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Background: Training load is typically described in terms of internal and external load. Investigating the coupling of internal and
external training load is relevant to many sports. Here, continuous kernel-density estimation (KDE) may be a valuable tool to
capture and visualize this coupling. Aim: Using training load data in speed skating, we evaluated how well bivariate KDE plots
describe the coupling of internal and external load and differentiate between specific training sessions, compared to training
impulse scores or intensity distribution into training zones. Methods: On-ice training sessions of 18 young (sub)elite speed
skaters were monitored for velocity and heart rate during 2 consecutive seasons. Training session types were obtained from the
coach’s training scheme, including endurance, interval, tempo, and sprint sessions. Differences in training load between session
types were assessed using Kruskal–Wallis or Kolmogorov–Smirnov tests for training impulse and KDE scores, respectively.
Results: Training impulse scores were not different between training session types, except for extensive endurance sessions.
However, all training session types differed when comparing KDEs for heart rate and velocity (both P < .001). In addition, 2D
KDE plots of heart rate and velocity provide detailed insights into the (subtle differences in) coupling of internal and external
training load that could not be obtained by 2D plots using training zones. Conclusion: 2D KDE plots provide a valuable tool to
visualize and inform coaches on the (subtle differences in) coupling of internal and external training load for training sessions.
This will help coaches design better training schemes aiming at desired training adaptations.

Keywords: training load monitoring, data science, big data, kernel density estimation, KDE, heart rate, velocity, speed skating

Daily training monitoring informs coaches and athletes on the
effectiveness of training sessions, which enables them to steer
training adaptations for optimization of athletic goals and perfor-
mance.1 To this end, continuous monitoring of training load (both
in terms of internal and external load) is critically important,
helping to determine whether athletes are adapting to training
stimuli or if fatigue accumulates (which may lead to overuse
injuries), in which case training schedules should be adapted.2

External training load refers to the physical work performed by the
athlete in terms of the quantity, quality, and organization of
exercise (eg, measured by velocity, power or acceleration),
whereas internal training load is defined as the psychophysiological
response to the external load during exercise (eg, measured by heart
rate, lactate or rating of perceived exertion [RPE]).1,3 It is advised to
analyze both internal and external training load variables for
sufficient insights into training stress.2 However, there is no current
standard for directly coupling internal and external training load
that highlights underlying patterns and which is easy to visualize to
enhance understanding of the stimulus of specific training sessions.

Training load monitoring is mostly used to evaluate the overall
fitness or fatigue of athletes, for example, by comparing alignment of

internal and external load measures. For each training session, the
coach aims to achieve an intended training stimulus by prescribing a
specific external training load. For example, with extensive endur-
ance training the coach asks athletes to exercise at a low intensity that
can be sustained for hours (ie, at velocities corresponding to a heart
rate between ∼60% and 80% of maximal heart rate and a blood
lactate below 2 mmol·L−1).4 If an athlete repeats the exact same
session (same external load) and experiences a lower internal load in
the second bout, this could point to adaptation. If, on the other hand,
the athlete experiences a higher internal load, this could point to
accumulated fatigue, disturbed well-being, or illness or overreaching
(although this response may be more complex for submaximal heart
rate during overreaching). By comparing internal and external load
parameters, coaches can evaluate whether their training prescription
did actually result in the intended stimulus.

Often, internal and external training load are summarized in
one overall score for a training session, such as session RPE,
training impulse (TRIMP) scores, or power or distance covered.1

Studies have investigated the relationships between overall scores
for internal and external load, demonstrating that these are posi-
tively related, but also that the relationship depends on training
type.5 However, summarizing internal and external training load
values into one overall score or into different training zones—
which is commonly done—simplifies the time series of a training
session and may lead to a loss of information and/or distinction
between different training sessions. Therefore, in addition to
quantifying training load into one overall score or into training
zones, we propose a new standard that directly couples all data
points of internal and external training load within a training
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session using 2-dimensional (2D) kernel density estimation (KDE)
plots, also known as Parzen’s window.6

