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A B S T R A C T

We investigate a condition-based group maintenance problem for multi-component systems, where the
degradation process of a specific component is affected only by its neighbouring ones, leading to a special
type of stochastic dependence among components. We formulate the maintenance problem into a factored
Markov decision process taking advantage of this dependence property, and develop a factored value iteration
algorithm to efficiently approximate the optimal policy. Through both theoretical analyses and numerical
experiments, we show that the algorithm can significantly reduce computational burden and improve efficiency
in solving the optimization problem. Moreover, since model parameters are unknown a priori in most practical
scenarios, we further develop an online reinforcement learning algorithm to simultaneously learn the model
parameters and determine an optimal maintenance action upon each inspection. A novel feature of this online
learning algorithm is that it is capable of learning both transition probabilities and system structure indicating
the stochastic dependence among components. We discuss the error bound and sample complexity of the
developed learning algorithm theoretically, and test its performance through numerical experiments. The
results reveal that our algorithm can effectively learn the model parameters and approximate the optimal
maintenance policy.
1. Introduction

Maintenance serves as an essential measure to improve system
reliability, sustain system operations, and reduce operating costs in var-
ious industries, including energy-generation, manufacturing, and trans-
portation, among others. From the modelling perspective, maintenance
models can be classified into two categories: maintenance models for
single-unit systems and those for multi-component systems (de Jonge &
Scarf, 2020). In the reliability and maintenance field, numerous studies
have been devoted to single-unit systems, while maintenance problems
for multi-component systems are generally much more complex, due to
the presence of multiple components as well as various dependencies
among components. In particular, dependencies among components are
typically categorized into three types in the literature (Olde Keizer
et al., 2017a): structural dependence (i.e., maintenance of a certain
component requires the dismantling or maintenance of other compo-
nents because of the system’s physical structure), stochastic dependence
(i.e., degradation or failure process of a certain component affects
those of other components), and economic dependence (i.e., combining
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maintenance on multiple components is less expensive than maintain-
ing each component separately). The recent literature has introduced
two new types of dependence—resource dependence (Olde Keizer et al.,
2017a) and geographical dependence (Nguyen et al., 2019). The former
occurs when multiple components share a limited pool of maintenance
resources (e.g., spares, tools, and crews), while the latter—concerning
geographically dispersed systems—applies when jointly maintaining
several components results in a smaller total travel distance/time than
maintaining each component individually.

Group maintenance is widely adopted for multi-component systems;
it prescribes the maintenance of a group of components together,
thereby attaining economies of scale (Abbou & Makis, 2019; Wildeman
et al., 1997). The rationale is that simultaneously maintaining multiple
components can reduce the setup cost compared with maintaining them
individually. Traditionally, group maintenance is conducted based on
ages and failure distributions of the components, which is referred
to as time-based maintenance. Recent advances in sensing technology
enable monitoring system conditions in a low-cost manner, propelling
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a shift in maintenance paradigm towards condition-based maintenance
(CBM). Within the framework of CBM, optimal maintenance decisions
are determined based on observed health conditions—obtained through
either discrete inspection or continuous monitoring—of the systems
and/or their components (Ahmad & Kamaruddin, 2012). However,
developing a condition-based group maintenance policy based on com-
ponent health conditions is rather complicated given the dependencies
among the components.

Markov decision process (MDP), a well known stochastic control
process, has been widely used to model CBM problems where a system
is represented by a set of states that present random evolvement (Gámiz
et al., 2023; Liu et al., 2021). MDP is an effective and flexible modelling
tool for single-unit systems in the sense that it is able to evaluate
and optimize maintenance policies for either a finite or an infinite
horizon. However, for a multi-component system, any system state is
a combination of the states of all the components. This leads to the
so-called curse of dimensionality (i.e., the exponential explosion of the
number of system states). Even for systems with moderate number of
components (say, 15 to 20 ones), traditional MDPs would suffer from
notorious computational complexity and cannot be directly applied.
To relieve this issue, the factored MDP (FMDP) model is developed to
represent large MDPs with factored structures (Talebi et al., 2021). In
particular, FMDP separates the transitions and costs into their coun-
terparts defined on small sets of elements in the state vector, which
can reduce computational complexity in determining an optimal policy.
FMDP is a promising approach to solving the group maintenance prob-
lem for multi-component systems, since degradation of a component
might depend only on a small cluster of ‘‘neighbouring’’ components.
In this case, maintenance cost can also be decomposed as the sum of
the costs related to the individual or small sets of components (Zhou
et al., 2018).

In practice, some large-scale, multi-component systems can be de-
composed into a number of locally interactive components and thus
modelled by an FMDP. A typical example is maintenance of railway
tracks. A railway network consists of thousands of tracks, among which
the tracks in a specific area are interdependent in the sense that they
are operating in a common environment and under similar traffic
loads. In this sense, the tracks are subject to location-based stochastic
dependence; that is, neighbouring tracks are expected to have a higher
level of dependence than those distant ones (Brown et al., 2022). When
conducting maintenance activities on railway tracks, decision makers
have to consider the effect of such dependencies so as to improve
maintenance efficiency. Another example is maintenance of machines
in a production line. In modern manufacturing scenarios, multiple ma-
chines in a production line work collectively to manufacture a product.
Degradation of a certain machine reduces the quality of the parts
produced, which might further affect the degradation of downstream
machines. For example, the degradation process of cutting tools is
affected by defective materials/parts from the previous production cell.
In reality, such effect usually diminishes with the ‘‘distance’’ of ma-
chines. From the modelling perspective, this dependence relationship
among components of a complex system can be modelled by a dynamic
Bayesian network or its variants (Guestrin et al., 2003).

A practical issue to be considered when applying FMDP in the group
maintenance problem is that the transition probabilities are generally
unknown a priori. An implicit assumption adopted by most literature
is that model parameters are fully known to the decision maker; this
assumption is, unfortunately, not realistic in most practical scenarios,
as the parameters often need to be estimated from historical data
or suggested by domain experts. In this work, focusing on group
maintenance for multi-component systems subject to economic and
stochastic dependencies, we tackle this issue by developing an online
reinforcement learning algorithm to simultaneously learn the transition
probabilities and determine an optimal maintenance policy. To the
best of our knowledge, this is the first work that presents an online
2

reinforcement learning algorithm for CBM problems. In particular, the
algorithm is devised by extending the existing factored Model-Based
Interval Estimation (fMBIE) approach to an online learning scenario.
The performance of this algorithm is investigated in both theoretical
and numerical manners.

We summarize the contributions of this work in the following four
aspects:

• We formulate a condition-based group maintenance problem for
multi-component systems with stochastic and economic depen-
dencies into an FMDP.

• We develop a modified factored value iteration algorithm to im-
prove computational efficiency in calculating an optimal policy.

• We develop a novel online learning algorithm to learn the param-
eters and the dependence relationship and optimize the mainte-
nance policy, simultaneously.

• We theoretically prove the bound of errors for the proposed online
learning approach against the nominal model.

The remainder of the paper is organized as follows. Section 2
reviews relevant literature on CBM for multi-component systems and
reinforcement learning for FMDPs. Section 3 formally describes the
condition-based group maintenance problem and formulates the prob-
lem into an FMDP. For the nominal model with known parameters,
Section 4 presents a modified factored value iteration algorithm to
compute an optimal maintenance policy. Further considering the sce-
nario in which model parameters are unknown a priori, Section 5
presents an online learning algorithm to learn the model parameters
and evaluates the performance of this algorithm. Section 6 conducts
numeral experiments to validate the developed approaches. Finally,
Section 7 concludes the paper and suggests future research topics. All
proofs can be found in Appendix A.

2. Related literature

We discuss two major research streams that are related to our work:
(i) CBM for multi-component systems and (ii) reinforcement learning
for FMDPs.

2.1. CBM for multi-component systems

Though most CBM-related studies are focused on single-unit sys-
tems (see, e.g., Chen et al., 2015; Deep et al., 2023; Drent et al.,
2023; Elwany et al., 2011; Khaleghei & Kim, 2021), the CBM problems
for multi-component systems have attracted an increasing attention in
the literature (see, e.g., Olde Keizer et al., 2016; Tian & Liao, 2011;
Zhu & Xiang, 2021). One can refer to Olde Keizer et al. (2017a) for
a comprehensive overview on CBM for multi-component systems, in
which the CBM policies are classified in terms of dependence type.

We confine our attention to MDP-based CBM studies for multi-
component systems. Sun et al. (2017) develop a CBM model for multi-
component systems with identical and independent components. Liu
et al. (2021) investigate a CBM problem for two-component systems
with heterogeneous and dependent components. They formulate the
problem into a finite-horizon MDP and characterize the optimal pre-
ventive maintenance curve in terms of the components’ degradation
levels. Barlow et al. (2021) propose a performance-centred approach to
optimizing maintenance of complex systems with multiple components
and adopt a reinforcement learning algorithm to solve the complex
optimization problem. Hoffman et al. (2022) develop an online im-
provement approach for CBM with Monte Carlo tree search. They
develop a two-stage approach that first optimizes the static CBM policy
and then uses Monte Carlo tree search to further improve the static pol-
icy. Olde Keizer et al. (2017b) develop a joint CBM and inventory model
to reduce the maintenance and inventory losses through optimizing
maintenance and spare ordering decisions based on the components’
conditions. Wang and Zhu (2021) propose a joint CBM and inventory

model that determines the optimal decisions based on the number of
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components in each degradation state instead of the condition of each
individual component. (Zheng et al., 2023) jointly optimize CBM and
spare provisioning for a 𝐾-out-of-𝑁 system, where system degradation
tates are revealed upon periodic inspections that trigger the opportu-
ities to replace components and order spare parts. When using MDP to
odel CBM for multi-component systems, a common yet burdensome

ssue is the computational complexity, since the number of system
tates increases exponentially with the number of components.

FMDP is an effective modelling approach to compactly representing
he stochastic nature of degrading systems, which is, to some extent,
elpful for resolving the curse of dimensionality. However, studies on
MDP-based maintenance optimization are rather limited. Zhou et al.
2016) formulate the maintenance problem of a multi-component sys-
em into an FMDP model and develop an improved approximate linear
rogramming algorithm to solve the problem. Zhou et al. (2018) further
nvestigate maintenance optimization of a series production system
nd develop a multi-agent FMDP model to select the maintenance
ctions in cooperation of different agents. Kıvanç et al. (2022) employ
factored partially observable MDP model to investigate the mainte-

ance problem of a regenerative air heater system subject to stochastic
nd economic dependencies. Nevertheless, the aforementioned research
mplicitly assumes that model parameters and dependence structures
re known to the decision maker in advance. This assumption is,
nfortunately, not realistic as the parameters and structures usually
eed to be estimated. To address this issue, this work aims to develop
n online learning algorithm for multi-component systems modelled
y an FMDP to jointly learn the parameters and dependence structure,
hile determining optimal maintenance actions.

.2. Reinforcement learning for FMDPs

In the literature, several attempts have been made on reinforcement
earning for FMDPs. Kearns and Koller (1999) present an efficient
nd near-optimal algorithm for reinforcement learning in an FMDP
ramework, where the structure is modelled by a dynamic Bayesian
etwork. Sallans and Hinton (2004) propose a novel approximation
ethod to approximate the value function and select actions for MDPs
ith large state and action spaces. The approach enables determining

he actions in large factored action spaces via Markov chain Monte
arlo sampling. Degris et al. (2006) develop a general framework
hat integrates FMDP-based incremental planning algorithms with su-
ervised learning techniques to build structured representations of
he reinforcement learning problem. Strehl (2007) extends the work
f Kearns and Koller (1999) by employing the Interval Estimation
pproach for exploration, which outperforms traditional algorithms on
ost domains. Strehl et al. (2007) propose an efficient reinforcement

earning algorithm to learn the unknown dynamic Bayesian network
tructure for an FMDP. Mahadevan and Maggioni (2007) develop a
ovel spectral framework to jointly learn the representations and the
ptimal policy for MDPs and FMDPs. Szita and Lörincz (2009) develop
factored optimistic algorithm to attain polynomial-time reinforcement

earning in FMDPs. The work emphasizes the importance of initializa-
ion and proves that suitable initialization can lead to convergence and
olynomial-time number of steps for near-optimal decisions. Osband
nd Van Roy (2014) report that it is possible to achieve regret that
cales polynomially in the number of parameters encoding an FMDP.
n addition, the work presents two algorithms that satisfy near-optimal
egret bounds in this setting. Tian et al. (2020) investigate minimax
ptimal reinforcement learning for episodic FMDPs. By assuming that
he factorization is known beforehand, two model-based algorithms
hat attain minimax optimal regret guarantees are proposed. Xu and
ewari (2020) develop oracle-efficient algorithms that achieve tighter
egret bounds for non-episodic FMDPs. Deng et al. (2022) design the
irst polynomial-time algorithm for reinforcement learning in FMDPs
hat only requires a linear value function with a suitable local basis with
3

espect to the factorization, permitting efficient variable elimination.
Though significant progresses have been made on reinforcement
earning for FMDPs in a general context, up to now no efforts have
een devoted to the specific condition-based group maintenance prob-
em where the interactions among components are represented by
ocation-based stochastic dependence. Different from most of the exist-
ng studies that focus on offline reinforcement learning algorithms, we
evelop a novel and more efficient online learning algorithm tailored
o the condition-based group maintenance problem that is able to
imultaneously learn the transition probabilities and the dependence
elationship.

otations

𝐾,  number and set of all components
𝑁 number of states for each component
 space of all state vectors of all components
𝑥𝑘 state of each single component 𝑘
𝑥 state vector of all components
 action space
𝑎𝑘 action on each single component 𝑘
𝑎 action vector on all components
𝐴 maximum number of components maintained at each

inspection
𝑃 (⋅) transition probability of system state between two

successive inspections
𝑃 𝑘
𝑅 instant transition of state of each component 𝑘 upon an

inspection
(due to the ‘‘replacement’’ or ‘‘do nothing’’ action taken)

𝑑𝑘 maximum distance a component being from the 𝑘th
component

𝑘 set of neighbouring components whose state transitions
depend on component 𝑘

𝑃 𝑘
𝐷 transition of state of each component 𝑘 within the

degradation interval
𝑃𝐷 transition of system state within the degradation interval
𝑐 total maintenance cost for the whole system
𝑐𝑘 maintenance cost for each component 𝑘
𝜑 cost factor reflecting economical dependence among

components
𝜋 a generic policy
𝜋∗ the optimal policy

3. The condition-based group maintenance problem

In this section, we formally describe the condition-based group
maintenance problem for a multi-component system in Section 3.1, and
then formulate the problem into an FMDP in Section 3.2.

