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Abstract—The fast growth of the Internet of Things devices and
communication protocols poses equal opportunities for lifestyle-
boosting services and pools for cyber attacks. Usually, IoT net-
work attackers gain access to a large number of IoT (e.g., things
and fog nodes) by exploiting their vulnerabilities to set up attack
armies, then attacking other devices/nodes in the IoT network.
The Distributed Denial of Service (DDoS) flooding-attacks are
prominent attacks on IoT. DDoS concerns security professionals
due to its nature in forming sophisticated attacks that can
be bandwidth-busting. DDoS can cause unplanned IoT-services
outages, hence requiring prompt and efficient DDoS mitigation.
In this paper, we propose a DDoS-FOCUS; a solution to mitigate
DDoS attacks on fog nodes. The solution encompasses a machine
learning model implanted at fog nodes to detect DDoS attackers.
A hybrid deep learning model was developed using Conventional
Neural Network and Bidirectional LSTM (CNN-BiLSTM) to
mitigate future DDoS attacks. A preliminary test of the proposed
model produced an accuracy of 99.8% in detecting DDoS attacks.

Index Terms—DDoS, IoT, CNN-BiLSTM, Distributed fog/edge

I. INTRODUCTION

The cyber-physical attacks are security breach in cyberspace

that impacts the computing/network medium. A malicious

attack targets networked nodes and takes control over the

computing and/or communication components. The attacks

can have different forms and may cause serious damage; one

form of attack can be forging node identity and fabricating

falsified data to delude other legitimate nodes in the network

and possibly terminate desired IoT applications/services [1].

Distributed Denial of Service (DDoS) is another form of attack

where the attacker enlists the help of several interconnected

nodes to each breed a small number of services-requests

that, when added together, overload the target victim node(s).

These interconnected nodes may either be willing accomplices

(such as attacks initiated by Hacktivists groups) or unwitting

victims nodes whose have been infected with malware. These

nodes burden/encumbrance the network by unduly consum-

ing network bandwidth, computational power and storage by

operating fake services and fabricating massive amounts of

falsified data.

With the emergence of the Internet of Things (IoT) and

the fast development of the Internet protocols and the 5G,

a large number of nodes/devices/things (will stick to nodes)

attached to the Internet. Given the nodes limited maturity

and capabilities, most of them lack the support of classical

security schemes, such as Public Key Infrastructure (PKI),

as a minimum security requirement [2], makes these nodes

vulnerable to various attacks, one of which is the DDoS

attacks. The consequences of developing these insecure IoT

nodes can lead to insecure networks and the Internet as a

whole as they can easily be compromised to become bad

bots and exploited by attackers to launch malicious activities.

According to Imperva 2022 report [3] on bad bot traffic, the

bad bot traffic accounted for a record-setting 27.7% of all

global traffic in 2021, up from 25.6% in 2020. Combined with

good bot traffic, 42.3% of Internet traffic this past year was not

human, compared to 40.8% in 2020. Human traffic decreased

by 2.5% to 57.7% of all traffic [3]. This rapid increase in

bad-bot-nodes traffic and the rising number of compromised-

nodes has conspicuously raised the size of malicious-nodes

and their traffic over the Internet, thus threatening the digital

infrastructure massively [2], [4].

In this research, we utilise IoT fog nodes and their essential

role and position in the IoT network to mitigate DDoS

attacks. In brief, a fog computing network can be described

as a network paradigm that utilises edge nodes to handle

essential computation, communication and storage locally at

the network edge and routes over the backbone of the Internet.