KDE is a nonparametric method to describe the distribution
of a parameter by estimating the unknown probability density function
of the data.7 KDE represents the continuous distribution of a parame-
ter, which could replace the discrete histogram, and visualizes under-
lying patterns and irregularities in the data.8 As a practical example,
one could map the heart rate and velocity time series within extensive
interval sessions via KDE and examine exactly at what percentage of
maximal heart rate and maximal velocity the intervals are carried out.
Combining bivariate KDEs of internal and external loadmeasures will
provide “a template” for how these measures are related, and may,
therefore, be a novel tool to discover differences in training load of
specific training sessions. While KDE is regularly applied in an
environmental9 and health context,10 applications in sports are sparse.
To the best of our knowledge, only a few studies used KDE in a sport
context, and only to describe player position on the pitch in soccer11

and rugby.12 It remains unknown whether KDE also reveals valuable
information on the coupling between internal and external training
load, which may benefit coaches and support staff in designing their
training schemes.

In this study, we propose 2D KDE plots as an analysis tool for
the coupling of internal and external training load parameters.
Using 2 years of training load data from competitive speed skaters,
we aimed to evaluate how well KDE visualizes training monitoring
data and differentiates between training sessions in comparison to
commonly used approaches, such as TRIMP scores or intensity
distributions based on training zones.

Methods
Subjects

Eighteen national speed skaters participated in this study. Speed skaters
were of elite and subelite level and included 10 females (age: 19 [1] y,
bodyweight: 66.0 [3.8] kg, height: 1.74 [0.03] m, V̇O2 max: 50.3 [4.4]
mL·kg−1·min−1) and 8 males (age: 20 [1] y, bodyweight: 72.1 [7.7] kg,
height: 1.83 [0.06] m, V̇O2 max: 60.6 [8.5] mL·kg

−1·min−1). The study
was approved by the ethics committee of the University of Groningen
(UMCG, Department of Human Movement Sciences, protocol code
ECB/2017.07.21_1R1), and the experimental design, benefits, and
possible risks of participation were explained to the participants before
signing their informed consent. The study was conducted according to
the Declaration of Helsinki (2013).

Design

This is a retrospective longitudinal study.Within a speed skating team,
the training of speed skating sessions was monitored for internal
training load (ie, heart rate) and external training load (ie, velocity)
during 2 consecutive competitive seasons (2018/2019 and 2019/2020).
Training data were obtained at the teams’ home ice rink.

Methodology

Internal training load was obtained via heart rate, measured con-
tinuously in beats per minute throughout the training sessions using
a Polar Team2 chest strap (Polar Electro Oy). Only heart rate values
recorded between the start and end of a training session were
included for analysis.

External training load was measured in terms of velocity
attained throughout the speed skating sessions. Velocity was
collected using 12 local detection loops (X2 timing and data

system, MYLAPS bv) positioned at 11.6 to 55.2 m distance between
loops within the 400-m ice rink where the skaters performed their
training sessions (for details see Roete et al13). Skaters wore a
transponder strapped around their ankle (MYLAPS Prochip Classic)
to determine the time each loop was passed, with a high resolution
(±0.003 s). Velocity was calculated by dividing the distance between
2 consecutive loops by the time difference of passing these loops (in
kilometer per hour). If the time between 2 consecutive loops on the
same day differed by more than 1 hour, these were considered to
belong to different training sessions. Since training is generally
performed in the inner lane, the distances between loops belonging
to the inner lane were used to determine the velocity.

Training types of the prescribed speed skating sessions
(n = 933) were retrieved from the coach’s training scheme. These
include extensive endurance, extensive interval, intensive endur-
ance, intensive interval, tempo, sprint, and other sessions.

Data Analysis

To quantify training intensity distribution, both velocity and heart
rate values were expressed relative to their maximal values and
within training zones. To avoid unrealistically highmaximal values
that could be based on outliers, we used the 99.9th percentiles
instead of the true maximal values within the 2 competitive
seasons. Velocity values were expressed in 5 velocity zones based
on the active moments of training (defined as velocities
≥14.4 km·h−1), including zone 1: 0% to 20%, zone 2: 20% to
40%, zone 3: 40% to 60%, zone 4: 60% to 80%, and zone 5: 80% to
100% of the active velocity range.13 All velocity values below
14.4 km·h−1 were considered to be inactive moments (ie, zone 0).
Relative heart rate values were expressed in 5 heart rate zones
corresponding to Edwards TRIMP, including zone 1: 50% to 60%,
zone 2: 60% to 70%, zone 3: 70% to 80%, zone 4: 80% to 90%, and
zone 5: 90% to 100% of the maximal heart rate.14 Heart rate values
below 50% of maximal heart rate were considered as zone 0. For
each training session type, Edward’s TRIMP scores were calcu-
lated based on the time spent in each of the 5 heart rate zones,14 in
line with the original TRIMP approach for combining exercise
intensity and duration.15,16