3.1. Problem description

We consider the maintenance problem for a multi-component sys-
tem consisting of 𝐾 non-identical components, where the health condi-
tion of each component deteriorates during operations. In reality, such
health condition varies for different systems, such as crack sizes of
railway tracks and charging/discharging rates of batteries. Moreover,
the degradation process of a specific component is affected by only
its neighbouring ones instead of all components; that is, there is a
special type of stochastic dependence among the components (Olde
Keizer et al., 2017a). The degradation process of the whole system,
without interventions, is assumed to follow a Markov chain. To improve
system reliability and sustain system operations, periodic inspections
are carried out to reveal the system and component states. At each
inspection, maintenance action might be implemented, depending on
the observed component states. For each component, we only consider
two actions: ‘‘do nothing’’ and ‘‘replacement’’, while the case involving
imperfect maintenance actions of different depths is left for future
research. The ‘‘replacement’’ action restores a component to an as-good-
as-new state. The time duration required to complete a replacement
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action is assumed to be negligible compared with the inspection inter-
val, which is a common assumption in maintenance studies (see, e.g.,
Drent et al., 2023; Liu et al., 2021). We consider that maintenance
on a group of components can reduce costs compared to separate
maintenance on individual components, corresponding to the so-called
economic dependence (Zhao et al., 2022). However, due to the limited
availability of maintenance crews, only a set of components can be
maintained at one time, reflecting the resource dependence among the
components (Olde Keizer et al., 2017a).

In this problem, the transition of a component’s state between any
two successive inspections can be caused by maintenance at the former
inspection and/or natural degradation during this interval. At inspec-
tion, the component state is determined immediately by the action
(replacement or do nothing) applied. Specifically, if the replacement
action is taken, then the component is instantly restored to an as-
good-as-new state, given negligible replacement duration; otherwise,
the component state remains unchanged. Within the interval between
two successive inspections, each component gradually deteriorates to a
worse state during operations. Because of the location-based stochastic
dependence, the degradation process of each component is affected
only by its neighbouring components.

Our objective is to determine an optimal maintenance policy so
that the total discounted long-run cost is minimized. In doing so, we
first study the optimal maintenance policy in a scenario where the
degradation parameters (i.e., transition probabilities of the Markov
chain and the parameters associated with the stochastic dependence)
are pre-known, and then extend our attention to a more typical online
maintenance scenario where the parameters are unknown a priori.

.2. Model formulation

Based on the previous description, we now formulate the condition-
ased group maintenance problem into an FMDP. As mentioned earlier,
MDP separates the transitions and costs into their counterparts de-
ined on small sets of elements in the state vector. As a result, FMDP
an reduce the computational complexity in determining an optimal
aintenance policy for multi-component systems.

Let  ≜ {1,… , 𝐾} be the set of all components. Degradation of the
omponents is described by a controlled Markov process ( , , 𝑃 ). The

term ‘‘controlled’’ means that the degradation paths of the components
can be influenced by the decision maker through maintenance actions.
Specifically,  ≜ {1,… , 𝑁}𝐾 is the set of all possible state vectors
of all components. For a state vector 𝑥 = (𝑥1,… , 𝑥𝐾 ) ∈ , 𝑥𝑘 is
the state of an individual component 𝑘 ∈ ; a higher value of state
ndicates a healthier condition.  ⊂ {0, 1}𝐾 is the action set with
= (𝑎1,… , 𝑎𝐾 ) being a generic element thereof. In particular, 𝑎𝑘

epresents the action taken on component 𝑘 ∈ , with 𝑎𝑘 = 1 and
𝑘 = 0 representing ‘‘replacement’’ and ‘‘do nothing’’, respectively.
e impose a restriction upon  to reflect the limited availability of
aintenance resources, particularly the crews executing maintenance

ctions. At each inspection, due to the limited maintenance crews,
nly a portion of components can be maintained; specifically, for all
= (𝑎1,… , 𝑎𝐾 ) ∈ , we impose ∑

𝑘∈ 𝑎𝑘 ≤ 𝐴, where 𝐴 is a pre-specified
onstant satisfying 𝐴 ≪ 𝐾. It is worth noting that in extreme cases

can be as big as 𝐾, especially when the system scale is not large.
onetheless, our approach well accommodates the case of 𝐴 = 𝐾.

Furthermore, 𝑃 is the controlled transition matrix of the states,
here 𝑃 (𝑦 ∣ 𝑥, 𝑎) is the transition probability from state 𝑥 ∈  to

tate 𝑦 ∈  under action 𝑎 ∈ . As discussed earlier, the transition
f a component’s state between two successive inspections can be
ttributed to maintenance at inspection and/or natural degradation
uring the inspection interval. Specifically, suppose that action 𝑎 is
aken at inspection. Then, the state of each component 𝑘 ∈  makes an
mmediate transition according to {𝑃 𝑘

𝑅(𝑧
𝑘 ∣ 𝑥𝑘, 𝑎𝑘)}𝑘∈, ∀𝑧 ∈ , where

𝑘(𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘) characterizes the transition probability, for component
4

𝑅

, from state 𝑥𝑘 to state 𝑧𝑘 under action 𝑎𝑘. In particular, when the ‘‘do
othing’’ action is taken (i.e., 𝑎𝑘 = 0),

𝑘
𝑅(𝑧

𝑘 ∣ 𝑥𝑘, 0) =
{

1, 𝑧𝑘 = 𝑥𝑘,
0, 𝑧𝑘 ∈ {1,… , 𝑁} ⧵ {𝑥𝑘}.

Upon the next inspection, the system transitions from state 𝑧 right
fter the previous inspection and maintenance, if any, to a new state
according to 𝑃𝐷(𝑦 ∣ 𝑧), ∀𝑦 ∈ , which reflects the transition of

ystem state under natural degradation during the inspection interval.
e consider that degradation of each component is affected only by a

mall set (relative to ) of its neighbouring components, which can be
epresented in a rigorous way as follows. Here and thereafter, ∀′ ⊂ ,
et 𝑧(′) (resp. (′)) denote the elements of 𝑧 ∈  (resp. ) with
ndices in ′. For each 𝑘 ∈ , there exists an integer 1 ≤ 𝑑𝑘 ≤ 𝐾 such
hat if we define 𝑘 = {𝑘′ ∈  ∶ |𝑘′ − 𝑘| ≤ 𝑑𝑘}, then

𝐷(𝑦 ∣ 𝑧) = 𝛱𝑘∈𝑃
𝑘
𝐷(𝑦

𝑘 ∣ 𝑧(𝑘)), ∀𝑧, 𝑦 ∈  ,

here 𝑃 𝑘
𝐷 ∶ (𝑘)× is the local state transition probability of a single

omponent 𝑘. Following the paradigm of dynamic Bayesian network,
e refer to each 𝑘 as the parent set of the 𝑘th component.

Combining 𝑃 𝑘
𝑅 and 𝑃 𝑘

𝐷, ∀𝑘, the transition function 𝑃 can be repre-
ented by

(𝑦 ∣ 𝑥, 𝑎) =
∑

𝑧∈

(

𝛱𝑘∈𝑃
𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷
(

𝑦𝑘 ∣ 𝑧
(

𝑘
))

)

. (1)

After an action 𝑎𝑘 ∈ {0, 1} is carried out on a single component
∈  at state 𝑥𝑘 ∈ , a normalized instant cost 𝑐𝑘(𝑥𝑘, 𝑎𝑘) is incurred,
here 𝑐𝑘 ∶ {1,… , 𝑁}×{0, 1} → [0, 1] is an increasing function of 𝑎𝑘 for
iven 𝑥𝑘. However, when multiple components are maintained simul-
aneously, there might be significant economic dependence between
djacent components. To be specific, if two components are adjacent
say, 𝑘 and 𝑘+1), then the cost of maintaining them together should be
ess than that of maintaining them individually. To characterize such
ffect, we define a penalty cost on top of the marginal maintenance
osts of each individual components, and the total cost is defined as
he combination of both. In particular, we say that components 𝑘1 ∈ 
nd 𝑘2 ∈  are adjacent if |𝑘1 − 𝑘2| = 1. For any nonempty subsets
1 ⊂  and 2 ⊂ , we say that 1 and 2 are attached if 1 ≠ 2

nd there exist components 𝑘1 ∈ 1 and 𝑘2 ∈ 2 such that 𝑘1 and 𝑘2
re adjacent; otherwise, we say that 1 and 2 are detached. For any
∈ , let {𝑘 ∈  ∶ 𝑎𝑘 = 1} be the set of components that need active
aintenance under action 𝑎; further suppose that {𝑘 ∈  ∶ 𝑎𝑘 = 1} is

he union of exactly 𝐷(𝑎) mutually detached sets of components, none
f which can be further separated into multiple detached sets. We can
hen define a cost function 𝜑 ∶  → R+ as 𝜑(𝑎) = 𝜌 ⋅ 𝐷(𝑎), where
is an instance-free constant. We let 𝑐(𝑥, 𝑎) ≜

∑

𝑘∈ 𝑐𝑘(𝑥𝑘, 𝑎𝑘) + 𝜑(𝑎)
enote the total cost of applying action 𝑎 when the state vector is 𝑥. This
ormulation implies that maintenance crews can maintain detached sets
ithin the capacity constraint 𝐴; however, a penalty cost 𝜑(𝑎) would be

ncurred to reflect the additional efforts needed to maintain detached
ets that are distanced.

Denote 𝜋 ∶  →  as a policy and 𝛱 as the set of all such policies.
t each inspection epoch 𝑡 = 1, 2,…, the decision maker observes a state
ector 𝑥𝑡 and takes an action 𝑎𝑡 = 𝜋(𝑥𝑡) that incurs cost 𝑐(𝑥𝑡, 𝑎𝑡). In the
ontext of sequential decision making, the long-term performance of a
olicy 𝜋 given an initial state 𝑥 ∈  is measured by the following value
unction:

𝜋 (𝑥) = 𝐄𝜋

( ∞
∑

𝑡=1
𝛾 𝑡−1𝑐(𝑥𝑡, 𝑎𝑡)

|

|

|

𝑥1 = 𝑥

)

,

here 0 < 𝛾 < 1 is the discount factor. The objective is to find an
ptimal policy 𝜋∗ that minimizes the value function, namely,

∗(𝑥) = argmin 𝑉 𝜋 (𝑥), ∀𝑥 ∈  .
𝜋∈𝛱
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The optimal policy can be evaluated through the classical value
iteration approach (Puterman, 2014). In particular, the optimal value
function under 𝜋∗, denoted by 𝑉 ∗ for brevity, can be evaluated by

𝑉 ∗(𝑥) = min𝑎∈

{

𝑐(𝑥, 𝑎) + 𝛾
∑

𝑦∈
𝑃 (𝑦 ∣ 𝑥, 𝜋(𝑥))𝑉 ∗(𝑦)

}

, ∀𝑥 ∈  . (2)

In addition, the optimal policy can be represented in a compact way
using the state–action value function 𝑄∗ ∶  × of 𝜋∗ defined as

𝑄∗(𝑥, 𝑎) = 𝑐(𝑥, 𝑎) + 𝛾
∑

𝑦∈
𝑃 (𝑦 ∣ 𝑥, 𝑎)𝑉 ∗(𝑦)

= 𝑐(𝑥, 𝑎) + 𝛾
∑

𝑦∈
𝑃 (𝑦 ∣ 𝑥, 𝑎) min

𝑎′∈
𝑄∗(𝑦, 𝑎′), ∀𝑥 ∈  , 𝑎 ∈ 

nd 𝜋∗(𝑥) = argmin𝑎∈𝑄∗(𝑥, 𝑎) for any 𝑥 ∈ .
Though the optimal policy can be numerically calculated by Eq. (2),

he dynamic programme suffers from high computational complexity
ue to the curse of dimensionality, and is thus considered to be com-
utationally intractable even for moderate-scale problems. However,
n many real-world maintenance problems, there can be hundreds of
omponents and the exponentially large state space prohibits a feasible
omputation process. In what follows, we take advantage of the crucial
tructural properties of the problem to design an effective algorithm
hat can significantly reduce the computational difficulty.

. Modified factored value iteration algorithm

The factorization properties of FMDP, if well exploited, can signif-
cantly reduce computational complexity in determining an optimal
olicy. (Szita & Lörincz, 2008) propose the factored value iteration
FVI) approach by combining the factorization properties with the
lassical value iteration (Guestrin et al., 2003). FVI has been proven
o be an efficient method for FMDPs. In this section, we first modify
he original FVI approach to construct an efficient planning algorithm
hat can obtain an approximate optimal policy. We then prove the
fficiency of the constructed algorithm from the perspectives of both
omputational complexity and approximation bias.

The FVI approach first approximates the real value function by a
inear combination of a set of basis functions ℎ𝑚 ∶  → R, 𝑚 = 1,… ,𝑀 ,
here ℎ𝑚 is specified such that it relies only on a small set of elements

n . That is, for all 𝑚 = 1,… ,𝑀 , there exists 𝑚 ⊂ {1,… , 𝐾} such
that ℎ𝑚(𝑥) relies only on 𝑥(𝑚), ∀𝑥 ∈ . For notational convenience, we
use ℎ𝑚(𝑥(𝑚)) to characterize the dependence. Define 𝐻 as an || ×𝑀
matrix with entries 𝐻𝑥, 𝑚 = ℎ𝑚(𝑥(𝑚)) for all 𝑥 ∈  and 𝑚 = 1,… ,𝑀 .
The objective of FVI is to determine a weight vector 𝑤 ∈ R𝑀 such that
𝐻 ⋅𝑤 is close to 𝑉 ∗ under some metric. Let 𝑐𝑎 be an ||-dimensional cost
vector with entries 𝑐𝑎𝑥 = 𝑐(𝑥, 𝑎) and 𝑃 𝑎 be an ||× || transition matrix
with entries 𝑃 𝑎

𝑥, 𝑦 = 𝑃 (𝑦 ∣ 𝑥, 𝑎). For any 𝑎 ∈ , the optimal weight 𝑤∗

can be obtained by solving the following fixed-point problem:

𝑤∗ = 𝐺

[

min
𝑎∈

( 𝐾
∑

𝑘=1
𝑐𝑎, 𝑘 + 𝜑(𝑎) + 𝛾𝐵𝑎 ⋅𝑤∗

)]

, (3)

where 𝐺 is a linear operator from the space of value functions to the
linear space (𝐻) expanded by ℎ1,… , ℎ𝑀 , represented by a matrix in
R𝑀×|| that satisfies the following non-expansion property:

‖

‖

𝐻𝐺𝑣 −𝐻𝐺𝑣′‖
‖∞ ≤ ‖

‖

𝑣 − 𝑣′‖
‖∞ , ∀𝑣, 𝑣′ ∈ R||,

with ‖ ⋅ ‖∞ being the sup-norm; 𝑐𝑎, 𝑘 is an ||-dimensional local cost
vector with entries 𝑐𝑎, 𝑘𝑥 = 𝑐𝑘(𝑥𝑘, 𝑎𝑘); 𝐵𝑎 is a matrix with entries

𝐵𝑎
𝑥, 𝑚 =

∑

𝑦(𝑚)∈(𝑚)

[(

𝛱𝑘∈∪𝑘′∈𝑚𝑘′
𝑃 𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑚𝑃
𝑘
𝐷
(

𝑦𝑘 ∣ 𝑧(𝑘)
)

)]

ℎ𝑚
(

𝑚
)

.

