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A B S T R A C T

Chest radiographs are the most commonly performed radiological examinations for lesion detection. Recent
advances in deep learning have led to encouraging results in various thoracic disease detection tasks.
Particularly, the architecture with feature pyramid network performs the ability to recognise targets with
different sizes. However, such networks are difficult to focus on lesion regions in chest X-rays due to their
high resemblance in vision. In this paper, we propose a dual attention supervised module for multi-label lesion
detection in chest radiographs, named DualAttNet. It efficiently fuses global and local lesion classification
information based on an image-level attention block and a fine-grained disease attention algorithm. A binary
cross entropy loss function is used to calculate the difference between the attention map and ground truth at
image level. The generated gradient flow is leveraged to refine pyramid representations and highlight lesion-
related features. We evaluate the proposed model on VinDr-CXR, ChestX-ray8 and COVID-19 datasets. The
experimental results show that DualAttNet surpasses baselines by 0.6% to 2.7% mAP and 1.4% to 4.7% AP50
with different detection architectures. The code for our work and more technical details can be found at
https://github.com/xq141839/DualAttNet.
1. Introduction

Chest X-ray (CXR), as a cornerstone of X-ray exam, has become
the most frequent radiological screening since the last century. Due to
cost efficiency and low radiational doses, CXR is usually an essential
approach for diagnosing different types of thoracic diseases [1], where
images of posteroanterior and anteroposterior views are mainly used to
identify the position of the disease [2]. With the development of com-
puting devices, constructing models used for automatic CXR analysis is
no longer impossible. Various algorithms have been introduced, which
can optimise monotonous tasks, improve the sensitivity for rare cases
and assist with long-range diagnosis [3–5]. Multi-label abnormality
detection plays a crucial role in thoracic disease diagnosis. Due to the
high visual similarity of CXRs and the complexity of interpretation, it
can be also known as the fine-grained image recognition task. Existing
models, combined with Deep Neural Networks (DNNs) and various
learning strategies, have made a significant breakthrough in automatic
localisation of thoracic diseases [6–11]. The architecture of these meth-
ods mainly combines deep-layer encoders [12,13] and Feature Pyramid
Network (FPN) [14] to extract features from CXRs. The main idea of
FPN is to adopt multi-scale fusion to improve the performance of iden-
tifying targets with different sizes. The final layers of these networks
involve two sub-networks consisting of a header for regressing the
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bounding box and predicting classification. These proposed algorithms
are also called one-stage detection networks, which usually perform
faster inference but lower precision compared to the two-stage models.
To improve the performance of the one-stage models, embedding an at-
tention mechanism module is a common solution. Attention algorithms
work in a way to guide networks to focus on lesion zones by applying
different non-linear transformations and combinations on the feature
map. However, the additional computation costs reduce the inference
speed of the network and practical applicability. Also, CXR images may
include different disease types. Existing methods lack the supervision of
classification and have the risk of false positive detections, which can
be a serious issue for practical diagnostic applications.

To address this issue, we propose a dual attention module for multi-
label lesion detection in chest X-rays, called DualAttNet, involving two
components. The multi-scale feature maps extracted from FPN will
be first fed into an Image-level Attention (ILA) block that adaptively
recalibrates the weight of each channel. In this case, ILA is able to
capture global classification information from the whole feature map
but lacks supervision for the location of different disease types. For
this reason, we design another fine-grained disease attention (FGDA)
algorithm to guide the network to pay attention to the area of inter-
est. It is connected to the header of the detector, utilises predicted
vailable online 22 November 2023
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anchors to enhance spatial representations, and combines with global
attention features from ILA. Finally, the fusion feature map, including
classification and location information, will be compared to the lesion-
level one-hot labels using binary cross entropy loss function so that the
backward gradients can help suppress feature activation in irrelevant
regions. The main contributions of this work can be summarised as
follows:

(1) An ILA model is presented to receive global classification infor-
mation from the features in FPN layers. Additionally, we intro-
duce an FGDA algorithm to represent local attention information
of features from the header of the detection architecture.

(2) We use FGDA to improve the representations from ILA and
integrate a new DualAttNet. The outputs will compare with the
ground truth from the image level. As the proposed model is
not in charge of generating refined feature maps, embedding the
module will not decrease the inference speed of the detector.

