detail in Chapter 2. For this reason, axions behave as cold matter even
while being very light, thus avoiding the bounds on hot DM mentioned above. Additionally more

3The later are called superWIMPs.
4Many of these string theory ALPs are not associated to a U(1) symmetry in the 4D effective theory.
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complex models have been suggested in which the QCD axion contributes to solving various other
puzzles such as the hierarchy problem [84], the asymmetry between the abundances of baryons
and antibaryons [85–89], the smallness of neutrino masses [87, 89], the flavour puzzle [90]. For
these reasons ALPs and in particular the QCD axion are subject to extensive study as well as
experimental attempts to detect them.

1.3 Inflation

There are two final puzzles of the ΛCDM model I would like to discuss, the so-called flatness and
horizon problems, which are somehow related in that they are both concerned with the way the
Universe expands in the radiation and matter domination eras. The flatness problem has to do
with the surprisingly small geometric curvature of the Universe Ωk(t0) = −k/(H0R0)2 < 0.01,
which is exacerbated by the fact that in the past the curvature ∼ 1/(R2H2) was much smaller
since during both radiation and matter domination the product RH decreases with time5. The
horizon problem has to do with the extreme homogeneity of the CMB across the sky, since the
fact that the size of the causal horizon increases faster than comoving length means our observable
Universe today contains a large number of causal patches at the time of recombination, which
have no reason to have the same temperature. Since both of these problems have a similar cause
in the behaviour of RH during matter and radiation domination, they share a common solution:
the inflationary paradigm [91–93]. The idea is that if sometime in the past the expansion of the
Universe was accelerated and this period of so-called inflation lasted for sufficiently long, then it
would solve both of these problems: in the case of flatness starting from any arbitrary curvature
inflation would bring the curvature to a very small value which then increases during radiation
and matter domination up to the (still small) value today, while for the horizon problem the entire
Universe observable today could have been in causal contact during inflation.

A minimum condition for inflation is that the expansion of the Universe is accelerated R̈ > 0,
which requires that the Universe was dominated by some substance with similar properties to Dark
Energy. The main differences to Dark Energy is that we know inflaton must have lasted for long
enough to solve the horizon and flatness problem, which typically in the literature is written in
term of the minimum number of e-folds Ntot that the Universe has been inflated for, while having
a mechanism to eventually end, at which point the energy must transfer into radiation to allow for
the standard cosmology.

To estimate the number of e-folds of inflation necessary to solve the horizon problem, notice
that it is sufficient if one region the size of the causal horizon at the time Ntot e-folds before the
end of inflation expanded into a region larger than the causal horizon until today. This is written

5The observed curvature breaks the naive expectation of a period of curvature domination between matter and
cosmological constant.
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simply:
eNtot

HI

R0
RI

≳
1
H0

, (1.11)

where RI denotes the scale factor at the end of inflation. Assuming instant reheating and comoving
entropy density conservation, R0/RI can be estimated leading to:

eNtot ≳
HI

H0

T0
TRH

(
g⋆(T0)
g⋆(TRH)

)1/3
≃ T0
H0

√
HI

MP

(
π2

90

)1/4
g⋆(T0)1/3

g⋆(TRH)1/12 , (1.12)

where TRH denotes the reheating temperature and g⋆(T ) the effective number of relativistic degrees
of freedom at temperature T . The number of e-folds of inflation sufficient to solve the horizon
problem is then:

Ntot ≳ log
(
T0
H0

)
− 1

2 log
(
MP

HI

)
≳ 60.6 , (1.13)

where HI was replaced by its maximum value HI ≲ 4.2 × 1013 GeV discussed bellow.
Similarly for the flatness problem notice that

Ωk(tinf)
Ωk(t0) = e2Ntot

(
R0H0
RIHI

)2
, (1.14)

where Ωk(tinf) describes the curvature Ntot e-folds before the end of inflation. Assuming at this
time Ωk(tinf) ∼ O(1) a similar condition to (1.11) is sufficient to solve the flatness problem as is for
the horizon problem.

Some of the earliest proposals for inflation [93] involved a single scalar field φ, now called the
inflaton, which initially starts with a value far away from the minimum of its potential, giving it a
large potential energy which dominates the energy density of the Universe. In this case the energy
density and pressure are respectively:

ρφ = 1
2 φ̇

2 + Vφ , (1.15)

Pφ = 1
2 φ̇

2 − Vφ , (1.16)

so from equation (1.5) it can be seen that the expansion of the Universe is accelerated if φ̇2 < Vφ

and the potential of the inflaton dominates the total energy density. The equation of motion for
the inflaton reads:

φ̈+ 3Hφ̇+ dVφ
dφ

= 0 . (1.17)

Towards the end of inflation the acceleration R̈ is approaching 0. It can be shown from the inflaton’s
equation of motion together with the Friedman equation (1.4) as well as the condition that the
expansion is still accelerated R̈ ≳ 0 ↔ Ḣ +H2 > 0 that close to the end of inflation the term 3Hφ̇
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dominates over φ̈ in the inflaton’s equation of motion, which becomes:

3Hφ̇ ≃ −dVφ
dφ

. (1.18)

The conditions that inflation is maintaned can be written in terms of the slow-roll parameters
ϵ, η defined as:

ϵ ≡ − Ḣ

H2 = 1
2M

2
P

(
V ′

V

)2
< 1 , (1.19)

η ≡ M2
P

V ′′

V
< 1 . (1.20)

These describe the slope of the potential and consequently how slowly the field φ and the energy
density evolve in the region that inflation is happening. In the limit ϵ, η → 0 the Universe expands
exponentially R ∼ eHt with a constant H, so the size of the causal horizon 1/H remains constant,
while the comoving size of the horizon 1/(RH) shrinks.

The slow-roll parameters can be probed due to quantum fluctuations, which perturb the value of
the inflaton (scalar perturbations) and of the metric (both scalar and tensor perturbations). Metric
perturbations are described by a wave equation (see [94] for a review, as well as references therein),
which gives them the name primordial gravitational waves. The wavelengths of these waves are
rapidly stretched by the expansion of the Universe and eventually exceed the size of the horizon
since expansion is accelerated. When this happens, their amplitude remains roughly constant for
as long as they the wavelength is super-horizon, assuming single field inflation. This results in an
approximately scale invariant power spectrum:

PT (k) ≡ AT (k)
(

k

RH

)nT (k)
= 2H2

π2M2
P

(
k

RH

)−2ϵ
, (1.21)

where the right hand side is evaluated at the time of horizon crossing. Similarly scalar perturbations
become frozen when the wavelength of Fourier modes is super-horizon, resulting in a spectrum:

Ps ≡ As(k)
(

k

RH

)ns(k)−1
= 1

2ϵ

(
H

2πMP

)2 ( k

RH

)2η−6ϵ
, (1.22)

where the right hand side is also evaluated at the time of horizon crossing.
The CMB temperature anisotropy probe the scalar spectrum of curvature perturbations, while

the tensor perturbations are better distinguished by combining temperature anisotropy and the
polarization data [95–97]. The most recent CMB constraints on the tensor to scalar ratio, the scalar
spectral index and the amplitude of the spectrum of scalar perturbations are respectively [98–100]:

rT = 16ϵ ≲ 0.028 , (1.23)
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ns = 1 − 6ϵ+ 2η = 0.9649 ± 0.0042 , (1.24)

As = 1
2ϵ

(
H

2πMP

)2
= (2.105 ± 0.029) × 10−9 , (1.25)

which can be used to place upper bounds ϵ ≲ 1.75 × 10−3, H ≲ 4.2 × 1013 GeV at the time when
CMB scales exited the horizon during inflation.6 The relatively low value of ϵ allows to assume that
Hubble is a constant during inflation H = HI and the Universe expands exponentially R ∼ eHI t.

By now there are multiple proposed ways to achieve the slow decrease of energy required for
inflation, see [102–104] for reviews. Many of these require more ingredients than just one simple
scalar field, however in some cases the model can still be written as an effectively single field
model with the values of additional fields being determined by the couplings to the inflaton and
effectively contributing to its potential. This is for example the case in hybrid inflation models
which we discuss later, in Chapter 5, and in this situation inflation is similarly maintained as long
as the inflaton is slow-rolling.

One issue in many inflationary models is that they require somewhat special initial conditions,
in particular the simplest single models with high scale of inflation require that the inflaton starts
with very large initial values φ ≳MP , while many of the low scale inflation models also suffer from
fine tuning problems [105, 106]. An argument in the defense of large scale models is that a small
Universe with huge initial energy density is most likely to be quantum created from “nothing”
through quantum fluctuations [107, 108]. A simplified version of this argument is stated in [103]:
by using the uncertainty principle ∆E∆t ≳ 1 it can be argued that the most likely Universe is the
one that forms in the shortest possible time ∆t ≃ 1/MP in which case the energy density of such
a Universe is of the order of the Planck density ∼ M4

P and thus a large energy density during and
at the end of inflation is expected. A more general justification for initial conditions required for
inflation is that parts of the Universe that have been inflated cover exponentially more space than
those that have not been inflated at all and thus we might be more likely to find ourselves in such
a region.

Regardless of the realisation of the inflationary model, eventually the inflaton is no longer stuck
in a relatively flat region of its potential and it starts oscillating, relaxing to its vacuum. At this
point it decays together with the various other fields that were participating in keeping the energy
density approximately constant. During this time the Universe is in a phase of matter domination
called reheating, which is responsible for the decay of the inflaton and the thermalisation of its
decay products. This process is incredibly complicated as it depends on the exact contents of
the early Universe and their interactions, which also necessarily happen outside of equilibrium.
Following this phase, the Universe ends up radiation dominated and in thermodynamic equilibrium

6A future mission to measure CMB polarisation could detect a tensor to scalar ratio, or alternatively strengthen
the upper bound down to rT ≲ 0.001 [101].
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at a (presumably large) unknown temperature, which connects to the standard cosmological history
as explained above.

On top of the flatness and the horizon problem, the exponential expansion of the Universe
characteristic to the inflationary paradigm could also account for the lack dangerous relics which
appear in many high energy theories. These often predict topological defects as a result of phase
transitions at large temperatures, such as heavy magnetic monopoles which would come to domi-
nate the energy density of the Universe and endanger the standard cosmology [109], domain walls
whose energy density dilutes slower than both matter and radiation and thus would result in a
phase of domain walls domination if they are stable and cosmological strings which are heavily
constrained if they survive until recombination [110–113]. A way to avoid these problems is if
these dangerous relics have been additionally diluted, in which case their energy density has been
negligible throughout the history of the Universe, and inflation can easily do this since it introduces
a potentially huge dilution as the scale factor grows by a factor ∼ e60 in order to solve the horizon
and flatness problems.

1.4 Gravitational waves

Gravitational waves, first indirectly detected by observations of the orbital period of the Hulse-
Taylor pulsar [114,115] and later directly detected by the LIGO/Virgo collaboration [116], provide
a powerful tool to study astrophysics, cosmology and particle physics.

Indeed gravitational waves have already led to discoveries in astrophysics [117, 118] and they
provide valuable insights into the early Universe, since they are the only signal that was freely
propagating through the Universe at times before recombination. This could result in insights
into particle physics, since the temperature and correspondingly the particles energies in the early
Universe have possibly been much larger than what is achievable in particle accelerators. As
explained above, gravitational waves can also be used to probe the energy scale during inflation HI

at the very beginning of the Universe.
For these reasons great effort has been dedicated to designing and improving detectors capable

of observing gravitational waves on the experimental front, while on the theory front it is useful
to understand the spectrum of gravitational waves predicted by various proposed extensions of the
SM in order to tell whether current or near future detectors could help us gain insight into these
theories, and if so what might those insights be.

Gravitational waves detectors currently working or proposed for the future can be broken down
into three categories: laser interferometers, atom interferometers and pulsar timing arrays. Laser
interferometers are sensitive to small changes of the arm length of the detector which are sourced
by gravitational waves. These can be either ground-based such as LIGO [119] and ET [120, 121]
or space-based such as LISA [122], DECIGO/BBO [123]. Space-based interferometers allow for a
much larger arm length than ground-based ones and thus are sensitive to lower frequency gravita-
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tional waves. On the other hand, atom interferometers such as AEDGE [124] and AION [125] use
laser pulses to move cooled atoms inside two atom clouds between ground and excited states, with
the interference pattern being generated by the atoms de Broglie waves. In this sense, the laser
pulses act as effective mirrors and beam splitters for these interferometers. Atom interferometers
are sensitive to frequencies typically between space and ground-based laser interferometers. Finally
pulsar timing arrays such as EPTA [126], PPT [127], SKA [128] monitor a network of millisecond
pulsars and are sensitive to changes to the times some of the pulses arrive, which is an indication
of a change in distance along a direction due to gravitational waves. Since the distances between
Earth and the pulsars are much larger than the arm lengths achievable by space-based laser inter-
ferometers, pulsar timing arrays are sensitive to the lowest frequency gravitational waves out of all
types of detectors.

1.5 Outline of the thesis

This thesis is concerned with the dynamics of ALPs in the early Universe, an important question
being when the associated U(1) PQ symmetry has been broken, which is separated into two cos-
mological scenarios for ALPs: either the PQ symmetry has been broken before the end of inflation
which is the pre-inflationary scenario, or after the end of inflation which is the post-inflationary
scenario. For given values of the parameters that describe ALPs which are the mass ma and sym-
metry breaking scale fa7 the two scenarios result in massively different phenomenological results
as I will explain.

In Chapter 2 I briefly review the Strong CP problem and the QCD axion as a potential solution,
as well as properties of the QCD axion and general ALPs such as the current constraints, their
viability as DM candidates, the standard separation between the pre- and post-inflationary scenario
and how it affects the calculation of relic abundance.

Then in Chapter 3 I review quantum fluctuations during inflation in more detail since they are
an important ingredient in separating the pre- and post-inflationary scenarios, and in particular I
introduce the relevant Langevin and Fokker-Planck equations which are of use in later Chapters.

Chapter 4 is dedicated to the exploration of the transition between the pre- and post-inflationary
scenarios assuming quantum fluctuations are the relevant factor in restoring the PQ symmetry. This
is done by using numerical simulations to empirically find a relatively simple correlation between
the energy density in axion strings and domain walls and the distribution of the axion field at the
end of inflation, which in turn is correlated to HI by the Fokker-Planck equation. This way the
pre- and post-inflationary scenarios can be separated more precisely. We also uncover a region of
the parameter space (albeit small) at the edge between the post-inflationary and pre-inflationary
that has for a long time not been considered in the literature, even if the result for the relic
abundance is substantially different in this case. This is characterised by strings and domain

7Which are related for the QCD axion.
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walls being destroyed later than in the post-inflationary, which enhances the axion abundance. I
estimate the relic abundance in this intermediate region of the parameter space and the applicable
isocurvature constraints, as well as consider phenomenological implications. Additionally, recent
papers [129–131] have considered a similar scenario, which requires that PQ symmetry is broken
during inflation at such a time that scales that correspond to it re-enter the horizon at a specific
time in the early Universe. This may result in late destruction of the domain walls, resulting in a
similar prediction for the axion abundance to the intermediate scenario we uncovered, and I briefly
comment on their results. This Chapter is based on work done together with collaborators and will
be the subject of a future paper.

In Chapter 5 I review other potential ways to restore spontaneously broken symmetries consid-
ered in the literature and apply them to the case of ALPs. They are a large temperature in the
early Universe, a coupling between the PQ field and the inflaton that modifies the PQ potential,
non-perturbative decay of the inflaton and multiple stages of inflation interrupted by brief radiation
or matter domination. Some of these possibilities may lead to the scenario with late domain walls
introduced in [130,131] that was mentioned above.

A second objective of the thesis is to consider the possibility of probing ALPs through grav-
itational waves. In Chapter 6 I explain how numerical simulations can be used to calculate the
spectrum of gravitational waves produced by the evolution of ALP strings in the post-inflationary
scenario and discuss the possibility of detecting ALPs this way. This is possible due to a relatively
simple relation between the strings’ emissions to axions and gravitational waves which we have
deduced analytically in the Nambu–Goto effective theory, up to numerical factors which could be
extracted through numerical simulations. Meanwhile most of the network’s energy loss is emitted
into axions, so the rate of emissions of axions and by extension gravitational waves can be ap-
proximated by simple means of energy conservation if the energy density stored in the network is
known at every time. This in turn can be done thanks to the existence of a scalling regime towards
which the network evolves, whose properties can also be extracted through numerical simulations.
The gravitational waves spectrum is logarithmically enhanced at low frequencies, meaning pulsar
timing arrays are primarily sensitive to them and the amplitude of the spectrum increases with the
symmetry breaking scale fa. Therefore gravitational waves detectors are most sensitive to axions
in a region where they are invisible to most other experimental searches, which rely on axion inter-
actions with photons and matter, whose couplings are proportional to 1/fa. Various cosmological
bounds applicable at large values of fa required for detectable gravitational waves are considered,
such as the axion contribution to the effective number of degrees of freedom, the DM abundance
and isocurvature perturbations. Additionally, I apply the results of previous Chapters to consider
the possibility of PQ symmetry restoration, which is required for the ALP string network to form,
in the case of high values of the symmetry breaking scale corresponding to detectable gravitational
waves.

Chapter 6 is based on [1] which was written together with collaborators, Dr Marco Gorghetto
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and Dr Edward Hardy. Here I will state my individual contribution to the work presented in this
Chapter:

• I have calculated the constraints from dark radiation, dark matter overproduction and the
constraints due to the strings surviving until recombination presented in Figure 6.7. I have
also verified the constraints from isocurvature which my collaborators have calculated.

• I have verified the theoretical derivation of the ratio between strings’ emissions to gravita-
tional waves and axions and the derivation of the gravitational waves spectrum which my
collaborators initially performed.

• I have considered various ways that can result in PQ symmetry restoration for large symmetry
breaking scales required for observable gravitational waves.

• I have performed the test of the systematic errors due to lattice spacing presented in Figure
E.1 of Appendix E.1.

• I have produced Figures 6.1, 6.2, 6.6, 6.8 presented in this Chapter. I also clearly state in the
caption of every figure whether it was produced by my collaborators.
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Chapter 2

Brief review of QCD axion and ALPs

2.1 Strong CP problem

The Strong CP problem is related to the CP violating term

LCP = θQCDg
2
s

64π2 ϵµναβGaµνG
a
αβ , (2.1)

where Gaµν is the gluon field strength, gs is the strong interaction coupling and a sum over the
gauge index a which labels the SU(3) generators is understood.

This term is a total derivative as first pointed out in [132]

1
2ϵ

µναβGaµνG
a
αβ = ∂µK

µ , (2.2)

Kµ = ϵµαβγAaα

[
Gaβγ − gs

3 fabcA
b
βA

c
γ

]
, (2.3)

where Aaµ is the gluon field which defines Gaµν :

Gaµν = ∂µA
a
ν − ∂νA

a
µ + fabcA

b
µA

c
ν . (2.4)

Thus the term in (2.1) will appear in the action as an integral over a boundary surface σµ at
spatial infinity ∼

∫
dσµK

µ. Such a term would not contribute to the equations of motion under the
naive expectation that the gauge field Aaµ vanishes at spatial infinity. However the correct boundary
condition must allow Aaµ to also be a gauge transformation of zero [133]. Field configurations exist
with

∫
dσµK

µ ̸= 0 and in particular they can be classified by their winding number

ν = 1
32π2

∫
dσµK

µ , (2.5)
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which is an integer. The QCD vacuum is a superposition of these vacuum states:

|θQCD⟩ =
ν∑
eiνθQCD |ν⟩ . (2.6)

The vacuum angle θQCD has physical effects in combination with a complex phase in the quark
mass matrix.1 The point is that a chiral rotation of the phase of a quark ψ → eiαγ5ψ results in
an additional term in the Lagrangian of the same form as that in (2.1), where by ψ I denote a
four component Dirac spinor. The reason is that the chiral U(1) symmetry is anomalous at the
quantum level, so the measure in the path integral DψDψ is not invariant under the transformation
but instead transforms as [8]:

DψDψ → DψDψ exp
(
i

∫
d4x

αg2
s

64π2 ϵ
µναβGaµνG

a
αβ

)
, (2.7)

which corresponds to a change in the Lagrangian

δL = αg2
s

64π2 ϵ
µναβGaµνG

a
αβ . (2.8)

This means that the θQCD angle can be moved into the quarks mass matrix phase and vice versa
through chiral rotations, therefore an effective vacuum angle is defined as:

θ = θQCD + θq , (2.9)

where θq = arg det(YuYd) and Yu, Yd are the Yukawa matrices corresponding to the up and down
quarks respectively.

The vacuum angle θ has an associated vacuum energy, which at leading order comes from the
neutral pion sector. This can be seen by chiral rotating the θ angle into the lightest two quarks
mass matrix, and since we are interested in the vacuum the rest of the quarks can be integrated
out, leaving us with 2 flavours. The pion Lagrangian at lowest order and with derivatives terms
set to zero reads [135]:

Lπ = B0f
2
π

2
〈
UM †

q +MqU
†
〉
, (2.10)

where B0 = − ⟨qq⟩ /f2
π is related to the chiral condensate, fπ is the pion decay constant, the θ angle

has been absorbed in the quark mass matrices, brackets ⟨⟩ denote summing over flavour indices
and U = eiΠ/fπ , with Π parametrising the pion field for 2 flavours:

Π =
(

π0 √
2π+

√
2π− −π0

)
, (2.11)

1If the lightest quark would be massless mu = 0 then this phase would have no physical effect since we could
perform a chiral rotation to remove it. This is however strongly disfavored by lattice results [134].
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For the leading order potential we may only consider the neutral pion sector, so in the following
we replace:

Π −→
(
π0 0
0 −π0

)
. (2.12)

The potential is then

V (θ, π0) = −B0f
2
πℜ
〈
UM †

q

〉
= −B0

(
mu cos

(
π0

fπ
+ θ

2

)
+md cos

(
π0

fπ
− θ

2

))
. (2.13)

Evaluating V (θ = 0, π0) and expanding to second order in π0 allows us to write B0 in terms of the
neutral pion mass

m2
π = B0(mu +md) . (2.14)

Replacing B0, equation (2.13) can be re-written as

V (θ, π0) = −m2
πf

2
π

√√√√1 − 4mumd

(mu +md)2 sin2
(
θ

2

)
cos

(
π0

fπ
− ϕθ

)
, (2.15)

where ϕ0 is defined by

tan(ϕθ) = md −mu

md +mu
tan

(
θ

2

)
. (2.16)

To minimize the potential the pion acquires a Vev
〈
π0〉 = fπϕθ, so the θ-vacuum energy is:

E(θ) = −m2
πf

2
π

√√√√1 − 4mumd

(mu +md)2 sin2
(
θ

2

)
. (2.17)

One way for the vacuum angle θ to be observable is through the neutron electric dipole moment
(nEDM), which is generated by the CP violating pion neutron interaction. Initial estimates of the
nEDM [136, 137] give dn ≃ 5.2 × 10−16 θ ecm. Various other estimates of the nEDM exist in the
literature [138–142] and the results differ by at most one order of magnitude. Thus we can compare
to the experimental limit dn ≲ 3.6 × 10−26ecm [143] to find

∣∣∣θ∣∣∣ ≲ 10−10.
This fine tuning of the θ angle constitutes the Strong CP problem, as there is no apparent reason

why both the topological contribution θQCD and the quark mass phase θq are simultaneously so
small, or alternatively why are they connected in a way as to cancel to such a level of accuracy.

2.2 The axion solution to the Strong CP problem

One of the best motivated solutions to the Strong CP problem is the introduction of an additional
U(1) global symmetry [70–76], called the PQ symmetry after R. Peccei and H. Quinn. The axion
a is the (pseudo) Nambu-Goldstone boson of this spontaneously broken U(1) symmetry and as
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such has a shift symmetry a → a+ αva, where va = NDWfa and in the following I will call fa the
axion symmetry breaking scale and NDW is the number of non-equivalent minimums of the axion
potential and is related to the colour anomaly of the PQ symmetry:

NDW = δij
∑
j

QPQ, j Tr(TiTj) , (2.18)

where Tj are the SU(3) generators and QPQ, j the PQ charge of the fermions that are summed
over.

The axion couples to the topological charge ϵµναβGaµνGaαβ in a similar manner as the θ angle

L ⊃ ag2
s

64π2 ϵ
µναβGaµνG

a
αβ , (2.19)

The idea is that the Strong CP problem vanishes at θ = 0, which is the minimum of the vacuum
energy in (2.17), but the θ cannot minimize its potential alone since transitions between different
θ-vacua are topologically forbidden. The axion however contributes to the effective vacuum angle
θ → θ+a/fa which now has the advantage of being dynamical rather than a fixed parameter. Then
it can evolve towards the minimum of the potential where the nEDM vanishes and the Strong CP
problem is solved. Due to the shift symmetry we can define the axion field such that we absorb
the θ angle and the vacuum energy eq. (2.17) now gives the axion potential:

Va(a) = −m2
πf

2
π

√
1 − 4mumd

(mu +md)2 sin2
(
a

2fa

)
, (2.20)

with minimums at a = 2πnfa with n being any integer between −NDW/2 < n < NDW/2, the axion
fundamental domain is (−πNDWfa, πNDWfa) and NDW is a parameter that depends on the details
of the model that realises this, called the colour anomaly, which is a positive integer setting the
number of minimums of the axion potential.

Expanding this we find the standard result for the mass of the axion at leading order [72]:

m2
a ≃ m2

πf
2
π

f2
a

mumd

(mu +md)2 , (2.21)

ma ≃ 6.2 eV
(

106 GeV
fa

)
. (2.22)

More precise calculations carried out at NLO [144] and NNLO [145] improve on this result:

ma ≃ 5.69 eV
(

106 GeV
fa

)
. (2.23)
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It is worth mentioning the two benchmark classes of models that give rise to the QCD axion.
These are the KSVZ (Kim–Shifman–Vainshtein–Zakharov) [73,74] and DFSZ
(Dine–Fischler–Srednicki–Zhitnitsky) [75,76] models2. They differ in the additions to the Standard
Model that realise the coupling between the axion and the topological charge ϵµναβGaµνGaαβ, in
particular KSVZ model introduces two heavy quarks QL, QR which couple to the PQ field ϕ as

L ⊃ −λϕQLQR + h.c. , (2.24)

while the DFSZ model introduces two Higgs doublets Hu, Hd which couple to the PQ field

L ⊃ −λϕ2HuHd . (2.25)

In any case QCD axion models of these types have in common the complex PQ field ϕ with
a U(1)PQ symmetric potential which contains the axion a as the angular degree of freedom. The
QCD axion potential is the same as it is given by the pion potential and the relation between its
mass and symmetry breaking scale eq. (2.23) is also model independent with our definition of fa.
Since these are the main ingredients required in the remainder of the thesis it is fine to remain
agnostic to the exact details of the coupling between the QCD axion and the Standard Model and
instead work with a simplified model where the PQ field is expressed as:

ϕ = |ϕ| e
ia
va = r + va√

2
eiθ , (2.26)

with va = NDWfa, θ = a/va and r(x) is the radial mode defined as:

r(x) =
√

2 |ϕ(x)| − va . (2.27)

With this definition r(x) will be a real field with canonically normalised kinetic term.
The classical Lagrangian is invariant under the U(1) PQ symmetry

L = |∂µϕ|2 − Vϕ(ϕ) , (2.28)

with the simplest form for the potential being

Vϕ = λ

(
|ϕ|2 − v2

a

2

)2

= m2
r

2v2
a

(
|ϕ|2 − v2

a

2

)2

, (2.29)

and mr is the mass of the radial mode defined above.
We allow fa, λ,NDW to be free parameters in the simple potential above. Model dependence

2The original PQWW (Peccei-Quinn-Weinberg-Wilczek) [70–72] introduced the PQ field as a Higgs doublet, with
the PQ symmetry being spontaneously broken at the electroweak scale fa = 250 GeV. This has been since ruled out,
as the axion couplings would be too large.
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will show up in the axion’s couplings, which in turn affect various bounds on the axion mass as we
discuss in the following Section.

2.3 ALPs

Similarly to the QCD axion, axion-like-particles (ALPs) are pseudo Nambu–Goldstone bosons of
spontaneously broken global U(1) symmetries, however without an anomalous coupling to QCD.
Given the standard lore that global symmetries are always explicitly broken in quantum gravity
[146–148] the ALPs are expected to acquire mass due to effects that break their residual shift
symmetry. Global (approximate) U(1) symmetries appear in many extensions of the Standard
Model such as grand unified theories, theories of leptogenesis and neutrino masses, as well as in
string theory constructions.

For the remainder of the thesis it is fine to remain agnostic about the exact model realisation of
the QCD axion/ALPs and work with the simplest ALP potential given by equation (2.29) above.
For our purposes the only difference between an ALP and the QCD axion is the fact the mass of
ALPs is not related to their symmetry breaking scale, instead it is an additional free parameter,
which means there is more parameter space allowed for ALPs.3

2.3.1 ALPs from string theory

An important motivation for the QCD axion and ALPs is the fact that they arise from compactifying
string theory down to four dimensions, as Kaluza-Klein zero modes of antisymmetric tensor fields
(forms) [77, 78]. Specifically a (p + 1)–form field strength Fp+1 appearing in the ten dimensional
action as

S ⊃
∫ 1

2d
10xFp+1 ∧ ⋆Fp+1 , (2.30)

has an associated p-form potential Ap defined by dAp = Fp+1, which decomposes into a basis of
harmonic p-forms ωp,i:

Ap = 1
2π
∑
i

ai(z)ωp,i(y) . (2.31)

In the above ⋆Fp+1 denotes the Hodge dual of Fp+1 and is a 10 − (p + 1) form and ∧ denotes
the wedge product between forms4. Additionally, z denotes coordinates in four dimensions, y in
the compact space and ωp,i are dual to p-cycles Ci, which are closed, homologically non-equivalent,
submanifolds of the Calabi-Yau manifold that the theory was compactified on:∫

Ci

ωj = δij . (2.32)

3For this reason I will do my best in the remainder of the thesis to separate ma and fa to allow the results for the
QCD axion to be easily generalised to ALPs.

4I adopt the notation for differential forms in [43].
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The gauge invariance of the action of the antisymmetric tensor field Fp+1 guarantees that the
ALPs ai have no potential to all orders of perturbation theory. The number of such ALPs is the
number of p-cycles Ci of the Calabi-Yau manifold that the theory was compactified on, which is
typically of the order tens or higher [83,149,150]. Thus a large number of ALPs is expected, leading
to a “string axiverse” [79–83].

The mass and symmetry breaking scales of ALPs resulting from string theory compactifications
are given by the volume of the corresponding submanifolds (cycles), in units of string length,
which is related to the action of non-perturbative effects that break the ALPs shift symmetry Sinst,
such as strings instantons. The symmetry breaking scale in many string theory constructions is
parametrically [78,151,152]

fa,i ∼ MP

Sinst,i
, (2.33)

while the mass
ma,i ∼ µ2

fa
e−

Sinst,i
2 , (2.34)

where µ is a UV scale. Since the action Sinst is related to the volume of submanifolds it is expected
that the symmetry breaking scales of the ALPs are not so different, while the masses scan many
orders of magnitude as they are exponentially sensitive to Sinst (see the detailed analysis in [153]).

Meanwhile we would like one of the ALPs in the axiverse to be the QCD axion. This is possible
since the terms required for the Green–Schwarz mechanism for anomaly cancellation [154] could
give rise to couplings to gauge fields of the type (2.19) [77, 155, 156], so one of these ALPs could
play the role of the QCD axion [77,78,157,158]. This places an additional requirement for the size
of the non-perturbative effects that generate the potential of the QCD axion so that it solves the
Strong CP problem:

Sinst,QCD ≳ O(200) , (2.35)

for a UV scale µ ∼ MP , which translates into fa,QCD ≲ 1016 GeV for a QCD axion arising from
string theory and similar symmetry breaking scales for the rest of ALPs.

2.4 Axion DM

In this Section I briefly explain why the QCD axion and ALPs in general are viable candidates
for DM and then discuss the main methods to produce axion DM. They are the misalignment
mechanism and the decay of topological defects. I discuss the standard separation in the literature
between the pre-inflationary scenario, in which topological defects have negligible contribution, and
the post-inflationary scenario in which topological defects are the dominant production mechanism
for axions.

For ALPs to be DM candidates they require to be stable on cosmological timescales, to be
“cold” and to have weak interactions with baryonic matter and radiation. As we will see ALPs
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are primarily produced non-thermally, by either misalignment or decay of topological defects, and
in both these mechanisms a majority of ALPs are produced when their mass becomes significant,
making them candidates for CDM even while being very light.

Meanwhile, thermally produced axions contribute sub-dominantly to dark radiation. Owing
to its small couplings, the QCD axion decouples before the QCD phase transition for values of
fa ≳ 107 GeV [159], while in Section 2.5 we see that supernova 1987a constraints on axion nucleon
coupling limit the QCD axion symmetry breaking scale to fa ≳ 108 GeV. Thus for values of fa that
are not already ruled out, the number density of thermally produced axions today is suppressed
compared to that in photons by a factor O(g⋆(T0)/g⋆(ΛQCD)) ≃ 30, where g⋆(T ) denotes the
effective number of relativistic degrees of freedom at temperature T .

For DM candidates with masses of less than about O(30 eV), which is the case for the QCD
axion and much of the parameter space for ALPs, their de Broglie wavelength in the galactic halo
exceeds their average inter-particle separation, assuming representative values for the local DM
density of 0.45 GeVcm−3 and the velocity dispersion of the galactic halo v ≃ 250 km/s. Meanwhile
their occupation number per de Broglie volume is ∼ (30 eV/ma)4, which for QCD axion and light
ALPs is very large. Thus light ALPs can generally be treated as classical waves (see [160] for a
review).

I now move to discuss the question of ALPs stability and the main mechanisms to produce
them.

2.4.1 Axion stability

An estimate of the lifetime of the QCD axion and ALPs involves the decay into two photons through
a coupling of the form [161]

L ⊃ −caγγαEM
8πfa

aFµνF̃
µν , (2.36)

where caγγ is a model dependent parameter, caγγ ≃ O(1) for both KSVZ and DFSZ models [162].
The associated lifetime is

τaγγ = 256π3f2
a

m3
ac

2
aγγα

2
EM

. (2.37)

For the QCD axion we can replace ma in term of fa via eq. (2.23) and find that axion’s lifetime
exceeds the age of the Universe for QCD axion with symmetry breaking scales fa ≳ O

(
106 GeV

)
.

As explained in Section 2.5 there are astrophysical constraints that insure this for the QCD axion.
Meanwhile for more generic ALPs the question of stability also depends on their mass, which

is no longer related to the symmetry breaking scale and it is possible that some ALPs are not
stable over the age of the Universe, specifically ALPs with relatively large mass ma ≳ O(100) eV.
Most light ALPs however are stable, see Figure 2.1. In particular the QCD axion and ALPs that
give rise to string networks that can be detectable via gravitational waves we discuss in Chapter
6 are always stable over cosmological timescales. Additional decay channels are not expected to
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significantly shorten the lifetime and alter this conclusion, since the corresponding couplings are
also similarly suppressed by a factor 1/fa.

2.4.2 Misalignment

The PQ symmetry is spontaneously broken when the temperature of the Universe decreases below
O(fa) and correspondingly the Hubble H ≳ O(f2

a/MP ) > O(107 eV). Thus there exist a period
for which the symmetry is spontaneously broken while the value of the axion field across space is
frozen with H ≫ O(ma). During this time the background axion energy density is approximately
constant. The axion begins oscillating around the time when H ≃ H⋆ ≡ ma(T⋆) and its equation
of state defined as:

wa = ȧ2 − V (a)
ȧ2 + V (a) , (2.38)

oscillates between wa = ±1. On average the equation of state is wa = 0 and thus the axion starts
to behave like matter. By releasing the potential energy on the way down to the bottom of its
potential, the axion always makes a contribution to DM [163–165]. Taking into account that due
to the temperature dependent axion mass it is the axion number density is adiabatically conserved,
and not the energy density, this contribution is:

ρmis(t0) = ρmis(t⋆)
R3
⋆

R3
0

ma

ma(T⋆)
, (2.39)

where the dilution due to the expansion can be calculated under the standard assumption that the
comoving entropy density is conserved between the t⋆ and today i.e. T ∼ g⋆(T )−1/3R−1. Entropy
injection would reduce the axion abundance, which was previously considered in [166, 167]. The
axion energy at the time when oscillations begin is purely potential energy, which at leading order
a2 ≪ π2f2

a can be estimated:

ρmis(t⋆) ≃ ma(T⋆)2a2

2 = ma(T⋆)2f2
a

〈
θ2〉

2 , (2.40)

where
〈
θ2〉 is the spatial average of the vacuum angle at the time when oscillations begin.

At temperatures much larger than the QCD phase transition before the non-perturbative effect
switch on the mass of the axion will be suppressed. The axion mass varies with temperature
approximately as a power law [168–170]:

ma(T ) =

ma forT ≲ ΛQCD ,

maC
(ΛQCD

T

)n
forT ≳ ΛQCD ,

(2.41)

where ma is the zero temperature mass given by eq. (2.23), C ≃ 0.01 is a model dependent
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numerical factor and n ≃ 4. Then the misalignment abundance can be computed [171]:

Ωah
2 ∼ 0.01

〈
θ2
〉( fa

1011 GeV

)7/6
. (2.42)

At the time when PQ symmetry breaking happens the axion will acquire a random value in
each causally connected Hubble patch. Since by the time oscillations begin the size of the horizon
has increased massively, by a factor f2

a/(MP ma(T⋆)), the Universe at this point contains a large
number these Hubble patches from the time of symmetry breaking, so the axion can be seen as
uniformly distributed over its fundamental domain. This corresponds to an average vacuum angle〈
θ2〉 = π2/(3N2

DW). The caveat to the above argument is that symmetry breaking might have
been followed by a period of inflation, in which case a small number of Hubble patches at the
time of symmetry breaking, potentially a single one, would have expanded to cover our Universe
today. This has the effect of making the field homogeneous over large scales, however the field
will also be affected by quantum fluctuations in de Sitter space which act to randomize its value,
which are discussed in more detail in Chapter 3. Therefore depending on the size of the quantum
fluctuations the field can be anywhere from approximately homogeneous across the observable
Universe, in which case

〈
θ2〉 is simply a free parameter, to fully randomised which behaves as if

the PQ symmetry was restored at the end of inflation and
〈
θ2〉 = π2/(3N2

DW) is fixed.
This situation has led to the distinction of two scenarios. The pre-inflationary scenario requires

that PQ symmetry breaking was followed by a sufficiently long period of inflation, that the quantum
fluctuation are not strong enough to randomize the field for which the standard condition in the
literature is HI ≲ 2πva, and that the symmetry was not subsequently restored after the end of
inflation, for example by thermal fluctuations. Conversely the post-inflationary scenario requires
either that the quantum fluctuations are large enough to randomize the field HI ≳ 2πva or that the
symmetry was restored after the end of inflation in another way. These scenarios have important
consequences for the axion abundance and the allowed values of the mass and symmetry breaking
scale. For example, in the case of the QCD axion the misalignment contribution in the post-
inflationary scenario exceeds the total DM density and is thus ruled out if fa ≳ 1012 GeV. Moreover,
as I explain below the relic abundance in the post-inflationary scenario is likely dominated by the
decay of topological defects which means an even stronger upper bound on fa. On the other hand
in the pre-inflationary scenario the vacuum angle

〈
θ2〉 can be taken to be arbitrarily small and

topological defects have negligible contribution, so with sufficient fine tuning the axion density can
be made smaller than the total DM density all the way up to the black-hole superradiance bound
discussed in Section 2.5.5

5This type of fine tuning is not as bad as the initial Strong CP problem the axion was introduced to solve. Firstly,
even with symmetry breaking scale as large as the maximum allowed by the superradiance bounds the vacuum angle
needs only be fine tuned to be below 10−3 compared to 10−10 for the Strong CP problem. Secondly this type of fine
tuning can be subject to anthropic arguments, as it is required to not overclose the Universe.
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2.4.3 Topological defects

Topological defects are field configurations that appear as a consequence of phase transitions as-
sociated to breaking of symmetries via the Kibble mechanism [172–174]. For our purposes the
relevant topological defects are axion strings and domain walls, since their decay contributes the
most to the axion relic abundance.

Axion strings form at the centre of closed loops in space for which the axion field wraps around
the fundamental domain (−πva, πva) with non-trivial winding, which inevitably will exist at the
time when PQ symmetry is broken [175], or if fluctuations in the radial mode push the field over
the top of the symmetry breaking potential (which effectively restores PQ symmetry). By the
continuity of the axion field, if we shrink these loops down to arbitrarily small radius the winding
will remain, signalling the existence of a region at the centre of the loop where the field is kept in
the unbroken phase at ϕ = 0. These are the axion strings, and they must either form closed loops
or be infinitely long (again due to the continuity of the field). More precisely, axion strings serve
to minimize the average Hamiltonian density:

⟨H⟩ =
〈∣∣∣ϕ̇∣∣∣2 + |∇ϕ|2 + Vϕ(ϕ)

〉
, (2.43)

which can be decomposed in terms of the axion and radial mode defined in eq. (2.27) as

⟨H⟩ =
〈∣∣∣∣12∇r

∣∣∣∣2 + Vϕ(ϕ) +
(
r2

2v2
a

+ r

va
+ 1

2

)
|∇a|2

〉
, (2.44)

where the potential only depends on r and is given by (2.29) and I have set the time derivatives
to zero to obtain a static solution. It is clear that at the centre of the loops that wrap the
full fundamental domain there exist regions for which |∇a| becomes arbitrarily large, so the way to
minimize the Hamiltonian is to have the term that multiplies it be equal to zero, which corresponds
to r = −va or |ϕ| = 0. At larger distance from this singularity the term |∇a| drops and at
about O(m−1

r ) it becomes more efficient to set the potential energy to zero, meaning this is the
approximate thickness of the strings.

Domain walls are the boundaries between regions in space in which the axion field has settled
into different minima of its potential for NDW > 1 or between region that were initially on the
opposite sides of the maximum of the potential at a = ±πfa for NDW = 1 before they settled in
the minimum at a = 0. By the continuity of the axion field the regions across these boundaries are
kept at the maximum/maxima of the axion potential. Therefore the domain walls store energy,
having an associated energy per unit area which can be calculated from the potential eq. (2.20):

σDW ≃ 9maf
2
a , (2.45)

and they form after H ≲ H⋆ when the field starts oscillating and it settles into the various minima.
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I now introduce the properties of the string network that forms in the early Universe as a result
of spontaneous PQ symmetry breaking that allow the calculation of the resulting axion abundance.
A very useful result is that the string network evolves towards an attractor solution, also called
the scaling regime, regardless of the initial conditions. The way this is typically written in the
literature is in terms of the dimensionless string density ξ defined as

ξ ≡ limV → ∞ l(V )t2
V

, (2.46)

where l is the length of strings inside a box of volume V . If ξ is smaller than about ξint ∼ O(1) then
strings are rare enough that their interactions are inefficient and their density increases over time.
However, if ξ becomes greater than ξint, the strings start interacting, which in general decreases
their total length. Thus there is a value of ξ that the network converges to, where the rate at which
the density is increasing due to extra strings entering the horizon is balanced by the loss due to
string interactions.

The existence of this scaling solution has been used to estimate the contribution of strings to
the axion density [176–189]. The idea is that in the post-inflationary scenario the scaling solution is
reached fairly quickly, (long) beforeH = H⋆, when the axion field starts oscillating and domain walls
form. Since the field around a string explores the full fundamental domain it is clear that once the
field starts oscillating each string will be connected to NDW domain walls. In the case NDW = 1
the strings/domain walls network is unstable, strings are rapidly pulled together by the tension
of domain walls attached to them and they “chop” each other up, which destroys the network.
Therefore, once the string density in the scaling solution has been estimated and the spectrum of
axion emissions from strings is found from numerical simulations, the contribution of strings in the
final e-folds before network destruction can be derived and appropriately redshifted until today.
Earlier emissions are more diluted such that the axion emissions at later times dominate, which in
principle allows an estimation of the strings’ contribution regardless of the initial distribution, as
long as this initial distribution reaches the scaling regime sufficiently quickly.

In the case NDW > 1 on the other hand the strings/domain walls network is stable. This is a
problem, since in the scaling regime there is on average at least one large domain wall across each
causal horizon. The energy density of domain walls in the scaling solution decreases roughly as the
inverse squared of the scale factor. This is slower than radiation or matter, so the walls will easily
dominate the energy density of the Universe if they survive until today. In the post-inflationary
scenario a solution is to introduce additional symmetry breaking such that the axion field remains
with a single minimum [190]. This is in itself severely restricted in order not to reintroduce the
Strong CP problem: either the position of this minimum has to be fine tuned close to a = 2nπfa
for some integer n or the size of this additional breaking has to be very small [191]. Thus in the
following I will assume NDW = 1, which corresponds to va = fa, and substitute this whenever a
numerical value is required for NDW. However I will keep the differentiation between va and fa
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inside expressions to allow the results to be easily adapted to the case NDW > 1.
In the following I review the estimation in [186, 188] for the strings’ contribution to the axion

density, however I should mention that other groups report results that differ by up to an order
of magnitude. There are two main factors that contribute to this difference, first of all there is
not full agreement on what the emission spectrum is. Secondly, in [186] a logarithmic violation
of scaling has been observed using numerical simulations, in other words the string density in the
scaling regime was found not to be exactly constant, but rather:

ξscal = c1 log(mr

H
) + c0 , (2.47)

with c1 = 0.24 extracted numerically. This is also found in other recent works [182–185, 187, 189]
and it makes a difference of a factor c1 log(mr/H⋆) in the axion abundance compared to estimations
in which ξscal ≃ 1 is taken to be constant.

The energy density in the network once scaling is reached is:

ρstr(t) = 4H2ξ(t)µ(t) , (2.48)

where µ is the average string tension (their energy per unit length). For strings resulting from a
global symmetry, which is the case for ALPs, the tension is logarithmically divergent due to the
energy stored in the gradient of the axion field. This divergence is cut-off by the presence of a
nearby string, so the theoretical expectation would be:

µth = πv2
a log

(
mrη(t)
H

√
ξ

)
, (2.49)

where η(t) is parameterizing the shape of the strings and it was found in simulations to be approx-
imately constant and of order 1. Thus at large values of the log applicable at network destruction
the tension can be estimated:

µ ≃ πv2
a log

(
mr

H

)
, (2.50)

which matches the prediction for infinitely long, straight strings at distance O(H−1).
The energy in the network at scaling grows slower than that of a network evolving freely with

strings remaining at fixed comoving coordinates and ξ ∼ R2, since strings interactions reduce their
total length and keep ξ constant up to the log scaling violation. By comparing the energy density
in the network to that of a free network of long strings which matches the actual network at time
t′ and later evolves by keeping the strings at fixed comoving coordinates:

ρfree(t) = 4H ′Hξ(t′)µ(t) . (2.51)

The energy of the free network of long strings evolves as 1/R2 as the long strings are stretched by
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a factor R and the above formula assumes radiation domination. The emission rate of the network
can be found, with the emitted energy going primarily into axions:

Γa ≃ ρ̇free − ρ̇str , (2.52)

Γa = ρstr

[
2H − ξ̇

ξ
− πf2

a

µth

(
H + η̇

η
− 1

2
ξ̇

ξ

)]
≃ 2Hρstr . (2.53)

This can be integrated to find the energy density of axions:

ρa(t) =
∫ t

Γa(t′)
(
R(t′)
R(t)

)4
dt′ = 4π

3 H2v2
ac1 log3

(
mr

H

)
, (2.54)

at times before the network destruction when the axion is effectively massless and behaves like
radiation.

However, to find the axion energy density today the momentum distribution of emissions is
required. It is convenient to define this in the following way:

∂Γa
∂k

= Γa
H
F

(
k

H
,
mr

H

)
. (2.55)

The spectrum is expected to have two characteristic cut-offs: an IR cut-off at k ≃ x0H and a
UV cut-off at k ∼ mr and a function that matches the simulations well between these cut-offs is:

F

(
k

H
,
mr

H

)
= 1
x0

(
x0H

k

)q q − 1

1 −
(
x0H
mr

)q−1 , (2.56)

which is a simple power law between these limits. This means for the axion number density at the
time the field starts oscillating and the network is destroyed:

na(t⋆) ≃
8πc1H⋆v

2
a log2

(
mr
H⋆

)
x0

×


1 − 1

q q > 1
1

log
(

mr
Hx0

) q = 1 . (2.57)

There is not yet consensus on what the exact power q of the spectrum is. For example [188]
find x0 ≃ 10 and q ≃ 1 at values of log(mr/H) accessible in the simulation, however they show
evidence for an increase of q with log(mr/H), so at late times q ≫ 1. However [189] find q ≃ 1
and no evidence for an increase. The difference between these extrapolations introduces another
potential factor of log(mr/H⋆) in the relic abundance estimate. Since log(mr/H⋆) could be as large
as log(fa/ma) ∼ O(70), and there is up to a factor of c1 log2 that is not yet agreed upon, there is
a range of estimates for the string contribution, which by comparing (2.57) to (2.39) can be seen
it is anywhere from the same order as the misalignment contribution to much higher. Meanwhile
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the contribution from the destruction of domain walls at t⋆ assuming order one domain walls per
horizon at this time is bounded by:

na(t⋆) ≲ σDW
H⋆

ma(T⋆)
≃ 9ma(T⋆)f2

a , (2.58)

which ranges from somewhat larger than the string contribution to much lower depending on the
relevant factors of log(mr/H⋆) for the string contribution.

The difference between various estimates is somewhat mitigated due to the nonlinear transient
as the axion mass becomes relevant at H⋆ = ma(T⋆) [188]. The point is that most of the axion
energy density at that time is still contained in the gradient part of the Hamiltonian and for this
reason IR modes that would normally redshift non-relativistically actually continue to redshift
relativistically up until a later time, when the potential becomes comparable to the energy density
in these modes. The result of the nonlinear transient is a reduction of the axion abundance from
∼ c1 log(mr/H)2 to ∼

√
c1 log(mr/H)2. Overall, given that the string relic abundance has a f7/6

a

dependence6, the upper bound on fa differs by about a factor of 20 depending on the various
assumptions about the spectrum and the string density in the scaling regime mentioned above,
between fa ≲ 1010 to fa ≲ 2 × 1011. Further in the remainder of the thesis I will assume that the
strings’ contribution dominate over the misalignment and domain walls at the time t⋆.