Then, a sampling technique is used to cope with the computational
complexity caused by the scales of the matrices in Eq. (3), which are
5

𝑂(||) and can still be prohibitively large. We sample a subset of state
Algorithm 1 Modified factored value iteration

1: Input: , , 𝑀 , 𝜑, 𝐺, 𝑐𝑘, 𝑃 𝑘
𝑅, 𝑃 𝑘

𝐷, ∀𝑘 ∈ , 0 < 𝜖 < 1.
2: Initialization: Generate 𝐻 and randomly sample ̂ from .
3: Calculate 𝐺̂, 𝑐𝑎, 𝑘, 𝐵̂𝑎, ∀𝑘 ∈ , ∀𝑎 ∈ .
4: 𝑛 ← 0, 𝑤0 ← 0⃗, 𝛥 ← 1.
5: while 𝛥 > 𝜖 do
6: Calculate 𝑤𝑛+1 by

𝑤𝑛+1 = 𝐺̂

[

min
𝑎∈

( 𝐾
∑

𝑘=1
𝑐𝑎, 𝑘 + 𝜑(𝑎) + 𝛾𝐵̂𝑎 ⋅𝑤𝑛

)]

.

7: 𝛥 ← ‖

‖

𝑤𝑛+1 −𝑤𝑛
‖

‖∞.
8: 𝑛 ← 𝑛 + 1
9: end while
0: Output: Policy 𝜋(𝑥) defined by

𝜋 = argmin𝑎∈

( 𝐾
∑

𝑘=1
𝑐𝑎, 𝑘 + 𝜑(𝑎) + 𝛾𝐵̂𝑎 ⋅𝑤𝑛

)

.

vectors ̂ from  and confine the calculation to ̂, to formulate an
approximation of 𝑤∗. It is apparent that the sample size |̂| influences
the efficiency of approximation. Though there is no universal approach
to specifying the sample size across different problems, there are indeed
some routines to follow in practice. An important routine is that the
sample size should be sufficiently large while keeping polynomial in
𝐾, so that the approximation accuracy and the computational efficiency
can be well balanced. We denote by 𝐺̂, 𝑐𝑎, 𝑘, and 𝐵̂𝑎 the sub-matrices
of 𝐺, 𝑐𝑎, 𝑘, and 𝐵𝑎, respectively, with rows corresponding to ̂. An
approximation of 𝑤∗ (i.e., 𝑤̂∗) can be evaluated by

𝑤̂∗ = 𝐺̂

[

min
𝑎∈

( 𝐾
∑

𝑘=1
𝑐𝑎, 𝑘 + 𝜑(𝑎) + 𝛾𝐵̂𝑎 ⋅ 𝑤̂∗

)]

. (4)

Since the scales of ̂ and  are both polynomial in 𝐾, Eq. (4) becomes
computationally tractable. The procedures of producing an approxi-
mate optimal policy are summarized in Algorithm 1.

We now derive a bound on the approximation error, in terms of
a bound on the difference between the value function of the optimal
policy (i.e., 𝑉 ∗) and that of the approximation (i.e., 𝐻𝑤̂∗). To this end,
we make Assumption 1 on 𝐺. By this assumption, we shall show in
Theorem 1 that the bias can be bounded using only a sampled set ̂
with a carefully determined size which is polynomial in 𝐾.

Assumption 1. Let 1,… ,𝐸 ⊂  be exclusive sets of component
indices such that 1∪⋯∪𝐸 = . We assume that 𝐺 can be separated
as 𝐺 =

∑𝐸
𝑒=1 𝐺𝑒, where each 𝐺𝑒 is an 𝑀 × || and 𝑒-scope matrix,

namely, each row of 𝐺𝑒, considered as a function on , relies only on
(𝑒). Moreover, we suppose that 𝐾𝑊 = max𝑒∈ |𝑒| ≪ 𝐾.

We denote by 𝜋0 the greedy policy using 𝐻𝑤∗, and 𝑐𝜋0 and 𝑃 𝜋0

the cost function and transition matrix induced by 𝜋0. Further define a
matrix 𝐵𝜋0 along with 𝐵𝑎, with entries

𝐵𝜋0
𝑥, 𝑚 =

∑

𝑦(𝑚)∈(𝑚)

[(

𝛱𝑘∈∪𝑘′∈𝑚𝑘′
𝑃 𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝜋0(𝑥)𝑘
)

)

⋅
(

𝛱𝑘∈𝑚𝑃
𝑘
𝐷
(

𝑦𝑘 ∣ 𝑧𝑘
)

)]

ℎ𝑚
(

𝑚
)

.

Following the definition of 𝐵𝜋0
𝑥, 𝑚, Eq. (3) can be rewritten as

𝑤∗ = 𝐺
[

𝑐𝜋0 + 𝛾𝐵𝜋0 ⋅𝑤∗].

Moreover, we can separate matrix 𝐵𝜋0 as

𝐵𝜋0 =
𝑀
∑

𝐵𝜋0 , 𝑚, (5)

𝑚=1
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where, for any 𝑚 = 1,… ,𝑀 , 𝐵𝜋0 , 𝑚 is the product of 𝑃 𝜋0 with an ||×𝑀
matrix that keeps the 𝑚th column of 𝐻 and sets other entries to 0.
imilar to the entries of matrix 𝐵𝑎, entries of 𝐵𝜋0 , 𝑚 is 𝐵𝜋0 , 𝑚

𝑥, 𝑚 = 𝐵𝜋0
𝑥, 𝑚 and

𝜋0 , 𝑚
𝑥, 𝑚′ = 0 if 𝑚′ ≠ 𝑚. It is easy to verify that each 𝐵𝜋0 , 𝑚 is a ∪𝑘∈𝑚𝑘-

ocal scope matrix. Under Assumption 1 and using Eq. (5), the following
heorem provides performance guarantee of Algorithm 1.

heorem 1. For any 0 < 𝛿 < 1 and 𝜀 > 0, when the size of ̂ satisfies

̂| ≥
2
(

1 + 𝛾 ⋅ ‖𝑤∗
‖∞

)2
‖𝐻‖

2
∞ 𝑀2

(1 − 𝛾)2𝜀2
log 4𝑀2

𝛿
max

{

𝛹1, 𝛹2
}

, (6)

here

1 =
[

𝐸 ⋅𝐾 ⋅𝑁𝐾𝑊 max
𝑒=1,…,𝐸

‖

‖

𝐺𝑒
‖

‖∞ max
𝑘, 𝑥𝑘 , 𝑎𝑘

𝑐𝑘(𝑥𝑘, 𝑎𝑘)
]2

,

and

𝛹2 =
[

𝐸 ⋅𝐾 ⋅𝑁max{𝐾𝑊 ,max𝑘∈ 𝑑𝑘+max𝑚=1,…,𝑀 |𝑚 |} max
𝑒=1,…,𝐸

‖

‖

𝐺𝑒
‖

‖∞ max
𝑚=1,…,𝑀

‖𝐵𝜋0 , 𝑚
‖∞

]2

,

with probability at least 1 − 𝛿, we have

‖

‖

𝐻𝑤̂∗ − 𝑉 ∗
‖

‖∞ ≤ ‖

‖

𝐻𝑤∗ − 𝑉 ∗
‖

‖∞ + 𝜀. (7)

Theorem 1 provides a lower bound on the sample size |̂|, which
guarantees that Algorithm 1 approximates the true optimal value func-
tion 𝑉 ∗ (and the action-value function 𝑄∗) well enough. It is worth
noting that the lower bound is not necessarily polynomial in 𝐾, be-
cause it still relies on max𝑒 ‖‖𝐺𝑒

‖

‖∞ and max𝑚 ‖𝐵𝜋0 , 𝑚
‖∞, with scale

𝑀 × ||. This issue can be addressed by carefully choosing matrix 𝐻 .
Nevertheless, Algorithm 1 is based on classical techniques for high-
dimensional MDPs, while specifying an appropriate 𝐻 can be flexible
yet challenging in different problems. One can follow some general
routines for choosing 𝐻 . For example, one may choose 𝐻 such that
the value of each ℎ𝑚 relies only on a very limited number of elements
in the state space. In our simulation study, we define each ℎ𝑚 as
a categorical function on a single component. Existing research has
shown that such basis functions deliver high computational efficiency
and low approximation error. In Section 6, we shall show that such
choice of 𝐻 ensures that max𝑒 ‖‖𝐺𝑒

‖

‖∞ and max𝑚 ‖𝐵𝜋0 , 𝑚
‖∞ are delicately

bounded, so that |̂| is small enough and Algorithm 1 is computation-
ally tractable when max𝑘∈ 𝑑𝑘 and max𝑚=1,…,𝑀 |𝑚| are relatively small.
In the subsequent sections, we always admit a projection matrix 𝐺 that
satisfies the restrictions in our previous discussions.

5. An online learning perspective

The modified FVI algorithm developed previously is based on an
implicit assumption that state transitions of the system are fully known
to the decision maker, which is usually not the case in real applica-
tions. In this section, we tackle the condition-based group maintenance
problem of interest from an online learning perspective in which the
exact transitions are unknown a priori. In this setting, the decision
maker determines an optimal maintenance policy upon the arrival of
a new inspection data, while simultaneously learning the true model
parameters using historical observations. This leads to the so-called
exploration-exploitation tradeoff in reinforcement learning (Xu et al.,
2021).

In the online group maintenance problem, we need to learn both the
transition probabilities of the components and the structure {𝑑𝑘}𝑘∈
of the transitions. We thus introduce an additional assumption on the
structure. Specifically, we assume that a uniform upper bound 𝜅 on
𝑑𝑘}𝑘∈, instead of their true values, is known; that is, we have 𝜅 ≥
ax𝑘∈ 𝑑𝑘. This implies that the decision maker has a crude knowledge
n the maximum number of neighbouring components that can affect
he degradation of any specific component, which is fairly reasonable in
ractical scenarios. Such an upper bound can be established by expert
udgements or estimated from historical data, if available.
6

Developing learning algorithms for FMDPs under unknown transi-
ion structure has been an active research topic. A recent and significant
rogress has been made by Rosenberg and Mansour (2021), who pro-
ose a novel approach to finding exact positions of parent sets with
ixed and known sizes. Our problem setting differs from that of Rosen-
erg and Mansour (2021) in two aspects: First, in our setting the
ositions of parent sets are known but the sizes {𝑑𝑘}𝑘∈ are unknown.
econd, our model uses the discounted total cost as the objective
unction, while Rosenberg and Mansour (2021) focus on the average
ost. Nevertheless, their approach provides the foundation upon which
odification can be made to solve our maintenance problem. On the

ther hand, value iteration-type learning algorithms have been proven
o be efficient for discounted MDPs by Strehl (2007), albeit known
ransition structure is assumed therein. In particular, Strehl (2007)
evelops the fMBIE method that can effectively address the exploration-
xploitation tradeoff for model-based reinforcement learning. In this
ork, we develop an online algorithm to approximate the optimal
aintenance policy 𝜋∗ by combining the online approach of learning

ransition structure (see Rosenberg & Mansour, 2021) and the fMBIE
pproach for discounted MDPs (see Strehl, 2007).

To this end, we first introduce a performance metric for online
earning algorithms. The objective of an online algorithm is to gradually
pproximate some optimal policy; therefore, the necessary samples
time steps) for the algorithm to generate some policy that is close
nough to the optimal policy is crucial for the algorithm’s performance.
n particular, an efficient online algorithm is supposed to generate
olicies with value functions 𝜀-close to that of the optimal policy with
igh probability within a time at most polynomial in 1∕𝜀 and some

other parameters of the underlying model. An online algorithm that
satisfies this property is called an efficient Probably Approximate Correct
(PAC) algorithm. A formal definition of efficient PAC algorithms for
FMDPs can be given based on the sample complexity defined below.
We assume here that {ℎ𝑚}𝑀𝑚=1 and {𝑚}𝑀𝑚=1 are specified beforehand.

Definition 1 (Sample Complexity). For any 𝜀 > 0, the sample complexity
of an online algorithm for FMDP ( , , 𝑃 , 𝜅, 𝛾, 𝑐) is the number of time
teps such that the sequence of policies generated by the algorithm,
enoted by {𝜋𝑡}∞𝑡=1, satisfies 𝑉 𝜋𝑡 (𝑥𝑡) < 𝑉 𝜋∗ (𝑥𝑡) + 𝜀.

An online algorithm for FMDP ( , , 𝑃 , 𝜅, 𝛾, 𝑐) is called an efficient
AC learning algorithm if for any 𝜀 > 0 and 0 < 𝛿 < 1, the per-step com-
utational complexity and sample complexity can be bounded by some
olynomial in the relevant parameters (1∕𝜀, 1∕𝛿, 1∕(1−𝛾), 𝐾,𝑁2𝜅+1, ||)

with probability at least 1− 𝛿. It should be highlighted that the sample
complexity is required to be polynomial in 𝑁2𝜅+1, instead of || = 𝑁𝐾

equired for efficient PAC algorithms for general MDPs. This is because
MDP has a factored structure, so that an efficient online algorithm
an collect sufficient samples from each factor to approximate the true
odel well enough.

.1. An online PAC learning algorithm

We are now in a position to construct an online learning algorithm
o support condition-based group maintenance decision making, which
s proven to be an efficient PAC algorithm for our FMDP model. At
ach inspection, the proposed algorithm proceeds in two steps. In the
irst step, the algorithm leverages the value iteration method to update
tate–action value functions and generate a policy to recommend an
ction (replacement or do nothing). In the second step, the algorithm
tilizes previous samples to evaluate the transitions as well as the exact
alue of {𝑑𝑘}𝑘∈.

To proceed, we list below the necessary quantities observed or
alculated by the algorithm up to epoch 𝑡 ≥ 1 during execution.