The services fog nodes provide are similar to the cloud but

at a smaller scale and proximity. Fog nodes are positioned

between things and clouds at the network edge “closer” to

where the data is generated. Fog nodes do not substitute

the cloud but complement its features, especially for time-

sensitive services/applications where processing and response

must be ultra-fast. The main contribution of this research is

the utilization of fog nodes to host a hybrid deep learning

model, specifically a CNN-BiLSTM, for mitigating DDoS

attacks. The CNN-BiLSTM model combines a Convolutional

Neural Network (CNN) with a Bidirectional Long-Short-Term
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Memory (BiLSTM) to effectively detect spatial inputs and

capture temporal features, enabling accurate prediction of

DDoS attacks in IoT environments. By leveraging fog nodes,

this approach enhances the overall efficiency and effectiveness

of DDoS mitigation/detection in IoT networks.

The rest of the text is sectioned as follows: Background

on the security threats/attacks on IoT networks discussed in

Section II. The proposed DDoS-FOCUS framework is pre-

sented in Section III. The results and evaluation are reported

in Section IV. Section VI concludes the paper.

II. BACKGROUND

The security threats/attacks on IoT networks are highlighted

in this section. It is worth mentioning that the IoT architecture

adopted is inspired by our previous research [1], [5].

A. IoT network architecture with fog nodes

The decentralised IoT network architecture which compares

fog nodes is comparable to other distributed computing net-

works, such as cloudlet and mist paradigms. Recall from [1],

[5] that fog nodes are distributed over the network edge where

data are generated, and the fog nodes can be clustered, forming

a fog domain. In general, the IoT network architectures are ei-

ther application-specific or application-agnostic. This research

adopts IoT application agnosticism architecture (presented in

Figure 1) that is inline with [1], [5]–[10]. It is essential to

understand the IoT-fog-based architecture to get insight into

how DDoS attacks can be formed and impact the fog nodes.

The IoT topology adopted encompasses the things, fogs, and

cloud layers as per Figure 1.

Things Layer: what so-called perception layer, is where

data is generated. It contains various devices and equipment in

the form of things (e.g., ambient sensors) that are equipped (for

example, communication protocols like MQTT and Zigbee)

to transmit data over the IoT network. The heterogeneity of

these nodes and their support of different networking protocols

increase the IoT network’s vulnerabilities.

Fog Layer: it is formed from distributed nodes that span

over the edge of the network. The fog nodes are geo-

distributed to support large IoT networks’ scalability, exten-

sibility and availability. Fog nodes are meant to handle the

primary data processing from the things layer. Due to their

low capabilities (compared to clouds), they can be at more

risk from cyber-attacks, specifically DDoS, to disturb their

functionality and employ them for the attacker’s benefit.

Cloud Layer: also known as data−centres layer enabling

convenient network infrastructure settings to access shared

resources (e.g., computation and storage) via the Internet. The

cloud is ideal to perform “large-services” of data mining that

fog nodes cannot execute (e.g., big query with Hadoop/Spark).

B. Threats on IoT network

This section sheds light on how the malicious IoT

nodes (things or fogs nodes) may use a variety of tech-

niques/attacks to interfere with network functioning.

1) Forgery: IoT nodes that are malicious may have fraud-

ulent data and false identities in order to deceive other

nodes in the network and possibly terminating the de-

sired IoT service. These kinds of nodes overkill the

network’s resources by creating a lot of bogus data, bur-

dening the network links by consuming high bandwidth

and unduly consuming the node’s computational power

and storage.

2) Tamper: packet tampering can be done by malicious

nodes in the network. This type of attacks can be formed

by manipulating packets transmitted over the network

or even dropping or delaying transmitted packets. It is

challenging to identify such rogue nodes since transmis-

sion failure or delay may result from various causes,

including unstable network-channels conditions or a

poor network signal, in addition to tampered IoT nodes.

3) Impersonation: in order to provide an IoT service, ma-

licious/impersonation nodes will pose as honest/genuine

nodes and then provide phishing data or services to

compromise network security and end users’ privacy.