The situation is completely different in the pre-inflationary scenario. Since the axion field is
homogeneous in this case the loops required to form axion strings do not appear and the field
throughout space relaxes into the same minimum, so no domain walls appear either. In other
words, any potential topological defects at the time of symmetry breaking have been inflated away,
(far) outside our causal horizon today and the time required for a string network to form and reach
scaling exceed the age of the Universe. For this reason the misalignment contribution dominates the
axion abundance in the pre-inflationary scenario and there is no need to worry about the domain
walls problem even for NDW > 1.

2.4.4 Summary of pre- and post-inflationary scenarios

Here I briefly summarise the standard pre- and post-inflationary scenarios.

Pre-inflationary scenario:

• Axion field homogeneous across space.

• Requires weak quantum fluctuations HI/va < 2π and no symmetry restoration by other
means.

6This is true for the QCD axion, since the temperature dependence of the mass (2.41) means T⋆ has a f
−1/6
a

dependence when the axion begins oscillating before the QCD phase transition.
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• Negligible topological defects, axion abundance dominated by misalignment.

• No domain walls problem.

• Average angle
〈
θ2〉 is a free parameter, so the misalignment contribution can be fine-tuned.

• Isocurvature perturbations in the misalignment population [192–203] which are heavily con-
strained by the CMB [204,205].

Post-inflationary scenario:

• Axion field fully randomised.

• Requires either strong quantum fluctuations HI/va > 2π or that PQ symmetry was restored
in another way.

• Strings reach a scaling regime, domain walls form when the axion begins oscillating.

• Average angle
〈
θ2〉 = π2/(3N2

DW) is fixed, so misalignment contribution is fixed.

• Topological defects (likely) dominate over the misalignment contribution. Upper bound on
va (subject to uncertainties).

• Large domain walls would dominate energy density unless NDW = 1 or additional bias is
introduced.

• Isocurvature constraints are modified by the presence of strings and no longer depend on HI ,7

only on fa and ma, see Section 6.3.3 for a detailed calculation and eq. (6.17). In particular,
for values of fa, ma allowed for the QCD axion in the post-inflationary scenario so that DM
is not overproduced, they do not constrain the parameter space any further.

One natural question is how we get from the pre-inflationary to the post-inflationary scenario
and what happens in between. The idea is that the post-inflationary scenario is the limit when the
axion field is fully randomized across the horizon while the pre-inflationary scenario is the limit
when the axion is fully homogeneous. Thus it would be useful to find a quantity that describes the
degree of “randomness” of the field and be able to correlate it to the contribution of topological
defects. Such a quantity could then be used to describe the transition between the pre- and post-
inflationary scenario in a continuous way.

I proceed to introduce quantum fluctuations in more detail in Chapter 3, since they can be
an important ingredient in the formation of topological defects. Then in Chapter 4 I show how
the axion and radial mode field distributions at the end of inflation and the density of topological
defects are related, and give further details on when the pre- and post- inflationary scenarios arise
and the intermediate region between them.

7Other than the role it plays in selecting this scenario in the first place.
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2.5 Astrophysical and direct detection bounds on axions

Various ways to probe the QCD axion as well as ALPs in general have been proposed, which so far
resulted in bounds on the allowed parameter space. Many of the traditional ways to detect ALPs
are based on the Primakoff process [206] which involves an ALP conversion into two photons in the
presence of a magnetic field. Classic methods exploiting this are helioscopes and haloscopes [207],
as well as “light shining through wall” (LSW) experiments [208].

Helioscopes, such as CAST [209–211] and in the future IAXO [212] search for axions produced
inside the Sun which would convert into detectable photons in the presence of a strong magnetic
field. For this reason they are an effective detection method regardless of the fraction of DM that
axions account for.

Alternatively, “light shining through wall” experiments point a laser at a wall and apply a
magnetic field to convert photons into axions. As these axions pass the wall, they are converted back
into photons on the other side by a magnetic field. The Any Light Particle Search experiment [213]
currently places the strongest bounds on the axion photon coupling out of this type of experiments.
As axions in this case are produced inside the laboratory, these limits are also applicable regardless
of the axion density.

On the other hand, haloscopes detect DM axions by converting then into photons due to an
applied magnetic field, inside a cavity that is designed such as to make the conversion resonant
and enhance its rate. So far the ADMX experiment [214–217] has put the strongest limits on axion
photon coupling inside a narrow mass window ma ∼ 10−6 eV, which for the QCD axion specifically
corresponds to fa ∼ 1012 GeV, the value roughly required for the misalignment population to
make up all of DM for initial θ angles of order one. Projected improvements of ADMX and
other haloscopes [218–222] are going to cover the axion mass window 10−6 eV ≲ ma ≲ 10−2 eV.
Haloscopes rely on a large density of DM axion, so the quoted bounds are calculated under the
assumption that axions make up most of DM.

Aside from direct detection bounds mentioned above there are important bounds coming from
stellar astrophysics. Photon conversion into ALPs which subsequently escape stars results in cool-
ing, which alters the lifetime of stars in a phase of core helium burning (also known as horizontal
branch stars) [223]. This can be probed by observing the ratio between stars in the core helium
burning phase and red giants, whose luminosity is supported by hydrogen burning in their shells,
inside globular clusters. Such observations have so far put constraints on the axion photon cou-
pling [224], which for the QCD axion are roughly 107 GeV ≲ fa.

Meanwhile the QCD axion coupling to nucleons is strongly constrained by the duration of the
neutrino burst of supernova 1987a. The idea is that nucleon-nucleon bremsstrahlung produces
axions, which depending on their nucleon coupling would not be trapped inside the supernova core
and thus could be cooling the supernova more efficiently than neutrinos. The limits for QCD axions
in the KSVZ model translate to ma ≲ 15 meV or fa ≳ 4×108 GeV [225–227], while for DFSZ axions
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ma ≲ 15 ÷ 20 meV depending on the value of tan(β) [227], which is stronger than that from the
ratio of horizontal branch stars and red giants. However, these limits are based on supernova core
collapse simulations and their reliability is being disputed [228].

Having considered some of the bounds on axions that are dependent on the strength of their in-
teraction to light and matter, let us now discuss black hole superradiance which is based completely
on gravitational interactions and thus places bounds on axions that depend only on their masses.
For the QCD axion such bounds rule out a region at high symmetry breaking scale, which is oth-
erwise inaccessible to observations that rely on axion’s couplings. The point is that light bosonic
field such as the QCD axion and ALPs extract energy and angular momentum from spinning
black holes of size comparable to their Compton wavelength through the Penrose process [229,230].
Such bosons are trapped into energy levels around the black hole, allowing them to continuously
take away its energy, which in turn exponentially amplifies their occupation numbers [231, 232].
Thus spinning black holes that have been observed can be used to exclude the existence of light
bosons of specific masses, which would have otherwise resulted in the black holes losing much of
their rotational energy [79, 233–238]. For stellar mass black holes this excludes a range of masses
10−13 eV < ma < 10−11 eV, which for the QCD axion translate into a bound fa ≲ 2 × 1017 GeV.
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Figure 2.1: Axion parameter space in terms of mass ma and coupling to photons gaγγ . Figure
reproduced by using the Python notebook available at [239], where complete references to the
data can be found. Red regions mark exclusions by direct detection experiments (helioscopes,
haloscopes, LSW). Green regions represent exclusions from astrophysical searches for axions which
are independent of the fraction of DM that axions make up. Blue regions represent exclusions
from astrophysical searches which rely on DM axions. The grey region labeled “Black hole spins”
represents the bounds from black hole superradiance in [238], which assume a relation between the
self-coupling of the ALP field λa and the coupling to photons gaγγ that is the same as for the QCD
axion (normally for a generic ALP the symmetry breaking scale does not fix the ALPs couplings,
but for the QCD axion it does, up to model dependent order 1 constants). Additionally I have
modified the plot to include the blurred light blue region labeled “SN1987A (n)”, which does not
represent bounds on the axion-photon coupling but instead approximate model dependent bounds
on QCD axion mass from the supernova 1987a, which restricts axion nucleon coupling as explained
in the text.
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Chapter 3

Quantum fluctuations

3.1 Introduction

In this Section I review quantum fluctuations of scalar fields during inflation following the relevant
sections of [240,241] and explain how the field configuration at the end of inflation can be determined
through the Langevin and Fokker-Planck equations. By applying this to the radial mode and axion
I show how this relates to the formation of strings and domain walls in the following Chapter.

For this we consider a real scalar field Ψ that is not the inflaton, with a potential V (Ψ) that is
sub-dominant during inflation, i.e. V (Ψ) ≪ H2

IM
2
P , and we express it in the Heisenberg represen-

tation in terms of mode functions:

Ψ(x, t) =
∫
d3k

(
akΨk(t)e−ikx + a†

kΨ⋆
k(t)eikx

)
, (3.1)

where a†
k, ak are creation and annihilation operators. The mode functions satisfy the equation:

Ψ̈k + 3HIΨ̇k +
(
k2

R2 +m2
Ψ

)
Ψk = 0 , (3.2)

where HI is the Hubble parameter during inflation, which is a slow varying function of time (in
the sense that

∣∣∣ḢI

∣∣∣ ≪ H2
I ) and for simplicity we take to be a constant, R is the scale factor, k is

the comoving momentum of the modes and mΨ is the mass of the field.
To gain some qualitative understanding let us start by looking at the effectively massless case.

Consider a mode that is initially sub-horizon, with a wavelength much smaller than the size of the
horizon k ≫ RHI , then (3.2) simplifies to:

Ψ̈k + k2

R2 Ψk = 0 , (3.3)

so the mode function oscillates with time dependent frequency. However, during inflation the
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comoving wavelength of momentum modes rapidly increases and eventually it ends up much larger
than the horizon k ≪ RHI . In this case (3.2) can be written as:

Ψ̈k + 3HIΨ̇k = 0 , (3.4)

which is straightforward to integrate:

Ψk(t) = A(k) +B(k)e−3HI t . (3.5)

The time dependent part quickly becomes negligible, meaning the mode function is constant in
time on super-horizon scales.

It is said that modes “exit” the horizon when their wavelength becomes larger than the Hubble
length k ≲ RHI and these modes are “frozen” since their amplitude will remain constant until after
the end of inflation, when the size of the horizon increases to be again larger than the wavelength
k ≳ RH and modes “re-enter”.

To see this in a more precise way it is useful to work in terms of the conformal time τ =
−1/(HIR0e

HI t), which can vary from −∞ in the limit of far past t → −∞ to zero at the end of
inflation, and re-scale the mode functions νk = RΨk. We now re-write eq. (3.2) in the form of the
Mukhanov equation:

d2νk
dτ2 +

(
k2 − 1

R

d2R

dτ2

)
νk = 0 . (3.6)

This is the general form of the Mukhanov equation, however in the case of constant HI it simplifies
to:

d2νk
dτ2 +

(
k2 − 2

τ2

)
νk = 0 . (3.7)

This is a good time to introduce a subtlety relating to quantum fields in curved space-time:
there is not a unique choice for the mode function and thus no unique vacuum. To solve this we
need to specify an extra boundary condition to fix the vacuum, the standard choice in the literature
being the Bunch-Davies vacuum [242]. This requires that in the limit τ → −∞ the vacuum state
is the Minkowski vacuum, which for the mode function means νk = e−ikτ/

√
2k, fixing the solution

of (3.7) to:

νk = e−ikτ
√

2k

(
1 − i

kτ

)
. (3.8)

Taking (3.9) in the limit t → ∞ or equivalently τ → 0 we find:

|Ψk| = |νk/R| →
∣∣∣∣ 1√

2k3Rτ

∣∣∣∣ = HI√
2k3

, (3.9)

which confirms our qualitative understanding that after sufficiently long time momentum modes
end up frozen.
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If we now move to the case where Ψ is a massive non-interactive field of mass mΨ eq. (3.7) is
modified to:

d2νk
dτ2 +

[
k2 − 1

τ2

(
χ2

Ψ − 1
4

)]
νk = 0 , (3.10)

where χ2
Ψ = 9/4 − m2

Ψ/H
2
I . This can be solved generally in terms of the Hankel functions of the

first and second kind H
(1)
χΨ , H(2)

χΨ when χΨ is real, which is the case for both the axion and radial
mode in the region we are interested in. Indeed axions are typically massless during inflation, while
for the radial mode relevant values of mr, HI for string formation are such that m2

r/H
2
I ≲ O(0.5),

as can be seen in the summary of our results in Figure 4.9.
Similarly to the massless case the solution is fixed by the Bunch-Davies vacuum: in the limit

τ → −∞ to νk = e−ikτ/
√

2k. This boundary condition is enough to fix the solution to:

|Ψk| =
√
π

2R
√
RHI

∣∣∣∣H(1)
χΨ

(
k

HIR

)∣∣∣∣ , (3.11)

where H(1)
χΨ is the Hankel function of the first kind. We then take this solution in the super-horizon

limit k ≪ RHI :

|Ψk| = HI√
2k3

(
k

RHI

)3/2−χΨ

. (3.12)

The solutions (3.11) and (3.12) are valid if χΨ is real i.e. mΨ/HI < 3/2. As a side note, if
the field has large mass mΨ/HI > 3/2 super-horizon modes are no longer frozen, instead their
amplitude decreases exponentially:

|Ψk| = e−πµΨ/2
√
π

2R
√
RHI

∣∣∣∣H(1)
iµΨ

(
k

HIR

)∣∣∣∣ , (3.13)

where µΨ =
√
m2

Ψ/H
2
I − 9/4 is real in this case.

3.2 Langevin equation

A standard method to consider quantum fluctuations is the stochastic formalism [243, 244], which
involves the introduction of a momentum cutoff to separate the far IR modes that have left the
horizon from the modes that are either sub-horizon or have just left the horizon1. It has been shown
that far super-horizon modes behave classically [243], contributing a c-number to the average value
of the field inside the horizon Ψ, while the short wavelength modes are quantum fluctuations that
act as a small perturbation of the average δΨ. The point is that for super-horizon modes k < HIR

1This is required because for self-interacting fields it was found that a divergence appears in the 4-point and higher
correlation functions [245].
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the occupation numbers are of the order [240]:

nk ∼
(
HIR

k

)4
, (3.14)

which become very large for modes that have left the horizon for a long time HIR ≫ k, while
being ≲ O(1) when the modes were sub-horizon. As the sub-horizon modes exit the horizon, they
end up contributing a random amount to Ψ, corresponding to their phase at the time they become
“frozen”.

It is standard to re-write eq. (3.1) in the following way:

Ψ(x, t) = Ψ(x, t) + δΨ = Ψ(x, t) +
∫
d3k Θ (k −RϵHI)

(
akΨk(t)e−ikx + a†

kΨ⋆
k(t)eikx

)
, (3.15)

where Ψ(x, t) represents the average value of the field inside a region of radius 1/(ϵHI), which is
meant to be somewhat larger than the horizon. Meanwhile, the step function Θ separates modes
that have wavelength shorter than this radius from those with wavelength larger than this radius.
As explained, the short wavelength modes are quantised and are treated as perturbations of the
long wavelength modes, which in turn contribute to the average value Ψ(x, t) and behave classically.
Here ϵ is a parameter that distinguishes whether a mode is considered “long” or “short” wavelength
in this approximation and is not to be confused with the slow-roll parameter −ḢI/HI .

We perform a so-called coarse graining procedure, dividing our space into patches of size
1/(ϵHI), each having a corresponding value for Ψ(x, t) which is uniform inside the patch. It is
convenient to absorb the (slow) time dependence of HI into the parameter ϵ such that the product
ϵHI is constant, this way the patches we divided the space into are of constant size. We would
like these patches to be sufficiently larger than the size of the horizon during inflation so that the
amplitude of the modes with wavelength the size of the patch can be estimated by (3.9) or (3.12)
for massless and massive field respectively, this corresponds to ϵ < 1.

Let us now derive an equation for the evolution of the average field value over patches of size
1/(ϵHI), which is Ψ(x, t) from eq. (3.15) above. A detailed derivation is given in [246], which I am
following here while adding discussion regarding some points. Upon breaking Ψ = Ψ+δΨ as above
we can re-write the equation of motion for Ψ, expanding around Ψ up to the first order in δΨ:

Ψ̈ + 3HIΨ̇ − 1
R2 δ

ij∂i∂jΨ + dV (Ψ)
dΨ

+ ¨δΨ + 3HI
˙δΨ − 1

R2 δ
ij∂i∂jδΨ + δΨd2V (Ψ)

dΨ2 = 0 . (3.16)

In the following we can neglect the spatial derivative of the average value of the field 1
R2 δ

ij∂i∂jΨ
compared to HIΨ̇ [243]. Additionally we neglect the second time derivative Ψ̈, which is self-
consistent if ∂ΨΨV (Ψ) ≪ 9H2

I . For light fields compared to HI this happens in the vicinity of the
minimum of the potential, and since in Chapter 4 where we apply these results we work with the
radial mode initially starting in the vacuum, this is a safe assumption to make.

46



Expanding this using (3.15) and the fact that the time derivative of the step function is:

∂

∂t
Θ (k −RϵHI) = ∂ (k −RϵHI)

∂t

∂Θ
∂ (k −RϵHI)

= −ϵRH2
I δ (k −RϵHI) , (3.17)

results in a rather long equation. Fortunately some of the terms in this equation also appear in the
equation of motion for the short wavelength modes (3.2), so they can be cancelled out2. After this
the remaining equation is:

3HIΨ̇ + dV (Ψ)
dΨ

− 3H3
I ϵR

∫
d3k δ (k −RϵHI)

(
akΨk(t)e−ikx + a†

kΨ⋆
k(t)eikx

)
= 0 . (3.18)

We write the above in the form of a Langevin equation:

3HIΨ̇ + dV (Ψ)
dΨ

= ∆(x, t) , (3.19)

where we have denoted the integral by ∆(x, t). The function ∆(x, t) represents a stochastic (ran-
dom) noise, the effects of the perturbations due to the short wavelength modes exiting the patch
and becoming long wavelength.

The left hand side of eq. (3.19) correspond to the evolution of the average value of the field
toward a minimum of its potential under the influence of the potential alone, which is continuously
affected by the random noise described by the right hand side of the same equation. Additionally the
space expands and existing patches split up into new ones, which up until the point of splitting share
the history of the noise that the original patch received, but from there on evolve independently. We
show this by calculating the two-point correlation ⟨∆(x1, t1)∆(x2, t2)⟩ ≡ ⟨0| ∆(x1, t1)∆(x2, t2) |0⟩,
which also sets the typical size of the noise. The first step is to replace ∆(x, t) and use the standard
way the creation and annihilation operators act on the vacuum as well as their commutation
relation3

[
ak, a

†
k′

]
= 1/(2π)3 δ3(k − k′). The result of this is:

⟨∆(x1, t1)∆(x2, t2)⟩ =9H6
I ϵ

2R1R2
(2π)3

∫
d3k1d

3k2
(2π3) δ (k1 −R1ϵHI) δ (k2 −R2ϵHI)

× δ3 (k1 − k2) ei(k2x2−k1x1)Ψk1(t1)Ψk2(t2)⋆ ,
(3.20)

where we have denoted Ri ≡ R(ti). We chose to define the product ϵHI to be constant in time by
absorbing the time dependence of HI into ϵ and for simplicity we also treat the extra factors of H4

I

as constant due to the condition that the Hubble only evolves slowly during inflation as discussed
in the introductory Section 1.34.

2One such term is ¨δΨ.
3The factor 1/(2π)3 appears in the commutation relation due to the convention for the Fourier transform in (3.1).
4Earlier noise is stronger as it happened when HI was larger. This difference is not too significant if inflation

proceeds in one go, but crucial if inflation is interrupted and restarted with a significantly lower HI , as we briefly
consider in Section 5.5.
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After integrating the δ3 (k1 − k2) we move to polar coordinates, setting the z-axis along the
direction x1 − x2:

⟨∆(x1, t1)∆(x2, t2)⟩ =9H6
I ϵ

2R1R2
(2π)2

∫
k2

1dk1δ (k1 −R1ϵHI) δ (k2 −R2ϵHI)

Ψk1(t1)Ψk2(t2)⋆
∫ π

0
dθ sin (θ)e−k1|x1−x2| cos (θ) .

(3.21)

The θ integral is straightforward to evaluate. Additionally, one of the two delta functions can
be turned into δ (R1ϵHI −R2ϵHI) = δ(t1 − t2)/(ϵH2

IR1) and the integral over the momentum can
be performed:

⟨∆(x1, t1)∆(x2, t2)⟩ = 9H6
I ϵ

3R3
1

2π2 |ΨϵR1HI
(t1)|2 δ(t1 − t2)sinc (ϵHIR1 |x1 − x2|) , (3.22)

where we denote sinc(x) ≡ sin (x)/x. The mode with momentum k1 = ϵR1HI ≲ R1HI is a super-
horizon mode for ϵ < 1 required in the stochastic formalism. As an approximation we replace
the solutions that we have discussed above, for mode functions for a massless field (3.9) and for a
massive non-interacting field (3.12). Upon this replacement the noise correlation becomes

⟨∆(x1, t1)∆(x2, t2)⟩ = 9H5
I

4π2 δ(t1 − t2)sinc (ϵHIR1 |x1 − x2|) , (3.23)

for the massless case and

⟨∆(x1, t1)∆(x2, t2)⟩ = 9H5
I

4π2 δ(t1 − t2)sinc (ϵHIR1 |x1 − x2|) ϵ3−2χΨ , (3.24)

for the massive non-interactive case.
We are interested in the distribution of the field inside the horizon at times after the end of

inflation to relate it to the formation of topological defects. Thus it would be useful if we could
approximate Ψ(x, t), the value of the field at a point after inflation, by Ψ(x, tend), the average
value over the patch at the same position at the end of inflation (apart from the evolution of the
field post inflation). This is possible at times after the end of inflation when a very large number
of patches used in the coarse graining have re-entered the horizon, such that each patch can be
treated as an infinitesimally small region, and the larger ϵ is the earlier this approximation holds
in the post-inflationary Universe. Meanwhile an upper bound on ϵ comes from the fact that we
replace the super-horizon limit (3.12) into equation (3.22). This works if the dominant term in
the expansion of the Hankel function in equation (3.11) is the one proportional to ϵ−χΨ , which
corresponds to ϵ < 2

√
χΨ − 1. For values of HI and mr that are relevant to string formation (see

Figure 4.9) we find that we are allowed to perform the coarse graining procedure for ϵ ≃ 1 in a
self-consistent way and the factor ϵ3−2χΨ introduces at most an order 1 uncertainty which can be
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absorbed into H5
I in equation (3.24)5. Thus in the following we use (3.23) as an approximation for

the noise correlation function.
We now move to the factor sinc (ϵHIR1 |x1 − x2|) in (3.23) and, given that it only makes sense to

consider points at distances |x1 − x2| > 1/(ϵHI) to be distinct due to the coarse graining procedure,
we see that for such points this factor quickly becomes very small due to the exponentially large
R1. On the other hand in the limit |x1 − x2| → 0 it is equal to 1. Thus we further approximate
the correlation function

⟨∆(x1, t1)∆(x2, t2)⟩ = 9H5
I

4π2 δ(t1 − t2)δx1,x2 . (3.25)

This is zero for points in different patches while for points in the same patch

⟨∆(x, t1)∆(x, t2)⟩ = 9H5
I

4π2 δ(t1 − t2) . (3.26)

Also it is straightforward to show:
⟨∆(x, t)⟩ = 0 . (3.27)

Unfortunately it is impossible to solve the Langevin equation to find a unique spatial distribution
of Ψ at the end of inflation, since the noise inside each patch takes a random value at each time.
What we can do however is to use the Langevin equation (3.19) together with the correlations of
the noise function above (3.26,3.27) to find a deterministic equation for the probability distribution
of Ψ.

3.3 Fokker-Planck equation

Here we derive the Fokker-Planck equation which describes the evolution of the probability dis-
tribution of Ψ. As opposed to the Langevin equation which contains a stochastic noise term, the
Fokker-Planck equation is fully deterministic and can thus be solved, either analytically for simple
potentials of Ψ, or otherwise numerically. This however comes at the cost of losing some of the
information encoded in the Langevin equation, such as the spatial distribution of the field.

For future convenience the time during inflation will be measured by the number of e-folds that
have passed starting from the moment when scales that re-enter the horizon today have exited
the horizon, and we denote the number of e-folds at the end of inflation by Ntot ≃ O(60), which
is required to solve the horizon and flatness problems. With the assumption of constant HI the
conversion from time to number of e-folds is simply ∆t = ∆N/HI .

With this convention, we define the probability density ρΨ(Ψ, N,Ψ0, N0) i.e. the probability
5As will be seen in Section 4.5.4, it is useful to interpret various uncertainties as an equivalent uncertainty in the

value of HI that corresponds to the string network being destroyed at a given time, and these will correspond to
O(1) factors.
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that the field in a patch has average value between (Ψ,Ψ+dΨ) is ρΨ(Ψ)dΨ at time labeled N , with
the initial condition that the distribution at some initial time labeled by N0 was a delta function
ρΨ(Ψ, N0,Ψ0, N0) = δ

(
Ψ − Ψ0

)
. Here N0 and Ψ0 do not mean quantities today, but rather at

some initial time during inflation, which is convenient to be identified by the time when scales the
size of the horizon today exited the horizon. The reason for this choice of initial conditions is that
if we look at the probability distribution ρΨ over a region of size L ≫ 1/(ϵHI) which contains a
large number of patches at moment labeled N , then if we set N0 ≲ N − log(LϵHI) at this time
this region was the size less than one patch, which had an average value of the field Ψ0. But then
it is trivial that at the time N0 the distribution was a delta function, since we sample over a single
patch. Thus the reason to always consider delta function configurations for initial conditions is
that for any region over which we are interested in the probability distribution during inflation, we
can set our initial time far enough in the past when it was the size of (less than) a single patch.
This works only if between the times of interest and the corresponding initial times the Universe
is in a period of inflation with approximately constant HI , which is reasonable given that it only
makes sense to evolve the probability density for at most the number of e-folds that re-entered the
horizon until today Ntot.

We will now derive the Fokker-Planck equation, which describes the evolution of the probability
density ρΨ. I follow the steps of the derivation in [247], which is done in the context of Brownian
motion and involves following a particle over the possible paths that it could have gone through due
to the various noise realisations to find the probability distribution of the position of the particle.
The position of particles in Brownian motion and the average value of the field Ψ are analogous in
the sense that their evolution are both described by a corresponding Langevin equation.

One may be worried about what happens to the distribution as patches continuously creating
other new patches during inflation. This however is not a problem once we observe that the process
of patches expanding into new patches has no effect over the probability distribution. To see this,
let us follow some initial set of causal patches for the time it takes for the scale factor to double and
for simplicity take them to be cubic. As the scale factor doubles, each of these causal patches have
expanded into 8 causal patches, so the number of patches with a specific value of Ψ increased by a
factor of 8 as the scale factor doubled, but so did the total number of patches. Patches “splitting”
this way as the scale factor grows does mean that regions that are located closer together have
somewhat similar values of Ψ as they have shared some of the stochastic noise at earlier times,
however this is the kind of information that is lost when moving from the Langevin to the Fokker-
Planck equation, as the Fokker-Planck equation is only concerned with the probability distribution
of Ψ over all the patches and not the spatial distribution of the field.

With the observation above it is enough to simply follow the evolution of a single initial patch
over all possible noise realisations for a number of e-folds N − N0. Let us start by looking at the
distribution at an intermediate time and its evolution for a short time ρΨ(Ψ, N + δN,Ψ′, N). The
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field starting from Ψ′ has moved an amount:

δΨ(x) = 1
3H2

I

(
−dV (Ψ)

dΨ
δN +

∫ N+δN

t
∆(x, t′)dN ′

)
, (3.28)

where ∆(x, t′) is the stochastic noise function appearing in the Langevin equation (3.19) and
t′ = N ′/HI is the corresponding time to N ′.

Of course if we were to know the exact noise the patch went through this probability distribution
would be trivial ρΨ(Ψ, N + δN,Ψ′

, N) = δ
(
Ψ − Ψ′ − δΨ

)
, but since multiple noise realisations are

possible we must average over all of them ρΨ(Ψ, N + δN,Ψ′
, N) =

〈
δ
(
Ψ − Ψ′ − δΨ

)〉
.

We now proceed to Taylor expand the delta function above, only keeping the terms that are at
most O(δN):

ρΨ(Ψ, N + δN,Ψ′
, N) =

(
1 +

〈
δΨ
〉 ∂

∂Ψ′ + 1
2
〈
δΨ2〉 ∂2

∂Ψ′2

)
δ
(
Ψ − Ψ′)

. (3.29)

The mean and the correlation of the noise eqs. (3.26, 3.27) can be used to calculate

〈
δΨ
〉

= − δN

3H2
I

dV (Ψ)
dΨ

;
〈
δΨ2〉 = H2

I δN

4π2 , (3.30)

while further terms such as
〈
δΨ3〉 only contain terms of order O(δN2) or higher.

Additionally, we can write the probability distribution at the final time as a conditional prob-
ability that the field is at Ψ after N e-folds given that it was at Ψ′ after N ′ e-folds:

ρΨ(Ψ, N,Ψ0, N0) =
∫
ρΨ(Ψ, N,Ψ′

, N ′)ρΨ(Ψ′
, N ′,Ψ0, N0)dΨ′

. (3.31)

Instead of N we write N + δN in the above so that we can replace ρΨ(Ψ, N + δN,Ψ0, N0) from eq.
(3.29) and after integrating by parts the derivatives will move from acting on delta function:

ρΨ(Ψ, N+δN,Ψ0, N0) = ρΨ(Ψ, N,Ψ0, N0)+ 1
3H2

I

∂

(
dV (Ψ)
dΨ ρΨ(Ψ, N,Ψ0, N0)

)
∂Ψ

+H2
I

8π2
∂2ρΨ(Ψ, N,Ψ0, N0)

∂Ψ2 .

(3.32)
It is straightforward to Taylor expand ρΨ(Ψ, N + δN,Ψ0, N0) directly and compare with eq.

(3.32) to arrive at the Fokker-Planck equation:

∂ρΨ(Ψ, N,Ψ0, N0)
∂N

= 1
3H2

I

∂

∂Ψ

(
dV (Ψ)
dΨ

ρΨ(Ψ, N,Ψ0, N0)
)

+ H2
I

8π2
∂2ρΨ(Ψ, N,Ψ0, N0)

∂Ψ2 . (3.33)

The first term on the right side of the Fokker-Planck equation (3.33) is related to the evolution of
the field under the influence of the potential alone, while the second term describes the random walk
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behaviour of the field due to the random noise. In the presence of a potential the Fokker-Planck
equation predicts that the probability distribution evolves towards an equilibrium distribution with
∂ρΨ/∂N = 0 [244]:

ρΨ,eq(Ψ) = 1
Z

exp
(

−8π2V (Ψ)
3H4

I

)
, (3.34)

where Z =
∫+∞

−∞ exp
(

−8π2V (Ψ)
3H4

I

)
dΨ is the appropriate normalisation factor.

In the following we are interested in applying the Fokker-Planck equation (3.33) above to the
axion and radial mode of the complex PQ field. The axion will correspond to a massless non-
interacting field, while the radial mode is interacting and we work with numerical solutions of the
Fokker-Planck equation. Either way, it is useful to discuss the massive non-interactive case, if
only to gain an intuitive understanding, and in this case the Fokker-Planck equation can be solved
analytically.

We start by noticing that the solution in the massless case is a normal distribution and we
check if this is a solution for the massive case as well. We start with an ansatz:

ρΨ(Ψ, N,Ψ0, N0) = 1√
2πσ

e− (Ψ−Ψm)2

2σ2 , (3.35)

where σ ≡ σ(N) is the standard deviation and Ψm ≡ Ψm(N,Ψ0, N0) is the mean of the distribution,
both of which we allow to be time dependent.

By taking the average of the Langevin equation (3.19) and using eq. (3.27):

3HI

〈
Ψ̇
〉

+
〈
dV (Ψ)
dΨ

〉
= ⟨∆(x, t)⟩ = 0 . (3.36)

Replacing the potential V (Ψ) = (1/2)m2
ΨΨ2 we find that we can treat the mean of the distribution

Ψm =
〈
Ψ
〉

as a field of mass mΨ evolving only under the influence of the potential (the noise
average is 0).

Replacing the ansatz into the Fokker-Planck equation (3.33) we also find a condition for σ:

1
σ

dσ

dN
+ m2

Ψ
3H2

I

− H2
I

8π2σ2 = 0 , (3.37)

which we can re-write as:
dσ2

dN
= H2

I

4π2 − 2m2
Ψ

3H2
I

σ2 . (3.38)

The solution is Gaussian with mean evolving towards Ψm = 0 as described in equation (3.36)
and variance increasing over time given our usual initial condition for the distribution which is
a delta function. It eventually reaches an equilibrium distribution, which is Gaussian with mean
Ψm = 0 and variance σ2 = 3H4

I /(8π2m2
Ψ). The solution for the massless, non-interacting case
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follows by setting mΨ = 0 and is a Gaussian distribution with mean the initial value of the field
and variance continuously increasing:

σ2 = NH2
I

4π2 . (3.39)

3.4 Approximate field distribution from the Langevin equation

It should be clear that we cannot solve the Langevin equation (3.19) exactly, as the noise function
∆(x, t) takes random values at different positions and times. If we knew the exact probability
distribution of the noise we would in principle be able simulate the evolution of the field corre-
sponding to the Langevin equation numerically, by simply applying random kicks to the field over
infinitesimal times δN and then solving for the evolution between kicks. Such a procedure would
produce one of the many possible realisations of the evolution of the field.

Unfortunately we do not know the exact distribution of the noise, which would require to calcu-
late the higher point correlation functions of ∆(x, t) just like we did for the two-point correlation.
While for odd point the correlation function is trivially zero as all the terms contain an odd number
of creation and annihilation operators, the correlation function for even point are quite difficult to
calculate. Fortunately a Gaussian distribution for the noise function is a good approximation, to see
this more precisely let us start by following the evolution of one patch for negligible potential. Over
a time interval ∆N = n δN the field has moved by a random amount K = δΨ1 + δΨ2 + ...+ δΨn,
where δΨi are small random kicks, each corresponding to the effect of the noise over an infinitesi-
mally small time step δN . The exact distribution of δΨi is unknown, however its mean and variance
are given by equation (3.30). It follows from the Central Limit Theorem that in the limit n → ∞
the distribution for their sum K is Gaussian with mean 0 and variance ∆NH2

I /(4π2). Thus in the
absence of the potential we can approximate the evolution of Ψ by kicking the field by an amount
K distributed as above every ∆N e-folds.

Moving to a non-zero potential the situation is complicated by the fact that at intermediate
times between N and N + ∆N the value of the field is unknown due to the distribution of δΨ,
which translates into unknown field evolution due to the potential −δN/(3H2

I )
(
dV (Ψ)/dΨ

)
. We

show in Appendix B that if the gradient of the potential is small enough∣∣∣∣∣dV (Ψ)
dΨ

∣∣∣∣∣ ≪ H3
I

2π
√

∆N
, (3.40)

then the evolution of the field is well approximated by kicking the field by an amount K and then
following the evolution in the absence of noise for a time ∆N .

A procedure to simulate the Langevin equation (3.19) would thus be as follows. We discretise
the space on a grid where each point corresponds to a coarse graining patch of physical size 1/(ϵHI)
and discretise time in steps of size ∆N which we choose such that the inequality in eq. (3.40) holds.
We then apply a kick K to each grid point which is a random quantity normally distributed with
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mean 0 and variance ∆NH2
I /(4π2) as explained above and compute the evolution in the absence

of noise at each point until the next time step when another kick is applied. Additionally when
the scale factor would double in size which happens every log(2) e-folds, we split each point into 8
grid point with the same value of the field initially and which subsequently evolve independently.
To do this splitting it is convenient to pick ∆N such that the ratio between the time it takes for
the scale factor to double in size and the time step ∆N is an integer.

This procedure will be useful when generating realistic initial conditions at the end of inflation
for numerical simulations of the PQ field. The probability distribution of the field values obtained
this way clearly obeys the Fokker-Planck equation (3.33), for which only the correct mean and
variance of the noise function are necessary. Additionally, this procedure has an advantage over
simply allocating to each grid point a random value distributed according to the Fokker-Planck
equation in that it retains some of the information encoded in the Langevin equation that is
otherwise lost, in particular the field in closer grid points takes similar values since they have
shared some of the earlier kicks.
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Chapter 4

The edge of symmetry restoration

4.1 Introduction

In this Chapter we consider in more detail the boundary between the pre- and post-inflationary
scenarios. To do so we focus on the simplest axion theory that consists of a complex scalar with
a potential (2.29), and we comment at the end of the Chapter on how our results and analysis
could be adapted to more general axion theories. Here we assume that quantum fluctuations
during inflation are the main ingredient that result in the formation of strings and domain walls,
i.e. we assume that PQ symmetry has not been restored after the end of inflation by thermal or
non-thermal fluctuations and also that it has not been restored by other mechanisms during the
last Ntot e-folds of inflation which have re-entered the horizon up until today, such as a coupling
between the inflaton and the PQ field. In particular, this is the case provided

Γφ ≲ O
(

v4
a

HIM2
P

)
, (4.1)

for the inflaton decay rate Γφ to not generate a too large temperature, which is discussed in Section
5.3, as well as a sufficiently small coupling of the PQ field to the inflaton which is discussed in Section
5.1. Additional details on alternative ways to restore PQ symmetry can be found in Chapter 5.

As discussed in Section 2.4, it is typical in the literature to consider two extreme scenarios. The
post-inflationary scenario for HI ≳ 2πva is associated with the formation of numerous topological
defects such as strings and domain walls that reach a scaling regime, as well as a fully randomised
axion field. Meanwhile the pre-inflationary scenario HI ≪ 2πva is associated with negligible topo-
logical defects and an approximately uniform axion field. The idea is that during inflation each
e-fold kicks the axion and the radial mode by random amounts of typical size HI/(2π), so the post-
inflationary scenario is roughly equated with the radial mode moving over the top of the symmetry
breaking potential and the axion exploring the full fundamental domain over order one e-folds,
while the pre-inflationary scenario corresponds to negligible spatial changes in the axion field due
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to small quantum fluctuations.
Here we focus on the region between these two scenarios, in which fluctuations accumulated

over many e-folds of inflation are significant to form strings and domain walls, but not so large as
to fully randomise the field over one e-fold. In doing so, we pin down the boundary between the
pre- and post-inflationary scenarios more precisely, up to uncertainties due to the not fully known
details of the destruction of strings/domain walls network as discussed in Section 4.5.4 and under
the assumption that the behaviour of the string network we observed in numerical simulations and
present in Section 4.4 is applicable to later times, which are otherwise inaccessible to numerical
simulations. We also uncover an intermediate regime interpolating between the post- and pre-
inflationary scenarios that allows the QCD axion to comprise the full dark matter relic abundance
with a larger mass than would otherwise be possible.

Intuitive summary of our results

Before proceeding to our detailed analysis, which will be backed up by results from numerical
simulations, it is useful to give a simple intuitive description of the intermediate regime at the edge
between the post- and pre-inflationary scenarios.

An important observation is that strings will form at points where quantum fluctuations have
pushed the radial mode over the top of the potential, as once the field around these point settles
around the various vacua there must be some region kept at the top of the potential due to the
continuity of the field. It would be ideal if we could also quantitatively connect the size of quantum
fluctuations in the radial direction to the formation of strings by relating the probability that the
radial mode has been pushed over the top of the potential inside a causal region some time after
the end of inflation to the density of strings inside the same region. We show using numerical
simulations how this can be done, which for a particular UV completion of the QCD axion would
give a sharp prediction of the conditions for strings to form.

To explain what is meant by the fluctuations “accumulating”, we start by assuming the Universe
is radiation dominated instantly after the end of inflation, i.e. immediate decay of the inflaton and
thermalisation, and we leave a brief discussion on how our results could be adapted to an early
period of matter domination during reheating to Section 4.5.4. Let us follow a specific patch of
the Universe that exited the horizon N e-folds before the end of inflation and denote the average
value of the radial mode and axion over this patch at the time of exiting by r0, a0 respectively.
By the end of inflation this patch will be inflated into an exponentially large number of causally
disconnected new patches, which will all re-enter the horizon at a time when the Hubble parameter
H is given by:

1
H

= 1
HI

eN
R

RI
, (4.2)
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Figure 4.1: Schematic representation of the role of quantum fluctuations in the formation of topo-
logical defects. Radial fluctuations form strings when the pass over the top of the potential, and
subsequently domain walls resting on them. Angular fluctuations form closed domain walls as they
pass θ = π, but not necessarily strings.

where RI is the scale factor at the end of inflation and in a radiation dominated Universe we have

R

RI
=
√
HI

H
, (4.3)

which means

eN =
√
HI

H
. (4.4)

The radial mode and axion fields inside these patches that have re-entered up to this point were
distributed at the end of inflation according to the solutions of Fokker-Planck equations (3.33)
which evolved for N e-folds, corresponding to their respective potentials. As explained in Section
3.3 the initial condition for the probability distribution before the final N e-folds of inflation was a
delta function for both the radial mode δ(r−r0) and the axion δ(a−a0). The distributions of radial
mode and axion that solve the respective Fokker-Planck equations are wider at the end of inflation
the larger N is.1 Thus the more e-folds re-enter the horizon the more randomized the axion and
radial mode are inside the horizon, so the more likely the radial mode has passed over the top of the
potential to form strings, and similarly the more likely the angle θ passed over π to form domain
walls. This is both because we are taking more samples of the probability distribution as more
patches of size 1/HI that were causally disconnected at the end of inflation have re-entered, but
primarily because the probability distributions we are sampling over have spread with the number

1Up to an eventual equilibrium distribution if N is large enough.
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of e-folds. We can see that the way the fluctuations accumulate as the Hubble horizon grows after
inflation leads to the possibility that a network of strings forms only late, once the probability the
radial mode has passed over the top of the potential inside the horizon is sufficient2. Likewise, even
for small radial mode fluctuations and consequently in the absence of strings, angular fluctuations
similarly accumulate and may create domain walls.

Since we expect radial mode fluctuations to lead to strings (and consequently domain walls),
while angular fluctuations lead to domain walls without strings, it is time to consider the fluctua-
tions in these directions separately.

4.2 Negligible radial mode fluctuations

First let us consider the case of small radial mode fluctuations, where the axion field at the end
of inflation is given by the solution to the Fokker-Planck equation (3.33) with the field Ψ = a

replaced by the axion and no strings form. This corresponds to the case of a radial potential that is
sufficiently steep so fluctuations in this direction are negligible even if they accumulated over Ntot

e-folds.
In typical theories of inflation ma ≪ HI as well as ΛQCD ≪ HI , so the axion has effectively

no potential. However it is interesting to mention the results for the situation HI ≲ ΛQCD which
has been considered in [248, 249]. In this case the axion has a mass and will eventually reach an
equilibrium distribution if inflation lasts for a large number of e-folds ≳ O(H10

I /m
2
aΛ8

QCD). The
equilibrium distribution is strongly peaked in the minima of the axion potential with very small
variance controlled by the size of HI . This means that the initial misalignment angle is no longer
a free parameter as in the usual pre-inflationary scenario, but rather

〈
θ2〉 ∼ 10−6 (HI/ΛQCD)12,

which is naturally small while the usual isocurvature constraints present in the pre-inflationary
scenario are satisfied since HI ≲ ΛQCD ≪ fa.

Back to the case of negligible axion potential, as we have seen in Section 3.3 the solution to the
Fokker-Planck equation (3.33) for a massless field starting from a delta function initial distribution
is a Gaussian distribution with constant mean and a variance increasing linearly with the number
of e-folds elapsed σ2

a = NH2
I /(4π2). At a time after the end of inflation when Nre e-folds have

re-entered the horizon, the axion fluctuations inside the horizon have been produced during the
final Nre e-folds of inflation. It was argued in [197, 198] (see also [250]) that if the variance of the
distribution of the field inside the horizon is sufficiently large

σa =
√
NreHI

2π ≳ πfa , (4.5)

then domain walls will form that are larger than the size of the horizon at the time when Nre

2By a network forming we mean that strings are at a distance typically the size of the horizon. Strings still exist
even before, but they are very rare and far apart, at distances much larger than the horizon.
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e-folds re-enter. The problem with these walls is that, in the absence of the strings that would
collapse them, they will be stable while they are larger than the size of the horizon and they will
dominate the energy density at late times, even if NDW = 1 or if an energy bias is present reducing
the number of inequivalent minimums of the axion potential to one. The point is that even with a
single minimum of the potential, walls form at places where the axion was at the maximum of its
potential and interpolate between regions that have reached the same vacuum while the complex
PQ field moved over opposite sides of the bottom of the Mexican hat potential described by (2.29).

Therefore, in the absence of strings there is a necessary condition that there is no such domain
wall larger than the horizon today √

NtotHI

2π ≲ πfa . (4.6)

Additionally an estimation of the number density of wall bubbles of any size in [197] translates to
less than one bubble having re-entered the horizon if:

√
NtotHI

2π ≲
πfa
12 . (4.7)

The situation between these limits is rather complicated and we do not consider it in detail.
However we remark that such values of HI/va ∼ O(1) would be ruled out by isocurvature in the
absence of domain walls if the axion makes up a significant fraction of DM [201], and the presence
of decaying domain walls can only tighten these bounds, as they are located at regions where the
axion is close to the top of the potential a = πva, precisely where the largest contribution from the
misalignment is coming from.

We conclude that in the case of small radial fluctuations domain walls can only have a negligible
contribution to axion density compared to the DM density, as all the other possibilities are ruled out
either by stable domain walls dominating the energy density today or by isocurvature. A necessary
condition for the standard pre-inflationary scenario is eq. (4.7) which corresponds to the absence
of walls, together with the characteristic isocurvature constraints [192–199,201–203], which require
HI ≪ fa if the axion makes up a significant fraction of DM. If condition (4.7) holds it is also likely
that strings do not re-enter the horizon until today, as we discuss in subsequent Sections.

4.3 Radial mode fluctuations

Once radial fluctuations are large enough for the field to go over the top of the PQ potential the
distribution of the axion field is no longer determined by the fluctuations in the angular direction
alone. Firstly, the field displacement required to go from a = 0 to a = πva is larger when going
around the circle than over the top. Additionally, the effect of axion fluctuations is also enhanced
when the radial mode is closer to the top of the potential, since a kick of the same size of the
axion field now results in a larger angular displacement due to the reduced radius. This leads to a
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complicated description of the axion spatial distribution at the end of inflation and consequently
at the time the axion mass becomes relevant, which we do not attempt to consider in detail.

Instead, we recognize that radial fluctuations are the important ingredient to the formation
of strings, during which the axion field around strings is adjusted in such a way as to explore
the full fundamental domain around a closed loop. Meanwhile the complicated distribution of the
axion field away from the strings is only relevant to the calculation of the axion misalignment
contribution, which is not the dominant one in the post-inflationary and the intermediate scenario
we will uncover. On the other hand in the pre-inflationary scenario the radial mode remains
approximately in the vacuum so the treatment of the previous Section 4.2 can be applied.

The effect of quantum fluctuations in the radial mode has been previously considered in [251]
which finds approximate solutions to the Fokker-Planck equation in the limits H4

I /v
4
a ≪ λ and

H4
I /v

4
a ≫ λ and identifies these with the pre- and post-inflationary scenario respectively.3

More specifically, in [251] the complex PQ field is written in term of its real and imaginary
part ϕ = (ϕ1 + iϕ2) /

√
2 with ϕ1 and ϕ2 being real fields with canonically normalised kinetic terms,

each evolving according to a respective Langevin equation (3.19) during inflation. This gives rise to
an individual Fokker-Planck type equation for each field, which after moving to polar coordinates
(ϕ1, ϕ2) → (

√
2 |ϕ| , θ) and integrating over θ results in an equation for the probability distribution

of |ϕ| reproduced here:

2π
va

√
3
λ

∂ρ|ϕ|
∂N

= 1
4
√

2
∂2ρ|ϕ|

∂ |ϕ|2
ζ2va + 1

4
∂

∂ |ϕ|

[(
4
√

2 |ϕ| (
√

2 |ϕ| + va)(
√

2 |ϕ| − va)
ζ2v3

a

− vaζ
2

√
2 |ϕ|

)
ρ|ϕ|

]
,

(4.8)

where ζ =
(

3H4
I

2π2λv4
a

)1/4
, and ρ|ϕ| is the probability distribution for the absolute value of the complex

PQ field.
In the limit ζ ≪ 1 the equilibrium distribution of eq. (4.8) is strongly peaked in the vacuum,

which corresponds to the field being stuck in the vacuum with fluctuations too small to bring it
over the top of the potential and form strings.4 Additionally if ζ ≪ 1 and perturbative self-coupling
λ ≲ O(1), the condition to avoid domain walls in the absence of strings (4.7) we have discussed in
Section 4.2 holds, so this limit clearly leads to the standard pre-inflationary scenario.

Conversely in the limit ζ ≫ 1 the distribution is very spread and large values |ϕ| ≫ va are
common, meaning it is likely that the radial mode was pushed over the top of the potential inside
regions the size of the horizon 1/HI at the end of inflation. This is expected to lead to the formation
of numerous strings once many Hubble patches at the end of inflation will have re-entered the

3It is interesting that even though the radial mode is self-interacting, a qualitatively similar conclusion could be
reached by comparing the equilibrium variance for a massive non-interactive field discussed in Section 3.3 ∼ H4

I /m2
r ∼

H4
I /(λv2

a) to the distance squared between the vacuum and the top of the potential v2
a.

4In fact in our single field approach that is introduced bellow, it can be shown that fluctuations would need to
accumulate for an exponentially large number of e-folds N ∼ e1/(2ζ4) before the probability that the field passed over
the top of the potential is O(1) [244].
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horizon, which interact to reach the scaling regime characteristic to the standard post-inflationary
scenario.