Velocity and heart rate data were synchronized based on their
timestamps for every athlete. Velocity values for a segment were
excluded when skaters skated in reverse direction. Heart rate data
were then joined to the velocity data based on the athlete identifier and
their timestamps, while accounting for daylight saving time. To assess
direct coupling between heart rate and velocity time series, we
accounted for the phase lag between the 2 signals that was identified
based on cross-correlation (ie, 8-s time delay for heart rate). This
resulted in a combined data set with values of both internal and
external training load at each passing (of a loop in the ice rink).
Subsequently, distribution of the data for specific training session
types could be evaluated continuously using kernel density scores or
after binning into discrete velocity and heart rate zones. For this
analysis, we only included training session types that (1) aimed to
trigger physiological adaptations, (2) had the entire session concen-
trated on this purpose, and (3) included at least 25 sessions in the data
set. These training types are extensive endurance, intensive endur-
ance, extensive interval, intensive interval, tempo, and sprint sessions.

Kernel Density Estimation

KDE was used to estimate the probability density function from
the actual observations, while applying a kernel bandwidth as
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smoothening parameter.6,7 Bandwidths were derived from normal
scale methods17 and corresponded to 1.5 km·h−1 for velocity and
1 beats·min−1 for heart rate data. Bivariate plots were created for the
discrete zones and continuous KDEs of the velocity and heart rate
data. In addition, to directly compare the combination of internal
and external load between specific training sessions, 2D KDEs
were subtracted between 2 training types (using the R-function
kde2d from the MASS package).

Statistical Analysis

Data are presented as mean (SD). Normality of the data was
evaluated using the Shapiro–Wilk test. TRIMP scores were com-
pared between specific training sessions using a 1-way analysis of
variance or Kruskal–Wallis tests (if the data are not normally
distributed). Post hoc tests were performed to detect differences
between training session types, after Bonferroni correction. In
addition, training intensity distribution within specific training
sessions was obtained by binning the data into velocity13 and heart
rate zones14 or using the KDEs of velocity and heart rate. To
compare KDEs for velocity and heart rate between the specific
training types, a permutation test of equality was performed using
the R-function sm.density.compare from the (smoothing methods)
sm package.18 If these indicated significant differences, pairwise
post hoc tests were performed using the nonparametric 2-sample
Kolmogorov–Smirnov test to localize the differences between
training session types. Bonferroni corrections were applied to
account for multiple testing. Effect sizes of the differences in heart
rate and velocity between training sessions types were analyzed
using the Kolmogorov distance statistic or Cohen d statistic.
Results are considered to be significant if P < .05. All (statistical)
analyses are performed in R (version 4.0.0; 2020-04-24).

Results
Training Sessions

Speed skaters completed 933 training sessions over the 2 competi-
tive seasons, including 118 extensive endurance sessions, 40 inten-
sive endurance sessions, 180 extensive interval sessions, 28
intensive interval sessions, 169 tempo sessions, and 80 sprint
sessions. For each training session type, representative descriptions,

anticipated RPE scores and their frequency in the data set have been
provided (Table 1). Average TRIMP scores were presented for each
training session type in Figure 1.

Visualization of Internal and External Training
Load

Focusing on training load distributions for specific training session
types, both internal and external training load can be visualized
using heart rate and velocity data. As an example, distribution of
heart rate data from all intensive interval training sessions was
displayed in Figure 2, which can be presented after binning the data
into discrete training zones (Figure 2A) or as continuous KDEs
(Figure 2B). The same can be done for velocity data (Figure 2C and
2D, respectively). Also, the coupling of internal and external
training load distributions can be visualized using bivariate plots,
both in terms of discrete training zones (Figure 2E) or continuous
KDEs (Figure 2F). Figure 2 illustrates that the 2DKDE plot reveals
a more detailed visualization of the training load compared with 2D
plots using discrete training zones. Figure 3 displays the 2D KDE
plots for each training session type. For example, it can be observed
that extensive endurance sessions are predominantly performed
around ∼75% of maximal velocity (Vmax) and ∼85% to 95% of
maximal heart rate (HRmax).