• 𝑛𝑡(𝑥𝑘, 𝑎𝑘): number of times action 𝑎𝑘 is taken on component 𝑘
𝑘
when it is in state 𝑥 ∈ {1,… , 𝑁};
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• 𝑛𝑡(𝑥𝑘, 𝑎𝑘, 𝑦𝑘): number of times component 𝑘 transitions from state
𝑥𝑘 ∈ {1,… , 𝑁} to state 𝑦𝑘 ∈ {1,… , 𝑁} when action 𝑎𝑘 is taken;

• 𝑛𝑡(𝑥( )): number of times a set  ⊂  of components are
observed to be in state vector 𝑥( ) ∈ ( ) immediately after
actions are taken;

• 𝑛𝑡(𝑥( ), 𝑦𝑘): number of times component 𝑘 is observed to be
in state 𝑦𝑘 ∈ {1,… , 𝑁} upon the next inspection, given that a
set  ⊂  of components are observed to be in state vector
𝑥( ) ∈ ( ) immediately after actions are taken;

• 𝑃 𝑘
𝑅, 𝑡(𝑦

𝑘 ∣ 𝑥𝑘, 𝑎𝑘) ≜ 𝑛𝑡(𝑥𝑘, 𝑎𝑘, 𝑦𝑘)∕max{𝑛𝑡(𝑥𝑘, 𝑎𝑘), 1}: estimated
transition probability of component 𝑘 under action 𝑎𝑘;

• 𝑃 𝑘
𝐷, 𝑡(𝑦

𝑘 ∣ 𝑥( )) ≜ 𝑛𝑡(𝑥( ), 𝑦𝑘)∕max{𝑛𝑡(𝑥( )), 1}: estimated tran-
sition probability of component 𝑘 during the degradation interval
(when considering  ⊂  to be 𝑘);

Since the exact value of 𝑑𝑘 in the online setting is unknown, we
consider 𝑘 as a function 𝑘(𝑑𝑘) of 𝑑𝑘, 𝑘 ∈ . The algorithm retains a
current estimate 𝑑𝑘𝑡 with initial value 𝑑𝑘1 = 0. According to the fMBIE
approach, the algorithm only uses the first 𝜏𝑅 samples of each state–
action pair (𝑥𝑘, 𝑎𝑘) and the first 𝜏𝐷 samples of each factored state
𝑥(𝑘(𝜅)). The algorithm stops recording the observations of (𝑥𝑘, 𝑎𝑘)
or 𝑥(𝑘(𝜅)), when some 𝑛𝑡(𝑥𝑘, 𝑎𝑘) reaches 𝜏𝑅 or 𝑛𝑡(𝑥( )) reaches 𝜏𝐷,
whichever happens first.1

In the first step of epoch 𝑡 ≥ 1, the algorithm calculates estimated
transition probabilities 𝑃 𝑘

𝑅, 𝑡(𝑦
𝑘 ∣ 𝑥𝑘, 𝑎𝑘) and 𝑃 𝑘

𝐷, 𝑡(𝑦
𝑘 ∣ 𝑥( (𝑑𝑘𝑡 ))) for all

𝑘 ∈ , 𝑥𝑘, 𝑦𝑘, 𝑥, and 𝑦 using historical data. Note that our algorithm
follows a standardized online reinforcement learning pattern, in which
historical data contain the sequence of system states and the corre-
sponding actions taken in preceding epochs. Such data are available
in most practical maintenance scenarios. After a sufficient amount of
samples, as indicated in Theorem 1, have been collected, the algorithm
will consider the model to be fully learned and stop learning anymore.
However, if no historical data is available, then domain knowledge
would be needed to estimate the transition probabilities.

Then, the algorithm calculates the estimated overall transition prob-
abilities, denoted by 𝑃𝑡, via

𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) =
∑

𝑧∈

(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(𝑦

𝑘 ∣ 𝑧(𝑘(𝑑𝑘𝑡 )))
)

, ∀𝑥, 𝑦 ∈  , 𝑎 ∈ , (8)

and the state–action value function 𝑄̂𝑡 by

𝑄̂𝑡(𝑥, 𝑎) = 𝑐(𝑥, 𝑎) + 𝛾
∑

𝑦∈
𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) min

𝑎′∈
𝑄̂𝑡(𝑦, 𝑎′)

− 𝛽𝑡(𝑥, 𝑎), ∀𝑥 ∈  , 𝑎 ∈ , (9)

where 𝛽𝑡 ∶  ×  → R is an exploration bonus to balance the
exploitation-exploration tradeoff. We note here that 𝛽𝑡(⋅, ⋅) should be
determined such that it is factored and 𝑄̂𝑡 can be effectively solved by
Algorithm 1. Next, the algorithm takes an action greedily on the current
state vector 𝑥𝑡; that is, 𝑎𝑡 = argmin𝑎∈𝑄̂𝑡(𝑥𝑡, 𝑎).

In the second step of epoch 𝑡 ≥ 1, the algorithm utilizes historical ob-
servations to make a judgement if 𝑑𝑘𝑡 < 𝑑𝑘 holds with high probability.
Specifically, the algorithm checks in each epoch 𝑡 ≥ 1, ∀𝑘 ∈ , if there
exists 𝑑𝑘𝑡 < 𝑑 ≤ 𝜅 such that the following condition is satisfied:

‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝑑))) − 𝑃 𝑘

𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝜅)))
‖

‖

‖1

> 2

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝜅))), 1}

, ∀𝑥 ∈  ,

(10)

where ‖⋅‖1 is the 𝐿1-norm. If condition (10) holds for some 𝑘 ∈ 
and let 𝑑𝑘𝑡 < 𝑑 ≤ 𝜅 be the largest value that makes (10) valid, then the

1 The exact values of 𝜏 and 𝜏 shall be specified in Theorem 2.
7

𝑅 𝐷
Algorithm 2 Efficient online PAC learning algorithm
1: Input: 𝑁 , 𝐴, 𝐾, 𝑐, 𝛾.
2: Initialization: 𝑡 = 1, initial state 𝑥1, 𝑑𝑘1 = 0;

∀𝑘 ∈ , 𝑥𝑘, 𝑦𝑘 and 𝑎 ∈ , 𝑛1(𝑥𝑘, 𝑎𝑘) = 0, 𝑛1(𝑥𝑘, 𝑎𝑘, 𝑦𝑘) = 0;
∀𝑑 ≤ 𝜅, 𝑛1(𝑥1(𝑘(𝑑))) = 1, 𝑛1(𝑥1( ), 𝑦𝑘) = 1, ∀𝑥(𝑘(𝑑)) ≠ 𝑥1(𝑘(𝑑)),
𝑛1(𝑥(𝑘(𝑑))) = 0, 𝑛1(𝑥( ), 𝑦𝑘) = 0;
∀𝑘 ∈ , 𝑥, 𝑦𝑘 and 𝑎 ∈ , 𝑃 𝑘

𝑅, 1(𝑦
𝑘
| 𝑥𝑘, 𝑎𝑘) = 0, 𝑃 𝑘

𝐷, 1(𝑦
𝑘
| 𝑥(𝑘(𝑑))) =

0.
3: while (1) do
4: Step 1: Apply Algorithm 1 to calculate 𝑄̂𝑡 and take action 𝑎𝑡 =

argmin𝑎∈𝑄̂𝑡(𝑥𝑡, 𝑎).
5: Observe state vector 𝑦𝑡 immediately after action 𝑎𝑡 is taken.
6: for 𝑘 ∈  do
7: if 𝑛𝑡(𝑥𝑘𝑡 , 𝑎

𝑘
𝑡 ) < 𝜏𝑅 then

8: 𝑛𝑡(𝑥𝑘𝑡 , 𝑎
𝑘
𝑡 ) ← 𝑛𝑡−1(𝑥𝑘𝑡 , 𝑎

𝑘
𝑡 )+1, 𝑛𝑡(𝑥𝑘𝑡 , 𝑎

𝑘
𝑡 , 𝑦

𝑘
𝑡 ) ← 𝑛𝑡(𝑥𝑘𝑡 , 𝑎

𝑘
𝑡 , 𝑦

𝑘
𝑡 )+1.

9: end if
0: 𝑛𝑡(𝑦𝑡(𝑘(𝑑))) ← min{𝑛𝑡−1(𝑦𝑡(𝑘(𝑑))) + 1, 𝜏𝐷}
1: end for
2: Step 2: Observe 𝑥𝑡+1 upon the next inspection.
3: for 𝑘 ∈  do
4: for 𝑑𝑘𝑡 ≤ 𝑑 ≤ 𝜅 do
5: if 𝑛𝑡(𝑦𝑡(𝑘(𝑑))) < 𝜏𝐷 then
6: 𝑛𝑡+1(𝑦𝑡(𝑘(𝑑)), 𝑥𝑘𝑡+1) ← 𝑛𝑡(𝑦𝑡(𝑘(𝑑)), 𝑥𝑘𝑡+1) + 1.
7: end if
8: end for
9: end for
0: for 𝑘 ∈  do
1: if There exists 𝑑𝑘𝑡 < 𝑑 ≤ 𝜅 such that (10) holds and 𝑑 is the

largest of such values then
2: Update 𝑑𝑘𝑡+1 ← 𝑑 + 1.
3: end if
4: end for
5: Calculate 𝑃 𝑘

𝑅, 𝑡+1(𝑦
𝑘
| 𝑥𝑘, 𝑎𝑘) = 𝑛𝑡+1(𝑥𝑘 , 𝑎𝑘 , 𝑦𝑘)

max{𝑛𝑡(𝑥𝑘 , 𝑎𝑘), 1}
, ∀𝑘 ∈ , 𝑥𝑘, 𝑦𝑘.

6: Calculate 𝑃 𝑘
𝐷, 𝑡+1(𝑦

𝑘
| 𝑥(𝑘(𝑑𝑘𝑡+1))) =

𝑛𝑡(𝑥(𝑘(𝑑𝑘𝑡+1)), 𝑦
𝑘)

max{𝑛𝑡(𝑥(𝑘(𝑑))), 1}
, ∀𝑘 ∈

, 𝑥𝑘, 𝑦𝑘.
7: 𝑡 ← 𝑡 + 1.
8: end while

algorithm updates 𝑑𝑘𝑡+1 ← 𝑑+1 and proceeds to the next epoch 𝑡+1. The
procedures are summarized in Algorithm 2, and the algorithm breaks
the ties at any time.

5.2. Sample complexity

We now derive an upper bound on the sample complexity of Algo-
rithm 2, which is polynomial in the relevant model parameters; thus,
we can claim that the proposed algorithm is an efficient PAC algorithm.
The main theoretical result on the sample complexity is presented
below.

Theorem 2. Given 𝜀 > 0 and 0 < 𝛿 < 1, if the exploration bonus 𝛽𝑡 is
chosen as

𝛽𝑡(𝑥, 𝑎) =
(1 + 𝜌)𝐴 ⋅ 𝛾

1 − 𝛾

(

𝐾 ⋅max
𝑘∈

⋅ max
(𝑥𝑘 , 𝑎𝑘)

×

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅∕𝛿
}

+ 4𝑁 ln (2)
max{𝑛𝑡(𝑥𝑘, 𝑎𝑘), 1}

+ 𝑁𝐴 ⋅𝐾 ⋅max
𝑘∈

max
𝑥(𝑘(𝜅))

×

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝜅))), 1}

)

,
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and 𝜏𝐷 and 𝜏𝑅 are chosen as

𝜏𝑅 =
128(2 − 𝛾)2𝛾2(1 + 𝜌)2𝐴2𝐾2

(1 − 𝛾)6𝜀2

×
[

2 ln
{

𝐾 ⋅𝑁
[

𝑁2𝜅+1 + 2
]

∕𝛿
}

+ 4 ln
(

16(2 − 𝛾)𝛾(1 + 𝜌)𝐴 ⋅𝐾
(1 − 𝛾)3𝜀

)

+ 4𝑁
]

,

and

𝜏𝐷 =
128(2 − 𝛾)2𝛾2(1 + 𝜌)2𝐴2𝑁2𝐴𝐾2

(1 − 𝛾)6𝜀2

[

2 ln
{

𝐾 ⋅𝑁
[

𝑁2𝜅+1 + 2
]

∕𝛿
}

+ 4 ln
(

16(2 − 𝛾)𝛾(1 + 𝜌)𝐴 ⋅𝑁𝐴𝐾
(1 − 𝛾)3𝜀

)

+ 2𝑁2𝜅+1

]

,

then the sample complexity of Algorithm 2 can be bounded by

𝑂
(

𝑁 ⋅𝐾 ⋅ 𝜏𝑅 +𝑁2𝜅+1 ⋅𝐾 ⋅ 𝜏𝐷
𝜀(1 − 𝛾)2

ln 1
𝛿
ln 1

𝜀(1 − 𝛾)

)

,

with probability at least 1 − 𝛿.

Here we provide the sketch of the proof (detailed proof can be found
in Appendix B). We first construct in Lemma 1 a ‘‘good event’’ in that
the estimation biases of 𝑃 𝑘

𝑅 and 𝑃 𝑘
𝑅 shrink with high probability as the

ample size increases. Then, restricted to this event, we derive a bound
n the estimation bias of the total transition 𝑃𝑡. This bound can be
irectly transferred to a bound on the estimation bias of the state–action
alue function 𝑄. Finally, we integrate all these results and follow the
xisting techniques to complete the proof.

We argue that Algorithm 2 follows the traditional paradigm of PAC
earning. The coefficients 𝜏𝑅 and 𝜏𝐷 are pre-determined thresholds
ased on some known model parameters. During the execution of
lgorithm 2, for each single component, only the first 𝜏𝑅 samples under

he same action taken at inspection and the first 𝜏𝐷 samples in the
egradation interval are observed and utilized. After that, Algorithm 2
onsiders the model to be fully learned and neglects any new data. The
xploration bonus 𝛽𝑡 is set to balance between exploiting the ‘‘optimal’’
ecision based on the latest data (exploitation) and checking if there
re less-explored decisions that can be better identified (exploration).