(3) Our experiments are conducted with three different CXR datasets:
VinDr-CXR [15], ChestX-ray8 [16], and COVID-19 [17]. Evalua-
tion results demonstrate that our proposed DualAttNet performs
better than other attention models in terms of standard detection
metrics — average precision (AP). It can be a new state-of-the-art
(SOTA) method for multi-label lesion detection in CXRs.

2. Related work

2.1. Feature pyramid network for object detection

Feature Pyramid Network (FPN) [14] has been widely used in one-
stage and two-stage object detection algorithms. To fully utilise the se-
mantic information from each down-sampling layer, it constructs a top-
down architecture with horizontal connections, which combines the
feature maps at different scales. Many studies have demonstrated that
FPN can better recognise objects with various sizes [18]. Existing detec-
tors usually leverage FPN to fuse multi-scale features. RetinaNet [19],
proposed by Lin et al. simply uses multi-layer Convolutional Neural
Networks (CNNs) to transform every pyramid feature map to potential
bounding boxes and corresponding classes of targets. To address the
issue of imbalanced datasets, RetinaNet is trained with the focal loss
function that adjusts the weight between easy and hard samples. Red-
mon et al. [20] presented a one-stage object detection model, called
You Only Look Once (YOLO). The model first divides the input image
into an S × S (e.g., 7 × 7) grid. The grid cell containing the centre
of the labelled bounding box is responsible for detecting the object.
The experimental results show that YOLO surpasses the baseline and
achieves faster inference. However, YOLO has a limited ability to detect
adjacent objects because only one object can be recognised by each
grid. To improve the performance of YOLO, various updated versions,
replacing the backbone or header and embedding FPN, have been
published [21–23]. Furthermore, Zhang et al. [24] dedicated to the
improvement of object localisation and introduced a VFNet for dense
object detection. The model corrects the bounding box feature represen-
tation from FPN and is trained with a new varifocal loss function, which
refines the predicted bounding boxes using an IoU-aware classification
score. Extensive experiments demonstrate the VFNet model outper-
forms previous SOTA methods. However, these architectures mainly
focus on the optimisation of localising targets. In contrast, our method
improves the sensitivity for thoracic disease detection. In other words,
it suppresses the detection of irrelevant disease regions and generates
a low false positive rate, which is beneficial for clinical applications.

2.2. Attention mechanism

In the last few years, the attention mechanism has achieved signif-
icant success in computer vision. It aims to emphasise target regions
2

while suppressing irrelevant features in an image. Hu et al. [25] pro-
posed a Squeeze-and-Excitation Network (SENet) that captures channel-
wise information and re-weights feature representations. This module
can be flexibly embedded into any feature-extract layer to guide what
networks should pay attention to. Following SENet, different vari-
ants [26–28] have been designed to further handle channel features
efficiently. Spatial attention is another mechanism used for adaptive
spatial area selection. Especially, Vision Transformer (ViT), proposed
by Dosovitskiy et al. [29], has received the most attention recently.
Multi-head attention module is the main idea of ViT, which calcu-
lates dynamic spatial–temporal correlations from an input sequence.
Inspired by ViT, various transformer-based frameworks [30–32] have
been constructed and show better performance than CNNs. However,
such models usually include a large number of parameters and require
a high cost to configure a trainable environment. In addition, Woo
et al. [33] presented the convolutional block attention module (CBAM)
that combines two different dimensional information: channel and
spatial. It activates valuable channels as well as highlights informative
local regions. For lesion detection in medical imaging, attention mecha-
nism has been widely used to highlight disease regions. Zihao et al. [34]
proposed a multi-view FPN with position-aware attention (MVP-Net)
for universal disease detection in CT scans. A CBAM-like architecture
is used to re-calibrate the weight of fused pyramid feature maps and
optimise the proposals of potential lesion regions. Hao et al. [35]
designed a slice attention transformer (SATr) block that can be em-
bedded into any convolutional encoder to generate a hypernetwork
structure. Benefiting from a novel cascaded self-attention module, SATr
performs better in the universal lesion detection task. Wong et al. [36]
introduced a multi-scale attention network for automatic pneumonia
detection. The key idea is to refine feature multi-level features via
spatial attention networks. As a result, the final concatenated feature
map has the ability to represent correct disease regions. However, ex-
isting attention modules receive features from the encoder and directly
produce optimised feature maps, which are integrated into the whole
model. On the contrary, our approach leverages both global and local
gradient flows to refine the feature representation from FPN.