Differences in Training Load Between Training
Session Types

Interestingly, the overall TRIMP scores did not differ between
training session types, except for a higher TRIMP score during
extensive endurance sessions (Figure 1). In contrast, comparing
KDE distributions of training load between training session types
reveals that these differ significantly for heart rate and velocity
(both P < .001). Pairwise comparisons of KDEs for heart rate and
velocity reveals that all training session types are different from
each other (P < .001 for heart rate and P < .001 for velocity; for
effect sizes, see SupplementaryMaterial [available online]). Impor-
tantly, pairwise comparisons can also be visualized using 2D KDE
plots, by subtracting 2D density estimates of 2 specific session
types, such as presented in Figure 4. For instance, comparison of
intensive and extensive interval sessions (Figure 4A) reveals that
intensive interval sessions are performedmore at ∼95% of Vmax and

Table 1 Training Prescription, Anticipated RPE Scores, and Frequency for Each Training Session Type
in the Data Set

Training Description Expected RPE (CR-10) Frequency, %

Extensive endurance 3 × 12 laps with 6 min of rest (males)
3 × 8 laps with 6 min of rest (females)

4 19.2

Intensive endurance 6 × 8 laps with 6 min of rest (males)
6 × 5 laps with 7 min of rest (females)

7 6.5

Extensive interval 2 × 400-600-800-600-400 m (deep posture) with 6 min of rest
2 × 120 m (very deep posture)

5 29.3

Intensive interval 4 × 600-1000 m with 8 min of rest +
3 × 800 m with 8 min of rest

7 4.6

Sprint 3 × 100-100-100 m (straight) with 4 min of rest
3 × 100-100-100 m (turn) with 4 min of rest
3 × gliding start + 200 m with 4 min of rest

5 12.0

Tempo 5 × 800 m with 8 min of rest 8 27.5

Abbreviations: CR-10, 10-point category-ratio scale; RPE, rating of perceived exertion.
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95% HRmax, while extensive interval sessions concentrate around
70% Vmax and 80% HRmax and around 85% Vmax and 90% HRmax.
Notably, load differences between training session types do not
map one-on-one to the discretized training zones, and 2D KDE
plots visualize differences also when these are more subtle
(ie, occur across or within the borders of specific training zones).
Therefore, 2D KDE plots provide detailed insights into the differ-
ences in internal and external training load between training session
types that are relevant for coaches when prescribing exercise to
their athletes.

Discussion
In the present study, we introduced 2D KDE plots to visualize the
coupling of internal and external training load data and evaluated
how well these differentiate between training sessions in compari-
son to traditional approaches, such as TRIMP scores or intensity
distributions based on training zones. Whereas TRIMP scores were
similar between training session types (except for extensive endur-
ance), KDEs revealed significant differences in training load
between each of the training session types. This study is the first
to show that 2DKDE plots provided a detailed representation of the
training load of specific training sessions.

Training load monitoring provides essential information to
coaches when prescribing training sessions to their athletes, as
training load parameters can be useful to evaluate injuries, illness,
or overtraining.19–23 Even though it is recommended to assess both
internal and external training load parameters for sufficient insights
into training stress,2 few studies have investigated the direct
relationship between internal and external load, and mostly in
terms of their correlations5,24 or ratio25 using one score per
(training) session. However, simplifying the time series data within
sessions into one summary score may come at a cost of losing
relevant information. Indeed, our findings show that overall