. Numerical studies

In this section, we present numerical studies to demonstrate the
ffectiveness of the proposed algorithms. For this purpose, we consider
hypothetical system with multiple non-identical components. The

omponents are periodically inspected, and the degradation level of
ach component is discretized into three states for illustration. Specif-
cally, state 3 represents the perfect state in which no maintenance
ction is needed; state 1 is the failure state that induces corrective
aintenance; while the decision maker needs to decide whether to

mplement a preventive maintenance if a component is in state 2.
To implement our approach, the first step is to specify the matrix 𝐻

f basis functions in Algorithm 1. Plenty of work has examined different
asis functions for such problems, and a set of basis functions given
elow have been proven to be both simple and efficient (Guestrin et al.,
003; Osband & Van Roy, 2014; Xu & Tewari, 2020):

𝑘(𝑥) = ℎ𝑘(𝑥𝑘) =

⎧

⎪

⎨

⎪

⎩

0, 𝑥𝑘 = 3,
1
2 , 𝑥

𝑘 = 2,
1, 𝑥𝑘 = 1,

𝑘 = 1,… , 𝐾.

pecifically, a set of 𝐾 (i.e., 𝑀 = 𝐾) basis functions are defined and
ach basis function ℎ𝑘 relies only on 𝑥𝑘. Inspired by the discussion

in Szita and Lörincz (2008), the following operator 𝐺 is compatible
ith the modified FVI approach and easy to calculate in the concerned

cenario:

𝑖, 𝑗 =
𝐻+

𝑖, 𝑗

9𝐾
, (11)

here 𝐻+ is the Moore–Penrose inverse matrix of 𝐻 . We claim that the
bove-defined 𝐺 satisfies the requirements as stated in the following
8

r

roposition, and thus can be used as the projection operator in our
pproach.

roposition 1. The operator 𝐺 defined in (11) satisfies the non-expansion
roperty. Moreover, there exist 𝐺1,… , 𝐺𝐾 such that 𝐺 =

∑𝐾
𝑘=1 𝐺𝑘 and

𝐺𝑘
‖

‖∞ can be easily bounded by ‖

‖

𝐺𝑘
‖

‖∞ < 1∕(3𝐾 + 2).

The next step is to determine the sample size |̂|. This requires us
o evaluate the values of 𝛹1 and 𝛹2 in Theorem 1, respectively. For 𝐵𝜋0

n Theorem 1, we have 𝐵𝜋0 =
∑𝐾

𝑘=1 𝐵
𝜋0 , 𝑘, where 𝐵𝜋0 , 𝑘 is the product of

𝜋0 with an ||×𝐾 matrix that keeps the 𝑘th column of 𝐻 while setting
ther entries to 0. As the row sum of 𝑃 𝜋0 is 1 and the elements of 𝐻
re either 0 or 1, the row sum of 𝐵𝜋0 , 𝑘 should be bounded by 1; that
s, ‖𝐵𝜋0 , 𝑘

‖∞ ≤ 1. We note that all quantities needed to determine the
alues of 𝛹1 and 𝛹2 are either known or upper bounded. Specifically,
he values of 𝐸, 𝐾, 𝑁 , 𝐾𝑊 , and 𝑐𝑘(𝑥𝑘, 𝑎𝑘)’s are known, and ‖𝐵𝜋0 , 𝑘

‖∞’s
nd ‖𝐺𝑘‖∞’s are bounded. Therefore, by substituting all quantities into
1 and 𝛹2 in Theorem 1, we have

1 ≤
9𝐾4

(3𝐾 + 2)2

[

max
𝑘, 𝑥𝑘 , 𝑎𝑘

𝑐𝑘(𝑥𝑘, 𝑎𝑘)
]2

, 𝛹2 ≤
9 ⋅ 42𝜅+1𝐾4

(3𝐾 + 2)2
.

We let 𝐶0 ≜ max𝑘, 𝑥𝑘 , 𝑎𝑘 𝑐𝑘(𝑥𝑘, 𝑎𝑘). Since 𝐻𝑤∗ is the projection of 𝑉 ∗ on
(𝐻), 𝑤∗(𝑘) ⋅ ‖

‖

ℎ𝑘‖‖∞ ≤ ‖𝑉 ∗
‖∞, ∀𝑘 ∈ . Thus, we have

∗(𝑘) ⋅ ‖
‖

ℎ𝑘‖‖∞ = 𝑤∗(𝑘) ⋅
||
2

≤ ‖

‖

𝑉 ∗
‖

‖∞

≤ || ⋅
max𝑘, 𝑥𝑘 , 𝑎𝑘 𝑐𝑘(𝑥𝑘, 𝑎𝑘)

1 − 𝛾
= || ⋅

𝐶0
1 − 𝛾

,

which implies that

‖

‖

𝑤∗
‖

‖∞ =
∑

𝑘∈
𝑤∗(𝑘) ≤

2𝐾 ⋅ 𝐶0
1 − 𝛾

.

According to Theorem 1 and the trivial fact that ‖𝐻‖∞ ≤ 𝐾, the sample
size |̂| required by Algorithm 1 can be calculated as

18
(

1 − 𝛾 + 2𝛾 ⋅𝐾 ⋅ 𝐶0
)2 𝐾6𝑀2

(1 − 𝛾)3𝜀2(3𝐾 + 2)2
log 4𝑀2

𝛿
max

{

42𝜅+1, 𝐶2
0
}

.

In what follows, we first demonstrate the preciseness of the modified
FVI approach in Section 6.1, and then examine the superiority of
Algorithm 2 through comparison studies in Section 6.2.

6.1. Modified FVI

We first implement Algorithm 1 presented in Section 4 and illustrate
the performance of this approach. Though our algorithm is designed for
large-scale maintenance problems, we choose a moderate problem size
for illustrative purposes. This facilitates comparing the value function
of the approximate policy generated by Algorithm 1 and that of the true
optimal policy, where the latter can only be efficiently evaluated with
a small or moderate problem size due to the computational complexity.
First, we run Algorithm 1 on problems under different levels of 𝐾,
namely, 𝐾 ∈ {4, 5, 6, 7, 8, 9, 10}. We let components connected as a
ircle so that no component is positioned at the boundary. Because
sually a limited number of neighbouring components are correlated
n practical maintenance scenarios, without loss of generality, we fix
1 = ⋯ = 𝑑𝐾 = 2 under each value of 𝐾.

Tables 1 and 2 present the transition probabilities that are specified
ccording to the following considerations. First, the degradation pro-
ess of each component leads to worse health conditions. Therefore,
hen 𝑥𝑘 = 3, the possible values for 𝑦𝑘 after degradation are {3, 2, 1},
hereas when 𝑥𝑘 = 2, the possible values for 𝑦𝑘 after degradation
re only {2, 1}. Second, practical evidence shows that a component
s more likely to degrade to a state adjacent to the current state;
ee, for example, the degradation process of railway tracks (Sadeghi

Askarinejad, 2010). Third, when a component is found failed upon
nspection, an instant corrective maintenance would be executed to
estore it back to state 3.
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Table 1
State transition parameters 𝑃𝐷(𝑦𝑘 ∣ 𝑥(𝑘)) under 𝑥𝑘 = 3.
(𝑥𝑘−1 , 𝑥𝑘 , 𝑥𝑘+1) (1, 3, 1) (1, 3, 2) (2, 3, 1) (2, 3, 2) (1, 3, 3) (3, 3, 1) (2, 3, 3) (3, 3, 2) (3, 3, 3)

𝑃𝐷(𝑦𝑘 = 3) 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.9
𝑃𝐷(𝑦𝑘 = 2) 0.3 0.3 0.3 0.15 0.2 0.2 0.15 0.15 0.1
𝑃𝐷(𝑦𝑘 = 1) 0.2 0.1 0.1 0.15 0.1 0.1 0.05 0.05 0
Table 2
State transition parameters 𝑃𝐷(𝑦𝑘 ∣ 𝑥(𝑘)) under 𝑥𝑘 = 2.
(𝑥𝑘−1 , 𝑥𝑘 , 𝑥𝑘+1) (1, 2, 1) (1, 2, 2) (2, 2, 1) (2, 2, 2) (1, 2, 3) (3, 2, 1) (2, 2, 3) (3, 2, 2) (3, 2, 3)

𝑃𝐷(𝑦𝑘 = 2) 0.5 0.6 0.6 0.7 0.65 0.65 0.8 0.8 0.9
𝑃𝐷(𝑦𝑘 = 1) 0.5 0.4 0.4 0.3 0.35 0.35 0.2 0.2 0.1
Fig. 1. The approximate error and running time of the modified FVI.
𝑝

Preventive maintenance is only feasible when a component is at
state 2 upon inspection. That is, 𝑎𝑘 ∈ {0, 1} if 𝑥𝑘 = 2; otherwise, 𝑎𝑘 = 0.
We set the transition 𝑃 𝑘

𝑅 and cost 𝑐 as

𝑃 𝑘
𝑅(𝑧

𝑘 = 3 | 𝑥𝑘 = 2, 𝑎𝑘 = 1) = 0.8, 𝑃 𝑘
𝑅(𝑧

𝑘 = 2 | 𝑥𝑘 = 2, 𝑎𝑘 = 1) = 0.2,

and

𝑐𝑘(3, 0) = 0, 𝑐𝑘(2, 0) = 0, 𝑐𝑘(2, 1) = 2, 𝑐𝑘(1, 0) = 10, ∀𝑘 ∈ .

Since there are at most 10 components in the numerical example, we
do not use the sampling technique. Other parameters are arbitrarily set
as 𝛾 = 0.8, 𝜌 = 3, and 𝐴 = 3. In particular, 0.8 is a commonly used
value for discount factor 𝛾 in the learning literature, 𝜌 = 3 imposes
a moderate penalty on maintaining detached components, and 𝐴 = 3
indicates that at most 3 components are allowed to be maintained at
each inspection.

Under each value of 𝐾, we evaluate the true optimal policy using
the traditional value iteration method and the approximate optimal
policy through Algorithm 1. The 𝐿∞-difference between the optimal
value function 𝑉 ∗ and the approximate optimal value function 𝐻𝑤∗

is calculated and normalized as ‖𝑉 ∗ − 𝐻𝑤∗
‖∞∕‖𝑉 ∗

‖∞. Meanwhile,
the 𝐿∞-difference between the 𝑉 ∗ and the true value function 𝑉 𝜋0

of the greedy policy 𝜋0 is also calculated and normalized as ‖𝑉 ∗ −
𝑉 𝜋0

‖∞∕‖𝑉 ∗
‖∞. Since this is the bias of total return caused by using

𝜋0 in practice, it can also be used to show the preciseness of the
approximate optimal policy. The results are presented in Fig. 1(a). We
can see that the bias for the approximate value function 𝐻𝑤∗ is below
12%, which is acceptable in many practical scenarios. Meanwhile, the
bias grows in a sublinear manner with the number of components 𝐾,
implying that the performance of the modified FVI is robust to the
problem scale. In addition, Fig. 1(a) shows that the bias for the true
value function of 𝜋0 is smaller than that for 𝐻𝑤∗, indicating that when
used in practice, the bias of value function induced by 𝜋0 is even smaller
than estimated.
9

The superiority of the modified FVI lies in its low computational
complexity compared with classical iterative algorithms. We thus com-
pare in Fig. 1(b) the running times of the modified FVI and the original
value iteration algorithm under different values of 𝐾. Significant ad-
vantage of the modified FVI over its counterpart can be observed under
each value of 𝐾. Moreover, the running time of the modified FVI grows
in a polynomial manner as 𝐾 increases, whereas that of the original
value iteration grows exponentially. This implies that the modified FVI
is still feasible when 𝐾 is large, whereas the original value iteration
algorithm may fail due to the high computational cost.

6.2. Simulation study of Algorithm 2

We now examine the performance—in particular, the sample com-
plexity—of the online learning algorithm through simulation exper-
iments. As discussed previously, one of our novelties in developing
Algorithm 2 is that we incorporate an online method to evaluate the
dependencies among components (i.e., adaptively detecting the value
of {𝑑𝑘}𝑘∈). Hence, we compare the performance of Algorithm 2 with
that of the common practice that assumes known value of {𝑑𝑘}𝑘∈ in
advance.

In the simulation, we use the same model setting as before; that
is, each component has 3 states and the cost function is identical. The
same basis functions as specified in Section 6.1 are used here. We set
other parameters as follows: 𝛾 = 0.8 and 𝐴 = 5. To generate the
transitions, we define two additional functions 𝑝̃1 ∶ {1, 2, 3} → [0, 1]
and 𝑝̃2 ∶ {1, 2, 3} × {1, 2, 3} → [0, 1] as

̃1(𝑥) =

⎧

⎪

⎨

⎪

0.95, 𝑥 = 3,
0.90, 𝑥 = 2,
0.85, 𝑥 = 1,

𝑝̃2(𝑥, 𝑦) =

⎧

⎪

⎨

⎪

0.90, (𝑥, 𝑦) = (3, 2) or (2, 1),
0.80, (𝑥, 𝑦) = (3, 1),
0, otherwise.
⎩ ⎩
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Table 3
Average number of detached sets of components under different values of 𝜌.

Value of 𝜌 1 2 3 4 5 6 7 8 9 10 15 20 30 50

Average number of detached sets 4 4 4 4 4 3 3 3 3 3 3 3 2 1
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Then, we set the degradation transition as

𝑃𝐷(𝑦𝑘 ∣ 𝑥(𝑘)) = 𝑝̃2(𝑥𝑘, 𝑦𝑘) ⋅𝛱𝑘+2
𝑘′=𝑘−2𝑝̃1(𝑥

𝑘).

Here we focus on the power of Algorithm 2 for moderate- or large-
scale systems. We first study the influence of economic dependence on
the optimal solution. For this purpose, we fix 𝐾 = 30 and examine the
number of detached sets of the optimal solution produced by Algorithm
2. Recall that 𝐷(𝑎) is the number of detached sets of components
selected for maintenance under action 𝑎 and 𝑎𝑡 is the action taken by Al-
gorithm 2 at epoch 𝑡 ≥ 1. In particular, we are interested in the average
value 𝑟𝑜𝑢𝑛𝑑(

∑𝑇
𝑡=1 𝐷(𝑎𝑡)∕𝑇 ) under different values of 𝜌, where 𝑟𝑜𝑢𝑛𝑑(⋅)

returns the nearest integer to any input real number. We choose 14 dif-
ferent levels of 𝜌, that is, 𝜌 ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50}.

he time horizon is fixed at 105 to ensure that the output policy by
lgorithm 2 is stable. The results are presented in Table 3.

We can observe from Table 3 that the value of 𝜌 has a signifi-
ant influence on the number of detached sets of components. More
pecifically, when 𝜌 becomes larger, the economic dependence among
omponents becomes stronger and the benefit of maintaining adjacent
omponents together becomes higher. This implies that the optimal
aintenance policy prefers to maintain neighbouring components in

ach single epoch. This is consistent with our motivation of introducing
he penalty coefficient 𝜌 in the cost function.