Our approach differs from that in [251] since we are interested in exploring the situation between
the limits ζ ≫ 1 and ζ ≪ 1. Since we expect that string formation corresponds to the radial mode
passing over the top of the potential we consider the fluctuations in the radial direction separately
from the angular fluctuations to find the condition to form strings. We do so by looking at a slightly
modified theory in which we consider a real field which we denote r̃ with a potential:

Vr̃(r̃) = λ

4
(
r̃2 − v2

a

)2
. (4.9)

The field r̃ has a similar potential to that of the radial mode, with the exception that its potential
exhibits a Z2 instead of a U(1) symmetry and it is allowed to take any value (compared to the
radial mode as defined in eq. (2.27) which only takes values larger than −va). We would then apply
the Fokker-Planck equation (3.33) by replacing the generic field Ψ with r̃ to find the probability
distribution of r̃ and relate this to the string density via numerical simulations presented in Section
4.4. While this one field system is not identical to the complex PQ field it has some advantages:

• The solution of the Fokker-Planck equation for the field r̃ quantitatively captures the difficulty
of pushing r̃ over the top of the potential, which we expect is necessary to form strings.
Meanwhile the Fokker-Planck solution to the full complex potential does not distinguish
between the field passing over the top of the potential through radial fluctuations and rotating
to the other side along the flat axion direction.

• It is numerically less demanding to solve the Fokker-Planck equation for the one field r̃ than
it is for the two component PQ field. This is helpful when exploring the parameter space,
for example to produce a contour plot such as Figure 4.9 we have solved the Fokker-Planck
equation for a large number of parameters (HI/va, λ).

• Finally for the typical parameters that are relevant for the edge of the post-inflationary
scenario which can be seen in Figure 4.9 (i.e. HI/va ∼ 2, however there order 1 uncertainties),
the difference between the solution to the one field Fokker-Planck equation and two field
Fokker-Planck equation is not very dramatic, an example is shown in Figure A.3 in Appendix
A.

Another difference between our approach and that in [251] is that we are looking for a more
precise condition to form strings which does not necessarily involve reaching the equilibrium distri-
bution. In fact if the equilibrium distribution of r̃ has been reached it is expected that numerous
string would form, since the equilibrium distribution has equal amount of probability on both sides
of the Z2 symmetric potential (4.9), see equation (3.34) and Figure 4.2. Since strings form even
if the equilibrium distribution of r̃ is not reached, that means that initial conditions for r̃ matter
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Figure 4.2: An example of the evolution of the probability distribution of r̃ with potential (4.9)
following the Fokker-Planck equation (3.33) for HI/va = 2.5 and λ = 0.5. Different colors corre-
spond to different number of e-folds the distribution evolved for as labeled, while initial condition
are ρr̃(r̃, N = 0) = 50 sech2(100 (r̃/va − 1)), which is a narrow distribution around r̃/va = 1. The
thicker red plot corresponds to the equilibrium distribution, which is calculated by replacing the
potential (4.9) into equation (3.34).

for the precise boundary of the post-inflationary scenario. As explained in Section 3.3 the initial
distribution at the time Ntot e-folds before the end of inflation is a delta function on the average
value of r̃ over the Hubble patch that will expand to be the size of our Universe today, but this
value is unknown. In the following we present results assuming initially r̃ = va, corresponding to
the PQ field starting in the vacuum, although our approach can be in principle adapted to different
initial conditions.

Additionally, in Appendix C we discuss the situation where r̃ starts very far away from the
vacuum. This is possible if the quantum fluctuations are large and the radial mode can take
large values with significant probability, which is likely to lead to the post-inflationary scenario.
Alternatively, with additional model building it is possible to have simultaneously large radial mode
and low HI during inflation, which has an interesting consequence of suppressing the otherwise
strong isocurvature constraints typical to the pre-inflationary scenario [252,253].

4.3.1 Solution to Fokker-Planck equation

In the simulations presented in the next Section we will show how the string density at some time
after inflation when N e-folds re-entered the horizon is correlated to the probability distribution (in
particular the variance of the distribution seems to be a good measure) of r̃ at the end of inflation
over regions that would be the size of the horizon at the time when the same N e-folds re-entered.
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To find the radial mode distribution over regions that re-enter the horizon at a time N e-
folds re-entered, we would ideally solve the Fokker-Planck equation (3.33) multiple times with
initial conditions sampling over the distribution of the field r̃ at the time N e-folds before the
end of inflation for a given pair (HI/va, λ), weighting the initial conditions appropriately, i.e. by
their own probability distribution which is the solution of the Fokker-Planck equation this time
starting at Ntot before the end of inflation and evolving until N e-folds before the end of inflation.
Unfortunately it would be very difficult to achieve this weighting numerically, since we also need
to do so for many pairs (HI/va, λ) to explore the parameter space. Instead we use the fact that
for parameters of interest on the edge of the post-inflationary scenario, i.e. fluctuations that are
relatively small over one e-fold and affect the string formation through accumulation over many e-
folds, the probability distribution of the radial field N e-folds before the end of inflation is expected
to be peaked in the vacuum, as it also obeys a Fokker-Planck equation, having evolved from the
start of inflation. As an approximation we always set the initial conditions for the Fokker-Planck
equation as a delta function in the vacuum and we checked numerically that a proper accounting
for the initial conditions does not change the results by a large amount and it is likely not the
dominant source of uncertainty.

We solved the Fokker-Planck equation (3.33) for various (HI/va, λ) numerically using Mathe-
matica NDsolve [254], method ”BDF” and a maximum step size of 0.1. The initial condition is a
sharp function ρr̃(r̃, N = 0) = 50 sech2(100 (r̃/va − 1)) and the equation is solved inside a box
between (−3.5va, 4.5va) with boundary conditions ρr̃(−3.5va, N) = 0 and ρr̃(4.5va, N) = 0 at all
times. Convergence checks for the maximum step size and box size can be found in Appendix A.
Then for each pair (HI/va, λ) we extracted the variance as a function of e-folds re-entered Nre,
which as we show in the next Section is correlated to the string density.

We plot as a representative example the way variance calculated grows with the number of
e-folds Nre for various HI/va, λ in Figure 4.3. In general, the variance grows at most linearly with
the number of e-folds, the fastest growth corresponding to λ = 0.

We now present the results of numerical simulations and then explain how they can be used to
explore the edge of the post-inflationary and pre-inflationary scenarios.

4.4 Results of numerical simulations

The claim we would like to check using numerical simulations of the underdense string networks
is that the string density is simply a function of the probability that the radial mode went over
the top of the potential inside causally connected regions. We will do this by plotting the string
density as a function of the variance of r̃ over regions the size of the causal horizon for various pairs
(HI/va, λ).

Our numerical simulations of the string network incorporate two phases. First there is a phase
of generating the initial conditions, which involves populating a cubic lattice of size N3

grid = 20483
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Figure 4.3: Plot showing the variance of the solution of the Fokker-Planck equation (3.33) for
various values of parameters λ,HI/va as a function of e-folds during inflation, color coded by the
value of λ. The initial condition for the distribution is a delta function centered on the minimum
of the potential as explained in the text. As expected, larger values of HI and smaller values of λ
lead to faster growth of the variance, which grows at most linearly with the number of e-folds. As
explained in the text, we use this as an estimate for the average variance over regions that will be
the size of the horizon when Nre e-folds have re-entered during the radiation dominated era.

points by assigning values for the components ϕ1, ϕ2 of the complex PQ field at each point, i.e.
ϕ = (ϕ1 +iϕ2)/

√
2. We use a procedure to populate the grid that is meant to simulate the evolution

of the Langevin equation (3.19) as follows:

• We start by setting a grid point in one corner of the lattice to ϕ1 = va, ϕ2 = 0. This
corresponds to some initial Hubble patch during inflation with the complex PQ field in the
vacuum. Further grid points correspond to a Hubble patch during inflation each.5

• Then we apply random “kicks” to ϕ1 and ϕ2 at this point, distributed according to a Gaussian
distribution with mean 0 and variance log(2)H2

I /(4π2). As explained in Section 3.4 this
corresponds to a duration of log(2) e-folds of inflation, which is the time it takes for the scale
factor to double.

• We then copy the values of ϕ1 and ϕ2 from this grid point to the seven neighbouring grid
points. This “splitting” of the initial grid point correspond to the fact that over log(2) e-
folds an initial Hubble patch has expanded into eight Hubble patches, which then evolve
independently.

5Since we set the distance between grid points to the size of the horizon during inflation 1/HI this corresponds
the coarse graining procedure discussed in Section 3.2 after setting the parameter ϵ = 1.
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Figure 4.4: Schematic representation of the first two steps of the procedure to generate initial
condition in the case of no potential. At each step a Hubble patch “splits” into two along each
dimension, which share the history of random kicks up until that point but then evolve indepen-
dently. For a non-zero potential the evolution of the field due to the gradient of the potential also
has to be applied.

• We allow the field to evolve under the potential term (i.e. the evolution of the field in the
Langevin equation in the absence of random kicks) for a duration of log(2) e-folds. As shown
in Appendix B we can apply the kicks and the relaxation separately and approximate the
Langevin evolution if:

λ ≪ 3
√

6
8π
√

log(2)
H3
I

v3
a

. (4.10)

• We continue this procedure of applying kicks, allowing the field to relax and splitting the grid
points until the entire grid is populated. Since we started with one populated grid point and
end up with 2048, this corresponds to the scale factor doubling 11 times, or 11 log(2) ≃ 7.6
e-folds of inflation.

In Figure 4.4 we show a schematic representation of the field going through two “splits”, while
in Figure 4.5 we show a 2D slice through a realisation of the Langevin equation according to the
procedure discussed above.

By construction the probability distribution of the fields (ϕ1, ϕ2) for initial conditions generated
in this way is expected to obey the Fokker-Planck equation (for two fields there are two coupled
equations, see equation (A.1)), since the procedure mimics the evolution of the fields under the
Langevin equation. The reason we chose this procedure is that some of the spatial information
about the field distribution is maintained, as opposed to the Fokker-Planck equation. We show
that indeed the field distribution obeys the Fokker-Planck equation in Figure 4.6.

We generate initial conditions in this way for various values of the relevant parameters HI/va

and λ and then for each realisation of the initial condition we proceed to the second phase of the
simulations, which is following the formation and evolution of strings after the end of inflation. We
do so by integrating the equations of motion resulting from the action (2.28) on the discrete cubic
lattice that we populated. The code for used to do this phase was written and provided to me by
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Figure 4.5: Two dimensional slice through a realisation of a Langevin evolution for 8 doubling
of the scale factor (or 8 log(2) = 5.5 e-folds), HI/va = 2.5 and λ = 0.5. Colours represent the
value of ϕ1 in units of va, while initial conditions were ϕ1 = va, ϕ2 = 0. Red squares mark regions
corresponding to 4, 6, 7 doubling respectively. Points at the edge of red lines have only been distinct
and received different kicks for the corresponding number of doubling.
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Figure 4.6: Comparison of the probability distribution of the field ϕ1 generated by the Langevin
procedure explained above (blue dots) and the prediction from the two-field Fokker-Planck equation
(A.1), which we solved numerically as explained in Appendix A. Additionally, we show in Appendix
A that the probability distribution of ϕ1 found by solving the two-field Fokker-Planck equation is
numerically very similar to that of the field r̃ found by numerically solving the one field Fokker-
Planck equation as explained in the main text (see Figure A.3). For definiteness we plotted for
HI/va = 2.5, λ = 0.5, and the field was evolved for 11 log(2) e-folds, which is the same as in the
evolution of the initial conditions used in simulations, i.e. the network size doubled 11 times, from
initial conditions ϕ1 = 1, ϕ2 = 0. Kicks were applied every log(2) e-folds, i.e. every time the
network size doubled, the same as in the generation of initial conditions used in simulations. In
Appendix B we also provide a check that applying kicks every log(2) e-folds is sufficiently often,
see Figure B.1.

my collaborators, Dr Marco Gorghetto and Dr Edward Hardy. More details about this phase can
be found in Appendix E as well as in the Appendices of [186,188].

We employ the fat string model, which involves replacing the constant self-interaction coupling
λ to a time dependent one:

λ(t) = λini
R2

ini
R2 = λini

tini
t
, (4.11)

where the subscript ini denotes quantities at the time when the simulation of the string network
starts and we assume radiation domination at the start of the simulation. A period of matter
dominated during reheating can be accounted for as we explain briefly in Section 4.5.4. The fat
string model has the advantage that the number of grid points inside the string cores remains
constant, in particular one grid point per string core in our simulations, which was found to be
sufficient to resolve the string core for simulations of scaling networks (see Appendix B.1 and Figure
15 of [186]) and we also show evidence for that in Appendix E.1. For this reason we expect that
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one grid point per string core is also sufficient resolution to resolve strings in the case of underdense
network, however as we briefly discuss in Appendix E.1 there are some complications if we wish to
test this directly. Nevertheless, the test that we show in the Appendices points to the fact that the
error due to our choice of resolution is not too large. Conversely in the physical case a large number
of grid points would be inside string cores at the initial time and the initial conditions would lose
some of their resolution.

We initialise the value of the Hubble at the start of this second phase of strings evolution to be
equal to the initial mass of the radial mode H = mr,ini and set λini = 1. This means that there is a
time discontinuity between the end of inflation when HI ≃ 1.7 ÷ 3.4va in the various simulations,
and H = mr ≃

√
2λva at the start of the post-inflationary evolution. We do this because the

formation and subsequent evolution of strings happen after H ≲ mr, so this way we can follow
the string network for the longest time possible inside the simulation, which otherwise would have
been a problem particularly for λ ≪ 1 simulations. During this time additional fluctuations would
re-enter physically, so there is a difference between the distribution we are simulating and the exact
distribution for small λ. However given that we find that the string density depends on the variance
of the distribution and not time it is likely that this is not a problem, and that the empirical relation
we find also holds for the physical distribution.

For each realisation of the initial conditions the quantity we are interested in is the string density
ξ defined as in equation (2.46). First we performed simulations with various HI/va, λ on smaller
grids (Ngrid = 512) to find the most relevant values of the parameters to simulate on the largest
grids. In particular we are looking for parameters such that the fluctuations are large enough for
the network to evolve and ξ to grow, while small enough so that network remains in the underdense
regime ξ ≲ 1 throughout the simulation. Due to the random nature of the initial conditions, we also
generated multiple realisations for each such pair of parameters while only changing the random
seed, allowing us to have some idea about the size of statistical errors.

In Figure 4.7 we plot the string density for various values of (HI/va, λ) used in the generation
of initial conditions as a function of the variance σ2

avg of the probability distribution for the field r̃
defined in Section 4.3. The string density ξ is extracted directly from the numerical simulations as
a function of time, while the variance is computed from the solution of the Fokker-Planck equation
as a function of HI/va, λ and time. The key result is that the growth of ξ as a function of variance
overlaps and aligns for different simulations with different initial conditions, which reach equal
variance at different times. Therefore this shows evidence for a linear relation between log(ξ) and
σ2

avg:

log(ξ(t)) = α
σ2

avg(Nre)
v2
a

+ β , (4.12)

with α = 3.72 ± 0.03, β = −3.41 ± 0.01 extracted from the fit.
For simulations with λ = 0 this may not come as unexpected, since in this case the variance

fully describes the probability distribution, which is a Gaussian with mean in the initial value of r̃
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Figure 4.7: Plot of ξ(t) versus average variance over causal regions as explained in the main text.
Various colours represent different values of λ and different shades represent different HI/va at the
same λ. For each pair of parameters the evolution of ξ has been averaged over multiple simulations
which differ only in the random seed. The exact number of simulations we have averaged over
varies between 4 and 20 for each pair of parameters, depending on the size of statistical errors
towards the end of the respective simulations, which is discussed in more detail in Appendix E, and
we have plotted only for values of HI/va for which 20 simulations were enough to have at least 6
data points with reasonable statistical errors. The fact that the evolution of the string density in
simulations for various HI/va, λ partially overlap and align when plotted as a function of variance
provides evidence for the claim that string formation is associated with the probability that the
radial mode has been pushed over the top, more specifically by the relation (4.12), and that the
variance is a good measure for this probability.

which we took to be va. The plot in Figure 4.7 also points to the variance being a good measure
of the probability that r̃ passes over the top of the potential even for λ > 0, since simulations with
λ > 0 and λ = 0 do overlap.6

6We have tested and the variance actually provides a better fit than the integral of the probability distribution
between r̃ = −∞ and r̃ = 0. This is because there is another way the field can be pushed over the top, namely that
the field is pushed to values r̃ >

√
2va where its potential is greater than that at the origin. In this case r̃ can also

pass over the top of the potential by the oscillations of the field after the end of inflation, and the actual calculation
of the probability that r̃ passes over the top must take this into account. We discuss this in more detail in Appendix
C.
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In the following we assume this relation holds in the underdense regime ξ ≲ 1 for larger ξ and
log(mr/H), that are otherwise inaccessible in the simulations, including after the time the axion
mass becomes relevant. We extrapolate this relation and use it to estimate the contribution of the
string network to the axion relic abundance in the following Section.

For comparison the evolution of ξ with time rather than variance would proceed differently for
each pair HI/va, λ, generally growing faster with larger HI/va and smaller λ as one would expect.
This can be seen in Figure 4.8 for a selection of pairs HI/va, λ.
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Figure 4.8: Comparison of a selection of simulations in the underdense regime to the evolution in
the scaling regime. The scaling regime corresponds to initial conditions obtained by evolving the
Langevin equation for a large value HI = 16.9va. Such large values of HI introduce additional
complications in the simulations, which we explain in Appendix E.2. The black line corresponds
to a fit of the black data points to the expression ξ = c−2 log(mr/H)−2 + c−1 log(mr/H)−1 + c0 +
c1 log(mr/H), where log(mr/H) = Nre for the fat string model applicable to these simulations. We
find c1 = 0.22 ± 0.13 which is consistent to the result c1 = 0.24 in [188] for the fat strings in the
scaling regime.

4.5 Late strings and the edge of symmetry restoration

We now have the tools necessary to estimate the relic abundance as a function of HI , va, λ. First
of all, as we will show in Section 4.5.1, the dominant contribution of strings and domain walls to
the axion density is the energy released by the domain walls when the network is destroyed, if that
happens sufficiently late. Thus the time when the network is destroyed is an important quantity
and we discuss how it can be estimated.
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We start by recognizing that there exist some minimum value ξcrit ∼ O(1) that is required for
the network to be destroyed. This is because for a domain wall larger than the horizon the strings
it rests on are outside of causal contact, and they cannot “chop” up each other in order for the wall
to decay. Then at the time of network destruction each long string must be away from the closest
other long string by at most the radius of the horizon. This means at least order one long strings
inside each causal horizon, which corresponds to ξcrit ∼ O(1). Thus we define the time the network
is destroyed tdes as either the time the axion mass becomes relevant and domain walls form when
H = H⋆ = ma(T⋆), where ma(T ) is given by equation (2.41), or the time when ξ = ξcrit, whichever
happens later.

For a given ξcrit we can estimate the time the network is destroyed as a function of HI/va

and λ, by taking the corresponding σ2
crit directly from Figure 4.7 or alternatively by extrapolating

the expression (4.12) to ξ = ξcrit and the corresponding σ2
crit in case ξcrit is above the values of ξ

represented.7 Then we numerically solve the Fokker-Planck equation (3.33) to find the number of
e-folds Ndes that re-enter until this specific value of the variance is reached. In Figure 4.9 we show
the number of e-folds before the network is destroyed for various HI/va, λ and a set value ξcrit = 1,
focusing primarily on the region that corresponds to the intermediate scenario.8 If the Universe
was radiation dominated immediately after inflation the network is destroyed at a time when the
Hubble parameter is

Hdes = 1
2tdes

= HI

e2Ndes
. (4.13)

The time the network is destroyed also sets the inflationary scenario. Large values of HI

for a given λ and va result in the network reaching scaling before the axion starts oscillating so
that Ncrit ≲ N⋆ and thus the network is destroyed approximately at Hdes ∼ H⋆. This would
be the standard post-inflationary scenario and in this case the dominant contribution to axion
density is from strings and can be estimated as explained in Section 2.4.3. The resulting upper
bound fa ≲ 1010 ÷ 1011 GeV [188,189] depends on the value of the network’s density while scaling
and the details of the emissions spectrum. Somewhat lower values of HI result in the network
being underdense at H⋆, this is an intermediate scenario interpolating between the post- and pre-
inflationary scenario. As we show in Section 4.5.1, the later the network is destroyed the larger
the domain walls contribution to axion abundance is, and it dominates the strings contribution
if Hdes ≪ H⋆. Eventually the network is destroyed so late that the walls contribution saturates
the DM abundance today, later destruction times and correspondingly lower HI are ruled out.
Alternatively, if the network would be destroyed too late the intermediate scenario could also be
in tension with isocurvature constraints discussed in Section 4.5.2. Finally if the network has

7We expect equation (4.12) to hold in the underdense regime defined as ξ ≲ ξint ≃ 1 which is the limit of inefficient
string interactions. We also expect ξcrit ≲ ξint since the presence of domain walls is expected to enhance the string
interactions as walls pull strings together.

8In producing Figure 4.9 we have actually solved for the number of e-folds required for the average displacement
away from the minimum squared to be equal to σ2

crit rather than the variance, to account for the change in the mean
of the distribution.
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not developed sufficiently and topological defects have negligible contribution we are in the pre-
inflationary scenario.

The precise transition between the region of the intermediate scenario ruled out by DM abun-
dance or isocurvature and the pre-inflationary scenario would be challenging to estimate, because
the domain walls emissions to gravitational waves become relevant if the network survives to very
late times. In this situation the walls emissions to axions would be difficult to estimate and the
DM abundance and isocurvature bounds would be modified in an unknown way, on top on the fact
that the backreaction of gravitational waves could modify the behaviour of the network’s evolution
in eq. (4.12). Similarly, as discussed in Section 4.2, there may exist a region in which small domain
walls form in the absence of strings due to the angular fluctuations, which subsequently decay into
axions. We do not consider any of these situations further.

4.5.1 The dark matter parameter space

In this Section we explain how the axion abundance in the intermediate scenario can be estimated
which allows us to consider the corresponding axion masses allowed and phenomenological conse-
quences later on in Section 4.5.3.

We start by writing the energy density of strings and domain walls at times before network
destruction. For strings the energy density stored in the network is simply the length of the strings
times the tension:

ρstr = 4πv2
aH

2ξ log
(
mr

H

)
. (4.14)

For domain walls it is useful to define a dimensionless wall density A, analogous to ξ for strings:

A ≡ limV → ∞A(V )t
V

, (4.15)

where A(V ) is the total area of domain walls inside the volume V . Then the energy density in
domain walls is:

ρDW = 2σDWHA , (4.16)

where σDW is the domain walls tension in (2.45).
In order for the network to maintain the relation (4.12) it is clearly emitting some of the stored

energy, otherwise ξ would grow as ξ ∼ t. Additionally once walls form the loss of energy and
therefore length of strings also translates in a loss of area and energy of the attached walls. This
will go primarily into axions rather than gravitational waves, as long as the network is not destroyed
too late, while emissions of strings to heavy radial mode are expected to be suppressed by a factor
of log(mr/H) compared to axions, and we will see that the emissions of walls dominate those of
strings anyway. The ratio between the rate of energy transfer to gravitational waves and axions
can be estimated using the quadrupole formula and is O(v2

aN
2
des/M

2
P ) for strings as we explain in
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Figure 4.9: Contour plot showing the number of e-folds Ncrit that re-enter before the average
variance is σ2

crit corresponding to ξcrit = 1. Marked in red are the contour that corresponds to
the edge between the intermediate and post-inflationary scenario, as well as the contours that
corresponds to axions produced by walls saturating the DM bound, both for fa = 107 GeV. For
this value of the symmetry breaking scale the intermediate scenario is allowed between the red lines.
Higher values of fa result in a narrower parameter space for the intermediate scenario. The precise
transition between the region labeled “Too much DM”, which is ruled out, and the pre-inflationary
scenario for even lower HI is difficult to estimate as we explain in the main text, primarily due to
the backreaction of gravitational waves becoming relevant if the network survives to very late times.
However a sufficient condition for the pre-inflationary scenario is given by (4.7), corresponding to
HI ≲ 0.4fa. Values for which mr/HI > 3/2 resulting in the stochastic formalism no longer being
valid as explained in Chapter 3 correspond to the pre-inflationary scenario and are located outside
the range of this plot.

more detail in Section 6.2.1 and O
[
(maf

2
a )/(HdesM

2
P )
]

for domain walls [255]. Thus let us denote:

Hgrav ≡ maf
2
a

M2
P

≃ 10−27 GeV
(

fa
1012 GeV

)
, (4.17)

which parametrises the time when the walls start emitting comparable amounts of their energy
into gravitational waves and axions. In the following calculations we assume that Hdes ≫ Hgrav i.e.
that almost all of the energy emitted by the network goes into axions, so we ignore gravitational
waves backreaction. The case when the domain walls network survives to much later times so
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that gravitational waves emissions become relevant is subject to many uncertainties, such as the
exact time the network would decay to gravitational waves and the fraction of its energy that went
into axions and gravitational waves respectively. Additionally it is unclear if the behaviour of the
network described by eq. (4.12) which we use to estimate the time the network would be destroyed
continues to hold in the presence of significant gravitational waves backreaction.

We first estimate the axion abundance from the evolution and final destruction of domain walls
assuming that A is a general monotonically increasing function of time. This can be done by setting
an upper and lower bound for the total domain wall contribution, which are within a factor of 2
of each other. Similarly we estimate an upper bound for the contribution of strings during their
evolution and final destruction and show that it is in general much smaller than that of domain
walls in the intermediate scenario.

The relevant scales to the emissions of the domain walls are the size of the horizon 1/H > 1/ma

after walls form and their thickness 1/ma. Thus we expect that axions produced by the domain
walls are at most mildly relativistic in which case we can convert from the energy emitted by the
walls to the number of axions emitted by dividing by ma, up to an order 1 correction. A lower
bound on the domain walls contribution to the axion density is obtained simply by the energy in
the network at the time it is destroyed:

18f2
aHdesA(tdes) < na,DW . (4.18)

Domain walls also emit axions during the network evolution, at a rate which can be estimated
by comparing the evolution of the network of walls to that of a free network which is identical to
the actual network at a time t′ is later described by the walls staying at fixed comoving coordinates:

ΓDW = ρ̇DW, free − ρ̇DW . (4.19)

The energy density of the free network of walls larger than the horizon evolves as ∼ 1/R since the
walls are stretched by a factor R2 and we assume radiation domination:

ρDW, free = 2A(t′)σDW
√
H ′H , (4.20)

ΓDW = HρDW − Ȧ
A
ρDW . (4.21)

The total domain walls contribution is then:

na,DW(tdes) = 18f2
aHdesA(tdes) +

∫ tdes

t⋆

ΓDW(t′)
ma(t′)

(
R(t′)
R(tdes)

)3
dt′ . (4.22)
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Replacing ΓDW from eq. (4.21) the integral above breaks into:

na,DW(tdes) = 18f2
aHdesA(tdes) + 18f2

a

t
3/2
des

(∫ tdes

t⋆

A
4
√
t′
dt′ −

∫ tdes

t⋆

√
t′Ȧ
2 dt′

)
, (4.23)

where the first integral can be performed by parts to give:

na,DW(tdes) = 18f2
aHdesA(tdes) + 18f2

a

t
3/2
des

(
A(tdes)

√
tdes

2 − A(t⋆)
√
t⋆

2 −
∫ tdes

t⋆

√
t′Ȧdt′

)
. (4.24)

For positive Ȧ this means an upper bound as well:

18f2
aHdesA(tdes) < na(tdes) < 36f2

aHdesA(tdes) , (4.25)

i.e. the contribution from the evolution of the network is at most equal to that from the final
destruction of the network.

For the contribution of strings an upper bound can be obtained by noticing that the rate of
emission during the evolution of the network is lower than that of a network with constant ξ = ξcrit:

Γstr < 2Hρstr < 8πv2
aH

3ξcrit log
(
mr

H

)
. (4.26)

As opposed to the domain walls, the strings are also evolving at times before t⋆, when axions
emitted would have been relativistic. We estimate the axion density from the energy emissions as
dn/dt ∼ Γstr/H at times before t⋆ and dn/dt ∼ Γstr/ma ≲ Γstr/H⋆ at times between t⋆ and tdes.
Upon performing the integrals and discarding the negative terms as we are interested in an upper
bound, we find:

na,str < 4πv2
aξcritHdes

(
log

(
mr

Hdes

)
Hdes
H⋆

+ 4
√
Hdes
H⋆

log
(
mr

H⋆

))
. (4.27)

Comparing the upper bound on the contribution of strings to the lower bound on the contri-
bution of domain walls (4.25) we find that indeed the domain walls contribution dominates in the
intermediate scenario if the network is destroyed somewhat later than t⋆ such that:√

Hdes
H⋆

≲
18

16π
A(tdes)
ξcrit

1
log

(
mr
H⋆

) ∼ O(10−3) , (4.28)

assuming ξcrit and A(tdes) are of order 1. Thus we can estimate the axion number density at the
time the network is destroyed in the intermediate scenario as:

na(tdes) ≃ 18f2
aHdesA(tdes) . (4.29)
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The axion number density above redshifts until today as 1/R3 and can be multiplied by the
mass of the axion to give the energy density. This must not exceed the total DM energy density,
which results in a minimum value for Hubble when the network is destroyed:

Hdes ≳ Hmin = 2.1 × 10−16 GeV
√

10
g⋆(Tdes)

(
fa

1012 GeV

)2
A(tdes)2 , (4.30)

where the network being destroyed at Hmin corresponds to axions making up the entirety of DM.
Notice that Hmin ≫ Hgrav for values of fa allowed for the QCD axion, so the assumption that
the majority of the domain walls energy goes into axions that was used to calculate Hmin is self-
consistent.
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Figure 4.10: The minimum temperature at which the domain walls are allowed to collapse in order
to not overproduce dark matter as a function of the symmetry breaking scale fa, in the range
allowed by astrophysical constraints fa ∈ (108 GeV, 1010 GeV). This is calculated by converting
Hmin of eq. (4.30) into a temperature. We have plotted two different values of A(tdes) to show that
for sufficiently low density of walls at network destruction, this is potentially allowed to happen
around the time of the BBN.

4.5.2 Isocurvature constraints

During the evolution of the network and at the time domain walls annihilate, the axion field contains
inhomogeneities. Since these involve only the axion energy density, they correspond to isocurvature
perturbations [256], which could potentially be in conflict with cosmological observations, even if
the axion makes up only a fraction of the total dark matter. An analysis of such perturbation has
previously been carried out for the QCD axion [257] and axion-like particles in [258, 259] in the
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post-inflationary scenario. In this Section we explain in more detail how to calculate the potential
isocurvature constraints in the intermediate scenario, while in Section 6.3.3 we apply the same to the
post-inflationary scenario of ALPs which are relevant in our analysis in Chapter 6. The calculation
in these two scenarios is qualitatively very similar, the only difference being the dominant source
of axions: domain walls in the intermediate scenario, strings in the post-inflationary scenario.

The perturbations in the axion energy density ρa are most easily studied using the overdensity
field δa(x) ≡ (ρa(x) − ⟨ρa⟩)/⟨ρa⟩, where the brackets indicate the spatial average. It is useful to
express δa in terms of the (dimensionless) power spectrum ∆2

a(k), defined by

⟨δ̃a(k)δ̃a(k′)⟩ = 2π2

k3 ∆2
a(k)δ3(k − k′) , (4.31)

where δ̃a is the Fourier transform of δa and we assumed statistical homogeneity and isotropy. It is
straightforward to show that ⟨δ2

a⟩ =
∫

∆2
a(k)/k dk.

After the strings/domain walls network is destroyed, ∆2
a is expected to have a non-zero (and

order one) value at momenta k ≃ Hdes, since Hdes sets the typical size of fluctuations, and therefore
the typical correlations between momentum modes. At these scales, the precise shape of ∆2

a depends
on the dynamics of the network at H ≃ Hdes. Conversely, fluctuations at scales larger than
the horizon at that time, i.e. k ≪ Hdes, are expected to be uncorrelated. From eq. (4.31),
this fixes the form of ∆2

a ∝ k3, which is the prediction from a white noise spectrum, so ∆2
a is

suppressed at large scales. We therefore parametrise ∆2
a(k) = C(kcom/Hdes)3 at comoving momenta

kcom ≡ kR/Rdes ≲ Hdes, where C is a dimensionless coefficient.
It is worth noting that the isocurvature perturbations in the post-inflationary scenario as well

as those produced by the domain walls in the intermediate scenario differ from the scale invariant
isocurvature perturbations characteristic to the pre-inflationary scenario. For this reason they are
not necessarily constrained if the scales probed by the CMB lie in the k3 part of the spectrum of
∆2(k) above. For the QCD axion in the post-inflationary scenario this means no constraints on
the parameter space and we derive bellow potential contraints in the intermediate scenario.

During the network’s evolution and destruction ∆2
a changes. However, once all the strings and

domain walls have vanished and the axion field has mostly settled down to have amplitude ≪ fa,
the axion energy density is redshifting non-relativistically, so the k3 part of ∆2

a is constant leading
to a time-independent C.9

The CMB is the longest standing source of constraints on isocurvature perturbations, with
the best currently available data coming from Planck [204, 205], from modes close to the pivot
scale kCMB = 0.05 MPc−1. Such observations bound the fraction of isocurvature fluctuations fiso

relative to the curvature perturbations at these scales, defined by f2
iso ≡ ∆2

iso(k)/∆2
R(k), where ∆2

iso
is the spectrum of isocurvature perturbations and ∆2

R(k) = As(k/kCMB)ns−1 is the (almost scale
invariant) spectrum of curvature perturbations. For the QCD axion in the intermediate scenario,

9We neglect the effect of gravity, which is expected to not affect the far IR-momenta [259].

77



the network decays at Hdes ≳ Hmin given in eq. (4.30) which is before CMB decoupling, therefore
kCMB is inside the k3 part of ∆2

a(k). An order of magnitude limit can be obtained by calculating
fiso at the scale khigh = 0.100 MPc−1 and comparing this to the limit reported in Table 14 of [205]
at this scale, either in a general model with a free spectral tilt for isocurvature perturbations (which
is named “axion II” in [205], and we are taking the strongest limit reported) or the model with
scale independent spectral tilt corresponding to the pre-inflationary scenario (“axion I” in [205]).
The k3 suppression of the isocurvature spectrum insures that limits derived in this way at the scale
khigh are stronger than those that would be derived at lower k, which can be easily seen from Table
14 of [205] after converting from βiso to fiso by fiso =

√
βiso/(1 − βiso), i.e. that the upper bound

on fiso increases slower with momentum than k3, even for the free spectral model. A comparison
of the k3 spectrum of the isocurvature produced by the destruction of the domain walls and the
scale invariant spectrum constrained by the CMB can be seen in Figure 4.11.

In general the axions only comprise a fraction of the total dark matter, so there is a factor of
Ωst
a /ΩDM in their contribution to fiso. Consequently, assuming there are no isocurvature fluctuations

in the remainder of the DM:

fiso(k) = Ωa

ΩDM

√
Ck3R3

0
AsH3

desR
3
des

. (4.32)

Leading to a limit for “axion I”:

Hdes ≳ 1.8 × 10−24 GeV
(

fa
1012 GeV

) 4
5
C

2
5 A(tdes)

4
5

( 3.9
g⋆(Tdes)

) 1
10
, (4.33)

and “axion II” respectively:

Hdes ≳ 1.6 × 10−24 GeV
(

fa
1012 GeV

) 4
5
C

2
5 A(tdes)

4
5

( 3.9
g⋆(Tdes)

) 1
10
. (4.34)

However the limits above are derived by fitting either a free spectral tilt model for the isocurva-
ture spectrum or a scale invariant model and to obtain precise limits we would need to fit a model
with a k3 isocurvature spectrum. This has already been done in [258, 259] and we can directly
apply the limit fiso(kCMB) < 0.64 obtained in [259].10 This corresponds to a lower bound on Hdes:

Hdes ≳ 3.3 × 10−25 GeV
(

fa
1012 GeV

) 4
5
C

2
5 A(tdes)

4
5

( 3.9
g⋆(Tdes)

) 1
10
. (4.35)

In addition to CMB bounds, it has recently been shown that isocurvature fluctuations at smaller
scales are constrained by Lyman-α observations [260], and that these can be important in post-
inflationary axion dark matter models [261]. We use the constraint from [260], which assumes a

10The precise numerical bound depends on the cosmological data that is combined. Interestingly the analysis
in [259] shows a mild preference for a non-zero isocurvature component.
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Figure 4.11: Comparison between the fraction of isocurvature perturbations produced by the de-
struction of domain walls relative to curvature perturbation as defined in equation (4.32) for various
network destruction times (colored lines), and the scale invariant isocurvature fraction constrained
by the CMB [205] (black line). The various isocurvature fractions are represented as functions of
momentum in units of kCMB = 0.05 Mpc−1. We have also plotted the values of klow = 0.002 Mpc−1

and khigh = 0.1 Mpc−1 at which the CMB limits on the isocurvature fraction are reported in [205].
Due to the k3 momentum dependence of ∆2

a and f2
iso, if the CMB limits are satisfied at the highest

momentum khigh, they are automatically satisfied at lower momentum. We represent the various
destruction times as Hdes in units of Hmin defined in equation (4.30), which is the latest time the
network could be destroyed in order to not overproduce DM. It can thus be seen that the isocurva-
ture constraints are weaker than those from DM overproduction. Stronger constraints come from
Lyman-α forest observation, see equation (4.36), which are sensitive to higher momentum scales
kLα ≃ 10 Mpc−1. For definiteness we have set fa = 108 GeV, C = 1, A(tdes) = 1 to produce this
figure.

k3 power spectrum. Expressed in terms of the isocurvature fraction at the Planck pivot scale, this
requires fiso(kCMB) < 0.004. For axion masses such that the observed modes are in the k3 part of
∆2
a, this can be immediately converted into a bound on Hdes similarly to eq. (4.35). However, the

dominant scales in Lyman-α studies correspond to momenta of order kLα ∼ 10 MPc−1 much larger
than those relevant to CMB observations [261] (and more sophisticated analyses are potentially
sensitive to even smaller scales). Given the bound on Hdes in eq. (4.30), Lyman-α observations
are relevant for the QCD axion in the intermediate scenario, since kLα is also in the k3 part of ∆2

a.
This tightens the isocurvature constraints to:

Hdes ≳ 1.9 × 10−23 GeV
(

fa
1012 GeV

) 4
5
C

2
5 A(tdes)

4
5

( 3.9
g⋆(Tdes)

) 1
10
. (4.36)
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The isocurvature bound is weaker than the bound from DM abundance in eq. (4.30) if

fa > 1.3 × 106 GeVC
1
3 A(tdes)−1 , (4.37)

where C ≪ 1 and A(tdes) ∼ O(1) is expected. Given the bound on axion nucleon coupling from
supernova 1987a and the bound on axion photon coupling from the ratio of horizontal branch stars
to red giants discussed in Section 2.5 we expect that the isocurvature bound is weaker than the
DM abundance bound for a QCD axion in the intermediate scenario.

We stress that the results of this Section should be taken as a conservative estimate and that
there are many potential uncertainties. Since we do not know the exact way the domain walls
density evolves over time, we only considered the isocurvature perturbations in the axions produced
by the destruction of the domain walls at the final time. Meanwhile, for the destruction of the
network it is difficult to extract the quantitative details precisely since it happens at times far out
of the reach of numerical simulations.

4.5.3 Observational implications

An interesting feature of the intermediate scenario is that the axion abundance is larger the later
the network is destroyed. Therefore for values of fa below the upper bound in the post-inflationary
scenario discussed in Section 2.4.3 fa ≲ 1010 ÷ 1011 GeV, it is possible that axions make up the
entirety of DM if the network is destroyed at the corresponding time Hmin in eq. (4.30). The lowest
fa for which this is possible is found by equating Hmin to the lowest Hdes allowed by isocurvature
in eq. (4.36), i.e. fa ≳ 1.3 × 106 GeVC

1
3 , where C is the amplitude of the spectrum of isocurvature

perturbations. This means that the QCD axion can be all of DM in the intermediate scenario
down to the lowest values of fa allowed by astrophysics, such as the model dependent supernova
1987a bound fa ≳ 108 GeV [225, 227] or the bound from the ratio of horizontal branch stars to
red giants fa ≳ 107 GeV [224] which were discussed in Section 2.5. Thus the intermediate scenario
would be of interest in the case of a detection of the QCD axion with mass anywhere inside the
region allowed in the post-inflationary scenario 0.5 meV ≲ ma ≲ 20 meV. This is especially so if
the detection happens by means of a method which relies on axions being a significant fraction of
the dark matter, as is the case of haloscopes.

Most of the axions are produced by the destruction of the network in the intermediate scenario,
and at that time the number of domain walls per horizon is expected to be of order 1. Therefore
we expect axion density to have order 1 fluctuations on scales the size of the horizon at network
destruction 1/Hdes. These fluctuations subsequently collapse into bound objects at the time of
matter-radiation equality [256,262,263], which are axion miniclusters of typical mass:

Mmc ≃ 4π
3 ρa,eq

R3
eq

R3
desH

3
des

= 2.2 × 10−14M⊙
g⋆(Tdes)

10
1

A(tdes)

(
1012 GeV

fa

)3

, (4.38)
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where ρa,eq and Rdes denote the axion density and the scale factor at the time of matter-radiation
equality respectively, M⊙ is the solar mass and we set Hdes = Hmin from eq. (4.30), i.e. axions
make up the entirety of DM.

Other possibilities exist that also allow the QCD axion to be all of DM even for larger masses
ma ≳ 0.5 meV than that in the post-inflationary NDW = 1 scenario. One such possibility is that
the misalignment angle is close to the top of the axion’s potential a ≃ πfa in the pre-inflationary
scenario, in which case the misalignment abundance is enhanced [171, 198, 264–266] as well as the
characteristic isocurvature perturbations [201]. Simultaneous requirements that HI is small enough
to be allowed by isocurvature constraints in this case and that it is larger than ma so that the
misalignment angle can remain large during inflation limit this scenario to 0.5 meV ≲ ma ≲ 1.5 meV
[188]. Inside this range the intermediate scenario and the large misalignment pre-inflationary
scenario could be in principle still be separated if miniclusters are observed, as the predictions of
the typical mass of miniclusters in these scenarios are expected to be different. The typical mass of
miniclusters in the pre-inflationary scenario for fa ≃ 1010 GeV is about 10−18M⊙, see [267], while
in the intermediate scenario they would be typically much heavier according to eq. (4.38), at about
10−8M⊙. Of course such a distinction would require a quantitative understanding of the mass
distribution of miniclusters in the intermediate scenario.
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Figure 4.12: The typical mass of axion miniclusters produced in the intermediate scenario as a
function of the axion symmetry breaking scale fa, described by equation (4.38), in the range allowed
by astrophysical constraints fa ∈ (108 GeV, 1010 GeV). For definiteness we have set A(tdes) = 1.

On the other hand, the intermediate scenario shares many similarities to the post-inflationary
scenario for NDW > 1, since in both cases the domain walls network is stable at the time when the
axion begins oscillating t⋆. The domain walls must eventually decay, or they will end up dominating
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the energy density of the Universe; for NDW > 1 this is done by introducing an additional explicit
symmetry breaking of the remaining symmetry [268], which can be sourced for example by Planck
suppressed operators [146, 147, 269]. If the bias is parametrised as Vb = δV cos(θ − δθ), the walls
are collapsing roughly when the pressure due to the energy difference between vacua is comparable
to the energy density of the walls [190,268,270], parametrically corresponding to:

Hdes ∼ δV

A(tdes)maf2
a

. (4.39)

Similarly to the intermediate scenario for NDW = 1, the domain walls will dominate axion
production for Hdes ≪ H⋆, which corresponds to δV ≪ m2

af
2
a , and the walls contribution can be

estimated in the same way as in Section 4.5.1. This also requires lower values of fa for axions
to make up all of DM than in the post-inflationary scenario with NDW = 1, and the miniclusters
formed in the post-inflationary scenario for NDW > 1 will have similar mass as in the intermediate
scenario for NDW = 1.11 The difference is that, while in the intermediate scenario Hdes is given by
the density of the network and can in principle take any value between Hmin ≲ Hdes ≲ H⋆, in the
post-inflationary scenario with NDW > 1 the size of the bias sets Hdes, while it is constrained as to
not re-introduce the Strong CP problem. This also puts an upper bound on Hdes:

Hmin ≲ Hdes <
N2

DW

∣∣∣θ∣∣∣ma

A(tdes) sin(δθ) , (4.40)

where θ is the effective QCD vacuum angle which parametrises the CP violation in the strong
sector, as defined in Section 2.1, and it is bounded by the requirement that a neutron electric
dipole moment has not been observed

∣∣∣θ∣∣∣ < 10−10. Replacing Hmin from eq. (4.30) we find this is
only possible for:

sin(δθ) ≲
∣∣∣θ∣∣∣ N2

DW
A(tdes)3

(
1012 GeV

fa

)3

, (4.41)

which would be tight for sin(δθ) ∼ O(1) and 108 GeV ≲ fa. The post-inflationary scenario for
NDW > 1 might require fine tuning of the δθ angle to be close to one of the minimums of the axion
potential and could also be potentially detectable if a non-zero value of the nEDM, and thus a
vacuum angle

∣∣∣θ∣∣∣ close to its current upper limit, is measured in the future. A definite conclusion
would require a more precise expression for the time the network is destroyed as a function of the
size of the bias.

11For NDW > 1 we expect the final walls density A to be larger by up to a factor NDW compared to the case
NDW = 1, as there are NDW walls attached to each string.
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4.5.4 Uncertainties

Here we summarise the various assumptions and simplifications we have made and discuss associated
uncertainties in our results.

• As we have discussed, we require the value of ξcrit to calculate the axion relic abundance in
the intermediate scenario, as it sets the time when the network is destroyed. While ξcrit ≃
O(1) has been found to be sufficient to collapse the network in simulation with accessible
log(mr/H), see for example [271] and we also performed simulation of domain walls collapse
at log(mr/H) = 5 for a scaling network with corresponding ξ ≃ 0.5 (see Appendix F.4), we
cannot exclude that a significantly different value is necessary at large log that is relevant
in the intermediate scenario and not accessible in simulations. Additionally, we have not
performed dedicated simulations in which we turn on the axion mass at various point of the
evolution of an underdense network to find the exact necessary density to collapse it. The
uncertainty in the value of ξcrit translates straightforwardly into an uncertainty in the critical
variance from eq. (4.12) or Figure 4.7. This in turn translates to an uncertainty in Ndes

and thus Hdes, which is non-obvious to calculate since it depends on the numeric solution to
the Fokker-Planck equation. For a specific λ and Hdes, this can alternatively be seen as an
uncertainty on the value of HI that would result in the network being destroyed at this time.
To give a simple example, the difference between ξcrit ≃ 0.1 and ξcrit ≃ 1 which we represented
in Figure 4.9 corresponds to a difference of the variance of the radial mode distribution at the
time the network is destroyed between 0.3v2

a and 0.9v2
a. For λ = 0 which allows for an analytic

solution of the Fokker-Planck equation, this corresponds to factor of order
√

3 decrease in HI

to maintain the same Hdes.

• In interpreting the result of numerical simulations we have solved the Fokker-Planck equation
assuming a one dimensional field space, i.e. we have replaced the radial mode’s potential (2.29)
into the Fokker-Planck equation (3.33) while keeping the axion at a constant value. This was
done because we wanted a measure of the probability that quantum fluctuations in the radial
direction have pushed the field over the top of the potential. We think this approximation
was reasonable for our purpose, especially given the results presented in Figure 4.7 together
with the procedure to generate initial conditions discussed in Section 4.4. The point is that,
while the calculation of the variance in Figure 4.7 was done by only considering the one
dimensional Fokker-Planck equation in the radial direction, the distribution of the field inside
the simulation box which results in the string density ξ has been simulated in the full two
dimensional field space, both in the phase of generating initial conditions and the phase of
evolving the string network.

• A source of uncertainty is the simplification in our calculation of the average variance as
explained in Section 4.3, by always setting the initial conditions of the radial mode in the
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vacuum when solving the Fokker-Planck equation rather than taking into account the actual
distribution of initial conditions. For a sample of values HI/va, λ, we have checked this
approximation numerically by solving the Fokker-Planck equation for various initial conditions
and then weighting their contribution to the average variance by calculating the probability
distribution for the starting positions. We have found that the approximation results in about
a 10 − 20% uncertainty in the critical variance, which may be smaller than the uncertainty
due to ξcrit and can similarly be absorbed in uncertainty of the value of HI corresponding to
fixed λ, Hdes.

• We have assumed that radiation domination is reached immediately after inflation. During a
period of matter domination that lasts between the end of inflation and the end of reheating at
HRH the number of e-folds that re-entered isNmat = (1/3) log(HI/HRH), which is smaller than
Nrad = (1/2) log(HI/HRH) if this period was also radiation dominated as we assumed. Since
the e-folds re-entered correspond to the number of e-folds of inflation over which fluctuations
accumulated, we see that for a period of matter domination fluctuations enter slower, so
the network will be destroyed at later times. We provide additional detail on the reheating
temperature in Section 5.3, but for now we note that for the result of this Chapter to be
relevant we required that PQ symmetry is not restored by a high reheating temperature.
This puts a lower limit on the number of e-folds that re-entered during matter domination at
Nmat ≳ 6.

• We have assumed that the empiric relation (4.12) that we have found from simulations with
massless axions still holds after the axion mass becomes relevant. We expect that to be the
case in the intermediate scenario, since the network is underdense and long strings are on
average many horizons apart and cannot interact, even if the domain walls are pulling them
together.

• We have not derived the spectrum of domain walls emissions and instead set the energy
of emitted axions to ma. As mentioned in Section 4.5.1 the relevant momentum scales are
H < ma and ma, so this at most introduces an order 1 error in the calculation of the relic
abundance. Additionally an error up to a factor of 2 in the relic abundance is due to the
unknown contribution of domain walls during the network’s evolution.

• In the underdense regime accessible in the simulations we have not found evidence of further
dependence on log(mr/H) in the evolution of the network, other than the fact the variance
increases with the number of e-folds re-entered. However we cannot fully exclude additional
log dependence at late times.