3. Methodology

In this section, we describe the components of the proposed DualAt-
tNet. They connect with each feature pyramid layer and classification
head of the detection architecture. The outputs integrate global and
lesion-level local attention gradient flows that are used for guiding the
detector to focus the disease regions in chest X-rays.

3.1. Image-level attention block

For the detection architecture in CXRs, the feature map of each
layer in FPN contains thoracic disease objects at different scales. To
distinguish various lesion types efficiently, we propose an image-level
attention (ILA) block. The architecture of ILA is provided in Fig. 1.
Firstly, a multi-scale feature map 𝑋𝑘 obtained by FPN is considered
s input. It will go through two different branches. On one branch
i.e. lower branch shown in Fig. 1), we use 1 × 1 convolution, followed
y a BatchNorm and ReLU activation, to compress the channel-wise
nformation, which can be represented as:

𝑘 = 𝑅𝑒𝐿𝑈 (𝐵𝑁(𝐶𝑜𝑛𝑣(𝑋𝑘))) (1)

here the channel of the output feature 𝐹𝑘 is equal to the number of
isease classes. The transformed multi-level pyramid feature involves
tacked heatmaps for all lesion types. Each heatmap has the ability to
epresent the intensity of one disease in the image level. On the other
ranch, a global average pooling (GAP) is used to capture global spatial
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Fig. 1. The structure of image-level attention block.
information from the feature map 𝑋𝑘. The 𝑐th channel of the pooled
feature 𝑆𝑘

𝑐 is calculated as:

𝑆𝑘
𝑐 = 1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑋𝑘

𝑐 (𝑖, 𝑗) (2)

Where 𝑋𝑘
𝑐 (𝑖, 𝑗) stands for each feature value associated with the 𝑐th

channel of input feature maps. 𝐻 and 𝑊 indicate their scales. The GAP
compresses spatial dimensions and generates channel-wise statistics.
We also connect 1 × 1 convolution with GAP for channel alignment
with 𝐹𝑘. A soft attention is used across channels to adaptively select
different spatial scales, which is guided by 𝑆𝑘. A soft assignment weight
is designed by:

𝐴𝑡𝑡𝑘 = 𝜎(𝑆𝑘
𝑐 ) =

1
1 + 𝑒(−𝑆𝑘

𝑐 )
(3)

Here we apply the sigmoid to re-calibrate the weight of the feature
channel (i.e. different lesions). For the softmax function, it aims to
improve the probability of the correct category while suppressing the
remaining categories. Instead, there may be more than one lesion
in CXRs. Therefore, we do not consider the softmax function in our
module. Finally, an operation of element multiplication ⨀ is performed
on the refined weight 𝐴𝑡𝑡𝑘 and the corresponding feature map 𝐹𝑘:

𝑌 ′
𝑘 = 𝐹 𝑘 ⊙ 𝐴𝑡𝑡𝑘, 𝑘 ∈ 1, 2, 3⋯𝑁 (4)

Where k is the number of feature maps extracted from FPN. In sum,
the ILA module aggregates global contextual information for different
thoracic diseases.

3.2. Fine-grained disease attention

Anchor-based networks [37,38] have achieved great success in ob-
ject detection. Anchors can be known as a set of predefined bounding
boxes with different sizes and aspect ratios. To select a suitable anchor
for detecting objects, we compute the intersection over union (IoU)
between each anchor and targets. The head of detection architectures
usually adopts fully convolutional networks to classify and regress
the number of bounding boxes based on the anchor configuration.
As the output feature map involves position and class information of
disease, it can provide a local attention region for the specific disease in
CXRs. Therefore, we construct a fine-grained disease attention (FGDA)
3

algorithm, which is shown in Fig. 2. For each disease type 𝑛, it first
extracts the anchor information (Height × Width × Anchor) from the
classification feature map 𝑋′

𝑘. Where the anchor with the maximum
prediction is used as the attention map, which can be represented as:

𝐴 = argmax(𝑋′
𝑘), 𝐴 ∈ 𝑅𝐻×𝑊 ×𝐴𝑛𝑐ℎ𝑜𝑟 (5)

The intensity of the attention map may have a large range of fluctua-
tions due to the backpropagation during the training phase. To make
the model more stable and achieve a smooth convergence, a simple
normalisation method is performed:

𝐴𝑛
𝑖,𝑗 =

𝐴𝑛
𝑖,𝑗

∑𝐻
𝛼=1

∑𝑊
𝛽=1 𝐴

𝑛
𝛼,𝛽

(6)

Finally, we concatenate the attention map of all classes:

𝑌 ′′
𝑘 = 𝐶𝑎𝑡([𝐴1, 𝐴2,… , 𝐴𝑛]) (7)

As illustrated by the above analysis, our proposed FGDA module can
extract the location information of different lesions from CXRs.