Next, we conduct a comparison study to demonstrate the superiority
f our proposed algorithm. To this end, we fix 𝜌 = 3 as in Section 6.1
nd vary the value of 𝐾 from 20 to 30, namely, 𝐾 ∈ {20, 21,… , 30}. It
hould be noted that very few existing approaches can solve problems
ith such a large scale in the learning environment, especially when

he parameters {𝑑𝑘}𝑘∈ are unknown (Dann et al., 2017; Rosenberg
Mansour, 2021; Strehl, 2007). A commonly adopted routine is to

et values of {𝑑𝑘}𝑘∈ in advance and use this fixed value thereafter.
ollowing this routine, we choose two maintenance strategies that both
se fixed values of {𝑑𝑘}𝑘∈ for performance comparison, which are
uboptimal but make sense in practice. In particular, the first strategy
s to ignore the dependence among different components and consider
hat each component evolves independently, or equivalently, fix 𝑑1 =

= 𝑑𝐾 = 0 throughout the whole maintenance process. In the
econd strategy, only dependence between neighbouring components
re considered, namely, 𝑑1 = ⋯ = 𝑑𝐾 = 1 is fixed all the time. The true
alues of all 𝑑𝑘’s are set to 2. The two strategies can be easily realized
y excluding the learning process for each 𝑑𝑘 in Algorithm 2 and fixing
𝑘 at 0 and 1, respectively. In this way, we are comparing our algorithm
that considers the stochastic dependence and learns the dependence)
ith the strategy that does not consider stochastic dependence, in order

o show the effectiveness of our method.
An important note to make is that the theoretical guarantee in

heorem 2 holds under the premise that the true optimal policy can be
chieved each time. However, the true optimal policy, as we discussed
n Section 4, is not computationally tractable in many real cases. As
result, we first illustrate the sample complexity of Algorithm 2 with

he modified FVI approximation method. Because calculating the true
ptimal policy is no longer feasible, we can simply record the total
umber of samples Algorithm 2 uses to update the model parameters as
ts sample complexity. In Fig. 2(a), we illustrate the sample complexity
f Algorithm 2 under different values of 𝐾. We can see that the sample
omplexity of Algorithm 2 increases in a polynomial pattern in 𝐾.
his is different from the sample complexity of a learning algorithm
or general MDPs, which grows exponentially in 𝐾. The result verifies
he feasibility of Algorithm 2 in solving a large-scale maintenance
roblem. In Fig. 2(b), we compare the value functions of the three
10
aintenance strategies. For a problem with over 20 components, the
rue value function of any policy is no longer tractable, thus we use the
pproximate value function instead of the true one in the experiment.
n Fig. 2(b), we illustrate the approximate value functions of the three
olicies based on the strategies we select previously. The results in
ig. 2(b) show that the proposed algorithm outperforms the other two
ithout learning processes.

. Concluding remarks

In this work, we study a condition-based group maintenance prob-
em for multi-component systems subject to multiple types of depen-
encies among components. The problem is modelled by an FMDP
aking advantage of a specific location-based stochastic dependence
mong components. We first examine this problem from a traditional
erspective in which model parameters are assumed to be fully known
n advance. To reduce the computational burden, we develop a modi-
ied FVI algorithm to efficiently approximate the optimal maintenance
olicy and also provide an upper bound on the approximation error of
his algorithm. Subsequently, we turn to an online learning environ-
ent in which model parameters are unknown a priori, and develop an

nline reinforcement learning algorithm to learn the model parameters
nd determine an optimal maintenance policy, simultaneously. The
lgorithm is capable of learning transition probabilities and the system
tructure (indicating the stochastic dependence among components)
rom previous observations. Moreover, it outperforms the other existing
pproaches in that it can generate computationally tractable and ap-
roximately optimal maintenance policies even under a large problem
cale. A key point here is that we properly incorporate the dependence
roperties into the design of our learning algorithm. By doing so, our
lgorithm is able to effectively mitigate computational complexities
nd burdens associated with online maintenance problems, while still
etaining a good performance.

We believe that our model and algorithms are not restricted to
he specific setting concerned in this work. First, the location-based
tochastic dependence assumption can be relaxed beyond neighbouring
omponents, as long as the dependence structure can be gradually
earned from previous observations. Second, the modified FVI with
ampling technique in our framework can be replaced by any effective
pproximation method to solve FMDPs. Third, from a more conceptual
erspective, the scheme of the proposed algorithm, which learns the
ependence structure among components while evaluating optimal
aintenance policies, can be modified and extended to more extensive
aintenance problems for large-scale systems with some structural

eatures among components.
However, this paper presents several limitations that deserve further

esearch efforts. First, an implicit assumption adopted in this work is
erfect inspection; that is, an inspection can reveal each component’s
ctual state without errors. In reality, an inspection may be imperfect
aused by measurement errors or sensor deterioration. Generalizing our
odelling framework to involve imperfect inspections and developing

ppropriate algorithms to solve the associated maintenance problems
s an open question. Second, we assume that at inspection, there are
nly two actions (replacement or do nothing) to be taken for each
omponent. Considering imperfect maintenance actions of different
epths is an interesting research topic. Finally, conducting a real-world
ase study to calibrate our FMDP model with real data (collected from,
.g., energy-generation, transportation, or manufacturing systems) and
ompare the performance of our algorithms with relevant benchmarks
s highly valuable.
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Fig. 2. The numerical performance of Algorithm 2.
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Appendix A. Proof of Theorem 1

The proof is based on reorganizing and refining the results in Szita
and Lörincz (2008).

Proof of Theorem 1. The error ‖𝐻𝑤̂∗ − 𝑉 ∗
‖∞ is separated as

‖

‖

𝐻𝑤̂∗ − 𝑉 ∗
‖

‖∞ ≤ ‖

‖

𝐻𝑤∗ − 𝑉 ∗
‖

‖∞ + ‖

‖

𝐻𝑤∗ −𝐻𝑤̂∗
‖

‖∞ . (A.1)

The rest of the proof is to bound ‖𝐻𝑤∗ −𝐻𝑤̂∗
‖∞. Based on the

discussions in the proof of Theorem 1 in Szita and Lörincz (2008), we
have

‖𝐻𝑤∗ −𝐻𝑤̂∗
‖∞ ≤ ‖𝐻‖∞ ‖𝑤∗ − 𝑤̂∗

‖∞

≤
‖𝐻‖∞

1 − 𝛾

(

‖

‖

‖

𝐺𝑐𝜋0 − 𝐺̂𝑐𝜋0‖‖
‖∞

+ 𝛾 ‖‖
‖

𝐺𝐵𝜋0 − 𝐺̂𝑃 𝜋0 𝐻̂‖

‖

‖∞
‖𝑤∗

‖∞

)

.

(A.2)

If we define 𝑐𝜋0𝑘 to be a 𝐾-dimensional vector with the 𝑘th com-
ponent being 𝑐𝑘(𝑥𝑘, 𝜋0(𝑥)𝑘) and other components being 0, then 𝑐𝜋0 =
∑

𝑘∈ 𝑐𝜋0𝑘 . Meanwhile, because 𝐺 =
∑𝐸

𝑒=1 𝐺𝑒 and 𝐵𝜋0 =
∑𝑀

𝑚=1 𝐵
𝜋0 , 𝑚,

according to Szita and Lörincz (2008, Lemma 5), we have for any
𝜀0 > 0, with probability at least 1 − 𝛿∕2,
‖

‖

‖

𝐺𝑐𝜋0 − 𝐺̂𝑐𝜋0‖‖
‖∞

≤ 𝜀′, (A.3)

if |̂| ≥ 2𝛹1𝑀2∕𝜀20 ⋅log(4𝑀
2∕𝛿), and with probability at least 1−𝛿∕2,

‖

‖

‖

𝐺𝐵𝜋0 − 𝐺̂𝑃 𝜋0𝐻̂‖

‖

‖∞
≤ 𝜀0, (A.4)

if |̂| ≥ 2𝛹2𝑀2∕𝜀20 ⋅ log(4𝑀
2∕𝛿). If we let

𝜀0 =
(1 − 𝛾)𝜀
‖𝐻‖∞

(

1 + 𝛾 ‖
‖

𝑤∗
‖

‖∞
)

,

then by combining (A.2), (A.3), and (A.4), we have, with probability
at least 1 − 𝛿,

‖𝐻𝑤∗ −𝐻𝑤̂∗
‖ ≤ 𝜀, (A.5)
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‖ ‖∞
if

|̂| ≥ 2𝑀2

𝜀20
log( 4𝑀

2

𝛿
) max{𝛹1, 𝛹2}

≥
(

1 + 𝛾 ‖𝑤∗
‖∞

)2
‖𝐻‖

2
∞ 𝑀2

(1 − 𝛾)2𝜀2
log( 4𝑀

2

𝛿
) ⋅max{𝛹1, 𝛹2}.

This completes the proof. □

Appendix B. Proof of Theorem 2

The proof follows the process we sketch in Section 5.2. In the fol-
lowing Lemma, we construct an event where the estimated transitions
are close to the true transitions, and prove that the event holds with a
high probability.

Lemma 1. We define ℰ to be an event where for all 𝑡 ≥ 1 during
the execution of Algorithm Theorem 2 and all 𝑘 ∈ , 𝑥𝑘 ∈ {1,… , 𝑁},
𝑎𝑘 ∈ {0, 1}, 𝑥 ∈  and 𝑑𝑘 ≤ 𝑑 ≤ 𝜅, relations
‖

‖

‖

𝑃 𝑘
𝑅, 𝑡(⋅ ∣ 𝑥

𝑘, 𝑎𝑘) − 𝑃 𝑘
𝑅(⋅ ∣ 𝑥

𝑘, 𝑎𝑘)‖‖
‖1

≤

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅∕𝛿
}

+ 4𝑁 ln (2)
max{𝑛𝑡(𝑥𝑘, 𝑎𝑘), 1}

, (B.1)

and
‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝑑))) − 𝑃 𝑘

𝐷(⋅ ∣ 𝑥(𝑘(𝑑𝑘)))
‖

‖

‖1

≤

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝑑))), 1}

, (B.2)

hold simultaneously. Then ℰ holds with probability at least 1 − 𝛿.

Proof. Since the total number of state–action pair (𝑥𝑘, 𝑎𝑘) is 2𝑁 for
each 𝑘 ∈ , according to Weissman et al. (2003, Theorem 2.1), for
any given 𝑘 ∈ , 𝑥𝑘 ∈ {1,… , 𝑁} and 𝑎𝑘 ∈ {0, 1}, relation
‖

‖

‖

𝑃 𝑘
𝑅, 𝑡(⋅ ∣ 𝑥

𝑘, 𝑎𝑘) − 𝑃 𝑘
𝑅(⋅ ∣ 𝑥

𝑘, 𝑎𝑘)‖‖
‖1

≤

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅∕𝛿
}

+ 4𝑁 ln (2)
max{𝑛𝑡(𝑥𝑘, 𝑎𝑘), 1}

,

holds with probability at least 1 − 𝛿∕{2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅}.
Meanwhile, since 𝑑 ≥ 𝑑𝑘 and |𝑥(𝑘(𝑑))| = 𝑁𝑑 , for any given 𝑘 ∈ ,
𝑥 ∈ , and 𝑑𝑘 ≤ 𝑑 ≤ 𝜅, relation

‖𝑃 𝑘 (⋅ ∣ 𝑥( (𝑑))) − 𝑃 𝑘 (⋅ ∣ 𝑥( (𝑑𝑘)))‖
‖

‖

𝐷, 𝑡 𝑘 𝐷 𝑘 ‖

‖1
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√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+𝑁2𝑑+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝑑))), 1}

≤

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝑑))), 1}

,

holds with probability at least 1 − 𝛿∕{2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷}.
Using the trick of the union probability bound, we combine all state–
action pairs (𝑥𝑘, 𝑎𝑘)’s and 𝑋(𝑘(𝑑))’s, and all possible samples 1,… , 𝜏𝑅
for state–action pairs 𝑛𝑡(𝑥𝑘, 𝑎𝑘)’s and all possible samples 1,… , 𝜏𝐷 for
𝑥(𝑘(𝑑))’s to conclude that

𝑃𝑟 (ℰ ) ≥ 1 −

(

𝛿 ⋅
∑𝜏𝑅

𝑡=1
∑

𝑘∈
∑𝜅

𝑑=𝑑𝑘
𝑁2𝑑+1

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅
+

𝛿 ⋅
∑𝜏𝐷

𝑡=1
∑

𝑘∈ 2𝑁

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷

)

≥ 1 −

(

𝛿 ⋅
∑𝜏𝑅

𝑡=1
∑

𝑘∈
∑𝜅

𝑑=1 𝑁
2𝑑+1

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅
+

𝛿 ⋅ 𝜏𝐷𝐾 ⋅ 2𝑁
2𝐾

[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷

)

= 1 −

(

𝛿 ⋅ 𝜏𝑅 ⋅𝐾 ⋅𝑁2𝜅+1(𝑁 − 1)
2𝐾

[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅
+

𝛿 ⋅ 𝜏𝐷𝐾 ⋅ 2𝑁
2𝐾

[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷

)

≥ 1 − 𝛿.

Thus, we conclude the proof. □

The corollary below follows directly from Lemma 1, namely, for all
𝑑𝑘 ≤ 𝑑 ≤ 𝜅, Condition (10) does not hold.

Corollary 1. Restricted to event ℰ , for all 𝑡 ≥ 1 during the execution of
Algorithm 2, the relation 𝑑𝑘𝑡 ≤ 𝑑𝑘 holds.