• We ignored friction between strings and the plasma. This is typically a reasonable assumption
[272–276] in the post-inflationary scenario, and even more so in the intermediate scenario, in
which the relevant dynamics happen at lower temperature.
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• The statistical error when fitting the data in Figure 4.7 is comparatively low, at about 1%.

4.6 Comparison with recent papers on related scenario

Very recently a couple of papers have considered a similar scenario with late strings/domain walls
[130, 131]. Both of these works consider the possibility that symmetry breaking happens at some
time during the last Ntot ∼ 60 e-folds of inflation such that the strings and domain walls produced
only re-enter the horizon after the time the axion field starts oscillating. The mechanisms mentioned
that could achieve this are a coupling between the PQ field and the inflaton, a coupling between
the PQ field and the scalar curvature, and multiple stages of inflation, all of which are considered in
more detail in Chapter 5. Meanwhile the intermediate scenario we discussed so far was concerned
with the case of strings formed by quantum fluctuations, whose size is set by the value of HI . Thus
the size of HI controls the evolution of the strings after the end of inflation, and there must exist
values of HI for which the strings become sufficiently dense only late.

In any case, various mechanisms that realise late strings/domain walls re-entry have in common
that the domain walls contribution dominates that of strings and misalignment, and is larger the
later walls re-enter, which can easily saturate the DM bound even for low values of fa. More
specifically, the calculation of the relic abundance proceeds in the same way as already discussed
in Section 4.5.1 and this puts a limit (4.30) on how late the network can be destroyed, which in
the case of [130, 131] is an upper limit on the number of e-folds of inflation that have passed after
PQ symmetry breaking. Similarly [129] considers a period of supercooling that lasts close to the
QCD phase transition characteristic to strongly coupled theories at TeV scale, which would result
in the intermediate scenario if otherwise the PQ symmetry was restored in the early Universe, and
discusses the consequences for the axion relic abundance.

Let us start by comparing our estimate for the axion abundance in the intermediate scenario
and comment on the differences. In [130] the axion abundance is written as12:

ΩDW = Ωmise
(Ndes−Nerr) , (4.42)

where Nerr roughly corresponds to N⋆ since at that time the energy in domain walls is similar to that
in misalignment and absorbs all other sources of uncertainty, such as the exact time the network is
destroyed compared to the time the PQ breaking scales re-enter, the density and shape of domain
walls at this time and the spectrum of emissions. They estimate Nerr in a fairly large interval to
correspond to the range of fa allowed by astrophysical constraints and the various uncertainties.

12A minus sign in the exponential comes from the fact that we denote by Ndes the number of e-folds that re-enter
before the network is destroyed.
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On the other hand in [131] the axion abundance is expressed in a form very similar to ours:

ρDW = 27
4 f

2
ama(Tdes)Hdes , (4.43)

which would be the same as our estimate (4.29) if A(tdes) = 3/8. This checks out, as they assume
one flat domain wall of area π/H2

des per horizon at the time the network is destroyed, which indeed
corresponds to A(tdes) = 3/8 from eq. (4.15).

Additionally [131] discusses typical properties of the axion miniclusters produced in the inter-
mediate scenario. They point out that there are multiple mechanisms which allow axions to account
for all of DM for axion masses larger than that in the post-inflationary scenario for NDW = 1. In
the case of a detection of an axion of such mass, the spectrum of potentially observable miniclusters
could be used to differentiate between the intermediate scenario and other such mechanisms, with
the exception of the post-inflationary scenario with NDW > 1, which could be tested if the precision
of Strong CP phase measurement is improved and possibly requires fine tuning of the additional
explicit symmetry breaking required to collapse the domain walls. Our estimation for the mass of
the miniclusters eq.(4.38) corresponds to theirs, again we if we set A(tdes) = 3/8.

Meanwhile [130] considers isocurvature constraints on axions produced by quantum fluctuations,
which in the intermediate scenario may have higher density than the misalignment population.
Similarly to the constraints detailed Section 4.5.2, these are weaker than the DM abundance bound
for a QCD axion.

4.7 Conclusions

For a long time two axion inflationary scenarios have been recognised, pre- and post-inflationary,
each associated with vastly different predictions for the QCD axion mass such that the axion
constitutes the entirety of DM. The typical condition separating the two scenarios in the literature
was whether the quantum fluctuations in the angular direction during inflation are sufficiently
large to randomise the field over an order 1 number of e-folds. We have studied the conditions
for string formation in more detail in order to find a more precise condition separating pre- and
post-inflationary axion scenarios.

We intuitively expected that the density of strings that form after the end of inflation is cor-
related to the probability that the radial mode has passed over the top of the potential during
inflation due to quantum fluctuations. We have checked this assumption via numerical simulations
of the strings evolution in a theory with the simplest U(1) symmetric potential (2.29) starting from
realistic initial conditions for the PQ field, i.e. that were obtained by an approximate realisation of
the Langevin equation (3.19) which describes the evolution of the field under the effect of quantum
fluctuations. The precise relation between the string density and the probability of the field going
over the top of the potential is represented in Figure 4.7 and is fit well by eq. (4.12), where the
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variance of the radial mode distribution is used as a measure of the probability. The main point is
that when the string density ξ is plotted against the variance of the radial mode distribution over
regions that have re-entered the horizon, the evolution of the strings over various simulations cor-
responding to different HI/va, λ overlap and align as shown in Figure 4.7. The variance is directly
related to the probability to pass over the top of the potential in the limit λ = 0 and the overlap
between λ = 0 and λ > 0 simulations suggest that is is a good measure even for λ > 0.

We explained how the time at which the strings/domain walls network is destroyed can be
used to characterise the inflationary scenario: if it happens as soon as the axion mass becomes
relevant and domain walls form we have the post-inflationary scenario, while if the network would
re-enter and be destroyed significantly later than today we have the pre-inflationary scenario,
since topological defects would give a negligible contribution to axion density compared to that of
misalignment. The time the network is destroyed is expected to be connected to the string density,
since strings on both ends of large domain walls must have re-entered each other’s horizon before
they can be destroyed, implying a minimum string density at network destruction ξcrit ∼ O(1).
For a given value of the network density necessary for the strings/domain walls network to collapse
ξcrit as well as fixed HI , fa, λ, the relation (4.12) can be extrapolated to find the number of e-folds
that have re-entered until the network becomes dense enough to be destroyed and correspondingly
the relevant inflationary scenario. This signals the existence of an additional scenario, one for
which the network is destroyed somewhat later than the time the axion mass becomes relevant,
but before today. We have found that in this scenario which interpolates between the post- and
pre-inflationary, the contribution of domain walls to axion density ends up dominating over that of
strings if the network is destroyed sufficiently late. Additionally, the axion abundance will depend
on the time the network is destroyed, which allows the axion to account for all of the DM for
values of the axion mass higher than what would be possible in both the pre- and post-inflationary
scenario with NDW = 1, up to the maximum mass allowed by supernova 1987a bounds. We give
an example in Figure 4.9 of the parameter space corresponding to this intermediate scenario by
assuming that the network requires ξcrit = 1 to be destroyed.

While we expect that our approach of considering the probability the radial mode passes the
top of the potential would hold for more complex potentials than that in (2.29), the situation could
be more complicated. First of all for more complex potentials it could be that the distribution
deviates from Gaussianity significantly more than for the simple potential we considered, and thus
the variance may no longer be a good measure of the probability the radial mode has been pushed
over the top of the potential. This would require to fit the string density as a function of the actual
probability of the field passing the top of the potential. Unfortunately we cannot exclude that
the quantitative details of the relation between the string density and the probability the field was
pushed over the top of the potential are model dependent in a currently unknown way. Therefore
more complex models could require dedicated simulations, which would be interesting to investigate
further.
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On the other hand, we have seen that the axion abundance in the intermediate scenario is very
sensitive to the moment the network is destroyed, the exact details of which are unknown. We
have limited to assuming that the condition for the network to be destroyed is simply that the
strings are dense enough ξcrit ≃ O(1). A more precise determination would require a quantitative
understanding of requirements for domain walls collapse, which would likely involve simulations of
underdense networks with the mass of the axion turned on at various values of the string density.
This is also a potentially interesting future direction to consider.
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Chapter 5

Alternative ways to restore PQ
symmetry

Having considered the case of quantum fluctuations, we now move to alternative ways that lead to
PQ symmetry restoration. We explore various mechanisms that can achieve this and discuss when
they lead to the post-inflationary scenario, or the intermediate scenario introduced previously
corresponding to strings re-entering late. All of these have been previously considered in the
literature in various contexts, and we apply these to the case of axions and discuss phenomenological
implications.

5.1 Coupling between PQ field and inflaton

One interesting possibility which was initially considered in [277] is that of a direct coupling between
the PQ field ϕ and the inflaton φ, for example of the form (1/2)gφ2 |ϕ|2. This interaction contributes
to the potential of the PQ field (2.29), resulting in a single minimum at ϕ = 0 if:

gφ2 > m2
r = 2λv2

a . (5.1)

If we work with a model where the inflaton during inflation is slowly rolling towards a minimum
at φ = 0, then eventually we have φ ≲ φc = mr/

√
g and symmetry would be spontaneously broken,

with the value of the axion field being fully randomised after this time. Let us denote the number
of e-folds after spontaneous symmetry breaking and until the end of inflation by Nent. Then when
these Nent e-folds have re-entered the horizon after the end of inflation the field would have large
inhomogeneities corresponding to long strings re-entering each other’s horizon. Let us denote the
value of the Hubble when that happens by Hent, which in a radiation dominated Universe after
inflation is given by:

Hent = HIe
−2Nent . (5.2)
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Again we distinguish the same scenarios as before: the standard post-inflationary scenario corre-
sponds to Hent > H⋆, while for Hent < H⋆ the strings and domain walls re-enter late. This is
very similar to the the intermediate scenario discussed in Section 4.5, the network is expected to
collapse approximately when the strings re-enter Hdes ≃ Hent, although we do not provide an exact
quantitative condition and it is possible the network collapses some time before. For a given Hdes

the axion abundance is calculated in the same way as in Section 4.5.1. The strings and domain walls
must re-enter before the time corresponding to Hmin of eq. (4.30), or otherwise the domain walls
contribution to axion abundance would exceed the total DM abundance. Alternatively, spontaneous
symmetry breaking could have happened before the last Ntot e-folds of “visible” inflation, in which
case the strings have not re-entered until today, which corresponds to the standard pre-inflationary
scenario.

Another possibility is that this coupling restores PQ symmetry even at the end of inflation, i.e.
φend ≳ φc. This corresponds to the standard post-inflationary scenario as spontaneous symmetry
breaking happens during the reheating era as the inflaton decays.

Meanwhile the interaction term also affects the potential of the inflaton and modifies the slow-
roll conditions, in particular making slow-roll easier to achieve. While symmetry is restored in this
way and ϕ is kept in the minimum at ϕ = 0 it contributes a constant Vϕ(0) = λv4

a/4 to the total
energy density, while the condition for inflation to continue is∣∣∣ḢI

∣∣∣
H2
I

≲ 1 . (5.3)

Once symmetry breaking happens the PQ field will settle into the new minimum and lose its
extra energy. Of course it is possible that slow-roll did not rely on this extra contribution and
inflation will ultimately end by the inflaton potential alone, and in this case the post-inflationary
and intermediate scenario are certainly possible, depending on the number of e-folds of inflation
that happen after symmetry breaking. However, the post-inflationary scenario is more naturally
achieved in hybrid models in which inflation relies on the extra contribution to the potential, since
in this case inflation is expected to end relatively soon after spontaneous symmetry breaking. Let
us consider this type of models in more detail.

5.1.1 Hybrid Inflation

Hybrid inflation models were initially introduced in [277,278] and in particular have the advantage
that inflation happens for relatively small field values and correspondingly small Hubble parameter
HI . The idea in hybrid inflation is that there is an additional field other than the inflaton (we take
this to be the PQ field), which is kept in a false vacuum through its interaction with the inflaton as
explained above. Characteristic to hybrid models is that the constant contribution to the potential
due to this additional field being in the false vacuum is substantial and it maintains inflation for
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lower values of the inflaton than the potential Vφ would allow alone, by dominating the energy
density near the end of inflation. This means that once the PQ field starts rolling toward its true
vacuum, inflation can only continue for a limited amount of time. In particular, as we show below,
inflation will end by the time the effective mass of the radial mode becomes of order O(HI) [279].

To see this we can estimate the change in the inflaton field ∆N e-folds after symmetry breaking
as δφ = (φ̇∆N) /H where φ̇ = −

(
V ′
φ(φc)

)
/ (3H) is taken at symmetry breaking. The number of

e-folds until the effective mass of the radial mode m2
eff = m2

r −gφ2 becomes at least of order O(HI)
is then:

∆N = λv6
aφc

64M4
PV

′
φ(φc)

. (5.4)

Once the PQ field starts oscillations ∆N e-folds after symmetry breaking it will soon track the
position of its instantaneous minimum:

|ϕm|2 = v2
a

2 − g

4λφ
2 . (5.5)

This allows us to replace ϕ in terms of φ in the potential and thus calculate the effective slow-roll
parameters as if inflation was single field:

ϵ = M2
PV

′2

2V 2 ≃
M2
P (V ′

φ + 4gλv2
aδφ)2

2V 2 , (5.6)

η =
∣∣∣∣∣M2

P (V ′′
φ − gv2

a)
V

∣∣∣∣∣ , (5.7)

at lowest order in δφ.
It is easy to see that after ∆N e-folds the slow-roll condition η ≪ 1 generally fails, since:

gv2
aM

2
P

V
≃ 4gv2

a

λv4
a

= 8M2
P

φ2
c

≫ 1 , (5.8)

in most hybrid inflation models.
Therefore an upper bound on the number of e-folds between PQ symmetry breaking and the

end of inflation, which we also use as an estimate for the number of e-folds that need to re-enter
before the string interaction become efficient in order to destroy the network:

Nent ≲ ∆N ≃ λv6
aφc

64M4
PV

′
φ(φc)

. (5.9)

Additional constraints on hybrid inflation are coming from the CMB for example the amplitude
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of the spectrum of density perturbation gives [280]:

V 3/2

M3
PV

′ = λ3/2v6
a

8M3
PV

′
φ(φCMB) = 5 × 10−4 , (5.10)

since at the time CMB scales exit the horizon symmetry will be restored in the intermediate and
post-inflationary scenarios. This can be deduced from the equation (1.25) by replacing HI and ϵ

from equation (1.19) in terms of the potential, i.e.:

As = 1
2ϵ

(
HI

2πMP

)2
= V 3

12π2M6
P (V ′)2 = 2.1 × 10−9 , (5.11)

where
3H2

IM
2
P = V , (5.12)

ϵ = M2
P

2

(
V ′

V

)
. (5.13)

The conditions (5.10) leads to:

Nent ≲
5 × 10−4va
4MP

√
2g . (5.14)

Given the upper limit fa ≲ 1010 GeV for the QCD axion in the post-inflationary and interme-
diate scenarios, we find that indeed the post-inflationary scenario is naturally achieved in hybrid
models. The condition that the vacuum energy of the PQ field dominates at the end of inflation
also sets the HI :

HI ≃

√
λ

12
v2
a

MP
, (5.15)

clearly much smaller than va. Therefore hybrid models require much smaller HI to achieve the
post-inflationary scenario than the case of quantum fluctuations. On the other hand in order to
achieve late strings Hent < H⋆ the coupling g must be very small g ≲ O

(
10−28) and correspondingly

λ ≲ 10−12 and HI ≲ 20 keV.
We have not yet specified the potential of the inflaton Vφ. At the time the CMB scales exit the

horizon the inflaton will contribute to the slow-roll parameters through V ′
φ and V ′′

φ and so it will
be responsible for meeting the CMB constraints.

We conclude that, while it should be possible to achieve the intermediate scenario through
hybrid inflation, it requires substantial fine tuning of the couplings of the PQ field, both its self-
coupling λ and its coupling to the inflaton g. Hybrid inflation most naturally results in the post-
inflationary scenario, even for low values of HI and reheating temperature that would otherwise
correspond to the pre-inflationary scenario. Indeed, the absolute maximum temperature achievable
in the early Universe is parametrically

√
HIMP , even for instant inflaton decay and thermalisation.

Meanwhile in hybrid models PQ symmetry is restored at a scale va ∼
√
HIMP /λ

1/4, even for
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λ ≃ O(1) the Hubble during hybrid inflation is HI ∼ O(f2
a/MP ) ≪ fa. As we show later in Section

5.4, hybrid inflation is also more efficient at restoring the PQ symmetry than non-perturbative
energy transfer from the inflaton to the PQ field during preheating, in the sense that is requires
smaller coupling between the inflaton and the PQ field.

5.2 Coupling to scalar curvature

So far we have considered minimal coupling to gravity. We could add the lowest order non-minimal
coupling between the PQ field and scalar curvature R, of the form L ⊃ ϵR |ϕ|2 where during
inflation R ≃ −12H2

I . Similarly to the case with a coupling to the inflaton the modified potential:

V = Vϕ − ϵR |ϕ|2 = λ

(
|ϕ|2 − v2

a

2

)2

+ 12H2
I |ϕ|2 , (5.16)

has a single minimum at ϕ = 0 if ϵ > λ/(12(H2
I /v

2
a)), which means PQ symmetry is restored. This

would be mostly interesting for values HI/va ≲ O(1) for which symmetry is not restored by the
quantum fluctuations already.

If the PQ symmetry is restored in this way at the end of inflation, it will eventually be broken
as the Universe reheats to become radiation dominated, resulting in the standard post-inflationary
scenario.

5.3 Symmetry restoration by finite temperature

After inflation the Universe must transition from a stage of matter domination by the inflaton field
to a stage of radiation domination through the decay of the inflaton and subsequent thermalisation
of its decay products, which requires thermal and chemical equilibrium to be reached. This is of
course incredibly complicated to analyse in full detail and involves many unknowns, so we limit to
considering consequences for the QCD axion and more generally ALPs in relatively simple models,
with the particular assumption that thermalisation happens nearly instantaneously after the decay
of the inflaton and thus the temperature is the highest it could be. Efficient thermalisation indeed
occurs for some couplings and matter content (e.g. if this happens through interactions with
massless gauge bosons, see [281, 282]), in which case temperatures close to the estimates in this
Section are achieved.

If we denote the maximum radiation temperature during the early Universe by Tmax and the
sector that gives rise to the axion is sufficiently close to thermal equilibrium at this time, then
the PQ field would receive finite temperature corrections to its effective potential ∆V ∼ λT 2

maxϕ
2

which restores the PQ symmetry if Tmax > O(va). This is generally the case for many choices of
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matter content and potentials (including eq. (2.29)) [283–285].1 In this case, the PQ symmetry
spontaneously breaks when the temperature subsequently drops below O(va) and a string network
forms [172–174]. Notice that this restoration mechanism cannot result in a situation where strings
and domain walls form late, which would be similar to the intermediate scenario discussed in Section
4.5, since that would require symmetry restoration to happen at a temperature Tmax ≲ T⋆, much
lower than the symmetry breaking scale va.

There exist a standard estimate in the literature for the reheating temperature TRH [287–289],
which is defined as the effective temperature when the Hubble is equal to the inflaton decay rate
HRH = ΓRH. The inflaton rapidly decays after this point, and assuming thermalisation happens
instantly the Universe enters radiation domination at a temperature:

TRH ≃
( 90
g⋆(TRH)π2

)1/4√
MPΓφ . (5.17)

We see that there exist the possibility that TRH ≫ va ≫ HI , so that symmetry is restored by
thermal fluctuation but not by quantum fluctuations during inflation. Additionally, at earlier times
the total energy density is much larger than it would eventually be at reheating, so it is possible
that, even if the inflaton has only partially decayed to radiation, the temperature is larger than
TRH. This has been studied in [290] where the maximum temperature has been estimated, again
assuming instant thermalisation:

Tmax ≃ 0.30M
1
4
PH

1
4
I T

1
2

RH ≃ 0.22M
1
2
PH

1
4
I Γ

1
4
φ , (5.18)

which is parametrically larger than the reheating temperature TRH.
In this estimate it was assumed that the perturbative decay rate Γφ is constant. However, the

inflaton can also lose it’s energy via scatterings such as φ + φ → χ + χ where χ is an effectively
massless scalar field (compared to the inflaton) and the corresponding interaction term in the
Lagrangian giving rise to this scattering is L ⊃ −gφχφ2χ2. The interaction rate of such scattering
(at the perturbative level) is proportional to the square of the amplitude of inflaton oscillations [291]:

Γ2→2 = O(1)
g2
φχφ

2

4πmφ
. (5.19)

If right after inflation we have φend ≫ mφ these scatterings will dominate the energy loss of
the inflaton in the early Universe when only a small fraction of the inflaton has decayed, which is
the rate relevant in the calculation of Tmax. Meanwhile at completion of reheating the amplitude
of the inflaton oscillations will have decreased substantially and thus the decay rate at reheating
will be dominated by different decay channels, such as those resulting from trilinear couplings to

1High temperature does not restore symmetries in all theories, and the relevance of this to the formation of
topological defects has been studied in [286].
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bosons or fermions, whose decay rate is non-zero in the limit of very small amplitude of inflaton
oscillations. Overall we can modify (5.18) to:

Tmax ≃ 0.22M1/4
P H

1/4
I T

1/2
RH

( ΓI
ΓRH

)1/4
, (5.20)

where ΓI ,ΓRH are the decay rates at the end of inflation and end of reheating respectively.
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Figure 5.1: Example of the evolution of the temperature of radiation assuming instant thermali-
sation. Red line corresponds to constant decay rate of the inflaton, while blue corresponds to an
initially larger energy loss rate due to 2 to 2 scatterings which decreases down to the decay rate at
reheating which is dominated by 1 to 2 decays. The time the maximum temperature is achieved is
not substantially modified by including scatterings.

5.4 Preheating

Another possibility is that the inflaton decays through non-perturbative processes, rapidly trans-
ferring its energy to other scalar fields. This is sometimes called preheating and it is enhanced by
exponentially growing occupation numbers of the modes the inflaton decays into. There are two
ways this could result in PQ symmetry restoration: firstly the effective decay rate for such processes
increases exponentially while they are efficient, meaning a correspondingly large Tmax which could
restore PQ symmetry through thermal fluctuations. Secondly, the fluctuations in the daughter field
at the end of preheating are potentially huge even outside of thermal equilibrium and correspond
to an equivalent temperature T 2

eff ∼
〈
ϕ2〉 which could exceed the maximum temperature in the

Universe Tmax. The possibility that these fluctuations restore symmetry for a daughter field with
symmetry breaking potential has been considered before [292–297].
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We start by considering a general scalar field Ψ coupled to the inflaton through a term 1
2gΨ2φ2.

We follow [298] and write the equation of motion for the fluctuations of Ψ in momentum space:

Ψ̈k + 3HΨ̇k +
(

k2

R(t)2 +m2
Ψ + gφ̃2 sin2(ωφt)

)
Ψk = 0 , (5.21)

where by Ψk we denoted the momentum modes of Ψ, ωφ is the frequency of inflaton oscillations
around the minimum of its potential and φ̃ is the amplitude of inflaton oscillations. If the dominant
term of the inflaton potential around the minimum is quadratic, which is generally the case, then
the frequency of the inflaton oscillations is simply the mass of the inflaton ωφ = mφ.

This is usually recast in the form of the Mathieu equation:

Ψ′′
k + [Ak − 2q cos(2z)]Ψk = 0 , (5.22)

by replacing q = gφ̃2/(4m2
φ); Ak = ((k/R)2 + m2

Ψ)/m2
φ + 2q; z = mφt and differentiating with

respect to the re-scaled time z. In the usual Mathieu equation the parameters q,Ak,mφ would be
constant in time, which corresponds to no expansion of the Universe and no decay of the inflaton.
The Mathieu equation has been studied extensively, see [299] for a review, and solutions have
resonance bands which depend on the parameters q,Ak and are centered at integer multiples of
the inflaton frequency ωφ. Modes whose momentum correspond to parameters inside this band are
exponentially amplified in time Ψk ∼ eαz with Re(α) > 0.

However, the expansion of the Universe results in a redshifting of modes momentum, meaning
that modes inside resonance bands exit it while modes of higher momentum enter the bands.
Meanwhile as energy is transferred from the inflaton to the daughter field Ψ the parameter q which
control the width of the resonance bands will decrease and the mass of the inflaton will receive a
contribution, which at tree level has the form:

∆m2
φ = g

〈
Ψ2
〉
, (5.23)

so the frequency of oscillations increases and the position of bands changes. The complications due
to the expansion of the Universe and backreaction due to the inflaton decay have been considered
in [298]. The result is a so-called stochastic resonance inside a broad, continuous band at relatively
low frequency. This resonance is different to the simple resonance bands of the Mathieu equation is
the sense that a mode inside the broad resonance is not actually continuously amplified, instead it
rapidly shifts into and out of multiple different Mathieu resonance bands, meaning it is exponentially
amplified for only a portion of the time. Nevertheless, on average modes inside the broad band
grow exponentially in time provided that the amplitude of inflaton oscillations is sufficiently large,
q ≳ 1

3 [298]. Therefore, preheating is eventually terminated either by the inflaton losing its energy
to Hubble friction or by the backreaction of the created particles, both of which reduce the value
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of q. For simplicity we will assume that modes inside the broad resonance continuously grow
exponentially with some average exponent2 α ≃ 0.1, which on average replicates the effect of the
stochastic resonance on the occupation numbers.

More specifically, modes will be amplified inside a broad band ω ∈ (0, ωmax) where we denote
ω ≡ k2

R2 +m2
Ψ and ωmax is given by:

ωmax =

√
g1/2φ̃mφ

2 , (5.24)

which means efficient preheating can only last while ωmax > mΨ.

5.4.1 Direct preheating of the PQ field

Here we consider the idea that preheating happens directly to the radial mode of the PQ field,
which could result in large non-thermal fluctuations

〈
ϕ2〉 ≳ O(v2

a) and restore the PQ symmetry.
For this we replace the generic field Ψ to be the radial mode of the PQ field and remember that

for gφ̃2
end > m2

r the PQ symmetry is already restored at the end of inflation by the contribution
of the interaction term to the PQ potential as discussed in Section 5.1, so there is no point to
further consider restoration through preheating. However if we simultaneously impose gφ̃2

end < m2
r

and ωmax > mr we find q < 1
16 , which does not correspond to the broad resonance case according

to [298] so preheating directly to the PQ field is not efficient through a broad resonance unless the
PQ symmetry was already restored by the large inflaton Vev.

The situation for the PQ field as the daughter field is thus more appropriate to be studied as
a narrow resonance band than a broad resonance. Narrow resonance bands have been studied for
example in [291] for quadratic and quartic inflaton potentials. Modes are exponentially amplified
inside a resonance band centered on the inflaton frequency, ωφ = mφ for a quadratic inflaton
potential, with a width:

δω ≃ gφ̃2

4ωφ
= gφ̃2

4mφ
, (5.25)

and an exponent that is at most:

α ≲
gφ̃2

8mφ
, (5.26)

The modes quickly scan the narrow resonance band due to the expansion of the Universe,
which reduces their momentum, while the width of the resonance band continuously decreases as
the inflaton is losing its energy. For values of g and φ̃ such that gφ̃2 < mr so that the PQ symmetry
was not already restored by the coupling during inflation and mr < mφ so that the resonance is
energetic enough to produce the radial mode, initial fluctuations of the radial mode are amplified
by at most a small factor e 1

8 ≃ 1.1.
2The actual exponent varies with q between 0.1 ÷ 0.2, see the table in [298] for more detail.
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The analysis is a bit different if preheating happens while the inflaton is effectively massless
with a potential Vφ = (λφ/4)φ4, since in this case the frequency of inflaton oscillations ωφ ∼

√
λφφ̃

redshifts at the same rate as comoving momentum i.e. as the inverse scale factor 1/R. Because
of this the resonance would be expected to last longer even for narrow resonance bands, as modes
have to be taken out of the resonance by backreaction or scattering.

The narrow resonance band3 is again centered around the frequency of inflaton oscillations [291]:

ωφ ≃ 0.85
√
λφφ̃ , (5.27)

and has a width
δω ≃ gφ̃2

4ωφ
. (5.28)

Assuming modes for which k/R ≃ ωφ ≫ mr, their frequency redshifts at the same rate as
the narrow band, i.e. as 1/R, so modes that started inside the band remain there and their
occupation numbers are exponentially amplified. However the amplitude and frequency of the
inflaton oscillations decrease slightly faster than pure redshift due to energy transfer to the PQ
field. When the difference is larger than the width of the narrow band, the modes leave the band
and are no longer amplified.

Let φ̃red(t) = φ̃endRI/R(t) be the amplitude of inflaton oscillations in the absence of energy
transfer to the PQ field, where φ̃end is the amplitude of inflaton’s oscillation at the end of inflation
Then the resonance ends at a time tf when the inflaton amplitude is:

φ̃f = φ̃red(tf ) − δω

0.85
√
λφ

. (5.29)

Meanwhile, the energy transferred to the PQ field until this time can be written:

ρPQ = λφ
4
(
φ̃red(tf )4 − φ̃4

f

)
≃ gφ̃red(tf )4

1.72 , (5.30)

since δω ≪ ωφ.
On the other hand the energy transferred can be written in terms of the amplification of the

occupation numbers:

ρPQ =
∫ kf

kf −δω

k2

2 |ϕk,end|2 e2α(tf −tend)dk . (5.31)

In the equation above kf = 0.85
√
λφφ̃red(tf ) denotes the momentum of modes that started in the

centre of the band at the end of inflation, ϕk,end are the modes functions inside the resonance band
at the end of inflation which are exponentially amplified and α ∼ gφ̃2/(8ωφ) is the coefficient that

3The conditions for an efficient stochastic resonance in the case of a quartic inflaton potential were studied in [300].
Similarly to the quadratic inflaton potential the relevant situation to PQ symmetry restoration is that of a narrow
resonance.
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parametrises the exponential amplification of modes inside the resonance band.
It is possible to replace the parameters in equations (5.30, 5.31) in terms of HI ,MP , g, λφ, Hf

and thus estimate ρPQ. This is sufficient to restore PQ symmetry if ρPQ ≫ O(m2
rf

2
a ) which

parametrically requires:
g2M2

P

λ2
φ

≫ f2
a . (5.32)

We conclude that non-perturabative inflaton decay to the radial mode does not open any ad-
ditional parameter space to restore PQ symmetry if the inflaton potential around the vacuum is
approximately quadratic, since it would require values of the coupling g for which PQ symmetry
was already restored during inflation in the way discussed in Section 5.1. On the other hand pre-
heating is more efficient if the inflaton potential around the vacuum is approximately quartic and
could restore the PQ symmetry even for lower coupling g which corresponds to it being broken at
the end of inflation, however it would be challenging for such an inflaton potential to correspond
to a viable inflationary model.

5.4.2 Indirect preheating of the PQ field

As we have shown the PQ symmetry is not restored by broad resonance preheating directly to the
radial mode, unless the coupling to the inflaton is so large that symmetry was already restored at
the end of inflation, or the inflaton potential around its vacuum is quartic rather than quadratic.
This however is not an issue if preheating first happens to a new, light, scalar and this then transfers
energy to the sector that gives rise to the axion. This way the coupling between the inflaton and
PQ field could be small enough so that PQ symmetry is broken at the end of inflation while the
coupling between the daughter field and the inflaton is sufficiently large to support the broad
resonance. As an example in which this happens we consider a theory where the energy transfer
to the axion sector happens through an interaction of the form gΨϕΨ2|ϕ|2, where Ψ is a real scalar
that is preheated as before and to maximize the efficiency of preheating we take it to be effectively
massless.

Calculating the effective temperatures Ψ and ϕ reach after this process is complex due to the
non-perturbative and out of equilibrium nature of the dynamics. We therefore take a simplified
approach in which we analyse the distribution of energy in Ψ after preheating and use this to
approximate the scattering rate Γ of Ψ+Ψ → ϕ+ϕ. We will compare this to the Hubble parameter
H at the time when the energy density transferred into Ψ and the energy density remaining in the
inflaton are equal. Earlier than this, the energy density in Ψ will be significantly lower, leading
to a lower effective temperature in the axion sector. However, if preheating lasts beyond this
time, then backreaction will play an important role in the evolution, which makes the dynamics
more complicated and is expected to slow down energy transfer from the inflaton to Ψ. Assuming
preheating ends when half the energy is transferred is enough for an order of magnitude estimate
of the maximum effective temperature achievable (indeed, even if the entire energy density of the
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inflaton is subsequently transferred into Ψ, this will be at most a factor of 2 higher than that at
the moment of equality).

We denote the amplitude of the inflaton oscillations at the point where the energy density of
the inflaton and of Ψ are equal by φ̃eq. To estimate the typical occupation numbers nk of Ψk modes
that are inside the resonance band k ∈ (0, ωmax) we equate the energy density in Ψ at this moment

ρΨ ≈ 2π
3 nkω

4
max = π

6nkgφ̃
2
eqm

2
φ , (5.33)

to the energy density in the inflaton 1
2 φ̃

2
eqm

2
φ, so nk ≃ 3/(πg) inside the resonance band. Mean-

while, modes outside the resonance band k > ωmax have not been exponentially amplified, so their
occupation numbers are negligible.

To transfer energy to ϕ efficiently there must be Ψ modes that are energetic enough for Ψ+Ψ →
ϕ+ ϕ to occur, which requires ωmax ≫ mr. This puts a lower bound on g:

g ≳
4m4

r

φ̃2m2
φ

. (5.34)

Given the momentum distribution described above, the scattering rate Γ = n ⟨σΨϕv⟩ can be
calculated, where σΨϕ is the interaction cross section: 4

σΨϕ =
g2

Ψϕ
√
k2 −m2

r

128πk3 , (5.35)

leading to

Γ =
3g2

Ψϕm
1/2
φ φ̃

1/2
eq

32
√

2πg3/4 =
35/4g2

ΨϕH
1/2
eq

32
√

2πg3/4 . (5.36)

If this scattering rate is larger than the Hubble at that time preheating ends Γ ≳ Heq then
Ψ and ϕ will reach equilibrium at an effective temperature Teq ∼

√
HeqMP. Both Γ and Heq

depend on the values of mφ and φ̃end i.e. on the details of the inflationary model. For example in
the simplest chaotic inflation model the potential is purely quadratic5 which sets φ̃end =

√
2MP

and mφ =
√

3HI . In this model preheating lasts for approximately 20 inflaton oscillations until a
significant fraction of the inflaton energy has been transferred, provided that preheating lasts until
this point, which requires g ≳ 10−6 [298, 301]. In this case the Hubble at the end of preheating
can be estimated Heq ≃ 0.025HI . Meanwhile, if Γ ≪ H immediately after preheating the energy
transferred to the axion sector through this process is not sufficient to restore the PQ symmetry,
since the rate of energy transfer by Ψ + Ψ → ϕ+ϕ will decrease faster than the Hubble parameter.

Let us check if this type of non-perturbative decay of the inflaton actually restores PQ symmetry
in situations where the temperature that would otherwise be achieved perturbatively does not.

4See for example [8] for a review of the calculation of interaction rates.
5Such model is ruled out by Planck data, and is only shown here as a simple example.
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In [290] the scale factor when the maximum temperature is reached is calculated, and thus we can
estimate φ̃max ≃ 0.5φ̃end at this time and the perturbative decay rate associated with the coupling
between the inflaton an Ψ:

Γpert = g2φ̃2
max

4πmφ
. (5.37)

It is interesting to see when Teq ≳ Tmax corresponding to this decay rate, plugging everything
in and replacing g for the lower bound (5.34) a necessary condition is:

H3
IM

2
Pm

3
φ ≳ 10m8

r , (5.38)

where in typical models of inflation one would expect HI ≳ mφ/
√

3 to keep the second slow-roll
parameter small. For the QCD axion even for strong self-coupling mr ≃ fa > HI it is possible for
this mechanism to be the more efficient at restoring the symmetry than both thermal and quantum
fluctuations. For ALPs with much larger fa, this mechanism still might be more efficient than a
large temperature if λ ≪ 1.

5.5 Roller-coaster inflation

So far we have assumed that the Hubble during inflation remains roughly constant over the last
O(60) e-folds of inflation, which correspond to scales exiting the horizon that are now the size
of our Universe. Here we consider the converse, where inflation is broken into multiple separate
stages, briefly interrupted by periods of radiation or matter domination. Such a possibility has
been considered in [302] (see also references therein). The idea is that in order to solve the typical
problems, such as the horizon and flatness problems, inflation only requires a total number of e-
folds O(60), but not that they all happen in one go. Meanwhile, if the last O(15) e-folds to re-enter
happened in one go (which correspond to the first O(15) out of the last O(60) e-folds of inflation)
and the periods of decelerated expansion between successive stages of inflation are comparatively
short, then the modes corresponding to scales that are currently probed by the CMB have all exited
inside the same stage of inflation and have remained frozen, and thus there will be no observable
difference in the CMB between one stage of continuous inflation or multiple.

There are many ways in which multiple stages of inflation can lead to a situation similar to the
intermediate scenario discussed in Section 4.5. For example the PQ symmetry could be restored
inside some of the earlier stages of inflation by a coupling to the (respective) inflaton or to the
scalar curvature, but not during the later ones. Alternatively, the PQ symmetry could be restored
by the temperature achieved during stages of radiation domination between consecutive stages of
inflation. Then subsequent stages of inflation during which the PQ symmetry is not restored could
result in late strings and domain walls re-entry Hmin < Hent < H⋆.

Finally, it is possible that some of the earlier stages of inflation had HI ≫ fa corresponding to
quantum fluctuations that easily produce strings, while the final stages of inflation have HI ≪ fa
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and have diluted the strings. In Figure 4.9 we showed the value HI/va necessary for strings
to become relevant at relatively late times after the axion field starts oscillating, which is the
intermediate scenario. We see that the intermediate scenario happens for HI in a relatively narrow
interval since an order O(1) increase of HI would move us into the post-inflationary scenario
while an O(1) decrease into the pre-inflationary scenario, or in a region that is ruled out by DM
overabundance6. This means that, if the last O(N⋆) e-folds of inflation happened in a stage with a
value HI,2 that corresponds to the pre-inflationary scenario and before that there was a stage with
HI,1 which corresponds to the post-inflationary scenario, then late strings could be achieved while
the required separation between HI,1 and HI,2, which corresponds to the duration of the stage of
decelerated expansion between these two stages of inflation, need not be too large.7 This is just
a simple example, as discussed in Chapter 4 the string density is connected to the variance of the
distribution of the radial mode, which accumulates with the number of e-folds. With multiple stages
of inflation there exist many possibilities to accumulate the required variance σ2

crit corresponding
to network destruction over a number of e-folds larger than N⋆.

5.6 Symmetry Restoration with a Light Radial Mode

Here we show that if the radial mode (and additional PQ quarks) are light, the PQ phase transition
happens at temperatures that are lower than fa. Consequently, PQ symmetry restoration happens
for reheating temperatures lower than if the mass of the radial mode is around fa (which as
discussed, typically requires temperatures ≳ fa).

As an example we consider the Lagrangian in eqs. (2.28, 2.29), with a quartic λ = m2
r/(2f2

a ) ≪
1, with the radial mode coupled to fermions ψ (such interactions are present e.g. in the KSVZ
QCD axion model).

Although it will turn out not to restore the PQ symmetry for T ≪ fa it is useful to first consider
the finite temperature contribution from ϕ to its own thermal potential. In the high temperature
limit T ≫ mr this is given by

VT ≃ 1
24m

2
r (ϕ)T 2 ≃ 1

16
m2
r

f2
a

|ϕ|2T 2 , (5.39)

where mr (ϕ)2 ∼ λ|ϕ|2 is the mass of the radial mode on the background of its own expectation
value (and in the second equality we have dropped a ϕ independent term). Comparing eqs. (2.29)
and (5.39), we immediately see that eq. (5.39) can only restore the symmetry for T ≳ fa (i.e.

6In Figure 4.9 we have assumed a specific value for ξcrit = 1. While the exact ξcrit is not known it is still true that
the region between pre- and post-inflationary scenario corresponds to a relatively narrow interval of HI .

7In fact, one of the examples considered in [302] consists in two stages of accelerated expansion each 25 e-folds long
separated by a stage of radiation domination for 3 e-folds and is compatible with cosmological constraints. In this
case HI,1/HI,2 = e6 ≃ 400, which is enough difference to allow HI,1 to correspond to the post-inflationary scenario
while HI,2 to the pre-inflationary scenario, which could overall result in the intermediate scenario.
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T ≳ mr is not sufficient). It is straightforward to show that the conclusion is unchanged if the full
thermal potential is used rather than eq. (5.39) [285,303].

However, the complex scalar could also couple to new fermions. In a QCD axion model these
might be the fermions that generate the QCD-PQ anomaly in KSVZ models, but more generally
the new fermions need not be charged under the SM gauge group.8 We consider an interaction of
the form

L ⊃ gϕψcψ + h.c. , (5.40)

where ψ and ψc are Weyl fermions that are massless in the absence of a ϕ expectation value (and
h.c. denotes the Hermitian conjugate).9 The dependence of the mass of ψ on ϕ’s expectation value
leads to finite temperature contribution to ϕ’s potential [303,304]

VT = −nfT 4

2π2

∫ ∞

0
q2 log

(
1 + e−

√
q2+g2|ϕ|2/T 2

)
dq , (5.41)

where nf = 4 if there are a single pair of fermions. In the high temperature limit T ≫ mψ = g ⟨ϕ⟩
eq. (5.41) is approximately

VT ≃ 1
24g

2ϕ2T 2 . (5.42)

Consequently ⟨ϕ⟩ = 0 is a local minimum of the potential for any temperature T ≳ mr/g. However,
we impose a stronger condition, which is that the thermal potential ensures that the system reaches
⟨ϕ⟩ = 0 regardless of the initial conditions.10 This is not automatic given eq. (5.42), because this
is only valid for T ≫ g ⟨ϕ⟩, which is not satisfied around ⟨ϕ⟩ ∼ fa if T ≲ gfa. Instead, for
T ≪ gfa the thermal potential of eq. 5.41 is exponentially suppressed at ⟨ϕ⟩ ∼ fa. Physically, this
happens because ψ decouples from the thermal bath when its mass is greater than the temperature.
Therefore, there is a local minimum close to the zero temperature minimum for temperatures in
this range.

Combining the preceding conditions, the lowest temperature at which the PQ symmetry is
restored regardless of the initial condition is parametrically given by:

Tmin ≃ Max
(
mr

g
, gfa

)
, (5.43)

which is lower than the temperature required for the ϕ contribution to its own potential to restore
PQ symmetry if mr ≲ gfa. Precise results for the minimum temperature for a given model can
easily be obtained by evaluating eq. (5.41) numerically. In Figure 5.2 we plot the results for the

8Indeed to avoid a too large axion mass for the parameter space that we are interested in, they must not lead to
a QCD induced axion mass.

9Unless g is tiny radiative corrections induced by this term typically require that ϕ’s mass is fine tuned. We do not
worry about this issue, which could be avoided for example if the axion and new fermion sector is supersymmetric.

10We could e.g. consider models of inflation such that ⟨ϕ⟩ = 0 initially, in which case T ≳ mr/g would keep the
system at this point. However, in such a theory strings will form anyway, so the thermal potential is not required for
this.
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Figure 5.2: The minimum reheating temperature required to restore the axion PQ symmetry
(regardless of the system’s initial conditions) in theories such that the radial mode of the complex
scalar ϕ that gives rise to the axion has a mass mr that is significantly smaller than the axion decay
constant fa, and ϕ has an interaction with fermions with coupling constant g as in eq. (5.40).

simple model of eq. (2.28) with a single pair of fermions ψ ψc as a function of mr/fa and the
coupling g. It can be seen that eq. (5.43) is quite accurate (although the condition T > gfa is
slightly too strong since the fermions do not decouple from the thermal bath immediately when
this condition is violated). If an axion arises from a more complex theory the minimum temperature
required will change by order 1 factors, but the main parametric dependence will remain fixed.

Finally note that the typical interaction rate of the fermions ψ with the thermal bath is of
the order g2T , which has to be larger than the Hubble in order for the fermions to be in thermal
equilibrium and our analysis using the thermal potential to be valid. Parametrically this requires
gMP ≳ fa and g3MP ≳ mr.
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Chapter 6

ALP detection via gravitational waves

6.1 Introduction

Gravitational waves can provide valuable insight into high energy physics and in particular evidence
for various extensions of the Standard Model or alternatively constraints on them. As such it would
be interesting to know if ALP models predict a background of gravitational waves and whether
these are observable by proposed GWs detectors. For this reason we have considered the spectrum
of gravitational waves resulting from a network of scaling axion strings which are characteristic to
the post-inflationary scenario reviewed in Section 2.4.3.1

The crucial ingredients needed to determine the resulting spectrum are: 1) the energy emitted
instantaneously from the string network in GWs as a function of time, and 2) the momentum
distribution with which this energy is emitted. In fact, we will be able to derive these quantities
(up to order one coefficients) analytically from energy conservation and the Nambu–Goto effective
theory with the Kalb–Ramond term, which describes strings coupled to the axion field in the limit
of small string thickness (and captures the logarithmic dependence of the tension mentioned above).
We will then see that these predictions are reproduced remarkably well by first principles numerical
simulations of the physical system, which confirm the validity of the theoretical assumptions and
allow us to extract the unknown coefficients. As will be clear in what follows, numerical simulations
can only access a relatively narrow time range, and it is impossible to directly extract the GW energy
and its momentum distribution at the physically relevant time, so a careful extrapolation is essential.
However, the existence of the scaling solution, in combination with our analytic understanding on
the GW emission, makes this extrapolation reliable.

We will show that the energy emitted in GWs at later times during the scaling regime is
logarithmically enhanced, primarily as a result of the logarithmic increase of the string tension,

1Other papers have considered the case of GWs sourced by ALP domain walls [191,305], which can dominate the
contribution of strings if domain walls survive later than the time the ALP field starts oscillating. This can happen
because in the post-inflationary scenario with NDW > 1 domain walls are stable until additional energy bias becomes
relevant.

105



and the energy is always produced with a momentum distribution localised at frequencies of order
the Hubble scale. When the emission from the entire scaling regime is taken into account, this
leads to logarithmic deviations from a scale invariant GW spectrum, which increase the amplitude
of the spectrum at low frequencies (indeed, these frequencies are emitted the latest, when the
enhancement is largest). As we will show in Section 6.2, the deviation can be approximated by a
spectrum dΩgw/d log f ∝ log4(fa/Hf ), where fa is the axion decay constant and Hf ∝ f2 is the
Hubble parameter at the time when GWs of present day frequency f are emitted. Given the large
value of this logarithm (up to 102 for the relevant axion masses), the deviation from scale invariance
is substantial and means that axions with fa ≳ 1014 GeV lead to GW spectra that are observable
in multiple upcoming experiments.

To better understand the range of decay constants and masses that could be discovered via
GW observations, in Section 6.3 we study additional properties of the post-inflationary scenario,
which give constraints on the axion parameter space. In particular, we derive a lower bound on the
relic abundance of axions from strings. We also calculate the spectrum of density perturbations
in the axion field, which leads to isocurvature perturbations measurable for instance in the cosmic
microwave background (CMB) that are potentially in conflict with observations. Finally, we discuss
how the axions emitted during the scaling regime contribute to dark radiation, which is constrained
by big bang nucleosynthesis (BBN) and CMB measurements.

We will see there is a significant region of allowed and observable masses and decay constants
for ultralight axions, i.e. with a mass ≲ 10−17 eV. However, the GWs from QCD axion strings
are not observable due to the bound fa ≲ 1010 GeV from DM overproduction in this case [188].
GW searches are particularly useful since they are complementary to other approaches, such as
astrophysical observations and DM direct detection experiments, with their sensitivity strongest for
large decay constants for which the axion couplings are typically suppressed. Our work will enable
limits from GW observations, or even possible future discoveries, to be related to physics at energy
scales far beyond any that could be explored directly. It will also allow complementary progress
(e.g. potential improvements in searches for isocurvature perturbations and of the measurement of
Neff) to be interpreted in terms of the post-inflationary scenario.

6.2 Gravitational Waves from Strings

During the scaling regime the motion and interactions of the strings act as a continual source of
GWs. In this Section we study the resulting spectrum by combining the effective theory of global
strings, and field theory simulations of the physical system described by the PQ Lagrangian in
eqs. (2.28, 2.29) for NDW = 1, so va = fa. In particular, in Section 6.2.1 we use the Nambu–
Goto effective theory coupled to the axion field via the Kalb–Ramond term, which captures the
dynamics of the parts of the network with small curvature. Both the effective theory and numerical
simulations will show that the GWs can be self-consistently treated as a perturbation of the string
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network if Gµ2/f2
a ≪ 1, which will be satisfied for all fa and ma of interest. In this case, the fact

that GWs are produced does not significantly influence the evolution of the network, which follows
the previously described attractor.2

For Gµ2/f2
a ≪ 1 energy conservation and the scaling regime fix the time dependence of the

energy emitted into axions Γa, via eq. (2.53). However, this cannot be directly used to infer the
emissions to GWs Γg, which accounts for only a small fraction of the energy released. Nevertheless,
in this Section we will show that we can still make use of eq. (2.53) thanks to a convenient relation
between the rate of energy emission into GWs and that into axions. We will argue for this relation
theoretically using the Nambu–Goto effective theory, and confirm it with numerical simulations of
the physical system in the scaling regime. This will allow us to have analytic control of Γg at all
times, except for an order one coefficient that will be directly extracted from the simulations. In
combination with the momentum distribution of the instantaneous GW emission, whose general
form can be easily guessed and will be confirmed in simulations, this will allow us to determine
the total GW spectrum produced by the network up to H = H⋆ when it is destroyed. After being
produced the GWs propagate freely, redshifting as the universe expands, so today they make up
an irreducible contribution to the stochastic background. As we will see in Section 6.2.4, during
the scaling regime the GWs at the observable frequencies are emitted when log ≫ 1, and therefore
in the following we will often refer to the large log limit, where we define log ≡ log(mr/H).