4) Distributed Denial of Service (DDoS): DDoS attacks

are hostile attempts to stop legitimate users/nodes from

using IoT services by disrupting them. These attacks are

created by sending a large number of unnecessary or

redundant service requests to the target IoT nodes in or-

der to stop genuine users/nodes from receiving services,

and also this assault uses up network resources. DDoS

attacks utilize multiple IoT devices to form attacks on a

specifically targeted node. The infected IoT nodes are

controlled remotely by malware injected by a DDoS

attacker. These individual nodes can be referred as bots,

and a group of bots is called a botnet. Once a botnet has

been created, the attacker can control an attack by giving

each bot remote commands. Hence, the victim’s IoT

nodes that are targeted by these botnet receive a requests

sent from botnet’s bot, potentially causing the victim’s

IoT node or full network to become overwhelmed that

can results in getting the network down.

III. PROPOSED DDOS-FOCUS

The proposed DDoS-FOCUS consists of a network data pre-

processing deep learning model for the DDoS classification

task. Data are analyzed and understood during pre-processing

step by performing exploratory data analysis. Next, data clean-

ing is deployed to improve the quality of the data. Then,

feature scaling and label encoding are employed. Finally,

we deploy a hybrid deep learning model to predict future

network attacks.

A. Dataset

The dataset used to develop and assess the proposed DDoS-

FOCUS framework and train the CNN-BiLSTM deep learn-

ing model is the CSE-CIC-IDS201 dataset, it is publicly

available1. It has been generated from three well-known

1DDoS balanced and unbalanced datasets can be accessed at
https://www.kaggle.com/datasets/devendra416/ddos-datasets
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Fig. 1. IoT network layers

datasets (CIC-IDS2017, CSE-CIC-IDS2018, CIC DoS) from

CIC Canda [11]. The dataset contains DoS and DDoS traffic

flows labelled as ”DoS” combined with ”Benign” flows which

both are extracted separately from the same base datasets and

made into a single large dataset. It is worth mentioning that

the network topology in which the data is captured comprises

50 attacking machines (i.e., malicious nodes), and the victim

network has 5 divisions comprising 420 devices and 30

servers. The data captured from the network topology includes

traffic packets and system logs of each machine; having a

total of 84 network traffic attributes that were extracted from

over 7.5 million flows captured over three different years

(2016, 2017 and 2018). By extracting transverse values from

the datasets used to detect and characterise DDoS attacks, the

dataset became useful for training the model.

B. Data Pre-processing

1) Due to the large amount of socket information contained

in the dataset in CSV file format, we condensed it for

simpler training purposes. The ordinal encoding method

was used to convert non-numeric elements to numeric

data in order to conform to the framework’s numeric

composition.

2) To ensure a randomized sample, records were omitted

from the dataset at random times during import. In

addition, we removed the rows with NaN values as part

of data preparation.

3) BEGNIGN classes were marked 0 while DDoS classes

were marked 1. We also scale our data to avoid undue

impact on training due to the dataset’s quantities.

C. Deep Learning Models

Deep learning is gaining popularity among researchers in

various tasks aimed at detecting computer network attacks

and anomalies. Deep learning can identify patterns in complex

data; therefore, it is useful to solve many tasks such as image

segmentation, pattern recognition, time series classification,

etc. In deep learning methods, there is no need for manual

feature engineering, which is a significant benefit. Therefore,

these methods do not require feature selection before training

as they can detect patterns among massive datasets automat-

ically. Weight matrices are used, for example, to emphasize

the features that have the greatest impact on classification. It

is possible to extract elaborate attack patterns from IP flow

protocol datasets, which are sometimes less visible to the

human eye, which improves classification accuracy.