TRIMP scores were not able to differentiate between training
session types (except for the extensive endurance sessions),
whereas differences between all training session types are observed
for continuous KDEs of the training load parameters. Figure 2
shows that for intensive interval sessions, the skater’s velocity has a
bimodal distribution with peaks around ∼75% and ∼20% of
maximal velocity, corresponding to actual intensive skating and
casual skating (in between bouts of exercise). For the discrete
training zones, this corresponds to zones 3 to 4 and zones 0 to 1,
respectively. For heart rate, there was only one peak around ∼80%
of maximal heart rate, corresponding to training zones 3 to 4, likely
because heart rate will remain elevated over short breaks in
between bouts of the intermittent exercises. In this study, we
demonstrate that the direct coupling between internal and external
load for specific training sessions can be visualized using 2D KDE
plots. Such 2D KDE plots preserve training load distributions
within the specific training sessions, revealing a detailed presenta-
tion of the load coupling. For intensive interval sessions, we show
that intervals are mostly executed at 70% to 85% Vmax and 85% to
95%HRmax, which is more precise than the bivariate plots based on
training zones (Figure 2E–2F). Interestingly, extensive endurance
sessions in speed skating were focused around 75% Vmax and 90%
HRmax (Figure 3), which is below race velocities, but more intense
than the 60% to 80% HRmax that is expected for this type of
endurance training in endurance athletes.4 Of note, submaximal
heart rate values may be 15 to 20 beats·min−1 higher in speed/in-
line skating compared to other endurance sports,26,27 likely due the
prolonged duty cycle of the skating stroke that compromises the
blood flow.28 Moreover, the heart rate intensities we observed
corresponded to the intensity that is regularly used by speed skaters
during their endurance training (∼90%–95% HRmax).29 By using
2D KDE plots, internal and external load can also be directly
compared between 2 types of training sessions, by subtracting their
density estimates (Figure 4). Such visualizations provide additional

Figure 1 — Training load is presented for each training session type based on their overall TRIMP scores. *Differences in TRIMP between extensive
endurance and all other session types, P < .05. #A tendency for difference in TRIMP between extensive endurance and intensive endurance sessions,
P = .08. TRIMP indicates training impulse.

Visualizing Internal and External Training Load 637

IJSPP Vol. 18, No. 6, 2023
Brought to you by UNIVERSITY OF NORTH TEXAS | Unauthenticated | Downloaded 11/04/23 03:51 PM UTC



Figure 2 — Training intensity distribution of heart rate and velocity data was presented for all intensive interval training sessions, after binning the data
into discrete heart rate zones14 (A) or velocity zones13 (C) or as continuous KDEs based on the percentage of maximal heart rate (B) or maximal velocity
(D). Direct coupling of internal and external training load distributions was visualized using bivariate 2D plots, both in terms of discrete training zones
(E) or continuous KDEs (F). The lighter shade indicates more frequent occurrence of that combination of heart rate and velocity zones or intensities.
Boundaries of the heart rate and velocity zones are indicated using grid lines. Data points were collected at the passing of each detection loop in the ice rink
(12 times per lap). Reference values for competitive velocities were obtained from top-10 finishers competing in the same age category as our speed
skaters (neoseniors) during the National Championships within the corresponding season. These reference values are presented in panel D by vertical
lines for 500 m (98% of maximal velocity), 1000 m (94% of maximal velocity), 1500 m (87% of maximal velocity)—all excluding the start—and
3000 m/5000 m (80% of maximal velocity; in females/males). KDE indicates kernel-density estimate.
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Figure 3 — Direct coupling of internal and external load of specific training session types was visualized using 2D kernel-density-estimate plots based
on heart rate (in % of maximal heart rate) and velocity (in % of maximal velocity). The lighter shade indicates more frequent occurrence of that
combination of heart rate and velocity intensities. Boundaries of the heart rate and velocity zones are indicated using grid lines. Data points were collected
at the passing of each detection loop in the ice rink (12 times per lap).
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and detailed insights into the (subtle) differences in training load
between training session types. In brief, we argue that 2D KDE plots
provide a new and valuable tool for analyzing the direct coupling
between internal and external load. This enables more precise
monitoring of athletes and planning of training sessions by coaches.