6.2.1 Theoretical Derivation of GW Emission

The required relation between Γg and Γa can be argued for via the low energy limit of the action
in eqs. (2.28, 2.29), which is the effective theory of Nambu–Goto strings coupled to the axion
field [306] by the Kalb–Ramond action [307]. In particular, this effective theory can be obtained
from eq. (2.28) on the background of a string and at energies smaller than mr (i.e. integrating out
the radial mode, see [308] for the explicit derivation). It describes the evolution of an infinitely thin
string, with a trajectory identified by the space-time coordinate Xµ(τ, σ), where τ, σ are worldsheet
coordinates. The string is coupled to the axion field, described by its (dual) antisymmetric tensor
Aµν . The corresponding action is

S = −µ
∫
dτdσ

√
−γ − 1

6

∫
d4xFµνρFµνρ − g

∫
dτdσϵab∂aX

µ∂bX
νAµν(X) , (6.1)

where Fµνρ = ∂µAνρ + ∂νAρµ + ∂ρAµν and γ is the determinant of the induced metric on the
worldsheet γab = ∂aX

µ∂bXµ, with a, b = τ, σ. The coupling g defines the axion-string interaction,
while µ is the string energy per unit length (this is easily seen from the first component of the
energy momentum tensor, see eq. (6.4)). As we will see in the following, µ accounts for the energy
in the axion gradients, as well as that localised in the core. The axion is related to the only degree

2If instead Gµ2/f2
a ≳ 1 gravity dramatically changes the evolution of the system, and affects the scaling regime

in a way that is not known.
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of freedom of Aµν by Fµνρ = ϵµνρσ∂σa/
√

2.3

Since a changes by multiples of 2πfa around a string, the coupling g is quantised in terms
of fa as g = 2πnfa/

√
2, with n integer.4 The gauge invariance Aµν → Aµν + ∂µΛν + ∂νΛµ and

worldsheet reparametrisation invariance of eq. (6.1) can be fixed by choosing the gauge ∂µAµν = 0
and Ẋ ·X ′ = Ẋ2 +X ′2 = 0 where Ẋµ ≡ ∂τX

µ and X ′µ ≡ ∂σX
µ. In the frame τ = t, the equations

of motion for a string with winding n = 1 are

µ(Ẍµ −X ′′µ) = 2
√

2πfaFµνρẊνX
′
ρ , (6.2)

∂α∂
αAµν =

√
2πfa

∫
dσ
(
ẊµX ′ν − ẊνX ′µ

)
δ3(x⃗− X⃗) . (6.3)

This system of coupled equations determines the evolution of the string and the axion field. The
axion is sourced from a moving string via eq. (6.3), whose motion is itself influenced by the axion
via eq. (6.2).

Before proceeding, let us clarify a subtlety of this theory. As discussed in [306, 309] the action
in eq. (6.1) is strictly speaking ill defined, since the solution of the equations of motion for Aµν
in eq. (6.3) is divergent as xµ approaches Xµ. This makes the interaction term in eq. (6.1) (log-
arithmically) divergent when evaluated on such solutions. This UV divergence can be regularized
and completely reabsorbed in the redefinition of the (bare) string tension µ. After reabsorbing the
divergence, the equations of motion will have the same form as eqs. (6.2) and (6.3), but (just like
in the renormalization of quantum field theories) with finite µ(∆) and Aµν(∆) depending on a new
(unphysical) length scale ∆, which can be interpreted as the length at which one probes the string
core. In particular, under the change of this scale to ∆′, µ(∆′) = µ(∆) + (g2/2π) log(∆′/∆) =
µ(∆) + πf2

a log(∆′/∆).5 As this scale is not physical, it can be chosen arbitrarily. If ∆ is chosen
as m−1

r ≪ ∆ ≲ L, where L is the IR cutoff (≃ H−1 for long strings), the interpretation of µ(∆)
will be that of an effective tension that includes the energy in the axiostatic gradient (up to the IR
cutoff ∆), while Aµν(∆) will include mostly the axion radiation.6 In the following we will tacitly
assume that the preceding regularization and subtraction has been performed, and that ∆ has been
always chosen in this way, so that µ(∆) (which we will call µ for simplicity) corresponds to the total
energy per unit length, including the gradient energy (see [309] for a more complete treatment).
From eq. (6.2) it follows that the effective coupling of the axion to the string is determined by

3The normalisation is fixed by equating the energy momentum tensor of the second term in eq. (6.1) to that of a
free axion.

4This is a consequence of the fact that the commutator [∂i, ∂j ]a is non-zero (and quantized) around a string
[308] and is easily seen by imposing 2πnfa =

∮
C

dxµ∂µa where C is a loop surrounding the string, and eval-
uating the right hand side of this equation via Gauss’ theorem and using the equations of motion ∂µF µνρ =
−g
∫

dτdσϵab∂aXν∂bXρδ4(x − X).
5The same running has been studied in a generalisation of the theory we consider in the context of the effective

string description of vortices in superfluids [310].
6The fact that changing ∆ does not change the equations of motion implies that, as far as the dynamics of the

string at small curvature is concerned, it does not matter whether the energy is localised in the string core or in the
axion gradient.
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f2
a/µ ∝ 1/ log.

Notice that the preceding discussion does not hold when the inverse core-size m−1
r is of the

order of the IR cutoff L. Consequently, this effective theory describes the dynamics of the physical
system in the parts of the network where the finite string thickness is smaller than the inverse
string curvature, but it will break down when strings intersect and reconnect, or when loops shrink
(such processes are sensitive to the details of the structure of the potential of the field ϕ and will
therefore need the full theory in eq. (2.29)).

In the presence of gravity a moving string sources gravitational radiation, which can be deter-
mined by linearising Einstein’s equations giving e.g. in the harmonic gauge ∂µhµν = 1

2∂νh

∂α∂
αhµν = 16πG

(
Tµνs − 1

2η
µνT λs λ

)
, Tµνs = µ

∫
dσ
(
ẊµẊν −X ′µX ′ν

)
δ3(x⃗− X⃗) , (6.4)

where gµν = ηµν +hµν is the metric, h ≡ hµµ and Tµνs is the energy momentum tensor of the string
from the first term of eq. (6.1). It is straightforward to show that the energies radiated at infinity
per unit time in axions and GWs from a string trajectory Xµ are respectively

dEa
dt

= ra[X] f2
a ,

dEg
dt

= rg[X]Gµ2 , (6.5)

where ra[X] and rg[X] are dimensionless functionals of the shape of the string trajectory (but
independent of the string length). In more detail, for any string trajectory Xµ that is a solution
of eqs. (6.2) and (6.3), the axion and GW fields are determined by eqs. (6.3) and (6.4). These are
wave-like equations of the form ∂α∂

αB = j, with solution B =
∫
d3yj(t − |x⃗ − y⃗|, y⃗)/(4π|x⃗ − y⃗|),

and therefore Aµν ∝ fa and hµν ∝ Gµ. The emitted energy is dE/dt ≡ −
∫
d3xṪ 00, where for the

axion Tµνa ∼ (∂A)2 and for the GWs Tµνg ∼ G−1(∂h)2. This fixes the dependence on f2
a and Gµ2

of eq. (6.5), while the remaining factors (called ra and rg) must be dimensionless functionals of the
string trajectory only.

The main conclusion from eq. (6.5) is that GWs are emitted proportionally to the (square of)
the string tension, since they are sourced by the energy momentum tensor. Conversely, the axion
coupling to the string is fixed by fa and the axion energy is proportional to f2

a only. We stress that
eq. (6.5) is valid for any trajectory that is a solution of eqs. (6.2) and (6.3), irrespective of the ratio
f2
a/µ, i.e. regardless of the magnitude of the axion-string coupling. Therefore eq. (6.5) is expected

to capture the energy emission from the pieces of the string network for which the string thickness
can be neglected at all values of the log, including those accessible in simulations (related previous
analysis in the literature has been carried out in the limit of zero coupling [311,312]).

Since we will not need the functional form of ra[X] and rg[X], we give their expressions in
Appendix D.1, where we also give further details of the derivation of eq. (6.5). From eqs. (D.6) in
Appendix D.1 it can be seen explicitly that (as expected given that they are dimensionless) ra[X]
and rg[X] are invariant under the rescaling of the length of the trajectory and of time, and therefore
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depend only on the shape of the trajectory. We note that the coefficients ra[X] and rg[X] have
been calculated in [312] for particular trajectories in the limit of zero coupling.

Finally, we observe that, as mentioned, this effective field theory predicts that the GWs do
not significantly influence the motion of the strings provided Gµ2/f2

a ≪ 1. Indeed, the inclusion
of gravitational backreaction modifies eq. (6.2) by introducing, on the right hand side, the term
−µΓµνρ(ẊνẊρ+X ′νX ′ρ), where Γµνρ are the Christoffel symbols (this was first studied in [313,314]).
Since Γµνρ ∼ ∂h, and h is of order Gµ, this term is suppressed by Gµ2/f2

a with respect to the one
already present in eq. (6.2). Similarly, the energy emitted in GWs from eq. (6.5) is suppressed with
respect to that into axions by the same factor.

6.2.2 GW Spectrum during the Scaling Regime

We now apply the results of Section 6.2.1 to the evolution of the scaling network reviewed in Section
2.4.3 to extract information on the emission of GWs during the scaling regime. As outlined, we use
an approach that avoids having to calculate the GW emission directly from eq. (6.5), which would
require understanding the form of the trajectories Xµ

s of long strings and loops during scaling.
Given that eq. (6.5) holds for a generic string trajectory, the energy densities Γa and Γg emitted

per unit time during the scaling regime are related by rGµ2
eff/f

2
a , where r ≡ rg[Xs]/ra[Xs]. We can

therefore use our knowledge of Γa from energy conservation (i.e. eq. (2.53)) to infer the energy
density emitted per unit time in GWs during the scaling regime. This reads

Γg = r
Gµ2

eff
f2
a

Γa
log≫1−→ 8ξrH3Gµ

3
eff

f2
a

, (6.6)

where the second relation holds in the large log limit, and in that case Γg ≃ 8π3rGf4
aH

3ξ log3. In
eq. (6.6) the dimensionless coefficient r is a functional of the average shape of the string network
(and expected to be of order 1). The average shape of the strings is preserved throughout the
scaling regime, and therefore we expect r to be time-independent, or at most have a weak log
dependence. The coefficient r can be interpreted as a form factor of the string network that encodes
how efficiently the string trajectories during scaling emit GWs compared to axions. In particular
it parametrises the string dynamics that are responsible for the GW emission (long strings, small
loops, string reconnection, etc.).

The validity of eq. (6.6) with a constant r relies solely on energy conservation during the scaling
regime and on the Nambu–Goto effective theory. While the latter must break down when strings
reconnect and loops shrink, it is possible that most of the axion and GW energy is emitted in the
regime where the effective theory is valid. Indeed, we will see in Section 6.2.3 that eq. (6.6) is
reproduced remarkably well with a constant r in first principles field theory simulations, which will
allow us to also directly extract its value (instead of calculating it from its definition). We will also
see that µeff , which we defined in terms of the string energy, is well matched by the theoretical form
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eq. (2.49). Given this, we will assume that eq. (6.6) holds in the remainder of our present analysis.7

In particular, assuming the growth of ξ as in eq. (2.47), this implies that Γg is proportional to
H3 log4 at large log.

Since GWs redshift freely, we can straightforwardly obtain the GW energy density ρg at a
generic time during the scaling regime from ρ̇g + 4Hρg = Γg + . . . , where the dots stand for
possible additional GW sources, which we subsequently neglect. It immediately follows that ρg(t) =∫ t
t1
dt′(R(t′)/R(t))4Γg(t′), where t1 is the time when the scaling regime starts. The remaining

ingredient required to calculate the GW spectrum is the momentum distribution of Γg. It is
convenient to write Γg as a function of the differential emission rate ∂Γg/∂k and to further express
this in terms of the instantaneous emission spectrum Fg, i.e.

Γg(t) =
∫
dk
∂Γg
∂k

[k, t] , ∂Γg
∂k

[k, t] = Γg(t)
H(t)Fg

[
k

H
,
mr

H

]
. (6.7)

The function Fg[x, y] fully captures the momentum dependence of the instantaneous emission via
the variable x = k/H and its possible time dependence via the variable mr/H, and is normalised
to one by definition,

∫
dxFg[x, y] = 1. Plugging eq. (6.7) into ρg(t) we obtain the total GW energy

density spectrum, defined by ρg =
∫
dk∂ρg/∂k,

∂ρg
∂k

[k, t] =
∫ t

t1
dt′

Γ′
g

H ′

(
R′

R

)3
Fg

[
k′

H ′ ,
mr

H ′

]
, (6.8)

where k′ = kR/R′ is the redshifted momentum and all other primed quantities are evaluated at t′.
Eq. (6.8) is just the superposition of all the spectra emitted from t1 to t, properly redshifted.

Given the existence of a scaling solution, we have some theoretical expectations for the form of
the instantaneous GW spectrum Fg, which closely resembles the analogous axion spectrum studied
in [188]. First, since strings typically have a curvature of order Hubble, the spectrum of GWs
emitted at each instant should be peaked at momenta of order the Hubble parameter at that time.
Meanwhile, production of GWs with momentum below Hubble or above the string core scale is
expected to be strongly suppressed. The absence of any scale between H and mr suggests that
between these two (IR and UV) cutoffs the spectrum follows a single power law Fg ∝ 1/xq. It
is also expected from the Nambu–Goto description that most of the GW energy Γg is contained
in (IR) momenta of order Hubble, as opposed to (UV) momenta of order mr (see [309]), which
corresponds to q > 1.

We will show in the next Section that all of the properties above are verified in numerical sim-
ulations of the scaling regime, where we will provide the exact form of Fg. To get a general picture
of the resulting total GW spectrum, it is sufficient to approximate the instantaneous emission with

7Eq. (6.6) must break down when log ∼ MP/fa. In Section 6.3 we will see that the values of fa allowed by existing
constraints are always small enough for this to be true (for all ma). With an abuse of language, we will therefore use
the phrasing ‘large log’ to indicate log ≲ MP/fa.
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sharp IR and UV cutoffs at momenta x0H and mr, i.e. Fg[x, y] ∝ 1/xq for x ∈ [x0, y], and zero
elsewhere. Inserting this Fg into eq. (6.8) we obtain the GW spectrum. At a generic time during
the scaling regime with log ≫ 1, in the momentum range k ≳ x0H but k ≲ x0

√
HH1 (where

H1 = 1/2t1 is the Hubble parameter at the start of the scaling regime) this is given by

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2 log4
[
mr

H

(
x0H

k

)2
]
, for x0H ≲ k ≲ x0

√
HH1 , (6.9)

where c1 defined in eq. (2.47) determines the growth rate of ξ, and we omitted terms proportional
to additional inverse powers of log, which are negligible in the regime we are considering. The full
expression for the spectrum is given in Appendix D.2.

We observe that the spectrum is (approximately) scale invariant between the IR and UV mo-
menta x0H and x0

√
HH1, so the total GW energy is spread over a wide range of frequencies. This

is because the rate at which energy in previously emitted GWs redshifts and the main decrease
in Γg ∝ H3 in a radiation dominated universe combine to give ∂ρg/∂k ∝ 1/k. Such a spectrum
accumulates only between the two extremes x0H and x0

√
HH1, which correspond to the peaks of

the instantaneous emission at H and at H1 respectively (redshifted until H).
However, as time progresses the GW emission is enhanced due to the (increasing) log4 factor

in Γg. This leads to a violation of the spectrum’s scale invariance, which consequently has larger
values at smaller k. This is captured by the logarithmic factor in eq. (6.9), which ranges from
log4(mr/H) = log4 at k ≃ x0H to log4(mr/H1) at k ≃ x0

√
HH1. One log2 factor is due to the

increase in the energy stored in the network (from ξ and µeff), and the additional log2 factor to
the efficiency at which this energy can be emitted in GWs, proportional to coupling of the GWs
to the string Gµ2. Although a single power of log relies on the extrapolation of the log growth of
ξ observed in simulations, the other three powers are inevitable. Since at the end of the scaling
regime log ≃ 100, the violation of scale invariance is substantial and – as we discuss in Section 6.2.4
– it could make the low frequencies of an otherwise invisible signal detectable. It is also clear that it
is essential to extrapolate to large log to make any sensible physical predictions, and results directly
extracted from simulations, which can reach only log ≲ 8, are guaranteed to be off by many orders
of magnitude.

There are several other features of the GW spectrum from scaling that are worth noting. First,
the dependence of the spectrum in eq. (6.9) on x0 is only logarithmic, and the dependence on q

only comes in (neglected) terms proportional to (q − 1)−1 log−1 (i.e. together with inverse powers
of log, see eq. (D.11) in Appendix D.2). Thus, as long as q − 1 is definitely larger than 1/ log the
dependence on q is negligible for modes with k > x0H. This means that even an approximate
determination of x0 and q from simulations will be sufficient to understand the spectrum in the
momentum region of eq. (6.9). Moreover, a possible dependence of x0 and q on log – as long as it
keeps q > 1 – would not significantly change the spectrum.

Second, if the effective number of degrees of freedom in thermal equilibrium g is not constant,
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the scale factor away from particle thresholds is R ∝ t1/2g−1/12 where g is evaluated at the tem-
perature corresponding to the time t. The spectrum in eq. (6.9) at time t gets the (k-dependent)
multiplicative correction (g(t)/g(tk))1/3. Here, tk is defined by x0H(tk) ≡ kR(t)/R(tk), and is
the time when most of the GWs that have momentum k at time t are emitted. We refer to Ap-
pendix D.2 for the explicit derivation. As we will see in more detail in Section 6.2.4, the change in
g distorts the log4 dependence at the momenta corresponding to the temperature when the degrees
of freedom decouple from the thermal bath.

Finally, as explained in Appendix D.2, at UV momenta k ≳ x0
√
HH1 the spectrum ∂ρa/∂ log k

is suppressed as 1/kq−1 and rapidly falls. The critical Hubble
√
HH1 is model dependent, since

it depends on when the scaling regime began (and so when and how the string network forms).
Meanwhile, at IR momenta k ≲ x0H the spectrum is also power law suppressed and follows the
same behaviour as Fg for x ≲ x0. Contrary to the simplified case discussed above, we will see that
Fg[x, y] ∝ x3 for x ≲ x0 and this implies ∂ρg/∂k ∝ k3 at k ≲ x0H. This last part of the spectrum
is produced at the time when domain walls form, so will also get a contribution from domain walls,
which is expected to change it by at least an order one amount (we discuss this contribution briefly
in Appendix G).

We also note that in the large log limit the total energy in GWs emitted from t1 to t, i.e.
ρg =

∫ t
t1
dt′Γ′

g(R′/R)4, is ρg = (4/5)H2Gµ3
thξ log /f2

a ∝ H2 log5. The additional log factor is related
to the fact that this energy gets equal contributions from all the times from t1 to t on a logarithmic
scale. It is straightforward to see that the approximately scale invariant spectrum in eq. (6.9)
reproduces this formula.

6.2.3 Comparison with Numerical Simulations

We now show that results from numerical simulations match the preceding analysis extremely well.
This confirms our theoretical assumptions (i.e. that the Nambu–Goto EFT is valid at least for
determining the relative emission into axions and GWs, and the general shape of the instantaneous
emission spectrum) and allows us to extract the values of the parameters r, x0 and q.

In the simulations we evolve the complex scalar ϕ by numerically integrating the equations of
motion that follow from eqs. (2.28, 2.29) on a discrete lattice. The simulation code was written
by my collaborators, Dr Marco Gorghetto and Dr Edward Hardy in C++ and it was not made
publicly available. More details of their implementation can be found in Appendix E as well as the
Appendices of their previous papers [186,188]. Starting from suitable initial conditions, a network
of strings forms and evolves, and is driven to the attractor. Due to the competing requirements
that the grid must contain at least a few Hubble patches (to capture the infinite-volume properties
of the network), and must have at least a few lattice points per string core (to reproduce the string
interactions correctly), such simulations can only access values of log ≲ 8.8 This is the origin of the

8In more detail, the maximum log is limited to ∼ log N , where N is the number of gridpoints in the box side. Here
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previously mentioned required extrapolations (in our approach, we need to extrapolate r, x0 and q,
as well as ξ).

As well as the physical system of eq. (2.29), we also simulate the so-called ‘fat’ string system,
which is defined by the same potential as eq. (2.29) but with mr ∝ R−1 decreasing with time. In
this way the string core size remains constant in comoving coordinates. In this system the same
hierarchy in log corresponds to a larger ratio between final and initial cosmic times, and the string
network therefore flows to the attractor faster, leading to cleaner results. Although the qualitative
features are expected to be reproduced, the quantitative parameters of the scaling solution could
differ from those of the physical string system (which we therefore use to extract the numerical
values). For both systems we set the initial conditions as close as possible to the scaling solution,
on which ξ grows logarithmically (the evolution of ξ is plotted in Figure F.1 in Appendix F.1, where
we give more details). It is straightforward to evaluate the energy in axions and radial modes in
simulations, and therefore the emission rates Γa and Γr.

The GWs produced during the evolution are obtained by numerically solving the linearised
Einstein equations

ḧij + 3Hḣij −R−2∇2hij = 16πGTTT
ϕ,ij , (6.10)

where TTT
ϕ,µν is the transverse-traceless part of the energy momentum tensor of eq. (2.28).9 At

a generic time the energy density in GWs is ρg ≡ T 00
g , where Tµνg = (32πGR2)−1⟨∂µhαβ∂νhαβ⟩

is their energy momentum tensor and the brackets stand for the spatial average. From ρg the
emission rate of GWs can be calculated using Γg = R−4 d

dt(R4ρg). Further details concerning our
numerical implementation can be found in Appendix E. In Appendix E.1 we analyse the systematic
uncertainties in simulations, e.g. from the finite lattice spacing, and the results we show are with
parameter choices such that these are negligible.

The gravitational backreaction (in the weak gravity regime) is represented in the equations of
motion of the Lagrangian in eq. (2.28) by the addition of a term R−2hij∂i∂jϕ. By carrying out
simulations with this term included, in Appendix F.2 we show that – as expected – the (evolv-
ing) effective parameter that controls the gravitational backreaction during the scaling regime is
Gµ2

eff/f
2
a . This is shown in Figure F.9 of Appendix F.2, where the deviations in ξ and ρa due to

the backreaction depend only on Gµ2
eff/f

2
a for different choices of fa/MP. In particular, provided

Gµ2
eff/f

2
a ≲ 0.5, corresponding to log ≲ MP/fa: (1) gravity is self-consistently in the weak regime

and (2) it does not alter the dynamics of the string network.10 The decay constants (and logs) of
interest, studied in Section 6.2.4, are all safely within this limit, so we do not include backreaction
in the remainder of our simulations.
we used grids of size to N3 ∼ 25003 (as opposed to 45003 in my collaborators’ previous work) given the additional
computational cost in the evolution of the GWs. The resulting maximum log ∼ 7.5 is still sufficient for the properties
and trends in the attractor solution to be reliably identified.

9Here h is in the transverse-traceless gauge, which is convenient in the FRW background.
10This is expected, since the backreaction term is negligible with respect to the gradient term −R−2∇2ϕ for such

fa, as h ∼ Gf2
a from the linearised Einstein equations.
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We now turn to our main results from simulations. We first observe that the total energy emitted
per unit time from the network (Γa + Γr) in simulations should match the theoretical formula for
Γ in eq. (2.53) with the theoretically expected form of the tension µth given by eq. (2.49). In more
detail, although eq. (2.49) determines uniquely µth at large log, at the small log relevant in the
simulations µth (and consequently Γ) is sensitive to the (only) free parameter η. We extract the
value of η by fitting the data such that (Γa+Γr)/Γ is constant in the range log > 4, for the simplest
model in which η is constant as a function of time, where as mentioned (Γa+Γr) is measured in the
simulations and Γ is given by (2.53). However there an additional complication since Γ of equation
(2.53) strictly applies to long strings only and this energy does not fully go into radiation directly,
since some short loops are also emitted at first which eventually also decay into radiation. We give
additional detail in Appendix F.1, where we explain that this complication can be accounted for
due to the fact that the fraction of string length in long strings is constant in the scaling regime. For
the fat string system this fraction was determined to be fL, fat = 0.84 in [186] and we can directly
fit the data for the value of η to find ηfat ≃ 0.95/

√
4π ≃ 0.27, which is close to the value it would

have if the long strings were straight and parallel to each other 1/
√

4π. In the case of physical
strings however we add the ratio fL, phys as an additional free parameter to the fit. The best fit
values in the physical string system are found to be fL,phys = 0.9 and ηphys ≃ 0.7/

√
4π ≃ 0.2. We

show in Figure 6.1 the ratio (Γa + Γr)/Γ for fat strings, with the corresponding η = 0.27 set to
its best fit value and fL = 0.84. The fact that the ratio (Γa + Γr)/Γ is close to unity at all times
for such time-independent choice of η is a non-trivial check that eq. (2.53) captures the emission
rate at the logs accessible in simulations. This also (indirectly) shows that µeff is well reproduced
by the theoretical expectation µth of eq. (2.49) and is growing logarithmically as expected, so we
can use the latter expression in the analysis that follows. 11 To assign an error to η we plot the
ratio (Γa + Γr/Γ) for various values ηfat in Figure 6.2. Additionally, in Figure F.3 of Appendix F.1
we plot the same ratio for fat and physical strings, for data collected for a previous paper of my
collaborators [188], which was taken on larger grids (45003 instead of 25003). Based on this we
assign ranges ηfat

√
4π ∈ (0.8, 1.1) and ηphys

√
4π ∈ (0.4, 1.5) in order to estimate the error on the

coefficient r. Inside these ranges the ratio (Γa + Γr)/Γ is constant to within about 10% tolerance.
Having confirmed the validity of Γ and µth, we are ready to study the GW emission Γg and

extract the coefficient r. As discussed, we do so using r’s relation to Γg and Γa of eq. (6.6),
i.e. r = f2

aΓg/(ΓaGµ2
eff). This leads to a small ambiguity in determination of r at small log,

because the small (and decreasing) proportion of energy emitted into radial modes is by construction
not captured by the Nambu–Goto description, and could be included along with Γa in eq. (6.6).
Since the radial modes take a proportion of the energy that would otherwise go into axions, it
is natural to expect that the inclusion of Γr leads to the quantity conserved during scaling. In
the following we therefore consider rsim ≡ f2

aΓg/(ΓGµ2
th), where Γ and µth are calculated from

11As also explained in Appendix F.1, eq. (2.49) strictly speaking holds for non-relativistic strings (since there is no
boost factor), but any corrections from this are absorbed in the definition of r.
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Figure 6.1: The ratio between the energy emitted by strings as measured in the simulation into
axions (blue) and axions plus radial mode (black) and the energy lost by the strings for the fat
strings system. The total energy lost by strings Γ is given by the energy lost by long strings eq.
(2.53) multiplied by a correction factor depending on the ratio of long strings to loops, which
adjusts for the fact that the energy lost by long strings does not fully go into radiation, with some
of it going into short string loops which decay later. For the fat strings system we have fitted the
data with a constant free parameter ηfat appearing in the string tension eq. (2.49) and set the
fraction of length in long strings to fL, fat = 0.84 as found in [186]. The best fit value of ηfat was
ηfat = 0.27. Error bars represent the statistical errors over a set of 30 simulations on grids of size
25003 grid points, which we run to study the gravitational waves emissions and differ only in the
random seed used to generate initial conditions.

eqs. (2.49) and (2.53) with the same constant value of η mentioned before (indeed Γ reproduces
Γa + Γr measured in simulations), while Γg is evaluated in the simulations. Note that using the
theoretical Γ in the extraction of r instead of the result of Γa+Γr from simulations reduces possible
systematic uncertainties related to fluctuations of the last two quantities, which especially at small
logs are affected by parametric resonance effects between axion and radial modes especially for the
physical system.12

In Figure 6.3 we plot the time evolution of rsim for the fat and the physical systems. The
uncertainties on the data points represent the statistical error over a set of 30 simulations with
initial conditions with the same initial string density ξ, which differ only in the random seed and
are otherwise identical. In both cases rsim is of order one and its time-independence is manifest
over more than three e-foldings. This corresponds to a verification of eq. (6.6) and provides a
remarkably consistent picture of the dynamics of the string system. First, it confirms the validity
of the effective Nambu–Goto description at least for the emission of GWs, which therefore also
allows analytic control of Γg beyond the range that can be simulated. The constant form of rsim

even holds well from log = 4 when there is only a mild hierarchy between the string core scale
and the Hubble parameter. In fact it is not unreasonable that r is constant even at such early

12On the other hand Γg fluctuates far less since the coupling of the GWs to the radial modes is much weaker.
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Figure 6.2: The ratio between the energy emitted by strings as measured in the simulation and
the energy lost by the strings for various values of ηfat. The blue plots correspond to the range
(0.8, 1.1) which we have allocated to

√
4πηfat, while the black dots correspond to the best fit value√

4πηfat = 0.95. Inside this range the ratio (Γa + Γr)/Γ differs by about 10% or less inside the
simulation range 4 < log < 7.4 and this is true also for data on larger grids from [188], which reach
up to log = 7.9 and are represented in Figure F.3 in Appendix F.1.

times, since the theoretical expectation in eq. (6.6) does not rely on the string system being in the
pure Nambu–Goto limit (namely it should hold even at small log when the strings are strongly
coupled to the axion). Moreover, as anticipated in Section 6.2.2, the constant value of rsim is
strong evidence that the string configuration is self-similar. This in turn confirms that the scaling
regime has been achieved in the simulation and that the logarithmic increase in ξ is a part of
it.13 Although we cannot exclude a qualitative change in the evolution of rsim after log = 7.5,
both theory and simulations suggest that such a change is unlikely. The extrapolation of r after
log = 7.5 therefore seems robust despite the difference in log between the simulations and the
physically relevant system. On the other hand, simulations can never exclude the possibility that
there is a small logarithmic running of r but only bound its value, and we comment on this when
discussing the uncertainties on our predictions of GW spectra in Section 6.2.4.

In Figure 6.3 we also show the fit of this observable with a constant function. For the physical
system we start the fit at log > 4.5, since the first few data points at small log seem to deviate
slightly, as the system has not yet fully reached the scaling regime at such early times (see also the
not completely linear behaviour of ξ at those log in Figure F.1).14

We now estimate the uncertainty on r = f2
aΓg/(ΓaGµ2

eff) for physical string network. A first
13If the logarithmic increase were a transient, we would expect the configuration not to be self-similar. This is also

consistent with the observation that the fraction of ξ in strings of different lengths remains constant [186].
14The small disagreement of the last two data points of the fat system is likely to be due to a statistical fluctuation.
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Figure 6.3: The evolution of energy density Γg emitted in GWs per unit time during the scaling
regime normalised to ΓGµ2

th/f
2
a , where Γ is the total energy emission rate and µth is the theoretical

expectation for the string tension, for the fat string system (left) and the physical system (right).
Error bars on the data points represent the statistical error over a set of 30 simulations. The
red bands are centered on the average value of r over all data points and its width is given by the
standard deviation. The constant value of this ratio is in agreement with the theoretical expectation
of Section 6.2.1, and indicates that the relative emission to GWs grows as Γg/Γa ∝ log2(mr/H) at
large log. This Figure was produced by my collaborators for our joint work [1].

source of uncertainty comes from the precise value of the string tension µeff at small log (for which,
as mentioned, the value of η is relevant), which feeds into the value of r extracted from Γg measured
in simulations. As mentioned, µeff is well reproduced by µth for ηphys ≃ 0.20. However, given the
large fluctuations of Γa + Γr in the physical system, values of ηphys = 0.1 ÷ 0.3 still reproduce
Γ = Γa + Γr acceptably well (this range is obtained by varying η such that (Γa + Γr)/Γ remains
approximately constant, see Figure F.3 and Appendix F.1). This translates into an uncertainty on
rsim in the range 0.17 ÷ 0.34 (estimated by evaluating rsim at the final time for ηphys in the range
0.1 ÷ 0.3, see Appendix F.1 and Figure F.4 for more details). Moreover, the previously mentioned
ambiguity in using Γ or Γa introduces a theoretical uncertainty in the value of r (although rsim

seems to be the conserved quantity). We can conservatively quantify the associated error as about
10%, corresponding to the contribution that Γr provides provide to Γ at the largest simulated log
of Figure 6.3. The actual statistical uncertainty on data of Γg is negligible with respect to the
mentioned ones. As a result, we obtain a value for r with a conservative error estimate of

r = 0.26(11) . (6.11)

Since r is of order one, as expected for fa ≪ MP only a small fraction of energy is emitted in
GWs. Moreover, as well as qualitative agreement, in Appendix F.2 we show that our value of r is
quantitatively consistent with the decrease in axion energy, for a fixed fa/MP, when backreaction
is included.
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Figure 6.4: The evolution of the total energy density in GWs ρg (black points, with statistical
errors smaller than the plotted data points), and the theoretical prediction for this quantity with
the range of r extracted from Figure 6.3 (red bands). The data are in full agreement with the
predictions. We also plot ρg ∝ H2 log5, which is valid at log ≫ 1, and which the prediction and
data asymptote to. This Figure was produced by my collaborators for our joint work [1].

In Figure 6.4 we also show the evolution of the total GW energy density ρg measured in the
simulations (black points). In the same plot we show the theoretical prediction for this quantity,
i.e. ρg =

∫ t
t1
dt′Γ′

g(R′/R)4, with Γg = rGµ2
thΓ/f2

a where the constant r (together with its error)
is extracted from Figure 6.3 and Γ is as in eq. (2.53) and is evaluated as before (in doing the
integration we take t1 such that log(mr/H1) = 3.5). As expected given Figure 6.3, the agreement
between the prediction and the data is excellent. We also note that the data approach the expected
large log behaviour ρg ∝ H2 log5, discussed in Section 6.2.2.

The remaining input required to calculate the GW spectrum is the momentum distribution
of the instantaneous GW emission Fg. It is straightforward to extract this from simulations, and
results for Fg[x, y] are plotted for the physical system in Figure 6.5 (left) at different times, i.e.
different y = mr/H (labelled by log(mr/H)). As expected, the distribution has an IR cutoff
corresponding to x0 ∼ 2π and a UV cutoff at around the string core scale, corresponding to
x ∼ mr/(2H), which are the same as for the axion spectrum.15 The spectrum has a somewhat
broad peak around the IR cutoff, from x ≃ 5 to 20. Above this, an intermediate power law is
visible and compatible with q = 2, which implies an IR dominated emission. Thus, the numerical
results fully confirm (at least at small log) our assumptions of Section 6.2.2.

The parameters x0 and q appear to be time-independent in the range of log accessible to
simulations. This can be seen from the fact that the Fg overlap for all y (we carry out a more
detailed analysis in Appendix F). It is interesting to note that, although the IR and UV cutoffs of
Fg are similar to those of the corresponding axion instantaneous emission spectrum Fa, the spectral
indices of the two, q and qa respectively, are dramatically different. For the axion qa increases with

15The value k/H ≃ 2π is also motivated since for such momentum the wavelength equals the Hubble distance.
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Figure 6.5: Left: The momentum distribution Fg[x, y] of the GWs emitted instantaneously from
the string network, as a function of their physical momentum normalised to Hubble, x = k/H.
Different lines indicate different times i.e. changing y = mr/H, which are labelled by log(mr/H).
At all times the distribution is dominated by (IR) momenta of order Hubble, and decays as x−2 at
higher momenta. Right: The evolution of total spectrum of GWs produced by the network, plotted
at different times. We factor out the expected time dependence of the amplitude of the IR peak
∝ H2 log4. This Figure was produced by my collaborators for our joint work [1].

log (from qa = 0.75 to 0.95 between log = 6 and 8 indicating a UV dominated spectrum that is
gradually becoming IR dominated).16 We also note that an emission with q = 2 is characteristic of
kink-kink collisions [315], as opposed to cusps and kinks which instead provide q = 4/3 and q = 5/3
respectively. Although this could be an indication that kink-kink collisions are the dominant source
of the emission, our results do not rely on the modelling of the particular process sourcing the GWs,
as the evolution of the field equations captures the full dynamics of the system.

Despite these results, we cannot exclude a slow logarithmic running of x0 and q. However,
as discussed in Section 6.2.2, a slow increase in q would have little effect on the integrated GW
spectrum (and a decrease in q until q < 1 would be extremely surprising). Likewise, a slow change in
x0 would only have a very minor effect, so we do not analyse this possibility in detail. Consequently,
we can safely assume that the form of Fg is preserved also at large log.

In Figure 6.5 (right) we also show the total GW spectrum ∂ρg/∂ log k at different times as
a function of the physical momentum normalised to Hubble. The general features derived in
Section 6.2.2 are reproduced. However, due to the small final log, the approximately scale invariant
region x0H ≲ k ≲ x0

√
HH1 of eq. (6.9) corresponds only to a small portion of the spectrum.

Indeed, the first nontrivial emission in the scaling regime happens around log (mr/H1) ∼ 4 and
therefore eq. (6.9) holds in the restricted range x0 ≲ k/H ≲ x0

√
HH1/H ∼ 40÷50 at the final time

16This could be due to the fact that the coupling of the radial modes to axions is much larger than the coupling of
radial modes to GWs. Therefore the radial modes which are partly emitted by the strings at small log could produce
energetic axions [188], contributing to the UV part of the axion spectrum (but not to the GW one). The emission of
radial modes diminishes logarithmically, and the spectrum therefore decreases in the UV.
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log = 7.4.17 Nevertheless, the key result from eq. (6.9) that at fixed k/H ∼ x0 the spectrum (once
the leading H2 is factored out) grows proportionally to log4(mr/H) is matched well in Figure 6.5
(right), which is of course consistent with the extrapolation to large log being essential (a version of
the plot without the log4 factored out is given in Figure F.7 of Appendix F).18 Finally we observe
that ∂ρg/∂k ∝ k3 for k ≲ x0H (this is the same behaviour as Fg at small x), while ∂ρg/∂k ∝ kq−1 at
momenta higher than x0

√
HH1. In Appendix E we show the results for Fg and the total spectrum

for the fat string system, which are qualitatively, and even quantitatively, similar to those of the
physical system.

6.2.4 The GW Spectrum Today

The present day remnant of the GW spectrum from the scaling regime can be straightforwardly
computed by combining the theoretical discussion of Section 6.2.2 and the results of Section 6.2.3.
For the sake of definiteness for now we assume a temperature-independent axion mass, and we
discuss the temperature-dependent case later.

As mentioned, the scaling regime ends (approximately) when H = ma, at which time the
network is destroyed and GWs stop being produced at the rate in eq. (6.6). The GW spectrum at
H = ma follows from eq. (6.8). From H = ma on the GWs redshift freely until today, and their
contribution to the present day total energy density of the Universe is Ωgw ≡ ρg/ρc, where ρc is
the critical density.

In Figure 6.6 we plot the GW spectrum dΩgw/d log f (from a numerical integration of eq. (6.8)),
where f is the frequency. We use the value of r from eq. (6.11) to evaluate Γg in eq. (6.6), and
a functional form of Fg that fits Figure 6.5 (left) (see Appendix D.2 for more details). Results
are shown for different choices of axion decay constant and mass that are not excluded by other
cosmological constraints (derived in Section 6.3). For an axion that produces GWs in the detectable
frequency range, these constraints require fa ≲ 1015 GeV (from dark radiation bounds discussed in
Section 6.3.2) and 10−28 eV ≲ ma ≲ 10−17 eV (the lower limit is due to bounds on string surviving
until recombination which is discussed in Section 6.3.4 and as a result the network is destroyed
before matter-radiation equality, the upper limit is due to the bound on the axion relic abundance
discussed in Section 6.3.1).19 We also show fa = 3 × 1015 GeV, which is likely to be in tension with
dark radiation bounds, see Section 6.3.2.

In this plot we assume that the Hubble parameter H1 when the scaling regime starts is suffi-
ciently large that the GW spectrum is in the approximately scale invariant region for the entire
range of frequencies shown. Later in this Section we show that this assumption is highly plausible.
We also assume a standard cosmological history with radiation domination up to high temperatures

17H1 corresponds to when the UV and IR cutoffs of the spectrum x0H and mr/2 coincide.
18At small log, ∂ρa/∂ log k actually grows faster than log4 due to the subleading log corrections of Γg in eq. (6.6),

and indeed at k/H ∼ x0 the spectrum in Figure 6.5 (right) shows a slight increase.
19This confirms that the condition for gravitational backreaction to be negligible Gµeff/f2

a ≪ 1 is satisfied.
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and only the particle content of the SM plus the axion, and that mr = fa. We describe the errors
that we include on the GW spectra and other sources of uncertainty in detail at the end of this
Section.

Figure 6.6: The contribution to the energy density of the Universe today from the GWs emitted
by axion strings during the scaling regime, as a function of their present day frequency f . To
produce this figure the parameters x0 and q which describe the instantaneous emissions spectrum
Fg discussed above were set to x0 = 5 and q = 2. Different lines correspond to different values of
the axion decay constant fa and mass ma. We plot values of ma that are compatible with current
constraints on the post-inflationary scenario. Values of fa ≲ 1015 GeV are possible, while larger
values are in tension with isocurvature and dark radiation bounds. GWs with higher frequencies
are produced at earlier times, and we indicate the temperature of the Universe when GWs of
a particular frequency are dominantly produced, Tf , as well as the corresponding value of the
log at this time log(mr/Hf ). All the GWs are emitted in radiation domination and the network
decays before matter-radiation equality. We also indicate the range of masses allowed for symmetry
breaking scales fa ≳ 1014 GeV which are detectable by gravitational waves. For this range of masses
the frequencies at which detectors are sensitive are always larger than the value corresponding to
the IR peak of the emissions spectrum, and as mentioned are lower than the value corresponding
to the and UV peak for HI ≫ keV.
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A useful (and for most purposes accurate) analytic approximation for Ωgw in the log ≫ 1 limit
is derived from eq. (6.9) in Appendix D.2 (see eq. (D.13)) and reads

dΩgwh
2

d log f ≃ 0.80 × 10−15
( c1

0.24

)( r

0.26

)( fa

1014GeV

)4(10
gf

) 1
3
{

1 + 0.012 log
[( mr

1014GeV

)(10−8Hz
f

)2]}4

,

(6.12)
where gf is the effective number of degrees of freedom in thermal equilibrium at the temperature Tf ,
when most of the GWs with today’s frequency f are emitted.20 Eq. (6.12) holds in the frequency
range 3 × 10−12(ma/10−20eV)1/2 ≲ f/Hz ≲ 103(H1/GeV)1/2. This corresponds to the extremes in
eq. (6.9) evaluated at H = ma, redshifted to today. As stressed in Section 6.2.2, at lower and higher
frequencies than these IR and UV cutoffs, dΩgw/d log k is suppressed as f3 and f q−1 respectively.21

Several comments are in order. First, we observe that fa controls the overall amplitude of the
spectrum, since it ultimately determines both the energy density of the string network and also
the efficiency at which this is emitted into GWs. Conversely, ma only affects the position of the
IR-cutoff ∝ m

1/2
a of the approximately scale-invariant part of Ωgw (which is ma independent). This

is not surprising given that ma is unimportant during scaling, and its only role is in determining
when the network is destroyed. The resulting IR cutoff is visible in Figure 6.6.

The log4 dependence of the frequency is evident in Figure 6.6 and eq. (6.12). In Figure 6.6,
we indicated the value of the log when most of the GWs with frequency f are emitted, logf ≡
log(mr/Hf ). Since this varies by more than a factor of 2 over the frequencies of observational
interest (in the range logf = 30 ÷ 90), there is a substantial effect on the spectral shape as well
as the amplitude. We also note that the GWs in most of the observable range are emitted when
ξ = 10 ÷ 20 from eq. (2.47). As expected, the spectral shape is also modified by the changes
in number of relativistic degrees of freedom in the Universe. In particular, this has an effect at
frequencies that are dominantly emitted at temperatures Tf (shown on the upper axis) at which
such changes occur (the largest effect is around T ≃ 100 MeV when a large number of the degrees of
freedom decouple). As a result the spectrum at higher frequencies is suppressed by more that the
log4 factor, since these are emitted at earlier times when gf is larger leading to increased expansion
of the Universe. However, such effects are fairly weak, as Ωgw depends only on g

1/3
f .

In Figure 6.6 we also show the projected sensitivity curves for ongoing and proposed GW
searches (EPTA [126], PPT [127], SKA [128], LISA [122], DECIGO/BBO [123], AEDGE [124],
AION [125], LIGO [119], and ET [120, 121]), as well as an extremely tentative possible signal by
NANOgrav [317], which we comment on in the Conclusions. In particular, we plot the power-law-
integrated sensitivity curves [318–320] as derived in [321]. Partly due to the enhancement of the
signal at low frequencies, the near future detection prospects are best at Pulsar-Timing Arrays
such as SKA, which scan the lowest frequencies and could be sensitive to all fa ≳ 1014 GeV.
Detection is also possible at space-based interferometers: although LISA could be sensitive only

20More precisely, this temperature is defined by x0H(Tf ) ≡ fR(T0)/R(Tf ).
21The dependence on f3 of the super-horizon modes is fixed by causality after such modes starts oscillating [316].
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to fa ≳ 5 × 1014 GeV, its proposed successors could explore lower values of fa. The wide range
of axion masses and decay constants that lead to a measurable GW signal motivates the effort to
develop such experiments.

As mentioned, complementary constraints require ma ≲ 10−17 eV, and therefore in case of a
detection the actual value of ma will not be inferred. This is because, for this mass range, all
the detectable frequencies are emitted deep inside the scaling regime, so the IR cutoff of Ωgw is
unobservable. Additionally, any temperature-dependence of the mass – as long as is monotonically
decreasing – does not affect the detectable GWs, as it can only modify lower frequencies, emitted
when the mass is relevant. We note that if the string network is destroyed before T ≃ 106 GeV
(e.g. for a heavy axion mass, ma ≳ MeV, which is still allowed by the observational constraints
in Section 6.3), the IR cutoff frequency is so large that the spectrum does not extend down to
observable frequencies.

Although neglected in this discussion, after H = ma additional GWs will be emitted by domain
walls, which will supplement those from the scaling regime. As discussed in Appendix G, one
calculable contribution to these GWs has frequencies (and amplitude) of the same order as that
from the last e-folding of the scaling regime. Therefore, although it will modify the shape of
the IR-cutoff of the GW spectrum from the scaling regime, this contribution at least will not be
observationally relevant.

Uncertainties on the Spectrum

Given its experimental importance, an understanding of the possible sources of uncertainty on the
GW prediction is crucial. The error bands on the GW spectra plotted in Figure 6.6 are obtained by
combining the uncertainties on the coefficient of the growth of ξ (i.e. c1 of eq. (2.47)), on r, and by
varying x0 in the range 5÷10 (which only has a visible effect on the location of the IR cutoff). We do
not think it would be fair to associate a sharp numerical uncertainty to the extrapolations necessary
to reconstruct the scaling regime at large log. Instead, we now summarise the assumptions needed
to obtain eq. (6.12) and Figure 6.6, and the corresponding possible uncertainties. In all cases we
have made the most conservative extrapolations possible, and taken together a deviation of more
than a factor of 2 ÷ 4 from our predictions would be surprising.

• We assumed that ξ continues to grow logarithmically as in eq. (2.47) during the scaling regime
beyond the range of simulations. While such an increase has not yet found a mathematical
proof, it has been numerically demonstrated in simulations at log ≲ 8, providing the best
fit of the data (which disfavours any function that saturates soon after log = 8, as observed
in [186, 188] and evident in Figure F.1 of Appendix F).22 Such a growth is theoretically

22This behaviour has been confirmed independently [182, 184, 185, 187]. An enhanced value of ξ is also suggested
by Nambu–Goto string simulations [177, 178, 322], and in a system where the tension of the strings is increased via
additional degrees of freedom, [323,324].
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plausible given the logarithmic sensitivity of the system to mr/H, and given the excellent
fit over the range of logs that can be simulated it is the most conservative assumption for
the late time behaviour of ξ. The resulting string densities at the times relevant to the
emission of observable GWs are ξ = 10 ÷ 20. This is a factor of 10 larger than is reached in
simulations, correspondingly increasing the energy emitted into GWs, on top of the (much
larger) enhancement from µeff .

Nevertheless, we cannot exclude the possibility that ξ saturates (or its growth accelerates) at
log far beyond the reach of simulations. In these cases, the emission would be damped (or
increased) proportionally to the value of ξ. In particular, a different value of ξ would modify
the amplitude in Figure 6.6 at the frequency f by the factor ∼ ξ/(c1 logf ). Therefore, as
long as ξ does not saturate at a value smaller than 5 (which seems highly unlikely given that
such values are obtained in simulations that partly reproduce the dynamics of the system at
large log by boosting the string tension [324]), in the case of a saturation the amplitude of
Ωgw would only decrease by a factor of two at LISA frequencies and a factor of four at SKA
frequencies. Consequently the uncertainty on ξ does not qualitative change the prospects of
detection, strengthening the robustness of our results (e.g. fa ≳ 1014 GeV remains just about
detectable by SKA).

• We assumed that the energy emission rate into GWs continues to follow the prediction in
eq. (6.6) based on the Nambu–Goto strings effective theory, with r constant, throughout the
scaling regime. Numerical simulations confirmed this result for log ≲ 7.5 with fixed r =
0.26(11), as in eq. (6.11). As mentioned, we cannot exclude a small logarithmic dependence
in r (for instance, due to a change in the average shape of the string trajectories). However
such a running is bounded by Figure 6.3 and (if present) would most likely give Γg a log
dependence that is subleading to that from ξ. This possibility therefore only makes a small
contribution to the overall uncertainty on Ωgw.

• We assumed that the form of the instantaneous emission spectrum of GWs Fg of Figure 6.5 is
preserved during the whole scaling regime, also after log ≃ 7.5. This assumption is motivated
by the existence of the scaling regime (and Fg is seen to be preserved during the whole
simulation range). As noted in Section 6.2.2, as long as the IR cutoff x0 does not change
exponentially and q does not decreased below 1 (both of which are unlikely), the uncertainties
on Ωgw from these quantities are negligible.

As well as those from our reconstruction of the scaling regime, there are also uncertainties on
Ωgw due to unknown features of the early Universe.