3.3. DualAttNet architecture

Modern object detection architectures often focus on the enhance-
ment of location precision. For lesion recognition in CXRs, false positive
detection is a major issue in clinical applications. In this case, we
embed the newly designed ILA and FGDA attention modules into
a so-called DualAttNet to guide the network focusing on the symp-
tomatic areas while suppressing unrelated detection. An overview of
the proposed architecture is presented in Fig. 3. Particularly, we select
RetinaNet [19] as our main detector. In the training phase, the input
image first goes through an encoder and FPN. The feature map of the
FPN layers will first be fed to the ILA module to extract global attention
information. Then local attention is obtained from the FGDA module.
These attention maps provide two different regions of interests (ROIs).
Then, we combine the global attention map with local information and
leverage GAP to transform class-aligned heatmaps into vectors. The
final prediction fusing every pyramid layer can be computed as:

𝑌 = 𝜎

(

1
𝐾 ×𝐻 ×𝑊

𝐾
∑

𝑘=1

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑌 ′
𝑘 (𝑖, 𝑗) + 𝑌 ′′

𝑘 (𝑖, 𝑗)

)

, 𝑌 ∈ 𝑅𝐵𝑎𝑡𝑐ℎ×𝐶𝑙𝑎𝑠𝑠

(8)
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Fig. 2. The illustration of fine-grained disease attention algorithm.
Fig. 3. The overview of our DualAttNet architecture connected with RetinaNet [19].
Where 𝜎 is the sigmoid function and 𝑘 is the index of FPN layers.
This operation also combines multi-scale feature maps in each pyramid
layer, which can perceive different sizes of lesions in medical imaging.
The cross entropy loss connected with a softmax function is a common
algorithm for the classification task. However, the result of softmax
usually highlights the probability of one category while suppressing the
remaining types, which cannot handle multi-label scenarios. To refine
the inclusion of multiple symptomatic lesions being represented in the
pyramid feature, we adopt the binary cross entropy loss as the objective
function. It can be defined as:

BCE(𝑌 , 𝑌 ) = −
𝑁
∑

𝑛=1

[

𝑌𝑛 ⋅ log
(

𝑌𝑛
)

+
(

1 − 𝑌𝑛
)

⋅ log
(

1 − 𝑌𝑛
)]

(9)

Where 𝑌𝑛 is the lesion-level annotations and 𝑌𝑛 is the prediction. As a
result, the gradient from both global and local branches can optimise
the feature representation of FPN for lesion classification in CXRs. In
addition, the baseline model (i.e. RetinaNet) still keeps its original
two sub-networks to perform bounding box and object classification
4

predictions. The final loss function can be organised as:

loss = regression + classif ication + BCE (10)

In the inference stage, the detection architecture can be directly decou-
pled from DualAttNet as no gradient calculation is required. Overall,
the proposed model can adapt to any FPN-based detection frame-
work without affecting the inference speed of the original detection
architecture.

4. Experiments and results

4.1. Dataset

To demonstrate the effectiveness of DualAttNet, we evaluate it on
three public datasets of multi-label thoracic disease detection:

• VinDr-CXR [15] comprises 4394 Digital Imaging and Communica-
tions in Medicine (DICOM) files with 14 types of thoracic abnor-
malities from chest radiographs. It is also the training database
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Fig. 4. Examples of chest radiographs under various circumstances in three datasets.
Table 1
Details of the chest X-ray datasets used in our experiments.

Dataset Images Input size Train Valid Test

VinDr-CXR 4394 Variable 3074 880 440
ChestX-ray8 880 1024 × 1024 616 176 88
COVID-19 223 Variable 154 46 23

for the Kaggle 2021 VinBigData Chest X-ray Abnormalities De-
tection Competition. All of the samples are collected from the
Hospital 108 as well as the Hanoi Medical University Hospital,
and manually annotated by a total of 17 experienced radiologists.