This paper proposes a hybrid deep learning model of CNN-

BiLSTM for DDoS attack mitigation. In addition to our

proposed model, other deep learning techniques such as GRU,

CNN, and BiLSTM are fully described below for conducting

a comparative analysis with our proposed model:

1) Gated Recurrent Network (GRU): A GRU works by

updating and resetting its gates. As part of the first gate, the

information regarding a new entry is defined and what new

information will be added is defined as well. As opposed to

the first gate, the second one describes how much information

will be lost in the long run. The hidden state ht in GRU is

calculated as shown in equations (1) to (4):

zt = σ(xtη
z + ht − 1W z) (1)
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rt = σ(xtη
r + ht − 1W r) (2)

h̃t = tanh(xtη
h + (rt ∗ ht − 1)Wh) (3)

ht = (1− zt) ∗ ht − 1 + zt ∗ h̃t (4)

Where ηz , W z , ηr, W t, ηh, and Wh refer to the weights

associated with the GRU. zt denotes the update gate, rt
denotes the reset-gate, h̃t represents a candidate hidden-state,

and σ is the component wise logistic sigmoid function.

2) Proposed CNN-BiLSTM: a convolutional neural network

in conjunction with a bidirectional long-short-term-memory

(CNN-BiLSTM) was used for detecting the future DDoS

attack. Using our proposed model, we detect and categorize

traffic into two groups: normal traffic, called ”Bengin”, and

abnormal traffic, called ”DDoS”. The proposed approach’s

structure is shown in Figure 2. A combined model is usually

more effective if both networks are combined, according to

literature in [12]. This approach is particularly useful because

it has the ability to detect both spatial and temporal infor-

mation. The model architecture is described in the following

subsections.

a) 1D CNN: CNN became widely used due to its ability

to automatically detect contaminants within objects. CNNs

are composed of a set of layers. Each layer in the network

performs a specific functionality. The outputs of several filters

are extracted simultaneously and represented as activations

by convolutions. A feature vector can be created by applying

multiple convolutions to the input.

In order to improve the performance of feature extraction,

this network utilizes three convolutional layers connected by

another layer. Initially, the network has a 1D input-layer

accepting inputs dimensioned with [4874564,1]. First layer

is Conv1D with a kernel size of 1 and a total of 64 filters.

In the obtained feature map, a batch normalization layer

(Batch N) and a rectified linear unit layer (ReLU) were

added after the convolution, respectively, to normalize the

inputs across filters. Max-pooling (MaxPooling1D) layer also

included for dimensionality reduction for the feature vectors.

Dropout layer was used to mitigate the overfitting issue. These

layers (Conv1D, Batch N, ReLU, MaxPooling1D, Dropout)
were double replicated to extract deeper/intense features from

input using filter sizes 32 and 16.

b) BiLSTM: the LSTM formed of various number of

gates; which are (i) to represent the input, (o) is the output,

and (f) for forget gates. The input and output gate acts as a

memory block for a main functional cell, storing input events

and calculating the data to be stored in the network’s memory.

The cell is additionally connected to its associated gate through

a peephole connection to facilitate feedback. At any time t, the

primary cell output Z is specified as,

Zt = ftZt−1 + itzt (5)

where ft denotes the forget gate activation, it for the

input gate activation, and zt the input to the main cell. In

this network, hidden units are activated by using a sigmoid

function σ provided by Equation (6).

ht = ottanh(ct) (6)

ot denotes the output gate activation. Additionally, each gate

can be declared using the following equations.

it = σ(WxiXt +Whiht−1 +Wzizt−1 + bi) (7)

ft = σ(WxfXt +Whfht−1 +Wzfzt−1 + bf ) (8)

ot = σ(WxoXt +Whoht−1 +Wzozt−1 + bo) (9)

zt = tanh(WxzXt +Whzht−1 + bz) (10)

Wx∗ denotes the input-to-gate weight, Wh∗ denotes the

hidden-to-hidden weight, and Wz∗ denotes the peephole

weights. While the training task is being performed, BiLSTM

can process data both forward and backwards and can be

defined as follow:

yt = W →
hy

h
→
N +W ←

hy
h
←
N + by (11)

where h
→
N and h

←
N are the hidden layers in the forward and

backward directions, respectively. Total of 50 units are selected

through the BiLSTM, resulting in a total of 100 units (50

backward and 50 forward).