• In obtaining Figure 6.6 we have taken the Hubble parameter H1 when the scaling regime starts
sufficiently large that the GWs in the observable frequency range are in the approximately
scale invariant part of the spectrum. This is actually a mild assumption requiring just that
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H1 ≳ keV (corresponding to a temperature of the order of 100 TeV), so the UV cutoff of
the spectrum is at frequencies f ≳ Hz. Values of H1 much larger than this are expected in
all of the models that lead to symmetry restoration at the relevant fa, which we discuss in
Section 6.4. It is also expected that there is sufficient time for the string network to reach the
attractor prior to the Universe dropping to the temperature 107 GeV when the first GWs in the
observable frequency range are emitted. Moreover, friction on the string due to interactions
with the thermal bath, which is relevant at high temperatures if the axion couples to standard
model particles (but we do not include in our analysis of the scaling regime), will be negligible
by this point for axion decay constants that lead to observable signals. In particular, the
friction is expected to be irrelevant for temperatures ≲ 1011 GeV(fa/1014 GeV)2 [273], which
is safely far above those corresponding to observable frequencies (further analysis would be
required to determine the temperature at which friction becomes irrelevant precisely, see
also [272,274–276]).

In contrast, the UV part of the spectrum f ≳ (H1/ keV)1/2 Hz depends on how (and when) the
network formed and reached the scaling regime, and possibly gets additional contributions e.g.
from the U(1) phase transition. However, in practice this is not detectable in any motivated
model.

• In our derivation we also assumed that the Universe is in radiation domination up to high
temperatures (say, 108 GeV, as show in Figure 6.6). Different cosmological scenarios, e.g.
matter domination or kination, would drastically modify the spectrum’s shape. Indeed, it is
easy to show from eq. (6.8) that, if R ∝ tα, ∂ρg/∂ log k is proportional to a negative (positive)
power of k depending on α > 1/2 (α < 1/2) [325–328]. An accurate determination of the
spectrum in such scenarios would require recalculating ξ and r from simulations with such α.

• Finally, we assumed only SM degrees of freedom. If additional degrees of freedom are present
the prediction will be modified as in eq. (6.12). Indeed, as pointed out in [329], a precise
measurement of the spectrum could in principle provide information about g at high temper-
atures (it is plausible that a significant number of beyond SM degrees of freedom could enter
at energies ≳ TeV, and the possibility this could be detected by analysing the GW spectrum
from strings has been considered in [327]). However, given the uncertainties discussed above
and the weak dependence of Ωgw on gf , extracting the number of degrees of freedom would
appear to be very challenging.23

23Strictly speaking, our results for ξ and r have been obtained from numerical simulations with R ∝ t1/2, that do
not account for the change in the number of degrees of freedom. We expect however a very minimal change in such
observables when one takes into account the time-dependence on R from g.
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6.3 Constraints on the Axion Mass and Decay Constant

Having shown that post-inflationary axions lead to GWs with amplitude and frequency that could
be accessible to proposed experiments, we now analyse some other phenomenological features of this
scenario. These provide direct and indirect constraints on fa and ma, completing our understanding
of the axions that could be discovered via GWs, and also giving complementary observational
signatures.

In the following we will consider a single axion with a temperature-independent mass ma.24

Axions with fa ≳ 1014 and ma ≲ MeV are cosmologically stable regardless of the details of their
couplings to the SM [330]. In Section 6.3.1 we will see that, given this stability, only ultralight
axions are not ruled out by dark matter overproduction for the relevant values of fa, so we focus on
this mass range (as described in Appendix J, axions with ma ≳ MeV can decay, but, as mentioned,
for such values the scaling regime ends before observable GWs are produced). In Appendix J we
show that only the ultra-light mass range is allowed for large fa also in the case of a temperature-
dependent axion mass.

In Figure 6.7 we summarise the constraints, which we detail in the remainder of this Section.
Given their stability, axions form a component of dark matter (potentially overproducing the ob-
served abundance) and those that are relativistic at the time of BBN or decoupling act as dark
radiation. The resulting limits are shown in red and blue respectively. DM axions from strings and
domain walls have isocurvature perturbations, which are constrained by CMB and Lyman-α obser-
vations. As explained in Section 6.3.3, it is challenging to determine the resulting limits precisely,
however we will derive reasonable conservative bounds (which should still be treated with caution),
shown in purple. We also show bounds on the fraction of dark matter that can be ultralight from
Lyman-α observations (Lα). Finally, if ma is small enough, axion strings persist at the epoch of
CMB decoupling, and are constrained by CMB observations. In Appendix H we summarise other
constraints that are less strong than those shown, e.g. from from black hole superradiance.

Even though these limits are fairly restrictive and become stronger for larger fa (exactly when
the GWs become detectable), there is about one order of magnitude of allowed values of fa and
many orders of magnitude of ma that provide observable GW signals from strings. We note that
these constraints do not depend on the possible axion couplings to the SM (which we did not
specify). Moreover, although we considered a model with a single axion, the bounds are not
expected to significantly change if additional light fields are included and coupled to the axion, so
our conclusions apply to generic axion models in the post-inflationary scenario.25

24Although we remain agnostic on how the mass is generated, we observe that this mass could arise from explicit
breaking of the axion’s shift symmetry in the ultra-violet (UV) theory.

25Some models with unusual features (such as the clockwork mechanism) might avoid these constraints.
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Figure 6.7: Constraints on axion mass and decay constant in the post-inflationary scenario, with a
temperature independent axion mass. Limits from dark matter overproduction and dark radiation
are shown in red and blue respectively. The bound from isocurvature perturbations is conservative
but is still particularly uncertain (see the main text for details), and it based on the assumption
that the spectrum of isocurvature perturbations is very strongly suppressed beyond the peak at
k⋆ = H⋆R⋆/R0. In particular in the region ma ≲ 10−22 eV marked by the purple arrow a complete
reanalysis is required to obtain fully reliable bounds, using the full details of the spectrum of
isocurvature perturbations which are difficult to extract. In case such bounds could be obtained
they are potentially stronger than those plotted. A similar analysis would be required to extract
the exact bounds in the region ma ≲ 10−28 GeV, however in this region there are already strong
constraints. Specifically, direct CMB observations rule out extremely light axions with large fa
(in grey), since strings persist at the time of decoupling causing anisotropies. There are also
constraints on the fraction of DM that ultra light ALPs can make up, for example from Lyman-
α forest observations which we plotted in light blue. Additionally the CMB also constraints the
fraction of DM that ALPs with masses 10−33 eV ≲ ma ≲ 10−22 eV make up [331,332], which we have
not plotted since they are weaker than the dark radiation bounds. We mention further constraints
that are less strong than those plotted in Appendix H. We also identify the parts of parameter
space in which axion strings produce a GW spectrum that is detectable by SKA and LISA, and
the fraction of DM that axions from the scaling regime comprise (red dotted lines). This Figure
was produced by my collaborators for our joint work [1], which I have slightly modified to include
the purple arrow pointing to the region with uncertain isocurvature limits.
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6.3.1 Dark Matter

As discussed in Section 2.4.3, during the scaling regime energy is continuously radiated into axions
at the rate Γa. Such axions are relativistic during the scaling regime (since ma ≪ H), and most
of them become non-relativistic soon after the axion potential V becomes relevant, when H ≃ ma.
Since these axions are stable they form a component of dark matter.

The number density of axions during the scaling regime can be obtained following a similar
approach as for GWs in Section 6.2.2. As mentioned, the momentum distribution of Γa has the
same form as that of Γg in Figure 6.5. However, the spectral index qa for the axion emission
changes in time and, although qa < 1 for log ≲ 8, its extrapolation indicates that qa > 1 at log ≳ 9,
which we will assume in the following (see [186, 188] for more details). Once qa > 1, the axion
number density during the scaling regime nst

a ≡
∫
dk/ωk∂ρa/∂k is approximately 8Hξµeff/x0,a

(here ω2
k ≡ k2 + m2

a; ∂ρa/∂k is the axion energy density spectrum, defined in the same way as
the GW one in eq. (6.8); and x0,a is the IR cutoff of the instantaneous axion emission spectrum).
Consequently, the number density nst

a,⋆ at H = H⋆ is enhanced by a factor of ξ⋆ log⋆ ≫ 1 with
respect to that in the pre-inflationary scenario, which is of order θ2

0H⋆f
2
a at this time [163] (the

subscript ‘⋆’ refers to quantities evaluated at H = H⋆ ≡ ma).
We can obtain a conservative lower bound on the final axion abundance by considering only

the axion waves emitted during the scaling regime up to H⋆ (i.e. nst
a,⋆ only), which can be reliably

determined (following the logic applied to QCD axion strings in [188]). Additional axions will
be produced during the destruction of the string network, however a reliable calculation of this
component appears challenging as the system of strings and domain walls cannot be simulated at
the physical value of ma/mr.26

As shown in [188], the waves emitted during the scaling regime redshift relativistically for some
time even after H⋆, since their kinetic energy a factor of ξ⋆ log⋆ ≫ 1 larger than their potential
energy (bounded by V ≲ m2

af
2
a ), which is therefore negligible.27 The relativistic redshift ends

when the potential and kinetic energies become comparable. At this time, the waves experience
a nonlinear transient (the main features of which can be understood analytically, up to order 1
coefficients that need to be obtained from numerical simulations). Soon after this most of the
axions from the scaling regime become non-relativistic and their number density per comoving
volume is conserved. The net effect of the relativistic redshift and the nonlinear transient is a
non-conservation of the comoving axion number density between H⋆ and the end of the transient.
However, unlike the case of a temperature dependent mass, this only amounts to an up to O(20%)
effect for a temperature-independent mass with ξ⋆ log⋆ = 3 × 103 or smaller (see Appendix F.3 for
the derivation). Given the much larger uncertainties involved, in what follows we will therefore
make the approximation that nst

a is conserved.
26The final number density of axions arising from the axions emitted by the scaling regime is not expected to be

affected by more than an order one factor by the presence of domain walls connected to strings [188].
27The relevant kinetic energy is the one is IR modes, approximately given by 8πξ⋆ log⋆ H2

⋆f2
a ≫ m2

af2
a at H⋆.
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Number density conservation from H⋆ leads to the (non-relativistic) axion energy density today
ρ0
a = ma(R⋆/R0)3nst

a,⋆, and the relic abundance of axions from strings during the scaling regime
Ωst
a ≡ ρ0

a/ρc is

Ωst
a ≃ 0.1

(
ξ⋆ log⋆
3 × 103

)(
fa

1014 GeV

)2 ( ma

10−18 eV

) 1
2
(

10
x0,a

)( 3.5
g⋆(T⋆)

) 1
4
, (6.13)

for ξ⋆ log⋆ ≲ 103. For larger values of ξ⋆ log⋆, eq. (6.13) must be changed to take into account the
non-conservation of the number density. For a temperature independent axion mass, this results
in Ωst

a ∝ (ξ⋆ log⋆)3/4 up to logarithmic corrections (see Appendix F.3). Note that, unlike the QCD
axion, in eq. (6.13) fa and ma can vary independently and, for a fixed fa, smaller values of ma give
smaller Ωst

a .
As expected, for ξ⋆ log⋆ small enough that the transient is negligible, the relic density of axions

from strings is a factor of ξ⋆ log⋆ larger than that from misalignment in the pre-inflationary scenario
(with O(1) misalignment angle) [333], with the same leading parametric dependence on fa and ma.
For ultralight axions log⋆ = log(mr/ma) ≃ 102 and, as discussed in Section 6.2.4, the extrapolation
of ξ suggests that ξ⋆ = c1 log⋆ ≃ 25. Therefore, the relic density leads to severe constraints for
fa ≳ 1014 GeV, forcing ma ≲ 10−17 eV. We show the bound Ωst

a < ΩDM in Figure 6.7 assuming that
the IR cutoff of the spectrum is x0,a = 10 also at large log, and that the growth of ξ in eq. (2.47)
continues (we also fix that the network persists until 3H = ma, as suggested by simulation results
for a temperature independent axion mass in Appendix F.3, which leads to a constraint that is
stronger by a factor of

√
3).

Eq. (6.13) is expected to hold at best up to an order one coefficient that encodes the effect of
the system of strings and domain walls on the axion waves produced during the scaling regime. We
finally note that eq. (6.13) only provides a lower bound on the axion dark matter abundance, as
it misses the unknown part from string-domain wall collapse. In any case, as shown in Figure 6.7,
even if this contribution to the axion relic abundance is a few orders of magnitude larger than Ωst

a ,
a wide range of axion masses are still allowed for fa ≳ 1014 GeV (thanks to the dependence of Ωst

a

on ma and fa).
As mentioned, we obtained eq. (6.13) by assuming that at large log the axion spectrum becomes

IR dominated, with qa > 1, as suggested by extrapolations of simulation results [188]. If this is not
the case the number density of axions from strings will be negligible with respect to that predicted
by the misalignment mechanism with an effective initial misalignment angle ⟨θ2

0⟩ ≃ 2.152. The
resulting relic abundance is a factor of ξ⋆ log⋆ smaller than eq. (6.13), and the correspondingly
weakened bound from dark matter in Figure 6.7 can be straightforwardly obtained. We also note
that Lyman-α observations limit the fraction of the dark matter that can have a mass below
∼ 10−20 eV [334, 335]. We plot the resulting constraints in Figure 6.7, labelled Lα. Even though
they are weaker than those from isocurvature that we study later, these bounds have the advantage
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of not depending on the (uncertain) details of the axion density power spectrum.28

6.3.2 Dark Radiation

For the ultra-light axion masses allowed by the relic abundance constraint in eq. (6.13) (plotted
in Figure 6.7), the scaling regime ends when the Universe’s temperature is less than an MeV (see
also the upper axis of Figure 6.6). Consequently all the axions emitted during the scaling regime
up to that point are relativistic at the time of BBN. Additionally, due to the approximately scale-
invariant form of the axion energy density spectrum ∂ρa/∂k (see eq. (F.6) in Appendix F.3), an
order one fraction of the axion energy is in modes that are relativistic at CMB decoupling even
if the string network is destroyed prior to this. Constraints from current limits on dark radiation
at these times, usually expressed in terms of the effective number of neutrinos Neff , are therefore
potentially relevant.29

Similarly to gravitational waves, during the scaling regime the energy density in axions is
ρa(t) =

∫ t
t1
dt′(R′/R)4Γ′

a, where Γa takes the form in eq. (2.53). As a result, up to 1/ log corrections
and neglecting changes in the number of relativistic degrees of freedom g, and assuming ξ = c1 log
as in eq. (2.47),

ρa = 4
3H

2c1πf
2
a

(
log3 − log3

1

)
, (6.14)

where log1 ≡ log(mr/H1) is the value of the log when the scaling regime starts. From eq. (6.14) we
see that the energy in axions could be sizeable as it is enhanced by a log3 factor, which ultimately
comes from the fact that the axion spectrum deviates from scale invariance by a log2 correction.
Moreover, the dependence on the initial condition, which sets log1, is not important as long as
log1 ≪ log (in the following we therefore neglect log1, and the resulting bound is barely affected
by varying this in its plausible range).

The axion energy corresponds to an effective number of neutrinos ∆Neff ≡ (8/7)(11/4)4/3ρa/ργ

where ργ is the energy density in photons.30 At a temperature of 1 MeV eq. (6.14) leads to

∆Neff = 0.6
(
c1

0.24

)(
fa

1015 GeV

)2 ( log
90

)3
, (6.15)

where log(mr/HBBN) ≃ 90 if mr = 1014÷1015 GeV. To determine the overall coefficient in eq. (6.15)
precisely, we improved the calculation of ρa in eq. (6.14) by numerically integrating Γa to account
for the changing number of relativistic degrees of freedom. Owing to the increased expansion of

28There is an additional constraint from Lyman-α [336] observations, not plotted, which requires ma > 2×10−20 eV
in the case the axion makes up the entirety of the dark matter. While this excludes some values of ma and fa such
that the axion makes up the whole DM abundance, the extension of this bound to the case of an axion that makes
up a fraction of the total DM is currently unknown.

29For larger axion masses a fraction of ρa is in modes that are relativistic at BBN, but constraints from dark matter
overproduction are stronger in this case.

30The effective number of neutrinos is defined by Neff ≡ (8/7)(11/4)4/3(ρν +ρX)/ρa. In principle the energy density
in strings and gravitational waves also contributes to ρX , however this energy is much smaller than ρa.
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the Universe this suppresses the result by about 30%.31

Although bounds that we will study in Section 6.3.4 require that the string network is destroyed
prior to the formation of the CMB for the fa ≳ 1014 GeV, limits on dark radiation from the CMB
are still potentially relevant. In this case, the energy in relativistic axions at the time of decoupling
is simply obtained by redshifting the value of eq. (6.14) from the time of the network destruction,
accounting for the proportion of the axions that become non-relativistic.

We use the 95% limits from [45], which correspond to ∆Neff < 0.46 and 0.28 at BBN and CMB
times respectively (imposing constraints derived from different analyses or the 68% limits, e.g. [337]
only changes the constraint on fa relatively mildly). As can be seen from eq. (6.15), the limits from
BBN constrain fa ≲ 1015 GeV as shown in Figure 6.7. Those from the CMB lead to a comparable
bound, although the maximum allowed ∆Neff is more uncertain given tensions between different
determinations of the Hubble parameter. As we will see shortly, all such values of fa are in tension
with limits from isocurvature. However, the constraints from dark radiation are still useful since
they are subject to fewer uncertainties.

We finally note that the detection of GWs from strings would predict a non-vanishing ∆Neff .
Conversely, given the quadratic dependence on fa, a plausible improvement in the measurement of
∆Neff to an uncertainty of σ(∆Neff) ≃ 0.02 [338] could rule out fa ≳ 2 × 1014, which is a large part
of the range that gives GWs that could be observed in the near future.32

6.3.3 Isocurvature Perturbations

The main equations used to calculate constraints from isocurvature perturbations have been re-
viewed in Section 4.5.2 where the intermediate scenario was considered. The main difference here
is that in the post-inflationary scenario the strings contribution is dominant and that the net-
work is destroyed at the time t⋆. The important quantities to consider are the (dimensionless)
power spectrum ∆2

a(k) defined by eq. (4.31), which by the same causality argument also has a k3

shape at momenta bellow the peak H⋆R⋆/R0, and the fraction between isocurvature and curvature
perturbations:

fiso(k) = Ωa

ΩDM

√
Ck3R3

0
AsH3

⋆R
3
⋆

. (6.16)

Given the highly nonlinear dynamics of the scaling regime and the destruction of the string
network, the only way to determine ∆2

a accurately would be to numerically simulate the system until
the strings and domain walls have all vanished. Unfortunately, as discussed, it is extremely hard
to study the network’s destruction reliably. Despite this, similarly to the dark matter abundance,
we can obtain a conservative isocurvature constraint by considering only the axion waves produced
during the scaling regime up to H⋆. Provided the presence of domain walls does not affect these

31In particular, the contribution to ρa from earlier times, already suppressed by log3, is further suppressed by g1/3.
32Additionally, the possibility that the background of relativistic axions left over today could be directly detected

(for axion-to-photon coupling gaγγ larger than f−1
a ) has recently been studied [339].
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waves by more than an order one amount, the axions from the scaling regime can be approximated
as a separate component of DM (distinct from that produced by domain walls) with its own power
spectrum and a relic abundance given by eq. (6.13). Neglecting the effects of domain walls, we will
be able to determine the power spectrum for this component and in doing so obtain an isocurvature
bound. The DM axions from domain walls will also have density perturbations so are expected to
only strengthen the constraint.33 Finally, the power spectrum at k ≳ H⋆ depends on the details
of the destruction of strings and domain walls, and it could be affected by oscillons [184], and is
beyond the scope of our present work.

To determine ∆2
a, we solve the equations of motion ä + 3Hȧ − R−2∇2a + V ′(a) = 0 (with

V = m2
af

2
a (1 − cos(a/fa)) and ma temperature independent as before) numerically. As discussed in

Appendix F.4 we expect very similar results from any other potential bounded to be ≲ m2
af

2
a . We

start at H = H⋆ with initial conditions given by a superposition of waves with the energy density
spectrum ∂ρa/∂k predicted by the scaling regime at ξ⋆ log⋆ = 103 (see Appendix F.4 and [188] for
more details). As mentioned in Section 6.3.1, the field undergoes a period of relativistic redshift
and a nonlinear transient, after which the non-relativistic regime is rapidly reached with (at least
the IR part of) ∆2

a constant.34

In Figure F.12 (left) of Appendix F.4 we plot the resulting ∆2
a, defined as in eq. (4.31), as

a function of the momentum and time. As expected, the spectrum reaches an order one value
at momenta corresponding to the scale H⋆. The peak is somewhat above H⋆ since x0,a ≃ 10
and correlations at smaller scales are likely since the average axion momentum is larger than x0

(see [188]). At smaller momenta the expected k3 behaviour is reproduced, with a constant coefficient
C ≈ 2 × 10−5 (the nonlinearities turn out to be important, as this coefficient is about a factor of
4 smaller than if the evolution of these waves were linear, i.e. with V = 1/2m2

aa
2, see the green

line in Figure F.12 (left) of Appendix F.4). In the following we will derive constraints assuming
∆2
a and Ωst

a as described above. To get a feel for how much the DM axions from domain walls
might potentially strengthen the constraint, in Appendix F.4 we also plot and discuss results for
the power spectrum obtained after the destruction of the full string-domain wall network at the
unphysical value log⋆ = 5.

Isocurvature constraints from the CMB and Lyman-α

For axion masses ma ≳ 10−22 eV such that the modes constrained by Lyman-α observations kLα ∼
10 Mpc−1 are in the k3 part of ∆2

a, we can be immediately apply the results in [260,261] to obtain a
bound on fa, which can be written in term on fiso(kCMB) in (6.17) bellow, i.e. fiso (kCMB) < 0.004.
For sufficiently small masses, ma ≲ 10−22 eV, such modes are not in the k3 region however.

33A large weakening of the bound would require that the domain walls absorb a large fraction of low momentum
axion waves emitted during scaling and homogeneously remit them as high momentum modes.

34Unlike simulations of the string network, the axion only simulations do not need to probe length scales f−1
a (since

it is the IR part of the axion spectrum that contains the majority of the axion number density so is relevant to the
constraint), therefore the physical dynamics are reproduced directly.
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Consequently the results of [260] cannot be applied since they rely on the specific k3 shape of the
spectrum, and instead a complete reanalysis is needed, which would take into consideration the full
shape of the spectrum, including momenta higher than the peak. We do not attempt this in our
present work, and instead we discuss conservative constraints coming from the CMB alone. We
stress however that given the density power spectrum remains of order 1 up to k/H ∼ 100 and
drops relatively slowly above this, a full reanalysis of the Lyman-α constraints in this mass region
is likely to result in stronger bounds than the those discussed bellow in the region ma ≲ 10−22 eV.

For 10−28 eV ≲ ma ≲ 10−22 eV, kCMB is inside the k3 part of ∆2
a(k) while kLα is not. In

this mass region we directly apply the CMB limit fiso < 0.64 obtained in [259] for a k3 shape of
the spectrum of isocurvature perturbations, which gives conservative isocurvature constraints. In
general the axions from scaling only comprise a fraction of the total dark matter, so there is a
factor of Ωst

a /ΩDM in their contribution to fiso. Consequently, assuming there are no isocurvature
fluctuations in the remainder of the DM, at k = kCMB

fiso (kCMB) = Ωst
a

ΩDM

√
C k3

CMB
Ask3

⋆

≃ 0.2
(
ξ⋆ log⋆
3 × 103

)(
fa

5 × 1014 GeV

)2 ( ma

10−28 eV

)−1/4 ( C

2 × 10−5

)1/2
,

(6.17)

where As = 2.1 × 10−9, and k⋆ ≡ H⋆R⋆/R0 is the comoving momentum corresponding to H at
H = H⋆ = ma redshifted to today. As discussed, we expect eq. (6.17) to give a lower bound on fiso,
and to be valid up to an order one factor. We note that the isocurvature constraint is potentially
important even when the axions produced by the scaling regime make up a small fraction of the
abundance. This is because, for sufficiently light axions, the relative density fluctuations reach
values close to one at the observationally constrained scales.

Finally, for masses ma ≲ 10−28 eV the limit in [259] can no longer be applied as kCMB is not
in the k3 part of ∆2

a(k). However in this region we expect strong constraints due to the fact that
strings survive until the time of recombination, which are discussed in Section 6.3.4.

Impact on the allowed axion masses and decay constants

The bounds on the axion mass and decay constant from CMB and Lyman-α isocurvature constraints
are plotted in Figure 6.7. The limits at higher axion masses come from Lyman-α observations, while
those at lower masses are due to the CMB observations. As discussed, we do not give bounds from
Lyman-α for axion masses smaller than about 10−22 eV.

Although we expect the domain walls not to affect the power spectrum associated to pre-existing
axions waves by more than an order one factor, we blur the resulting constraints in Figure 6.7 to
reflect this uncertainty. Moreover, the constraints from isocurvature would strengthen if the axions
from domain walls have large density perturbations, i.e. if their density power spectrum corresponds
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to a larger coefficient C, if their relic abundance is comparable to that of the axions from scaling
(though the bound on fa would increase only proportionally to C1/4). The bounds would also
strengthen if the domain walls produced more DM axions than the scaling regime, even if they
have the same density power spectrum as those from scaling, because fiso includes a factor of
Ωa/ΩDM, as in eq. (6.17). We also note that there are other possible constraints on isocurvature
from spatial scales between the CMB and Lyman-α observations (e.g. from structure formation
and galaxy clusters [261]), which could matter for intermediate axion masses ∼ 10−25 eV. However,
these are more sensitive to astrophysical details, and would require a dedicated analysis.

We note that it is clear from eq. (6.17) that the isocurvature constraints are not relevant for
the QCD axion in the post-inflationary scenario. Indeed, for the QCD axion H⋆ corresponds to the
Hubble parameter shortly before the QCD crossover, which is much larger than that for ultralight
axions, and so k⋆ is larger and fiso more suppressed. Finally, for both the QCD axion and ultralight
axions, isocurvature perturbations sourced during inflation (if the axion was present at this point)
are averaged out by the dynamics of the strings and are simply incorporated into the coefficient C
of the white noise spectrum.
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Figure 6.8: Comparison between the fraction of isocurvature perturbations produced by strings
relative to curvature perturbation as defined in equation (6.16) for various values of the symmetry
breaking scale (colored lines), and the scale invariant isocurvature fraction constrained by the CMB
[205] (black line). The various isocurvature fractions are represented as functions of momentum
in units of kCMB = 0.05 Mpc−1 and the ALP mass was set at ma = 10−26 eV. We have also
plotted the values of klow = 0.002 Mpc−1 and khigh = 0.1 Mpc−1 at which the CMB limits on the
isocurvature fraction are reported in [205]. Due to the k3 momentum dependence of ∆2

a and f2
iso,

if the CMB limits are satisfied at the highest momentum khigh, they are automatically satisfied
at lower momentum. However, strictly the CMB limits should be derived by taking the shape of
the isocurature perturbations spectrum into account, which is k3 rather than scale invariant, and
for this reason we rely on the analysis in [259] which considers this spectral shape for the plot in
Figure 6.7. At higher ALP masses stronger constraints come from Lyman-α forest observation,
which are sensitive to higher momentum scales kLα ≃ 10 Mpc−1. For definiteness we have also set
the normalisation of the isocurvature spectrum in equation (6.16) to C = 2 × 10−5.
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6.3.4 Strings and CMB anisotropies

If strings are present at the time of decoupling their gravitational interactions introduce additional
anisotropies in the CMB [340, 341]. In particular, a long string induces a ‘deficit angle’ δ = 8πGµ
in the locally flat metric around it, giving the metric a global conical structure. As a result, two
particles moving towards the string in parallel acquire a nonzero relative velocity as they pass
the string, and eventually collide.35 If this is applied to an observer and a source of photons, the
observer will see a discontinuous Doppler shift of the photons as the string is passed. Consequently,
strings lead to discontinuous temperature fluctuations, of order δT/T ∝ Gµ, in the CMB photons
around them [342]. Moreover, a string that moves in the primordial plasma produces a wake behind
it by pure gravitational interactions, and therefore additional density perturbations, which are again
potentially measurable in the CMB. Since the strings act as a random source, such perturbations
are not coherent and do not result in the observed acoustic oscillations [343–345]. Consequently
they can contribute, at most, a relatively small fraction of the total anisotropy (see e.g. [110–113]).

A statistical analysis comparing the effects mentioned above with CMB observations gives an
upper limit on the string tension µ and consequently on the allowed fa for an axion network that
is not destroyed prior to decoupling. These constraints are therefore relevant for axion masses
ma ≲ 10−28 eV. As for the GW spectrum and axion DM abundance, it is challenging to determine
the string induced anisotropy spectrum at the relevant time, which cannot be studied directly in
simulations. Reliable constraints can only be obtained by fully accounting for the effects of scaling
violations on the string induced anisotropy spectrum, and we do not attempt this in our present
work.36 Instead, we simply note that, based on the previous literature (e.g. [346–348] for local
strings and [349] for global strings), a bound very roughly in the range of Gµ ≲ 10−7 is plausible,
corresponding to fa ≲ 2×1014 GeV. This is in possible tension with any axion with ma ≲ 10−28 eV
and fa large enough for observable GWs. We however stress that there is significant uncertainty
remaining and blur the bound in Figure 6.7 to indicate this. In particular, if the bound on Gµ turns
out to be significantly weaker than the quoted limit, observable GWs from axion strings would be
allowed for arbitrarily small axion masses.

6.3.5 The case NDW > 1

In the previous Sections of this Chapter we have performed our analysis assuming that the U(1)
breaking scale va equals the axion decay constant fa. Our results are however easily generalised
when NDW = va/fa > 1. In this case additional explicit breaking of the remaining discrete
symmetry must be present to avoid the domain walls over-closing the Universe [191], and this

35On the other hand, loops are expected to oscillate many times before disappearing and at large distances the
gravitational field averaged over one oscillation is the usual Newtonian potential, which affects the motion of bodies
like conventional matter.

36It would be particularly challenging to accurately determine constraints around ma ∼ 10−28 eV, given that the
string network is being destroyed by domain walls around the time of decoupling in this case.
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breaking must be sufficiently large that axion emission from domain walls does not produce a
too large dark matter abundance (as previously, our constraints from the dark matter abundance
considering emission from the string network are conservative).

First we observe that the calculation of the axion and GW emission from the strings depends
on va, which enters in eq. (2.29) and therefore determines the string tension in eq. (2.49) and the
emission rates Γa and Γg. Thus, the GW spectrum in eq. (6.12) and Figure 6.6 is valid for a generic
va with the substitution fa → va. Similarly, the bounds from dark radiation and CMB anisotropies
in Sections 6.3.2 and 6.3.4 and Figure 6.7 apply to va.

On the other hand, since the decay constant fa determines the axion potential V ∝ m2
af

2
a , a va ̸=

fa affects the dark matter abundance and isocurvature perturbations discussed in Sections 6.3.1
and 6.3.3. In all our calculations in those Sections the scale va enters only through the inputted
axion energy density spectrum from the scaling regime, and it appears together with ξ⋆ log⋆ (in
particular, ∂ρa/∂k ∝ v2

aξ⋆ log⋆). The dark matter abundance in eq. (6.13) is therefore easily
generalised by substituting ξ⋆ log⋆ → N2ξ⋆ log⋆. However, as discussed in Section 6.3.1, if NDW ≫ 1
one needs to account for the number density non-conservation. This is done by multiplying eq. (6.13)
by the suppression factor in eq. (F.3), which makes Ωst

a ∝ (N2
DWξ⋆ log⋆)3/4 (instead of a quadratic

dependence on NDW). A similar change occurs in eq. (6.17) via the DM abundance (notice that C
depends on ξ⋆ log⋆, and needs to be recomputed).

The overall effect of NDW > 1 can therefore be summarised by substituting fa → va in Fig-
ures 6.6 and 6.7, but with a stronger constraint from dark matter overproduction (by a factor
O(N3/2) on the vertical axis of Figure 6.7).

6.4 Peccei-Quinn Restoration in the Early Universe

The post-inflationary scenario occurs if the U(1) symmetry has ever been restored after inflation. In
this Section we apply the mechanisms considered in Chapters 4, 5 to see which of them could lead
to symmetry restoration for the relatively large symmetry breaking scales fa ≳ 1014 GeV required
for observable gravitational waves.

• Quantum fluctuations during inflation induce perturbations in any effectively massless scalar
field present at this time. As mentioned before, the rough condition often considered in the
literature for the post-inflationary scenario is simply HI/2π ≳ fa [197,251]. Given the results
presented in Figure 4.9 it is likely that the actual condition is of the order HI/fa ≳ 2. The
current bound on HI from the non-observation of tensor modes is [205]

HI

2π < 9.6 × 1012 GeV . (6.18)

Consequently such fluctuations do not lead to the post-inflationary scenario for values of fa
that give observable GWs, even if we relax the condition for restoration as suggested by our
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analysis in Chapter 4.

• The PQ symmetry can be restored if the maximum temperature Tmax during reheating is
greater than O(fa) and the sector that gives rise to the axion is sufficiently close to thermal
equilibrium at this time. As explained in Section 5.3 the maximum temperature of the
Universe can be estimated [290]:

Tmax ≃ 0.30M
1
4
PH

1
4
I T

1
2

RH ≃ 0.22M
1
2
PH

1
4
I Γ

1
4
φ . (6.19)

With HI close to the maximum allowed value, symmetry restoration for fa ∼ 1014 ÷1015 GeV
requires that the inflaton decay rate is of the order Γφ ∼ 108 ÷ 1012 GeV. For a mass of
the inflaton mφ ∼ HI and a decay to fermions through a coupling L ⊃ gφψψ for example,
g ∼ 10−3 ÷ 0.1 would be required. We conclude that this is possible, albeit a bit tight for
fa ≃ 1015 GeV, especially since in achieving this maximum temperature instant thermalisation
of the inflaton decay products is also required.

• Additionally, for many types of interaction, the inflaton expectation value during inflaton
restores the PQ symmetry if it couples to the PQ sector, provided the coupling is large
enough [350–353]. Depending on the details of the theory, the PQ symmetry might then
break during inflation (as the inflaton evolves towards its final expectation value), or during
reheating (once the inflaton is settling down e.g. to ⟨φ⟩ = 0). In many theories the inflaton
expectation value is large compared to other scales, so this restores a PQ symmetry with
large fa even if the inflaton only has relatively weak couplings. This was considered in detail
in Section 5.1 and the particular case of hybrid inflation in Section 5.1.1. The attractive
feature of hybrid inflation is that, for values of λ that are not very small, slow-roll inflation
ends within a very short time after PQ symmetry breaking, which naturally results in the
post-inflationary scenario. Additionally the value of HI is relatively small in this case:

HI ≃

√
λ

12
f2
a

MP
≲ 1011 GeV , (6.20)

which is significantly below the CMB constraint even for λ ∼ O(1) and fa ≃ 1015 GeV. We
see that this mechanism is very efficient at restoring the PQ symmetry, which happens for
maximum temperatures significantly smaller than fa.

For an inflaton coupling of the type

Vint = 1
2gφ

2|ϕ|2 , (6.21)
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the condition for PQ symmetry to be restored during inflation is

g
〈
φ2
〉
> m2

r , (6.22)

which is possible for couplings g ≲ O(1) if the inflaton assumes a large value
〈
φ2〉 ≳ f2

a .

• Similarly a non-minimal coupling of the PQ field to scalar curvature L ⊃ ϵR |ϕ|2 could restore
symmetry for ϵ > λf2

a

12H2
I
. However this would require either λ ≪ 1 or HI close to the maximum

limit in eq. (6.18) so that the coupling ϵ ≲ 1.

• We discussed in Section 5.4 that the PQ symmetry could be restored by non-perturbative
decay of the inflaton. We have considered two cases: that the inflaton couples directly to the
PQ field, where we found that the size of the coupling necessary for efficient preheating would
have restored the PQ symmetry already during inflation; and that the inflaton preheats an
intermediate massless scalar which then heats up the PQ field. The indirect preheating is
considered in more detail in Section 5.4.2 where the condition that it could restore symmetry
for parameter values for which Tmax could not is found:

H3
Im

3
φM

2
P > 10m8

r . (6.23)

For large values of the self-coupling λ such that mr ≃ fa ≃ 1015 GeV this is not significantly
more efficient than restoration via the maximum temperature Tmax, although it could be for
somewhat smaller λ.

• In Section 5.6 we discussed the possibility to restore PQ symmetry at a lower reheating
temperature, if the radial mode is light and is coupled to light fermions as L ⊃ gϕψcψ. The
minimum temperature needed to restore PQ symmetry in this situation is parametrically:

Tmin ≃ Max
(
mr

g
, gfa

)
. (6.24)

Additionally g2Tmin > H is required for the fermions to be in thermal equilibrium and
the treatment of Section 5.6 to be valid. Overall the simultaneous requirements that PQ
symmetry can be restored in this way and that the treatment is consistent translate to
g2MP ≳ Tmin ≳ gfa and g3MP ≳ gTmin ≳ mr up to order 1 factors. Given the maximum
temperature discussed above and the parameter space of interest 1014 GeV ≲ fa ≲ 1015 GeV
this is possible for g ≲ 10−3 and sufficiently light radial mode mr ≲ 109 GeV.

So far in this Chapter we assumed mr ≃ fa, however the GW signal emitted by such a network
will be largely unaffected by the small mr, i.e. it will approximately match the predictions
of Section 6.2. This is because the GW energy depends on the string tension, which is set
by fa not mr, and the GW spectrum is IR dominated so it is unaffected by the UV cutoff
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at mr being much smaller than fa. The only effect on the GW spectrum will be through the
value of log(mr/H) being slightly reduced.37 This will feed into ξ and the ratio ΓGW/Γa as
well as the tension. However, the change is not too dramatic as long as mr is not too small.
For example, taking mr = 5 × 108 GeV and fa = 5 × 1014 GeV (so that, from Figure 5.2,
the symmetry can be restored for temperatures ∼ 5 × 1011 GeV), the value of the log when
the GW emission is relevant to SKA is log ∼ 60, as opposed to log ∼ 75 if mr ∼ fa. The
amplitude of the resulting GW signal is reduced by roughly 50% relative to that plotted in
Figure 6.6, but it remains detectable by SKA.

6.5 Summary and Conclusions

Gravitational wave observations can only be used to learn about physics beyond the Standard
Model if we understand the spectrum expected in motivated theories. Here we have made a step
towards such a goal by studying the GWs emitted by the network of global strings that forms in the
early Universe in a generic axion model if the U(1) symmetry has been ever restored after inflation.

During the subsequent scaling regime GWs are produced by the motion and interactions of
strings. Calculating the resulting spectrum directly from numerical simulations is impossible, as
these only have access to a small range of early times. However, in Section 6.2.1 we have shown
that the Nambu–Goto effective theory with the Kalb–Ramond term – which describes the parts
of the string network for which the string thickness can be neglected – gives us analytic control of
the GW emission Γg at all times, up to an (order one) constant coefficient r related to shape of
the string trajectories during scaling. In particular, Γg/Γa = rGµ2/f2

a , where Γa is the emission
rate into axions and is fixed by energy conservation. As shown in Section 6.2.3, this result is
reproduced spectacularly well by first principles numerical simulations of the string network (at
the accessible small values of log(mr/H)), from which we have extracted the value of r together
with the momentum distribution of Γg (this is peaked at momenta of order Hubble and falls off at
higher momenta as ∝ 1/k2). The existence of the attractor solution then allowed us to reconstruct
the GW spectrum from the entire scaling regime, and our results are shown in Section 6.2.4. Due
to the logarithmic increase of µ (and of ξ), the spectrum has substantial deviations from scale
invariance. This enhances its amplitude at low frequencies, and makes it observable by multiple
planned experiments for fa ≳ 1014 GeV. Importantly, the detection prospects are not significantly
altered by the remaining uncertainties. We note that similar scaling violations have previously been
predicted in the GW spectrum from global strings, using models aiming to capture the emission
from small loops, and we discuss the relation of our work to the existing literature in Appendix I.

In passing, we noted the remarkably self-consistent picture of the scaling regime arising from
numerical simulations. In particular, the logarithmic scaling violations of many of the observables
seem to be a part of the scaling regime (for instance ξ and the power law qa of the instantaneous

37Since the divergence in the energy of the string is cut of by the physical string core size m−1
r rather than f−1

a .
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emission spectrum of axions ∝ 1/kqa both increase logarithmically with time). This is particularly
convincing because the energy emitted in axions and radial modes in the simulations is reproduced
precisely by the energy emission rate in eq. (2.53) with the ξ in eq. (2.47) and string tension in
eq. (2.49), see Appendix 6.2.3. Moreover, the theoretical expectation that Γg/Γa ∝ Gµ2/f2

a (for
trajectories with a fixed shape) is matched in the numerical simulations of the scaling regime, which
suggests that the scaling solution in which ξ increases logarithmically is self-similar (showing that
this increase is not a transient). Additionally, the GW spectrum shows the similar features as the
axion spectrum, but with q > 1. This suggests that indeed our extrapolation of the axion spectrum
is correct and that qa > 1 at large log (when the axion will be more weakly coupled to the string
cores, like the GWs are).38

In Section 6.3 we studied other general properties of axions in the post-inflationary scenario
(including their dark matter abundance, contribution to dark radiation, and isocurvature pertur-
bations), which led to complementary constraint on the axion mass and decay constant. This
analysis shows that for all masses in the range 10−28 eV ≲ ma ≲ 10−17 eV ultralight axions can
have decay constants large enough (fa ≳ 1014 GeV) to lead to observable GWs. The upper limit on
ma comes from dark matter overproduction, while the lower limit comes from CMB observations
(see Figure 6.7). As discussed in Section 6.3.4, this last limit is particularly uncertain and a revised
analysis of Gµ from CMB anisotropies could make it irrelevant by weakening the lower bound on
fa for ma ≲ 10−28 eV. In particular, our results exclude the possibility that GWs from QCD axion
strings during scaling are observable, assuming a standard cosmological history, since the dark
matter bound in this case requires fa ≲ 1010 GeV.39

As well as constraints, the phenomenological features discussed in Section 6.3 also lead to
complementary observational signals of ultralight axions in the post-inflationary scenario, including
∆Neff and isocurvature perturbations. For values of fa that lead to observable GWs these are close
to current bounds, and within reach of future improvements. Moreover, a PQ symmetry with large
fa is most easily restored in the early Universe for large Hubble during inflation, so tensor modes
with an amplitude close to the current observational upper bound might be present if GWs from
strings are discovered. We also see that any interpretation of the recent possible GW signal by the
pulsar timing experiment NANOgrav as being from global strings of an ultralight axion is in tension
with cosmological observations. Although we do not attempt a detailed analysis of the possible
signal, from Figure 6.6 a GW signal of the observed magnitude (with a standard cosmology) requires
fa ≳ 1015 GeV, which from Figure 6.7 is in conflict with bounds on ∆Neff from BBN.40

We also note that the small axion masses mentioned above are theoretically plausible, see
38It would be useful to reach large enough log to directly see qa > 1, possibly employing adaptive mesh refinement

approaches such as the one used in [354].
39We cannot exclude signals from the subsequent dynamics of domain walls.
40The power law of the spectrum extracted by NANOgrav might also suggest that the signal is not approximately

scale invariant as is predicted by global strings. GWs from QCD axion strings in non-standard cosmologies has been
recently considered in [328], which modelled the GW emission from loops and suggested that the NANOgrav result
could be interpreted as the emission from QCD axion strings if the equation of state is w < 1/3 [355].
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e.g. [356] and references therein. It appears inevitable that quantum gravity will explicitly break
all global symmetries [146, 147, 269], including the PQ one. The resulting breaking is often expo-
nentially suppressed (e.g. in the ratio fa/MP [148, 357]) and could therefore lead to the required
ultra-light masses.

Finally we consider the remaining open questions and directions for future work. From a theo-
retical direction, it would be valuable to understand further which classes of axion models cosmic
strings can form in. In particular, we have focused on axions that arise as the PNBG of a symme-
try that is realised in four dimensional Lagrangian (e.g. from a scalar with a symmetry breaking
potential or a new sector that runs into strong coupling, i.e. a composite axion model). Such
axions can appear in string theory models from the closed string sector [358]. However, in string
theory compactifications axions often come from the open string sector. Although the conventional
picture is that cosmic strings cannot form in this case, given the uncertainties surrounding early
Universe cosmology and de Sitter vacua in string theory we believe this merits further study.

Another direction in which to extend our work is the study of local strings, which arise from
a spontaneously broken gauged U(1) symmetry. In a system of local strings all the degrees of
freedom are massive, and, when the Hubble parameter is much smaller than the UV physics scale,
the energy might be radiated only in GWs. However, the emission of heavy modes is efficient at
small values of log(mr/H) (where mr is the mass of the heavy modes). Consequently, extrapolation
will be essential to determine the GW spectrum at observable frequencies.41

We also note that the GW signals from axion strings are fairly close to the maximum reach
of proposed detectors. Consequently, continued detailed analysis of astrophysical foregrounds will
be essential if such signals are to be identified.42 Although challenging, subtraction of e.g. the
foreground from neutron star and black hole binaries in the BBO frequency range appears feasi-
ble [361]. A careful study of the impact of the foregrounds on the prospects of the detecting GW
signals from strings in different frequency ranges would be worthwhile in the the future.

41Indeed, at small log the system of local strings seems to resemble the global string one in many ways.
42Note also that, if an ultralight axion makes up an order one percentage of the observed DM, the oscillations in its

gravitational field lead to signals at pulsar timing array frequencies that are of the same order as the stochastic GW
background from black hole binaries [359]. Axion miniclusters that appear in the post-inflationary scenario could
also leave imprints in pulsar timing arrays through their gravitational interactions [360], though there are still large
uncertainties on the properties of these objects.
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Chapter 7

Conclusions

The Standard Model of Particle Physics encapsulates our current understanding of matter in the
Universe, while the ΛCDM model of cosmology explains the history of the evolution of the Universe
under the effect of gravity and is consistent with most of the cosmological data. However, both these
models have associated open questions. In particular, one of the major questions which concerns
both particle physics and cosmology is that of dark matter, which is required to explain many
astrophysical and cosmological observations such as the CMB, structure formation, galaxy rotation
curves and gravitational lensing observations, while having no explanation inside the Standard
Model of Particle Physics.

A leading candidate for cold dark matter is the QCD axion, which is a pseudo Nambu-Goldstone
boson associated with the spontaneously broken U(1) Peccei-Quinn symmetry introduced to solve
the Strong CP problem of the Standard Model. The axion’s couplings and mass are proportional
to the inverse of the symmetry breaking scale of the associated Peccei-Quinn symmetry, meaning
that the axion’s interactions could be small enough for it to behave like dark matter and remain
stable over times longer than the age of the Universe. Meanwhile, the main production mecha-
nisms for the axion are non-thermal, meaning that axions are primarily created with relatively low
momentum, allowing them to evade bounds on hot dark matter otherwise relevant for particles so
light. Additionally, on top of the Strong CP and dark matter puzzles the QCD axion plays a role in
more complex models which seek to solve further open questions of particle physics and cosmology,
such as the hierarchy problem, the matter/antimatter asymmetry in our Universe, the smallness
of neutrino masses, the flavour puzzle. For these reasons extensive theoretical and experimental
efforts have been made over the past decades to understand the possible parameter space in which
axions can be dark matter as well as ways to detect them.

Similarly to the QCD axion, more general axion like particles have come under consideration
as viable dark matter candidates. These are pseudo Nambu-Goldstone bosons associated with
spontaneous symmetry breaking of global U(1) symmetries, which appear in many extensions of
the Standard Model such as grand unified theories, theories of leptogenesis and neutrino masses,
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as well as in string theory constructions. They behave in a similar manner as the QCD axion, with
the exception that their mass is not fixed by their symmetry breaking scale due to an anomalous
coupling to QCD.

It is standard lore that there are two inflationary scenarios for axion like particles, related to
whether spontaneous symmetry breaking of their associated U(1) symmetry last occurred before
or after the end of inflation. These scenarios have very different consequences for the parameters
of axions which are allowed and which can produce the expected dark matter abundance, mainly
because they are associated with vastly different densities of topological defects. More specifically,
the post-inflationary scenario involves a large density of axion strings and later of domain walls,
which reach a scaling solution whose properties could in principle be extracted from numerical
simulations. On the other hand the pre-inflationary scenario involves effectively no strings or
domain walls. A rough condition separating these two scenarios is usually written in terms of
the approximately constant Hubble parameter during inflation and the axion’s symmetry breaking
scale. One of the objectives of this thesis was to revisit the conditions separating these two scenarios
in more detail, and I have done so in Chapter 4 by showing empirical evidence in Figure 4.7 for the
relation (4.12) between the density of axion strings and the probability that the radial mode of the
complex scalar field that gives rise to the axion is pushed over the top of its potential by quantum
fluctuations. Assuming the validity of this relation, the density of strings can be calculated at
different times after the end of inflation for given values of the relevant parameters, which are the
axion symmetry breaking scale, the Hubble parameter during inflation and the quartic coupling of
the radial mode’s potential. The post-inflationary scenario is then relevant if the string density at
the time the axion begins oscillating is close to the scaling value, while the pre-inflationary scenario
when the density today would be small and topological defects have negligible contribution to
the energy density. There exist a small intermediate region of the parameter space where strings
and domain walls become dense enough to decay only much later than the time the axion begins
oscillating around its potential, but before today. A representation of this intermediate scenario
can be seen in Figure 4.9, which is an example for a specific value of the string density required
for the network to decay. Despite the lower density of topological defects the axion abundance is
actually enhanced in this intermediate scenario, owing to the lower dilution of the energy stored in
domain walls due to the expansion of the Universe than is the case of radiation or matter. Thus this
intermediate scenario predicts an even higher axion abundance than the post-inflationary scenario,
which is interesting as it allows the QCD axion to be all of dark matter for any value of its mass
that is otherwise allowed by astrophysical bounds.

Alternatively, the post-inflationary scenario and the intermediate scenario could be achieved by
mechanisms that restore the U(1) symmetry associated to the axion other than quantum fluctua-
tions during inflation. Chapter 5 is dedicated to various such possibilities for symmetry restoration.
The mechanisms considered are a coupling between inflaton and PQ field restoring the symmetry
during inflation, non-perturbative decay of the inflaton generating large non-thermal fluctuations
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of the PQ field and a large temperature in the early Universe restoring the symmetry through
thermal fluctuations. Additionally, I discussed the possibility of multiple stages of inflation and
found that the intermediate scenario can also be achieved in this way.