Proof. According to Lemma 1, ∀𝑑 ≥ 𝑑𝑘, we have
‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝑑))) − 𝑃 𝑘

𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝜅)))
‖

‖

‖1

≤ ‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝑑))) − 𝑃 𝑘

𝐷(⋅ ∣ 𝑥(𝑘(𝑑𝑘)))
‖

‖

‖1

+ ‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑥(𝑘(𝜅))) − 𝑃 𝑘

𝐷(⋅ ∣ 𝑥(𝑘(𝑑𝑘)))
‖

‖

‖1

≤

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝑑))), 1}

+

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝜅))), 1}

≤ 2

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝜅))), 1}

,

where the last inequality is because of 𝑑 ≤ 𝜅, which implies 𝑛𝑡(𝑥(𝑘(𝜅)))
≤ 𝑛𝑡(𝑥(𝑘(𝑑𝑘𝑡 ))). Thus, the update of 𝑑𝑘𝑡 only happens when 𝑑𝑘𝑡 < 𝑑𝑘, by
which we conclude the proof. □

In the next lemma, we show that restricted to event ℰ , the 𝐿1-
divergence between the estimated transition 𝑃𝑡 that Algorithm 2 uses
ach time and the true transition 𝑃 can be bounded.

emma 2. Restricted to event ℰ , the following relation
‖

‖

‖

𝑃𝑡(⋅ ∣ 𝑥, 𝑎) − 𝑃𝑡(⋅ ∣ 𝑥, 𝑎)
‖

‖

‖1

𝐾 ⋅max
𝑘∈

⋅ max
(𝑥𝑘 , 𝑎𝑘)

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅∕𝛿
}

+ 4𝑁 ln (2)
max{𝑛𝑡(𝑥𝑘, 𝑎𝑘), 1}

+ 𝑁𝐴 ⋅𝐾 ⋅max
𝑘∈

max
𝑥(𝑘(𝜅))

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
max{𝑛𝑡(𝑥(𝑘(𝜅))), 1}

,

olds for all 𝑡 ≥ 1, 𝑥 ∈  and 𝑎 ∈ .

roof. For notational convenience, for all 𝑘 ∈ , we define

𝑘
1, 𝑡 ≜ max

(𝑥𝑘 , 𝑎𝑘)

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅∕𝛿
}

+ 4𝑁 ln (2)
max{𝑛𝑡(𝑥𝑘, 𝑎𝑘), 1}

,

and

𝜇𝑘
2, 𝑡 ≜ max

√

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

+ 2𝑁2𝜅+1 ln (2)
.
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𝑥(𝑘(𝜅)) max{𝑛𝑡(𝑥(𝑘(𝜅))), 1}
According to Strehl (2007, Corollary 1), ∀𝑥𝑘′ , 𝑎𝑘′ , we have
‖

‖

‖

‖

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

⋅ ∣ 𝑥𝑘, 𝑎
)

−𝛱𝑘∈𝑃
𝑘′
𝑅

(

⋅ ∣ 𝑥𝑘
′
, 𝑎𝑘

′
)

‖

‖

‖

‖1

≤𝐾 ⋅max
𝑘∈

‖

‖

‖

𝑃 𝑘
𝑅, 𝑡

(

⋅ ∣ 𝑥𝑘, 𝑎𝑘
)

− 𝑃 𝑘
𝑅
(

⋅ ∣ 𝑥𝑘, 𝑎𝑘
)

‖

‖

‖1
≤ 𝜅 ⋅ 𝜇𝑘

1, 𝑡, (B.3)

nd for all 𝑥(𝑘(𝑑𝑘𝑡 )),

‖

‖

‖

‖

(

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘

𝑡 )))
)

−
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)‖

‖

‖

‖1

≤𝐾 ⋅ max
𝑧(𝑘(𝑑𝑘𝑡 ))∈(𝑘(𝑑𝑘𝑡 ))

‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘

𝑡 ))) − 𝑃 𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))‖‖

‖1
≤ 𝐾 ⋅ 𝜇𝑘

2, 𝑡,

(B.4)

where the last inequality is based on Corollary 1. Meanwhile, ∀𝑥𝑘′ , 𝑧𝑘′ ,
𝑎𝑘′ , we have

|

|

|

|

|

|

(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘𝑡 )))

)

−
(

𝛱𝑘∈𝑃
𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
))

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)

|

|

|

|

|

|1

≤||
|

|

|

|

(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘𝑡 )))

)

−
(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)

+
(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)

−
(

𝛱𝑘∈𝑃
𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
))

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)

|

|

|

|

|

|1
(

𝛱𝑘∈𝑃
𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
))

⋅ ‖‖
‖

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘𝑡 ))) −𝛱𝑘∈𝑃

𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

‖

‖

‖1

+
|

|

|

|

(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

−
(

𝛱𝑘∈𝑃
𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
))|

|

|

|

⋅ ‖‖
‖

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

‖

‖

‖1
‖

‖

‖

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘𝑡 ))) −𝛱𝑘∈𝑃

𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

‖

‖

‖1

+ |

|

|

(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

−
(

𝛱𝑘∈𝑃
𝑘
𝑅
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
))

|

|

|

. (B.5)

Recall that ∀𝑎 ∈ , we have ∑

𝑘∈ 𝑎𝑘 ≤ 𝐴 ≪ 𝐾, so under any 𝑎 ∈ ,
here are at most a total number of 𝑁𝐴 components of 𝑧 ∈  such that
𝑘∈𝑃 𝑘

𝑅, 𝑡
(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

> 0. Therefore, ∀𝑥, 𝑦 ∈ , 𝑎 ∈ ,

‖

‖

‖

𝑃 (⋅ ∣ 𝑥, 𝑎) − 𝑃𝑡(⋅ ∣ 𝑥, 𝑎)
‖

‖

‖1
|

|

|

|

|

|

∑

𝑧∈

[(

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
)

)

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘

𝑡 )))
)]

−
∑

𝑧∈

(

𝛱𝑘∈𝑃
𝑘
𝑅

(

𝑧𝑘 ∣ 𝑥𝑘, 𝑎𝑘
))

⋅
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)

|

|

|

|

|

|1

𝑁𝐴 ⋅max
𝑧∈

‖

‖

‖

‖

(

𝛱𝑘∈𝑃
𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘

𝑡 )))
)

−
(

𝛱𝑘∈𝑃
𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))

)‖

‖

‖

‖1

+
∑

𝑧∈

|

|

|

(

𝛱𝑘′∈𝑘(𝑑𝑘𝑡 )
𝑃 𝑘′
𝑅, 𝑡

(

𝑧𝑘′ ∣ 𝑥𝑘′ , 𝑎𝑘′
))

−
(

𝛱𝑘′∈𝑘(𝑑𝑘𝑡 )
𝑃 𝑘′
𝑅

(

𝑧𝑘′ ∣ 𝑥𝑘′ , 𝑎𝑘′
))

|

|

|

𝑁𝐴 ⋅𝐾 ⋅max
𝑘∈

max
𝑧(𝑘(𝑑𝑘𝑡 ))∈(𝑘(𝑑𝑘𝑡 ))

‖

‖

‖

𝑃 𝑘
𝐷, 𝑡(⋅ ∣ 𝑧(𝑘(𝑑𝑘

𝑡 ))) − 𝑃 𝑘
𝐷(⋅ ∣ 𝑧(𝑘(𝑑𝑘)))‖‖

‖1

+ ‖

‖

‖

𝛱𝑘∈𝑃
𝑘
𝑅, 𝑡

(

⋅ ∣ 𝑥𝑘, 𝑎𝑘
)

−𝛱𝑘∈𝑃
𝑘
𝑅

(

⋅ ∣ 𝑥𝑘, 𝑎𝑘
)

‖

‖

‖1

𝑁𝐴 ⋅𝐾 ⋅max
𝑘∈

𝜇𝑘
2, 𝑡 +𝐾 ⋅max

𝑘
𝜇𝑘
1, 𝑡, (B.6)

here the last two inequalities follow from (B.3) and (B.4). Substituting
𝑘
1, 𝑡 and 𝜇𝑘

2, 𝑡 into (B.6), we finally conclude the proof. □

Based on Lemma 1, Corollary 1, and Lemma 2, we present the
etailed proof of Theorem 2 below.

roof of Theorem 2. The main target of the proof is to show that the
hree conditions in Strehl et al. (2006, Proposition 1) are satisfied by
ur algorithm, then use the results therein to construct an upper bound
n the sample complexity of our algorithm and conclude the proof. We
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first define a set of ‘‘known’’ state–action pairs at each time 𝑡 ≥ 1 as

𝛷𝑡≜

{

(𝑥, 𝑎) ∈  × |

|

|

for all 𝑘 ∈ , 𝑎 ∈ , 𝑦 ∈  , 𝑛𝑡(𝑥𝑘, 𝑎𝑘) = 𝜏𝑅, 𝑛𝑡(𝑦(𝑘(𝜅)))=𝜏𝐷

}

,

nd we also define a ‘‘known’’ action-value function as

𝐾𝑡 (𝑥, 𝑎) ≜

{

𝑐(𝑥, 𝑎) +
∑

𝑦∈ 𝑃 (𝑦 ∣ 𝑥, 𝑎) min𝑎∈ 𝑄𝐾𝑡 (𝑦, 𝑎), ∀(𝑥, 𝑎) ∈ 𝛷𝑡,
𝑐(𝑥, 𝑎) +

∑

𝑦∈ 𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) min𝑎∈ 𝑄𝐾𝑡 (𝑦, 𝑎) − 𝛽𝑡(𝑥, 𝑎), ∀(𝑥, 𝑎) ∉ 𝛷𝑡.

According to Strehl et al. (2006, Proposition 1), to conclude the
bound on the sample complexity in Theorem 2, we need to prove that
for all 𝜀 > 0, 0 < 𝛿 < 1, 𝑡 ≥ 1 and all (𝑥, 𝑎) ∈  × , the following
conditions hold with probability at least 1 − 𝛿∕2: (1) min𝑎∈ 𝑄̂𝑡(𝑥, 𝑎) ≤
min𝑎∈ 𝑄∗(𝑥, 𝑎) + 𝜀∕4; (2) |min𝑎∈ 𝑄̂𝑡(𝑥, 𝑎) − min𝑎∈ 𝑄𝐾𝑡 (𝑥, 𝑎)| ≤ 𝜀∕4;
(3) The number of time steps when some (𝑥𝑡, 𝑎𝑡) ∉ 𝛷𝑡 is observed can
be bounded by 𝑁 ⋅ 𝐾 ⋅ 𝜏𝑅 +𝑁2𝜅+1 ⋅ 𝐾 ⋅ 𝜏𝐷. In the rest of the proof, we
verify these three conditions one by one. Note that we always restrict
our discussions to event ℰ .
Step 1. Proving min𝑎∈ 𝑄̂𝑡(𝑥, 𝑎) ≤ min𝑎∈ 𝑄∗(𝑥, 𝑎) + 𝜀∕4.

We consider the value iteration equation for solving 𝑄𝑡 below:

𝑄̂𝑖+1
𝑡 (𝑥, 𝑎) = 𝑐(𝑥, 𝑎)+

∑

𝑦∈
𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) min

𝑎∈
𝑄̂𝑖

𝑡(𝑦, 𝑎)−𝛽𝑡(𝑥, 𝑎), ∀𝑥 ∈  , 𝑎 ∈ ,

with 𝑄̂𝑖
𝑡 being the 𝑖th iterated value function (𝑖 ≥ 0) and 𝑄̂0

𝑡 (𝑥, 𝑎) =
(1 + 𝜌)𝐴∕(1 − 𝛾). Next, we prove

min
𝑎∈

𝑄̂𝑡(𝑥, 𝑎) ≤ min
𝑎∈

𝑄∗(𝑥, 𝑎), ∀𝑥 ∈  , (B.7)

by induction on 𝑖. Because 𝑐𝑘(𝑥𝑘, 𝑎𝑘) ∈ [0, 1], and ∑

𝑘∈ 𝑎𝑘 ≤ 𝐴 for all
𝑎 implies 𝐷(𝑎) ≤ 𝐴, we have 𝑄∗(𝑥, 𝑎) ≤ (1 + 𝜌)𝐴∕(1 − 𝛾), therefore (B.7)
holds for 𝑖 = 0. Suppose that (B.7) holds for some 𝑖, then for all 𝑥 ∈ 
and 𝑎 ∈ ,

𝑄̂𝑖+1
𝑡 (𝑥, 𝑎) −𝑄∗(𝑥, 𝑎)

=𝛾
∑

𝑦∈
𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) min

𝑎∈
𝑄𝑖−1

𝑡 (𝑦, 𝑎) − 𝛾
∑

𝑦∈
𝑃 (𝑦 ∣ 𝑥, 𝑎) min

𝑎∈
𝑄∗(𝑦, 𝑎) − 𝛽𝑡(𝑥, 𝑎)

≤𝛾
∑

𝑦∈
𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) min

𝑎∈
𝑄∗(𝑦, 𝑎) − 𝛾

∑

𝑦∈
𝑃 (𝑦 ∣ 𝑥, 𝑎) min

𝑎∈
𝑄∗(𝑦, 𝑎) − 𝛽𝑡(𝑥, 𝑎)

≤ (1 + 𝜌)𝐴 ⋅ 𝛾
1 − 𝛾

∑

𝑦∈

(

𝑃𝑡(𝑦 ∣ 𝑥, 𝑎) − 𝑃 (𝑦 ∣ 𝑥, 𝑎)
)

− 𝛽𝑡(𝑥, 𝑎)

≤ (1 + 𝜌)𝐴 ⋅ 𝛾
1 − 𝛾

‖

‖

‖

𝑃𝑡(⋅ ∣ 𝑥, 𝑎) − 𝑃𝑡(⋅ ∣ 𝑥, 𝑎)
‖

‖

‖1
− 𝛽𝑡(𝑥, 𝑎) ≤ 0,

where the last inequality follows from Lemma 2. Thus, (B.7) is proven,
which implies min𝑎∈ 𝑄̂𝑡(𝑥, 𝑎) ≤ min𝑎∈ 𝑄∗(𝑥, 𝑎) + 𝜀∕4.
Step 2. Proving |

|

|

min𝑎∈ 𝑄̂𝑡(𝑥, 𝑎) − min𝑎∈ 𝑄𝐾𝑡 (𝑥, 𝑎)||
|

≤ 𝜀∕4.
According to Strehl and Littman (2008, Lemma 1), we have

|

|

|

|

min
𝑎∈

𝑄̂𝑡(𝑥, 𝑎) − min
𝑎∈

𝑄𝐾𝑡 (𝑥, 𝑎)
|

|

|

|

≤ max
𝑎∈

|

|

|

𝑄̂𝑡(𝑥, 𝑎) −𝑄𝐾𝑡 (𝑥, 𝑎)||
|

≤ 1
(1 − 𝛾)2

max
(𝑥, 𝑎)∈𝛷𝑡

𝛽𝑡(𝑥, 𝑎) +
(1 + 𝜌)𝐴 ⋅ 𝛾
(1 − 𝛾)2

max
(𝑥, 𝑎)∈𝛷𝑡

‖

‖

‖

𝑃𝑡(⋅ ∣ 𝑥, 𝑎) − 𝑃𝑡(⋅ ∣ 𝑥, 𝑎)
‖

‖

‖1

=
(2 − 𝛾)𝛾(1 + 𝜌)𝐴

(1 − 𝛾)3
max

(𝑥, 𝑎)∈𝛷𝑡

‖

‖

‖

𝑃𝑡(⋅ ∣ 𝑥, 𝑎) − 𝑃𝑡(⋅ ∣ 𝑥, 𝑎)
‖

‖

‖1
. (B.8)

Noting that 𝑛𝑡(𝑥𝑘, 𝑎𝑘) = 𝜏𝑅 and 𝑛𝑡(𝑥(𝑘(𝜅))) = 𝜏𝐷, based on
Lemma 2, a set of sufficient conditions for the right-hand side of (B.8)
to be no larger than 𝜀∕4 is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

√

2 ln{2𝐾
[

𝑁2𝜅+1(𝑁−1)+2𝑁
]

𝜏𝑅∕𝛿}+4𝑁 ln (2)
𝜏𝑅

≤ (1−𝛾)3𝜀
8(2−𝛾)𝛾(1+𝜌)𝐴⋅𝐾 ,

√

2 ln{2𝐾
[

𝑁2𝜅+1(𝑁−1)+2𝑁
]

𝜏𝐷∕𝛿}+2𝑁2𝜅+1 ln (2)
𝜏𝐷

≤ (1−𝛾)3𝜀
8(2−𝛾)𝛾(1+𝜌)𝐴⋅𝑁𝐴⋅𝐾 .