• The second dataset used in this study is ChestX-ray8 [16]. It
includes 108,948 posteroanterior X-ray images of 32,717 unique
patients with eight disease labels. Particularly, 880 images have
annotated objects with bounding boxes, which can be used as the
ground truth to evaluate the disease localisation performance. To
guarantee high confidence for each labelled disease, images and
their disease keywords were provided to board-certified radiolo-
gists. They can only identify the disease instance in the image that
corresponds to the given keyword.

• In order to evaluate the robustness of the proposed architecture
on a small dataset, we add a COVID-19 dataset [17] to our exper-
iment. There are only 223 frontal X-ray images for the detection
of five pneumonia types: COVID-19, SARS, Streptococcus, Pneu-
mocystis, and ARDS. These images are extracted from different
hospitals around the world (e.g. China, Germany, Vietnam) in
order to illustrate the diversity of radiographs.

Furthermore, Fig. 4 presents some chest X-rays converted from
DICOM files. A fixed random seed is used to divide all datasets into
three sets: train, validation, and test, in the ratio of 7:2:1. More details
about the data split are provided in Table 1.

4.2. Evaluation metrics

In the field of object detection, average precision (AP) is the stan-
dard evaluation metric. Specifically, we calculate the mean AP (mAP)
from AP50 to AP95 with an interval of 5, following the COCO evaluator.
Recall plays an important role in clinical applications [39]. Therefore,
we also compute average recall (AR) for small (AR𝑆 ), medium (AR𝑀 ),
and large (AR𝐿) lesions. They are respectively defined as being between
02 to 322, 322 to 962, and 962 to 1𝑒52 pixels in area. Moreover, floating
point operations (FLOPs) is calculated to investigate the complexity of
each module. All reported statistics were averaged over the number of
abnormalities in the dataset.
5

4.3. Data augmentation

As illustrated in Section 4.1, medical datasets contain a limited num-
ber of samples. The model is easily prone to overfitting in the training
stage. To mitigate this issue, we adopt data augmentation approaches
to enrich the diversity of images and improve the robustness of the
model. In the experiment, horizontal flip, rotation, brightness, contrast,
and cutout transformations are randomly applied to the training set of
each dataset with a probability of 0.1.

4.4. Implementation details

All experiments are implemented using PyTorch 1.10.0 framework
on a single NVIDIA RTX 2080Ti GPU, 4-core CPU, and 28 GB RAM.
In order to compare DualAttNet with other attention modules, we use
a commonly FPN-based detector, RetinaNet [19] as the fundamental
architecture, a pretrained ResNet-50 [12] as the encoder, focal loss as
the main objective function and Adam as the optimiser with a learning
rate of 1e-5. The number of batch sizes and epochs are set to 4 and 40
respectively. In the training phase, the images from all three datasets
are resized to 512 × 512. We also apply ReduceLROnPlateau to adjust
the learning rate, where the hyperparameters: patience and factor are
set to 3 and 0.1 respectively. All experiments on three datasets are
conducted on the same training, validation, and testing datasets.

4.5. Results

In this section, we show quantitative results on three different CXR
datasets and compare our proposed model with other SOTA methods.

4.5.1. Comparison on VinDr-CXR dataset
The quantitative result on VinDr-CXR dataset is presented in Ta-

ble 2. For lesion detection in chest X-rays, a series of AP metrics are
able to reveal the precision of the location. From the Table, DualAttNet
shows better performance than other SOTA models in most of the
metrics. Specifically, our module achieves an mAP of 0.116 and an AP50
of 0.241, which outperforms PSA by 1.3% in terms of mAP and 2.0%
in AP50. Also, recall is an essential metric in clinical applications. In
the experimental result, DualAttNet also displays higher AR𝑀 and AR𝐿
scores than other methods.

4.5.2. Comparison on ChestX-ray8 dataset
The annotation in medical imaging is usually expensive and time-

consuming. Therefore, many CXR datasets contain limited box annota-
tions, which is a challenge for generalisation of the model. For lesion
detection in chest X-rays, the performance of the architecture on mAP
and AP50 are the most witnessed metrics. A comparison between each
model is provided in Table 3. We are not able to calculate AP𝑆 and AR𝑆

metrics because there are no small targets based on COCO criteria. The
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Table 2
Results on the VinDr-CXR dataset.