Additionally, Chapter 6 considered the spectrum of gravitational waves that would be emitted
by an evolving network of axion strings for a general axion like particle in the post-inflationary sce-
nario. This was done by showing that the effective Nambu–Goto theory with a Kalb–Ramond term
predicts a simple relation between the energy that the strings emit into axions and gravitational
waves respectively, up to order 1 factors that parametrise the average shape of the strings during
their evolution. This relation insures analytic control over the gravitational waves emissions at all
times and allows us to conclude that the backreation of the gravitational waves should have negligi-
ble effects on the strings evolution while the scale of U(1) symmetry breaking is much smaller than
the Planck mass. Numerical simulations confirm that the factor related to the shape of the strings
is constant for a scaling network, at least over the range of log(mr/H) accessible in simulations,
and were used to extract its value. It was found that the gravitational waves spectrum deviates
substantially from scale invariance, and in particular is enhanced at lower frequencies, which could
be probed by future gravitational waves detectors if the symmetry breaking scale is sufficiently large
fa ≳ 1014 GeV, as can be seen in Figure 6.6. This is particularly interesting since gravitational
detectors are more sensitive to axion like particles with largest symmetry breaking scales, which
otherwise are those with the lowest coupling to light or matter, meaning most other detection meth-
ods are least sensitive to them. Various constraints applicable to axion like particles detectable in
this way were considered and the resulting range of masses and symmetry breaking scales allowed
is shown in Figure 6.7. In particular, constraints on additional number of relativistic degrees of
freedom put an upper limit on the symmetry breaking scale fa ≲ 1015 GeV while the requirements
that axions emitted by the scaling network do not overproduce dark matter and that the network
is destroyed prior to recombination limit the axion masses to the range 10−28 eV ≲ ma ≲ 10−17 eV,
with parts of this parameter space also being ruled out by isocurvature constraints. Finally, we
discuss the possibilities that lead to the post-inflationary scenario for large symmetry breaking
scales that result in detectable gravitational waves. We see that indeed a future observation of
gravitational waves with a spectrum consistent with the emissions of a scaling network of axion
strings can provide insights into our Universe, including the nature of dark matter, the size of the
reheating temperature or the energy scale of inflation.
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Appendix A

Checks of the numeric solution to the
Fokker-Planck equation

In this Appendix we show various consistency checks related to the numeric solution of the Fokker-
Planck equation we implemented, as discussed in Section 4.3.1. In particular we have checked
that the solution does not depend on the limits for r̃ between which we have chosen to solve the
equation, shown in Figure A.1, or on the parameter “MaxStepSize”, shown in Figure A.2.
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Figure A.1: Comparison between the solution to the Fokker-Planck equation (3.33) for the proba-
bility distribution of r̃ for the box size r̃ ∈ (−3.5va, 4.5va) that we have used to obtain the results
of Chapter 4 (red), and a larger box size r̃ ∈ (−4.5va, 5.5va) (blue). For definiteness both solutions
are for HI/va = 2.5, λ = 0.5 and N = 40 e-folds.

Additionally, in Figure A.3 we compare the one field Fokker-Planck solution for the distribution
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Figure A.2: Comparison between the solution to the Fokker-Planck equation (3.33) for the prob-
ability distribution of r̃ for “MaxStepSize= 0.1” that we have used to obtain the results of Chap-
ter 4 (red), and a smaller “MaxStepsize= 0.01” (blue). For definiteness both solutions are for
HI/va = 2.5, λ = 0.5 and N = 40 e-folds.

of r̃ with a potential (4.9) to the solution for one of the components of the complex PQ field after
solving the two field Fokker-Planck equations, which are the coupled partial differential equations:

∂ρϕ(ϕ1, ϕ2, N)
∂N

= 1
3H2

I

∂

∂ϕi

(
λϕi(ϕ2

1 + ϕ2
2 − v2

a)ρϕ(ϕ1, ϕ2, N)
)

+ H2
I

8π2
∂2ρϕ(ϕ1, ϕ2, N)

∂ϕ2
i

, (A.1)

where ϕi stands for either ϕ1 or ϕ2, ϕ = (ϕ1 +ϕ2)/
√

2 and the initial conditions are ρϕ(ϕ1, ϕ2, 0) ∼
sech2(100 (ϕ1/va − 1)) × sech2(100 ϕ2/va) (a sharp distribution around ϕ1 = va, ϕ2 = 0). We
similarly solve equations (A.1) in Mathematica [254] using “NDSolve”, method “BDF” with a
“MaxStepSize”= 0.1, inside a box ϕ1,2 ∈ (−3.5va, 4.5va). We then integrate for the probability
distribution of ϕ1, which we compare with the probability distribution of r̃ obtained from the one
field Fokker-Planck equation.
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Figure A.3: Comparison between the probability distribution of r̃ (red) found by solving the Fokker-
Planck equation (3.33) replacing the potential by (4.9) and the probability distribution of the ϕ1
component of the complex PQ field (blue) which is found by solving the coupled equations (A.1).
The initial conditions for both r̃ and ϕ1 are the same i.e. r̃ = va and ϕ1 = va at the initial time
N = 0. For definiteness we have plotted for HI/va = 2.5, λ = 0.5, N = 7.
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Appendix B

Consistency of generating initial
conditions by the Langevin equation

In Section 3.4 we have introduced a procedure to approximately simulate the Langevin eq. (3.19),
which we later used to generate initial conditions for our numerical simulations detailed in Section
4.4. The procedure involves kicking the value in each coarse graining patch of size 1/(ϵHI) at each
time step by a random number K distributed by a Gaussian with mean 0 and variance ∆NH2

I /(4π2)
where ∆N is the size of the time step measured in number of e-folds. We then evolve the value
of the field in each patch between time steps with the noise turned off. Here we show that this
procedure indeed approximately reproduces the effect of Langevin equation if the potential is not
too steep. Let us start by breaking the time step ∆N into a large number of infinitesimally small
steps δN , ∆N = n δN with n a large integer.

Over each of these smaller time steps the field experiences a random kick δΨ which are random
numbers distributed according to an unknown distribution with mean 0 and variance δNH2

I /(4π2),
which can be derived from equations (3.27, 3.26). The kick over the larger time step is then the
sum of these smaller kicks:

K =
n∑
i=1

δΨi , (B.1)

which as mentioned in Section 3.4 can now be approximately taken as a Gaussian distributed
quantity with mean and variance as above due to the Central Limit Theorem.

Denote the value of the field inside an arbitrary patch at the start of an arbitrary time step
before receiving the corresponding kick by Ψ0. Then after one time step the value of the field in
our approximate procedure is:

Ψapp = Ψ0 +K − 1
3H2

I

∫ ∆N

0

∂V (Ψ(N))
∂Ψ

dN . (B.2)
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Meanwhile the exact value of the field inside the same patch at the end of the time step is:

Ψex = Ψ0 +
n∑
i=1

(
δΨi − 1

3H2
I

∫ i+δN

(i−1)δN

∂V (Ψ(N))
∂Ψ

dN

)
, (B.3)

in the limit of infinitesimally small δN , i.e. n → ∞.
Our approximation works if

∣∣∣Ψex − Ψapp
∣∣∣ ≪

∣∣∣Ψex − Ψ0
∣∣∣ or equivalently

∣∣∣Ψex − Ψapp
∣∣∣ ≪

∣∣∣Ψapp − Ψ0
∣∣∣

since then the difference between the distance the field traveled in our approximate procedure and
the distance it actually traveled is small. We have

∣∣∣Ψex − Ψapp
∣∣∣ < 1

3H2
I

(∣∣∣∣∣
n∑
i=1

∫ (i+1)δN

iδN

∂V (Ψ(N))
∂Ψ

dN

∣∣∣∣∣+
∣∣∣∣∣
∫ ∆N

0

∂V (Ψ(N))
∂Ψ

dN

∣∣∣∣∣
)
, (B.4)

which is further bounded up ∣∣∣Ψex − Ψapp
∣∣∣ < 2∆N max(V ′)

3H2
I

, (B.5)

where max(V ′) is the maximum absolute value the gradient of the potential achieves over the path
of the field. This is a very rough upper bound, since the two integrals are expected to have the
same sign and cancel each other to some degree.

Similarly a lower bound on
∣∣∣Ψapp − Ψ0

∣∣∣ is:

∣∣∣Ψapp − Ψ0
∣∣∣ > |K| − ∆N max(V ′)

3H2
I

. (B.6)

Now for the approximation to be correct it is sufficient:

∆N max(V ′)
H2
I

≪ |K| . (B.7)

Upon replacing |K| by its typical value which is of the order
√

∆NHI/(2π), this translates into a
condition for the gradient of the potential:

max(V ′) ≪ H3
I

2π
√

∆N
. (B.8)

Given that we use the procedure discussed is used to generate initial condition starting from
one grid point in the vacuum as we explain in Section 4.4, the relevant gradient of the potential
is in the region between the top of the potential and the vacuum. For the potential (2.29), then
max(V ′) is 4λf3

a/(3
√

6), and given the values of HI/fa and λ we used in simulations represented in
Figure 4.7 (i.e. HI/fa ≃ 2.5 ÷ 2.8 for λ = 0.25, HI/fa ≃ 3 for λ = 0.5, HI/fa ≃ 3.25 for λ = 0.75
and HI/fa ≃ 3.4 for λ = 1), we see that indeed the approximation of applying a cumulative kick
K and then allow the field to relax for ∆N = log(2) works well, which is the time it takes for the
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scale factor to double during inflation.

-3 -2 -1 1 2 3 4
ϕ1

0.1

0.2

0.3

0.4

ρϕ

Figure B.1: Comparison between the probability distribution of the field ϕ1 when generated with
the Langevin procedure with kicks applied every time the network doubles in size ∆N = log(2)
(blue dots) as was done for the numerical simulations, distribution generated with the Langevin
procedure with kicks applied twice as often ∆N = 0.5 log(2) (green dots), and the prediction from
the Fokker-Planck equation (A.1) (red dashed line). We plotted for λ = 0.5 and HI/va = 3, which
is one pair of values of HI , λ used in the simulations, see Figure 4.7.
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Appendix C

Large initial radial mode displacement

The conclusions in Chapter 4 have been based on the situation when the average of the radial mode
inside causal patches during inflation is close to the vacuum. Here we consider the opposite case
in which the radial mode inside many causal patches during inflation takes a large value. This
could happen either because the radial mode has been pushed to very large values by quantum
fluctuations, or because the potential of the radial mode during inflation is modified in a way that
maintains the radial mode at large values, for example by a coupling to the inflaton or scalar
curvature.

Let us start with an unspecified distribution of the average value of the radial mode over the
causal regions at the end of inflation that will re-enter the horizon until today. We assume only
that the mean of this distribution is rm ≫ va and that after the end of inflation the relevant radial
mode potential is the one in eq. (2.29). As in Chapter 4 we replace the radial mode by r̃ with
potential (4.9). Eventually the field r̃ in each of the patches at the end of inflation will lose its
energy to Hubble friction and will end up in one of the minimums of the potential after passing
the top of the potential a number of times. We define a set of positions rn such that if the field
in some patch started at r̃ ∈ (rn, rn+1) it has passed n times over the top of the potential before
relaxing to the vacuum. The point is that if the probability distribution at the end of inflation is
such that there is substantial probability for the r̃ to be in two or more such consecutive intervals,
then there would be many such patches that will settle on each side of the top of the potential.
We expect this results in strings similarly to the case where quantum fluctuations push the radial
mode over the top of the potential during inflation.

Therefore, if the mean of the distribution of r̃ at the end of inflation is rm ∈ (rn−1, rn) and the
variance is comparable to min(rm−rn−1, rn−rm) strings would be expected to form. The positions
rn can be found by solving the equation of motion after the end of inflation:

∂2r̃

∂t2
+ 2
t

∂r̃

∂t
+ λr̃(r̃2 − v2

a) = 0 , (C.1)
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Figure C.1: Schematic representation of the second way quantum fluctuations can result in strings,
which is most relevant to the situation where the value of the radial mode at the end of inflation
is displaced away from the minimum. While quantum fluctuations represented by red arrows can
push the radial mode over the top of the potential to produce strings, they can also result in the
radial mode reaching higher potential energy than at the local maximum at ϕ = 0 (or r̃ = 0). When
that happens the field will pass over the top of the potential after the end of inflation and during
the matter domination period prior to thermalisation, represented by the green arrows. The radial
mode in each causal patch will pass over the top of the potential a number of times depending on
its value inside the patch. This means that calculating the probability that the radial mode passed
over the top of the potential by integrating the probability distribution is not fully accurate, and
for the full result one must add the contribution from regions in the field space that pass over the
top of the potential an odd number of times while oscillating.

for various values initial values of r̃, which we did numerically using Mathematica “NDSolve” [254].
In general the positions rn are sensitive to the coupling λ as well as the evolution of the scale factor
after the end of inflation, which in the equation (C.1) above we assumed it behaves as in matter
domination. We argue that the interesting situation is when the field oscillations happen during a
period of matter domination before the end of reheating, since otherwise the reheating temperature
exceed va and the PQ symmetry is already restored by thermal fluctuations as explained in Section
5.3. To see this parametrically notice that the field starts oscillating at a time whenmr ∼

√
λva ≳ H

and if the Universe is radiation dominated at this point we can write H ∼ T 2/MP so
√
λvaMP ∼ T 2.

But T ≲ va if the PQ symmetry is not restored thermally, meaning
√
λMP ≲ va, which is only

possible for very small λ ≲ 10−16. Meanwhile the variance of the probability distribution can be
found by solving the Fokker-Planck equation (3.33) for r̃ in the same way as we did in Chapter 4,
but with different initial conditions. An example of the various turning points rn can be seen in
Figure C.2.
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Figure C.2: The final position of the field r̃ as a function of the initial position r̃ini. This is found
by solving (C.1) for λ = 1 and under the assumption that the field oscillates and losses its energy
matter domination, which as explained is required if we want the PQ symmetry not to be restored
by a large reheating temperature.

We remark that, if the reason the radial mode takes such large values is the effect quantum
fluctuations alone without any modification to the potential (2.29) during inflation, then the equi-
librium distribution of the radial mode must be sufficiently spread, which requires parametrically
H4
I ≫ λf4

a . In this case fluctuations starting from a delta function configuration initially accu-
mulate as if the potential is negligible, i.e. the variance grows as NH2

I /(4π2) with the number
of e-folds. Thus variance large enough for the post-inflationary scenario is likely to be achieved
regardless if the radial mode initially started close to the vacuum or at large values1.

On the other hand if the radial mode potential is modified during inflation such that the radial
mode is stuck at large values the situation is more complicated. Finding the relevant axion scenario
in this case would require solving the Fokker-Planck equation (3.33) for the new potential to find
the distribution at the end of inflation.

1This is even without taking into account potential parametric self-resonance effects that would significantly
enhance the fluctuations of the PQ field when the initial displacement is large, see [89].
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Appendix D

More Details on GWs from Strings

In this Appendix we give more details on the analytic derivations of Section 6.2. In particular,
we will discuss the GW emission from Nambu–Goto strings in Appendix D.1 and from the whole
scaling regime in Appendix D.2.

D.1 Axions and Gravitational Waves from Nambu–Goto Strings

In this Appendix we derive eq. (6.5) in detail and compute the coefficients ra[X] and rg[X], showing
that they are invariant under rescaling of the string trajectory.

Eq. (6.4) can be rewritten in terms of the transverse metric fluctuation Hµν ≡ hµν − 1
2η

µνh and
reads ∂α∂αHµν = 16πGTµνs . At large distance r ≡ |x⃗| from the region where the trajectory X⃗ is
localised, eq. (6.3) and this last equation provide the axion and gravitational wave field

Aµν = fa

2
√

2r

∫
dσ
(
ẊµX ′ν −X ′µẊν

)
, (D.1)

Hµν =4Gµ
r

∫
dσ
(
ẊµẊν −X ′µX ′ν

)
, (D.2)

where we neglected terms that decay faster than 1/r. The right hand sides of eqs. (D.1) and (D.2)
are evaluated at the retarded time t′ = t−|x⃗− X⃗|, which at this order in 1/r reads t′ = t−r+ X⃗ · n⃗
with n⃗ ≡ x⃗/r. Clearly eqs. (D.1) and (D.2) verify the wave relations ∂αHµν = nαḢ

µν with n0 ≡ 1
(so that n2 = 0) up to 1/r2 terms. The harmonic gauge condition is rewritten as ∂µHµν = 0 which
implies the relation nµḢ

µν = 0 for the solutions of eqs. (D.1) and (D.2).
The axion and gravitational wave energy radiated per unit time at infinity is given by dE/dt ≡

−
∫
d3xṪ 00, where Tµν is the energy momentum tensor of the axion (from the second term in
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eq. (6.1)) or the gravitational waves, which are respectively

Tµνa =FµαβF ναβ − 1
6η

µνFαβγFαβγ , (D.3)

Tµνg = 1
32πG

(
∂µH

αβ∂νHαβ − 1
2η

µν∂αH∂
αH

)
, (D.4)

with H = Hα
α . We can use the conservation of Tµν and Gauss theorem to rewrite dE/dt =∫

d3x∂jT
j0 =

∫
dΣjT j0 where the last integral is done on the sphere at spatial infinity. So,

dE

dt
= lim

r→∞
r2
∫
dΩnjT j0 . (D.5)

Plugging eqs. (D.1) and (D.2) into eqs. (D.3) and (D.4), and then plugging these in eq. (D.5), the
whole (neglected) subleading dependence on 1/r vanishes in the limit and we obtain eq. (6.5). For
instance, the coefficient for the gravitational wave emission is

rg[X] =
∫
dΩ
2π

{[∫
dσ∂t(ẊµẊν −X ′µX ′ν)

]2
−
[1

2

∫
dσ∂t(Ẋ2 −X ′2)

]2
}
, (D.6)

where again the right hand side is evaluated in t′ = t − r + X⃗ · n⃗. A similar equation holds for
the axion emission. The parameter σ can be taken to parametrise the string trajectory at a fixed
time, and in this case it runs in the interval [0, L] where L is the length of the string trajectory. As
initially claimed, eq. (D.6) is invariant under the rescaling t → αt and L → αL (and x⃗ → x⃗). This
can be easily seen by noticing that1 Xµ(αt, σ) = αXµ(t, σ/α) and making the change of variable
σ → ασ.

Note that in the non-relativistic limit the dependence on n⃗ in t′ is subleading and one can
perform the angular integral in eq. (D.6) exactly. The result is the well-known quadrupole approx-
imation

ra[X] =2π
3

[∫
dσ∂t(ẊiX ′j − ẊjX ′i)

]2
, (D.7)

rg[X] =1
5

{[∫
dσ∂3

t (ẊiẊj)
]2

− 1
3

[∫
dσ∂3

t (ẊiẊi)
]2
}
. (D.8)

D.2 GW Spectrum during the Scaling Regime

In this Appendix we give more details on the derivation of the GW spectrum in eqs. (6.9) and (6.12).
We perform in eq. (6.8) the change of variable x = k′/H(t′) with k′ ≡ kR/R′, and use eqs. (6.6)

1This is because, by dimensional analysis, Xµ(t, σ) must be proportional to σ times a dimensionless function of
all the other parameters on which Xµ depends, i.e. t/σ, L/σ and t/L, etc. . Such a function is therefore left invariant
by the mentioned rescaling.

156



and (2.47). As a result, for R ∝ t1/2 and in the large log limit

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2
∫ k/H

max
[
x0,

k√
HH1

] dxFg [x, y] log4
(
x2mrH

k2

)
, (D.9)

where y ≡ mrk
2/(Hx2) and, as mentioned in Section 6.2.2, we approximated the momentum

distribution to be Fg[x, y] = 0 for x < x0. For k < x0
√
HH1, the lower extreme of the integral in

eq. (D.9) is just x0. Approximating the momentum distribution with a single power law, i.e.

Fg[x, y] =


(q−1)xq−1

0
xq x ∈ [x0, y]

0 x /∈ [x0, y]
, (D.10)

eq. (D.9) for k < x0
√
HH1 leads to

∂ρg

∂ log k [k, t] = 8π3c1rGf
4
aH

2 log4
(mr

H

){(
1 − 2 log(k/k0)

log

)4
−
(
k0

k

)q−1
+

+ 8
(q − 1) log

[(
1 − 2 log(k/k0)

log

)3
−
(
k0

k

)q−1
]

+ 48
(q − 1)2 log2

[(
1 − 2 log(k/k0)

log

)2
−
(
k0

k

)q−1
]

+ · · ·

}
,

(D.11)

where k0 ≡ x0H and the dots stand for terms proportional to further inverse powers of (q − 1) log
(up to (q − 1)−4 log−4). In the large log limit and as long as q − 1 remains definitely larger than
1/ log, only the first two terms in eq. (D.11) survive (see also the discussion in Section 6.2.2). The
second term in eq. (D.11) is negligible for k ≳ x0H,2 and the first terms indeed corresponds to the
full eq. (6.9). For higher momenta, k > x0

√
HH1, the lower extreme in eq. (D.9) is k/

√
HH1 and

the integration gives

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2 log4
(
mr

H

)[
x0

√
HH1
k

]q−1 [
1 −

(
H

H1

) q−1
2

+ · · ·
]
, (D.12)

which gives the dependence on 1/kq−1 mentioned in Section 6.2.2 (the dots stand again for sub-
dominant (q − 1)−1 log−1 corrections).

Note that if the effective number of degrees of freedom in thermal equilibrium g is not constant,
entropy conservation (gR3T 3 = const) and the Friedmann equations (H2 = 1/(2t)2 ∝ gT 4, valid
away from particle thresholds) imply R ∝ g−1/12t1/2. In this case, neglecting time derivatives of g,
the same change of variable as before provides the overall factor (g(tk)/g(t))1/3 in eqs. (D.9), (D.11)
and (D.12), plus a change in the argument of the logarithms of a factor (g(tk)/g(t))1/6, which is
negligible. Finally, we observe that the spectrum in eq. (D.11) is has a very similar form as the

2This term encodes the IR profile of ∂ρg/∂ log k, and as visible in Figure 6.5 is not well resembled by the simple
assumption of a hard IR cutoff for Fg[x, y].
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axion spectrum in Appendix E.1 of [188], with however two more powers of log since Γg/Γa ∝ log2

at large log.
From the end of the scaling regime (when H = H⋆) to today the GWs redshifts freely, i.e.

dρg

d log k [t0, k] = (R⋆/R0)4 dρg

d log k [t⋆, kR⋆/R0]. From eq. (6.9) and conservation of entropy density, we
get the spectrum today in the log ≫ 1 limit

dΩgw
d log k = c1π

4rf4
a

90M4
P

g0T
4
0

ρc

(
g0
gk

)1/3
log4

[
πx2

0g
2/3
0 mrT

2
0

3
√

10g⋆(T⋆)5/6MPk2

]
, (D.13)

where T0 and g0 are the temperature of photons and the effective number of relativistic degrees of
freedom today, and gk is the effective number of relativistic degrees of freedom at time tk, defined by
x0H(tk) ≡ kR(t)/R(tk), which is the time when most of the GWs that have momentum k at time
t are emitted. Eq. (6.12) is the numerical evaluation of eq. (D.13) and is valid in the momentum
range x0H⋆(R⋆/R0) < k < x0

√
H⋆H1(R⋆/R0). Although eq. (D.13) is a very good approximation

of the spectrum at large log, as mentioned in Section 6.2.4 to obtain the lines in Figure 6.6 we
integrated numerically eq. (6.8), accounting for the smooth change in g and using a double power-
law form for Fg[x] (this resembles well the simulation results of Figure 6.5). In particular we used
Fg[x] ∝ x3 for x ≲ x0 and Fg[x] ∝ 1/x2 for x ≳ x0, as in eq. (38) of [186] with x2 → ∞.
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Appendix E

Details of Simulations

In Chapter 4 numerical simulations were used to explore underdense string networks, while in
Chapter 6 they were used to explore gravitational waves emissions of scaling string networks. In
this Appendix we give more detail about these simulations.

Both the simulations in Chapters 4 and 6 proceed in two phases. Phase one is the generation of
initial conditions, which is responsible for producing a field configuration for the two components
ϕ1, ϕ2 of the complex PQ field ϕ, which are defined as:

ϕ = 1√
2

(ϕ1 + iϕ2) . (E.1)

This phase is different whether we are interested in studying underdense networks or scaling net-
works. For underdense networks I have implemented a procedure that mimics the evolution of the
fields ϕ1, ϕ2 during inflation, which is formally described by the Langevin equation (3.19). This
procedure was introduced in Section 4.4. For the scaling networks my collaborators have imple-
mented a different procedure to generate initial conditions, which has the purpose of reaching the
scaling solution as quickly as possible. This procedure is best described later, after we first consider
the second phase which is simulating the formation and the evolution of the strings.

The second phase is that of the evolution of strings, starting from the respective initial conditions
for the components of the PQ field. This phase is nearly identical between simulations considering
underdense and scaling networks, with the exception of the calculation of the gravitational waves
emissions and of the backreaction of gravitational waves for the scaling networks, as well as the
choice of the time step in the evolution of the equations of motion, all of which we discuss bellow.
The code that performs this phase was written by my collaborators, Dr Marco Gorghetto and Dr
Edward Hardy and it has been previously used to obtain the results in their papers [186,188]. The
code was written in C++ and makes use of the fftw library [362] for Fourier transforms. It runs in
parallel on multiple cluster nodes using OpenMP [363] and Open MPI [364] for the parallelisation.
To perform the simulations presented in Chapter 6 we have used the Marconi Skylake partition,
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for which we thank the collaboration between both SISSA and CINECA, and ICTP and CINECA;
the Ulysses HPC Linux Cluster, for which we thank SISSA and ICTP; as well as the University
of Liverpool Barkla HPC cluster. Simulations presented in Chapter 4 have used the University of
Liverpool Barkla HPC cluster exclusively.

The second phase involves evolving the equations of motion resulting from the Lagrangian in
(2.28, 2.29). It is most convenient to work with the re-scaled PQ field defined as ψ = R(t)ϕ/va and
conformal time defined as:

τ(t) =
∫ t

0

dt′

R(t′) . (E.2)

We also write the equation of motion in terms of dimensionless time and distance variables, which
are mrτ and mrx respectively, where mr is the mass of the radial mode. Assuming radiation
domination in a spatially flat background, the equation motion is then:

ψ′′ − ∇2
xψ + u(τ)ψ

(
|ψ|2 − R2

2

)
= 0 , (E.3)

where prime denotes differentiation with respect to the dimensionless time and ∇x with respect to
dimensionless distance as defined above, and u(τ) is a function that depends on the model, either
physical strings u(τ) = 1 or fat strings u(τ) = τini/τ , where τini is the conformal time at the start
of the phase of the evolution of strings. We also set λ = 1 for the physical strings model or λini = 1
at the start of the phase of the evolution of strings in the case of the fat string model. The fat
string model involves replacing the constant mass of the radial mode mr with a time dependant
mass:

mr(τ) = mr,ini
Rini
R(τ) = mr,ini

τini
τ
. (E.4)

This has two advantages: 1) it takes a longer physical time for the maximum log to be reached,
and 2) the string core scale changes with time at the same rate as the momentum redshifts, which
means that axion waves emitted at the string core scale remain in the UV part of the spectrum
(this leads to a cleaner spectrum in the physically relevant region k < mr/2, as discussed in [188]).

We discretise the space on a three dimensional cubic lattice containing N3
grid uniformly dis-

tributed grid points (so Ngrid points on each side) with periodic boundary condition. For the
results presented in Chapter 6 the grid size was set to Ngrid = 2500 points. Meanwhile for the
simulations presented in Chapter 4 the grid size was required to be a power of two due to the way
we generated initial conditions as explained in Section 4.4, and it was thus set to Ngrid = 2048
points. In both cases the maximum number of grid points was limited by the available memory.

We then numerically integrate the equation of motion (E.3) following a standard central-
difference Leapfrog algorithm for wave-like PDEs [365], discretising the time in equal intervals
of dimensionless conformal time mr∆τ . Meanwhile the physical distance between grid points
∆(τ) grows with time as ∆(τ) = ∆(τini) τ/τini = ∆(τini)

√
Hini/H given that we assume radiation
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domination and where Hini denotes the Hubble at the start of the phase of evolution of strings.
To ensure convergence of the algorithm a maximum ratio between the size of the time step and
distance between grid points is allowed. A necessary condition is the Courant–Friedrichs–Lewy
condition [366] ∆τ/∆(τini) < 1, however for a sufficient condition a numerical analysis has to be
performed. For the case of scaling networks studied in Chapter 6 a sufficient condition has been
found to be ∆τ/∆(τini) ≲ 1/3 in [186] (for more detail see Appendix B.2 and Figure 16 of this ref-
erence), and we subsequently set the time step size to ∆τ = ∆(τini)/3. Meanwhile, for the different
initial conditions that result in the underdense networks studied in Chapter 4 we have found that
convergence of the algorithm requires a stronger condition ∆τ/∆(τini) ≲ 1/6, see Section E.1 and
Figure E.4.

It is essential that systematic uncertainties from simulations are under control if their results
are to be reliable. The most important sources of systematic errors come from the lattice spacing
mr∆(τ), the time spacing ∆τ and the number of Hubble lengths in a box HL, where L = Ngrid∆(τ)
is the physical box length. We discuss these in further detail in Section E.1 bellow.

In order to calculate the string density inside the simulation it is important to have a procedure
to identify strings. We do so by adopting the algorithm proposed in the Appendices of [182]
involving counting plaquettes that are pierced by a string, which are those around which the value
of the complex field crosses the real axis twice with the same handedness. This allows us to flag grid
points that are close to the string cores, the number of which is related to the string length which can
be computed by using a statistical correction factor, under the assumption that strings are equally
distributed in all directions. This algorithm has also been implemented by my collaborators.

Now that we have explained the phase of the simulations that follows the evolution of strings
we can also discuss the procedure to generate initial conditions that reach scaling as quickly as
possible, in order to show the properties of the scaling regime as clearly and accurately as possible.
To achieve this, we start with random initial conditions and follow the evolution of the network
as explained above until the string length inside the box is close to some fixed string length to
within a 10% tolerance. We use the resulting configuration as the initial condition for the phase of
the evolution of strings after resetting the value of the Hubble parameter and the size of the box.
The desired string length at which the generation of initial conditions stops is chosen such that
the initial string density at the start of the phase of strings evolution is small, ξini = 0.01. For the
fat string system the second phase of the simulation, that of formation and evolution of strings,
starts at log(mr(tini)/Hini) = 0, while for the physical string system the results have been found to
be cleaner for log(mr/Hini) = 2. Additional details as well as extensive further discussion can be
found in [186,188].

We calculate the GWs emission following the method developed in [367], to which we refer for
the details. In this approach, six independent fields uij , with uij = uji, are evolved according
to eq. (6.10), but sourced by the total energy momentum tensor (rather than its TT part). The
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Fourier Transform (FT) of the GW field, hij(t, k⃗), is then obtained by projecting the FT of uij as

hij(t, k⃗) =
(
Pil(k̂)Pjm(k̂) − 1

2Pij(k̂)Plm(k̂)
)
ulm(t, k⃗) , (E.5)

where Plm(k̂) ≡ δij − kikj/|⃗k|2 (it is indeed easy to see that hij solves eq. (6.10) if and only if uij
solves the same equation sourced by the total energy momentum tensor).1 This procedure avoids
the need to obtain the TT part of the energy momentum tensor at every simulation timestep, which
greatly reduces the computational cost. Instead FTs are only required at particular timeshots when
the hij are needed to evaluate the GW energy and spectrum. We use the same approach when
evaluating the GW emission at the time of the axion mass turn on in axion only simulations, as
studied in Appendix G, simply by substituting the appropriate energy momentum tensor.

As mentioned in Section 6.2.3, numerical simulations including the GW backreaction (analysed
in Appendix F.2) require that eq. (E.3) is evolved with the additional term R−2hij∂i∂jϕ on the left
hand side, and thus the expression of hij needs to be known at every timestep. For such simulations
we calculate hij from uij via eq. (E.5) at all time steps (by carrying out all of the required FTs and
anti-FTs). Given the computational cost, we limit ourselves to grids of size 8003 for this analysis,
which allows log ≃ 6 to be reached. Such a log is sufficient for the system to be in scaling and
emitting axions with a momentum distribution with a gap between the IR peak and UV scale for
an interval ∆ log ≃ 2, enough to extract the time-dependence of the relevant physical observables.
For our main simulations, which are much less computationally demanding, we use larger grids,
with 25003 lattice points.

E.1 Analysis of Systematics

In [186, 188] it was shown that HL ≥ 1.5 and mr∆ ≥ 1 are accurate for ξ and most observables
relevant to the axion emission in the scalling regime. Here we will show that the same values of HL
and ∆ are accurate for the GW observables of interest as well, and we therefore use these for our
main simulations. We fix the time step to be ∆τ = ∆(τ)/3 where ∆τ , ∆ are the comoving time
and space steps respectively, which is small enough to introduce a negligible error in all quantities
for the scalling network as discussed in [186].

In particular, we analyse the effect of mr∆ and HL on two of the most important observables:
the fraction of energy going into GWs, defined by rsim, and the instantaneous GW emission spec-
trum, Fg. The latter is more sensitive to finite box size systematics than the total GW spectrum,
which, even at the end of simulations when HL is small, includes emission from earlier times when
HL was larger. In combination with the analysis of the effects on the axion observables described
in [188], this assures us that the effects of systematics on the results in the main text are negligible.

1See [368] for an analysis demonstrating that the lattice version of the projector does not introduce systematic
errors.
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Figure E.1: The dependence on the lattice spacing mr∆ of the energy emission rate into GWs
(left), and of the GW instantaneous emission spectrum, plotted at log = 5.4 (right). Data is
shown for mr∆ = 1 (blue) which was used for the main simulations, and also for finer lattices
with mr∆ = 0.67 (green) and mr∆ = 0.5 (purple), as well as a less fine lattice with mr∆ = 1.4
(orange). The agreement between these data sets indicates that mr∆ = 1 does not introduce
significant systematic uncertainties (in particular, they are smaller than the statistical fluctuations
in our main data set, while networks with lower resolution than the main simulations still give
similar results). For this test we have used averaged over 10 simulation runs that differ only in the
random seed used to generate initial conditions. We have used smaller grids i.e. Ngrid = 1500 for
the green data and Ngrid = 1024 for the orange and purple data. We performed this test for the
fat string system since in this case the resolution of the strings mr∆ remains constant during the
simulation. For the physical system however the resolution decreases (i.e. mr∆ increases) during
the simulation, so setting the final resolution for the physical system to be the same as the one in
the fat system can only result in finer resolution throughout the simulation.

In Figure E.1 we plot rsim ≡ f2
aΓg/(Gµ2

thΓ) and Fg for mr∆ = 1, for the finer lattice spacing
mr∆ = 2/3 and mr∆ = 1/2, as well as a less fine lattice spacing mr∆ = 1.4, all for the fat string
system (the results are averaged over 10 simulations). The only deviations between rsim the data
sets are small statistical fluctuations at late times (when the number of independent Hubble patches
is indeed smallest), and the form of Fg is consistent in all cases (as for the axion instantaneous
spectrum Fa, a finer lattice spacing reduces the energy going into modes with momentum k > mr,
however it has no effect on the part of Fg from which we extract the spectral index q).

Similarly, in Figure E.2 we study the HL systematics. To do so we carried out a set of simula-
tions on small grids, of size 8003, with smaller value of HL (but with otherwise identical properties
as the main simulations, e.g. identical initial string density and also with mr∆ = 1). At a log such
that HL ≃ 1 on the small grids, HL is safely ≫ 1 on the large grid, enabling the finite volume
effects to be easily identified. From Figure E.2 it is clear that HL ≳ 1.5 has no visible effect on
the result for rsim. For smaller values of HL, the IR part of Fg starts being distorted, but the
momentum range of interest for extracting the spectral index q (i.e. k/H ≳ 10) is unchanged.

For the scaling networks the maximum time log(mr/H) for which the simulation lasts is limited
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Figure E.2: The effect of the finite box size L on the fraction of energy going into GWs, left, and
the normalised GW instantaneous emission spectrum (plotted at log = 6.2), right. The two data
sets are from simulations on different sized grids. The smaller grids reach HL ≃ 1 earlier, when
there are many Hubble patches left in the larger simulations. The agreement between these two
data sets up to when the smaller grid has HL = 1.5 indicates that HL ≥ 1.5 does not lead to large
systematic uncertainties in these quantities. This Figure was produced by my collaborators for our
joint work [1].

by two requirement: that systematic errors from the finite lattice resolution as well as finite box
size are not too large. The former requires that there is at least order one lattice point per string
core in order to resolve the string mr∆(t) ≲ O(1) as seen in Figure E.1, while the latter translates
into a lower bound on Ngrid∆(t)H ≳ 1.5 ÷ 2 as seen in Figure E.2, i.e. there are at least some
minimum number of causal patches inside the simulation box at any time. In the case of underdense
networks however there is an additional requirement that the statistical errors towards the end of
the simulation are not too large. In more detail, since we selected initial conditions specifically to
keep networks underdense, a side effect is that there are few (if any) simulations containing strings
sufficiently long to be larger than the size of the horizon by the time when finite size systematic
errors mentioned above become relevant. In principle such issue could be resolved by averaging
over a large number of simulations, however in practice it would take a very long amount of time
to gather sufficient simulations for each pair of parameters (HI/va, λ) that we represent in Figure
4.7 to have reasonable statistical errors all the way up to the time when finite size systematic errors
become relevant. Instead for each pair (HI/va, λ) we averaged for a number of 4 simulations which
differ only in the random seed used to generate the initial conditions. Then we directly inspect
the results of the numerical simulations averaging ξ over these outputs for each pair of parameters.
We cut the points where there is a large jump in the size of statistical errors, see Figure E.3 for
an example. Sometimes, but not always, this large jump directly corresponds to the moment when
ξ starts decreasing, which is an indication that there are no more strings longer than the horizon
inside any of the simulation boxes that we average over. Then for pairs of parameter where only
a small number of points remain uncut we add additional simulations to gather more data, until
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a satisfactory number of good data points (we choose 6 points minimum to plot) is left and we
plot those in Figure 4.7. We stopped at a maximum number of 20 simulations for a given pair
(HI/va, λ), and for this reason we did not plot result of simulations with HI/va < 1.78 in Figure
4.7.
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Figure E.3: The string density of an underdense network as a function of the average variance of
the distribution of the radial mode over regions the size of the horizon. Initial conditions were
generated by the procedure introduced in Section 4.4, which mimics the evolution of the Langevin
equation (3.19), for HI/va = 2.55, λ = 0.25. The red data points have been cut due to large
statistical errors, which appear because toward the end of the simulations only few, if any of the
underdense networks still contain a string longer than the size of the horizon (this is also visible
by the drop of ξ over the final few data points). For each pair of parameters HI/va, λ we have cut
the data by directly inspecting when the statistical errors have a large jump.

In the case of underdense networks the generation of initial conditions also results in more
dramatic differences between the field at neighbouring grid points, which as a result requires a
smaller time step for the algorithm to converge. To find the size of the time step we perform
simulations of underdense networks with identical initial conditions (i.e. same random seed), but
different ratios of ∆τ/∆(τini) in the second phase of evolution of strings. We show results in Figure
E.4, which points to the time step used to obtain the result in Chapter 4, i.e. ∆τ = ∆(τini)/6,
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being sufficiently small for the systematic errors to be bellow 1%.
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Figure E.4: The string density of underdense network as a function of the number of e-folds which
re-entered the horizon for various ratios of ∆τ/∆(τini), normalised by dividing by the density for
the smallest ratio simulated ∆τ/∆(τini) = 1/8. It can be seen that for ∆τ/∆(τini) = 1/6 the errors
are bellow 1%, which is the value we have set for simulations of underdense networks. For each
ratio ∆τ/∆(τini) we have averaged over a set 20 simulations on smaller grids of size Ngrid = 512,
and use the same random seeds to generate initial conditions over all ratios ∆τ/∆(τini).

Additionally let us discuss potential systematic errors introduced by the lattice spacing in the
case of underdense networks. One would expect that the required strings resolution in this case
should not be different than that in the case of scaling network, however this is difficult to test
exactly due to the fact that different lattice spacing result in different sizes of fluctuations inside
the string cores at early times when mr ≃ H. We show in Figure E.5 the evolution of strings
in simulations with identical HI/va and λ but with different lattice spacing mr∆ ∈ {0.5, 1, 2}
respectively. It can be seen that the errors for the lattice spacing mr∆ = 1 that we used in
the main simulations are not very large, about 10% when compared to the highest resolution.
Unfortunately even higher resolution would be difficult to test for available grid sizes, since that
would result in finite volume systematic errors due to the lower number of Hubble patches inside
the simulation. We also point out that the higher resolution also results in larger fluctuations
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inside the string core at the start of the simulation, which is similar to the situation with large
values of HI/va where we have found that the subsequent evolution suffers from systematic error,
as discussed in Section E.2 bellow. It is possible that the difference we see between the evolution
for mr∆ = 1 and the higher resolution mr∆ = 0.5 is partially (or totally) due to this effect.
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Figure E.5: Evolution of the string density ξ as a function of the number of e-folds which re-entered
the horizon for various lattice spacing. Orange data points correspond to one grid point per string
core, which is the resolution we have used for the main simulations, while blue and green points
correspond to lower and higher resolution respectively. For each lattice spacing we have averaged
over 10 simulation with the same HI/va = 3.2 and λ = 0.25 with grid size Ngrid = 1024.

E.2 Initial conditions with large HI

Simulations that we have represented in Figure 4.7 of Chapter 4 have in common that they remain
well in the underdense regime for the time window being simulated. The reason is that we are
interested in obtaining a way to describe the evolution of the network towards scaling without
having to worry about additional complications introduced by the interactions between strings as
the network becomes dense. However, we run into complications if we wish to perform simulations
with the same way to generate initial conditions, i.e. by evolving a discretised Langevin equation,
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but with a larger HI . The issue is that if we increase the value of HI above some threshold
depending on λ, the subsequent growth of ξ is slower than it is for lower HI , which makes no sense
physically.

We suspect that the reason for this behaviour is that for large HI the fluctuations between
neighbouring grid points, which at early times are inside (or close to) the string cores since, mr = H

at the start of the simulation. To solve this we have employed a trick of “skipping” the kicks, i.e. in
the final few e-folds of generating the initial conditions we only expand the grid, without modifying
the values of the field at each grid point by a random kick. With this change the behaviour of
simulations approaching the scaling regime is more in line with expectation, in the sense that the
growth of ξ is again faster for larger HI . We used this trick to obtain the black line labeled “scaling”
in Figure 4.8, which corresponds to HI/va = 16.9. The asymptotic behaviour of scaling simulations
obtained with this procedure also matches the one observed in [186, 188] quantitatively, which is
evidence that our “skipping” trick works as intended.
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Appendix F

Further Results from Simulations

In this Appendix we provide further results from the numerical simulations of the string system.
In particular, in Appendix F.1 we give more details on the scaling regime and the emission of
radiation from long stings. In Appendix F.2 we discuss the effect of the backreaction of the GWs
on the string network. In Appendix F.3 and F.4 we describe the end of the scaling regime for
a temperature-independent mass and the power spectrum of axion overdensities after the string
network is destroyed. Finally in Appendix F.5 we show the distribution of loop lengths for an
underdense network resulting from initial condition as explained in Section 4.4 and compare to
that for a scaling network.

F.1 The Scaling Regime

In Figure F.1 we show the evolution of the number of strings per Hubble volume ξ, where the
logarithmic increase mentioned in Section 2.4.3 is evident. The black points correspond to the
simulations used in this work, while for comparison we also show data from [186,188] starting from
different initial conditions and reaching larger log.1 As discussed in [186, 188], the data clearly
rules out any behaviour that saturates soon after log = 8. Moreover, for the most overdense initial
conditions, ξ first drops and then starts rising again, suggesting that the logarithmic growth is not
a transient but a part of the attractor solution.

As shown in [186], the logarithmic growth affects both long strings (defined to be the strings
with length much larger than H−1) and loops (which are all the other strings). In particular, ξ
restricted only to long strings – which we call ξL – is at any time during the scaling regime a fixed
fraction of ξ, i.e. ξL = fLξ with fL ≃ 0.814 for the fat string system (this can be extracted from
the jump of the cumulative distribution of ξ in Figure 4 of [186]; this jump makes the distinction
between long strings and loops sharp). As a result, the fraction of strings in loops is also constant.

1As mentioned, in our present simulations, evolving the fields uij adds to the computational cost, so to gain
sufficient statistics we use slightly smaller grids.
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Figure F.1: The number of strings per Hubble volume ξ for the fat (left) and physical (right) string
systems. The initial conditions that we use for the GW analysis, starting close to the attractor,
are plotted in black. The evolution of the system starting from other initial conditions (studied
in [186,188]) is shown for comparison. This Figure was produced by my collaborators for our joint
work [1].

The fact that the proportion of length in long strings and loops remains the same provides another
convincing evidence that the logarithmic growth is a property of the scaling solution.

Energy Emission Rate and Long Strings

As mentioned in Section 2.4.3, in order to maintain the scaling regime the energy that needs to be
released from the string system is Γ = ρ̇free

s − ρ̇s. We derived such a quantity in eq. (2.53) assuming
that ρfree

s ∝ R−2 (see [186] for the details). However, this derivation, strictly speaking, applies only
to the part of the string network whose energy decreases proportionally to R−2 in the free limit,
which are only the long strings.2 For the sake of a completely consistent treatment, we therefore
split the energy density in strings as ρs = ρLs + ρloops

s , where ρLs = ξLµL/t
2 is the energy in long

strings and ρloops
s the energy in loops. The tension of long strings µL is expected to take the form

µth in eq. (2.49) during the scaling regime. The total energy lost by long strings, Γ = ρ̇free − ρ̇Ls , is
then correctly given by eq. (2.53) but with ξ substituted with ξL, i.e.

Γ = ξLµth
t2

[
2H − ξ̇

ξ
− πf2

a

µth

(
H + η̇

η
− 1

2
ξ̇

ξ

)]
, (F.1)

where for convention we evaluate µth with ξ (rather than ξL: the difference is a constant reabsorbed
in η) and in the square bracket we can use ξ instead of ξL given that they are proportional.

The energy Γ lost by long strings is either directly converted into axion and radial mode radiation
(Γrad), or lost by the formation of string loops (Γloops), which continually arise from the intersection

2Sub-horizon loops redshift as non-relativistic matter in the free limit.
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of long strings and then decay into radiation. Therefore Γ = Γrad + Γloops. The total emission
rate into axions and radial modes Γa + Γr from the network is the sum of the energy emitted
into radiation directly from long strings (Γrad) and the one from loops. If such loops decay into
radiation efficiently, this last quantity also equals the energy lost by long strings by the formation
of loops, Γloops. As a result, we expect Γ = Γa + Γr. In the following we will show that numerical
simulations reproduce this expectation remarkably well.

We stress that in this picture the energy emitted into radiation Γa + Γr originally comes from
long strings. However a part of it comes directly from long strings (Γrad), and the other via loops
that decay (Γloops), which thus act as an efficient mean dissipation of the energy that is originally
in long strings. So, although fixed by Γ in eq. (F.1), the eventual emission into axions happens
through both long strings and loops, which is why in Section 6.2.1 we studied a generic trajectory,
which includes long strings and loops. Similarly, the total emission into GWs, which for a trajectory
with a fixed shape is proportional to the one into axions (see Section 6.2.1), depends on both long
strings and loops, but we will refer to Γg as the sum of the two (Γg will have a contribution from
long strings and another from loops, which we will not distinguish, as we cannot distinguish them
in simulations). In the following, by proving that Γ = Γa + Γr, we will see that this picture agrees
with the evolution of the physical system at least at small log. We will comment on the possible
changes of this picture if the energy is not emitted efficiently from the decay of loops at large log.

Similarly to [186,188], during the evolution of the field we extract the energy densities in axions
ρa and radial modes ρr (that are present at a generic time) from the kinetic energies ⟨ȧ2⟩ and ⟨ṙ2⟩,
where the averages are done over spatial points away from the string cores (to avoid the contribution
from the strings). The emission rates are then calculated as the time variation of these energies,
namely Γa = R−4 d

dt(R4ρa) and Γr = R−z d
dt(Rzρr) where z = 4 for the fat strings.3 For the

physical system the redshift factor is 3 < z < 4, and can be calculated as
∫
dkz[k/mr]∂ρr/∂k where

z[k/mr] ≡ 3 + (k/mr)2/((k/mr)2 + 1) is the redshift factor of one mode with momentum k (the
spectrum of radial modes ∂ρr/∂k can be found in [188]).4

In Figure F.2 we show the numerical results for Γa and Γa+ Γr for the fat and physical systems
using the data from the larger 45003 grids of [188], reaching log = 7.9 (we did the same for the
data that we collected in simulations including gravitational waves emissions in Figure 6.1 of the
main text). To allow the direct comparison with the previous discussion, the results are normalised
to the theoretical expectation in eq. (F.1) for the total emission rate Γ. In this last equation we
fit the data for the simplest model in which the only free parameter η is kept constant, and in
such a way that (Γa + Γr) /Γ equals unity. The fact that Γ reproduces Γa + Γr over more than
four e-foldings in time (especially clearly for the fat system) is a remarkable confirmation of the

3Irrespectively of whether they are relativistic or not, free radial modes in the fat string system have energy√
k2 + m2 that redshifts as R−1, given that mr ∝ R−1 (so the energy density redshift as R−4 assuming comoving

number density conservation).
4This is easily seen by calculating d log E/d log R where the energy E is E = ncom(R0/R)3

√
m2

r + k2
com(R0/R)2

and assuming comoving number density conservation dncom/dR = 0 and using dkcom/dR = 0.
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Figure F.2: The energy density emitted in axions and radial modes, Γa and Γr, during the scaling
regime calculated in the simulation, normalised to the theoretical expectation of the total emission
rate from (long) strings Γ in eq. (2.53) after fitting the (constant) value η, defined in eq. (2.49). The
fact that Γa + Γr coincides with the theoretical expectation Γ is a confirmation that the emission
rate is described by eq. (2.53) and that the string tension is reproduced by µth in eq. (2.49) for
a fixed value of η. For the fat strings the time derivatives in eq. (2.53) are done averaging over
∆ log = 0.2, while for the physical system for ∆ log = 0.4 and ∆ log = 0.1 respectively, as labeled.
To produce this figure the data from my collaborators’ previous paper [188] has been used, which
was collected on larger grids Ngrid = 4500. This Figure was produced by my collaborators for our
joint work [1].

theoretical picture described above. In particular this shows that the form eq. (2.53) captures the
total emission rate during scaling when ξ is restricted to the only long strings, that such emission
happens either directly or via loops, and that eq. (2.49) reproduces the effective string tension µL

even at small log for a fixed choice of η.5

We now discuss the details for fat and physical strings separately. For the fat string system,
shown in Figure F.2 (left), the agreement between Γ and Γa+Γr is excellent and η is fixed precisely.
The value of η selected by the fit (in which we consider only log > 4 data and, as mentioned, we
evaluate Γ using fL = 0.84), is

√
4πη ≃ 0.95. This is close to 1/

√
4π, which is the value this

parameter would get if all the long strings were straight and parallel to each other.6 Although such
η reproduces the emission, we assign to it a conservative 15% uncertainty, i.e

√
4πηfat = 0.95(15).