IV. TRAINING AND CLASSIFICATION PERFORMANCE

We train our data using the proposed CNN-BiLSTM model

and each network individually (CNN and BiLSTM). We also

compared our proposed model with another deep learning

technique which is GRU. An analysis of the ability of deep

learning to identify DDoS attacks was conducted using five

scenarios. The training was carried out using the adaptive mo-

ment estimation (Adam) algorithm. The reason for choosing

Adam is its suitability for data with noisy and sparse gradients.

The original dataset was divided into three subsets using

train test split. We first ordered our instances based on the

timestamp and assigned the first 80% of this data for training

and the last 20% for testing. As a result, our model can effec-

tively detect upcoming attacks over time. Table I summarises

the proposed model properties and experiment environment.

Our proposed model was evaluated using Equations (12)

to (15). A number of performance metrics resulting from

our study were considered, including: accuracy, sensitivity

(also known as recall), precision, and F1-score. All of these

performance metrics are represented using these formulae:

accuracy =
TP + TN

TP + TN + FP + FN
(12)

sensitivity =
TP

TP + FN
(13)

precision =
TP

TP + FP
(14)

F1− score =
2TP

2TP + FP + FN
(15)
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Fig. 2. The proposed CNN-BiLSTM architecture

TABLE I
DETAILS OF CNN-BILSTM

Parameter Value
Input dimensions 76 features
Filter size 64, 32, 16
Kernel size 1
Input activation ReLU
Dropout layer 50%
BiLSTM layer units 50
Dense layer units 100
Output dimension 1
Output activation sigmoid
Error function Binary cross-entropy
Training split 80%
Testing split 20%
Validation split 20% of the training size
Learning optimizer adam
Epochs 50
Batch size 256

It is obvious that TP denotes to true-positive, whereas TN
indicates true-negative, the false-positive is FP , and false-

negative is FN .

V. RESULTS

A. Classification results

In Figure 3, we provide an illustrative example of the

comparison between the training loss and accuracy of our

CNN-BiLSTM model and standalone CNN and BiLSTM

models. The results demonstrate that the CNN-BiLSTM model

outperforms the other algorithms without experiencing over-

fitting. We evaluate the performance of our proposed CNN-

BiLSTM model by classifying unseen traffic flows and pre-

dicting whether or not they are DDoS attacks. Table II reveals

the obtained accuracy, precision, recall, and F1 on the test

dataset using GRU, BiLSTM, CNN, and CNN-BiLSTM. It

was observed that the GRU network had the lowest accuracy,

with a score of 0.97. In BiLSTM network, performance im-

proved by approximately two percent, and accuracy increased

to 0.993. The best performance was achieved using proposed

hybrid approach of CNN-BiLSTM, with an average accuracy

of 0.998.

CNN-BiLSTM model was provided the highest F1-score

in predicting the DDoS class with a score of 0.99, while

GRU provided the lowest with 0.93 only. Its clear from the

table II that all the models have performed well in predicting

Benign class since the values of F1-score for CNN-BiLSTM,

BiLSTM, CNN and were 1, 1, and 0.99, respectively. In

comparison with the other classifiers, CNN-BiLSTM scored

the highest in both precision and recall with a value of 0.998

and 0.994, respectively. The CNN classifier, on the other hand,

provided the lowest precision and recall with scores of 0.992

and 0.964 respectively.

It has been shown that the proposed CNN-BiLSTM model

outperforms the classical deep learning models. In the case

of BiLSTM, due to its ineffectiveness in extracting features,

BiLSTM is ranked low because it stores contextual informa-

tion for both forward and backward directions. This research

focuses on consolidating a BiLSTM with a CNN model. BiL-

STM models can efficiently store two-directional context data

forward (next) and backward (previous). CNN creates a more

accurate representation of the data by combining information

from the current and previous inputs. By maintaining the

current context as well as the previous context, the BiLSTM

model is able to predict court decisions more effectively

than the CNN model. A high classification result is achieved

because the input data is better represented.