Methods mAP AP50 AP75 AP𝑆 AP𝑀 AP𝐿 AR𝑆 AR𝑀 AR𝐿 FLOPs

SENet [25] 0.103 0.219 0.104 0.004 0.085 0.114 0.023 0.168 0.247 53.81
CBAM [33] 0.098 0.214 0.096 0.010 0.087 0.092 0.032 0.170 0.225 53.82
PSA [40] 0.103 0.221 0.099 0.005 0.086 0.116 0.025 0.167 0.230 54.04
CCNet [41] 0.101 0.217 0.102 0.002 0.084 0.107 0.025 0.169 0.242 54.23
ACmix [42] 0.099 0.215 0.099 0.005 0.082 0.107 0.029 0.171 0.236 55.00
CoT [43] 0.104 0.218 0.102 0.003 0.090 0.112 0.025 0.167 0.240 56.89
ParNet [44] 0.102 0.221 0.105 0.006 0.085 0.117 0.024 0.163 0.233 57.35
DualAttNet (Ours) 0.116 0.241 0.114 0.005 0.098 0.121 0.027 0.177 0.257 53.79
Table 3
Results on the ChestX-ray8 dataset.

Methods mAP AP50 AP75 AP𝑆 AP𝑀 AP𝐿 AR𝑆 AR𝑀 AR𝐿 FLOPs

SENet [25] 0.054 0.124 0.036 – 0.002 0.065 – 0.034 0.140 53.81
CBAM [33] 0.057 0.126 0.050 – 0.008 0.074 – 0.057 0.142 53.82
PSA [40] 0.061 0.123 0.050 – 0.019 0.076 – 0.043 0.152 54.04
CCNet [41] 0.063 0.132 0.077 – 0.006 0.074 – 0.039 0.154 54.23
ACmix [42] 0.053 0.104 0.063 – 0.008 0.061 – 0.069 0.142 55.00
CoT [43] 0.062 0.133 0.042 – 0.016 0.075 – 0.028 0.160 56.89
ParNet [44] 0.061 0.108 0.078 – 0.001 0.073 – 0.020 0.146 57.35
DualAttNet (Ours) 0.071 0.145 0.076 – 0.026 0.076 – 0.056 0.161 53.79
Table 4
Results on the COVID-19 dataset.

Methods mAP AP50 AP75 AP𝑆 AP𝑀 AP𝐿 AR𝑆 AR𝑀 AR𝐿 FLOPs

SENet [25] 0.015 0.049 0.010 – – 0.015 – – 0.040 53.81
CBAM [33] 0.017 0.041 0.005 – – 0.017 – – 0.042 53.82
PSA [40] 0.014 0.041 0.003 – – 0.014 – – 0.036 54.04
CCNet [41] 0.013 0.050 0.000 – – 0.013 – – 0.037 54.23
ACmix [42] 0.013 0.032 0.002 – – 0.013 – – 0.045 55.00
CoT [43] 0.016 0.045 0.003 – – 0.016 – – 0.037 56.89
ParNet [44] 0.016 0.051 0.014 – – 0.018 – – 0.047 57.35
DualAttNet (Ours) 0.021 0.064 0.010 – – 0.019 – – 0.053 53.79
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result demonstrates that DualAttNet has an increase of 0.8% over CCNet
in mAP and 1.2% in AP50. Particularly, our proposed model presents

significant enhancement over the recent self-attention architecture,
here the mAP of DualAttNet is 2.8% higher than ACmix, and the AP50
f DualAttNet is 4.1% higher than this model.

.5.3. Comparison on COVID-19 dataset
COVID-19 has tremendously impacted patients and the medical

ystem globally. Current deep learning-based studies are expected to
istinguish COVID-19 from other types of pneumonia automatically.
o meet the requirement, we evaluate all models on the COVID-19
ataset. As existing annotations are based on the whole area of the lung,
he dataset does not include any small or medium objects, and related
etrics are not computed in the experiment (i.e. hence denoted as —

n Table 2, 3, 4, 5). The quantitative results are provided in Table 4.
e can observe that DualAttNet performs an mAP of 0.021 with a rise

f 0.4% over CBAM and 1.3% in AP50 compared to the ParNet model.