This uncertainty is estimated by looking at how much the ratio (Γa + Γr)/Γ varies with log for
different choices of η: as shown in Figure F.3, if

√
4πη is outside the range 0.8 ÷ 1.1 the ratio is not

constant (to assign this range we have chosen values of η that result in a maximum change of the
ratio (Γa + Γr)/Γ of 10%), suggesting that the choice of this parameter outside this range is not

5Another approach to measure the string tension would be by subtracting the energy in waves, as was done in [188],
which leads to compatible results.

6This is seen requiring that the argument of the log in eq. (2.49) equals the inter-string distance in units of m−1
r .
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Figure F.3: The dependence of the ratio (Γa + Γr)/Γ on the choice of the parameter η. Values of
η outside the intervals 0.8 ÷ 1.1 and 0.4 ÷ 1.5 for the fat and physical strings respectively (shown
in light grey) do not lead to a constant ratio, signalling that they are not able to reproduce the
emission and therefore the string tension (for this purpose we considered the ratio to be constant
if it does not differ by more than 10% throughout the range 4 < log(mr/H) < 7.9). This Figure
was produced by my collaborators for our joint work [1] and uses data collected for their previous
paper [188].

appropriate to describe the emission.78 Notice that the agreement between Γ and Γa + Γr for the
value of fL = 0.84 extracted from the jump of loop distribution is remarkable, and is a particularly
convincing confirmation of the theoretical discussion above. Even more remarkably, leaving both
η and fL as free parameters in the fit (Γa + Γr)/Γ = 1 provides a similar value of η and a value of
fL that differs by less than 1% from the one extracted from the loop distribution. Notice also that
as shown in detail in [188], radial modes are still produced (i.e. Γr ̸= 0), though increasingly less
with respect to axions (i.e. Γr/Γa diminishes), and it is indeed the sum Γa + Γr that reproduces Γ.

The results for the physical system are shown in Figure F.2 (right), where we calculate the
derivative averaging over ∆ log = 0.1 (shaded lines) and over ∆ log = 0.4 (solid lines). For such
a system some fluctuations are visible, and are particularly evident at early times and with the
smaller time averaging. As already noted in [188], these are related to parametric resonance effects
between the axion and radial modes, and possibly to the emission from excited string cores due
to imperfect initial conditions.9 As the value of fL is not known for physical strings, in the fit
(Γa + Γr)/Γ = 1 (done for log > 4.5) both the parameters η and fL are allowed to vary. The
best fit values correspond to fL ≃ 0.9 and

√
4πη ≃ 0.7, which are those for which we evaluate

Γ in Figure F.2 (right). As expected, the fit selects fL < 1, and the parameters fL and η turn
out to be remarkably very close to the fat string values. As shown in Figure F.2 (right), despite
the fluctuations, for such values of η and fL the ratio (Γa + Γr)/Γ is in average close to unity at

7Note that indeed the definition of long strings is not completely fixed (and so fL), so in principle one can just
require the ratio to be a constant close to one rather than exactly one.

8For the fat string time derivatives are done averaging over ∆ log = 0.2.
9These effects are clearly visible in the axion instantaneous emission spectrum as studied in [188], which has large

oscillations at around the string core scale.
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Figure F.4: The dependence of r = f2
aΓg/(Gµ2

thΓ) on the parameter η, which enters the string
tension µth for the fat (left) and physical (right) string systems. We plot results for the range
of η compatible with the measured instantaneous energy emitted to axions and radial modes of
Figure F.3. For the value of η across this range, the plotted ratio approaches a constant value, as is
expected from the theoretical analysis in Section 6.2.1.The red bands are centered on the average
value of r over all data points and its width is given by the standard deviation. This Figure was
produced by my collaborators for our joint work [1].

all times. The large fluctuations however lead to a greater uncertainty on the actual value of η
that reproduces the emission. Similarly to the fat string system, we estimate this uncertainty by
varying η and looking at the impact on Γ. As is clear from Figure F.3 (right), all the η’s in the
range 0.4 ÷ 1.5 give an approximately constant ratio, while if they are outside this range the ratio
starts tilting. We can take this range as a conservative estimate for ηphys.

As in the fat system, the production of radial modes is non-negligible. However the fluctuations
make the time evolution of Γr/Γa more unclear than in the fat string system. Notice that such
radial modes are mildly relativistic (in particular, z ≃ 3.3 in the whole time range; this turns out
to be an essential information for getting a Γr ̸= 0 from R−z d

dt(Rzρr)).
Let us now discuss the GW emission Γg and r, defined in eq. (6.6). As mentioned in Section 6.2.3,

the uncertainty on η translates into an uncertainty on the string tension µeff (more precisely on µL;
we discuss later the contribution of ρloops

s to ρs). This uncertainty also affects the value of µth to be
used in the calculation of rsim ≡ f2

aΓg/(Gµ2
thΓ) defined in Section 6.2.3.10 In Figure F.3 we show the

value of rsim from different η’s chosen in the ranges mentioned above (note that η enters both in µth

and in Γ). Remarkably, the best fit value of η selected by the above discussion leads a constant rsim.
As described in the main text, this matches the expectation from the Nambu–Goto effective theory,
further confirms that the value of η reproduces the string tension and ensures the energy emitted
into GWs can safely be extrapolated to large log. As expected, larger (smaller) values of η lead to
an increasing (decreasing) rsim, and the results are compatible with rsim evolving asymptotically to

10As in the main text, Γg is calculated by averaging the time derivative of ρg over ∆ log = 0.2, which is already
consistent with the continuum limit.
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Figure F.5: The normalised instantaneous emission spectrum (left) and the total spectrum of GWs
in simulations (right) for the fat string system. The key features match those of the physical system
plotted in Figure 6.5. This Figure was produced by my collaborators for our joint work [1].

the same constant regardless of the value of η. Although the best fit values of η lead to a constant
rsim, we conservatively estimate the uncertainty on r from the one on η by varying ηfat and ηphys

in the intervals mentioned before for which (Γa + Γr)/Γ is constant, and considering the range in
which rsim varies at the largest available log = 7.4 for such η’s. For instance, rphys ranges in the
interval 0.17 ÷ 0.34.11

The discussion above confirms that the tension of long strings µL is reproduced by µth, i.e.
ρLs = ξLµth/t

2, with the η fixed as before. As mentioned at the beginning, the energy density in
strings ρs = ρLs + ρloops

s however contains also the contribution from loops ρloops
s . This in principle

changes ρs and therefore could make the effective string tension µeff not match µth anymore for the
same value of η (note that µeff – and not µL – is the one determining the GW emission, as GWs
are emitted both from long strings and from loops, and therefore should be the one that leads to
a constant r = f2

aΓg/(Gµ2Γa), since Γg is the total GW emission rate).
First, we expect a possible overall (constant, see [188]) factor on the total string tension µeff due

to the non-trivial boost factor of loops but, as mentioned in footnote 11 in Section 6.2.3, this gives
an overall correction to µth and could be simply reabsorbed in the definition of r. In particular, Γg
defined in eq. (6.6) with r extracted from Figure 6.3 still provides the correct large log behaviour
of the emission.

Moreover, the fact that η predicted by long strings works well in providing a constant r suggests
that even the time dependence of µeff is close to that of µth with the same value of η (or that,
alternatively, most of the GW emission is from long strings).1213

11Notice that strictly speaking Γa = ξLµth/t3 at large log (rather than Γa = ξµth/t3). This makes the extraction
of the numerical value of r from rsim a factor of f−1

L larger and Γa a factor of fL smaller than what mentioned in the
main text, leaving in any case the GW emission rate Γg in eq. (6.6) invariant.

12The fact that the effective tension of the strings is close to µth with η ≈ 1/
√

4π is also suggested by the direct
measurement of the string tension in [188].

13During the scaling regime, the loop distribution is scale invariant, i.e. contains a fixed number of loops per
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Figure F.6: The time-evolution of the power-law q of the instantaneous GW spectrum Fg[x, y] ∝
1/xq for the fat (left) and physical (right) string systems. In both cases after log = 5 the values are
approximately constant (and compatible with 2). For smaller times the GW spectrum fluctuates
and has no definite power law. This Figure was produced by my collaborators for our joint work [1].

We finally comment on the validity of this picture at larger values of log. If the loops become
very long lived, the energy could be radiated less efficiently from loops into radiation, therefore the
total emission rate will be enhanced with respect to the energy lost by long strings in eq. (F.1)
(i.e. Γa + Γr > Γ). Indeed, the string loops oscillate under the effect of their tension, and in the
limit of infinite oscillations the loop energy density will redshift as R−3, which diminishes slower
than R−4, which is the rate at which the energy would decrease if it were immediately radiated
into axions. Although we do not see a sign of this in the simulation between log = 4 and log = 8,
we cannot exclude this possibility at very large log. If this is the case, this would enhance most
likely the axion and GW emission, and our predictions would still be reliable lower bounds.

The GW Spectrum

Finally, we give more details on the GW spectrum ∂ρg/∂k. To extract ∂ρg/∂k in the simulation we
used its explicit expression in terms of u̇ij(k⃗) defined in eq. (E.5), easily derived from its definition∫
dk∂ρg/∂k ≡ T 00

g = (32πG)−1⟨ḣij ḣij⟩, see e.g. eq. (29) in [367]. From ∂ρg/∂k we calculate
the instantaneous emission spectrum Fg defined in eq. (6.7) as (we calculate the time derivatives

decade of loop length, for lengths between the IR and UV cutoffs ≃ H−1 and ≃ m−1
r (see [188] for more details). For

such a distribution the energy takes the form (ξ − ξL)πf2
a log(mr/Hη′)/t2, where η′ is a (possibly time-dependent)

parameter that depends on the precise location of the cut-offs in units of H−1 and m−1
r . [To show this, notice that

for such a distribution the number of loops per unit length and unit volume is dnℓ/dℓ = 4H3(ξ − ξL)/ℓ and the
energy of a loop of length ℓ is Eℓ = πf2

a log(mrℓ). The mentioned energy density follows from
∫ H−1

m−1
r

dℓ Eℓ dnℓ/dℓ in
the limit mr ≫ H.] This formula implies ρloops

s ≈ (ξ − ξL)µth/t2 (except for the value of η′), which justifies why µeff
in eq. (2.48) is approximated by µth, at least at large log. We stress in any case that the precise form of ρloops

s is still
uncertain as loops could become longer lived at late time, meaning we do not know the full details of the cutoffs of
the loop distribution and of the boost factors of the loops, which could change the formula above.
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Figure F.7: The total GW spectrum for the fat (left) and physical (right) string networks. The
results are identical to those in Figures 6.5 and F.5 except without the log4 normalisation. The
growth of the spectrum is clear in both cases. This Figure was produced by my collaborators for
our joint work [1].

numerically considering ∆ log = 0.2)

Fg

[
k

H
,
mr

H

]
= H/Γg

R3
∂

∂t

(
R3∂ρg

∂k

)
. (F.2)

In Figure F.5 we plot ∂ρg/∂k and Fg[x, y] for the fat string system. Both these observables
have similar features to the physical system, shown in Figure 6.5. In particular, the approximate
power law q ≃ 2 is reproduced and is time-independent. As a further study, in Figure F.6 we show
the best best fit value for the slope of Fg in the momentum range 30H < k < mr/4. As mentioned
in Section 6.2.3, given that q is safely above 1 (and appears constant), we do not analyse further
its time-dependence and the possible dependence of the fitted value of the slope on the momentum
range.14 Although already clear from the previous plots, to show explicitly the time-dependence
of the spectrum we also plot the total GW spectrum without the log4 normalisation in Figure F.7
for the fat and physical system.

F.2 GW Backreaction on the Strings

In this Appendix we discuss the GW backreaction on the string network in the physical system of
eq. (2.28) by solving the coupled eqs. (6.10) and (E.3) (including the backreaction term R−2hij∂i∂jϕ

in the left hand side of this last equation). As mentioned in Appendix E, this is numerically
expensive as requires to perform FT and anti-FT every time step, and we therefore limit ourselves
to small 8003 grids that can explore values of log < 6.15

14Such detail is more important for the power law of the axion instantaneous spectrum since it changes with the
log.

15Similarly to the simulations in the main text, this corresponds to the time when HL = 1.5 for mr∆ = 1.
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Figure F.8: The evolution of the average square value of the GW field ⟨h⟩ ≡ ⟨hijhij⟩1/2 for different
values of fa/MP, and in the limit fa/MP → 0 normalised to the theoretical expectation for the
string tension squared µ2

th (left). We also show the relative deviation of ⟨h⟩ for different non-zero
fa/MP from its value for fa/MP → 0 (right). On the x-axis we plot Gξ1/2µ

3/2
th /fa, which is the

parameter expected to control the deviation of ⟨h⟩. This Figure was produced by my collaborators
for our joint work [1].

The theoretical discussion of Section 6.2 suggests that the (evolving) effective parameter con-
trolling the relevance of the GW backreaction on the string network during scaling is Gµ2/f2

a =
π/8(fa log /MP)2 (as in the main text, MP = 1/

√
8πG). Numerical simulations will confirm this ex-

pectation. In particular we will see that, as long as Gµ2/f2
a ≲ 0.5 (corresponding to fa ≲MP/ log),

(a) gravity is always in the perturbative regime and (b) the effects of the GWs on the properties
of the string network (e.g. ξ and ρa) is smaller than few percent. Therefore the backreaction is
relevant only for fa ≳MP/ log which is well beyond the region allowed by the bounds in Figure 6.7.
A detailed analysis of the impact of the backreaction is therefore not necessary (and, as mentioned,
we did not include the backreaction in the simulations presented the main text).

First, notice that the equations of motion (6.10) and (E.3) depend only on the dimension-
less ratio fa/MP.16 We evolve these equations for fat strings and different values of fa/MP =
0.05, 0.1, 0.2, 0.3, 0.4, for the same set of initial conditions (similar to those in Figure F.1), as well
as in the limit fa/MP → 0, i.e. not taking into account the backreaction term in eq. (E.3). In
Figure F.8 (left) we show the evolution of the average square value of the GW field ⟨h⟩ ≡ ⟨hijhij⟩1/2

in the limit fa/MP → 0. As expected from the form of the instantaneous GW emission in eq. (6.6)
and of the energy density in GWs, ⟨h⟩ is of order f2

a/M
2
P for log = O(1) and increases proportionally

to log2 (up to subleading corrections).
Figure F.8 (right) and Figure F.9 show the effect of a finite value of fa/MP on ⟨h⟩, ξ and ρa by

plotting the time evolution of these observables for different values of fa/MP, normalised to their
value in the absence of backreaction. To make the role of the effective parameter Gµ2/f2

a manifest,
16This can be seen by redefining ϕ → ϕfa and hij → hijf2

a /M2
P in such equations.
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Figure F.9: The evolution of ξ and ρa for different values of fa/MP, normalised to their value in
the limit fa/MP → 0 (i.e. without GW backreaction, as in the main Sections). We plot Gµ2

th/f
2
a

rather than log(mr/H) on the x-axis to highlight that the deviations of these observables from GW
backreaction depend on the effective (evolving) parameter Gµ2

eff/f
2
a . The filled circles correspond

to the time when the numerical evolution of the linear approximation of the Einstein equations
breaks down, and at this point Gµ2

eff/f
2
a ≃ 0.5. For smaller values of this parameter, the linear

approximation is valid and the observables deviate by less than few percent from their value in the
fa/MP → 0 limit. This Figure was produced by my collaborators for our joint work [1].

we trade log(mr/H) with Gµ2
th/f

2
a = π/8f2

a/M
2
P log2(mr/Hη/

√
ξ) in the x-axis.17 For a non-zero

value of fa/MP, the quantities ⟨h⟩/(f2
a/M

2
P) and ξ increase with respect to their value in the limit

fa/MP → 0, while ρa decreases. Indeed, as expected, more energy is transferred to GWs rather
than to axions, making hij larger and ρa smaller. Crucially, the deviation of these observables
from their value at fa/MP → 0 is controlled by the combination Gµ2

th/f
2
a , rather than by log and

fa/MP separately. Indeed, simulations with different value of fa/MP present the same deviation at
a different value of log but at the same Gµ2

th/f
2
a , as suggested by the fact that the lines overlap in

Figure F.9.
When Gµ2

th/f
2
a ≃ 0.5 the numerical evolution of the equations of motion breaks down for all

fa/MP.18 This can mean either a numerical issue that results in the simulation not reproducing the
continuum limit of the equations of motion we used, or it is signalling that the linear approximation
of the Einstein equations is no longer valid, which corresponds to higher order terms being relevant
in the equations of motion. We therefore show the results for ⟨h⟩, ξ and ρa until the evolution
makes sense, with a filled circle at the time when the numerical evolution breaks. From Figure F.8,
it is easy to see that this value of Gµ2

th/f
2
a corresponds to ⟨h⟩ ≃ 0.1 (the local value of hij will be

larger than this). Moreover, at this value of Gµ2
th/f

2
a , the observables ξ and ρa have changed only of

a few percent with respect to their value in the absence of backreaction. Given that the numerical
breakdown happens at a specific value of Gµ2

th/f
2
a ≃ O(1) which is the same for fa/MP = 0.3 and

17We fix the same value of η as in the main text.
18This is seen by the non-convergence of the numerical algorithm that integrates eqs. (6.10) and (E.3).
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fa/MP = 0.4, and that the corresponding value of hij at breakdown also approaches order one, this
suggests that the cause could be indeed that the linear approximation of the Einstein equation is
no longer sufficient. The dramatic change of the evolution of the network beyond this point can be
only captured by the full general relativity description of the system.

The decrease in energy in axions seen for non-zero fa/MP in Figure F.9 left is quantitatively
consistent with the energy that is found to be in gravitational waves, and therefore the value of r
obtained in Section 6.2.3 (there is a small increase in the sum of the energy in all components as
fa increases, which is expected since the effect of backreaction is to slightly increase ξ, as seen in
Figure F.9, right).

We observe that, while the dependence on the parameter Gµ2
th/f

2
a has only been tested for

small logs and relatively large values of fa/MP, the theoretical discussion in Section 6.2 allows to
extrapolate the results of Figure F.8 and F.9 also at large logs (and smaller fa/MP), in particular
ensuring that the GW backreaction is negligible for all fa in Figure 6.7, despite the large log.
Finally notice that, as the evolution of the system is not known for fa ≳ MP/ log, there are in
principle two orders of magnitude of fa below MP for which the bounds in Figure 6.7 do not apply,
and a complete general relativity reanalysis would be needed.

F.3 The End of the Scaling Regime and Nonlinear Transient

In this Appendix we give more details on the end of the scaling regime for a temperature-independent
axion mass. We will also study in more depth the non-conservation of the comoving number density
of axons at H ≃ H⋆. Most of the discussion of this Appendix builds on the material of Section 3
of [188] and Appendices D and E of the same reference, to which we refer for a more pedagogical
presentation.

End of the scaling regime

As mentioned in Section 2.4.3, the axion potential becomes relevant in the evolution of the string
system only for H ≲ H⋆ ≡ ma, at which time a network of domain walls forms and destroys
the string system. To determine precisely the critical value of H (which we call Hcrit) when the
scaling regime starts getting affected by the axion potential, we evolve eq. (E.3) with the same initial
conditions as in the main text for the fat string system, but with the additional term −m2

a/(
√

2m2
r),

which corresponds to including the axion potential V = m2
af

2
a (1 − cos(a/fa)) in the Lagrangian of

eq. (2.28) (see Appendix D of [188]). Notice that the dependence on ma of the equations of motion
enters only through the ratio ma/mr, and we therefore refer to different axion masses via the value
of log(mr/ma) = log(mr/H⋆) ≡ log⋆.

In Figure F.10 (left) we show the time-evolution of ξ for different values of log⋆, plotted as
a function of H⋆/H, together with the evolution of the equations for ma = 0 (dashed lines). In
Figure F.10 (right) we also show the time-evolution of the axion spectrum ∂ρa/∂k for log⋆ = 5. It
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Figure F.10: Left: The evolution of ξ for a non-zero constant axion mass at different log⋆ ≡
log (mr/ma) (solid lines), and for ma = 0 throughout with the same initial condition (dashed
lines). Independently of log⋆, ξ is unaffected by the mass before H = Hcrit ≡ H⋆/3. Right: The
axion spectrum in the presence of the axion mass with log⋆ = 5 (upper lines) at different times
labelled by H⋆/H, and for vanishing axion mass (lower lines, dashed). Before H = Hcrit the effect
of the non-zero axion mass has on the spectrum is negligible. This Figure was produced by my
collaborators for our joint work [1].

can be easily seen that for values of H larger than Hcrit ≡ H⋆/3 both ξ and the axion spectrum are
not significantly affected by the axion potential, as they closely follow the evolution for ma = 0.
For smaller values of H, ξ diminishes (as the network starts being destroyed) and the spectrum
gets affected, starting from its IR part. Although the value of Hcrit can be numerically studied
only at small values of log⋆, it is reasonable to expect that it will not change at larger log⋆.

Nonlinear evolution of the axions waves

As mentioned in Section 6.3.1, and explained in detail Section 3 of [188], the axion waves produced
up until H⋆ have kinetic energy much larger than the potential energy at H = H⋆ (we momentarily
assume that Hcrit = H⋆, and discuss to the modification to a generic Hcrit later).19 This results in
a period of relativistic redshift and a nonlinear transient, which implies a partial non-conservation
of the comoving number density. However we now show that the number density non-conservation
is small for the value of ξ⋆ log⋆ discussed in Section 6.3.1 for a temperature-independent mass.

The number density after the nonlinear transient follows the analytic description and eq. (36)
of [188] (evaluated for a constant axion mass, i.e. α = 0). The corresponding number density

19Recently it has been claimed that this cannot be true because the compactness of the axion field bounds the
energy that can be stored in low momentum modes [369]. In fact, the periodicity of the axion only affects the
zero-mode: all the other modes can be populated by arbitrarily large amplitudes.
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non-conservation reads

nst
a

nst
a |linear

= cncV
8πξ⋆ log⋆
x0,a

W−1

(
− cV

2πξ⋆ log⋆

(
x0,a

cm

)4
)

− cV
2πξ⋆ log⋆


3
4

(F.3)

≃ cncV
8πξ⋆ log⋆
x0,a

2πξ⋆ log⋆ log

2πξ⋆ log⋆
cV

(
cm
x0,a

)4
 3

4

, (F.4)

where Wk is the Lambert W -function evaluated on the k-th Riemann sheet and in the second
line we expanded W−1 for large negative values of its argument. The coefficients cm, cV , cn have
been extracted in [188] by fitting eq. (F.3) with the number density obtained from the numerical
evolution of

ä+ 3Hȧ−R−2∇2a+m2
afa sin(a/fa) = 0 , (F.5)

with ma = H⋆(H⋆/H)α/4 and α = 4, 6, 8, with initial conditions (at H = H⋆) given by a superposi-
tion of axion waves with energy density spectrum ∂ρa/∂k from the (reconstructed) scaling regime
at H = H⋆ (see [188] and the following eq. (F.6) for the explicit expression of the initial conditions).
Note that such simulations (that include only the axion field) can study directly the physical point
(i.e. without extrapolation, unlike simulations of the physical system in (2.28), which must include
modes with k ≃ mr).20

Let us now discuss what changes if Hcrit < H⋆. In this case the number density at H = Hcrit

is approximately na = 8πξ⋆ log⋆Hcritf
2
a/x0,a.21 If this number density is thought as coming from

an axion field at H = H⋆ (which redshifts relativistically from H⋆ to Hcrit), such a field has the
same energy density spectrum ∂ρa/∂k|⋆ but with x0,a → x0,a(Hcrit/H⋆)1/2 = x0,a/

√
3 (i.e. an IR

cutoff smaller by
√

3).22 To evaluate the suppression of the number density for Hcrit < H⋆ we can
therefore use eq. (F.3) with x0,a → x0,a/

√
3, which gives a 20% non-conservation of the comoving

number density for ξ⋆ log⋆ = 3000 (and x0,a = 10).23

In support of this, in Figure F.11 we also show the evolution of the comoving number density
for different values of ξ⋆ log⋆ from the numerical evolution of the equation of motion (F.5). The
set up of the simulations is explained in [188], to which we refer for the details. As in [188], we

20The coefficients read cm = 2.40, cV = 0.12, cn = 1.20 and cm = 2.08, cV = 0.13, cn = 1.35, respectively for an
initial axion energy density spectrum given by the convolution of Fa sharp IR cutoff at x = x0,a and a more physical
form as described in [188] (in both cases with qa = 5).

21As defined in Section 6.3.1, the number density is nst
a ≡

∫
dk∂ρa/∂k, and can be approximated with ρIR/(x0,aH)

during the scaling regime (up until Hcrit), where ρIR = 8πf2
a ξ log H2 is the energy density in IR modes. The difference

ξ⋆ log⋆ from ξcrit logcrit is insignificant with respect to the change in H.
22In particular, at H = H⋆ its (relativistic) number density will be enhanced by a factor

√
3 with respect to

8πξ⋆ log⋆ H⋆f2
a /x0,a.

23In doing this estimate we used a cV that is (1 − 1/qa)−1 = 5/4 larger than what mentioned before, in order to
account for the fact that the coefficients have been extracted for qa = 5 instead of q → ∞ (which is the limit in which
na = 8πξ log /x0,af2

a H is valid.)
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Figure F.11: The evolution of the comoving number density of the axions (produced during
the scaling regime) through the nonlinear transient that occurs when the axion potential becomes
cosmologically relevant. The initial conditions are set at H = Hcrit = H⋆/3 to be a superposition
of axion waves with the energy density spectrum ∂ρa/∂k from the (reconstructed) scaling regime
at H = Hcrit (see [188]). For ξ⋆ log⋆ ≲ 3000 (which are the relevant values for ultralight axions)
the number density non-conservation is at most 20%, and was therefore neglected in the derivation
of Ωst

a of Section 6.3.1. This Figure was produced by my collaborators for our joint work [1].

start from H = Hcrit = H⋆/3 with initial conditions given by an axion field made of a random
superposition of waves with the energy density spectrum of the scaling regime at H = Hcrit, i.e.
(for k > k0 ≡ x0,aHcrit)

∂ρa
∂k

(tcrit, k) =8ξ⋆µ⋆H2
crit

k

[(
1 − 2log(k/k0)

log⋆

)2
−
(
k0
k

)qa−1

+4
1 − 2 log(k/k0)

log⋆
−
(
k0
k

)qa−1

(qa − 1) log⋆
+ 8

1 −
(
k0
k

)qa−1

(qa − 1)2 log2
⋆

 , (F.6)

which follows from eq. (6.8) with Γg replaced with Γa and Fg with Fa, and we assume Fa ∝ 1/xqa

for x > x0,a and qa > 1 (and Fa = 0 for x < x0,a).24 Notice from Figure F.11 that for values of
ξ⋆ log⋆ = O(103) the suppression is the predicted one, and for smaller values the conservation of
the number density is even more accurate (and eq. (F.3) breaks). Finally, for larger (not relevant,
unless N > 1, see Section 6.3.5) values of ξ⋆ log⋆ the non-conservation of the number density
becomes substantial, and the relic density in eq. (6.13) must be multiplied by the suppression
factor in eq. (F.3). In particular, as mentioned in the main text, Ωst

a ∝ (ξ⋆ log⋆)3/4.
24We used qa = 5 and as mentioned x0,a = 10.
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F.4 The Density Power Spectrum

In this Appendix we give more details on the determination of the power spectrum of axion over-
densities ∆2

a(k) defined in eq. (4.31), and discuss the uncertainties on this.
As described in Section 6.3.3 and Appendix F.3, we consider only the axion radiation emitted

during the scaling regime up to H = Hcrit = H⋆/3. In particular, we neglect the strings and the
domain walls that are present in the field at this time. The evolution of such radiation follows
the axion equations of motion (F.5). Similarly to Appendix F.3, we start at H = Hcrit with
initial conditions given by a superposition of waves with the axion spectrum ∂ρa/∂k from the
extrapolated scaling solution (with ξ⋆ log⋆ = 2000) in eq. (F.6).25 As discussed in Appendix F.3,
the axion number density (and in general the dynamics of the IR part of this radiation) can be
directly studied at the physical value of log⋆ in these simulations without the need of extrapolations
(thanks to the absence of strings).

Such simulations capture the dynamics of axion field up the momentum mode kUV ≃ NgridH⋆/(H⋆L⋆)
at H⋆, where Ngrid is the number of lattice points and H⋆L⋆ is the number of Hubble lengths in the
box at this time. While most of the energy density of the field is not included in the simulations
due to the almost scale invariant form of the energy density spectrum ∂ρa/∂k (see eq. (F.6)), the
axion number density na =

∫
dk/ωk∂ρa/∂k dominantly comes from IR modes, which are included

(at k > ma the contribution to the number density from the mode k is proportional to k−2).
Consequently, the IR modes of the field also dominantly determine the axion dark matter power
spectrum ∆2

a(k) at least at IR momenta.26

Since we are primarily interested in the coefficient of the k3 IR part of the density power
spectrum, the simulations are carried out starting with HL = 20 at Hcrit so that modes with
momentum down to k/H⋆ ≃ 0.2 are included, giving a large enough momentum range for the k3

slope to be present and C to be fit. Moreover, we set Ngrid = 1300, which is large enough that
modes with k/H⋆ ≃ 200 are included, corresponding to 95% of the number density. During the
evolution of the field, we calculate the (discretized version of the) power spectrum as ∆2

a(k) =
k3/(2π2L3)⟨δ̃2(k⃗)⟩||⃗k|=k where δ̃(k) is the Fourier Transform of δ(x) and ⟨·⟩||⃗k|=k stands for the
average over the momenta with modulus k⃗.

In Figure F.12 left we show the results for ∆2
a(k) at increasing times during the evolution of

the system at H < Hcrit (as the mass becomes relevant), for the input spectrum in eq. (F.6) with
x0,a = 10. As expected, ∆2

a(k) changes, in particular growing at scales kcom/H⋆ ≃ 10. Thanks to
25Although this spectrum derives from a simplified form of Fa, we have confirmed that starting with a more realistic

Fa (discussed in [188]) with the same x0,a but with an IR tail F (x) ∼ x3 for x < x0,a changes the fit of the constant
C to the IR of ∆2

k by less than 20%, which is much smaller than the uncertainties we subsequently discuss.
26In particular, the UV modes evolve freely without affecting the dynamics of the IR modes at any point including

during the previously discussed non-linear transient [188]. Subsequently, the energy in the UV modes simply redshifts
away leaving a negligible contribution to the DM abundance. The fact that simulations do not include the (large
fraction of the total axion) energy that is such UV modes therefore does not introduce uncertainty in the power
spectrum that we extract.
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Figure F.12: Left: The power spectrum ∆2
a, as a function of comoving momentum kcom ≡ k(R/R⋆),

during the evolution of the axion waves (produced during the scaling regime) when the axion mass
becomes cosmologically relevant (blue), and at the final simulation time (black), after the the
nonlinear transient and once it has reached an approximately constant form. The simulation starts
at H = Hcrit = H⋆/3 with waves with the energy density spectrum ∂ρa/∂k predicted from the
scaling regime in eq. (F.6) at ξ⋆ log⋆ = 2000 and x0,a = 10. The green line is the result at the final
time for a purely linear evolution. Right: The result of ∆2

a at the final time for different values of
the IR cutoff of Fa, i.e. the parameter x0,a, in the initial energy density spectrum. This Figure was
produced by my collaborators for our joint work [1].

the relatively large Ngrid used, the transient has finished and the axion energy in the simulation
is redshifting non-relativistically by the end of the simulation.27 As it is clear in Figure F.12, at
this time the IR part of ∆2

a(k) has reached a time-independent form. The UV part of ∆2
a(k) is not

fully constant, due to the presence of high momentum modes and oscillons (these contain only a
small fraction of the total energy and will eventually decay into high momentum modes so will not
alter the IR of the density power spectrum), and as mentioned in Section 6.3.3 its understanding
is beyond our current scope.

The IR part of ∆2
a(k) approaches the expected k3 dependence, with coefficient C ≃ 2 × 105

(defined in Section 6.3.3). Note that even with a linear evolution (i.e. with potential V = 1/2m2
aa

2),
∆2
a(k) would evolve simply due to modes turning non-relativistic. However the results we obtain

differ from those with a linear potential due to the, previously discussed, relativistic redshift and
the small non-linear transient. To understand the importance of these two effects, in Figure F.12
we also plot the ∆2

a that is obtained at the final simulation time evolving with a linear potential.
From this is can be seen that the non-linear effects decrease ∆2

a(k) by a factor of 4 in the IR.
This is reasonable since the transient moves energy to higher momentum modes, and it is also not
surprising that the effect is relatively small given that the transient only has a minor effect on the
axion number density. Although we have fixed a potential of the form V (a) = m2

af
2
a (1 − cos(a/fa))

27As discussed, in reality soon after H⋆ a large fraction of the axion energy is in UV modes that are not captured
by simulations. However, these continue to redshift until the energy they contain is negligible so the true power
spectrum will eventually reach the form measured in simulations.
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Figure F.13: The evolution of the power spectrum ∆2
a during the destruction of the string network

at the unphysical value of log(mr/H⋆) = 5. See Figure F.10 for the corresponding evolution of ξ and
the axion energy density spectrum at these times. This Figure was produced by my collaborators
for our joint work [1].

we expect any other bounded potential to lead to a similar ∆2
a(k) (since the main effect of the

non-linear potential on ∆2
a(k) comes from the extra era of relativistic redshifting).

Let us discuss the possible uncertainties in C. One uncertainty comes from the value of the
IR cutoff x0,a of Fa. As mentioned, at log ≃ 7 ÷ 8 the value of x0,a = 10 (as we have used) fits
well the simulation results [188], with no evidence for a strong log dependence. Nevertheless, we
cannot exclude that x0,a has a log dependence that is smaller than would be visible with current
simulations (for instance the growth of ξ might increase x0,a). In Figure F.12 (right) we plot ∆2

a(k)
with x0,a between 5 and 50, from which it can be seen that x0,a > 10 decreases ∆2

a(k) in the IR
leading to a smaller C and a weaker limit via eq. (6.17). Decreasing x0,a below 10 actually barely
affected the fitted C, since the non-linear transient has a greater effect in this case, removing energy
from IR modes. For x0,a between 5 and 30, which we take as a plausible range, C varies by a factor
of 20. For a fixed fiso, the bound on fa ∼ C1/4, so this leads to a 100% uncertainty on the limit
on fa. In Figure 6.7, we correspondingly blur the limit above a lower edge corresponding to the
constraint for x0,a = 10 to reflect this uncertainty. Together these uncertainties mean that the
isocurvature bounds that we plot should be treated with substantial caution as discussed in the
main text.

Finally, as discussed in Section 6.3.3, our analysis of density perturbations in DM axions from
the scaling regime gives a conservative isocurvature bound, since it misses the DM axions produced
by the network of strings and domain walls formed when the mass becomes cosmologically relevant.
To get an idea of how much these could strengthen the bound, we also calculate ∆2

a from simulations
of the string network through the mass turn on until its destruction at a small (unphysical) value
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of log⋆, by numerically solving eq. (2.28) with an additional mass term, as in Appendix F.3. Of
course, such simulations are at small scale separations (i.e. small tension) and have no hope of
accurately reproducing the dynamics of the system at the physical point, and our results are solely
to give an indication of the possible magnitudes of effects. The various competing requirements
in such simulations discussed in Appendix F of [188] dramatically limit the value of log⋆, and the
results we show are for log⋆ = 5.28

The results for ∆2
a are shown in Figure F.13 at increasing times until the network is destroyed

(see Figure F.10 for the behaviour of ξ and the axion energy density spectrum at the corresponding
times). Given the more challenging simulations, the minimum values of kcom/H⋆ (where kcom =
k(R/R⋆) = k(H⋆/H)1/2 is the comoving momentum) are larger than in simulations in which only
the axion field is evolved. Nevertheless, the expected k3 IR power law is reproduced and in this
momentum region ∆2

a is time independent after the network disappears. The coefficient C ≃
5 × 10−2 is much larger than in the axion only simulations (this is perhaps not surprising, since at
H = Hcrit most of the string length is in long strings, which are expected to lead to fluctuations
on Hubble scales).29 Similar results have been observed in analogous simulations where the axion
mass has nontrivial temperature-dependence. This has been studied for the first time in [184],
where a detailed analysis of the power spectrum (at all momenta) has been carried out at small
log⋆ for the QCD axion.30

It is plausible that the slope of the k3 tail may be similar at large values of log⋆, and if the
relic abundance of axions from the destruction of the network is comparable to (or larger than)
that from scaling, the isocurvature constraint would be significantly strengthened. For instance,
assuming equal DM abundance from the waves produced during the scaling regime and from the
destruction of the network, and C ≃ 5 × 10−2, using eq. (6.17) for a fixed ma the bound on fa

Figure 6.7 would strengthen by a factor of 7, ruling out large parts of the ranges of fa and ma that
could be detected at SKA. As mentioned in the main text, even if the true C from the destruction
of the network at large tension is small, if the DM abundance is larger than that produced during
scaling the isocurvature limit can also strengthen, owing to the DM abundance factor in eq. (6.17).

F.5 Distribution of loops in the underdense regime

As explained in Section 4.4, the evolution of the string density ξ in the underdense regime is
empirically described by eq. (4.12). In the limit λ = 0 this corresponds to a power law ξ ∼ tγ with
γ = (αH2

I )/(8π2v2
a) and α ≃ 3.7 was extracted numerically. For values of HI/va that correspond

28These requirements include, in particular, the lattice spacing ≲ m−1
r , a large enough hierarchy between axion

and radial model mass, and that HL is sufficiently large that the k3 IR part of the density power spectrum can be
fit once ∆2

a has reached a constant form in the IR part.
29The UV part of ∆2

a is still evolving at the final simulation time, but the overall energy density is mostly in IR
modes so the IR part of the density power spectrum will not change dramatically.

30In particular, the power spectrum is also characterized by a peak related to the presence of oscillons.
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to the underdense regime γ is roughly smaller than 0.2. Compared to the evolution of a network
of exclusively long, non-interacting strings for which ξ ∼ t the network in the underdense regime
grows slower. The expectation is thus that a substantial fraction of the string length is in relatively
shorter loops. We have followed the distribution of loop lengths in Figure F.5 which we compare
to Figure 4 of [186].

4
5 6

log( /H)=4mr

56
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Hl/π
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Figure F.14: Comparison of the evolution of the distribution of loops for an underdense network
starting from initial conditions as explained in Section 4.4 (colored lines) and an overdense network
shown in [186] (black lines). This shows that the underdense network has a higher proportion of
short loops as compared to the distribution in the scaling regime.

It is not surprising that the underdense network contains many small loops, since the radial
mode is most likely to fluctuate over the top of the potential towards the end of inflation, since it
had to longest time to get close to the top. Meanwhile, fluctuations over the top at late times are
likely to lead to small loops, as the length of the strings is least stretched by inflation.
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Appendix G

GWs from the Nonlinear Transient
and Oscillons

As mentioned, we refrain from attempting to calculate the contribution to the GW background
from the collapse of the system of strings and domain walls at H ≃ ma, since the dynamics of this
system is yet not fully understood. One contribution to the GW spectrum from this collapse is
expected to lie at frequencies and amplitudes of the same order as the last e-folding of the scaling
regime, as already pointed out in [191] (where numerical simulations at small scale separations have
been carried out). As described in Section 6.2.4, such a contribution has a too low frequency for
ultralight axions (for the masses that are not excluded by DM overproduction) and a too small
amplitude for the QCD axion, for which fa ≲ 1010 GeV (but in principle at frequencies that are
under investigation) to be observed.

As we will now explain, there could be an additional source of observable GWs in this system.
As discussed in Section 6.3.1 and in more detail in [188], the axion waves (accumulated during
the scaling regime) experience a period of relativistic redshift after at H ≃ ma and a small non-
linear transient. During the nonlinear transient, the field is a superposition of waves containing
(topologically trivial) domain walls that decay rapidly into axions. After the transient, the axion
field is mostly in the linear regime (settling down to a = 0), except in small regions called oscil-
lons where it oscillates with an amplitude of order fa. If the evolution of the axion waves were
purely linear, the axion waves would not produce GWs [370]. However, the existence of a small
nonlinear regime provides a possible source of GWs. Unfortunately, this contribution is again in
amplitude and frequency of the same order as the last e-folding of the scaling regime, and therefore
not observationally relevant both for ultralight axions and for the QCD axion.

This conclusion can be easily drawn by estimating the parametric dependence on fa and H⋆

of this contribution via quadrupole formula (valid in the non-relativistic limit) applied to the
topologically trivial domain walls. In any case, in Figure G.1 we show the full spectrum of GWs from
the numerical evolution of the axion waves during the nonlinear regime, discussed in Appendix E
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Figure G.1: The evolution of the GW spectrum generated during the nonlinear transient that the
axion waves (emitted during the scaling regime) experience at the time H ≲ H⋆, as a function of
the (comoving) momentum. Increasing times are labelled by different values of H⋆/H. We show
with a grey point the momentum corresponding to the axion mass. The overall redshift of the
waves has been factored out in the plot by dividing the spectrum by H2. This Figure was produced
by my collaborators for our joint work [1].

of [188]. We start with a configuration of waves with the energy density spectrum from the scaling
regime for log⋆ = 65, and we assumema = Rα/2 with α = 8, which is the case for the QCD axion (see
Section 3.2 in [188] for more details on the details of the evolution of these waves). It is immediate
to see that the spectrum in Figure G.1 is peaked at momenta a few times larger than k ≃ x0H⋆ and
is of the same order as the spectrum in eq. (6.9) evaluated at H = H⋆ (and k = x0H⋆). Moreover,
most of the GWs are produced around the time H/Hℓ ≃ 6, when the potential energy equals the
kinetic energy and the system becomes completely nonlinear (see [188]). At the final times the
field is in the linear regime except for the presence of oscillons. Being spherical, oscillons do not
contribute significantly to the GWs. Indeed, the GWs stop being produced after the nonlinear
regime ends (at around H⋆/H ≃ 10), and are not produced during the subsequent times when
oscillons are present.

Finally notice that the for a temperature-independent mass, the nonlinear regime is much
milder, and the contribution to the GW spectrum is smaller (and, as mentioned, outside the
detectable frequency range). Given the experimental irrelevance of the GWs from the nonlinear
transient, we refrain from a more detailed analytical study.
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Appendix H

Other bounds

Black hole superradiance Weakly interacting light particles can spontaneously draw energy out
of black holes through the phenomenon of superradiance. The observation of spinning black hole
that have not had their angular momentum removed by superradiance therefore constrains the
axion parameter space [233,235,237]. Currently, axions in the mass range 10−16 ÷ 10−18 eV are in
tension with observations, however sufficiently large self-interactions prevent superradiance so the
constraints only apply to fa ≳ 1015 GeV, see [238] for a detailed analysis. In the post-inflationary
scenario that we consider these limits are less important than that from the axion relic abundance.

Other CMB bounds Dark matter axions with masses ∼ 10−25 eV are constrained by their
effect on CMB observables independently of the presence of strings [331] (we note that bounds on
such ultra light axions from neutral hydrogen intensity mapping could strengthen substantially in
the future [371]). In the post-inflationary scenario these bounds are subdominant to dark energy
bounds, which in some parts of the parameter space are weaker than the isocurvature constraints
even with our most conservative assumption for the power spectrum of density perturbations.
Additionally, a new approach to detecting strings that exist beyond the time of decoupling and
are associated to an axion that interacts with photons has recently been proposed [372]. This is
probably not relevant for strings that give the observable GW signals, since such long lived strings
are likely to be in conflict with CMB anisotropy constraints for fa ≳ 1014 GeV.
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Appendix I

Comparison to the Literature

In this Appendix we first comment on the difference between our approach and previous works on
GWs from global strings from the scaling regime.1

• Refs. [375] and [321,376] utilise a particular model of the string evolution (also known as one-
scale velocity-dependent model) and the expressions for the rate of energy emission to GWs
and axions (in the zero coupling limit, derived in [311, 312]) to calculate the GW spectrum
from the loops produced during the scaling regime. Such references correctly reproduce the
logarithmic deviation of the GW spectrum due to the logarithmic time-dependence of the
tension. In particular, the resulting log3 dependence on the momentum (and the correspond-
ing enhancement of the spectrum) has been already pointed out in [321]. However, as such
a model does not seem to always reproduce the logarithmic increase in ξ, the corresponding
increase in the GW spectrum has not been captured.

• Refs. [377, 378] extract the GW spectrum directly from numerical simulations of physical
systems similar to that in eq. (2.28) at small log, without any extrapolation. These references
claim that the GW spectrum asymptotes to an exactly scale invariant form. However, as is
clear from Section 6.2, this is in contradiction with conservation of energy and effective field
theory, and also with our simulation results. Indeed, the spectrum results in [378] appear to
show a residual time increase (and not an exactly scale invariant form).

We also observe that the original analysis of isocurvature perturbation of Section 6.3.3 has been
developed for the QCD axion [257] and axion-like particles in [258, 259]. However, compared to
these works we differ in our expression for the relic abundance, in the power spectrum that we use
(which we obtain from simulations of the string network rather than motivated by misalignment
production) and in allowing the axion to comprise a subdominant fraction of the dark matter.
We also apply constraints on isocurvature from Lyman-α observations. These were derived in the

1There has also been some work on GW signals from axions in the pre-inflationary scenario [373,374], which can
arise if there the an axion is coupled to a light hidden sector gauge boson.
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context of primordial black hole dark matter models and extended to axion string scenario in [261]
(our analysis differs from this work again in our calculation of the relic abundance and in the
density power spectrum that we use), see also [379,380].
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Appendix J

Cosmological Stability of the Axions
and Temperature Dependent Masses

In this Appendix we show that all generic axions that lead to observable GW signals and are not
ruled out by the constraints of Section 6.3 are cosmologically stable, and that also a temperature-
dependent mass forces the axions to be ultralight.

As discussed in Section 6.2.4 and visible in Figure 6.6, for a temperature-independent axion
mass GWs in the observable frequency range are only possible for fa ≳ 1014 GeV and ma ≲ 100 keV
so that the string network is not destroyed before T⋆ ≃ 107 GeV. In this case the axion is always
stable on cosmological timescales regardless of its interactions. For example, the axion might have
an interaction with photons of the form [330]

L ⊃ −C αEM
8πfa

aFµνF̃
µν , (J.1)

which allows decays, where Fµν is the electromagnetic field strength with associated coupling con-
stant αEM, and the coefficient C is model-dependent and expected to be not much larger than order
one for the theory to be perturbative. However, denoting the temperature of the universe when
H = ma by T⋆ the corresponding lifetime

Γ−1
a→γγ = 1

C2

( MeV
ma

)3 ( fa
1014 GeV

)2
1021 s (J.2)

= 1
C2

(
6 × 107 GeV

T⋆

)6 (
fa

1014 GeV

)2
1021 s , (J.3)

exceeds the age of the Universe for all the decay constants of interest and for axion masses ma ≲

MeV, and in particular ma ≲ 100 keV. If the axion is sufficiently heavy and has suitable interactions
it could also decay to leptons or hadrons, or hidden sector particles. However, these channels (or
similar decays into hidden sector states) are not expected to significantly shorten the axion lifetime
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compared to that corresponding to the only photon coupling and do not change the conclusion.
As mentioned in Section 6.3, a temperature-dependent mass does not relax the constraints

in Figure 6.2.4 on fa and ma(0) that lead to observable GWs, and still force the axion to be
ultralight. To see this, we assume for simplicity that the axion mass dependence on temperature is
ma(T ) ≃ Λ2/fa ≡ ma(0) for T < Λ and ma(T ) ≤ ma(0) for T > Λ, where Λ is the strong coupling
scale of a new sector, which happens in typical models (for T ≫ Λ the dependence is a power law
but not relevant for our present argument).

As mentioned above, the conditions for the GWs to be observable are fa ≳ 1014 GeV and
T⋆ ≲ 107 GeV. If T⋆ < Λ, then as far as the cosmological evolution of the string network and
axions are concerned the axion mass is constant and the bounds on dark matter, dark radiation
and isocurvature perturbations are those discussed in Section 6.3. On the other hand, T⋆ > Λ
means that Λ ≲ 107 GeV, which for fa ≳ 1014 GeV requires ma(0) ≲ GeV. If MeV ≲ ma(0) ≲ GeV,
such values of the axion mass and decay constant are actually ruled out as the axions decay after
BBN (from eq. (J.2)) and dominate the energy density of the Universe at the time of BBN (which
can be easily seen redshifting back today’s would be DM abundance from eq. (6.13) to T = MeV).
If instead ma(0) ≲ MeV the axion is stable and only ultralight axions do not overproduce DM (T⋆
in this case is always smaller than the corresponding T⋆ if ma did not depend on the temperature,
implying in general a larger DM abundance despite the nonlinear evolution leading to a larger
suppression in this case).

We finally note that in such models there are new constraints on the effective number of degrees
of freedom in the hidden sector, since Λ is far below the scale of BBN for the viable masses. These
require the hidden sector is cold relative to the visible sector.
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