(B.9)

Using the inequality of ln 𝑥 ≤ 𝑥∕𝜎 + ln 𝜎 − 1, ∀𝑥 > 0, 𝜎 > 0, we have

ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝑅∕𝛿
}

≤ 2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

∕𝛿
}

+
(1 − 𝛾)6𝜀

⋅ 𝜏𝑅
13

128(2 − 𝛾)2𝛾2(1 + 𝜌)2𝐴2𝐾2
+ 4 ln
(

16(2 − 𝛾)𝛾(1 + 𝜌)𝐴 ⋅𝐾
(1 − 𝛾)3𝜀

)

− 2 + 4𝑁 ln (2),

and

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

𝜏𝐷∕𝛿
}

≤ 2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

∕𝛿
}

+
(1 − 𝛾)6𝜀

128(2 − 𝛾)2𝛾2(1 + 𝜌)2𝐴2𝑁2𝐴𝐾2
⋅ 𝜏𝐷

+ 4 ln
(

16(2 − 𝛾)𝛾(1 + 𝜌)𝐴𝑁𝐴 ⋅𝐾
(1 − 𝛾)3𝜀

)

− 2 + 2𝑁2𝜅+1 ln (2).

So, we claim the following sufficient conditions for (B.9):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

∕𝛿
}

+ 4 ln
(

16(2−𝛾)𝛾(1+𝜌)𝐴⋅𝐾
(1−𝛾)3𝜀

)

+4𝑁 ≤ (1−𝛾)6𝜀2

128(2−𝛾)2𝛾2(1+𝜌)2𝐴2𝐾2 ⋅ 𝜏𝑅,

2 ln
{

2𝐾
[

𝑁2𝜅+1(𝑁 − 1) + 2𝑁
]

∕𝛿
}

+ 4 ln
(

16(2−𝛾)𝛾(1+𝜌)𝐴⋅𝑁𝐴⋅𝐾
(1−𝛾)3𝜀

)

+4𝑁 ≤ (1−𝛾)6𝜀2

128(2−𝛾)2𝛾2(1+𝜌)2𝐴2𝑁2𝐴𝐾2 ⋅ 𝜏𝐷.

(B.10)

One can easily verify that (B.10) can be satisfied by the choices of
𝜏𝑅 and 𝜏𝐷 in Theorem 2.
Step 3. Bounding the number of epochs when some (𝑥𝑡, 𝑎𝑡) ∉ 𝛷𝑡 is
observed.

Note that each time some (𝑥𝑡, 𝑎𝑡) ∉ 𝛷𝑡 is observed, at least one
of 𝑛𝑡(𝑥𝑘𝑡 , 𝑎

𝑘
𝑡 )’s or 𝑛𝑡(𝑥𝑡(𝑘(𝜅))) is updated. Since Algorithm 2 only uses

the first 𝜏𝐷 observations of each (𝑥𝑘𝑡 , 𝑎
𝑘
𝑡 ) and the first 𝜏𝑅 observations

of 𝑥𝑡(𝑘(𝜅)), the number of times at least one of 𝑛𝑡(𝑥𝑘𝑡 , 𝑎
𝑘
𝑡 )’s and

𝑡(𝑥𝑡(𝑘(𝜅))) is updated, is at most max{𝑁 ⋅ 𝐾 ⋅ 𝜏𝑟, 𝑁2𝜅+1 ⋅ 𝐾 ⋅ 𝜏𝐷}.
Therefore, the number of epochs when some (𝑥𝑡, 𝑎𝑡) ∉ 𝛷𝑡 is observed
can be bounded by max{𝑁 ⋅𝐾 ⋅ 𝜏𝑟, 𝑁2𝜅+1 ⋅𝐾 ⋅ 𝜏𝐷}.

We finally claim that all the three conditions presented at the
beginning of the proof are satisfied, and thus complete the whole
proof. □

Appendix C. Proof of Proposition 1

The proof is directly based on mathematical deductions.
Proof of Proposition 1. Based on our choice of 𝐻 , for each 𝑘 ∈ ,
we can choose 𝑥 ∈  such that 𝑥𝑘 = 1 and 𝑥𝑘′ = 3 for all 𝑘′ ≠ 𝑘. Then,

e have ℎ𝑘(𝑥) = 1 and ℎ𝑘′ = 0 for all 𝑘′ ≠ 𝑘. Therefore, we conclude
hat 𝐻 has linearly independent columns. Thus, 𝐻+ can be calculated
y 𝐻+ =

(

𝐻𝑇𝐻
)−1 𝐻𝑇 . Next, we have

𝑇
𝑘 ⋅ ℎ𝑘′ =

{

5||
12 = 5×3𝐾−1

4 , 𝑘 = 𝑘′,
||
4 = 3𝐾

4 , 𝑘 ≠ 𝑘′,

for all 𝑘, 𝑘′ = 1,… , 𝐾. So,

𝐻𝑇𝐻 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

5×3𝐾−1

4 , 3𝐾
4 , ⋯ , 3𝐾

4
3𝐾
4 , 5×3𝐾−1

4 , ⋯ , 3𝐾
4

⋮ ⋮ ⋱ ⋮
3𝐾
4 , ⋯ , 3𝐾

4 , 5×3𝐾−1

4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and

(

𝐻𝑇𝐻
)−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
2(3𝐾 − 1)

(3𝐾 + 2)3𝐾−1
− 2
(3𝐾 + 2)3𝐾−2

, ⋯ , − 2
(3𝐾 + 2)3𝐾−2

− 2
(3𝐾 + 2)3𝐾−2

, −
2(3𝐾 − 1)

(3𝐾 + 2)3𝐾−1
, ⋯ , − 2

(3𝐾 + 2)3𝐾−2

⋮ ⋮ ⋱ ⋮

− 2
𝐾−2

, ⋯ , − 2
𝐾−2

, −
2(3𝐾 − 1)

𝐾−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(3𝐾 + 2)3 (3𝐾 + 2)3 (3𝐾 + 2)3
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t

𝛺

t

𝐻

a

𝛥

|

R

A

A

B

B

C

D

d

D

D

D

D

E

G

G

H

K

K

Therefore,

𝐻+ = 2
(3𝐾 + 2)3𝐾−2

(

(𝐾 − 1∕3) ⋅ ℎ1 −
∑

𝑘≠1
ℎ𝑘,… , (𝐾 − 1∕3) ⋅ ℎ𝐾 −

∑

𝑘≠𝐾
ℎ𝑘

)𝑇

.

(C.1)

Next, we have

𝐻𝐻+ = 2
(3𝐾 + 2)3𝐾−2

(

(𝐾 − 1∕3)
𝐾
∑

𝑘=1
ℎ𝑘 ⋅ ℎ

𝑇
𝑘 −

∑

𝑘≠𝑘′
ℎ𝑘 ⋅ ℎ

𝑇
𝑘′

)

. (C.2)

For all 𝑘′, 𝑘′ ∈ , we denote by
(

ℎ𝑘 ⋅ ℎ𝑇𝑘′
)

𝑥1 , 𝑥2
, 𝑥1, 𝑥2 ∈ , the

element of ℎ𝑘 ⋅ ℎ𝑇𝑘′ . Since
(

ℎ𝑘 ⋅ ℎ𝑇𝑘′
)

𝑥1 , 𝑥2
is the row of ℎ𝑘 corresponding

o 𝑥 multiplies the row of ℎ𝑘′ corresponding to 𝑥2, we have

(

ℎ𝑘 ⋅ ℎ
𝑇
𝑘′
)

𝑥1 , 𝑥2
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑥𝑘1 = 1, 𝑥𝑘′2 = 1,

1∕2, 𝑥𝑘1 = 1, 𝑥𝑘′2 = 2 or 𝑥𝑘1 = 2, 𝑥𝑘′2 = 1,

1∕4, 𝑥𝑘1 = 2, 𝑥𝑘′2 = 2,

0, otherwise.

(C.3)

For all 𝑥 ∈ , if we define

1(𝑥) ≜
{

𝑘 ∈  ∶ 𝑥𝑘 = 1
}

, 𝛺2(𝑥) ≜
{

𝑘 ∈  ∶ 𝑥𝑘 = 2
}

,

hen according to (C.2) and (C.3), by simple deduction, we have

𝐻+
𝑥1 , 𝑥2

= 2
(3𝐾 + 2)3𝐾−2

[

(

𝐾 + 2
3

) (

|

|

𝛺1(𝑥1) ∩𝛺1(𝑥2)||

+ 1
2
|

|

𝛺1(𝑥1) ∩𝛺2(𝑥2)|| +
1
2
|

|

𝛺2(𝑥1) ∩𝛺1(𝑥2)||

+ 1
4
|

|

𝛺2(𝑥1) ∩𝛺2(𝑥2)||
)

− |

|

𝛺1(𝑥1)|| ⋅ ||𝛺1(𝑥2)||

− 1
2
(

|

|

𝛺2(𝑥1)|| ⋅ ||𝛺1(𝑥2)|| + |

|

𝛺1(𝑥1)|| ⋅ ||𝛺2(𝑥2)||
)

− 1
4
|

|

𝛺2(𝑥1)|| ⋅ ||𝛺2(𝑥2)||

]

.

If we define

𝛥1 ≜
(

|

|

𝛺1(𝑥1) ∩𝛺1(𝑥2)|| +
1
2
|

|

𝛺1(𝑥1) ∩𝛺2(𝑥2)||

+ 1
2
|

|

𝛺2(𝑥1) ∩𝛺1(𝑥2)|| +
1
4
|

|

𝛺2(𝑥1) ∩𝛺2(𝑥2)||
)

,

𝛥2 ≜ |

|

𝛺1(𝑥1)|| ⋅ ||𝛺1(𝑥2)|| +
1
2
(

|

|

𝛺2(𝑥1)|| ⋅ ||𝛺1(𝑥2)|| + |

|

𝛺1(𝑥1)|| ⋅ ||𝛺2(𝑥2)||
)

+ 1
4
|

|

𝛺2(𝑥1)|| ⋅ ||𝛺2(𝑥2)|| .

Then, by the relations 0 ≤ |

|

𝛺1(𝑥)|| , ||𝛺2(𝑥)|| ≤ 𝐾, and 0 ≤ |

|

𝛺1(𝑥)|| +
|

|

𝛺2(𝑥)|| ≤ 𝐾, we have

𝛥1 ≤
3
2
|

|

𝛺1(𝑥1)|| +
3
4
|

|

𝛺2(𝑥1)|| ≤
3
4
|

|

𝛺1(𝑥1)|| +
3
4
(

|

|

𝛺1(𝑥1)|| + |

|

𝛺2(𝑥1)||
)

≤ 3𝐾
2

,

nd

2 ≤ |

|

𝛺1(𝑥1)|| ⋅ ||𝛺1(𝑥2)|| +
1
2

[

(

𝐾 − |

|

𝛺1(𝑥1)||
)

⋅ |
|

𝛺1(𝑥2)|| +
(

𝐾 − |

|

𝛺1(𝑥2)||
)

⋅ |
|

𝛺1(𝑥1)||
]

+ 1
4
(

𝐾 − |

|

𝛺1(𝑥1)||
) (

𝐾 − |

|

𝛺1(𝑥2)||
)

≤𝐾2

4
+ 𝐾

4
(

|

|

𝛺1(𝑥1)|| + |

|

𝛺2(𝑥2)||
)

+ 1
4
|

|

𝛺1(𝑥1)|| ⋅ ||𝛺1(𝑥2)||

≤ 3𝐾2

4
.

Therefore,

𝐻𝐻+
𝑥1 , 𝑥2

≤ 2
(3𝐾 + 2)3𝐾−2

max
{(

𝐾 + 2
3

)

𝛥1, 𝛥2

}

≤ 2
(3𝐾 + 2)3𝐾−2

max
{

(

𝐾 + 2
3

) 3𝐾
2

, 3𝐾
2

4

}

= 𝐾
3𝐾−2

.

Therefore, the row sum of each row of 𝐻𝐻+ can be bounded by
| ⋅ 𝐾∕3𝐾−2 = 9𝐾, which means that the row sum of each row of
14
𝐻𝐺 is no more than 1. This implies that 𝐺 satisfies the non-expansion
property.

In addition, by (C.1), we have

𝐻+ = 2
(3𝐾 + 2)3𝐾−2

[

(

𝐾 + 2
3

)

(

ℎ1,… , ℎ𝐾
)𝑇 −

𝐾
∑

𝑘=1

(

ℎ𝑘,… , ℎ𝑘
)𝑇

]

= 2
(3𝐾 + 2)3𝐾−2

[ 𝐾
∑

𝑘=1

(

𝐾 + 2
3

)

(

0,… , ℎ𝑘,… , 0
)𝑇 −

𝐾
∑

𝑘=1

(

ℎ𝑘,… , ℎ𝑘
)𝑇

]

= 2
(3𝐾 + 2)3𝐾−2

𝐾
∑

𝑘=1

(

−ℎ𝑘,… ,
(

𝐾 − 1
3

)

⋅ ℎ𝑘,… ,−ℎ𝑘
)𝑇

. (C.4)

Thus, if we let

𝐺𝑘 ≜ 2
9𝐾(3𝐾 + 2)3𝐾−2

(

−ℎ𝑘,… ,
(

𝐾 − 1
3

)

⋅ ℎ𝑘,… ,−ℎ𝑘
)𝑇

,

then 𝐺𝑘 is a {𝑘}-scope matrix and 𝐺 =
∑𝐾

𝑘=1 𝐺𝑘 is a separation that
satisfies Assumption 1 with 𝐾𝑊 = 1. In addition, ‖

‖

𝐺𝑘
‖

‖∞ can be easily
bounded by

‖

‖

𝐺𝑘
‖

‖∞ ≤ ||
2

⋅
(

𝐾 − 1
3

)

⋅
2

9𝐾(3𝐾 + 2)3𝐾−2
= 3𝐾 − 1

3𝐾(3𝐾 + 2)
< 1

3𝐾 + 2
.

This completes the proof. □
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