.6. Ablation study

.6.1. Efficiency of ILA block
The DualAttNet model adopts the ILA block to capture global spatial

nformation of different thoracic diseases at image level, which can
efine multi-scale feature maps from FPN layers. The effectiveness of
LA block can be evaluated by comparing the configurations: RetinaNet
nd RetinaNet + ILA in Table 5. In terms of the mAP and AP50, the ILA
lock respectively produces an improvement of 0.7% and 0.9% on the
inDr-CXR dataset, 1.7% and 1.8% increase on the ChestX-ray8 dataset,
s well as 0.7% and 1.6% enhancement on the COVID-19 dataset. Thus,
t can be concluded that the ILA block enhances the performance of the
riginal RetinaNet.
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.6.2. Significance of FGDA algorithm
The FGDA algorithm is an essential part of the proposed DualAt-

Net model. It extracts anchor information of each lesion from the
lassification sub-network and then transformed into local attention
eature maps uses with a normalisation method. We compare the net-
ork configurations: RetinaNet and RetinaNet + FGDA to evaluate the
ffectiveness of the FGDA algorithm. From the mAP and AP50 metrics
n Table 5, FGDA respectively shows an improvement of 1.1% and 1.3%
n the VinDr-CXR dataset, 1.3% and 1.3% improvement on the ChestX-
ay8 dataset, as well as 0.4% and 0.8% improvement on the COVID-19
ataset. We can argue that the FGDA-embedded architecture performs
etter than the RetinaNet model. Overall, ILA has a more significant
mpact than the FGDA algorithm. By taking advantage of both modules,
he AligNet model (RetinaNet + ILA + FGDA) can further improve the
AP by 0.1% to 0.9% and the AP50 by 0.9% to 2.6% compared to the
etinaNet with a single ILA or FGDA module.

.7. Applicability of DualAttNet

We also transfer DualAttNet to other popular detection frameworks.
n detail, the ILA and FGDA modules are connected with their feature
yramid layers and classification header respectively. Fig. 5 displays
he comparison results between original and DualAttNet-based de-
ectors, including YOLOv5 [45], YOLOv7 [46], EfficientDet-B0 [47],
fficientDet-B3 [47] and VFNet [24]. It can be demonstrated that
dding DualAttNet can further boost the mean mAP by around 1.2%
nd mean AP50 by around 2.5% on three CXR datasets. Moreover,
ision transformer (ViT) [29] has achieved great success in the field
f computer vision. In the field of disease detection, we construct a
ew ViT-DualAttDet by combining our DualAttNet with a transformer-
ased detector, ViTDet [48]. The comparison results between other

OTA one-stage architecture and ViT-DualAttDet are provided in Fig. 6.
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Table 5
Detailed ablation study of the DualAttNet architecture.

Dataset Method mAP AP50 AP75 AP𝑆 AP𝑀 AP𝐿 AR𝑆 AR𝑀 AR𝐿

VinDr-CXR

RetinaNet [25] 0.104 0.219 0.097 0.003 0.091 0.119 0.022 0.155 0.219
RetinaNet + ILA 0.111 0.228 0.103 0.007 0.093 0.122 0.030 0.175 0.242
RetinaNet + FGDA 0.115 0.232 0.108 0.006 0.092 0.124 0.032 0.162 0.230
RetinaNet + DualAttNet 0.116 0.241 0.114 0.005 0.098 0.121 0.027 0.177 0.257

ChestX-ray8

RetinaNet [25] 0.049 0.106 0.033 – 0.004 0.061 – 0.059 0.145
RetinaNet + ILA 0.066 0.124 0.056 – 0.013 0.072 – 0.066 0.160
RetinaNet + FGDA 0.062 0.119 0.061 – 0.006 0.074 – 0.024 0.154
RetinaNet + DualAttNet 0.071 0.145 0.076 – 0.026 0.076 – 0.056 0.161

COVID-19

RetinaNet [25] 0.011 0.037 0.000 – – 0.011 – – 0.037
RetinaNet + ILA 0.018 0.053 0.007 – – 0.016 – – 0.038
RetinaNet + FGDA 0.015 0.045 0.009 – – 0.013 – – 0.042
RetinaNet + DualAttNet 0.019 0.064 0.010 – – 0.019 – – 0.053
Fig. 5. The performance comparison of baselines vs DualAttNet-embedded detection architectures on three CXR datasets.
Fig. 6. The performance comparison of SOTA one-stage detectors vs ViT-DualAttDet on three CXR datasets.
Specifically, ViT-DualAttDet improves the mAP by 0.5% to 0.9% and
the AP50 by 1.3% to 1.8% compared to ViTDet. As a result, ViT-
DualAttDet can be considered as a new SOTA model for lesion detec-
tion.