B. State-of-the-Art comparison

Our proposed DDoS-FOCUS with CNN-BiLSTM will be

compared to the state-of-the-art solutions to mitigate DDoS
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TABLE II
PERFORMANCE OF PROPOSED CNN-BILSTM COMPARING TO THE OTHER DEEP LEARNING TECHNIQUES

Model Class Precision Recall F1-score Accuracy
BiLSTM DDoS 0.98 0.98 0.98

Benign 1.00 1.00 1.00
Averaged 0.987 0.989 0.988 0.993

CNN DDoS 1.00 0.93 0.96
Benign 0.98 1.00 0.99
Averaged 0.992 0.964 0.977 0.98

GRU DDoS 1.00 0.86 0.93
Benign 0.97 1.00 0.98
Averaged 0.98 0.93 0.95 0.97

CNN-BiLSTM DDoS 1.00 0.99 0.99
Benign 1.00 1.00 1.00
Averaged 0.998 0.994 0.996 0.998

(a) Loss (b) Accuracy

Fig. 3. Accuracy and Loss results per epoch for our proposed CNN-BiLSTM model

attacks using UNB datasets for DDoS attack detection.

The work in [13] was particularly interesting to us since it is

similar to our approach for detecting DDoS attacks. The model

was trained and tested using a hybrid approach of CNN and

RNN on ISCX2012 dataset. They achieved an accuracy value

of 99.71%. An ensemble solution to detect network intrusions

can be created by combining Multi-Objective Genetic Algo-

rithms (MOGAs) and Neural Networks (NNs), as presented by

the researchers in [14]. The proposed approach demonstrated

an overall detection accuracy of 97%.

Similarly, the authors in [15] proposed a hybrid approach of

Ensemble of Feature Selection (EFS) and Adaptive Grasshop-

per Optimization Algorithm (AGOA) to identify DDoS at-

tacks. This approach starts by ranking each attribute using the

EFS method, which is the first step in selecting a subset of

attributes that are highly ranked. Following the reduction of

datasets, AGOA is applied to determine characteristics that can

be used to predict traffic behavior in networks. This approach

provided an overall accuracy of 99.13%.

The work in [16] presented four different deep learning

models for the detection of DDoS attacks on Internet of Things

(IoT) networks. Models are created by combining LSTMs,

CNNs, and fully connected layers. Models input layers consist

of 82 units, one for each flow level in CIC2017, and output

layers provide probability information for a given flow to be

part of a DDoS attack. A good classification score can be

achieved with 1D-CNN+LSTM, but false negative rates seem

to be higher in the other models.

The authors in [17] developed an algorithm called DeepGFL

that aims to extract high-order features from low-order features

using a hierarchical graph representation. A Decision Tree and

Random Forest classifier were trained using the graph repre-

sentation of the features to validate the proposed framework

and tested them at CIC2017. It is evident from the presented

results that our solution is susceptible to FN, which results in

very low F1 scores even though the precision scores on many

types of attacks are fairly good.
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VI. CONCLUSION AND FUTURE WORK

This research responded to the rapid increase of malicious

traffic over the Internet due to the significant growth of Bad

bot traffic and the growing number of vulnerable IoT nodes.

The proposed model utilises IoT fog nodes and their essential

role and position in the IoT network to mitigate DDoS attacks.

A CNN-BiLSTM hybrid deep learning model has been pro-

posed. The CNN-BiLSTM is a convolutional neural network

in conjunction with a Bidirectional long-short-term memory

adopt to detect the spatial information and temporal features

to predict DDoS attacks. The achieved results demonstrate that

the proposed CNN-BiLSTM model outperforms the classical

deep learning models and the state-of-the-art results. In future

work, the fog nodes will be trained to not only detect DDoS

attacks but block them and notify other vulnerable nodes in

the IoT network.
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