To the best of our knowledge, this study is the first to
investigate the direct coupling between internal and external
load using 2D KDE plots and the first to examine the direct
coupling of internal and external load in speed skating. 2D
KDE plots have been used before, to investigate spatial trends
of attacking possession in rugby,12 and the team’s space-related
control on the pitch in soccer.11 This highlights the general ability
of KDE plots to visualize and summarize complex time series data.
However, big data sets are required to provide sufficient data points
to create such detailed visualizations. For instance, the study of
Martens et al11 incorporated 54 soccer matches with 31,824 data
points and that of Sawczuk et al12 included 138 rugby matches
comprising 99,966 data points. In the present study, we monitored
competitive speed skaters for 2 consecutive seasons and obtained
detailed sensor readings from heart rate monitors and detection
loops on the ice rink, which resulted in a data set of 933 training
sessions with 421,982 data points (at least 11,821 data points per
training session type). Naturally, applying 2D KDE plots to
investigate the direct coupling of internal and external load may
be very promising for other sports as well. For example, in cycling,
running and rowing—where large amounts of high-resolution data
on heart rate, velocity, and power are collected—these bivariate
KDE visualizations will likely also lead to new insights into the
monitoring and prescription of training load.

Considering the specific training load parameters that are used to
create the 2D KDE plots and the resolution at which the data are
collected is important when comparing 2D KDE plots between
session types or between sports. For example, instead of heart rate,
thewidely usedRPE scores could also be collected to quantify internal
training load in terms of session RPE load (ie, intensity × duration).30

In that case, it is advised to use RPE scales that have more options, as
these may provide more detailed measures of exercise intensity.31,32

The downside of using RPE scores—instead of higher resolution heart
rate data—is that typically one RPE score is given for each training
session, which requires researchers to obtain many data points by
collectingmany sessions from a large number of athletes or overmany
competitive seasons. Alternatively, RPE and velocity could be ob-
tained within training sessions after specific elements (eg, intervals) to
increase the resolution. In this study, we obtained heart rate and
velocity data when passing the detection loops in the ice rink.
Although heart rate was available at a higher resolution (1 Hz), we
decided not to upsample the velocity data to 1 Hz as that would only
lead to duplication of velocity values. From a practical perspective,
visualizing 2D KDE plots based on heart rate and velocity data
obtained when skaters pass a detection loop (12 times per lap) has the
advantage that it provides a good reference for speed skating applica-
tions that inform coaches with real-time feedback.33

Practical Application
Our method of profiling training load distributions using 2D KDE
plots of the various training session types can be of great value to
the coach involved. First of all, quantifying the internal and
external load over a longer period will help to assess the actual
training load experienced by the athletes. Second, the bivariate
KDE plots show the coach in great detail what the load of a
particular training type is, which might in fact be quite different
from the intended training load. Differences in perceived and
intended training load are relevant for training optimization, as
these may relate to different perceptions of success, personal
accomplishment, recovery, and self-regulation.34 Third, pairwise
comparison of 2D KDE plots of specific training session types

Figure 4 — The pairwise comparison of internal and external training
load between 2 training session types is visualized using 2D KDE plots.
Comparisons were established by subtracting the 2D KDEs of one training
session type from that of another training session type. Larger differences
are illustrated by darker colors. Differences were displayed for the range of
heart rate values corresponding to heart rate zones 3 to 5 and the range of
velocity values corresponding to velocity zones 3 to 5. Heart rate and
velocity intensities in the (left) bottom occur more frequently during
extensive interval sessions (in green), whereas the other combinations
of heart rate and velocity intensities in the top (right) occur more frequently
during intensive interval or intensive endurance sessions, respectively (in
red). See online article for color version of the figure. Boundaries of the
heart rate and velocity zones are indicated using grid lines. KDE indicates
kernel-density estimate.
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point out (subtle) differences, such as between intensive interval
and extensive interval sessions, which could lead to further refining
the training set-up. As such, our method will help coaches to assess
and fine-tune their training designs, and potentially identify cases
of suboptimal training load in individual athletes.

Conclusion
This study shows that the 2D KDE plot provides a useful tool to
visualize and quantify the complex coupling of internal and external
load of specific training sessions. Based on heart rate and velocity
data, we demonstrate (subtle differences in) load between specific
training sessions, which is more comprehensive than traditional
approaches such as TRIMP scores or intensity distributions after
binning into training zones. These 2D KDE plots inform coaches in
more detail on the internal and external training load of their
prescribed training sessions andmay help them design better training
schemes aiming at desired training adaptations.
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