5. Discussion

Multi-label lesion detection in chest X-rays has received increasing
attention in the field of medical image analysis. Due to the high
visual similarity of various thoracic diseases in medical imaging, at-
tention mechanism has been widely inserted into general detection
architectures to highlight different lesion regions in the feature map.
For existing popular methods, such operations usually bring additional
time costs in the inference phase. In contrast, DualAttNet focuses on
current pyramid feature-based detectors and constructs an attention
sub-network and leverage loss function and the gradient from global
and local attention branches to support the refinement of features from
pyramid layers. In this case, the attention module is no longer respon-
sible for generating the optimised feature map and will not degrade
the inference speed. To illustrate the effectiveness of our approach, on
the one hand, we have conducted a series of quantitative comparison
experiments following COCO evaluation standards. On the other hand,
FROC [49] is a crucial metric in clinical applications [50]. For each
7

Fig. 7. The comparison of our DualAttNet and other SOTA attention models with FROC
curve.
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Fig. 8. The Visualisation of the attention regions in the method of DualAttNet vs other eight attention models.
Fig. 9. The scenarios that DualAttNet fails to focus on disease regions in three CXR
datasets.

CXR image, it illustrates the average sensitivity of models based on
different number of false positives per scan. As ChestX-ray8 and COVID-
19 datasets contain too few samples in the test set which lack statistical
significance, we combine all three datasets in this evaluation. Following
the algorithm in the Camelyon16 challenge [51], the result is presented
in Fig. 7. It can be observed that from an average of one false positive
per scan, the sensitivity of DualAttNet is significantly higher than other
methods. Consequently, our proposed model performs a much lower
false positive rate with the same sensitivity.

Furthermore, to further explain why the DualAttNet-based detection
framework is more effective than other attention approaches in the
multi-label lesion detection task, we use Eigen-CAM [52] to visualise
the attention region of different models on three datasets, which is
shown in Fig. 8. It calculates the principal components of the trained
feature representations from the convolutional layers. Eigen-CAM has
demonstrated robustness to misclassifications caused by fully connected
layers within convolutional neural networks. Moreover, it operates
independently of gradient backpropagation, class correlation scores,
maximum activation positions, or any other kinds of weighted features.
8

From the visualisation, we can see that the existing attention algorithms
may not focus on correct disease areas. On the contrary, the proposed
module is able to suppress other non-lesion regions and generate a more
interpretable attention map. Thus, DualAttNet can reduce the detection
of false positive cases and improve targeting accuracy. In addition, our
proposed method still exists several limitations. Firstly, as illustrated on
AP𝑆 and AR𝑆 metrics (Table 2), DualAttNet does not perform well in
small object detection compared to other attention models. In Fig. 9, we
visualise some Eigen-CAM results in which DualAttNet fails to localise
disease regions due to the small-size lesions or the interference from
medical devices (e.g. instrument detection heads as shown in the bot-
tom image of Fig. 8). Secondly, although the model can be connected
with most of the FPN-based detectors, some of the modern studies
remove pyramid features in their architectures. Therefore, extending
our method to such frameworks is also our future work. In summary,
DualAttNet displays its robustness and superior performance on the
multi-label lesion detection task and we believe it can be considered
as a new SOTA method for computer-aid diagnosis in chest X-rays.

6. Conclusion

In this paper, we propose a gradient-based attention module for
multi-label lesion detection in CXRs, called DualAttNet. The introduced
module is comprised of an ILA block and an FGDA algorithm. The
former collects global classification information from each pyramid
feature layer. The latter focuses on the local attention extraction from
anchor feature maps, which combines with the global attention from
the ILA block, refines representations of pyramid features and guide
the detector to pay attention to lesion regions using the gradient flow
of binary cross entropy loss function. We evaluate our proposed method
on three CXR datasets. The results demonstrate that compared to other
attention models, DualAttNet not only achieves higher scores in stan-
dard mAP and AP50 metrics but also performs lower false positive rates
with the same sensitivity. In the future, we will explore the application
of DualAttNet in non-FPN detection architectures and other medical
image analysis tasks, such as instance segmentation.
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